
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Laurea magistrale in Informatica

UTILIZZO DI MODELLI

CONTEXTUAL BANDIT

PER L’OTTIMIZZAZIONE DELLE

CAMPAGNE PUBBLICITARIE PPC

Relatore:
Chiar.mo Prof.
Davide Evangelista

Presentata da:
Leonardo Marzocchi

Sessione
Anno Accademico

2025 / 2026

Indice

1 Definizione del contesto 8
1.1 L’Azienda: Compagnia del Benessere e il Marchio Wellbeauty 8
1.2 Il Contesto Operativo: Amazon . 8

1.2.1 Amazon Ads . 9
1.3 Introduzione al problema . 14

2 Metodologia 15
2.1 Analisi dei dati . 15

2.1.1 Acquisizione dei dati . 15
2.1.2 Descrizione dei dataset . 16

2.2 Preprocessing . 20
2.2.1 Unione dei dataset . 20
2.2.2 Pulizia delle feature . 21
2.2.3 Estrazione della strategia di una campagna 23
2.2.4 Embedding delle keyword . 24
2.2.5 Gestione delle campagne automatiche e delle anomalie nei dati . . 27
2.2.6 Proposta di Ottimizzazione delle Campagne Pubblicitarie Auto-

matiche di Amazon . 29
2.2.7 Analisi Esplorativa dei Dati (EDA) 33

3 Esperimenti effettuati 46
3.1 Obiettivi e Struttura del Capitolo . 46
3.2 Modelli di regressione . 47

3.2.1 LightGBM . 47
3.2.2 XGBoost . 49
3.2.3 Random Forest . 50

3.3 Reti Multi-Layer Perceptron . 51
3.3.1 Reti MLP e Ottimizzazione . 51

3.4 Contextual Bandit . 58
3.4.1 Introduzione al Multi-Armed Bandit 58
3.4.2 Contextual Bandit: Definizione e Differenze 60
3.4.3 Implementazione Contextual Bandit 61
3.4.4 Altri esperimenti effettuati . 70

4 Risultati ottenuti 75
4.1 Analisi dei Risultati dei Modelli di Regressione 75

4.1.1 Performance sui Clicks . 77
4.1.2 Performance su Spend . 77

1

4.1.3 Performance su 7 Day Total Sales 77
4.1.4 Performance su 7 Day Total Orders (#) 77
4.1.5 Performance su 7 Day Conversion Rate 77
4.1.6 Confronto Complessivo e Riflessioni 78
4.1.7 Limitazioni e Prospettive Future 78
4.1.8 Implicazioni per l’Ottimizzazione delle Campagne 78

4.2 Analisi dei Risultati con la Rete Neurale MLP 79
4.2.1 Statistiche descrittive delle metriche RMSE 79
4.2.2 Matrice di correlazione tra metriche RMSE 80
4.2.3 Effetto del tipo di ottimizzatore 81
4.2.4 Effetto della dimensione del batch 81
4.2.5 Influenza del learning rate . 81
4.2.6 Discussione complessiva . 83

4.3 Confronto tra le Implementazioni del Contextual Bandit 83
4.3.1 Analisi dei Risultati del Primo Modello 83
4.3.2 Analisi dei Risultati della Seconda Variante del Modello 91

5 Conclusioni 101
5.1 Richiamo agli obiettivi della ricerca . 101
5.2 Sintesi dei risultati principali . 102

5.2.1 Valutazione complessiva dei risultati del MLP 103
5.2.2 Valutazione complessiva dei modelli di Contextual Bandit 105

5.3 Sviluppi Futuri . 106
5.3.1 Dataset: prospettive di arricchimento e ottimizzazione 107
5.3.2 Modelli: prospettive di miglioramento 108
5.3.3 Altri sviluppi modellistici . 109

5.4 Conclusioni sugli sviluppi futuri . 110

2

Elenco delle figure

1.1 Dashboard di Amazon seller central per la gestione del profilo venditore. 9

2.1 Dashboard di Amazon ads per la gestione delle campagne pubblicitarie. . 16
2.2 Dashboard di Amazon per la creazione di report 18
2.3 Rappresentazione dell’architettura SBERT 27
2.4 Una rappresentazione del dataset ”Customer search term” 30
2.5 Confronto tra le similarità . 32
2.6 Istogramma delle feature numeriche . 34
2.7 Grafici a Barre delle Variabili Categoriche 35
2.8 Correlation heatmap . 36
2.9 Analisi bivariata: Matrice di Scatter Plot (Pair Plot) 38
2.10 Box Plot per Variabili Categoriche . 40
2.11 Grafico di dispersione delle Metriche nel Tempo 41
2.12 Metriche Medie per Giorno della Settimana 43
2.13 Scatter Plot di Tasso di Conversione vs. Similarità 44

3.1 Formula algoritmo ϵ-greedy . 59
3.2 Formula per la stima del reward atteso 62

4.1 Distribuzione delle metriche RMSE . 79
4.2 Correlazione metrica RMSE tra i target 80
4.3 Confronto tra i vari optimizer e il loro RMSE medio 81
4.4 Confronto tra batch size e il loro RMSE medio 82
4.5 Confronto tra le learning rate e RMSE medio 82
4.6 Distribuzioni del cumulative regret per ogni variante 84
4.7 Scatter plot Distribuzioni del reward medio per ogni variante 85
4.8 Heatmap di confronto tra Batch size, learning rate e cumulative regret . 86
4.9 Boxplot del reward medio . 87
4.10 Boxplot del lost regret per versione . 88
4.11 impatto del learning rate sul cumulative regret 89
4.12 Variazione del cumulative regret in base al parametro K 89
4.13 Distribuzioni del predicted reward per i migliori input 90
4.14 Heatmap per il cumulative regret per ogni variante 91
4.15 Distribuzioni del cumulative regret per ogni variante 92
4.16 Scatter plot Distribuzioni del reward medio per ogni variante 93
4.17 Heatmap di confronto tra Batch size, learning rate e cumulative regret . 93
4.18 Boxplot del reward medio . 94
4.19 Boxplot del lost regret per versione . 95
4.20 impatto del learning rate sul cumulative regret 96
4.21 Variazione del cumulative regret in base al parametro K 96

3

4.22 Distribuzioni del predicted reward per i migliori input 97
4.23 Heatmap per il cumulative regret per ogni variante 98

4

Elenco delle tabelle

1.1 Esempi di strategie di match . 11

2.1 Descrizione dataset Sponsored Product CST 17
2.2 Descrizione dataset Sponsored Product Prodotto Pubblicizzato 19
2.3 Nomenclatura campagna pubblicitaria 24

3.1 Optimal input: un esempio . 74

4.1 Metriche di performance modelli classici 76

5

Introduzione

Negli ultimi anni il commercio elettronico ha conosciuto una crescita esponenziale, tra-
sformando radicalmente le dinamiche di acquisto e vendita a livello globale. In tale
contesto, Amazon rappresenta uno degli attori principali, avendo rivoluzionato non solo
la distribuzione di prodotti, ma anche le modalità di promozione e pubblicità all’inter-
no della propria piattaforma. Le aziende che scelgono di operare su Amazon devono
affrontare un mercato altamente competitivo, caratterizzato da dinamiche algoritmiche
complesse e in gran parte non trasparenti agli operatori. Per tale motivo, l’ottimizza-
zione delle campagne pubblicitarie Pay-Per-Click (PPC) è divenuta una sfida centrale,
in quanto consente di bilanciare la visibilità dei prodotti con l’efficienza economica degli
investimenti pubblicitari.

Amazon Ads, la piattaforma pubblicitaria interna, mette a disposizione dei venditori
una serie di strumenti per la creazione e la gestione di campagne sponsorizzate, tra cui
le Sponsored Products. Le campagne possono essere gestite tramite strategie di targeting
manuale o automatico, facendo leva su keyword e offerte (bids), le cui dinamiche di
prezzo dipendono da fattori come stagionalità, trend di mercato e eventi promozionali.
A supporto di tali attività, Amazon fornisce metriche dettagliate, tra cui impressioni, clic,
vendite e indicatori di efficienza come ACOS (Advertising Cost of Sales) e TACOS (Total
Advertising Cost of Sales), fondamentali per valutare la redditività delle campagne.

L’analisi quantitativa dei dati rappresenta un passaggio cruciale per migliorare la ge-
stione di tali campagne. In particolare, l’estrazione e il trattamento dei dataset forniti da
Seller Central, come il Sponsored Products Search Term Report e il Sponsored Products
Advertised Product Report, consentono di ricostruire le interazioni tra keyword, annunci
e prodotti, fornendo la base per lo sviluppo di modelli predittivi. Tuttavia, la natura ete-
rogenea e spesso incompleta dei dati impone un’attenta attività di preprocessing, con la
selezione e trasformazione delle variabili più rilevanti. In questo ambito, l’uso di tecniche
di rappresentazione semantica delle keyword, come gli embedding generati da model-
li linguistici pre-addestrati (ad esempio SBERT), permette di cogliere relazioni latenti
tra termini di ricerca e prodotti sponsorizzati, migliorando l’efficacia delle campagne
automatiche.

Il cuore metodologico della presente ricerca risiede nell’applicazione di modelli di
machine learning per ottimizzare le campagne PPC su Amazon. In una prima fase,
sono stati impiegati modelli di regressione classici come LightGBM, XGBoost e Random
Forest, al fine di stabilire una baseline solida per le previsioni di metriche chiave (clic,
impressioni, spesa e vendite). Successivamente, l’attenzione si è focalizzata su modelli
neurali, in particolare le reti Multi-Layer Perceptron (MLP), che hanno dimostrato una
maggiore capacità di catturare le relazioni non lineari tra le variabili e di fornire stime più
accurate. Parallelamente, sono state condotte sperimentazioni con modelli sequenziali,
come LSTM, al fine di gestire le dipendenze temporali presenti nei dati giornalieri.

L’elemento innovativo dell’elaborato è rappresentato dall’integrazione dei modelli pre-

6

dittivi in un framework di contextual bandit, che consente di bilanciare le fasi di esplora-
zione e sfruttamento nella scelta delle azioni pubblicitarie. Questo approccio, inizializzato
con le predizioni delle MLP, permette di aggiornare dinamicamente le stime delle ricom-
pense in base ai dati osservati, selezionando strategie di bidding più efficaci in funzione
del contesto. La valutazione sperimentale ha messo in luce l’importanza di una corret-
ta definizione della funzione di reward e di un’attenta calibrazione degli iperparametri,
fattori determinanti per garantire stabilità e coerenza nelle prestazioni.

La tesi si articola in cinque capitoli principali. Nel primo capitolo viene introdotto il
contesto operativo di Amazon e delle sue campagne pubblicitarie, insieme agli strumenti
e alle metriche più utilizzate per monitorare le performance. Il secondo capitolo si con-
centra sulla descrizione dei dataset e delle metodologie di preprocessing, con particolare
attenzione alle tecniche di rappresentazione semantica delle keyword. Nel terzo capitolo
vengono presentati i modelli di machine learning sperimentati, dalle regressioni classiche
alle reti neurali, fino al contextual bandit, discutendone l’implementazione e il razionale
metodologico. Il quarto capitolo analizza criticamente i risultati sperimentali, eviden-
ziando punti di forza e criticità dei modelli proposti. Infine, il quinto capitolo raccoglie
le conclusioni, sintetizzando i contributi della ricerca e proponendo sviluppi futuri sia sul
piano dei dati che su quello modellistico.

Il contributo di questa ricerca è duplice: da un lato, dimostrare l’applicabilità delle
tecniche di machine learning e reinforcement learning in un contesto reale e complesso
come quello delle campagne PPC su Amazon; dall’altro, evidenziare le principali sfide
e problmatiche ancora aperte, legate alla qualità e quantità dei dati, alla modellizzazio-
ne delle strategie aziendali e alla capacità dei modelli di generalizzare in un ambiente
competitivo e dinamico. In questo senso, il lavoro si colloca all’intersezione tra ricerca
scientifica e applicazioni pratiche, proponendo soluzioni innovative che possono suppor-
tare le aziende nell’ottimizzazione dei propri investimenti pubblicitari e contribuire al
dibattito accademico sull’uso dell’intelligenza artificiale nel marketing digitale.

7

Capitolo 1

Definizione del contesto

1.1 L’Azienda: Compagnia del Benessere e il Mar-

chio Wellbeauty

La Compagnia del Benessere, fondata nel 1997 ad Arezzo da Barbara Goti e Pierluigi
Marzocchi, si propone di portare la cosmesi di lusso nel territorio aretino, valorizzando
le radici locali dei fondatori. Nel corso degli anni, l’azienda si è distinta nel panorama
nazionale, diventando un punto di riferimento per altre imprese italiane nel settore co-
smetico. Grazie a una visione orientata alla qualità e all’innovazione, Compagnia del
Benessere ha conquistato una clientela sempre più attenta alla sostenibilità ambientale,
senza compromettere gli standard di efficacia richiesti dal mercato.

Nel 2024, in risposta alla crescente domanda di prodotti eco-compatibili, i fondatori
hanno lanciato il marchio “Wellbeauty: The Eco-Friendly Company”. Questo marchio si
concentra sulla produzione di cosmetici tra questi, struccanti, creme idratanti e sieri per la
ricrescita delle ciglia, con un’attenzione particolare alla sostenibilità e alla qualità. Oltre
al centro benessere di proprietà, il principale canale di vendita per i prodotti Wellbeauty
è rappresentato dalla piattaforma Amazon, che consente all’azienda di raggiungere un
pubblico globale e di promuovere il proprio marchio in un mercato altamente competitivo.

1.2 Il Contesto Operativo: Amazon

Fondata nel 1994 come libreria digitale, Amazon Inc. si è rapidamente evoluta in una
delle principali piattaforme di e-commerce al mondo, diversificando la propria offerta per
includere una vasta gamma di prodotti e servizi. La piattaforma consente alle aziende
di caricare, gestire e vendere i propri prodotti, offrendo un’infrastruttura robusta per
raggiungere milioni di clienti in tutto il mondo. Le aziende che operano come venditori
a proprio marchio su Amazon sono definite “seller” e possono accedere a una piattafor-
ma dedicata, denominata Seller Central (mostrato nello screen in fig. 1.1, raggiungibile
all’indirizzo sellercentral.amazon.com), per gestire inventario, ordini e strategie di
vendita.

Uno degli strumenti più flessibili offerti da Amazon ai venditori è Amazon Ads, una
piattaforma pubblicitaria che permette di promuovere i prodotti attraverso campagne
mirate. Questo strumento consente ai seller di acquisire maggiore visibilità all’interno

8

dello store, posizionando i propri prodotti in evidenza in base a specifiche keyword. Una
keyword è definita come una parola o una frase digitata da un cliente nella barra di
ricerca di Amazon per individuare un prodotto. L’efficacia delle campagne pubblicitarie
dipende dalla capacità di selezionare keyword rilevanti e di ottimizzare le strategie di
targeting in base al comportamento degli utenti.

Figura 1.1: Dashboard di Amazon seller central per la gestione del profilo venditore.

