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Sommario

Questa tesi esplora il profondo legame tra geometria e fisica, mettendo in relazione la
descrizione puramente matematica di curve e superfici con le leggi che governano l’u-
niverso nel regime delle alte velocità. Partendo dalla relatività ristretta di Einstein, si
evidenzia come lo spazio e il tempo siano unificati in un continuo quadridimensionale e
come questa nuova concezione di spaziotempo influenzi concetti fondamentali come gli
intervalli spazio-temporali, le leggi della dinamica o la simultaneità degli eventi. Succes-
sivamente, la trattazione si estende alla geometria intrinseca delle superfici, introducendo
concetti quali metrica, curvatura e geodetiche, strumenti essenziali per la comprensione
dello spaziotempo curvo della relatività generale. Infine, viene analizzato l’universo di
De Sitter, un esempio concreto di universo curvo contrapposto alla geometria piatta dello
spaziotempo di Minkowski. Tutto ciò mostra come l’intuizione geometrica possa fornire
una profonda comprensione dei fenomeni fisici, dalla curvatura locale delle superfici alla
struttura globale del cosmo.



Abstract

This thesis investigates the profound connection between geometry and physics, estab-
lishing a direct correlation between the mathematical description of curves and surfaces
and the laws that govern the universe at high velocities. Starting from Einstein’s special
relativity, we draw attention to how space and time merge in a 4-dimensional continuum
and how this new understanding of spacetime reshapes fundamental concepts such as
space-time intervals, laws of dynamics, or simultaneity. The discussion then extends to
the intrinsic geometry of surfaces, introducing key notions like metric, curvature, and
geodesics, essential tools to comprehend the curved spacetime of general relativity. Fi-
nally, we analyse the De Sitter universe, a concrete example of a curved universe as
opposed to the flat geometry of Minkowski spacetime. These insights show how geo-
metric intuition provides a deep understanding of physical phenomena, from the local
curvature of surfaces to the global structure of the cosmos.
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Introduction

This thesis explores the profound connection between geometry and physics, relating the
abstract mathematical description of curved surfaces to the laws governing the universe at
high velocities. By the late 1800s, classical physics found itself at a deadlock. Maxwell’s
electromagnetic equations did not exhibit invariance when subjected to Galilean trans-
formations, suggesting that either the Galilean transformations were unsuitable for de-
scribing electromagnetism or that Maxwell’s equations were valid only in a privileged
reference frame. However, the Michelson-Morley experiment (1887) evidently failed to
detect the Earth’s motion through the hypothetical “luminiferous aether”, thereby prov-
ing that such privileged reference frame (the one at rest with the aether) is nonexistent.
It was in this tense atmosphere that Lorentz, Poincaré, and other scientists developed
the mathematical transformations that we know today as Lorentz transformations. How-
ever, these were originally conceived as simple mathematical tools to preserve the form
of classical electromagnetism and to explain the (apparent) validity of Galileo’s principle
of relativity, despite the failure to detect motion relative to the aether. The year 1905
marked a turning point with the formulation of Einstein’s theory of special relativity. De-
spite reaching conclusions similar to those of Lorentz, Einstein’s approach was radically
different. By elevating the constancy of the speed of light and the principle of relativity
to fundamental postulates, he achieved the same results but with a deeper and more
coherent interpretation. In fact, he revealed that the Lorentz transformations embodied
profound implications about the nature of space and time, and that they were not merely
ad hoc mathematical adjustments, but the beginning of one of the most radical paradigm
shifts of all time. The geometric implications of this new theory became fully evident
through the work of Minkowski, Einstein’s former mathematics professor. He showed
that special relativity found its most natural expression in a four-dimensional continuum
known as Minkowski spacetime, where space and time merge into a single entity. This
geometric reformulation elevated time from a simple variable to a coordinate on an equal
basis as the spatial ones. The central theme of this thesis is that geometry is not merely
a tool for calculating physical quantities: it is the language in which the laws of physics
are most naturally expressed.
The first chapter of this thesis is dedicated to special relativity. We begin by enunciating
Einstein’s postulates and deducing directly from them the relativistic transformations
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CONTENTS

between inertial frames (the so called Lorentz transformations). This new approach uni-
fies space and time in a four-dimensional framework called Minkowski spacetime. Its
geometry leads to new concepts such as space-time intervals, light cones, and worldlines.
We also discuss the geometric formulation of special relativity introducing the notions
of metric tensor, norm, and scalar product in Minkowski spacetime. To follow, we study
some of the most relevant physical consequences of special relativity such as the phenom-
ena of time dilation and length contraction, the new law for addition of velocities, the
Doppler effect. Finally, we see some fundamental physical properties such as velocity,
momentum, and force expressed in their covariant form as four-vectors, which we will
use to build the covariant formulation of dynamics.
The second chapter aims to define the notion of a regular surface in R3. We start by
introducing some preliminary notions on curves (like curvature, parametrization, tan-
gent vector...) that will be useful later on in this chapter to fully understand surfaces
and their properties. Then we define regular surfaces, providing the reader with some
criteria that should help when trying to decide whether a given subset of R3 is a regular
surface or not. To follow, we begin to study the intrinsic geometry of the surface through
the introduction of the metric tensor (or first fundamental form), a natural instrument
to treat metric aspects like lengths, angles or areas. After this, we extend the concept
of curvature to surfaces, followed by some relevant definitions (the Gauss map, princi-
pal curvatures and directions, Gaussian curvature, mean curvature). Then we start the
study of intrinsic geometry, that is, the study of those features which can be deduced
directly from the metric without reference to the external embedding. A pivotal result
of this section is Gauss’s Theorema Egregium, which shows that the Gaussian curvature
is actually an intrinsic property of surfaces. We conclude the chapter with the study of
geodesics, which can be interpreted as the generalization of “straight lines” on a curved
surface. This geometric framework, in particular the concepts of intrinsic geometry,
geodesics, and curvature, provides the basic mathematical tools for transitioning from
the flat spacetime of special relativity to the curved one of general relativity. An example
of curved spacetime is De Sitter spacetime, which we analyse in Chapter 3.
The third and final chapter presents an example of curved spacetime: the De Sitter
universe. This is one of the simplest and yet most fundamental examples of a curved
universe. While special relativity describes the physical phenomena on the flat Minkowski
spacetime, this model extends this description to a curved universe. We will start by
describing it as a (1+2)-dimensional spacelike hyperboloid of one sheet embedded in the
(1+4)-dimensional Minkowski space, and then describe it through a proper parametriza-
tion.
Through this progression, this work aims to show how geometric intuition provides the
deepest understanding of physics, from the local curvature of a surface to the global
structure of the cosmos.
The leading sources for the material presented in this thesis are [Bar04], [dC76], [Cal00].
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Chapter 1

Special Relativity

This chapter is dedicated to special relativity, the theory that Albert Einstein formulated
in 1905 that completely subverted the traditional concepts of space, time, and motion in a
way no-one had ever done before. Newtonian mechanics provide an excellent description
of motion in the regime of low velocities, but this approach fails for objects moving
at speeds comparable to the one of light. Special relativity resolves the conflicts by
introducing a new universal constant, the speed of light in a vacuum c, and by stating
that the laws of physics must be the same for all inertial observers. To sum up, this
chapter will equip us with the tools to understand physics in the regime of high velocities
where the classical intuition and the Newtonian laws must be abandoned.

In the first section (Section 1.1), we present the foundation of special relativity enunci-
ating the two postulates and deducing directly from them the relativistic transformations
between inertial frames (the so called Lorentz transformations). This new approach uni-
fies space and time in a four-dimensional framework called Minkowski spacetime. Its
geometry leads to new concepts such as space-time intervals, light cones, and worldlines
that we explore at the end of the section. In Section 1.2, we begin to discuss of the
geometric formulation of special relativity. This section also draws a parallel between ro-
tations in Euclidean geometry and Lorentz transformations, which can also be interpreted
as hyperbolic rotations, in Minkowski spacetime. This parallellism is identified to ex-
tend the notions of metric tensor, norm, and scalar product to the Minkowski spacetime.
To follow, Section 1.3 aims to discuss some of the most relevant physical consequences
of special relativity and to see the direct applications of the Lorentz transformations.
Among them we have the phenomena of time dilation and length contraction, the new
law for addition of velocities, the Doppler effect. Finally, in Section 1.4, we will see some
fundamental physical properties such as velocity, momentum and force expressed in their
covariant form as four-vectors, which we will use to build the covariant formulation of
dynamics.

The leading source for the material presented in this chapter is [Bar04].
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1.1. Einstein’s solution

1.1 Einstein’s solution

Special relativity can be entirely built upon these two postulates that Einstein formulated
in 1905.

• The speed of light in a vacuum has the same value c = 299 792 458 m/s in all inertial
frames of reference, independent of the motion of the source or of the observer.

• The laws of physics take the same mathematical form in all inertial reference
frames.

Inertial frames of reference are connected by particular transformations, and the point
is now to find these transformations that preserve the form of any physic’s law. Let

Bv : K
′ → K

be the wanted transformation from two reference frames K ′ and K. How should Bv be
defined?

• Linearity. Suppose a body A moves at a constant speed in K ′, then, since K and
K ′ are in uniform motion with respect to one another, A moves at a constant speed
in K as well. Hence, A must have a straight worldline both in K and in K ′, that
is, we want the transformation to map straight lines into straight lines. Because
we implicitly assume that Bv is invertible and sends the origin to itself, it follows
that Bv is a linear transformation.

• The transformation must have the same form for all pairs of observers.
Since there is no real distinction between uniformly moving observers, two such
references K and K ′ should use the same transformation when they convert from
their own spacetime to the other’s. When K ′’s velocity with respect to K is v,
K’s velocity with respect to K ′ must be −v. Therefore, since Bv : K → K ′, we
must have B−v : K → K ′. But the map K ′ → K has to be the inverse of the map
K → K ′, hence B−1

v = B−v.

We will call these transformations Lorentz transformations.

1.1.1 Events

In physics, an event is a set of four real numbers (x, y, z, t), three of which are spatial
coordinates that indicate where the event took place, and the fourth is the instant of
time that specifies when the event occurred.
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1.1. Einstein’s solution

Spacetime Interval

Let’s now introduce the notion of spacetime interval between two events. Let A =
(xA, yA, zA, tA) and B = (xB, yB, zB, tB) be two events. Then the squared interval
between A and B is defined as

∆s2 = c2(tB − tA)
2 − (xB − xA)

2 − (yB − yA)
2 − (zB − zA)

2,

or, more briefly
∆s2 = c2∆t2 −∆x2 −∆y2 −∆z2.

Let us also introduce the infinitesimal interval ds between two events of type (t, x, y, z)
and (t+ dt, x+ dx, y + dy, z + dz) defined as

ds2 = c2dt2 − dx2 − dy2 − dz2.

The set of all events equipped with the above structure is called Minkowski space-
time.

Starting from the principles of relativity, we will show an extremely important con-
clusion: the interval between two events must be the same for all inertial observers, that
is, the interval is an invariant quantity.

Null Interval

Let’s consider a reference frame K. Suppose that event A = (xA, yA, zA, tA) corresponds
to the emission of a light signal, and event B = (xB, yB, zB, tB) corresponds to the
receiving of that same light signal. The interval between them is

∆s2 = c2(tB − tA)
2 − (xB − xA)

2 − (yB − yA)
2 − (zB − zA)

2.

According to the first postulate, light signals propagate isotropically at speed v = c.
After a time t, the emitted signals occupy a spherical wavefront of radius r = ct, where
r =

√
x2 + y2 + z2. Squaring both sides, we obtain the equation of the wavefront,

c2(tB − tA)
2 = (xB − xA)

2 + (yB − yA)
2 + (zB − zA)

2.

This implies that the previous interval is equal to zero: ∆s2 = 0.

Now let’s see what happens in another inertial reference frame K ′. The events will
be identified by the coordinates A′ = (x′A, y

′
A, z

′
A, t

′
A) and B

′ = (x′B, y
′
B, z

′
B, t

′
B). They are

separated by the interval

∆s′2 = c2(t′B − t′A)
2 − (x′B − x′A)

2 − (y′B − y′A)
2 − (z′B − z′A)

2.
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1.1. Einstein’s solution

According again to the first postulate, the speed of light c is constant for any inertial
observer, so the equation of the wavefront in K ′ is

c2(t′B − t′A)
2 = (x′B − x′A)

2 + (y′B − y′A)
2 + (z′B − z′A)

2,

hence, the interval between A′ and B′ is null in K ′ too: ∆s′2 = 0.
We therefore conclude that

∆s2 = 0 =⇒ ∆s′2 = 0.

General Invariance of the Interval

We now wish to show that this holds for any interval, not only for null ones. Assuming
that the coordinate transformation between K and K ′ is linear, then ∆s2 = 0 =⇒
∆s′2 = 0 implies that

∆s2 = λ(v)∆s′2,

where, by space-time isotropy, λ depends only on v and is an even function of v, that is,
λ(v) = λ(−v). So we have

∆s′2 =
1

λ(v)
∆s2.

On the other hand, according to the second postulate, all inertial frames are equivalent
to each other, so the transformation from K to K ′ must be the same as the one from K ′

to K, except that v changes sign.1

∆s′2 = λ(−v)∆s2.

Thus, we get to

λ(−v) = 1

λ(v)
=⇒ λ2(v) = 1.

The solution λ(v) = −1 is not acceptable because, for v = 0, we must have the identity
∆s′2 = ∆s2, that is, λ(0) = 1. We conclude that λ(v) = +1, hence ∆s2 = ∆s′2.
To sum up, the interval between two events is invariant under Lorentz transformations,
and any transformation between two inertial reference frames must preserve this property.

1.1.2 The Lorentz Transformations

As shown in the previous section, transformation between two systems K and K ′ must
preserve the interval between two events to be consistent with Einstein’s postulates:

∆s2 = ∆s′2.

We now derive the explicit form of the Lorentz transformations from this condition.

1We are using the fact that B−1
v = B−v.
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1.1. Einstein’s solution

General Linear Transformation

Since ∆s2 must be conserved, we expect the transformations to involve a mixing between
space and time coordinates. For simplicity, consider two frames of reference K and K ′

in motion with respect to each other at a constant speed v parallel to the x-axis, so that
the y-axis and the z-axis are parallel, like in Figure 1.1. Choose the origin of times in
such a way that at t = t′ = 0, the origins O and O′ coincide.

y

z

K

O
x′ ≡ x

y′

z′

K ′

O′

v

Figure 1.1: Reference frames K and K ′ in uniform relative motion along the x-axis.

The most general linear transformation between such reference frames is
x′

y′

z′

t′

 =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44



x
y
z
t

 ,

which becomes the following linear system
x′ = a11x+ a12y + a13z + a14t,

y′ = a21x+ a22y + a23z + a24t,

z′ = a31x+ a32y + a33z + a34t,

t′ = a41x+ a42y + a43z + a44t.

Under the previous hypotheses x′ ≡ x, and v ∥ x, with y′ and z′ parallel to y and z
respectively, the space coordinates do not get mixed up (K’s axes are not rotated with
respect to K ′’s), and the transverse coordinates y′ and z′ do not depend on t since the
relative motion is along the x-axis. To sum up, x′ can only depend on x and t, while y′

and z′ can only depend on y and z respectively; we also expect t′ to depend only on x and
t, otherwise, K ′ would have a cinematic component depending on the transverse axes,
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1.1. Einstein’s solution

but the only physically relevant direction is the direction of relative motion between K
and K ′. These considerations translate into:

x′ = a11x+ a14t,

y′ = a22y,

z′ = a33z,

t′ = a41x+ a42y + a43z + a44t,

where the coefficients aij will be, in general, a function of v. By space isotropy we will
have

a22 = a33,

hence, the system becomes 
x′ = a11x+ a14t,

y′ = a22y,

z′ = a22z,

t′ = a41x+ a44t.