1.2.1 Amazon Ads

Amazon Ads rappresenta una componente fondamentale per le aziende che desiderano
massimizzare la visibilità dei propri prodotti sulla piattaforma. Attraverso il portale
dedicato, accessibile tramite Seller Central, i venditori possono creare campagne pub-
blicitarie personalizzate, scegliendo tra diverse tipologie di annunci, come Sponsored
Products, Sponsored Brands e Sponsored Display. Ogni campagna può includere più
prodotti e adottare diverse strategie di targeting, come il targeting automatico o manua-
le, per raggiungere specifici segmenti di clientela.

Le campagne Sponsored Products, ad esempio, consentono di promuovere singoli
prodotti, posizionandoli in alto nei risultati di ricerca o nelle pagine prodotto correlate.
Le campagne Sponsored Brands, invece, sono progettate per aumentare la notorietà del
marchio, mostrando annunci che includono il logo aziendale e una selezione di prodotti.
Infine, Sponsored Display consente di raggiungere i clienti sia all’interno che all’esterno
della piattaforma Amazon, attraverso annunci display basati su interessi o comporta-
menti di acquisto.

Un aspetto cruciale di Amazon Ads è la possibilità di utilizzare il targeting auto-
matico, che si basa sugli algoritmi di Amazon per associare i prodotti alle ricerche degli
utenti, e il targeting manuale, che permette ai venditori di selezionare specifiche keyword
per ottimizzare la visibilità. I report generati da Amazon Ads forniscono dati dettagliati
sulle prestazioni delle campagne, come il numero di impressioni, clic e conversioni, oltre
a informazioni sulle keyword utilizzate dai clienti (“customer search term”) e sul tipo

9

di corrispondenza (es. “loose-match”, “phrase-match” o “exact-match”). Questi dati
sono fondamentali per analizzare il comportamento degli utenti e ottimizzare le strategie
pubblicitarie.

Inoltre, Amazon Ads offre strumenti avanzati di analisi, come il Brand Analytics, che
consente ai venditori di monitorare le tendenze di ricerca e il comportamento dei clienti.
Questi strumenti permettono di identificare le keyword più performanti e di adattare le
campagne in tempo reale per massimizzare il ritorno sull’investimento (ROI). Tuttavia,
la gestione efficace di queste campagne richiede competenze tecniche per interpretare
i dati e implementare strategie basate su analisi approfondite, come quelle proposte in
questa tesi attraverso l’uso di modelli di apprendimento automatico. Di seguito verranno
definite le possibili campagne pubblicitarie che possono essere condotte su Amazon.

Sponsored products permette di sponsorizzare un prodotto facendolo apparire come
”prodotto elencato” insieme ad altri prodotti simili in base alle keyword ricercate dagli
acquirenti. Ogni prodotto che partecipa a questa campagna viene messo in risalto rispetto
agli altri mostrandosi in una posizione di rilievo (solitamente tra i primi 4 risultati).
Questo tipo di campagna permette, inoltre, di far rientrare l’articolo all’interno una
”scheda prodotto”1, tra i ”prodotti consigliati”2. Questo è uno strumento indispensabile
per mettere in evidenza (soprattutto nei primi giorni in cui viene pubblicato) ai clienti
un nuovo articolo.

Sponsored brands viene utilizzata per mettere in risalto il brand mostrandolo in alto
o all’interno della pagine che mostra l’elenco dei prodotti ma con una visualizzazione
molto più larga e visibile rispetto ad un qualsiasi prodotto. L’obiettivo di questo tipo
di campagna è mettere in evidenza il proprio brand rispetto al prodotto, che in questa
tipologia è di secondo piano.

Sponsored display permette di creare pubblicità dinamiche che possono essere mo-
strate non solo all’interno del portale ma anche su siti terzi. Questo tipo di campagna
dà un vantaggio differente rispetto alle precedenti, mentre le altre appaiono solo quando
un utente ricerca il prodotto nel portale, questo tipo di sponsorizzazione è in grado di
raggiungere il cliente al di fuori di Amazon stessa.

Sponsored TV Offre la possibilità di promuovere i propri prodotti sui servizi di strea-
ming video di proprietà Amazon come: Amazon Prime Video, Twitch, Freevee. Attra-
verso questa campagna, che al momento della redazione di questa tesi è in fase beta, è
possibile raggiungere i clienti attraverso pop-up interattivi in video basandosi anche sul
contenuto del video stesso.

1La scheda prodotto è la pagina Amazon dove l’utente può vedere le caratteristiche e le immagini
dell’articolo che intende acquistare. In questa pagina il cliente, oltre a vedere descrizione e recensioni, può
anche contattare il marchio venditore per porre pubblicamente domande inerenti all’articolo mostrato.

2I prodotti consigliati è un elenco di articoli alternativi a quello che si sta visualizzando nella
scheda prodotto volto a indirizzare il cliente ad una scelta più ampia di merce.

10

La strategia

una strategia è un metodo che definisce come una determinata campagna proporrà il
prodotto oggetto della campagna agli utenti che effettuano la ricerca. Ogni strategia è
standardizzata e necessita di:

• Una parola o una sequenza di parole (Keyword)

• Una offerta (bid) per ogni keyword

Per ogni keyword il bid può essere impostato automaticamente, seguendo quindi il criterio
di costo definito da Amazon internamente per quella keyword, oppure inserito manual-
mente. In base alla quantità di ricerche della quale una keyword gode, Amazon aumenta
il prezzo consigliato per quella keyword. Il prezzo consigliato è un valore suggerito da
Amazon che viene calcolato internamente; nel caso di scelta automatica del bid, questo
andrà a seguire il suddetto valore. In base ai successivi flussi di ricerca, o in base a
determinati eventi promozionali (quali ”Black Friday”,”Prime Day”,”Offerte di Natale”,
ecc...) il prezzo del bid aumenterà o diminuirà. Ogni strategia può intercettare una ricer-
ca in base alla sua natura; di seguito vediamo le varie strategie e gli esempi che sono in
grado di catturare. La keyword all’interno delle campagne sponsorizzate assume il nome
di ”Target”, quando un utente ricerca una parola Target, quella sua ricerca assume il
nome di ”Customer Search Term”

Tabella 1.1: Esempi di strategie di match

tipo di strategia Default keyword esempi di customer search term

generica ”Zaino” ”Borsa da ufficio”
a frase ”Collare cane” ”Collare per cani di piccola taglia”
esatta ”Auricolari Bluetooth” ”Auricolari Bluetooth”

• Corrispondenza Generica: determinata la parola Target il match può essere com-
posto con una sequenza semanticamente simile alla keyword, dove la sequenza
di parole può essere anche completamente diverse ma hanno lo stesso significato
semantico.

• Corrispondenza a Frase: è un tipo di ricerca più rispetto a quella generica, il match
può avvenire con frasi che includo la parola target, ma il customer search term deve
comprendere almeno tutte le parole nel target. Avviene un match anche nel caso
in cui venga ricercato quel termine plurale o singolare oppure se sono presenti
preposizioni semplici.

• Corrispondenza esatta: viene effettuato il match solo se la ricerca contiene le esatte
parole presenti nel target. Alcune leggere varianti della parola sono concesse.

Il prezzo del bid, come precedentemente detto, può essere inserito manualmente. Quando
viene deciso un prezzo per il bid, è bene tenere in considerazione diversi fattori:

• Andamento di mercato: Una keyword è soggetta ai vari andamenti di mercato
determinati da:

11

– Andamenti stagionali: ci sono articoli che sono sono soggetti alla stagione
nella quale vengono utilizzati.Un esempio rappresentativo è costituito dagli
occhiali da sole, la cui domanda è fortemente influenzata dalla stagionalità.
In inverno è raro che ci siano persone che cerchino occhiali da sole, mentre in
estate il volume di ricerche si intensifica e con esso anche il prezzo per quelle
keyword aumenta.

– Tendenze: sono prodotti che improvvisamente godono di una certa fama,
la durata del trend è variabile e non se ne conosce quasi mai la durata. I
prodotti in tendenza hanno un costo del bid maggiore rispetto a prima che
fossero tendenze

• Giornate o periodi di offerta promossi da Amazon: generalmente periodi come il
Black Friday sono momenti di grandi afflussi di clienti. Essendo periodi di tempo
che attraggono il cliente grazie agli sconti che vengono proposti, i venditori sono
propensi a creare sconti maggiori ed a aumentare il prezzo del bid per permettere
ai clienti di farli trovare più facilmente.

• strategie interne all’azienda: In base alle strategie che un’azienda decide di perse-
guire viene cambiato il prezzo. Prossimamente andremo a vederle in maniera più
dettagliata.

• Prezzo suggerito: il prezzo suggerito da Amazon è un valore che permette al pro-
dotto pubblicizzato di apparire in posizioni rilevanti all’interno della pagina. Al di
sopra di quel prezzo è sempre più garantita una posizione di rilievo, mentre se si
scendesse sotto il prezzo proposto il prodotto potrebbe non apparire proprio tra le
sponsorizzazioni.

Le strategie aziendali

Ogni azienda che lavora all’interno della piattaforma Amazon come Seller può adottare
delle strategie per il raggiungimento di un obiettivo. Prima però di definire le varie stra-
tegie è importante dare la definizione di ”posizionamento organico”.
Il Posizionamento organico è il posizionamento di cui gode un prodotto all’interno
della categoria alla quale afferisce. Questa posizione ha un impatto rilevante all’interno
della pagina di ricerca. Il prodotto viene posizionato da Amazon in base alle vendite
generate, se sono più alte (degli altri prodotti nella categoria) il prodotto apparirà per
primo; al calare delle vendite scenderà nel posizionamento.
Un esempio pratico è il seguente: se un cliente effettua una ricerca del prodotto ”Tastiera
da gaming” e un articolo, che non appare come sponsorizzato al momento della ricerca,
si posiziona come Terzo elemento all’interno della pagina, questo avrà come posiziona-
mento organico pari a 3. Se il cliente cliccasse sul suddetto articolo che appare senza il
simbolo ”sponsorizzato” al venditore non verrebbe addebitato nessun costo, al contrario
se cliccasse sullo stesso prodotto ma con apposto il simbolo ”sponsorizzato” il venditore
dovrà sostenere il costo del click per quella keyword.

Definito il significato di Posizionamento organico, si può procedere a capire come si
articolino le strategie aziendali. Generalemente le strategie sono le seguenti:

• Branding: vengono utilizzate le pubblicità per apparire in prima pagina, il prezzo
dei bid è molto alto molto spesso le vendite vengono effettuate in perdita pur

12

di mostrare il proprio prodotto come primo. Richiede fondi molto elevati per la
maggior parte dei prodotti. Questa è una strategia che si attua quando si cerca di
aumentare la visibilità dei propri prodotti

• Ranking: Si decide di aumentare i bid delle keyword scegliendo eventualmente
anche le keyword con molto traffico e molto costose con l’obiettivo di promuovere
il prodotto e venderlo, non è importate generare del profitto ma è importante
effettuare tante vendite. Se questa strategia funziona, il prodotto risulterà più in
alto nelle classifiche permettendo al venditore di essere vistato senza dover pagare
per le sponsorizzate nei successivi click. Questa è una strategia che si percorre
solitamente durante il lancio di un nuovo prodotto.

• Shield: è una strategia che permette al venditore di proteggersi da altri competi-
tor. All’interno della pagina del suo prodotto fa in modo di far apparire prodotti
sponsorizzati solo del suo brand.

• Research: Questa strategia viene affrontata per effettuare indagini di mercato e
capire se un segmento è appropriato a quell’azienda oppure no. Normalmente in
questa strategia (che può anche essere vista come una fase pubblicitaria) vengono
considerati costi pubblicitari e vengono stimati i margini di profitto del prodotto
che si intende vendere.

• Profit: questa strategia cerca di minimizzare i costi pubblicitari cercando di ge-
nerare vendite, l’obiettivo è quello di spendere meno possibile per vendere un
prodotto

Nel contesto delle campagne pubblicitarie su Amazon, due indicatori fondamentali
per la valutazione dell’efficacia della spesa pubblicitaria sono l’ACOS (Advertising Cost
of Sales) e il TACOS (Total Advertising Cost of Sales). Di seguito si riportano le
definizioni formali di entrambe le metriche:

ACOS =
SPadv

SAadv

× 100 (1.1)

Dove:

• SPadv = Totale della spesa pubblicitaria effettuata nelle campagne.

• SAadv = Totale delle vendite attribuite direttamente alle campagne pubblicitarie.

L’ACOS misura l’incidenza della spesa pubblicitaria rispetto ai ricavi generati di-
rettamente dalle sponsorizzazioni. Non tiene conto delle vendite ottenute in modo
organico.

TACOS =
SPadv

SAacc

× 100 (1.2)

Dove:

• SPadv = Totale della spesa pubblicitaria effettuata nelle campagne (come sopra).

• SAacc = Totale delle vendite generate dall’intero account, comprensive sia di vendite
pubblicitarie che di vendite organiche.

13

Il TACOS fornisce una visione più ampia dell’impatto della pubblicità sull’intero
volume di vendite, permettendo di valutare anche l’effetto indiretto della pubblicità sul
posizionamento organico e sul brand awareness.

Questo indicatore è indicativo dell’andamento globale dell’account, misurando le spe-
se percentuali di ogni prodotto si ottiene un quadro completo delle spese pubblicitarie e
per questo si può dedurre un andamento delle strategie che si stanno perseguendo.

In base alle categorie del prodotto che si intende vendere il costo pubblicitario varia
molto, in determinate categorie come quella dei cosmetici può senza difficoltà arrivare
anche al 50% del costo del prodotto.

Alcune dinamiche riguardo al prezzo

Ogni venditore non è in grado di poter vedere il prezzo del bid che pagano gli altri
venditori. Guardando il bid proposto da Amazon si può avere un’indicazione del prezzo di
mercato di quella keyword. Ogni venditore come non consce il prezzo degli altri prodotti
non può nemmeno conoscere il costo pubblicitario che gli altri venditori sostengono. Un
venditore può sapere quanti prodotti di altri venditori sono stati venduti grazie all’utilizzo
di applicazioni apposite (come Helium10, AmzScout, ecc...)

1.3 Introduzione al problema

Nel contesto competitivo del mercato digitale, la pubblicità online rappresenta uno degli
strumenti fondamentali attraverso cui le imprese cercano di intercettare la domanda e
orientare le decisioni d’acquisto dei consumatori.
In tale scenario, emerge una problematica strategica rilevante: come ottimizzare l’inve-
stimento pubblicitario minimizzando la spesa associata al bidding, senza compromettere
l’efficacia della campagna in termini di vendite e profitti? La sfida è quella di trovare un
equilibrio ottimale tra due obiettivi potenzialmente in conflitto: ridurre i costi pubbli-
citari e, contemporaneamente, massimizzare i ricavi derivanti dalle conversioni generate
dagli annunci.

Questo elaborato si propone di affrontare il problema mediante un approccio quan-
titativo, sviluppando e analizzando modelli che permettano di regolare dinamicamen-
te il prezzo del bid in funzione delle performance ottenute, dei costi sostenuti e degli
obiettivi economici prefissati. In particolare, si mira a identificare strategie di ottimiz-
zazione capaci di adattarsi ai cambiamenti del mercato e del comportamento degli uten-
ti, contribuendo cos̀ı a migliorare l’efficienza complessiva delle campagne pubblicitarie
online.

14

Capitolo 2

Metodologia

L’obiettivo principale di questo elaborato è analizzare le statistiche di mercato per i
prodotti presi in esame, verranno utilizzati i risultati di questa analisi al fine di tro-
vare il prezzo minimo per la pubblicità che massimizzi il profitto. Data una keyword
analizzeremo come estrarne il valore semantico e come questo influisce nelle metriche di
vendita.

2.1 Analisi dei dati

In questa sezione verranno analizzati i dati che sono stati acquisiti e come questi dati
verranno processati al fine di ottenere il miglior modello possibile al fine di massimizzare
il profitto minimizzando l’ACOS.

2.1.1 Acquisizione dei dati

Amazon mette a disposizione dei venditori la piattaforma Seller Central (”sellercen-
tral.amazon.com), questa è una dashboard utilizzata da un venditore per monitorare
l’andamento delle vendite dei propri prodotti, gestire l’inventario, ottenere le metriche
relative alla salute del proprio account (ex recensioni, opinioni del cliente, resi, ecc...)
(raffigurata in figura 1.1). Le pubblicità in Amazon vengono gestite con un portale a
parte introdotto nel capitolo 1.2.1. Questo portale oltre ad essere d’aiuto per il venditore
al fine di gestire le sue campagne grazie a grafici semplici e intuitivi consente all’utente
di esportare report dettagliati delle performance pubblicitarie. Attraverso lo strumento
di reportistica (fig. 2.2) è possibile gestire diversi tipi di report con una granularità di
campionatura che varia in base al tipo di dato richiesto. Lo strumento ”misurazione e
reportistica” è in grado di creare report per tutte le tipologie di pubblicità che è possibile
fare (Sponsored products, sponsored brands, sponsored display,sponsored TV). In questo
studio analizzeremo solo le pubblicità sotto la tipologia ”sponsored products” in quanto
non si hanno sufficienti dati delle altre campagne per condurre un’analisi significativa
dal punto di vista statistico.

Per eseguire il report delle campagne si può scegliere di farlo attraverso una campio-
natura di tipo ”riepilogo” i cui dati vengono riassunti in un breve riepilogo mensile (o
dei giorni scelti attraverso il selezionatore della data) oppure una campionatura giorna-
liera più dettagliata; in questo caso otterremo un file in formato .xlsx (Microsoft Excel)
contenente tutte le keyword di ogni campagna. In questo caso è stato effettuato il report

15

Figura 2.1: Dashboard di Amazon ads per la gestione delle campagne pubblicitarie.

giornaliero delle campagne pubblicitarie di un periodo di 30 giorni. La reportistica con
granularità giornaliera permette di ottenere delle misurazioni sufficientemente dettagliate
per comprendere variazioni e andamenti di periodo (settimanali e giornalieri).

Lo strumento ”misurazioni e reportistica” offre misurazioni discrete dell’andamento
delle campagne, nessuno dei dati riportati è frutto di algoritmi probabilistici, tutti i dati
sono deterministici perciò viene utilizzato anche come strumento con valenza legale, ciò
significa che è richiesto che i dati siano accurati e non vi siano errori in quanto vengono
utilizzati a sua volta questi dati per fatturare le spese pubblicitarie agli utenti venditori
[2]. In questi studi verrà preso come assunto iniziale la correttezza di questi dati e di
conseguenza non verranno utilizzate strategie per la rimozione di possibili errori nella
campionatura.

2.1.2 Descrizione dei dataset

I dataset per questo esperimento sono due:

• Sponsored Products Search term report

• Sponsored Product advertised product report

Sponsored Products Search term report

Questo dataset descritto nella tabella 2.1 è un report che elenca attraverso quali keyword
gli utenti hanno raggiunto un determinato prodotto; questo report è fondamentale sia
per un aspetto aziendale, in quanto incapsula il quadro generale di come il cliente finale
trova un determinato prodotto sia per fini di ricerca in quanto non potendo prevedere
tutti i termini con la quale un cliente trova i prodotti possiamo analizzare quelli che
hanno già ricercato.

16

Tabella 2.1: Descrizione delle colonne presenti nel dataset di Amazon Sponsored Products
Customer Search Term. La tabella riassume il significato di ciascun campo.

Colonna Descrizione

Date Data di registrazione dei dati relativi alla campagna
pubblicitaria.

Portfolio name Nome del portfolio che aggrega più campagne pubblicitarie.

Currency Valuta utilizzata per esprimere gli importi monetari (es. USD,
EUR).

Campaign Name Nome identificativo della specifica campagna.

Ad Group Name Nome del gruppo di annunci all’interno della campagna.

Targeting Parola utilizzata per catturare Customer search term (può
essere automatica indicata con il simbolo ‘*‘ o manuale).

Match Type Tipo di corrispondenza tra keyword e termine di ricerca
(broad, phrase, exact).

Customer Search Term Termine di ricerca digitato dal cliente su Amazon.

Impressions Numero totale di visualizzazioni dell’annuncio.

Clicks Numero di clic ricevuti sull’annuncio.

Click-Thru Rate (CTR) Percentuale di clic sul totale delle impressioni.

Cost Per Click (CPC) Costo medio sostenuto per ciascun clic.

Spend Spesa pubblicitaria totale sostenuta.

7 Day Total Sales Vendite totali generate entro 7 giorni dal clic sull’annuncio.

Total Advertising Cost of Sales (ACOS) Percentuale che indica il rapporto tra spesa e vendite (più
basso è, meglio è).

Total Return on Advertising Spend (ROAS) Ritorno sull’investimento pubblicitario (valore delle vendite
diviso spesa).

7 Day Total Orders (#) Numero complessivo di ordini effettuati entro 7 giorni dal clic.

7 Day Total Units (#) Numero totale di unità vendute entro 7 giorni.

7 Day Conversion Rate Tasso di conversione (ordini/clic) entro 7 giorni.

7 Day Advertised SKU Units (#) Unità vendute del prodotto sponsorizzato.

7 Day Other SKU Units (#) Unità vendute di altri prodotti non sponsorizzati direttamen-
te.

7 Day Advertised SKU Sales Vendite (in valore) generate dal prodotto sponsorizzato.

7 Day Other SKU Sales Vendite (in valore) generate da altri prodotti dopo il clic.

17

Figura 2.2: Dashboard di Amazon per la creazione di report. Oltre alle impostazioni di report
mostrate in figura è possibile applicare altre impostazioni più specifiche

Sponsored Product advertised product report

Il dataset descritto nella tabella 2.1 è un consuntivo che definisce a quale prodotto ogni
campagna è collegato; Dal momento che il primo report riporta solo i dati relativi alle
statistiche delle varie keyword giornalmente, ad ogni keyword non viene collegato nessun
identificativo.

18

Tabella 2.2: Descrizione delle colonne del dataset Amazon Sponsored Products in lingua
italiana, usato per analizzare performance pubblicitarie localizzate per paese e SKU.

Colonna Descrizione

Data Data in cui è stato registrato il dato della campagna.

Nome portafoglio Nome del portafoglio che raccoglie più campagne.

Valuta Valuta in cui sono espresse le spese e vendite.

Nome campagna Nome della specifica campagna pubblicitaria.

Nome gruppo di annunci Nome del gruppo di annunci all’interno della campagna.

Paese Codice paese del marketplace Amazon (es. IT, DE, FR).

SKU pubblicato Codice SKU del prodotto sponsorizzato.

ASIN pubblicato Codice ASIN del prodotto sponsorizzato.

Impressioni Numero di volte in cui l’annuncio è stato visualizzato.

Clic Numero di clic ricevuti sull’annuncio.

Percentuale di accesso (CTR) Percentuale di clic rispetto alle impressioni.

Costo per clic (CPC) Costo medio pagato per ogni clic.

Spesa Spesa totale sostenuta per l’annuncio.

Vendite totali (€) 7 giorni Vendite totali generate entro 7 giorni dal clic.

Costo pubblicitario delle vendite (ACOS) totale Rapporto tra spesa pubblicitaria e vendite totali.

Ritorno sulla spesa pubblicitaria (ROAS) totale Rapporto tra vendite e spesa pubblicitaria.

Totale ordini (#) 7 giorni Numero totale di ordini ricevuti entro 7 giorni.

Totale unità (#) 7 giorni Numero totale di unità vendute in 7 giorni.

Tasso di conversione 7 giorni Percentuale di conversione tra clic e ordini entro 7 giorni.

Unità SKU pubblicizzati 7 giorni (#) Unità vendute del prodotto sponsorizzato.

Altre unità SKU (#) 7 giorni Altre unità vendute non direttamente sponsorizzate.

Vendite SKU pubblicizzati 7 giorni (€) Valore delle vendite generate dal prodotto sponsorizzato.

Vendite altro SKU (€) 7 giorni Valore delle vendite di altri prodotti dopo il clic.

19

2.2 Preprocessing

In questa sezione si approfondisce come i dati precedentemente acquisiti vengono proces-
sati al fine di ottenere il dataset più adatto per raggiungere l’obiettivo di ottimizzazione
del prezzo per un determinato bid.

2.2.1 Unione dei dataset

Nel dataset Customer Search Term (Tab. 2.1) – da ora in poi indicato con la sigla
CST – sono riportati, su base giornaliera, i termini di ricerca (search terms) utilizzati
dagli utenti per raggiungere i prodotti sponsorizzati, insieme alla strategia di targeting
corrispondente (si veda anche Tab. 1.1).

Tuttavia, una criticità strutturale di questo dataset consiste nell’assenza di un iden-
tificativo univoco del prodotto (ad esempio SKU o ASIN) associato a ciascun termine
di ricerca. Tale mancanza impedisce di contestualizzare i dati rispetto al singolo pro-
dotto sponsorizzato. In ambito pubblicitario, questo aspetto è particolarmente rilevante,
poiché il valore di un search term può variare sensibilmente a seconda delle caratteristi-
che del prodotto a cui è collegato. La definizione di una strategia di offerta (bidding)
ottimale per ciascuna parola chiave dipende, infatti, non solo dalle metriche aggregate di
performance, ma anche dalla coerenza semantica tra il termine di ricerca e le specificità
del prodotto promosso.

A titolo esemplificativo, si consideri un venditore che sponsorizza due prodotti per la
pulizia dei pavimenti:

• Prodotto A: detersivo con profumazione leggera, ma con elevato potere igienizzan-
te.

• Prodotto B: detersivo con composizione delicata, ma con una fragranza molto
intensa.

Entrambi i prodotti potrebbero risultare pertinenti per la keyword generica “detersi-
vo pavimenti profumato”. Tuttavia, dal punto di vista strategico, il venditore potrebbe
essere disposto ad attribuire un’offerta (bid) più elevata alla keyword quando questa è
associata al prodotto B, in quanto la caratteristica predominante richiesta dall’utente
(la profumazione) è meglio rappresentata da tale articolo.

In assenza di un collegamento diretto tra il termine di ricerca e il prodotto di desti-
nazione, tale distinzione non è possibile, con il risultato che le decisioni di ottimizzazione
dei bid devono basarsi su medie aggregate o assunzioni, riducendo l’efficacia complessiva
della strategia PPC.

Pertanto, si propone l’integrazione dell’identificativo del prodotto nel dataset CST
come elemento essenziale per aumentare il grado di granularità e precisione nelle strategie
di ottimizzazione delle offerte, con l’obiettivo di massimizzare il ritorno sull’investimento
pubblicitario (ROAS) e ridurre il costo pubblicitario delle vendite (ACOS).

Il problema che si pone in questo stadio è quando per una campagna pubblicitaria
vengono rappresentati più di due prodotti e di conseguenza le keyword hanno lo stesso
prezzo (ma non hanno necessariamente tutte le altre metriche uguali come per esempio

20

Click, impression, ecc...). Dal momento che è impossibile discriminare le caratteristiche
come impression, click e sales per i prodotti contenuti all’interno della stessa campagna
si opta per un merge left. Per ogni tupla di una campagna con più prodotti collegati
all’interno del dataset Sponsored product advertised product vengono clonate le relative
tuple presenti nel dataset Sponsored product search term fino al raggiungimento del nu-
mero del primo dataset.

In quest’ottica si procede con l’unione dei due dataset in uno unico. L’obiettivo di
questa unione è collegare ad ogni keyword il prodotto al quale si fa riferimento. Il primo
passo per unire i due dataset è quello di trovare le chiavi comuni, queste sono:

• Date

• Portfolio Name

• Currency

• Campaign Name

• Ad group name

2.2.2 Pulizia delle feature

Passo importante per ottenere un dataset di buona qualità è quello della pulizia, in
principio si rimuovono le feature superflue e successivamente si passa ad un’analisi più
accurata per capire quali feature mantenere.

Successivamente all’unione del dataset riportata nella sezione precedente si mantiene
solo la colonna ”ASIN ” che indica l’identificativo univoco all’interno del dataset; questo
viene fatto per non avere colonne ridondanti (praticamente tutte le colonne indicano
la stessa tipologia di dato ma raggruppata con criteri differenti). Il dataset risultante
dall’unione di Sponsored product search term e Sponsored product advertised product è
quello sulla quale si opererà da questo momento in poi, pertanto si chiamerà, da adesso
dataset principale. Dobbiamo identificare nel dataset principale le feature non rilevanti
al fine del problema, per questo si decide di eliminarle in base a due strategie:

• irrilevanza ai fini dell’obiettivo

• metriche calcolate o composte da altre colonne

Tra le metriche irrilevanti possiamo trovare:

• Currency : Wellbeauty al momento dell’utilizzo del dataset lavora solo in italia e la
decisione del bid avviene sempre e solo in Euro

• Portfolio Name: definisce il nome del portafoglio che contiene altre campagne
pubblicitarie

• 7 Day Total Orders (#),7 Day Total Units (#),7 Day Advertised SKU Units (#),7
Day Other SKU Units (#),7 Day Advertised SKU Sales,7 Day Other SKU Sales :
sono metriche numeriche che indicano la conversione in ordini, quello che ci interes-
sa sono le vendite espresse in valore economico in quanto il valore di un prodotto

21

può variare da un giorno all’altro e per periodi non definiti (gli sconti possono
durare da qualche ora a qualche giorno). Inserirli come variabili di target del mo-
dello aggiungerebbero complessità crescente senza aggiungere nessun beneficio al
risultato del modello.

Di seguito sono riportate le principali metriche calcolate nei report pubblicitari Amazon.
Tali metriche non sono fornite come dati grezzi, ma vengono derivate a partire da variabili
fondamentali (es. click, impression, costi, vendite) attraverso formule deterministiche.
Sono comunemente utilizzate per valutare l’efficacia delle campagne.

• Click-Thru Rate (CTR): rappresenta la percentuale di utenti che, dopo aver
visualizzato l’annuncio (impression), hanno effettivamente cliccato su di esso.

CTR =
Clicks

Impressions
× 100

Una CTR elevata indica un annuncio rilevante o ben posizionato.

• Cost Per Click (CPC): indica il costo medio sostenuto per ogni click ricevuto
sull’annuncio.

CPC =
Spend

Clicks

È una metrica utile per analizzare l’efficienza economica del traffico generato.