By renominating a11 = A(v), a14 = B(v), a44 = C(v), a41 = D(v), and a22 = E(v), the
equations become 

x′ = A(v)x+B(v)t,

y′ = E(v)y,

z′ = E(v)z,

t′ = C(v)t+D(v)x.

Application of the Physical Conditions

K ′’s origin moves according to the equation of motion x = vt, hence for x′ = 0,

0 = Ax+Bt =⇒ x = −BA−1t =⇒ v = −BA−1 =⇒ B = −Av.

The equation assumes the form
x′ = A(v)(x− vt),

y′ = E(v)y,

z′ = E(v)z,

t′ = C(v)t+D(v)x.

If v = 0, the transformations must reduce to the identity transformation

x′ = x, y′ = y, z′ = z, t′ = t.

11



1.1. Einstein’s solution

This implies
A(0) = 1, C(0) = 1, D(0) = 1, E(0) = 1.

Now we can impose the condition

c2t′2 − x′2 − y′2 − z′2 = c2t2 − x2 − y2 − z2,

which becomes

c2t′2 − x′2 − y′2 − z′2 = c2(Ct+Dx)2 − (A(x− vt))2 − (Ey)2 − (Ez)2

= (c2C2 − v2A2)t2 − (A2 − c2D2)x2 − E2y2 − E2z2 + 2(vA2 + c2CD)xt

= c2t2 − x2 − y2 − z2.

By equating the corresponding coefficients, we obtain,

E2 = 1

c2C2 − v2A2 = c2,

A2 − c2D2 = 1,

vA2 + c2CD = 0.

Since E(0) = 1, we immediately obtain E(v) = 1. The second equation gives

A2 =
c2

v2
(C2 − 1).

If substituted in the last two equations, it becomes

vA2 + c2CD = 0 =⇒ v
c2

v2
(C2 − 1) + c2CD = 0

C2 − 1 + vCD = 0

D =
1− C2

vC
,

and

A2 − c2D2 = 1 =⇒ c2

v2
(C2 − 1)− c2D2 = 1.

And by substituting D, we have

c2

v2
(C2 − 1)− c2D2 = 1 =⇒ c2

v2
(C2 − 1)− c2

(
1− C2

vC

)2

= 1

C2(1− C2) + (1− C2)2 +
v2

c2
C2 = 0

(1− C2)(1− C2 + C2) +
v2

c2
C2 = 0

C2 =
1

1− v2

c2

.
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1.1. Einstein’s solution

Finally, we find

A2 =
c2

v2
(C2 − 1) =

c2

v2

(
1

1− v2/c2
− 1

)
=

1

1− v2

c2

= C2.

The acceptable solutions for A and C are the positive ones due to the conditions A(0) =
C(0) = 1, hence

A(v) = C(v) =
1√

1− v2

c2

,

D(v) = − v

c2

√
1− v2

c2

,

E(v) = 1.

Final Form of the Lorentz Transformations

Now that we have found the coefficients, we can write the Lorentz transformations in
their final form 

x′ =
x− vt√
1− v2

c2

,

y′ = y,

z′ = z,

t′ =
t− vx

c2√
1− v2

c2

.

The inverse transformations (from K ′ to K) are obtained by switching (x′, y′, z′, t′) with
(x, y, z, t) and by inverting the sign of the velocity. These are the Lorentz transfor-
mations. The reason they are called “Lorentz transformations” is that they were first
deduced by Lorentz [Lor04]. However, he created them ad hoc to be consistent with the
facts. On the contrary, Einstein deduced them from the two postulates with which we
opened the chapter.
By introducing

γ =
1√

1− v2

c2

, β =
v

c
,
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1.1. Einstein’s solution

the expression simplifies to 
x′ = γ(x− βct),

y′ = y,

z′ = z,

ct′ = γ (ct− βx) ,

in this form, the Lorentz transformations exhibit a symmetry between x and ct that can
be better appreciated when written as matrices

ct′

x′

y′

z′

 = Bx(v)


ct
x
y
z


where

Bv,x =


γ −γβ 0 0

−γβ γ 0 0
0 0 1 0
0 0 0 1


The matrix Bv,x is the Lorentz matrix for the transformation from K → K ′ in case of
relative velocity along the x-axis. In this case, we say that the transformation performs
a boost along x. The other cases are given by

Bv,y =


γ 0 −βγ 0
0 1 0 0

−βγ 0 γ 0
0 0 0 1

 , boost along the y-axis;

Bv,z =


γ 0 0 −βγ
0 1 0 0
0 0 1 0

−βγ 0 0 γ

 , boost along the z-axis.

The Lorentz matrix corresponding to a boost in a generic direction is

Bv =



γ −βxγ −βyγ −βzγ

−βxγ 1 +

(
γ − 2

|β|2

)
β2
x

γ − 1

|β|2
βxβy

γ − 1

|β|2
βxβz

−βyγ
γ − 1

|β|2
βyβx 1 +

(
γ − 2

|β|2

)
β2
y

γ − 1

|β|2
βyβz

−βzγ
γ − 1

|β|2
βzβx

γ − 1

|β|2
βxzβy 1 +

(
γ − 2

|β|2

)
β2
z


,

where, β = (βx, βy, βz) and |β|2 = β2
x + β2

y + β2
z .
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1.1. Einstein’s solution

Geometric Interpretation

It is easy to show that
γ2 − (γβ)2 = 1,

hence, we can interpret γ = coshu and γβ = sinhu, where u = tanh−1(v/c). In this
perspective, we can rewrite the Lorentz matrix in terms of the hyperbolic functions,
leading to a new interpretation of these transformations: hyperbolic rotations. A boost
along the x-axis will be described by

Hu,x =


coshu − sinhu 0 0
− sinhu coshu 0 0

0 0 1 0
0 0 0 1

 ,

which represents a hyperbolic rotation by the hyperbolic angle u around the x-axis, and
analogously for boosts in the other directions.
The difference between the two matrices Bv and Hu is simply the approach they use to
describe Lorentz transformations: while Hu gives a geometric description based on the
hyperbolic angle u, Bv provides a physical description in terms of the velocity parameter
v. In other words, we can think of Bv as the boost by velocity v, and of Hu as the
hyperbolic rotation by angle u.

1.1.3 Minkowski Diagrams

Minkowski Diagrams in (1+1) Dimensions

As discussed in the beginning of the chapter, in relativity, time is not simply a parameter,
it is a variable just like the three space coordinates (x, y, z): these four numbers together
can be used to identify any event in this new (1 + 3)-dimensional vector space called
Minkowski spacetime, which we will denote M. We can represent the set of all events
by adding to the three spatial axes a fourth one that represents time. To see this more
clearly, let’s consider a (1 + 1)-dimensional case where events are identified by the pair
(ct, x) according to an inertial frame of reference K. This can be graphically represented
by a Minkowski diagram like the one in Figure 1.2.
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x

ct

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

O

ct = x

ct = −x

Figure 1.2: Minkowski space-time diagram in the (1+1)-dimensional case. On the x-axis the x
coordinate, on the y-axis the time coordinate ct. The red dashed lines represent the worldlines
of two photons traveling at speed ±c.

Worldlines

Minkowski diagrams are pictures of space-time because they also have a coordinate axis
for time. The motion of a particle in spacetime is then represented in these diagrams
simply as a line with a slope equal to the velocity in units of c. For instance, a particle
moving at uniform velocity v is represented by a straight line of slope v/c. We call this
line history or worldline of the particle. If the particle is a photon, then its speed
is constant and equal to ±c, so the worldline is a straight line with slope ±1. Since
the maximum speed of any object is the speed of light, it follows that the worldlines of
photons are the least steep trajectories in the Minkowski diagram.

The Light Cone

If we now consider all the possible worldlines of photons emitted from the origin, they
form a boundary that no massive particle can cross. This boundary is called the light
cone, and its equation ∆s2 = 0 corresponds to the invariant quantity that we introduced
in the first section. In the 2-dimensional case, the light cone reduces to the two gray-
colored areas in Figure 1.2, but in the full 4-dimensional case, the photons spread out
in all directions and occupy the spherical shell x2 + y2 + z2 = c2t2 of radius ct after t
seconds have passed. (Figure 1.3). No trajectories can exist outside the light cone; all
the permitted trajectories lie inside it.
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1.2. Minkowski Geometry

ct

x

y

T +

T −

S

L+L−

O

Figure 1.3: Relativistic light cone in the (1 + 2)-dimensional case of coordinates (ct, x, y). L+

and L− stand for “future lightlike” and past “past lightlike” respectively and they refer to the
future and past vectors lying on the light cone. T + and T − stand for “future timelike” and
“past lightlike” respectively and they refer to the future and past vectors inside the light cone.
S stands for “spacelike” and it refers to the vectors outside the light cone. This partition of
spacetime will be analysed in the following section.

As we saw in the previous sections, the Lorentz transformations preserve the quadratic
form c2t2−x2−y2−z2, which is the equation of the light cone, hence these transformations
preserve the light cone.

1.2 Minkowski Geometry

Despite having the same dimensions, M and R4 are not the same vector space, and in
order to appreciate the differences and the analogies between them, we want to introduce
the notion of norm in these spaces and see how it differs in the two cases. In the following
paragraphs, we will be using Einstein’s summation convention: whenever an index
appears twice, once as a subscript, and once as a superscript, it must be summed over.
For example,

xiyi =
∑
i

xiyi,

1.2.1 The Euclidean norm

Cartesian Coordinates and Inner Product

Before extending these ideas to Minkowski spacetime, let’s recall some basic concepts
of Euclidean geometry in Rn. Each point in Rn is identified by a set of n coordinates
(x1, x2, . . . , xn). The tool to measure length and angles in Cartesian geometry is the
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1.2. Minkowski Geometry

standard Euclidean inner product defined, for two vectors u = (u1, u2, . . . , un) and
v = (v1, v2, . . . , vn), as

⟨u,v⟩ = utIv = (v1, v2, . . . , un)


v1

v2

...
vn

 = u1v1 + u2v2 + · · ·+ unvn.

with I = δij the identity matrix. Since in Euclidean geometry, the metric tensor is
canonically associated with the identity matrix, we may sometimes simply refer to it as
the identity matrix.

Given this, the Euclidean inner product becomes

⟨u,v⟩ =
n∑

i=1

n∑
j=1

δiju
ivj = δiju

ivj.

Euclidean Norm, Distance and Angle

From the inner product, we get the length, or Euclidean norm, of a vector:

|x| =
√
⟨x,x⟩ =

√
(x1)2 + (x2)2 + · · ·+ (xn)2,

which can also be written as
|x|2 = δijx

ixj.

We can now make basic measurements on the plane, like the distance from u to v can
be expressed as

|u− v| =
√
(u1 − v1)2 + (u2 − v2)2 + · · ·+ (un − vn)2,

which, in terms of the metric tensor becomes

|u− v| =
√
δij∆xi∆xj = ∆x2,

where ∆x1 ≡ u1 − v1, ∆x2 = u2 − v2, . . .∆xn = un − vn.
We can also measure the angle between two non-null vectors u and v:

α = arccos

(
⟨u,v⟩
|u||v|

)
.

The linear transformations that leave the Euclidean norm unchanged are called or-
thogonal transformations, which form a group called O(n). The determinant of orthogo-
nal matrices R satisfies det(R) = ±1. The set of orthogonal matrices with determinant
det = +1 is still a group, and it is called the special orthogonal group SO(n). Its elements
are called rotations.
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1.2. Minkowski Geometry

1.2.2 The Minkowski norm

In the previous section, we introduced the Euclidean inner product and norm in Rn,
which provide a tool for measuring lengths and angles in ordinary space. We now want
to extend these notions to the (1 + 3)-dimensional Minkowski space M.

Index Notation

In M, events are identified by four coordinates x, y, z, t. Let’s start by renaming them

x0 ≡ ct, x1 ≡ x, x2 ≡ y, x3 ≡ z.

These new coordinates will be collectively indicated through a greek index, which will
assume the following values

xµ = (ct, x, y, z) = (ct,x), µ = 0, 1, 2, 3.

From now on, when working on M, the greek indices (α, β, γ, ...) will assume the values
0, 1, 2, 3; whereas the latin indices (i, j, k, ...) will assume the values 1, 2, 3. The position
of such indices is never arbitrary: we will see that moving one index from a lower to an
upper position (or vice versa) can produce sign changes. Let’s now introduce the inner
product in M.

The Minkowski Metric

Given two events A = xµA = (x0A, x
1
A, x

2
A, x

3
A) and B = xµB = (x0B, x

1
B, x

2
B, x

3
B), the

(squared) distance between them in Euclidean geometry is given by

∆x2 = δij∆x
i∆xj = ∆x2 +∆y2 +∆z2.

Whereas, in Minkowski spacetime, this generalises to

∆s2 =
3∑

µ=0

3∑
ν=0

gµν∆x
µ∆xν ,

where
∆xµ = (∆x0,∆x) = (∆x0,∆x1,∆x2,∆x3)

= ((x0B − x0A), (x
1
B − x1A), (x

2
B − x2A), (x

3
B − x3A))

is the separation between the two events, and gµν is the so called metric tensor, whose
components are

g =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .
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1.2. Minkowski Geometry

By expanding the product, we obtain the familiar squared spacetime interval that we
introduced in Section 1.1

∆s2 = (∆x0)2 − (∆x1)2 − (∆x2)2 − (∆x3)2 = c2∆t2 −∆x2 −∆y2 −∆z2,

which differs from the euclidean distance by the presence of the time coordinate and the
sign of the spatial part. Just as δij defines the geometry of Euclidean space, gµν defines
the geometry of Minkowski spacetime.

Covariant and Contravariant Components

The coordinates characterized by upper indices, xµ, are called contravariant. Let us now
introduce the covariant coordinates xµ defined as

xµ = gµνx
ν .

More explicitly,
x0 = x0, x1 = −x1, x2 = −x2, x3 = −x3.

Hence, lowering an index flips the sign of the spatial components but not of the temporal
one.

We now want to introduce the contravariant metric tensor gµν which corresponds to
the inverse matrix g−1, that is

gµνg
νρ = δµ

ρ.

The inverse metric tensor performs the opposite operation: it raises indices, hence, it
allows us to go from covariant to contravariant coordinates.

xµ = gµνxν

Given this, the invariant quantity ∆s2 can be written as

∆s2 = ∆xµ∆xµ.

Minkowski Inner Product and Norm

In analogy with the Euclidean inner product, which is invariant under orthogonal trans-
formations, we can define the Minkowski inner product of two vectors u = uµ and
v = vν as the quantity that is preserved under Lorentz transformations, that is

⟨u,v⟩ = gµνu
µvν .

In matrix form
⟨u,v⟩ = uTgv = c2t1t2 − x1x2 − y1y2 − z1z2.
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1.2. Minkowski Geometry

This inner product is the Minkowskian analogue of the Euclidean one: it provides a
natural way to measure generalized angles and lengths M.