• Total Advertising Cost of Sales (ACOS): misura il rapporto tra la spesa
pubblicitaria e le vendite attribuite alla pubblicità.

ACOS =
Spend

7 Day total sales
× 100

Un valore più basso indica maggiore efficienza della campagna in termini di ritorno.

• Total Return on Advertising Spend (ROAS): rappresenta l’inverso dell’A-
COS ed esprime il ritorno economico per ogni unità monetaria investita in pubbli-
cità.

ROAS =
7 Day Total Sales

Spend

Valori elevati di ROAS indicano un buon ritorno sull’investimento pubblicitario.

• 7 Day Conversion Rate: misura la percentuale di click che hanno portato ad
almeno una vendita entro 7 giorni.

Conversion Rate =
7 Day Total Orders

Clicks
× 100

Una conversione può essere intesa come l’acquisto di un prodotto dopo il click
sull’annuncio.

Al termine di questa pulizia delle colonne il nuovo dataset finale sarà composto dalle
seguenti colonne:

• Date
Indica la data di riferimento del dato riportato. Ogni riga del dataset corrisponde
a una specifica data.

22

• Portfolio name
Nome del portafoglio pubblicitario, utilizzato per organizzare e raggruppare cam-
pagne all’interno dell’account del venditore.

• Campaign Name
Nome assegnato alla campagna pubblicitaria. Serve per identificare e distinguere
le varie campagne attive.

• Ad Group Name
Nome del gruppo di annunci associato alla campagna. Ogni campagna può conte-
nere più gruppi di annunci, ciascuno con specifiche keyword e offerte.

• Targeting
Indica la parola chiave o il prodotto target dell’annuncio. Nel caso di targeting
manuale, rappresenta la keyword impostata dal venditore.

• Match Type
Specifica la modalità di corrispondenza della keyword:

– Broad (generica) – corrispondenza ampia e flessibile

– Phrase (a frase) – corrispondenza parziale e ordinata

– Exact (esatta) – corrispondenza solo se la ricerca è identica alla keyword

• Customer Search Term
La query di ricerca digitata effettivamente dall’utente. Può differire dalla keyword
target in base al tipo di corrispondenza.

• Impressions
Numero di volte in cui l’annuncio è stato visualizzato dagli utenti nei risultati di
ricerca.

• Clicks
Numero totale di click ricevuti sull’annuncio. Indica l’interesse suscitato nei con-
fronti dell’inserzione.

• Spend
Totale della spesa pubblicitaria (in euro o nella valuta dell’account) sostenuta per
la keyword o il termine di ricerca in quella data.

• 7 Day Total Sales
Valore totale delle vendite attribuite alla pubblicità entro 7 giorni dal click sull’an-
nuncio. Include solo le conversioni avvenute entro la finestra temporale indicata.

2.2.3 Estrazione della strategia di una campagna

Ogni campagna al momento dell’ideazione viene creata seguendo le quattro campagne
riportate nel paragrafo 1.2.1. A seconda della campagna pubblicitaria scelta, il prezzo
pubblicitario (e di riflesso anche il suo budget) possono variare notevolmente; è fon-
damentale incapsulare all’interno del dataset questa feature, che però non è presente
all’interno del dataset come colonna. Durante la fase di creazione della campagna si
pensa alla strategia da perseguire in base a questa si assegnano i nomi alle campagne:

23

Tabella 2.3: Descrizione di esempio nome campagna:
SP—M—KW—Frase—B0D84XN77H—Lancio

Sponsored Products M Keyword Frase B0D84XN77H Lancio

Tipologia campagna Manuale o Automatica Tipo di target impostato Tipo di corrispondenza con la keyword ASIN del prodotto sponsorizzato Obiettivo della strategia aziendale

In questa campagna viene riportato il termine ”Lacio” il che identifica che questa
campagna è stata creata appositamente per lanciare un prodotto. Il lancio di un pro-
dotto subisce inevitabilmente dei costi più alti rispetto ad un prodotto già avviato in
quanto deve essere mostrato ad un gruppo di clienti più ampio possibile. Come questa
campagna, anche altre campagne riportano la parola ”lancio” all’interno del loro no-
me, ci sono ulteriori campagne invece che riportano il termine ”Performance” o ”Top
Keword”; queste campagne indicano strategie dove il prodotto è stato già recepito dal
mercato e quindi la campagna gestisce keyword ad alto traffico (ovvero con molte im-
pression). Queste caratteristiche inglobano di per se delle informazioni importanti che è
bene esplicitare nel dataset.

Estrazione di caratteristiche di performance: Durante la fase di preprocessing, è
stato analizzato il nome di ciascuna campagna pubblicitaria al fine di estrarre informa-
zioni semantiche utili a identificare l’intento strategico della campagna. In particolare,
si è effettuata una ricerca all’interno delle stringhe di testo per identificare la presenza
di determinate parole chiave ritenute indicatori di performance o strategia:

• Se all’interno del nome della campagna è presente la stringa "Top keyword" op-
pure "Alto traffico", si attribuisce valore 1 alla colonna binaria performance,
altrimenti 0. Questo processo equivale a un’operazione di one-hot encoding su
indicatori lessicali di rilevanza o traffico elevato.

• Se nel nome della campagna compare il termine "Lancio", viene attribuito valore
1 alla colonna lancio, indicando che la campagna è probabilmente legata alla fase
iniziale di promozione di un prodotto. In assenza di tale parola, viene assegnato
valore 0.

Questa trasformazione consente di convertire informazioni testuali qualitative in fea-
ture numeriche binarie, rendendole utilizzabili nei modelli di machine learning impiegati
nelle fasi successive.

2.2.4 Embedding delle keyword

Nel contesto dell’elaborazione del linguaggio naturale, il termine embedding si riferisce
al processo di trasformazione di parole o frasi in rappresentazioni numeriche dense (vet-
tori) all’interno di uno spazio continuo a bassa dimensionalità. Questa rappresentazione
consente di catturare relazioni semantiche e sintattiche tra le parole, facilitando l’utilizzo
di modelli matematici e algoritmi di machine learning su dati testuali.

Nel caso specifico delle keyword presenti nel dataset, l’embedding ha l’obiettivo di
rappresentare ciascuna keyword come un vettore numerico che conserva la struttura
semantica latente del linguaggio. Due parole con significato simile, ad esempio, avranno
rappresentazioni vettoriali vicine nello spazio degli embedding.

Sono stati sviluppati diversi metodi per ottenere embedding, tra cui:

24

• Word2Vec [35]: un modello predittivo che apprende rappresentazioni vettoriali
ottimizzando la previsione del contesto di una parola (skip-gram) o della parola
centrale dato il contesto (CBOW).

• GloVe (Global Vectors) [41]: un modello basato sulle co-occorrenze globali
delle parole in un corpus, che ottimizza una funzione di costo che tiene conto delle
probabilità con cui le parole appaiono insieme.

• BERT (Bidirectional Encoder Representations from Transformers) [14]:
un modello di embedding contestuale che utilizza un’architettura Transformer bidi-
rezionale per generare rappresentazioni dinamiche delle parole, che variano in base
al contesto.

• SBERT (Sentence-BERT) [42]: un’estensione di BERT ottimizzata per la rap-
presentazione di intere frasi o sequenze di parole, utile per compiti come il cluste-
ring, la ricerca semantica e la riduzione dimensionale.

Scelta dell’algoritmo di embedding La selezione dell’algoritmo di embedding più
adatto rappresenta una fase cruciale per lo sviluppo del sistema di raccomandazione nel
contesto delle campagne pubblicitarie PPC. In particolare, si è posta l’attenzione sul
problema della validazione dell’embedding, ossia sulla valutazione della sua efficacia in
un contesto non supervisionato. In assenza di etichette di riferimento, diventa complesso
determinare quale rappresentazione semantica delle keyword sia più adatta al task.

Una prima strategia consiste nell’effettuare una comparazione empirica tra differenti
modelli di embedding, come ad esempio TF-IDF, FastText e SBERT. Tale confronto
richiede però un effort computazionale e metodologico considerevole, ed è spesso soggetto
a variabilità che ne limita la riproducibilità. Inoltre, molte metriche utilizzabili per il
confronto (es. similarità coseno su keyword) non riescono a cogliere correttamente il
comportamento semantico in presenza di parole polisemiche o espressioni ambigue.

Si è quindi deciso di selezionare l’algoritmo di embedding sulla base di alcune pro-
prietà fondamentali, che risultano essenziali per il contesto applicativo:

• Gestione della polisemia: Modelli statici come Word2Vec [35] o GloVe [41] non
sono in grado di gestire la polisemia, in quanto ogni parola viene rappresentata da
un solo vettore, indipendentemente dal contesto. Questo comporta, ad esempio,
che parole come burro vengano rappresentate in modo simile sia che ci si riferisca
all’alimento, sia che si intenda il prodotto cosmetico burro di karité, portando a
evidenti problemi semantici nel task.

• Comprensione del contesto: TF-IDF rappresenta i termini in modo bag-of-
words, senza tenere conto dell’ordine o del contesto sintattico e semantico in cui essi
compaiono. Sebbene tecniche come FastText [7] riescano a modellare morfologia e
sottoparti delle parole, anche esse non risolvono pienamente la polisemia.

• Supporto multilingua e per l’italiano: Modelli basati su architetture Tran-
sformer, come BERT [14] e le sue varianti sentence-level come SBERT [42], risul-
tano essere più adatti a catturare le sfumature semantiche delle keyword anche in
italiano, grazie a un’addestramento contestuale su corpus multilingua.

25

In aggiunta a questi vantaggi semantici, SBERT offre anche benefici computazionali
rilevanti. Esistono versioni leggere del modello (es. all-MiniLM-L6-v2) che utilizzano
solo pochi milioni di parametri (il modello usato 22.7 milioni [26]), mantenendo comunque
una buona accuratezza semantica e un’efficienza di calcolo sufficiente per l’embedding di
keyword corte e isolate. A differenza di modelli molto più pesanti (come GPT-3, LLaMA
o PaLM, con decine di miliardi di parametri), SBERT rappresenta un compromesso
ottimale tra prestazioni e costi computazionali per il task considerato.

Pertanto, alla luce di queste considerazioni, è stata scelta l’architettura SBERT come
metodo di embedding delle keyword in questo progetto.

SBERT all-MiniLM-L6-v2: funzionamento e risultati

Il modello all-MiniLM-L6-v2 è una variante compatta ed efficiente del modello Sentence-
BERT (SBERT), sviluppata e distribuita tramite la piattaforma SentenceTransformers
[42]. Questo modello nasce dall’adattamento del modelloMiniLM [52], che si caratterizza
per una struttura Transformer estremamente leggera ma allo stesso tempo molto efficace,
con sole 6 layer di encoder.

L’obiettivo principale del modello all-MiniLM-L6-v2 è generare embedding seman-
tici di frasi e testi di lunghezza arbitraria, in modo che frasi con significato simile siano
mappate in rappresentazioni vettoriali (tipicamente nello spazio R384) che risultino vicine
tra loro secondo una misura di distanza, ad esempio la cosine similarity.

A differenza dei classici modelli di embedding statico come Word2Vec [35] o GloVe
[41], SBERT genera rappresentazioni contestualizzate. Questo significa che due parole
identiche inserite in frasi differenti avranno rappresentazioni differenti, in base al contesto
sintattico e semantico circostante. Questo comportamento è essenziale per la gestione
della polisemia e delle sfumature linguistiche.

Architettura Il modello è composto da:

• Un encoder basato su MiniLM, che processa le sequenze di input e ne estrae la
rappresentazione contestuale.

• Un pooling layer, che aggrega i vettori token-level in un singolo vettore frase.
Tipicamente, la tecnica di mean pooling viene utilizzata, ovvero si calcola la media
dei vettori token corrispondenti agli elementi della frase.

• Un output finale, che restituisce un vettore denso di dimensione 384 (dimensionalità
fissa), utile per task di similarità semantica, clustering o retrieval.

Output del modello Il modello prende in input una o più frasi o termini e restituisce
un tensore di dimensione (n, 384), dove n è il numero di frasi in input. Ogni vettore può
essere interpretato come una rappresentazione semantica della frase corrispondente, che
può essere comparata ad altre tramite misure come la similarità coseno:

sim(x, y) =
x · y

∥x∥∥y∥

Questa rappresentazione è particolarmente adatta a compiti non supervisionati come il
clustering semantico (es. con UMAP-HDBSCAN) o la costruzione di motori di ricerca
semantici.

26

BERT BERT

pooling pooling

cosine-sim(,)

Sentence A Sentence B

Figura 2.3: Una rappresentazione dell’architettura SBERT durante una fase di comparazione
tra due sequenze [42]

Vantaggi

• Alta efficienza computazionale: adatto anche a contesti a bassa latenza e risorse
limitate.

• Prestazioni elevate in task di similarità testuale rispetto a TF-IDF e Word2Vec.

• Supporto multilingua e gestione efficace della polisemia.

Il modello all-MiniLM-L6-v2 è stato addestrato su un’ampia varietà di dataset (tra
cui SNLI, MultiNLI, STS benchmark, NLI datasets e paraphrase datasets) e ottimiz-
zato per restituire embedding universalmente utili in molteplici contesti NLP, come
classificazione, clustering, retrieval, e semantic search [42].

2.2.5 Gestione delle campagne automatiche e delle anomalie
nei dati

Durante la fase di pulizia dei dati, successiva alla configurazione dei termini di ricerca, è
stato possibile individuare alcune righe anomale nel dataset, in particolare nella colonna
Targeting e nella colonna Customer Search Term. In alcuni casi, la colonna Targeting
conteneva un codice identificativo prodotto (ASIN) con estensione asin-expanded, men-
tre la colonna Customer Search Term riportava o lo stesso codice ASIN oppure un ASIN
differente.

27

Questi casi sono attribuibili a campagne che operano all’interno delle pagine prodotto
dei competitor. Se tali campagne risultano configurabili (ovvero è possibile selezionare
manualmente gli ASIN target per l’advertising), allora possono essere considerate utili e
mantenute nel dataset. In caso contrario, se non vi è possibilità di controllo sull’ASIN,
le relative righe vengono eliminate in quanto non coerenti con l’obiettivo di modellazione
non supervisionata.

Un secondo gruppo di righe anomale è caratterizzato dalla presenza del carattere
* nella colonna Targeting, mentre nella colonna Customer Search Term sono presenti
stringhe testuali coerenti con ricerche reali degli utenti, come ad esempio stuccante da
viaggio, struccante oleoso, burro detergente viso e occhi, ecc. Tali casi sono riconducibili a
campagne automatiche gestite direttamente da Amazon. In queste, l’algoritmo seleziona
in autonomia le parole chiave più opportune per mostrare l’annuncio pubblicitario.

Nonostante l’impossibilità di controllare direttamente la selezione delle keyword da
parte di Amazon, i termini di ricerca utilizzati dai clienti rappresentano una fonte in-
formativa preziosa. Infatti, possono essere riutilizzati come potenziali keyword target in
campagne manuali. A tal fine, si propone di riportare il contenuto della colonna Cu-
stomer Search Term all’interno della colonna Targeting, qualora esso non sia un codice
ASIN. Viene inoltre assegnata una tipologia di corrispondenza sulla base della specificità
della keyword:

• Corrispondenza ampia (codice 0): indica che la keyword può essere utiliz-
zata in modo flessibile, eventualmente integrando parole affini. Ad esempio, dalla
keyword struccante oleoso si possono derivare varianti come struccante oleoso burro.