The Minkowski (squared) norm of a 4-vector w = wµ is also an invariant quantity,
and it is simply the Minkowski inner product of a vector with itself.

|w|2 = ⟨w,w⟩ = c2t2 − x2 − y2 − z2 = gµνw
µwν = wνw

ν .

From this point of view, the squared interval ∆s2 introduced above is nothing but
the Minkowski squared norm of the displacement vector between the two events A and
B

∆s2 = ⟨xµB − xµA, x
ν
B − xνA⟩ = ⟨∆xµ,∆xν⟩ = gµν∆x

µ∆xν .

Lorentz transformations are those that preserve the Minkowski inner product and
squared norm, that is, they satisfy |Bv(w)| = |w|. This condition implies that Lorentz
matrices are pseudo-orthogonal2. In fact,

|Bvw|2 = ⟨Bv(w), Bv(w)⟩ = (Bv(w))Tg(Bv(w)) = wTBT
v gBvw.

On the other hand,
|w|2 = ⟨w,w⟩ = wTgw,

and the two must be equal, so

wTBT
v gBvw = wTgw.

This means that BT
v gBv = g, hence Lorentz transformations are performed by pseudo-

orthogonal matrices having g as metric.

The Lorentz transformation Bv is designed to preserve the light cone, that is, the set
c2t2−x2−y2−z2 = 0. Actually, Bv preserves each of the hyperbolas c2t2−x2−y2−z2 =
k, ∀k, whose common asymptote is the light cone (k = 0).

We can see a direct correspondence between rotations in R4 performed by the SO(4)
group, and Lorentz transformations on M performed by the boost Bv. These matrices
form a group called the Lorentz group L which is isomorphic to SO(3, 1), the group of
4× 4 pseudo-orthogonal matrices with determinant det = +1.

Classification of Events in Spacetime

The arising problem is that the Minkowski quadratic form defined above is not positive
definite, so it may assume negative values. We can classify events according to the sign

2A matrix Λ is pseudo-orthogonal if there exists a symmetric non-degenerate matrix η, called the
metric, such that ΛT ηΛ = η.
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1.3. Physical Consequences

of their Minkowski norm: as we can see in Figure 1.3, the set ⟨w,w⟩ = 0 is a cone that
separates spacetime into two regions where ⟨w,w⟩ is either positive or negative (and null
on the cone).

We have ⟨w,w⟩ > 0 for all the points inside the cone, and all the events in this region
are called timelike. Outside the cone ⟨w,w⟩ < 0 and the events in this region are said
to be spacelike. Finally, the events lying on the cone itself are lightlike, and they are
such that ⟨w,w⟩ = 0.

Since the physical distinction between past and future is important, we now want to
refine our partition of spacetime.
Spacetime consists of the following six mutually exclusive sets of events or vectors w =
(ct, x, y, z)(Figure 1.3):

• T+: the future timelike set ⟨w,w⟩ > 0, t > 0;

• T−: the past timelike set ⟨w,w⟩ > 0, t < 0;

• S: the spacelike set ⟨w,w⟩ < 0;

• L+: the future lightlike set ⟨w,w⟩ = 0, t > 0;

• L−: the past lightlike set ⟨w,w⟩ = 0, t < 0;

• O: the origin.

The coordinates of the events w = (ct, x, y, z) change depending on the reference frame;
however, their “type” is invariant.
Moreover, each region of spacetime is mapped onto itself by Lorentz transformations.
Indeed, these regions are classified according to the sign of the Minkowski norm of their
vectors. Since the norm is invariant, the regions themselves remain unchanged under
any Lorentz transformation.

1.3 Physical Consequences

Let us now examine the physical consequences of the previous statements. For simplicity,
we will refer to inertial reference frames K and K ′ moving at a constant relative velocity
v along the x-axis. In this configuration (see Figure 1.1), the y and z coordinates remain
unchanged under any Lorentz transformation, allowing us to reduce the analysis to the
(1 + 1)-dimensional case, a simplification that is sufficient to capture all the essential
physical consequences of the previous discussion.
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1.3. Physical Consequences

1.3.1 Length and Time

One of the first consequences of special relativity is that length and time are no longer in-
dependent. This is due to the introduction of a new physical constant: c = 2.99792458×
108 m/s, the speed of light. Setting c = 1 (geometric units), time and length can be
expressed in the same unit.

1.3.2 Simultaneity

The principle of relativity implies that the notion of simultaneity is not physically mean-
ingful. Two events that are simultaneous in a reference frame K, need not be likewise
for another inertial observer K ′.
Assume that two events A and B are simultaneous in K. We will have then,

A = (t, xA),

B = (t, xB).

Hence ∆t = tB − tA = 0.
In another inertial frame K ′ in relative motion with respect to K with velocity v along
the x-axis, the time coordinates will be

t′A =
t− vxA

c2√
1− β2

,

t′B =
t− vxB

c2√
1− β2

.

Hence, in K ′, the events are separated by the time interval

∆t′ = t′B − t′A = γ
v

c2
(xB − xA),

which, in general, is nonzero. Two simultaneous events in K, are not simultaneous in K ′,
unless they coincide. If two events coincide in one frame of reference (xA = xB, tA = tB),
then they coincide in any inertial frame of reference.

1.3.3 Composition of Velocities

One of the main consequences of Einstein’s postulates on special relativity is that the
correct composition of velocities is not the Galilean one. To find the real composition
law, let us consider two inertial frames of reference K and K ′ in uniform relative motion
along the x-axis, having parallel y- and z-axes. Let v be the relative speed between the
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1.3. Physical Consequences

two systems. The equation of motion of a particle will be x(t) = (x(t), y(t), z(t)) in K
and x′(t) = (x′(t), y′(t), z′(t)) in K ′. Its velocity will be

u =
dx

dt
in K,

u′ =
dx′

dt′
in K ′.

By differentiating the Lorentz transformations, one finds

dx′ =
ux − v√
1− v2

c2

dt,

dy′ = uydt,

dz′ = uzdt,

dt′ =
1− uxv

c2√
1− v2

c2

.

Dividing the first three equations by the fourth one, we obtain

u′x =
ux − v

1− uxv

c2

,

u′y =
uy

√
1− v2

c2

1− uxv

c2

,

u′z =
uz

√
1− v2

c2

1− uxv

c2

.

These are the relativistic composition laws of velocity. If the particle moves in K along
the x-axis in the same direction as the relative motion of K ′, in K ′ that very same
particle will move with velocity

u′ =
u− v

1− uv

c2

.

This addition operation is consistent with the fact that c is the highest possible speed.
If we consider a light signal with velocity u = c in K ′, its velocity c′ in K ′ will be

c′ =
c− v

1− cv

c2

= c.
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1.3.4 Causality

The causal future of an event A is the set of all events that A can influence. The
causal past of A is the set of all the events that can influence A.
If the event A causes or influences the event B, then A must happen before B. Since we
want this to be a physical law, A must happen before B for all inertial observers. As we
saw in the previous section, each event P divides spacetime into three regions: besides
the causal future and past of P , there is a region consisting of events that can neither
influence nor be influenced by P which consists of the events Q for which the separation
Q − P is spacelike (see “Classification of Events in Spacetime” in Section 1.2.2). The
partition is drawn in Figure 1.4.

Figure 1.4: Light cone of event P . From [Cal00, page 77].

For the laws of physics to remain consistent, causality must be preserved. This
condition is guaranteed by the theory of relativity. Consider two events A and B of
coordinates A = (tA, xA), B = (tB, xB) corresponding, for instance, to the emission and
receiving of a signal. They are clearly causally connected, let’s say that A influences B,
hence B happens after A: ∆t ≡ tB − tA > 0. If the speed u of the signal is constant, we
have

xB − xA = u(tB − tA).

Now analyse the same situation in an inertial reference frame K ′ moving at constant
speed v with respect to the previous system K:

∆t′ = t′B − t′A = γ
(
tB − vxB

c2

)
− γ

(
tA − vxA

c2

)
= γ

(
(tB − ta)−

v

c2
(xB − xA)

)
= γ

(
(tB − tA)−

v

c2
u(tB − tA)

)
= γ∆t

(
1− vu

c2

)
.

If u, v < c, the quantity in brackets is positive, hence, ∆t′ and ∆t have the same sign.
If v or u were greater than c, then it would be possible for the two intervals to have
opposite signs. If this happened, causality would not be preserved because there would
exist some frame of reference in which B, which is influenced by A, happens before A
itself. The fact that c is constant and is the highest possible speed preserves causality.
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1.3.5 Time Dilation

Suppose that frame K ′ is carrying a clock and is moving with velocity v relative to
frame K. Then the clock marks K ′’s proper time τ , that is, the time measured in the
reference frame at rest with respect to the clock. How does K measure K ′’s proper time?
Consider two inertial frames K ′ and K in uniform motion with respect to each other with
velocity v along the x-axis. A clock at rest in K ′ measures the proper time ∆τ = t′B − t′A
between two events A = (t′A, x

′) and B = (t′B, x
′) happening in the same position. How

do these coordinates transform in K? According to Lorentz transformations we have:

tA =
t′A +

vx′

c2√
1− β2

,

tB =
t′B +

vx′

c2√
1− β2

.

The time interval measured in K is:

∆t = tB − tA =
1√

1− β2

(
t′B +

vx′

c2
− t′A − vx′

c2

)
= γ(t′B − t′A) = γ∆τ.

Hence,

∆t =
∆τ√
1− β2

> ∆τ.

In other words, K says that the clock runs slower than from K ′’s point of view by the
factor

√
1− v2. A moving clock’s frequency is slower. This phenomenon is known as

time dilation.

1.3.6 Length Contraction

Consider two reference frames K and K ′ in relative motion at constant speed v along
the x-axis. Suppose K ′ carries a ruler lying along the x′-axis. The length of the ruler in
K ′ is

λ0 = x′2 − x′1,

and it is called the proper length of the ruler, that is, the length measured in the
reference frame at rest with the ruler itself. To measure the length of the ruler in K
where it is moving at constant speed v, it is necessary to determine the positions of its
extremities at the very same moment t.

26



1.3. Physical Consequences

According to Lorentz transformations, the coordinates of the extremities are,

x′1 =
x1 − vt√
1− β2

,

x′2 =
x2 − vt√
1− β2

.

where we imposed that the measurements were made at the same time: t1 = t2 = t.
Hence, the length of the ruler is

λ = x2 − x1 =
√

1− β2(x′2 − x′1) =
λ0
γ
,

that is,

λ =

√
1− v2

c2
λ0 < λ0.

This means that an observer in motion with respect to the ruler measures a smaller
length than an observer who is at rest with the ruler: K considers the ruler to have
shrunk by a factor

√
1− v2. Length contraction is not an intrinsic property of the body,

it is rather a relation between the measurements of two different observers in relative
motion with respect to each other. This phenomenon is called length contraction.

1.3.7 The Doppler Effect

Although the speed of light does not depend on whether the observer is moving or not,
its frequency does. This is the Doppler effect. If the source is approaching an observer,
the frequency increases and light is shifted towards the ultraviolet side of the spectrum;
if the source is receding, the frequency decreases and light is shifted towards the infrared.
As a preliminary result, let us show that the phase of a plane wave is invariant. Consider
a monochromatic plane wave in a reference frame S.

ψ = Aei(ωt−k·x),

where A is the amplitude, k is the wave vector, and ω is the pulsation and, for simplicity,
we denote with · the Euclidean scalar product. Let’s suppose the wave moves in the xy
plane; therefore, k = (k cos θ, k sin θ, 0); thus, since ck = 2πν, the equation becomes

ψ = Aei(ωt−kx cos θ−ky sin θ) = Ae2πiν(t−
x cos θ+y sin θ

c ).

The phase is defined as follows:

ϕ = ν

(
t− x cos θ + y sin θ

c

)
≡ ν

(
t− l

c

)
,

27



1.3. Physical Consequences

with l = x cos θ + y sin θ.
The physical meaning of the phase can be explained as follows. Assume that the

crest of a wave passes through the origin O of K at t = 0. When that crest reaches point
P = (x, y), which happens at time t = l/c, an observer in P starts counting the crests
passing through. At time t, it will have already counted a number of crests equal to the
phase ϕ = ν(t − l/c); ν is, in fact, the number of crests passing in a unit of time, and
t− l/c is the total counting time.
Let’s see what happens in the reference K ′ which is in uniform motion with respect to
K with velocity v along the x-axis. Assume that the two origins O and O′ coincide at
t = 0. If P ′ = (x′, y′) is a point in K that coincides with P at time t of K, then the
number of crests that an observer in P ′ counts between time l′/c and time t′ is equal to
the number of crests counted by an observer in P , that is, the two phases coincide:

ϕ′ = ν ′
(
t′ − l′

c

)
= ϕ = ν

(
t− l

c

)
where ν ′ is the wave frequency in K. Hence, the phase is an invariant quantity. We can
explicitly write it as

ν

(
t− x cos θ + y sin θ

c

)
= ν ′

(
t′ − x′ cos θ′ + y′ sin θ′

c

)
.

Using Lorentz transformations

x′ =
x− vt√
1− β2

,

y′ = y,

t′ =
t− vx

c2√
1− β2

,

we can write:

ϕ′ = ν ′

 t− vx

c2√
1− β2

− 1

c

x− vt√
1− β2

cos θ′ − 1

c
y sin θ′


= ν ′

t1 + v

c
cos θ′√

1− β2
− x

cos θ′ +
v

c
c
√

1− β2
− y

c
sin θ′

 .

This must be equal to

ϕ = ν

(
t− x cos θ + y sin θ

c

)
.
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This implicates the following relations:

ν = ν ′
1 +

v

c
cos θ′√

1− β2
,

ν cos θ = ν ′
cos θ′ +

v

c√
1− β2

,

ν sin θ = ν ′ sin θ′.

By inverting the first of the three equations, one obtains the relation between the fre-
quency ν emitted by a source at rest in an inertial frame K and the frequency ν ′ received
by a reference frame K ′ in uniform motion with velocity v relative to K, that is:

ν ′ = ν

√
1− β2

1 +
v

c
cos θ′

,

where θ′ is the angle that the signal forms with the axis x′ in K ′ (and θ was the same
angle measured in K). Let us now consider a particular case: the longitudinal Doppler
effect. In this case, the signal propagates along the direction of relative motion between
the source and the receiver, thus θ′ = 0. We obtain:

ν ′ = ν

√
1− β2

1 +
v

c

=

√
1− β

1 + β
.

If the receiver is receding from the source (v > 0), the frequency it measures is ν ′ < ν.
On the contrary, if the receiver is approaching the source (v < 0), then ν > ν.

If the signal propagates perpendicularly to the direction of relative motion between
the source and the observer, then one experiences the transverse Doppler effect. In this
case, θ′ = π/2, hence

ν ′ = ν
√

1− β2.

Since β < 1, ν ′ < ν always. Note that this effect is not expected according to non-
relativistic optics. The non relativistic formula is, in fact:

ν ′ =
ν

1 +
v

c
cos θ′

,

which differs from the relativistic one by the factor
√

1− β2.
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1.4. Covariant Formulation of Dynamics

1.4 Covariant Formulation of Dynamics

1.4.1 Newton’s Laws of Motion

Kinetics is the study of the motion of material objects under the action of forces. Forces
cause objects to accelerate, that is, to change their velocity. In spacetime, acceleration
makes the worldlines curved. In this way, the physics of forces is tied to the geometry of
spacetime. The starting point are Newton’s three laws of motion.

1. Every body that is not subject to external forces continues in its state of rest or
uniform motion in a straight line.
This law is called the principle of inertia. Inertia is defined as the ability to
resist any change in velocity.

2. The change of motion is proportional to the external force applied:

F =
dp

dt
= ma,

where p = mv is the momentum, and m is the inertial mass of the body.

3. To every action, there is an equal and opposite reaction. That is, if a body A
imposes a force FAB on body B, then B imposes a force FBA = −FAB on A.

Newton’s laws do not always correspond to reality. For instance, the definition of
inertial mass is problematic: if m is assumed to be constant, then a constant force would
eventually push the body beyond the speed of light. To avoid this, we need to accept
the fact that the mass of a body grows larger as its velocity increases. As the velocity
approaches c, the mass m should diverge to infinity:

m
v→ c−−−→ ∞.

In this way, it becomes increasingly difficult to accelerate the body, and the velocity limit
is being respected. Furthermore, studies showed that this law is not valid in the limit of
ultrarelativistic velocities3.
Another difficulty that arises involves the frames of reference. For example, an object
near the surface of the earth that has no visible forces pushing it accelerates downward.
To solve this conflict, we can assume the existence of an “invisible” force for each unex-
plained motion. The force responsible for the free fall of objects is gravity. Another way
to solve the problem is to choose a coordinate system in which such forces disappear.
Are there any coordinate systems that can eliminate gravity? For example, in a space
station orbiting around earth, objects float without falling to the ground. In this case,

3A velocity is said to be ultrarelativistic when it is close to the speed of light c.
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1.4. Covariant Formulation of Dynamics

the law of inertia holds. Thus, whether or not Newton’s laws of motion hold, depends on
the reference frame. Those frames in which Newton’s laws do hold, are called inertial
frames.

1.4.2 The Fundamental Law of Dynamics

Experimental studies have shown that Newton’s second law of motion

d(mv)

dt
= F

is not valid at high velocities, and the deviations grow larger as the velocity approaches
c. Theoretically speaking, this law is in conflict with the assumption that c is the limit
velocity. Experiments show that the true law of motion for a massive particle is

d(mγv)

dt
=

d

dt

(
mv√

1− v2/c2

)
= F, (1.1)

which is called the Minkowski equation. Here, m is the proper mass of a body, that
is, the mass measured in the reference frame at rest with the body. It is immediate to
verify that if v ≪ c, then γ → 1, so Minkowski’s equation simply tends to Newton’s.
The first essential difference between these two laws is the presence of the Lorentz factor
γ, which lessens the velocity increment as v approaches c. The second difference is how
the force transforms from one inertial frame to another. In order for F = γma to be
consistent with the relativity principle, F needs to change in the same way as the first
member of the equation (γma). Lorentz maps act on vectors in spacetime, so if we
want the force to transform properly, we first have to express it as a spacetime vector.
There is a natural way to do this, starting with velocity and momentum in the full (1 +
3)-dimensional spacetime.
The best way to do so, is to write all these quantities as 4-vectors in their covariant
form. This approach is called covariant formulation of dynamics. We say that an
equation is covariant if, with respect to a given transformation, both sides change in the
same way under that transformation.

4-velocity

As we saw in Section 1.2.2, any event in M can be identified by a 4-vector called 4-
position: xµ = (ct, x, y, z). The 4-velocity of a body whose motion is described by
xµ(t) = (ct, x(t), y(t), z(t)) is simply given by

v =
dxµ

dt
=

(
t,
dx

dt
,
dy

dt
,
dz

dt

)
.
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1.4. Covariant Formulation of Dynamics

However, this formulation loses all the information about the nature of the object v:
dxµ is a 4-vector, but dt is not, so we do not immediately know the transformation of v
from one frame to another, like we did for xµ (which is instead a 4-vector and transforms
according to the Lorentz transformations).
A solution to this problem is to parametrize the position of a particle with ds instead
of dt, which is a scalar. Let’s now see how the two parametrizations are connected. The
quantity ds is the infinitesimal interval defined in Section 1.1 as

ds2 = c2dt2 − dx2 − dy2 − dz2.

In the frame of reference K ′ at rest with the particle, dx′ = dy′ = dz′ = 0, hence, we
have

ds′2 = c2dτ 2,

where τ ≡ t′ is the proper time. But ds is an invariant quantity, so it must have the
same value in any reference frame:

ds′2 = ds2 =⇒ c2dτ 2 = c2dt2 − dx2 − dy2 − dz2.

The relation between ds and dt is given by

ds =
√
c2dt2 − dx2 − dy2 − dz2 =

√
c2dt2

(
1− 1

c2
dx2 + dy2 + dz2

dt2

)

=

√
c2dt2

(
1− v2

c2

)
=
c

γ
dt.

so we have found that ds =
c

γ
dt. According to this parametrization, the 4-velocity of a

particle becomes

uµ =
dxµ

ds
.

Since ds is a scalar and xµ is a 4-vector, uµ must be a 4-vector by construction. Let’s
see one by one the components of the 4-velocity.

u0 =
dx0

ds
=
dx0

dt

dt

ds
= c

γ

c
= γ,

ui =
dxi

ds
=
dxi

dt

dt

ds
=
γ

c
vi.

Hence, the 4-velocity is given by

uµ =

(
γ(v),

γ(v)

c
v

)
.
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1.4. Covariant Formulation of Dynamics

In the reference frame at rest with a body, the 4-velocity is

uµ = (γ(0),0) = (1,0),

and its norm, which is invariant, is equal to

uµuµ = 1.

If we derive the 4-velocity with respect to ds, we obtain the 4-acceleration

wµ =
duµ

ds
.

4-momentum

Starting from the 4-velocity uµ =
(
γ,
γ

c
v
)
, we can define the 4-momentum of a massive

particle as
pµ = mcuµ,

which is, by construction, a 4-vector. Its components are

p0 = mcu0 = mcγ,

pi = mcui = mγvi.

It is easy to show that the momentum p and the energy E of a particle are the components
of a 4-vector.
The formula for the relativistic kinetic energy is

E =
mc2√
1− v2

c2

= mγc2,

which is exactly p0c. Hence,

pµ =

(
E

c
,p

)
,

where p is defined as

p =
mv√
1− v2

c2

= γ(v)mv.

In the frame of reference at rest with the body, γ = 1 and v = 0, so, the 4-momentum
is pµ = (mc,0). The square norm of pµ is therefore

pµpµ = m2c2,
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1.4. Covariant Formulation of Dynamics

which must be equal to the norm computed in any other reference frame

pµpµ =
E2

c2
− p2.

Hence, we find the notorious mass-energy relation

E2 = p2c2 +m2c4.

Equations of Motion

The covariant equations of motion of a massive particle can be deduced starting from
their non covariant form

F =
dp

dt
,

and the 4-momentum

pµ =

(
E

c
,p

)
, pµpµ = m2c2 =

E2

c2
− p2.

The covariant form of the equation of motion must be

dpµ

ds
= Fµ,

where Fµ is a 4-vector called 4-force. The previous equation is called Minkowski
covariant equation, and it is simply Equation (1.1) in its covariant formulation. In
terms of the 4-velocity it becomes

mc
duµ

ds
= Fµ.

To deduce Fµ’s components, let’s study the components of the other member of the
equation

dpµ

ds
=

(
d

ds

(
E

c

)
,
dp

ds

)
=
dt

ds

(
d

dt

(
E

c

)
,
dp

dt

)
=

(
γ

c2
dE

dt
,
γ

c

dp

dt

)
.

The non covariant equation
dp

dt
= F,

and the law
dE

dt
= F · v,

allow us to rewrite the 4-force as

Fµ =
( γ
c2
F · v, γ

c
F
)
.
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1.4. Covariant Formulation of Dynamics

The peculiar difference between the relativistic 4-force and the Newtonian force is the
dependence of Fµ on the velocity of the particle. This is crucial for the validity of
Einstein’s postulates: if the force did not depend on the velocity, then a constant force
would produce an indefinite increase in v, which would eventually be pushed beyond the
speed limit c.
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Chapter 2

Regular Surfaces

In this chapter, we aim to define the notion of a regular surface in R3. Roughly speaking,
surfaces are obtained by arranging and deforming pieces of planes in such a way that
the resulting figure has no sharp edges, points, or self-intersections. We start Section
2.1 by introducing some elementary concepts of the theory of curves, such as curvature,
parametrization, and the definition of the tangent vector to a curve. These definitions
will be useful later in this chapter to fully understand surfaces and their properties.
Then, we move on to Section 2.2 where we define regular surfaces, providing the reader
with some criteria that should help when trying to decide whether a given subset of R3

is a regular surface or not. In Section 2.3, we begin to study the intrinsic geometry of
the surface through the introduction of the metric tensor (or first fundamental form), a
natural instrument to treat metric aspects like lengths, angles or areas. We conclude this
section with the notion of orientability. After that, we open Section 2.4 by extending
the concept of curvature to surfaces, followed by some relevant definitions (the Gauss
map, principal curvatures and directions, Gaussian curvature, mean curvature). Then,
in Section 2.5, we start the study of intrinsic geometry, that is, the study of those
features which can be deduced directly from the metric without reference to the external
embedding. A pivotal result of this section is Gauss’s Theorema Egregium, which shows
that the Gaussian curvature is actually an intrinsic property of surfaces. This opens the
way for a more abstract theory of intrinsic differential geometry in which a surface patch,
and likewise, the spacetime frame of an arbitrary observer, is simply an open set provided
with a suitable metric. Finally, Section 2.6 is dedicated to the study of geodesics. First,
we introduce some definitions, like the covariant derivative of a vector, and the concept
of a parallel vector field, and then we conclude the chapter with the definition of geodesic
curve. Geodesics are the generalization of “straight lines” on a curved surface.

This geometric framework, in particular the concepts of intrinsic geometry, geodesics,
and curvature, provides the basic mathematical tools for transitioning from the flat
spacetime of special relativity to the curved one of general relativity.

The leading source for the material presented in this chapter is [dC76], with occasional
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2.1. Curves and Curvature

reference to [Cal00].

2.1 Curves and Curvature

Before introducing the definition of a regular surface, let us recall some notions on curves
in R3 that will be useful later on.
As we saw in the previous chapter, bodies that move under the effect of an external force
experience changes in velocity, and since velocity is the slope of the worldline of a body,
changes in velocity imply a curved worldline.
Let’s now talk about curves in the ordinary Euclidean plane.

Definition 2.1.1. A parametrized differentiable curve is a differentiable map

α : I → R3,

t 7→ α(t) = (x(t), y(t), z(t)).

of an open interval I = (a, b) of the real line R into R3. By differentiable we mean that
all the components of α have continuous derivatives up to a desired order.

A curve defined on a closed interval [a, b] is a parametrized differential curve if it is
continuous and it is differentiable on (a, b).

From now on, we will refer to parametrized differentiable curves simply as “curves”.

As t moves along I, the point α(t) traces out a path in the space. That is, α is a cor-
respondence that maps each t ∈ I into a point α(t) = (x(t), y(t), z(t)). The “coordinate”
t allows us to label points along the path, and it is therefore called parameter.

Definition 2.1.2. The first derivative of a parametrized differentiable curve α : I → R3

dα

dt
= α′(t) = (x′(t), y′(t), z′(t)) ∈ R3

is called tangent velocity vector and it is the tangent vector to the path at point α(t),
at least when α′(t) ̸= 0.

Definition 2.1.3. A parametrized differentiable curve α : I → R3 is said to be regular
if α′(t) ̸= 0, ∀t ∈ I.

The condition of regularity is very important to measure the length of a curve. In
fact, if α′(t0) ̸= 0, according to Taylor’s theorem

α(t0 +∆t) ≈ α(t0) + α′(t0)∆t
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2.1. Curves and Curvature

so the point α(t0+∆t) is very close to the continuation of α(t0) at a distance of |α′(t0)|∆t
along the tangent vector. So the straight-line distance

|∆α| = |α(t0 +∆t)− α(t0)|

is well approximated by the length |α′(t0)∆t| of the vector α′(t0)∆t. If ∆t is sufficiently
small, this length is a good approximation to the length of the curved arc from α(t0) to
α(t0 +∆t). This is not possible if the curve is not regular. To measure the length of the
entire curve C, we need to partition the interval I = (a, b),

a = t0 < t1 < t2 < ... < tn < tn+1 = b,

in such a way that each segment ∆tj = tj+1 − tj is small enough for

|α(tj+1)− α(tj)| ≈ |α′(tj)|∆tj

to be a good approximation. Then the length of the entire curve C is approximately

n∑
j=1

|α′(tj)|∆tj.

As the partition gets finer and finer while n→ ∞, the sum approaches the integral∫ b

a

|α′(t)| dt.

The above reasoning motivates the following definition.

Definition 2.1.4. Let α : I = [a, b] → R3 be a parametrized curve C. Then the arc
length of C is by definition

s(t) =

∫ b

a

|α′(t)| dt,

where |α′(t)| =
√
(x′(t))2 + (y′(t))2 + (z′(t))2 is the length of the vector α′(t). Since

α′(t) ̸= 0, the arc length is a differentiable function of t, and
ds

dt
= |α′(t)|.

It can happen that the parameter t is already the arc length measured from some
point. In this case

ds

dt
= |α′(t)| = 1,

that is, the velocity vector has constant unit length. If we consider a curve α parametrized
by arc length s, then, since its tangent vector |α′(s)| has unit length, the norm |α′′(s)|
of the second derivative measures the rate of change of the angle which neighboring
tangents make with the tangent at s. In other words, |α′′(s)| measures how rapidly the
curves “pulls away”” from the tangent line at s in a neighborhood of S. More formally:
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2.2. Regular Surfaces

Definition 2.1.5. Let α : I → R3 be a curve parametrized by arc length s ∈ I. The
number |α′′(s)| = k(s) is called the curvature of α at s.

Moreover, α′′(s) is orthogonal to α′(s). Indeed, by differentiating

|α′(s)|2 = ⟨α′(s), α′(s)⟩ = 1,

one finds that ⟨α′′(s), α′(s)⟩ = 0. Thus, any vector n(s) in the direction α′′(s) is called
normal vector at s.

2.2 Regular Surfaces

We now wish to introduce the formal definition of a regular surface and its parametriza-
tion, but before doing that, let us recall the definition of differential of a function.

Definition 2.2.1. Let F : U ⊂ Rn → Rm be a differentiable map. To each p ∈ U we
associate a linear map dFp : Rn → Rm, which is called the differential of F at p and is
defined as follows. Let w ∈ Rn and let α : (−ϵ, ϵ) → U be a differentiable curve such
that α(0) = p and α′(0) = w. By the chain rule, the curve β = (F ◦ α) : (−ϵ, ϵ) → Rm

is also differentiable. Then
dFp(w) = β′(0),

and it is called the differential of F at point p.

The matrix of dFp : Rn → Rm in the canonical bases of Rn and Rm, that is the matrix

∂fi
∂xj

, i = 1, 2, ..,m, j = 1, 2, .., n

is called the Jacobian matrix at p. When n = m, this is a square matrix, and its
determinant is called the Jacobian determinant ; it is usually denoted by

det

(
∂fi
∂xj

)
=
∂(f1, ..., fn)

∂(x1, ..., xn)
.

Definition 2.2.2. Given a differentiable map F : U ⊂ Rn → Rm defined in an open set
U of Rn, we say that p ∈ U is a critical point of F if the differential dFp : Rn → Rm is
not a surjective mapping. The image F (p) ∈ Rm of a critical point is called a critical
value of F . A point of Rm which is not a critical value is called a regular value of F .