• Corrispondenza a frase (codice 1): mantiene l’ordine delle parole nella frase,
ma consente l’aggiunta di termini prima o dopo.

• Corrispondenza esatta (codice 2): rappresenta l’utilizzo preciso della keyword
cos̀ı come è stata digitata dall’utente, ad esempio struccante 100 ml.

È stata esclusa l’ipotesi di indicare nel modello se una campagna è automatica o
manuale. Tale informazione, infatti, non risulta rilevante ai fini del processo predittivo,
in quanto ciò che realmente interessa al modello sono i risultati in termini di click, costi
e conversioni, non la modalità di generazione della campagna.

Infine, si è scelto di filtrare tutte le righe la cui colonna Targeting inizia con la stringa
asin-expanded oppure con il simbolo *, secondo la logica descritta sopra. I termini di
ricerca rilevanti vengono quindi riposizionati nella colonna Targeting.

Rimozione delle variabili target e prevenzione del data leakage Durante l’ulti-
ma fase di pulizia del dataset, è stato necessario procedere alla rimozione delle variabili
che si intendono predire tramite il modello, ovvero: Impressions, Clicks e Spend. Tali
colonne rappresentano le variabili target per il task di regressione proposto, pertanto non
devono essere incluse nel set di input del modello predittivo.

In aggiunta, anche le metriche derivate da queste variabili, come ad esempio 7 Day

Total Sales, ACOS (Advertising Cost of Sales), ROAS (Return on Advertising Spend) e
Conversion Rate, devono essere rimosse dal dataset di training. Tali metriche, infatti,
vengono calcolate direttamente a partire dalle variabili target e introdurle tra le feature
costituirebbe un chiaro caso di data leakage, ovvero l’inclusione di informazioni future o
derivate dal target stesso tra le variabili esplicative ([28, 9]). Ciò violerebbe il principio

28

di indipendenza tra input e target e porterebbe a una sovrastima artificiale della capacità
predittiva del modello.

Eventualmente, in lavori futuri, sarà possibile considerare l’introduzione di versioni
laggate di queste metriche derivate, calcolate su finestre temporali antecedenti rispetto al
periodo di previsione. Ad esempio, si potrebbe considerare l’ACOS medio della settimana
precedente o il Total Sales nello stesso mese dell’anno precedente, qualora tali dati sto-
rici siano disponibili. Questo approccio consentirebbe di introdurre informazione storica
utile senza incorrere nel rischio di data leakage, sfruttando la dipendenza temporale che
caratterizza i fenomeni osservati.

Nota: attualmente non sono disponibili dati storici sufficienti per implemen-
tare strategie di lag temporale avanzate, ma ciò rappresenta un’importante
direzione di sviluppo futuro.

2.2.6 Proposta di Ottimizzazione delle Campagne Pubblicitarie
Automatiche di Amazon

Nelle campagne pubblicitarie automatiche, Amazon propone prodotti ai clienti in base
alle loro ricerche, generando report in cui le campagne sono etichettate con un attributo di
targeting, come “loose-match”, “phrase-match” o “exact-match”, e un campo “customer
search term” che riporta la keyword ricercata. Dal punto di vista tecnico, questo dato
rappresenta una sfida significativa, poiché il 69% del dataset è composto da ricerche di
questo tipo. Pertanto, è necessario sviluppare una soluzione per gestire tali dati in modo
efficace.

Partendo dall’assunzione che Amazon utilizza un algoritmo automatico per associare
le ricerche degli utenti ai prodotti, si può ipotizzare che il tipo di match (“loose-match”,
“phrase-match” o “exact-match”) indichi il grado di similarità tra la keyword ricercata
e il prodotto. Poiché Amazon confronta le ricerche con la pagina prodotto e le parole
che la compongono, è ragionevole supporre che venga generata una rappresentazione del
tipo “bag of words” per le parole presenti nella pagina prodotto. Tuttavia, non avendo
accesso diretto alle parole generate da Amazon, si propone di utilizzare le campagne
pubblicitarie manuali per descrivere i prodotti.

Per raggiungere questo obiettivo, si procede unendo il dataset di targeting, contenente
le keyword selezionate manualmente, con il dataset dei prodotti pubblicizzati, ottenendo
cos̀ı un’associazione tra keyword e prodotto. Questo passaggio consente di identificare
un insieme di keyword che descrivono il prodotto, considerate come una “ground truth”
poiché definite manualmente. Successivamente, si definisce il dominio semantico di un
prodotto come l’insieme di tutte le sue keyword di targeting. Questo dominio viene
confrontato con il “customer search term” per verificare se la ricerca rientra nel dominio
del prodotto. Il dataset risultante da questa unione viene denominato “targeting asin”.

Una volta identificato il dominio di appartenenza del “customer search term”, si
confronta quest’ultimo con tutte le keyword che definiscono il prodotto per individuare
la parola più simile. La keyword con la maggiore similarità viene quindi utilizzata come
parola di targeting per il “customer search term”.

Procedimento Tecnico

Per implementare questa strategia, si propone l’utilizzo di un modello di Sentence Tran-
sformers, come “all-MiniLM-L6-v2”, per generare embedding (vettori numerici) per ogni

29

Figura 2.4: Una rappresentazione del dataset ”Customer search term”

keyword di targeting e ogni “customer search term”. Il dominio semantico di un pro-
dotto è rappresentato dall’insieme degli embedding delle sue keyword di targeting. Per
verificare l’appartenenza di un “customer search term” al dominio di un prodotto, si
calcola la similarità coseno tra l’embedding del “customer search term” e gli embedding
delle keyword di targeting del prodotto. La keyword con la similarità più alta determina
il grado di appartenenza.

A partire dal dataset ripulito, contenente solo le colonne “ASIN” e “Targeting”,
si calcolano i vettori SBERT per tutte le keyword di targeting. Il dataset risultante,
denominato “dic targeting”, viene salvato per consentirne il riutilizzo. Successivamente,
si definisce una funzione che, dato un “customer search term” in input, restituisce l’ASIN
e la keyword di targeting più simili. Il procedimento della funzione è il seguente:

1. Calcolare la similarità coseno tra l’embedding del “customer search term” e tutti
gli embedding delle keyword nel dataset “dic targeting”.

30

2. Calcolare la media della similarità per ogni ASIN presente in “dic targeting”.

3. Selezionare l’ASIN con la media di similarità più alta come quello associato al
“customer search term”.

4. Tra le keyword di targeting associate all’ASIN selezionato, scegliere quella con la
maggiore similarità rispetto al “customer search term”.

Punti di Forza

• Accuratezza semantica: L’uso di SBERT per generare gli embedding consente di
catturare il significato semantico delle keyword di targeting e dei “customer search
term”, riconoscendo sinonimi e contesti simili (es. “siero ciglia” vs. “allungatore
ciglia”).

• Raggruppamento per ASIN: Calcolare la media della similarità coseno per
ASIN sintetizza il dominio semantico di un prodotto, rendendo la selezione dell’A-
SIN più robusta rispetto al confronto con una singola keyword.

• Riutilizzabilità: Il salvataggio del dataset “dic targeting” con gli embedding
precalcolati riduce il costo computazionale per query future, rendendo il sistema
efficiente per utilizzi ripetuti.

• Output dettagliato: Restituire sia l’ASIN più simile che la keyword di targeting
più vicina fornisce informazioni utili per analisi successive, come l’ottimizzazione
delle campagne pubblicitarie.

• Flessibilità: La tecnica può essere adattata per includere soglie di similarità o per
gestire più ASIN in output.

Punti di Debolezza

• Perdita di dettaglio con la media: Il calcolo della media della similarità per
ASIN può mascherare keyword altamente simili se altre keyword dello stesso ASIN
presentano bassa similarità, portando a una scelta meno precisa.

• Costo computazionale iniziale: La generazione degli embedding SBERT per
tutte le keyword richiede tempo e risorse, soprattutto per dataset di grandi dimen-
sioni, sebbene questa operazione venga eseguita una sola volta.

• Confronti lineari: Confrontare il “customer search term” con tutte le keyword di
“dic targeting” è computazionalmente costoso (complessità O(n) per n keyword)
senza ottimizzazioni come FAISS.

• Dipendenza dalla qualità delle keyword: Se le keyword di targeting per un
ASIN sono incomplete o rumorose, il dominio semantico potrebbe non rappresen-
tare accuratamente il prodotto.

• Soglia implicita: L’assenza di una soglia di similarità per accettare o rifiutare una
corrispondenza rischia di assegnare un “customer search term” a un ASIN anche
in presenza di una bassa similarità.

31

• Sensibilità agli outlier: La media della similarità può essere influenzata da
keyword outlier con bassa similarità, riducendo l’accuratezza per ASIN con molte
keyword eterogenee.

I punti di debolezza descritti non rappresentano, al momento, un ostacolo significativo
e possono essere temporaneamente trascurati.

Analisi dei Risultati e Problemi Rilevati

Figura 2.5: Distribuzione delle similarità (grafico a sinistra) prima della previsione con sbert
(in rosso, False) e dopo in verde (True). A destra invece il grafico della distribuzione media
della similarità per ASIN.”

Applicando la tecnica proposta al dataset, si è osservato che la maggior parte delle
etichette assegnate durante il merge dei dataset “targeting” e “prodotto pubblicizzato”
risulta errata (come si può vedere in fig. 2.5). Questo problema deriva dall’utilizzo di
un merge di tipo “left”, che comporta la duplicazione delle righe del dataset “customer
search term” per ogni ASIN associato a una campagna pubblicitaria con più ASIN. Di
conseguenza, se una campagna include, ad esempio, cinque ASIN, vengono generate
cinque righe, ma solo una di esse è associata correttamente all’ASIN corrispondente.
Questo processo crea numerosi record aggiuntivi che, sebbene utili per l’addestramento
di un modello, introducono errori se l’ASIN assegnato è sbagliato, compromettendo la
qualità dei dati di addestramento.

Per risolvere questo problema, si propone di utilizzare un modello SBERT per predire
l’ASIN, fornendo informazioni più accurate. I risultati ottenuti sono illustrati nel grafico
di sinistra, che mostra la similarità tra le keyword del dataset di targeting, considerate
come una “bag of words” per descrivere un prodotto, e il “customer search term”. Nel
grafico, i record errati derivanti dal merge sono evidenziati in rosso, mentre quelli corretti,
risultanti dall’unione dei dataset, sono evidenziati in verde. Poiché Amazon non fornisce
la “ground truth” per l’associazione tra record e prodotti, si adotta un ragionamento
induttivo. Questo approccio non garantisce una conclusione certa, ma mira a dimostrare
una ragionevole probabilità di correttezza.

Dal grafico di sinistra si osserva una similarità semantica e grammaticale, garantita
da SBERT, tra il “customer search term” e le keyword di targeting che definiscono il
prodotto. Tuttavia, l’unione dei dataset assegna spesso un ASIN errato, un fenomeno

32

che si ripete, sebbene in modo meno marcato, nel resto del grafico. Questo suggerisce
che, quando l’ASIN predetto tramite similarità differisce da quello derivante dall’unione
dei dataset, il primo risulta generalmente più accurato. Un’analisi manuale dei dati
conferma ulteriormente questa tendenza.

Conclusioni e Proposta Operativa

Sulla base di queste osservazioni, si decide di utilizzare i risultati forniti dalla funzione
“find closest asin and targeting”, che calcola la similarità coseno per determinare l’ASIN
e la keyword di targeting più appropriati. Prima di procedere, si è verificata la correttezza
del dataset “targeting asin”, che è stato generato con lo stesso metodo di unione utilizzato
per il dataset principale. Data la dimensione ridotta di “targeting asin”, è stato possibile
effettuare una supervisione manuale per garantirne l’accuratezza.

2.2.7 Analisi Esplorativa dei Dati (EDA)

Di seguito vengono descritte le tecniche di visualizzazione utilizzate per l’analisi esplora-
tiva del dataset relativo alle campagne pubblicitarie su Amazon. Ogni tecnica è accom-
pagnata da una spiegazione del suo scopo e delle feature considerate, con l’obiettivo di
evidenziare pattern, relazioni e anomalie nei dati.

33

Istogrammi delle Variabili Numeriche

Figura 2.6: Istogramma delle feature numeriche

Gli istogrammi mostrano la distribuzione delle variabili numeriche, permettendo di ana-
lizzare la forma della distribuzione, la presenza di asimmetrie e outlier. Questa tec-
nica è utile per comprendere il comportamento delle metriche chiave delle campagne
pubblicitarie.

34

Feature considerate: Impressions, Clicks, Spend, 7 Day Total Sales, 7 Day

Total Orders (#), 7 Day Conversion Rate, similarity.
Scopo: Identificare distribuzioni skewed, outlier e necessità di trasformazioni per

successive analisi statistiche o di modellazione.

Grafici a Barre delle Variabili Categoriche

Figura 2.7: Grafici a Barre delle Variabili Categoriche

Considerazioni : I grafici a barre visualizzano la frequenza delle categorie per le
variabili categoriche, evidenziando la distribuzione dei dati e l’eventuale squilibrio tra le
classi.

Feature considerate: lancio, performance, Day of Week, Match Type Encoded,
asin encoded.

Scopo: Valutare la rappresentatività delle categorie (ad esempio, bilanciamento di
lancio) e identificare categorie dominanti (ad esempio, ASIN più frequenti).

35

Heatmap delle Correlazioni

Figura 2.8: Correlation heatmap

La heatmap (fig. 2.8) visualizza la matrice di correlazione tra variabili numeriche,
evidenziando relazioni lineari forti o deboli attraverso coefficienti di correlazione.

Feature considerate: Impressions, Clicks, Spend, 7 Day Total Sales, 7 Day

Total Orders (#), 7 Day Conversion Rate, similarity.
Scopo: Identificare multicollinearità (ad esempio, tra Clicks e Impressions) e va-

riabili con bassa correlazione con 7 Day Total Sales, utili per la selezione delle feature
in modelli predittivi.

Considerazioni

Considerazioni Dall’analisi della correlation heatmap emergono diverse osservazioni
rilevanti. In primo luogo, si nota una fortissima correlazione positiva tra le variabili 7 Day

Total Sales, 7 Day Total Orders (#) e 7 Day Conversion Rate, con coefficienti di
correlazione compresi tra 0,91 e 0,97. Questo comportamento è atteso, poiché un aumen-
to del numero di ordini e del tasso di conversione si riflette direttamente sull’incremento
delle vendite.

36

La variabile Spend presenta una moderata correlazione positiva con Clicks (0,57),
indicando che una maggiore spesa pubblicitaria tende ad aumentare il numero di clic
ricevuti. La stessa Spend mostra una debole correlazione con le vendite e gli ordini
settimanali (valori tra 0,10 e 0,11), suggerendo che una spesa maggiore non garanti-
sce necessariamente un incremento proporzionale nelle vendite o negli ordini. Questo
evidenzia possibili inefficienze nelle strategie di allocazione del budget.