For example, given a 1-D differentiable function f : U ⊂ R → R, a point x0 ∈ U is
critical if f ′(x0) = 0, that is, if the differential dfx0 carries all the vectors in the domain
(here R) to the zero vector. Notice that any point a /∈ f(U) is trivially a regular value
of f .

For clarity in future work, we should also recall the formulation of the inverse function
theorem and the mean value theorem.
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Theorem 2.2.1 (Inverse function theorem). Let F : U ⊂ Rn → Rn be a differ-
entiable mapping, and suppose that at p ∈ U the differential dFp : Rn → Rn is an
isomorphism. Then there exists a neighborhood V of p in U and a neighborhood W of
F (p) in Rn such that F : V → W has a differentiable inverse F−1 : W → V .

Theorem 2.2.2 (Mean Value Theorem for Definite Integrals). Let f : [a, b] → R
be a continuous function. Then there exists c ∈ [a, b] such that∫ b

a

f(x) dx = f(c)(b− a).

We can now introduce the notion of regular surface.

Definition 2.2.3. A subset S ⊂ R3 is a regular surface if, for each p ∈ S, there
exists a neighborhood V in R3 and a map x : U → V ∩ S of an open set U ⊂ R2 onto
V ∩ S ⊂ R3 such that

1. x is differentiable. This means that if we write

x(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ U,

the functions x(u, v), y(u, v), z(u, v) have continuous partial derivatives of all orders
in U .

2. x is a homeomorphism. Since x is continuous by condition 1., this means that x
has an inverse x−1 : V ∩ S → U which is continuous; that is, x−1 is the restriction
of a continuous map F : W ⊂ R3 → R2 defined on an open setW containing V ∩S.

3. (the regularity condition) For each q ∈ U , the differential dxq : R2 → R3 is
one-to-one.

The mapping x is called parametrization or system of local coordinates in a neigh-
borhood of p. The neighborhood V ∩ S of p in S is called a coordinate neighborhood.

The following proposition shows the relation between a regular surface and the graph
of a function z = f(x, y).

Proposition 2.2.1. If f : U → R is a differentiable function in an open set U ⊂ R2,
then the graph of f , that is, the subset of R3 given by (x, y, f(x, y)) for (x, y) ∈ U , is a
regular surface.
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To set an example, let us consider the following function

f(x, y) = x2 + y2.

Its graph is given by the subset (x, y, x2+y2) of R3, that is the regular surface z = x2+y2

shown in Figure 2.1.

Figure 2.1: Graph of the function z = x2 + y2 representing an elliptic paraboloid.

As shown in the following proposition, another way to obtain surfaces is to consider
subsets of the form f(x, y, z) = const.

Proposition 2.2.2. If f : U ⊂ R3 → R is a differentiable function and a ∈ f(U) is a
regular value of f , then f−1(a) is a regular surface in R3.

Proof. Let p = (x0, y0, z0) ∈ f−1(a). Since a is a regular value of f , it is always possible

to assume (by renaming the axis if necessary) that fz =
∂f

∂z
̸= 0 at p, that is,

∂f

∂z
(p) =

∂f

∂z
(x0, y0, z0) ̸= 0.

Let’s define a map F : U ⊂ R3 → R3 by

F (x, y, z) = (x, y, f(x, y, z)),
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2.2. Regular Surfaces

and indicate by (u, v, t) the coordinates of a point in R3 where F takes its values. So we
have: 

u = x,

v = y,

t = f(x, y, z)

The differential of F at p is given by

dFp =


∂F1

∂x

∂F1

∂y

∂F1

∂z
∂F2

∂x

∂F2

∂y

∂F2

∂z
∂F3

∂x

∂F3

∂y

∂F3

∂z

 =


1 0 0

0 1 0

fx fy fz

 ,

hence, det(dFp) ̸= 0. We can therefore apply Theorem 2.2.1 which guarantees the
existence of neighborhoods V of p and W of F (p) such that F : V → W is invertible
and the inverse F−1 : W → V is differentiable. It follows that the coordinate functions
of F−1, that is the functions

x = u, y = v, z = f−1(x, y, t) = g(u, v, t) (u, v, t) ∈ W,

are all differentiable. In particular, by fixing a particular value of t, let’s say t = a, we
get z = g(u, v, a) = h(x, y) which is a differentiable function defined in the projection of
V onto the xy plane. The following figure should clarify ideas.

Figure 2.2: From [dC76, page 60].
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Since
F (f−1(a) ∩ V ) = W ∩ {(u, v, t) : t = a},

we conclude that the graph of h is f−1(a) ∩ V , and by Proposition 2.2.1 it is a coor-
dinate neighborhood of p. Therefore, every p ∈ f−1(a) can be covered by a coordinate
neighborhood. But this is the definition of regular surface provided in Definition 2.2.3.
So f−1(a) is a regular surface.

The proof consists essentially of using the inverse function theorem “to solve for z”
in the equation f(x, y, z) = a, which can be done in a neighborhood of p if fz(p) ̸= 0.
In this way, we were able to express one variable as a function of the others. It can be
shown that this process is permitted for every regular surface.

Example 2.2.1. The right cylinder

x2 + y2 = r2

is a regular surface (see Figure 2.3). In fact, the set f−1(0) where

f(x, y, z) = x2 + y2 − r2

is a regular function and 0 is a regular value of f . This follows from the fact that the
partial derivatives fx = 2x, fy = 2y, and fz = 0 vanish simultaneously in (0, 0, 0), which
does not belong to f−1(0) provided r ̸= 0.

Figure 2.3: Graph of the function x2 + y2 = r2, r ̸= 0 representing a right cylinder. From
[dC76, page 93].
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All the points of this cylinder, except the ones belonging to the straight line
x = r,

y = 0,

z = t,

admit the parametrization x : U → R3 where

x(u, v) = (r cosu, r sinu, v), r > 0,

U = {(u, v) ∈ R2 : 0 < u < 2π, −∞ < v <∞}.

Example 2.2.2. The hyperboloid of one sheet

x2 + y2 − z2 = 1

is a regular surface (see Figure 2.4). In fact, it is given by S = f−1(0), where 0 is a
regular value of

f(x, y, z) = x2 + y2 − z2 − 1.

This follows from the fact that the partial derivatives fx = 2x, fy = 2y and fz = −2z
vanish simultaneously in (0, 0, 0) which does not belong to S.

Figure 2.4: Graph of the function x2 + y2 − z2 = 1 representing a hyperboloid of one sheet.

44



2.2. Regular Surfaces

All the points of the hyperboloid of one sheet except the ones belonging to the line
x = − coshu,

y = 0,

z = sinhu

admit the following parametrization x : U → R3 where

x(u, v) = (cosh(u) cos(v), cosh(u) sin (v), sinh(u)),

U = {(u, v) ∈ R2 : −∞ < u <∞, −π < v < π}.

Proposition 2.2.1 states that the graph of a differentiable function is a regular surface.
The following proposition says, at least locally, the inverse: any regular surface is locally
the graph of a differentiable function.

Proposition 2.2.3. Let S ⊂ R3 be a regular surface and let p ∈ S. Then there exists
a neighborhood V of p in S such that V is the graph of a differentiable function which
has one of the following three forms:

z = f(x, y), y = g(x, z), x = h(y, z).

Proof. Let x : U ⊂ R2 → S ⊂ R3 be a parametrization of S in p, so that x(u, v) =
(x(u, v), y(u, v), z(u, v)) ∈ U . By condition 3 of Definition 2.2.3, one of the following
Jacobian determinants

∂(x, y)

∂(u, v)
,

∂(y, z)

∂(u, v)
,

∂(x, z)

∂(u, v)

is nonzero at x−1(p) = q. Suppose that
∂(x, y)

∂(u, v)
(q) ̸= 0. Let’s consider the map π ◦

x : U ⊂ R2 → R2, where π is the projection π(x, y, z) = (x, y). Then π ◦ x(u, v) =

(x(u, v), y(u, v)), and since
∂(x, y)

∂(u, v)
is exactly its differential and it is nonzero at q, we

can apply the inverse function theorem to guarantee the existence of the neighborhoods
V1 ⊂ U of q and V2 of (π ◦ x)(q) such that π ◦ x maps V1 diffeomorphically onto V2
(this is what the theorem guarantees). It follows that π restricted to x(V1) = V is
one-to-one and that there is a differentiable inverse (π ◦ x)−1 : V2 → V1. Since x
is a homeomorphism, V is a neighborhood of p in S. Now, if we compose the map
(π ◦x)−1 : (x, y) → (u(x, y), v(x, y)) with the function (u, v) → z(u, v), we find that V is
the graph of the differentiable function z = z(u(x, y), v(x, y)) = f(x, y). This settles the
first case because we have found a way to express z as a function of x and y. The other
cases can be treated in the same way.
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What we have done in this proof is to show that, since z is a function of (u, v), and
(u, v) is a function of (x, y), then z is also a function of (x, y). To do so, we need a pro-
jection function π to build a diffeomorphism on which we can apply the inverse function
theorem. It is this auxiliary invertible function π ◦ x that allows us to say that (x, y) is
a function of (u, v), and not just vice versa.

According to the definition of regular surface, each point p of a regular surface S
belongs to a coordinate neighborhood. The points of such a neighborhood are charac-
terized by their coordinates which should also define their local properties. However, we
have seen that there may be more system of coordinates characterizing a point, so, in
order for the definition to make sense, it is necessary that such properties do not depend
on the chosen system of coordinates.
It must be shown that when p belongs to two different coordinate neighborhoods with
parametrizations (u, v) and (ξ, η), it is possible to pass from one to the other by a dif-
ferentiable function. The following proposition shows that this is true.

Proposition 2.2.4 (Change of Parameters). Let p be a point of a regular surface
S, and let x : U ⊂ R2 → S, y : V ⊂ R2 → S be two parametrizations of S such that
p ∈ x(U) ∩ y(V ) = W . Then the change of coordinates

h = x−1 ◦ y : y−1(W ) → x−1(W )

is a diffeomorphism; that is, h is differentiable and has a differentiable inverse h−1.

Proof. Let r ∈ y−1(W ) and set q = h(r). Since x(u, v) = (x(u, v), y(u, v), z(u, v)) is a
parametrization, we can assume that

∂(x, y)

∂(u, v)
(q) ̸= 0.

We extend x to a map F : U × R → R3 defined by

F (u, v, t) = (x(u, v), y(u, v), z(u, v) + t), (u, v) ∈ U, t ∈ R.
Geometrically, F maps a vertical cylinder C over U into a “vertical cylinder” over x(U)
by mapping each section of C with height t into the surface x(u, v)+ te3, where e3 is the
unit vector of the z-axis. It is clear the F is differentiable, and that the restriction of F
to t = 0 is

F|U×0
= x.

Moreover, computing the determinant of the differential dFq, we obtain

det(dFq) = det


∂x

∂u

∂x

∂v
0

∂y

∂u

∂y

∂v
0

∂x

∂u

∂z

∂v
1

 =
∂(x, y)

∂(u, v)
̸= 0.
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So we can apply the inverse function theorem (Therorem 2.2.1) to F , which guarantees
the existence of a neighborhoodM of x(q) in R3 such that F−1 exists and is differentiable
in M .
By the continuity of y, there exists a neighborhoodN of r in V such that y(N) ⊂M . No-
tice that, restricted to N , the function h = F−1◦y, so it is a composition of differentiable
maps. Thus, h is differentiable at r. Since r is arbitrary, h is differentiable on y−1(W ).
This very same argument can be used to show that the map h−1 is differentiable, so we
conclude that h is a diffeomorphism.

In other words, if x and y are two parametrizations given by

x(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ U,

y(ξ, η) = (x(ξ, η), y(ξ, η), z(ξ, η)), (ξ, η) ∈ V,

then the change of coordinates h given by

u = u(ξ, η), v = v(ξ, η), (ξ, η) ∈ y−1(W ),

has the property that the functions u and v have continuous partial derivatives of all
orders, and the map h can be inverted, giving

ξ = ξ(u, v), η = η(u, v), (u, v) ∈ x−1(W ),

where the functions ξ and η also have partial derivatives of all orders. Since

∂(u, v)

∂(ξ, η)
· ∂(ξ, η)
∂(u, v)

= 1,

this implies that the Jacobian determinants of the change of coordinates for both h and
h−1 are nonzero everywhere.

The reason we did not deduce the differentiability of h = x−1 ◦ y by the chain rule is
that we do not yet know what is meant by “differentiable function” on S since we have
only defined differentiability for an open set of Rn.

2.3 The Metric

2.3.1 Geometry in the Tangent Plane

We can use the notion of tangent vector to a curve (see Definition 2.1.2) to define a
tangent vector to a surface: by tangent vector to a regular surface S at point p ∈ S,
we mean the tangent vector α′(0) to a differentiable parametrized curve α : (−ϵ, ϵ) → S
with α(0) = p.
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Let TpS denote the set of all vectors in R3 that are tangent to a surface S at the
point p. We call TpS the tangent plane to S at p.

The following proposition shows that the tangent plane is indeed a plane, since it co-
incides with the vector space spanned by the image of the differential of a parametrization
for that surface.

Proposition 2.3.1. Let x : U ∈ R2 → S be a parametrization of a regular surface S,
and let q ∈ U . The 2-dimensional vector subspace

dxq(R2) ⊂ R3,

coincides with the set of tangent vectors to S at x(q).

Proof. Since x is a parametrization, it is differentiable, that is, its differential dxq has
full rank ∀q ∈ U . So dxq is one-to-one, at least in a neighborhood V of q. This means
that the only vector mapped onto the null vector by dxq is 0 itself:

dxq(0) = 0.

Hence, the kernel of the differential has dimension zero. According to the dimension
theorem, the dimension of the image of a linear application is equal to the dimension of
its kernel plus the dimension of the domain.

f : A→ B =⇒ dim(f(A)) = dim(A) + dim(ker(f).

In this case, since dim(ker(f)) = 0, the dimension of the image must be the same as the
dimension of the domain:

dim(dxq(R2)) = dim(R2) = 2.

So the vector subspace given by the image of the differential is indeed 2-dimensional.
This means that the images of all the vectors by dxq lie on a plane. It is our intention
now, to show that this plane is exactly the set of the tangent vectors to S at point q.
Let w be a tangent vector at x(q) = p, that is, let w = α′(0), where

α : (−ϵ, ϵ) → x(U) ∈ S

is differentiable and α(0) = x(q) = p. Then the curve

β = x−1 ◦ α : (−ϵ, ϵ) → U

is differentiable. By definition of the differential, we have dxq(β
′(0)) = w ∈ S, so

w ∈ dxq. Hence, we have just shown that TpS ⊂ dxq(R2). We want now to prove that
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the vice versa is also true.
On the other hand, w = dxq(v), where v ∈ R2 is the velocity vector of the curve

γ : (−ϵ, ϵ) → U

given by
γ(y) = tv + q, t ∈ (−ϵ, ϵ).

By the definition of the differential, w = α′(0), where α = x ◦ γ. This shows that w is a
tangent vector, so it is true that dxq(R2) ⊂ TpS.

By the above proposition, the plane dxq(R2) passing through x(q) = p is independent
of the parametrization x. However, the choice of a parametrization determines a basis
for the plane, called the (ordered) basis associated to x:((

∂x

∂u

)
(q),

(
∂x

∂v

)
(q)

)
= (xu(q),xv(q)) .

So, the vectors lying on the tangent plane are 3-dimensional objects; however, it might
be more useful to identify them through their coordinates with respect to the basis of
the plane TpS rather than through their canonical 3D coordinates.

The coordinates of a vector w ∈ TpS in the basis associated to a parametrization x are
determined as follows: w is the velocity vector α′(0) of a curve α = x ◦ β : (−ϵ, ϵ) → S
where

β : (−ϵ, ϵ) → U

is given by β(t) = (u(t), v(t)) with β(0) = q = x−1(p). Thus,

α′(0) =
d

dt
(x ◦ β)(0) = d

dt
x(u(t), v(t))(0)

= xu(q)u
′(0) + xv(q)v

′(0) = w.

Thus, in this basis, w has coordinates (u′(0), v′(0)), where (u(t), v(t)) is the representation
in the parametrization x of a curve whose velocity vector at t = 0 is w.

We want to introduce a metric in the tangent plane. Let (xu,xv) be a basis of the
tangent plane TpS, induced by a parametrization x and let

a = auxu + avxv, w = buxu + bvxv

be two vectors on the tangent plane to S at p. With respect to the basis, we can also
write them as:

a =

(
au

av

)
, b =

(
bu

bv

)
.
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We can express the standard Euclidean inner product of v and w, as vectors of R3,
in terms of these coordinates:

⟨a,b⟩ = ⟨(auxu + avxv), (b
uxu + bvxv)⟩

= aubu⟨xu,xu⟩+ aubv⟨xu,xv⟩+ avbu⟨xv,xu)⟩+ avbv⟨xv,xv⟩

= (au, av)

(
⟨xu,xu⟩ ⟨xu,xv⟩
⟨xv,xu⟩ ⟨xv,xv⟩

)(
bu

bv

)
= atGb.

We have expressed the inner product ⟨x,y⟩ as a matrix multiplication. In this case, G
is equal to

G =

(
g11 g12
g21 g22

)
=

(
⟨xu,xu⟩ ⟨xu,xv⟩
⟨xv,xu⟩ ⟨xv,xv⟩

)
=

(
|xu|2 ⟨xu,xv⟩

⟨xv,xv⟩ |xv|2
)
.

We call G the metric on TpS. Each tangent plane has its own metric G, which, therefore,
that is a differentiable function of the parameters on which the parametrization depends.
The metric is also called metric tensor or first fundamental form. For convenience,
we define g = det(G).

Definition 2.3.1. The quadratic form Ip : TpS → R on TpS defined by

Ip(v) = ⟨v, v⟩p = |v|2 ≥ 0

is called the first fundamental form of the regular surface S ⊂ R3 at p ∈ S.

Therefore, the first fundamental form is simply the expression of how the surface S
inherits the natural Euclidean inner product of R3. The first fundamental form allows
us to make measurements on the surface (lengths, areas, etc...) without referring back
to the ambient space R3 where the surface lies. As we have seen in Section 1.2.1, we can
express the inner product and the metric using Einstein’s summation convention:

⟨a,b⟩ =

〈(∑
i=u,v

aixi

)
,

(∑
j=u,v

bjxj

)〉
=
∑
i=u,v

∑
j=u,v

aibj⟨xi,xj⟩ =
∑
i

∑
j

aibjgij = aibjgij

In the same way, the length of a vector is

|a| =
√

⟨a, a⟩ =
√∑

i,j

aiajgij =
√
aiajgij.

And the angle θ between two non-zero vectors a and b, is

cos θ =

∑
i,j a

ibjgij√∑
i,j a

iajgij
√∑

i,j b
ibjgij

=
aibjgij√

aiajgij
√
bibjgij

.
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Example 2.3.1. Let’s now calculate, as an example, the first fundamental form of the
right cylinder over the unit circle x2+y2 = 1 (Figure 2.3). We know from Example 2.2.1
that it admits the parametrization

x(u, v) = (cosu, sinu, v),

U = {(u, v) ∈ R2 : 0 < u < 2π, −∞ < v <∞}.

To compute the first fundamental form we need to derive the parametrization x with
respect to its parameters:

xu = (− sinu, cosu, 0),

xv = (0, 0, 1).

Since a tangent vector w ∈ TpS to S in p is the tangent vector to a parametrized curve
α(t) = x(u(t), v(t)), t ∈ (−ϵ, ϵ) with p = α(0) and w = α′(0), the first fundamental form
of w is simply

Ip(w) = Ip(α
′(0)) = ⟨α′(0), α′(0)⟩ = ⟨u′xu + v′xv, u

′xu + v′xv⟩
= (u′)2⟨xu,xu⟩+ 2u′v′⟨xu,xv⟩+ (v′)2⟨xv,xv⟩
= (u′)2(sin2 u+ cos2 u) + 2u′v′(0) + (v′)2(1)2 = (u′)2 + (v′)2.

So the first fundamental form of the right cylinder on the unit circle in the basis (xu,xv)
is

I(α′) = (u′)2 + (v′)2.

The metric can also be used to calculate areas. Let us begin by considering a vector
plane. Given two linearly independent vectors a and b, we can associate to their exterior
product a ∧ b the parallelogram U spanned by these vectors, with an orientation (of its
boundary) determined by the oriented angle from a to b; then, b ∧ a = −a ∧ b is
associated to the very same parallelogram with the opposite orientation. In both cases
the area of the parallelogram, which we require to be positive, is given by

Area(U) = Area(a ∧ b) = |a ∧ b|.

The area of the parallelogram spanned by (xu,xv), in the tangent space TpS, is deter-
mined using the metric as follows.

Proposition 2.3.2. Given a parallelogram U = xu ∧ xv, its area is

Area(U) = Area(xu ∧ xv) = |xu ∧ xv| =
√
g
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Proof. By definition,
|xu ∧ xv| = Area(U).

But we also have
Area(U) = |xu||xv| sin θ,

which is exactly
√

det(G) =
√
g, in fact the metric is

G =

(
|xu|2 ⟨xu,xv⟩

⟨xv,xu⟩ |xv|2
)
,

and its determinant is
g = |xu|2|xv|2 − ⟨xu,xv⟩⟨xv,xu⟩
= |xu|2|xv|2 − ⟨xu,xv⟩2

= |xu|2|xv|2 − |xu|2|xv|2 cos2 θ
= |xu|2|xv|2 sin2 θ = Area2(U∗)

The above definition and proposition allow us to define (and compute) locally the
area of a surface.

Definition 2.3.2. Let R ⊂ x(U) ⊂ S be a bounded region of a regular surface contained
in the coordinate neighborhood of the parametrization x : U ⊂ R2 → S of S. The
positive number ∫∫

Q

|xu ∧ xv| du dv = A(R), Q = x−1(R),

is called the area of R.

In order to have a global notion of area we have to restrict our discussion to oriented
surfaces.

2.3.2 Oriented Surfaces

We shall now introduce the concept of oriented surface. Since every point of a regular
surface S has a tangent plane TpS, the choice of an orientation of such a plane induces an
orientation on a neighborhood of that point on the surface itself (via a parametrization
x). If the local orientations thus defined are coherent on the overlapping coordinate
neighborhoods, they determine an orientation of the surface, and the surface is said to
be orientable. More formally:

Definition 2.3.3. A regular surface S is called orientable if it is possible to cover it
with a family of neighborhoods in such a way that if a point p ∈ S belongs to two
neighborhoods of this family, then the change of coordinates has positive Jacobian at
p. The choice of such a family is called orientation of S and in this case, S is called
oriented. If such a choice is not possible, S is called nonorientable.
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Let’s make this idea more precise by fixing a parametrization x(u, v) of a neighbor-
hood of p ∈ S. We determine an orientation of the tangent plane TpS associated with the
orientation of the corresponding basis (xu,xv). If p also belongs to a neighborhood of an-
other parametrization x̄(ū, v̄), the new basis (x̄ū, x̄v̄) may induce a different orientation.
We can write the second basis in terms of the first one by

x̄ū = xu
∂u

∂ū
+ xv

∂v

∂ū
,

x̄v̄ = xu
∂u

∂v̄
+ xv

∂v

∂v̄
.

where u = u(ū, v̄) and v = v(ū, v̄) are the expressions of the change of coordinates.
The bases (xu,xv) and (x̄ū, x̄v̄) determine the same orientation of TpS if and only if the
Jacobian of the coordinate change is positive:

∂(u, v)

∂(ū, v̄)
> 0.

For a surface the property of being orientable is related to the notion of normal field,
as the following proposition shows.

Proposition 2.3.3. A regular surface S ⊂ R3 is orientable if and only if there exists a
differentiable field of unit normal vectors N : S → R3 on S.

Proof. If S is orientable, it is possible to cover it with a family of coordinate neighbor-
hoods so that in the intersection of any two of them, the change of coordinates has a
positive Jacobian.
At the points p = x(u, v) of each neighborhood, we define the unit normal vector N at
p by

N =
xu ∧ xv

|xu ∧ xv|
.

N(p) is well defined, since if p belongs to two different coordinate neighborhoods, with
parameters (u, v) and (ū, v̄), the normal vector N(u, v) and N(ū, v̄) coincide; in fact:

x̄ū ∧ x̄v̄ = (xu ∧ xv)
∂(u, v)

∂(ū, v̄)

preserves its sign (∂(u, v)/∂(ū, v̄) = +1). Moreover, the coordinates of N(u, v) are
differentiable functions of (u, v), and thus the mapping N : S → R3 is differentiable, as
desired.
On the other hand, let N : S → R3 be a differentiable field of unit normal vectors,
and consider a family of connected coordinate neighborhoods covering S. For the points
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p = x(u, v) of each coordinate neighborhood x(U), with U ⊂ R2, it is possible, by the
continuity of N , to arrange that

N(p) =
xu ∧ xv

|xu ∧ xv|
.

In fact, the inner product 〈
N(p),

xu ∧ xv

|xu ∧ xv|

〉
= f(p) = ±1

is a continuous function on x(U). Since x(U) is connected, the sign of f is constant. If
f(p) = −1, we interchange u and v in the parametrization, and the assertion follows.
Proceeding in this manner for all the coordinate neighborhoods, we have that in the
intersection of any two of them, let’s say x(u, v) and x(ū, v̄) the Jacobian of the coordinate
change

∂(u, v)

∂(ū, v̄)

is certainly positive. Otherwise, we would have

xu ∧ xv

|xu ∧ xv|
= N(p) = − x̄ū ∧ x̄v̄

|x̄ū ∧ x̄v̄|
= −N(p).

which is a contradiction. Hence, the given family of coordinate neighborhoods after un-
dergoing certain interchanges of u and v satisfies the condition of the previous definition,
therefore S is orientable.

Another important proposition regarding orientable surfaces is the following.

Proposition 2.3.4. If a regular surface is given by S = {(x, y, z) ∈ R3 : f(x, y, z) = a},
where f : U ⊂ R3 → R is differentiable, and a is a regular value of f , then S is orientable.

Proof. Given a point p = (x0, y0, z0) ∈ S, consider the parametrized curve (x(t), y(t), z(t)), t ∈
I on S passing through p for t = t0. Since the curve is on S, we have

f(x(t), y(t), z(t)) = a

for all t ∈ I. By differentiating both sides we get

fx(p)

(
dx

dt

)
t0

+ fy(p)

(
dy

dt

)
t0

+ fz(p)

(
dz

dt

)
t0

=
da

dt
= 0.

This shows that the tangent vector to the curve at t = t0 is perpendicular to the vector
(fx, fy, fz) at p. We conclude that

N(x, y, z) =

(
fx√

f 2
x + f 2

y + f 2
z

,
fy√

f 2
x + f 2

y + f 2
z

,
fz√

f 2
x + f 2

y + f 2
z

)
is a differentiable field of unit normal vectors on S.
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Thus, the sphere (S = {(x, y, z) ∈ R3 : x2 + y2 + z2 = r2}) and the cylinder (C =
{(x, y, z) ∈ R3 : x2+y2 = r2}) are orientable surfaces. A final remark we ought to make is
that orientation is not a local property of a regular surface. Locally, every regular surface
is diffeomorphic to an open set in the plane, and, hence, is orientable. Orientation is a
global property, in the sense that it involves the whole surface.

2.4 Curvature of a Surface

The rate of change of the tangent line to a curve C is an important geometric entity
called curvature of C (Definition 2.1.5). It is natural to try to define the curvature of a
regular surface by analogy with the curvature of a curve. The idea is to try to measure
how rapidly a surface S pulls away from the tangent plane TpS in a neighborhood of a
point p ∈ S. This is equivalent to measuring the rate of change at p of a unit normal
vector field N in a neighborhood of p. We shall see that this rate of change is given
by a linear map on the tangent plane which cannot be an isometry since isometries pre-
serve distances (and distances from a flat plane to a curved surface will necessarily be
distorted), but it is self-adjoint.
To do so, we should recall the concept of orientation. By Proposition 2.3.3, an orientation
on an orientable surface S is determined by the choice of a differentiable unit normal field
N on S. An orientation on S induces an orientation on each tangent space TpS, p ∈ S as
follows: choose a basis (v, w) ∈ TpS; this is defined to be positive if ⟨v∧w,N⟩ is positive.

We can now introduce the concept of the Gauss map.

Definition 2.4.1 (The Gauss Map). Let S ⊂ R3 be a surface with orientation N .
The map N : S → R3 takes its values in the unit sphere

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

The map N : S → S2 is called the Gauss map of S (Figure 2.5).
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Figure 2.5: The Gauss map. From [Cal00, page 137].

It is straightforward to verify that the Gauss map is differentiable. The differential
dNp of N at p ∈ S is a linear map from TpS to TN(p)S

2. Since TpS and TN(p)S
2 are

parallel planes, dNp can be looked upon as a linear map on TpS.
The fact that these two planes are parallel is proven in the following proposition.

Proposition 2.4.1. For each p ∈ R, the two planes TpS and TN(p)S
2 are parallel to each

other.

Proof. The plane TpS has basis (xu,xv), while the basis of TN(p)S
2 is (Nu,Nv). In order

to prove that the two planes are parallel, we need to show that they are orthogonal to
the same vector, in this case N. Since

N =
xu ∧ xv

|xu ∧ xv|

is normal to the plane spanned by xu and xv by construction, it is sufficient to show that
N is orthogonal also to the basis of TN(p)S

2. Since |N|2 = ⟨N,N⟩ = 1, differentiation
gives:

∂

∂u
⟨N,N⟩ =

〈
∂N

∂u
,N

〉
+

〈
N,

∂N

∂u

〉
= 2⟨Nu,N⟩ = 0.

Hence, Nu ⊥ N; and the same happens deriving with respect to v.

Based on the above statement, from now on we will identify TN(p)S
2 with TpS. The

linear map dNp : TpS → TpS operates as follows. For each parametrized curve α(t) in
S with α(0) = p, we consider the parametrized curve N ◦ α(t) = α(t) in the sphere S2.
This is equivalent to restricting the normal vector N to the curve α(t). The tangent
vector N ′(0) = dNp(α

′(0)) is a vector in TN(p)S
2 restricted to the curve α(t) at t = 0.
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2.4. Curvature of a Surface

Thus, dNp measures how N pulls away from N(p) in a neighborhood of p. In the case
of curves, this measure is given by a number; in the case of surfaces, it is characterized
by a linear map.
We said earlier that the differential of the map measuring the curvature of a surface is
self-adjoint1. Let’s now prove it.