La metrica similarity, mostra una correlazione debole con tutte le altre variabili.
In particolare, il valore massimo è con Spend (0,18), mentre le correlazioni con 7 Day

Total Sales, 7 Day Orders (#) e 7 Day Conversion Rate sono molto basse (rispet-
tivamente 0,035, 0,059 e 0,047). Questo indica che, nel dataset analizzato, la similarità
semantica tra keyword e query non influisce significativamente sulle performance di ven-
dita, lasciando intendere che altri fattori potrebbero avere un ruolo più determinante.
Tuttavia, la correlazione tra le feature similarity, impression mostra come ci sia una
correlazione che definisce il concetto di ”pertinenza di ricerca” cioè un utente che trova
un prodotto che è più correlato con la sua ricerca è più probabile che acquisti rispetto a
quando il prodotto viene proposto dopo una ricerca generica.

Infine, le variabili Day of Week e asin encoded non mostrano correlazioni rilevanti
con le metriche di performance, confermando la loro natura più categoriale e indicativa
di effetti non lineari o non direttamente correlabili.

Nel complesso, l’analisi suggerisce che l’efficacia di una campagna non può essere
spiegata da una singola variabile, ma risulta dall’interazione di molteplici fattori. Le me-
triche di conversione e ordini settimanali sono fortemente collegate, mentre la spesa e la
similarità semantica mostrano solo una parziale relazione con le performance, indicando
potenziali aree di ottimizzazione.

37

Matrice di Scatter Plot (Pair Plot)

Figura 2.9: Analisi bivariata: Matrice di Scatter Plot (Pair Plot)

La matrice di scatter plot esplora le relazioni bivariate tra variabili numeriche, con colo-
razione basata su una variabile categorica. Consente di individuare correlazioni, pattern
non lineari e cluster.

Feature considerate: Impressions, Clicks, Spend, 7 Day Total Sales, 7 Day

Total Orders (#), 7 Day Conversion Rate, similarity, con colorazione per lancio.
Scopo: Analizzare le relazioni tra metriche (ad esempio, Clicks vs. Impressions)

e verificare se le campagne di lancio (lancio=1) si distinguono in termini di prestazioni.

Considerazioni La scatter plot matrix rappresenta un’analisi bivariata delle principa-
li variabili numeriche del dataset, stratificata per tipologia di match (PHRASE, EXACT,
BROAD). In primo luogo, si osserva una distribuzione fortemente asimmetrica per la
maggior parte delle variabili, in particolare per Impressions, Clicks e Spend, dove
i dati tendono a concentrarsi in prossimità dello zero con poche osservazioni su valori

38

elevati. Questo fenomeno di right-skewness è particolarmente evidente nelle variabili
Impressions e Spend, e suggerisce un forte effetto di polarizzazione nelle performance
delle campagne.

Dal punto di vista delle relazioni bivariate, si osserva una tendenza crescente tra
Spend, Clicks e 7 Day Total Sales, che evidenzia una relazione positiva tra investi-
mento pubblicitario, interazioni e vendite. Tale pattern è ben visibile nei plot Spend-
Clicks e Spend-7 Day Total Sales, con una dispersione coerente tra le tipologie di
match, sebbene il tipo EXACT sembri leggermente più concentrato su valori più alti di
similarity.

Un’osservazione interessante emerge dall’interazione tra la variabile similarity e
le metriche di performance (7 Day Total Sales, 7 Day Total Orders (#) e 7 Day

Conversion Rate). La variabile similarity, pur presentando un range continuo tra 0
e 1, mostra una concentrazione notevole di valori intorno a 1 per il tipo di match EXACT,
confermando che le campagne a corrispondenza esatta tendono ad avere una maggiore
coerenza semantica con i termini di ricerca degli utenti. Tuttavia, tale aumento di
similarità non si traduce automaticamente in un incremento netto delle vendite o delle
conversioni, suggerendo che la rilevanza semantica è solo uno dei fattori che influenzano
le performance.

Infine, l’analisi congiunta delle variabili 7 Day Total Orders (#) e 7 Day Conversion

Rate conferma quanto già evidenziato nella heatmap: esiste una forte correlazione tra
queste due metriche, visibile nella loro disposizione allineata e concentrata. I dati sem-
brano suggerire una differenziazione parziale delle performance in base al tipo di match,
ma non emergono cluster ben definiti, il che indica che la variabilità intra-classe è elevata
e che il tipo di match da solo non è un predittore sufficiente della performance.

Nel complesso, la scatter plot matrix evidenzia relazioni coerenti ma non lineari
tra le variabili, nonché l’esistenza di una forte eterogeneità nei dati. La presenza di
outlier e distribuzioni asimmetriche suggerisce l’opportunità di utilizzare tecniche di
normalizzazione e metodi robusti nella fase di modellazione.

39

Box Plot per Variabili Categoriche

Figura 2.10: Box Plot per Variabili Categoriche

I box plot confrontano la distribuzione delle variabili numeriche rispetto alle categorie di
una variabile categorica, evidenziando differenze nei valori centrali, variabilità e outlier.

Feature considerate: Impressions, Clicks, Spend, 7 Day Total Sales, 7 Day

Total Orders (#), 7 Day Conversion Rate rispetto a Match Type Encoded, lancio,
performance, Day of Week.

Scopo: Valutare se alcune categorie (ad esempio, Match Type Encoded=2 per corri-
spondenza esatta) presentano prestazioni superiori o outlier significativi.

Considerazioni Il box plot delle variabili numeriche stratificate per tipo di match
(Match Type Encoded: 0=BROAD, 1=PHRASE, 2=EXACT) consente di analizzare la distri-
buzione e la dispersione delle performance delle campagne pubblicitarie in funzione della
strategia semantica adottata.

Per quanto riguarda le Impressions, si osserva una distribuzione fortemente asim-
metrica con la presenza di numerosi outlier per tutti i tipi di match. Tuttavia, il tipo
EXACT (valore 2) mostra una mediana più alta e una maggiore dispersione, suggerendo
che questa configurazione tende ad attivare maggiormente gli annunci.

La variabile Clicks presenta una distribuzione estremamente concentrata, con valori
prossimi a 1 per la maggior parte dei dati, indipendentemente dal tipo di match. Ciò
indica una bassa variabilità nella quantità di clic generati, che potrebbe dipendere da un
basso numero complessivo di interazioni o da una limitata efficacia degli annunci.

Nel caso della spesa pubblicitaria (Spend), i box plot indicano che i tre tipi di
match hanno una distribuzione simile, ma EXACT mostra una maggiore ampiezza inter-

40

quartile, con valori massimi più elevati. Questo potrebbe indicare un comportamento
più aggressivo in termini di offerta per questa categoria.

Analizzando le metriche di performance diretta, ovvero 7 Day Total Sales, 7 Day

Total Orders (#) e 7 Day Conversion Rate, si nota una prevalenza di zeri (assenza
di vendite/conversioni), accompagnata da pochi outlier elevati. Questo fenomeno riflette
una dinamica di long-tail tipica del commercio elettronico, dove poche keyword generano
la maggior parte delle vendite. Le tre tipologie di match mostrano comportamenti simili,
con una leggera tendenza del tipo EXACT a registrare valori massimi leggermente più alti,
pur in presenza di elevata varianza.

Infine, la variabile similarity evidenzia differenze più marcate. I match EXACT mo-
strano una distribuzione molto concentrata su valori alti (mediana ∼ 0.9), coerente con
la definizione semantica di questa categoria. Al contrario, BROAD evidenzia una maggiore
variabilità, con una mediana attorno a 0.6, riflettendo una corrispondenza semantica
più debole con i termini di ricerca degli utenti. Il tipo PHRASE si colloca in posizione
intermedia.

In sintesi, i box plot rivelano che, mentre alcune variabili mostrano una distribu-
zione relativamente simile tra i tipi di match (es. Spend), altre come similarity e
Impressions differenziano più nettamente i gruppi, suggerendo che la scelta della tipolo-
gia di match può influenzare in modo significativo la copertura e la pertinenza semantica,
ma con impatto meno prevedibile sulle performance dirette (vendite e ordini).

Grafico di dispersione delle Metriche nel Tempo

Figura 2.11: Grafico di dispersione delle Metriche nel Tempo

Il grafico a linee mostra l’andamento delle metriche chiave rispetto alla variabile tempo-
rale Date, permettendo di identificare trend e stagionalità.

41

Feature considerate: Date, Impressions, Clicks, Spend, 7 Day Total Sales.
Scopo: Rilevare pattern temporali, come picchi di vendite in periodi specifici, e

correlazioni tra spesa e vendite nel tempo.

Considerazioni Il grafico mostra l’andamento temporale delle principali metriche di
performance nei primi 180 giorni del dataset, dal grafico è stato esclusi il periodo succes-
sivo ai 180 giorni per aumentarne la leggibilità dei dati. Le metriche visualizzate inclu-
dono le 7 Day Total Sales, i Clicks, la Spesa pubblicitaria (Spend) e la 7 Day

Conversion Rate, ciascuna riportata tramite una serie di punti nel dominio temporale.
Si osservano chiaramente tre macro-intervalli temporali separati da lacune nei dati

(attorno ai giorni 30-75), che indicano interruzioni nella raccolta dati(in quanto non
l’azienda non era presente nel marketplace in quelle date). Questo può rappresentare
una criticità per la modellizzazione temporale, richiedendo eventualmente tecniche di
imputazione o l’esclusione di tali periodi discontinui.

Dal punto di vista delle vendite settimanali (7 Day Total Sales, asse sinistro), si
notano numerosi punti aggregati su livelli costanti (es. 27, 30), probabilmente causati da
arrotondamenti o soglie interne di reportistica. La distribuzione è fortemente eterogenea,
con alcuni picchi isolati che superano il valore di 70, suggerendo eventi promozionali o
anomalie temporanee di alta performance.

La spesa (Spend) mostra un comportamento più denso e continuo, con una concen-
trazione significativa attorno a valori compresi tra 1 e 4, e pochi outlier più alti. Questo
denota una certa stabilità nei budget pubblicitari giornalieri, ma anche una gestione
variabile tra i diversi giorni.

I clic (Clicks) risultano più uniformi, con una netta concentrazione intorno ai valori
1–2. Questo può suggerire un basso tasso di coinvolgimento generale da parte degli
utenti, oppure una limitata esposizione agli annunci.

Infine, la conversion rate settimanale (7 Day Conversion Rate) è generalmente
bassa, spesso prossima allo zero. Tuttavia, si notano linee orizzontali che indicano valori
discretizzati (es. 0.5, 1.0, 1.5), potenzialmente dovute alla definizione metrica su un
basso numero di conversioni, con conseguente quantizzazione artificiale della metrica.

In sintesi, il grafico evidenzia una forte variabilità intertemporale e discrepanze tra
la spesa sostenuta e i risultati ottenuti, con una tendenza generale a bassa conversione.
Le interruzioni nei dati e la discreta densità di valori nulli (soprattutto per le vendite e
la conversion rate) suggeriscono che i modelli predittivi debbano essere particolarmente
robusti a dati sparsi e a dinamiche discontinue.

42

Metriche Medie per Giorno della Settimana

Figura 2.12: Metriche Medie per Giorno della Settimana

I grafici a barre mostrano la media delle metriche chiave per ciascun giorno della setti-
mana, evidenziando variazioni giornaliere nelle prestazioni delle campagne.

Feature considerate: Day of Week, Impressions, Clicks, Spend, 7 Day Total

Sales.
Scopo: Identificare giorni con prestazioni superiori (ad esempio, fine settimana) per

ottimizzare la pianificazione delle campagne.

Considerazioni Analizzando il grafico che riporta le medie giornaliere di diverse metri-
che (Impressioni, Click, Spesa e Vendite totali su 7 giorni), emergono alcune osservazioni
significative. Le metriche sono aggregate per giorno della settimana (da 0 a 6), cor-
rispondenti a Luned̀ı (0) e Domenica (6) (in base a quanto stabilito dall’API pandas
per convertire i giorni di una data nei giorni in una settimana [1]).

• Impressioni medie: Le impressioni mostrano un picco evidente nel giorno 3
(mercoled̀ı), con un valore approssimativo di 65, mentre i giorni 4 (gioved̀ı) e 5
(venerd̀ı) registrano i valori più bassi, intorno a 35–40. Questo suggerisce una
maggiore visibilità delle campagne a metà settimana, potenzialmente legata a una
maggiore attività degli utenti in tali giorni.

• Click medi: I click raggiungono il valore massimo nei giorni 0 (Luned̀ı) e 6 (Do-
menica), con un valore vicino a 1.2, indicando una maggiore interazione degli utenti
a fine e inizio settimana. I giorni centrali della settimana (2–4) mostrano valori

43

inferiori (circa 0.8–1.0), suggerendo un comportamento di engagement più selettivo
durante tali giorni.

• Spesa media: La spesa media rimane relativamente stabile tra 0.9 e 1.0 per tutti
i giorni, con un lieve incremento nei Luned̀ı e Gioved̀ı. Questo indica una strategia
di budget relativamente uniforme, con possibili aggiustamenti per massimizzare
l’esposizione (Gioved̀ı) o l’engagement (Luned̀ı).

• Vendite totali su 7 giorni: Le vendite mostrano un picco nel giorno 0 (Luned̀ı),
con un valore di circa 1.4, seguito da un calo nei giorni 1 e 2 (Marted̀ı e Mercoled̀ı,
intorno a 1.0–1.1). I giorni 4 e 5 (Venerd̀ı e Sabato) presentano valori più bassi
(circa 0.8–0.9), suggerendo che le conversioni siano più probabili nei fine settimana
o all’inizio della settimana.

In termini statistici, si osserva una possibile correlazione positiva tra impressioni e
click nei giorni di picco (0 e 3), mentre la spesa sembra non correlata con le vendite,
indicando che l’allocazione del budget potrebbe non essere ottimizzata per massimizzare
le conversioni. Un’analisi più approfondita, ad esempio tramite un modello di regressione
lineare, potrebbe quantificare queste relazioni.

Inoltre, la variabilità giornaliera suggerisce la necessità di un’ottimizzazione tempo-
rale delle campagne, con un focus su domeniche e mercoled̀ı per massimizzare rispetti-
vamente engagement e visibilità.

Scatter Plot di Tasso di Conversione vs. Similarità

Figura 2.13: Scatter Plot di Tasso di Conversione vs. Similarità

Lo scatter plot esplora la relazione tra similarity e 7 Day Conversion Rate, con
colorazione per Match Type Encoded.

44

Feature considerate: similarity, 7 Day Conversion Rate, Match Type Encoded.
Scopo: Valutare se una maggiore similarità tra targeting e termini di ricerca dei

clienti migliora il tasso di conversione.

Considerazioni L’analisi del scatter plot rivela diverse considerazioni:
Distribuzione eterogenea dei dati: La maggior parte dei punti dati si concentra

nella regione di bassa conversione (0 ≤ Conversion Rate ≤ 1) e alta similarità (0.7 ≤
Similarity ≤ 1.0), suggerendo che le campagne tendono ad essere ottimizzate per alta
rilevanza semantica ma non necessariamente per performance di conversione.