Proposition 2.4.2. The differential dNp : TpS → TpS of the Gauss map is a self-adjoint
linear map.

Proof. Since dNp is linear, it is enough to verify that

⟨dNp(w1), w2⟩ = ⟨w1, dNp(w2)⟩

for a basis (w1, w2) of TpS. Let x(u, v) be a parametrization of S at p, and let (xu,xv)
be the associated basis of TpS. If α(t) = x(u(t), v(t)) is a parametrized curve in S, with
α(0) = p, then

dNp(α
′(0)) = dNp(xuu

′(0) + xvv
′(0))

= dNp(xu)u
′(0) + dNp(xv)v

′(0)

=
d

dt
N(u(t), v(t))

∣∣∣∣
t=0

= Nuu
′(0) +Nvv

′(0);

in particular, dNp(xu) = Nu and dNp(xv) = Nv. Therefore, to prove that dNp is self-
adjoint, we only need to show that

⟨Nu,xu⟩ = ⟨xu, Nv⟩.

Take the derivatives of ⟨N,xu⟩ = 0 and ⟨N,xv⟩ = 0, relative to v and u and obtain

∂⟨N,xu⟩
∂v

= ⟨Nv,xu⟩+ ⟨N,xuv⟩ = 0,

⟨N,xv⟩
∂u

= ⟨Nu,xv⟩+ ⟨N,xvu⟩ = 0.

Thus,
⟨Nu,xv⟩ = −⟨N,xuv⟩ = ⟨Nv,xu⟩.

The fact that dNp is a self-adjoint linear map allows us to associate a quadratic form
Q in TpS given by Q(v) = ⟨dNp(v), v⟩, v ∈ TpS to it.

1A linear map A : V → V is self-adjoint if A = A†, that is, if ⟨Av,w⟩ = ⟨v,Aw⟩ ∀ v, w ∈ V
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2.4. Curvature of a Surface

Definition 2.4.2. The quadratic form IIp defined in TpS by

IIp(v) = −⟨dNp(v), v⟩

is called the second fundamental form of S at p.

In the previous section, we introduced the notion of curvature of a curve (see Defini-
tion 2.1.5). We now wish to extend this concept to a curve lying on a surface.

Definition 2.4.3. Let C be a regular curve in S passing through p ∈ S, k the curvature
of C at point p, and cos θ = ⟨n,N⟩, where n and N are the normal vectors at p to the
curve C and the surface S respectively.
The number kn = k cos θ = k⟨n,N⟩ is called normal curvature of C ⊂ S at p.

Figure 2.6: Normal curvature of a curve C on a surface S. From [dC76, page 141].

In other words, referring to Figure 2.6, the normal curvature kn is the projection of
the vector kn over the normal to the surface at p, with a sign given by the orientation N
of S at p. One important remark is that the normal curvature of C does not depend on its
orientation, but it changes sign with a change of orientation of the surface. Now let’s give
an interpretation to the second fundamental form IIp. Consider a regular curve C ⊂ S
parametrized by α(s), where s is the arc length of C, and with α(0) = p ∈ C. Denoting
by N(s) = N ◦ α(s) the restriction of N to the curve α(s), we have ⟨N(s), α′(s)⟩ = 0
because N is the normal vector and α′(s) is the tangent vector to the curve at p, so they
are orthogonal. Thus,

d

dt
(⟨N(s), α′(s)⟩) = ⟨N ′(s), α′(s)⟩+ ⟨N(s), α′′(s)⟩ = 0,
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2.4. Curvature of a Surface

which becomes ⟨N ′(s), α′(s)⟩ = −⟨N(s), α′′(s)⟩. Therefore,

IIp(α
′(0)) = −⟨dNp(α

′(0)), α′(0)⟩
= −⟨N ′(0), α′(0)⟩ = ⟨N(0), α′′(0)⟩
= ⟨N(0), kn⟩ = k⟨N, n⟩(p) = kn(p) = k cos(θ)(p).

So the normal curvature kn is linked to the second fundamental form IIp by this
relation: the second fundamental form of a unit vector v ∈ Tp(S) at p is equal to the
normal curvature of a regular curve passing through p and tangent to v.

Since dNp is a self-adjoint linear map (see Proposition 2.4.2), it is similar to a di-
agonal matrix, that is, it has two linearly independent eigenvectors and, therefore, two
(potentially equal) eigenvalues:

∀ p ∃ e1, e2 ∈ TpS and k1, k2 ∈ R : dNp(e1) = −k1e1, dNp(e2) = −k2e2.

This means that in the orthonormal basis (e1, e2) of TpS, the differential dNp assumes
the form:

dNp =

(
−k1 0
0 −k2

)
.

Moreover, we know from linear algebra that k1 and k2 are the maximum and the minimum
of the second fundamental form IIp(v) = −⟨dNp(v), v⟩ restricted to the unit circle of TpS.
This is the key factor in the following definition.

Definition 2.4.4. Let p be a point on a regular surface S, and let dNp : TpS → TpS be
the differential of the Gauss map.

The maximum normal curvature k1 and the minimum normal curvature k2 are called
the principal curvatures at p. The corresponding directions (which are given by the
eigenvectors e1 and e2) are called principal directions at p.

The determinant of dNp is the Gaussian curvature K of S at p.
The negative of half of the trace of dNp is called the mean curvature H of S at p.

In terms of the principal curvatures, we can write

K = det(dNp) = k1k2, H = −1

2
Tr(dNp) = −k1 + k2

2
.

For instance, in the plane and in the sphere, all directions at all points are principal
directions.
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2.4. Curvature of a Surface

Example 2.4.1. Let’s consider, as an example, the right cylinder on the unit circle
(Figure 2.3) given by

S = {(x, y, z) ∈ R3 : x2 + y2 = 1}.

We already know that it admits a parametrization (see Example 2.3.1.)

x(u, v) = (cosu, sinu, v).

To compute the orientation we need

xu = (− sinu, cosu, 0),

xv = (0, 0, 1),

which give

N =
xu ∧ xv

|xu ∧ xv|
= (cosu, sinu, 0) = (x, y, 0).

So the possible unit normal vector fields are

N = (−x,−y, 0),
N̄ = (x, y, 0).

We fix an orientation by choosing one of them as normal vector field, let’s say N =
(−x,−y, 0).
Let’s consider a curve α(t) = (x(t), y(t), z(t)) on the cylinder, that is with x(t)2+y(t)2 =
1. Along this curve, the normal vector is N(t) = (−x,−y, 0), and therefore,

dN(x′(t), y′(t), z′(t)) = N ′(t) = (−x′(t),−y′(t), 0).

If v is a vector tangent to the cylinder at p = (x0, y0, z0) and parallel to the z-axis, then
it must be proportional to v = (0, 0, 1). To compute dN(v), we need to calculate N ′(t)
along a curve α(t) with velocity v and such that α(0) = p. Let’s consider

α(t) = (x0, y0, z0 + t),

which satisfies α(0) = (x0, y0, z0) = p, and α′(0) = (0, 0, 1) = v; so the tangent vector to
the curve α at p is exactly v.
Let’s now compute N(α(t)):

N(α(t)) = N(x0, y0, z0 + t) = (−x0,−y0, 0),

and its derivative is

N ′(0) =
d

dt
N(α(t))

∣∣∣∣
t=0

= (−x′0,−y′0, 0) = (0, 0, 0)
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2.4. Curvature of a Surface

because x0 and y0 are constant. So the differential of v is given by

dN(v) = dN(α′(0)) = N ′(0) = (0, 0, 0) = 0 v.

Hence, v, which is parallel to the z-axis, is an eigenvector with eigenvalue 0.
On the other hand, if w is a vector tangent to the cylinder at p = (x0, y0, z0) and parallel
to the xy plane, it must be of the form

w = (−y0, x0, 0)

which is in fact perpendicular to N = (−x(t),−y(t), 0). Just like we did before, to
compute the differential at w, we need to calculate N ′(t) along a curve β(t) with velocity
w and such that β(0) = p. Let’s consider

β(t) = (x0 − y0t, y0 + x0t, z0),

which satisfies β(0) = (x0, y0, z0) = p, and β′(0) = (−y0, x0, 0) = w, so the tangent vector
to the curve β at p is exactly w.
Let’s now compute N(β(t)):

N(β(t)) = N(x0 − y0t, y0 + x0t, z0) = (−x0 + y0t,−y0 − x0t, 0),

and its derivative is

N ′(0) =
d

dt
N(β(t)

∣∣∣∣
t=0

= (y0,−x0, 0).

So the differential of w is given by

dN(w) = dN(β′(0)) = N ′(0) = (y0, x0, 0) = −w.

Hence, w, which is parallel to the xy-plane, is an eigenvector with eigenvalue −1.

As one can see from Figure 2.7, the normal sections at a point p vary from a circle
perpendicular to the axis of the cylinder to a straight line parallel to it.
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2.4. Curvature of a Surface

Figure 2.7: Normal sections on a cylinder. Adapted from [dC76, page 144].

Let’s calculate the normal curvatures of these sections:

kn = k cos θ,

where cos θ = 1 because the normal vector to these curves coincides with the normal
vector to the cylinder. In the case of the circle, k = 1, so its normal curvature is k1 = 1.
Instead, if we consider the straight line, k = 0, hence k2 = 0. Thus, the normal curvatures
of these sections vary from k1 = 1 (circle) to k2 = 0 (straight line), passing through a
family of ellipses with intermediate normal curvature. These values are the maximum
and the minimum of the normal curvature at p, so, according to Definition 2.4.4, they
are the principal curvatures at p, and the corresponding directions, w and v respectively,
are the principal directions at p.
From the principal curvatures we can calculate the Gaussian and the mean curvature:

K = k1k2 = 0, H =
1

2
(k1 + k2) =

1

2
.

Finally, let’s calculate the second fundamental form of the cylinder. Since a tangent
vector w ∈ TpS is the tangent vector to a parametrized curve α(t) = x(u(t), v(t)) =
(cosu, sinu, v) with p = α(0) and w = α′(0), the second fundamental form of w is simply

IIp(w) = IIp(α
′(0)) = −⟨dN(α′(0)), α′(0)⟩ = −⟨N ′(0), α′(0)⟩,

where,
α′ = u′xu + v′xv,

xu = (− sinu, cosu, 0),

xv = (0, 0, 1),
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2.4. Curvature of a Surface

and
N = (− cosu,− sinu, 0),

with derivative
N ′ = u′Nu + v′Nv,

Nu = (sinu,− cosu, 0),

Nv = (0, 0, 0).

Hence, the second fundamental form becomes

IIp(α
′(t)) = −⟨N ′(t), α′(t)⟩ = −⟨u′Nu + v′Nv, u

′xu + v′xv⟩
= −(u′)2⟨Nu,xu⟩ − u′v′⟨Nu,xv⟩ − u′v′⟨Nv,xu⟩ − (v′)2⟨Nv,xv⟩
= (u′)2⟨N,xuu⟩+ 2u′v′⟨N,xuv⟩+ (v′)2⟨N,xvv⟩,

where we used the fact that ⟨Nu,xv⟩ = ⟨Nv,xu⟩ = −⟨N,xuv⟩ proved in Proposition 2.4.2,
and the similar properties ⟨Nu,xu⟩ = −⟨N,xuu⟩, ⟨Nv,xv⟩ = −⟨N,xvv⟩ obtained deriving
⟨N,xu⟩ = 0 and ⟨N,xv⟩ = 0 by u and v respectively. And since

xuu = (− cosu,− sinu, 0),

xuv = (0, 0, 0),

xvv = (0, 0, 0),

we have
IIp(α

′(0)) = (u′)2.

The knowledge of the principal curvatures at p allows us to compute the normal
curvature along a given direction of TpS. In fact, let v ∈ TpS, |v| = 1. Since (e1, e2)
forms an orthonormal basis of TpS, we have

v = e1 cos θ + e2 sin θ,

where θ is the angle between v and e1 in the orientation of TpS. The normal curvature
along v is given by

kn = IIp(v) = −⟨dNp(v), v⟩
= −⟨dNp(e1 cos θ + e2 sin θ), e1 cos θ + e2 sin θ⟩
= ⟨k1e1 cos θ + k2e2 sin θ, e1 cos θ + e2 sin θ⟩
= k1 cos

2 θ + k2 sin
2 θ.

This expression is known as the Euler formula, and it represents the second fundamen-
tal form in the basis (e1, e2).
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2.4. Curvature of a Surface

When mapped onto the Gauss map, a surface undergoes changes such as stretching
and compressing, resulting in an image with a different area compared to the original one.
This is the geometric interpretation of the Gaussian curvature K, for K ̸= 0 discussed
in the following proposition.

Proposition 2.4.3. Let p be a point of a surface S such that the Gaussian curvature
K(p) ̸= 0, and let V be a connected neighborhood of p where K does not change sign.
Then the Gaussian curvature of S at p is given by:

K(p) = lim
A→0

A′

A
,

where A is the area of a region B ⊂ V containing p, and A′ is the area of N(B), which
is the image of B by the Gauss map N : S → S2. This limit is taken through a sequence
of regions Bn that converges to p.

Proof. According to Definition 2.3.2, the area A of B is given by

A =

∫∫
R

|xu ∧ xv| du dv,

where x(u, v) is a parametrization in p, whose coordinate neighborhood contains V , and
R is the region in the uv plane corresponding to B (that is, B = x(R)). The area A′ of
N(B) is

A′ =

∫∫
R

|Nu ∧Nv| du dv.

According to Proposition 2.4.1, the two tangent planes TpS and TN(p)S
2 are parallel, so

the generators of the latter can be expressed as a linear combination of the basis vectors
of the former:

Nu = a11xu + a21xv,

Nv = a12xu + a22xv.

Hence, the integrand becomes:

|Nu ∧Nv| = |(a11xu + a21xv) ∧ (a12xu + a22xv)|
= |a11a22xu ∧ xv + a21a12xv ∧ xu|
= |(a11a22 − a12a21)xu ∧ xv| = det(aij)|xu ∧ xv|,

where aij is the matrix of the base change from one plane to the other:

aij =

(
a11 a12
a21 a22

)
.
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2.5. The Intrinsic Geometry of Surfaces

By Definition 2.4.4, we know that the Gaussian curvature is K = det(dNp), which
happens to be exactly det(aij). Hence, we have

A′ =

∫∫
R

K|xu ∧ xv| du dv.

Going to the limit, we find

lim
A→0

A′

A
= lim

R→0

A′/R

A/R

=
limR→0(1/R)

∫∫
R
K|xu ∧ xv| du dv

limR→0(1/R)
∫∫

R
|xu ∧ xv| du dv

=
K|xu ∧ xv|
|xu ∧ xv|

= K.

Note that we have used the mean value theorem for double integrals (see Theorem 2.2.2).
This proves the proposition.

2.5 The Intrinsic Geometry of Surfaces

In the previous sections we introduced the first fundamental form of a surface S (see
Definition 2.3.1) and showed how this can be used to compute simple metric concepts
(lengths, angles, areas, ...). Many of these concepts can be expressed only in terms of
the first fundamental form, hence they are said to be intrinsic to the surface. The study
of such concepts is called the intrinsic geometry of the surface. It is therefore convenient
that we state what is meant by two regular surface having equal fundamental forms.

Definition 2.5.1. Given two regular surfaces S and S̄, a diffeomorphism ϕ : S → S̄ is
an isometry if ∀p ∈ S and ∀ pairs w1, w2 ∈ TpS we have

⟨w1, w2⟩p = ⟨dϕp(w1).dϕp(w2)⟩ϕ(p).