Assenza di correlazione lineare: Non emerge una correlazione monotonica evi-
dente tra similarità e tasso di conversione. Questo indica che l’alta similarità semantica
non è condizione sufficiente né necessaria per garantire elevate performance di conversio-
ne, andando in leggero contrasto con l’assunzione che maggiore rilevanza implichi migliori
risultati.

Segmentazione per Match Type: I diversi match type mostrano pattern distri-
butivi distinti. Il Match Type 2 (EXACT) presenta una concentrazione maggiore in
regioni di alta similarità e bassa conversione in quanto c’è una maggiore concentrazione
di record con similarity molto alta e a causa del fenomeno long-tail (già riportato nella
sezione ”Box Plot per Variabili Categoriche”) non è possibile osservare un alta concen-
trazione nei valori di conversion rate maggiori. mentre i Match Type 0 e 1 (BROAD
e PHRASE) mostrano una distribuzione più dispersa, suggerendo strategie di targeting
differenziate.

Outliers ad alta conversione: Si osservano alcuni punti isolati con Conversion Rate >
2.0 distribuiti su diversi livelli di similarità, indicando l’esistenza di configurazioni di
campagna altamente performanti che non dipendono esclusivamente dalla similarità
semantica.

Saturazione della similarità: La concentrazione di punti nella regione Similarity >
0.8 suggerisce un possibile effetto di saturazione, dove incrementi marginali di similarità
non producono miglioramenti proporzionali nelle metriche di conversione.

Implicazioni strategiche: I risultati suggeriscono la necessità di un approccio
multi-dimensionale nell’ottimizzazione delle campagne, dove la similarità semantica rap-
presenta solo uno dei fattori determinanti.

45

Capitolo 3

Esperimenti effettuati

3.1 Obiettivi e Struttura del Capitolo

In questo capitolo verranno mostrati: il percorso metodologico, gli algoritmi valutati, la
pipeline implementativa e la motivazione della scelta finale.

Il lavoro di tesi si pone come obiettivo principale la minimizzazione del costo delle
campagne pubblicitarie Pay-Per-Click (PPC) di Amazon, seguendo criteri che bilancino
l’ottimizzazione della spesa con la massimizzazione del ritorno sull’investimento. I dati
a disposizione comprendono, per ciascun giorno e per ogni keyword di ogni gruppo di
annunci, il numero di click, il numero di impressioni, il numero di acquisti e il numero
di vendite, oltre ad ulteriori variabili generate durante la fase di preprocessing. In par-
ticolare, sono stati introdotti: gli embedding della parola di ricerca del consumatore, la
similarità rispetto alla keyword inserita manualmente, il giorno della settimana in cui il
record è stato campionato e il tipo di match risultante. Tutti questi aspetti sono stati
ampiamente trattati nel Capitolo 2, dedicato alla preparazione e analisi preliminare dei
dati.

In questo capitolo, invece, l’attenzione si focalizza sui modelli predittivi applicati e
sul percorso metodologico che ha condotto alla soluzione finale. La sperimentazione è
iniziata con modelli classici di regressione, tra cui LightGBM, XGBoost e Random Forest,
utilizzati come baseline. Successivamente, sono state sviluppate e valutate diverse reti
Multi-Layer Perceptron (MLP), variando la profondità e la complessità architetturale,
ed ottimizzando gli iperparametri mediante grid search. È stato inoltre sperimentato
l’utilizzo di modelli di tipo LSTM per la gestione delle sequenze temporali.

Tra le soluzioni analizzate, è stata selezionata una configurazione specifica di MLP
come modello di riferimento. Su tale base è stato quindi sviluppato un modello di tipo
contextual bandit, inizializzato con la MLP precedentemente addestrata, con l’obiet-
tivo di affrontare in maniera dinamica il problema dell’allocazione dei budget pubblicitari
attraverso il bilanciamento tra esplorazione e sfruttamento. Per ciascun esperimento con-
dotto sono stati raccolti e salvati i risultati in tabelle .csv, al fine di consentire successive
analisi e confronti quantitativi.

La struttura del capitolo è dunque organizzata come segue:

• Sezione 3.2: descrizione dei modelli di regressione classici utilizzati come baseline;

• Sezione 3.3: sperimentazione con reti neurali MLP e ottimizzazione degli iperpa-
rametri;

46

• Sezione 3.4: esperimenti con modelli LSTM per la modellazione temporale;

• Sezione 3.5: presentazione del modello contextual bandit e della sua integrazione
con la MLP;

• Sezione 3.6: modalità di raccolta, organizzazione e valutazione dei risultati ottenuti.

3.2 Modelli di regressione

3.2.1 LightGBM

LightGBM (Light Gradient Boosting Machine) è un framework di gradient boosting otti-
mizzato per problemi di regressione e classificazione su dataset strutturati, scelto come
uno dei modelli di baseline per la sua efficienza computazionale e capacità di gestire da-
taset ad alta dimensionalità, come quelli descritti nel Capitolo 2. Il modello si basa su un
algoritmo di boosting che costruisce alberi decisionali in modo iterativo, minimizzando
una funzione di perdita (in questo caso, l’errore quadratico medio, MSE) attraverso una
combinazione di gradienti e tecniche di regolarizzazione.

Funzionamento del Modello

LightGBM utilizza un approccio histogram-based per discretizzare le feature continue, ri-
ducendo il costo computazionale e migliorando la scalabilità su dataset di grandi dimen-
sioni.[30] Inoltre, supporta feature categoriali native, evitando la necessità di codifiche
aggiuntive come il one-hot encoding. Nel contesto di questa tesi, LightGBM è stato im-
piegato per prevedere simultaneamente più variabili target (click, spesa, vendite totali a
7 giorni, ordini totali a 7 giorni, tasso di conversione a 7 giorni e impressioni) utilizzando
un approccio di regressione multi-output tramite la classe MultiOutputRegressor di
scikit-learn. Le target sono state trasformate applicando una trasformazione logaritmica
(log1p) per gestire la loro distribuzione non normale, come descritto nel Capitolo 2.
Le predizioni sono state successivamente ritrasformate utilizzando la funzione inversa
(expm1) per ottenere i valori originali.

Implementazione

Il modello è stato implementato in Python utilizzando la libreria lightgbm integrata con
scikit-learn. Le feature di input includono variabili categoriali (lancio, performance,
Day of Week, Match Type Encoded) e numeriche (similarità tra query e keyword, e 384
embedding SBERT della parola di ricerca del consumatore, come descritto nel Capi-
tolo 2). Il dataset è stato suddiviso in un set di addestramento (70%) e un set di test
(30%) utilizzando uno shuffle casuale con random state=42 per garantire riproducibilità.
Il modello è stato configurato come segue:

• Obiettivo: Regressione multi-output con perdita quadratica (objective=’regression’).

• Wrapper: MultiOutputRegressor per gestire multiple variabili target.

• Feature categoriali: Specificate direttamente nell’addestramento per sfruttare il
supporto nativo di LightGBM.

Il codice di implementazione è riportato di seguito per chiarezza:

47

from sklearn.multioutput import MultiOutputRegressor

import lightgbm as lgb

import numpy as np

from sklearn.model_selection import train_test_split

Definisci feature e target

features = [’lancio ’, ’performance ’, ’Day_of_Week ’, ’Match Type

Encoded ’,

’similarity ’] + [f’sbert_{i}’ for i in range (384)]

targets = [’Clicks ’, ’Spend’, ’7 Day Total Sales’, ’7 Day Total Orders

(#)’,

’7 Day Conversion Rate’, ’Impressions ’]

X = df[features]

y = df[targets]

Trasformazione logaritmica delle target

y_transformed = np.log1p(y)

Split dei dati

X_train , X_test , y_train , y_test = train_test_split(

X, y_transformed , test_size =0.3, random_state =42, shuffle=True

)

Configura il modello

model = MultiOutputRegressor(lgb.LGBMRegressor(

objective=’regression ’, n_estimators =100, learning_rate =0.1

))

Addestramento

model.fit(

X_train , y_train ,

categorical_feature =[’lancio ’, ’performance ’, ’Day_of_Week ’,

’Match Type Encoded ’]

)

Predizioni

y_test_pred_transformed = model.predict(X_test)

y_test_pred = np.expm1(y_test_pred_transformed)

Iperparametri Testati

Gli iperparametri configurati per il modello LightGBM includono:

• n estimators=100: Numero di alberi di boosting.

• learning rate=0.1: Tasso di apprendimento per il gradient boosting.

• subsample=0.7: Frazione di campioni utilizzata per addestrare ogni albero, per
ridurre l’overfitting.

• random state=42: Seme per la riproducibilità.

Non sono stati riportati test espliciti di grid search per questo modello, suggerendo
che la configurazione utilizzata rappresenta una scelta di base per il baseline. Altri
iperparametri, come max depth e colsample bytree, non sono stati specificati nel codice
fornito, indicando che sono stati mantenuti ai valori predefiniti della libreria.

48

Note sui Risultati

I risultati delle predizioni sul set di test sono stati raccolti per successive analisi quanti-
tative, come descriverò nella Sezione 5. Le metriche di valutazione specifiche (es. MSE,
MAE) e i KPI di business (es. ACoS, ROI) saranno discussi in dettaglio nella Sezione 5,
confrontando le performance di LightGBM con gli altri modelli testati.

3.2.2 XGBoost

Il modello XGBoost (eXtreme Gradient Boosting) è stato selezionato come baseline di
regressione per la sua capacità di gestire problemi complessi di predizione attraverso
un’implementazione avanzata di gradient boosting. XGBoost utilizza alberi decisionali
con regolarizzazione L1 e L2 per prevenire l’overfitting, ottimizzando un obiettivo di per-
dita tramite gradienti di secondo ordine. La sua efficienza e robustezza lo rendono adatto
a dataset eterogenei come quello delle campagne PPC descritto nel Capitolo 2, che include
feature categoriali, numeriche e ad alta dimensionalità (es. embedding SBERT).[12]

Implementazione del Modello

Il modello è stato implementato utilizzando la libreria xgboost in Python, integrata con
MultiOutputRegressor di scikit-learn per gestire la predizione simultanea di mol-
teplici variabili target: numero di click, spesa, vendite totali a 7 giorni, ordini totali
a 7 giorni, tasso di conversione a 7 giorni e impressioni. Le feature utilizzate com-
prendono variabili categoriali (lancio, performance, Day of Week, Match Type Encoded,
asin encoded), la similarità e 384 embedding SBERT, come descritto nel Capitolo 2. È
stata applicata una pipeline di preprocessing tramite ColumnTransformer, che standar-
dizza (StandardScaler) le feature numeriche Impressions, similarity e Day of Week,
lasciando inalterate le feature SBERT (già normalizzate) e le codifiche categoriali. I
dati sono stati suddivisi in un set di addestramento (80%) e un set di test (20%) con
train test split (random seed = 42) per garantire riproducibilità. La pipeline finale
integra il preprocessing e il modello MultiOutputRegressor(XGBRegressor), addestrata
sui dati di training.

Iperparametri Testati

Gli iperparametri configurati per il modello XGBoost includono:

• n estimators = 150: numero di alberi di boosting, scelto per bilanciare accura-
tezza e complessità computazionale.

• learning rate = 0.05: tasso di apprendimento per controllare il contributo di
ciascun albero.

• max depth = 6: profondità massima degli alberi per limitare la complessità del
modello.

• subsample = 0.8: frazione di campioni utilizzata per addestrare ogni albero, per
ridurre l’overfitting.

• colsample bytree = 0.8: frazione di feature utilizzate per ogni albero, per au-
mentare la generalizzazione.

49

• random state = 42: seed per la riproducibilità.

• n jobs = -1: utilizzo di tutti i core disponibili per accelerare l’addestramento.

Non è stata condotta un’ottimizzazione sistematica degli iperparametri (es. grid search)
per questo modello, in quanto il suo scopo era fornire una baseline robusta per il confronto
con modelli più complessi, come descritto nelle sezioni successive.

3.2.3 Random Forest

Il modello Random Forest è stato selezionato come baseline di regressione per la sua
semplicità, robustezza al rumore nei dati e capacità di gestire feature eterogenee, come
quelle descritte nel Capitolo 2. Random Forest è un metodo di ensemble che combina
molteplici alberi decisionali, ciascuno addestrato su un sottoinsieme casuale di dati e fea-
ture, utilizzando il bagging (Bootstrap Aggregating) per ridurre la varianza e migliorare
la generalizzazione. La sua natura non parametrica lo rende adatto a modellare relazio-
ni complesse tra le feature (es. embedding SBERT, similarità, variabili categoriali) e i
target multipli delle campagne PPC (click, spesa, vendite, ecc.).

Implementazione del Modello

Il modello è stato implementato utilizzando la libreria sklearn.ensemble.RandomFor-

estRegressor in Python, integrata con MultiOutputRegressor di scikit-learn per
gestire la predizione simultanea di molteplici variabili target: numero di click, spe-
sa, vendite totali a 7 giorni, ordini totali a 7 giorni, tasso di conversione a 7 giorni
e impressioni. Le feature utilizzate includono variabili categoriali (lancio, performan-
ce, Day of Week, Match Type Encoded), la similarità e 384 embedding SBERT, co-
me descritto nel Capitolo 2. È stata applicata una pipeline di preprocessing trami-
te ColumnTransformer, che standardizza (StandardScaler) le feature numeriche Im-
pressions, similarity e Day of Week, lasciando inalterate le feature SBERT (già nor-
malizzate) e le codifiche categoriali. I dati sono stati suddivisi in un set di adde-
stramento (80%) e un set di test (20%) con train test split (random seed = 42)
per garantire riproducibilità. La pipeline finale integra il preprocessing e il modello
MultiOutputRegressor(RandomForestRegressor), addestrata sui dati di training.

Iperparametri Testati

Gli iperparametri configurati per il modello Random Forest includono:

• n estimators = 100: numero di alberi nell’ensemble, scelto per bilanciare accu-
ratezza e tempi di calcolo.

• max depth = 15: profondità massima degli alberi per limitare la complessità e
prevenire l’overfitting.

• random state = 42: seed per la riproducibilità.

• n jobs = -1: utilizzo di tutti i core disponibili per accelerare l’addestramento.

Nel codice fornito, i parametri learning rate e colsample bytree sono indicati co-
me non definiti (n/d), in quanto non applicabili a Random Forest. Analogamente, il

50

parametro subsample è stato interpretato come 1 - test size = 0.8, riflettendo la
proporzione dei dati di addestramento. Non è stata condotta un’ottimizzazione sistema-
tica degli iperparametri (es. grid search) per questo modello, in quanto il suo scopo era
fornire una baseline robusta per il confronto con modelli più complessi, come descritto
nelle sezioni successive.

Fonti

La descrizione del funzionamento di Random Forest si basa sulla documentazione uffi-
ciale di scikit-learn (https://scikit-learn.org/) e su [8], che introduce l’algorit-
mo e le sue proprietà di ensemble. L’implementazione con MultiOutputRegressor e
ColumnTransformer si rifà alla documentazione di scikit-learn.