The surfaces S and S̄ are said to be isometric.

In other words, a diffeomorphism is an isometry if it preserves the inner product
defined on the surface. It follows that an isometry also preserves the first fundamental
form:

Ip(w) = ⟨w,w, ⟩p = ⟨dϕp(w), dϕp(w)⟩ϕ(p) = Iϕ(p)(dϕp(w)), ∀w ∈ TpS.

Vice versa, if a diffeomorphism preserves the first fundamental form, it is an isometry.
If ϕ preserves I, then

Ip(w) = Iϕ(p)(dϕp(w)) ∀w ∈ TpS.
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So, we have
Ip(w1 + w2)− Ip(w1)− Ip(w2) =

⟨w1 + w2, w1 + w2⟩ − ⟨w1, w1⟩ − ⟨w2, w2⟩ =
⟨w1, w1 + w2⟩+ ⟨w2, w1 + w2⟩ − ⟨w1, w1⟩ − ⟨w2, w2⟩ =
2⟨w1, w2⟩.

On the other hand

Iϕ(p)(dϕp(w1 + w2))− Iϕ(p)(dϕp(w1))− Iϕ(p)(dϕp(w2)) =

2⟨dϕp(w1), dϕp(w2)⟩.

But the two expressions must coincide, therefore, we have

Ip(w1 + w2)− Ip(w1)− Ip(w2) =

Iϕ(p)(dϕp(w1 + w2))− Iϕ(p)(dϕp(w1))− Iϕ(p)(dϕp(w2)) =

2⟨w1, w2⟩ = 2⟨dϕp(w1), dϕp(w2)⟩,

which becomes
⟨w1, w2⟩ = ⟨dϕp(w1), dϕp(w2)⟩,

so the scalar product is preserved.

Definition 2.5.2. A map ϕ : V → S̄ of a neighborhood V of p ∈ S is a local isometry
at p if there exists a neighborhood V̄ of ϕ(p) ∈ S̄ such that ϕ : V → V̄ is an isometry.
If there exists a local isometry into S̄ at every p ∈ S, the surface S is said to be locally
isometric.
Two surfaces S and S̄ are locally isometric if S is locally isometric to S̄ and S̄ is locally
isometric to S.

Hence, isometries are distance-preserving maps. When two surfaces S and S̄ are
connected by an isometry ϕ : S → S̄, we say that they are isometric. In other words,
they can be developed on each other. This means that they can be wrapped around
each other without stretching or tearing. But under what conditions is this “developing”
possible? Gauss took up this question and determined that the surfaces must have the
same curvature at the same points. In broad terms, this is the content of one of his most
important theorems: the so called Theorema Egregium.

Theorem 2.5.1 (Theorema Egregium). Let x : U → R3 be a parametrization of the
surface S. Then, the Gaussian curvature K can be expressed entirely in terms of the
derivatives of the metric tensor gij = ⟨xi,xj⟩, and thus is an intrinsic feature of S. In
other words, the Gaussian curvature of a surface is invariant by local symmetries.
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2.6 Geodesics

Special relativity is applied to observers who move at a constant speed along a straight
path. However, on curved surfaces there may not be straight paths at all. Nevertheless,
there still are paths that are acceleration-free. These paths are the geodesics.
It is easy to show that the acceleration of a particle moving along a curve on a parametrized
surface has two components. There is a normal component which cannot be cancelled,
so any curve has to accelerate to stay on the surface; but there also is a tangent one,
which, instead, depends on the curve and will equal zero if the parametrization is prop-
erly chosen.
First, we shall recall the definition of a differentiable vector field: a vector field w is
differentiable at p if, for some parametrization x(u, v) in p, the components a and b of
w = axu + bxv are differentiable functions at p.

Definition 2.6.1. Let S be a regular parametrized surface, and let w be a differentiable
vector field in an open set U ⊂ S and p ∈ U . Let y ∈ TpS. Consider a parametrized
curve

α : (−ϵ, ϵ) → U,

with α(0) = p and α′(0) = y, and let w(t), t ∈ (−ϵ, ϵ), be the restriction of the vector
field w to the curve α. The vector obtained by the normal projection of

dw

dt
(0)

onto the plane TpS is called the covariant derivative at p of the vector field w relative
to the vector y (Figure 2.8). This covariant derivative is denoted

Dw

dt
(0) = Dyw(p)
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Figure 2.8: Covariant derivative of a vector field w. From [dC76, page 238],.

From a point of view external to the surface, in order to obtain the covariant derivative
of a field w along a curve α : I → S at t ∈ I, one needs to project the ordinary derivative
(dw/dt)(t) onto the tangent plane Tα(t)S. It follows that when two surfaces are tangent
along a curve α, then the covariant derivative of a vector field w along α is the same for
both surfaces.
If α(t) is a curve on a regular surface S, we can think of it as the trajectory of a point
moving on the surface. α′(t) is then the speed of the point, and α′′(t) is its acceleration.
The covariant derivative (Dα′/dt) of the field α′(t) is the tangential component of the
acceleration α′′(t).

Definition 2.6.2. Let α : I → S be a parametrized curve in a regular surface S. A
vector field w along α is a correspondence that assigns to each t ∈ I a vector

w(t) ∈ Tα(t)S,

that is, a vector tangent to the curve α at t.
The vector field w is differentiable at t0 ∈ I if, for some parametrization x(u, v) in α(t0),
the components a(t) and b(t) of w(t) = a(t)xu + b(t)xv are differentiable functions of t
at t0. w is differentiable in I if it is differentiable ∀ t ∈ I.

Definition 2.6.3. A vector field w along a parametrized curve α : I → S is said to be
parallel if

Dw

dt
= 0, ∀t ∈ I.

One important property of parallel vector fields is given by the following proposition.
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Proposition 2.6.1. Let v and w be parallel vector fields along α : I → S. Then
⟨w(t), v(t)⟩ is constant, and in particular |w(t)| and |v(t)| are constant, and the angle
between v(t) and w(t) is constant.

Proof. If a vector field w is parallel along α, then its derivative dw/dt is normal to the
plane which is tangent to the surface at α(t), and the covariant derivative Dw/dt is null.
But the vector field v lies along the tangent plane to the surface, so

⟨v(t), w′(t)⟩ = 0.

However, this argument is also true the other way around, so

⟨w(t), v′(t)⟩ = 0.

The two results combined give

⟨v(t), w′(t)⟩+ ⟨v′(t), w(t)⟩ = ⟨v(t), w(t)⟩′ = 0;

that is, ⟨v(t), w(t)⟩ is constant.

The next proposition shows that there exist parallel vector fields along a parametrized
curve α(t) and that they are completely determined by their values at an arbitrary point
t0.

Proposition 2.6.2. Let α : I → S be a parametrized curve on a regular surface S, and
let w0 ∈ Tα(t0)S, t0 ∈ I. Then, there exists a unique parallel vector field w(t) along α(t)
with w(t0) = w0.

We can now introduce the definition of geodesic.

Definition 2.6.4. A nonconstant parametrized curve γ : I → S is said to be geodesic
at t ∈ I if the field of its tangent vectors γ′(t) is parallel along γ at t, that is, if

Dγ′(t)

dt
= 0.

γ is a parametrized geodesic if it is geodesic for all t ∈ I.

Since γ′(t) is a parallel vector field, we immediately know that |γ′(t)| = c ̸= 0
(see Proposition 2.6.1). Therefore, we may introduce the arc length parametrization
s = ct, and we can conclude that the parameter t of a parametrized geodesic γ is
proportional to the arc length of γ. The tangent vector of a geodesic is never zero, thus,
the parametrization is regular. The notion of geodesic is clearly local.

Proposition 2.6.3. Given a point p ∈ S and a vector w ∈ TpS, w ̸= 0, there exists
an ϵ > 0 and a unique parametrized geodesic γ : (−ϵ, ϵ) → S such that γ(0) = p and
γ′(0) = w.
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Chapter 3

De Sitter Spacetime

In this chapter, we will discuss the geometric and physical interpretations of De Sitter
spacetime, one of the simplest and yet most fundamental examples of a curved uni-
verse. While special relativity describes the physical phenomena in the flat Minkowski
spacetime, this model extends this description to a curved universe. We will start by
describing it as a (1+2)-dimensional spacelike hyperboloid of one sheet embedded in the
(1+4)-dimensional Minkowski space, and then describe it through a proper parametriza-
tion. By studying its realization in a higher-dimensional space, we can explore the
behavior of observers, light cones, and photon worldlines within its curved geometry.
Finally, this analysis will lead to interesting properties, such as the fact that no photon
can travel more than halfway around the spatial circle.

The primary source for the material in this chapter is [Cal00].

3.1 De Sitter Spacetime

The De Sitter universe is one of the simplest curved spacetimes possible. It is the
spacelike unit sphere in a (1+4)-dimensional Minkowski space: it is the set of spacelike
unit vectors. To see what we mean more concretely, let’s consider a (1+2)-dimensional
slice of the (1+4)-dimensional ambient space and examine it.
Letw = (ct, x, y) be a point in the (1+2)-dimensional Minkowski space with the standard
metric |w|2 = c2t2 − x2 − y2. The spacelike unit vectors w are such that |w|2 = c2t2 −
x2 − y2 = −1. They lie on a surface S that in ordinary R3 forms a hyperboloid of one
sheet (see Example 2.2.2). So this is the De Sitter spacetime: it extends indefinitely far
into the past and into the future, whereas in the spatial direction it is just a circle. We
are not used to contemplating a spacetime in which space is finite but has no boundary
or edge: it seems possible for an observer or a photon to circumnavigate the entire space
making journeys that return to the starting point without ever reversing direction.
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3.2. Parametrization of de Sitter Spacetime

3.2 Parametrization of de Sitter Spacetime

To explore the new spacetime, we might want to use the parametrization introduced in
Example 2.2.2. We will refer to Figure 2.4.

w(u, v) = (ct, x, y) = (sinh(u), cosh(u) cos(v), cosh(u) sin (v))

where −∞ < u <∞,−π ≤ v ≤ π. The basis vectors of the tangent space are

wu = (cosh(u), sinh(u) cos(v), sinh(u) sin(v)),

wv = (0,− cosh(u) sin(v), cosh(u) cos(v)).

So the components of the metric tensor are

g11 = ⟨wu,wu⟩ = cosh2(u)− sinh2(u) cos2(v)− sinh2(u) sin2(v) = 1,

g12 = ⟨wu,wv⟩ = sinh(u) cosh(u) cos(v) sin(v)− sinh(u) cosh(u) cos(v) sin(v) = 0,

g22 = ⟨wv,wv⟩ = − cosh2(u) sin2(v)− cosh2(u) cos2(v) = − cosh2(u).

So we have just shown that each tangent plane is a (1+1)-dimensional Minkowski space1

in which, according to the classification made in Section 1.2.2, wu is future-timelike, wv

is spacelike and the two vectors are Minkowski-orthogonal. Moreover, any curve whose
tangent vector is always a future-timelike vector can be taken as the worldcurve of an
observer. This implies that the coordinate lines v = const are worldcurves, because
their tangents wu are always future-timelike. In particular, we take the u-axis to be the
worldcurve of the observer K. In fact, u is K’s proper time τ , as we can see from this
calculation:

τ(u) =

∫ u

0

|wu|du =

∫ u

0

1 · du = u.

Hence, we will use τ and u interchangeably.

According to the shape of the universe, one might conclude that it is possible for
a body or a photon to circumnavigate the entire universe since space is infinite but
has no boundaries. To address the issue of circumnavigation, let us first measure the
circumference of space. At time τ ,

C =

∫ π

−π

|wv|dv =

∫ π

−π

cosh(τ)dv = 2π cosh(τ).

So the radius of space at time τ is cosh(τ), a value that grows exponentially with τ > 0.

1Quadratic forms are classified according to their signature, and in this case the signature of the
metric on the plane is (1 + 1), which is equal to the signature of Minkowski spacetime in 2 dimensions
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3.2. Parametrization of de Sitter Spacetime

Now consider, in the (u, v)-plane, a photon emitted by K at the event in O in the
positive v-direction and detected at the event E2. It might have a worldcurve where
event E1 appears twice on the worldcurve simply because the chart “wraps around” in
the v-direction, as shown in Figure 3.1.

Figure 3.1: Hypothesis for the worldcurve for a photon on the (u, v)-plane. Adapted from
[Cal00, page 233].

However, this does not happen: in fact, we can prove that no photon can travel more
than halfway around the circle. Let’s consider the light cone determined in each tangent
plane by the metric tensor:

G =

(
1 0
0 − cosh2(u)

)
, g = det(G) = − cosh2(u) ≤ −1.

Note that, when u = 0, this is exactly the metric of the (1 + 1)-dimension Minkowski
spacetime.

One should check that the light-like vectors that separate the timelike from the space-
like vectors at the point (u, v) are multiples of

L± = wu ±wvsech(u) =

(
1

±sech(u)

)
.

In fact, their squared norm is equal to

⟨L±, L±⟩ = ⟨wu ±wvsech(u),wu ±wvsech(u)⟩
= ⟨wu,wu⟩ ± 2sech(u)⟨wu,wv⟩+ sech2(u)⟨wv,wv⟩
= 1 + sech2(u)(− cosh2(u)) = 0.

Hence, L± are lightlike vectors, and, according to what we said in Section 1.2.2, they
are the generators of the light cone. Geometrically, L+ corresponds to the direction of
motion of a light ray moving forward along +v, while L− corresponds to that of a light
ray moving forward along −v.
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3.2. Parametrization of de Sitter Spacetime

The slopes of L± are ±sech(u) respectively, and they rapidly approach zero as |u|
increases. This means that the light cone flattens as |u| increases. There is such a light
cone at each point (u, v) in the parameter plane. We can think of the cone as a pair of
vector fields (given by L±) that define the possible directions of photon worldcurves (see
Figure 3.2).

Now suppose that the wordlcurve of a photon is the graph of a function v = ϕ(u) =
ϕ(τ) in the (u, v)-plane. This graph must be everywhere tangent to one of the light cone
fields. Consider, for example, the L+ field, with slope sech(τ). Then

dϕ

dτ
= sech(τ), v = ϕ(τ) =

∫
sech(u) dτ.

To integrate this, we write the integrand as

sech(τ) =
1

cosh(τ)
=

2

eτ + e−τ
=

2eτ

e2τ + 1
,

and then make the substitution a = eτ , da = eτdτ .

ϕ(τ) =

∫
sech(τ) dτ =

∫
2eτ

e2τ + 1
dτ =

∫
2

a2 + 1
du = 2arctan(u) + C

= 2arctan(eτ ) + C.

When τ → −∞, then eτ → 0 and ϕ(τ) → C. When τ → ∞, then eτ → +∞,
arctan(eτ ) → π/2 and ϕ(τ) → π + C. As shown in Figure 3.2, each graph u = ϕ(τ) =
2 arctan(eτ ) + C lies in a horizontal band whose vertical width is π, and they are all
vertical translations of one another obtained by changing the value of C.

Figure 3.2: Worldcurve of a photon in given by the equation v = ϕ(τ) = 2 arctan(eτ )+C. The
worldcurve is superimposed on the vector fields L± representing the light cones at any point
of the (u, v)-plane. Adapted from [Cal00, page 235].

Since every photon worldcurve lies in a horizontal band of vertical width ∆v = π, no
photon ever travels more than halfway around the circle.
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