3.3 Reti Multi-Layer Perceptron

3.3.1 Reti MLP e Ottimizzazione

Le reti Multi-Layer Perceptron (MLP) sono state scelte per la loro capacità di modellare
relazioni non lineari complesse tra le feature e i target multipli delle campagne PPC,
come descritto nel Capitolo 2. Le MLP sono reti neurali feed-forward composte da strati
di neuroni interconnessi, in grado di apprendere rappresentazioni non lineari tramite
funzioni di attivazione e ottimizzazione degli iperparametri. Tre configurazioni di MLP
sono state sperimentate, variando architetture, meccanismi di regolarizzazione e tecniche
di addestramento per ottimizzare le prestazioni predittive. Le sezioni seguenti descrivono
in dettaglio le fasi di pre-elaborazione comuni, l’implementazione di ciascun modello, il
ruolo di ogni strato e gli iperparametri testati.

Pre-elaborazione dei Dati

Le fasi di pre-elaborazione sono state progettate per preparare i dati per l’addestramento
delle MLP, garantendo stabilità numerica e rappresentazione efficace delle feature. Le fea-
ture utilizzate includono variabili categoriali (lancio, performance, Day of Week, Match
Type Encoded), la similarità e 384 embedding SBERT, come descritto nel Capitolo 2.
I target considerati sono: impressioni, numero di click, spesa, vendite totali a 7 giorni,
ordini totali a 7 giorni, tasso di conversione a 7 giorni e impressioni. Di seguito, le fasi
di pre-elaborazione comuni a tutte le MLP:

• Codifica delle feature categoriali: La feature Day of Week è stata codificata
utilizzando LabelEncoder di scikit-learn per trasformare i valori categoriali in
numerici ordinali, garantendo compatibilità con le operazioni matriciali delle MLP.
Questo passaggio è essenziale per rappresentare le informazioni temporali in modo
numerico [40].

• Riduzione dimensionale degli embedding SBERT (solo per MLP1): Gli em-
bedding SBERT a 384 dimensioni sono stati ridotti a 50 dimensioni utilizzando
UMAP (umap-learn), un algoritmo di riduzione dimensionale non lineare che preser-
va la struttura locale dei dati. UMAP è stato configurato con n components=50,
random state=42 e n jobs=1 per riproducibilità e controllo computazionale. Suc-
cessivamente, è stato applicato il clustering HDBSCAN (hdbscan) con min cluster size=50

51

e min samples=10 per identificare pattern nei dati combinando gli embedding ridot-
ti con feature scalate (Spend, Clicks, 7 Day Total Sales). La feature Cluster

risultante è stata aggiunta al dataset, arricchendo il contesto per l’MLP1 [34, 10].

• Scalatura delle feature non-SBERT: Le feature Impressions, lancio, performance,
Day of Week, Match Type Encoded e similarity sono state standardizzate con
StandardScaler di scikit-learn per garantire media zero e varianza unitaria,
migliorando la stabilità dell’addestramento. Gli embedding SBERT, già normaliz-
zati, sono stati lasciati inalterati. Il modello StandardScaler è stato salvato in un
file stdScaler.pkl per utilizzi futuri [40].

• Trasformazione logaritmica dei target: I target sono stati trasformati con
np.log1p per stabilizzare la varianza e gestire distribuzioni asimmetriche, come
tipico per dati di campagne PPC (es. spesa e vendite). Le predizioni sono state
ritrasformate con np.expm1 per ottenere valori nella scala originale [24].

• Conversione in tensori PyTorch: Le feature e i target sono stati convertiti in
tensori PyTorch di tipo float32 e trasferiti su dispositivo (device, es. GPU) per
sfruttare l’accelerazione hardware [39].

• Split dei dati: I dati sono stati suddivisi in set di addestramento, validazione e
test utilizzando train test split di scikit-learn. Per MLP1, è stato utilizzato
uno split 70%-15%-15%, mentre per MLP2 e MLP3 uno split 70%-15%-15% (train-
val-test). Il parametro random state=42 garantisce riproducibilità [40].

Il codice di pre-elaborazione per MLP1 è riportato di seguito:

from sklearn.preprocessing import Label >>>Encoder , StandardScaler

from umap import UMAP

from hdbscan import HDBSCAN

import numpy as np

import torch

import pickle

le = LabelEncoder ()

df[’Day_of_Week ’] = le.fit_transform(df[’Day_of_Week ’])

features = [’lancio ’, ’performance ’, ’Day_of_Week ’, ’Match Type

Encoded ’, ’similarity ’] + [f’sbert_{i}’ for i in range (384)]

targets = [’Clicks ’, ’Spend’, ’7 Day Total Sales’, ’7 Day Total Orders

(#)’, ’7 Day Conversion Rate’, ’Impressions ’]

sbert_features = [f’sbert_{i}’ for i in range (384)]

Riduzione dimensionale e clustering (solo MLP1)

umap = UMAP(n_components =50, random_state =42, n_jobs =1)

sbert_embeddings = df[sbert_features]. values

sbert_reduced = umap.fit_transform(sbert_embeddings)

scaler_performance = StandardScaler ()

performance_features = [’Spend’, ’Clicks ’, ’7 Day Total Sales’]

performance_data = df[performance_features]. values

performance_scaled = scaler_performance.fit_transform(performance_data)

clustering_data = np.hstack ([sbert_reduced , performance_scaled])

hdbscan_model = HDBSCAN(min_cluster_size =50, min_samples =10)

cluster_labels = hdbscan_model.fit_predict(clustering_data)

df[’Cluster ’] = cluster_labels

features += [’Cluster ’]

52

df.to_csv("dataset_tmp_cluster.csv")

Scalatura feature non -SBERT

scaler = StandardScaler ()

non_sbert_features = [’lancio ’, ’performance ’, ’Day_of_Week ’, ’Match

Type Encoded ’, ’similarity ’]

X = df[features]. values

X[:, :len(non_sbert_features)] = scaler.fit_transform(X[:,

:len(non_sbert_features)])

y = np.log1p(df[targets]. values)

Salva scaler

with open("modelli/stdScaler.pkl", "wb") as f:

pickle.dump(scaler , f)

Converti in tensori

X = torch.tensor(X, dtype=torch.float32).to(device)

y = torch.tensor(y, dtype=torch.float32).to(device)

Split Train -Val -Test

X_train , X_temp , y_train , y_temp = train_test_split(X, y,

test_size =0.1, random_state =42, shuffle=True)

Per MLP2 e MLP3, il codice di pre-elaborazione è simile, senza il clustering HDBSCAN:

le = LabelEncoder ()

df[’Day_of_Week ’] = le.fit_transform(df[’Day_of_Week ’])

features = [’lancio ’, ’performance ’, ’Day_of_Week ’, ’Match Type

Encoded ’, ’similarity ’] + [f’sbert_{i}’ for i in range (384)]

targets = [’Clicks ’, ’Spend’, ’7 Day Total Sales’, ’7 Day Total Orders

(#)’, ’7 Day Conversion Rate’, ’Impressions ’]

X = df[features]. values

y = df[targets]. values

Scalatura feature non -SBERT

scaler = StandardScaler ()

non_sbert_features = [’lancio ’, ’performance ’, ’Day_of_Week ’, ’Match

Type Encoded ’, ’similarity ’]

X[:, :len(non_sbert_features)] = scaler.fit_transform(X[:,

:len(non_sbert_features)])

y = np.log1p(y)

Converti in tensori

X = torch.tensor(X, dtype=torch.float32).to(device)

y = torch.tensor(y, dtype=torch.float32).to(device)

Split Train -Val -Test

X_train , X_temp , y_train , y_temp = train_test_split(X, y,

test_size =0.3, random_state =42, shuffle=True)

X_val , X_test , y_val , y_test = train_test_split(X_temp , y_temp ,

test_size =0.5, random_state =42)

Primo Modello MLP

Descrizione e Funzionamento Il primo modello MLP è una rete feed-forward con
tre strati nascosti, progettata per catturare relazioni non lineari tra feature e target
multipli. La Huber loss (nn.HuberLoss) è stata scelta per la sua robustezza agli outlier
rispetto alla MSE [25]. La struttura è definita come segue:

53

• Strato di input (input dim=390 o 391): Accetta le feature, inclusa Cluster

derivata dal clustering. Questo strato mappa l’input ad alta dimensionalità (es.
384 embedding SBERT) al primo strato nascosto.

• Primo strato nascosto (512 neuroni): Riduce la dimensionalità dell’input e
apprende rappresentazioni intermedie complesse tramite ReLU, che introduce non li-
nearità per catturare pattern non lineari [36]. La dimensione elevata (512) consente
di esplorare un ampio spazio di rappresentazioni.

• Secondo strato nascosto (256 neuroni): Raffina ulteriormente le rappresenta-
zioni, riducendo la complessità e focalizzandosi su feature rilevanti. ReLU mantiene
la non linearità.

• Terzo strato nascosto (128 neuroni): Compatta le informazioni per preparare
l’output, bilanciando capacità espressiva e rischio di overfitting.

• Strato di output (output dim=6): Produce predizioni per i sei target, senza
attivazione finale per consentire valori continui.

Implementazione Il modello è stato implementato in PyTorch con la classe MLP, che
costruisce una rete sequenziale di strati lineari e attivazioni ReLU. L’addestramento
utilizza l’ottimizzatore Adam (lr=0.0001) e la HuberLoss. I dati sono stati suddivisi in
training (70%) e test (30%, usato come validation), con batch di dimensione 256 e 550
epoche. Una barra di avanzamento (tqdm) monitora la perdita di validazione e stima il
tempo rimanente. Il codice è il seguente:

class MLP(nn.Module):

def __init__(self , input_dim , hidden_dims , output_dim):

super(MLP , self).__init__ ()

layers = []

prev_dim = input_dim

for dim in hidden_dims:

layers.append(nn.Linear(prev_dim , dim))

layers.append(nn.ReLU())

prev_dim = dim

layers.append(nn.Linear(prev_dim , output_dim))

self.network = nn.Sequential (* layers)

def forward(self , x):

return self.network(x)

input_dim = X_train.shape [1]

hidden_dims = [512, 256, 128]

output_dim = y_train.shape [1]

model = MLP(input_dim , hidden_dims , output_dim).to(device)

optimizer = torch.optim.Adam(model.parameters (), lr =0.0001)

criterion = nn.HuberLoss ()

epochs = 550

batch_size = 256

train_model(model , X_train , y_train , X_temp , y_temp , epochs ,

batch_size)

54

Iperparametri Testati Gli iperparametri includono:

• hidden dims = [512, 256, 128]: Configurazione degli strati nascosti per bilan-
ciare capacità e complessità.

• batch size = 256: Dimensione del batch per stabilizzare l’addestramento.

• epochs = 550: Numero di epoche per consentire convergenza.

• optimizer = Adam, lr = 0.0001: Ottimizzatore e tasso di apprendimento bassi
per una convergenza graduale.

• criterion = HuberLoss: Perdita robusta agli outlier.

Non sono state applicate regolarizzazione, normalizzazione batch, dropout, scheduler o
early stopping.

Fonti HuberLoss è descritta in [25]. L’implementazione in PyTorch si basa sulla do-
cumentazione ufficiale (https://pytorch.org/). La funzione ReLU è tratta da [36]. Il
clustering UMAP e HDBSCAN è supportato da [34, 10].

Secondo Modello MLP

Descrizione e Funzionamento Il secondo modello MLP introduce regolarizzazioni
(dropout, batch normalization) e un scheduler per migliorare la generalizzazione e la
convergenza. Utilizza una perdita MSE ponderata per bilanciare i target con diverse
scale. La struttura è:

• Strato di input (input dim=390): Accetta le feature senza Cluster, con 384
embedding SBERT.

• Primo strato nascosto (256 neuroni): Mappa l’input a una rappresentazione
intermedia, con BatchNorm1d per stabilizzare la distribuzione delle attivazioni [27],
ReLU [36] e Dropout(0.2) per prevenire l’overfitting [46].

• Secondo strato nascosto (128 neuroni): Raffina le rappresentazioni, con BatchNorm1d,
ReLU e Dropout(0.2) per mantenere la generalizzazione.

• Terzo strato nascosto (64 neuroni): Compatta le informazioni, con le stesse
reg introduzioni per robustezza.

• Strato di output (output dim=6): Predice i target senza attivazione finale.

Implementazione Il modello è implementato in PyTorch con BatchNorm1d e Dropout
in ogni strato nascosto. La perdita MSE (nn.MSELoss) è ponderata inversamente alla
media dei target per bilanciare le scale. L’addestramento utilizza Adam (lr=0.001), un
scheduler ReduceLROnPlateau (factor=0.5, patience=10) e early stopping (patience=20).
I dati sono suddivisi in training (70%), validation (15%) e test (15%), con batch di
dimensione 512 e 100 epoche. Il codice è:

55

weights = torch.tensor (1.0 / (np.mean(y, axis =0) + 1e-6),

dtype=torch.float32).to(device)

class MLP(nn.Module):

def __init__(self , input_dim , hidden_dims , output_dim):

super(MLP , self).__init__ ()

layers = []

prev_dim = input_dim

for dim in hidden_dims:

layers.append(nn.Linear(prev_dim , dim))

layers.append(nn.BatchNorm1d(dim))

layers.append(nn.ReLU())

leggi.append(nn.Dropout (0.2))

prev_dim = dim

layers.append(nn.Linear(prev_dim , output_dim))

self.network = nn.Sequential (* layers)

def forward(self , x):

return self.network(x)

input_dim = X_train.shape [1]

hidden_dims = [256, 128, 64]

output_dim = y_train.shape [1]

model = MLP(input_dim , hidden_dims , output_dim).to(device)

optimizer = torch.optim.Adam(model.parameters (), lr =0.001)

criterion = nn.MSELoss(reduction=’none’)

scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer ,

mode=’min’, factor =0.5, patience =10)

epochs = 100

batch_size = 512

model = train_model(model , X_train , y_train , X_val , y_val , epochs ,

batch_size , weights)

Iperparametri Testati

• hidden dims = [256, 128, 64]: Strati più compatti rispetto al primo modello.

• batch size = 512: Batch più grande per stabilità.

• epochs = 100: Numero ridotto grazie a early stopping.

• optimizer = Adam, lr = 0.001: Tasso di apprendimento più alto.

• dropout = 0.2: Applicato a ogni strato nascosto.

• batch normalization = True: BatchNorm1d per ogni strato.

• scheduler = ReduceLROnPlateau: Riduce il learning rate se la perdita di valida-
zione non migliora.

• early stopping = 20: Ferma l’addestramento dopo 20 epoche senza migliora-
menti.

• criterion = MSELoss (weighted): Perdita ponderata per bilanciare i target.

Fonti La batch normalization è descritta in [27], il dropout in [46], lo scheduler in
ReduceLROnPlateau e l’implementazione MLP si basa su https://pytorch.org/.

56

Terzo Modello MLP

Descrizione e Funzionamento Il terzo modello MLP introduce LayerNorm al posto
di BatchNorm1d, un dropout ridotto e weight decay per una regolarizzazione più leggera,
insieme al gradient clipping per migliorare la stabilità dell’addestramento. HuberLoss è
utilizzata per robustezza. La struttura è:

• Strato di input (input dim=390): Accetta le feature senza Cluster.

• Primo strato nascosto (256 neuroni): Mappa l’input con LayerNorm per nor-
malizzare le attivazioni all’interno di ciascun esempio [5], ReLU [36] e Dropout(0.1)
[46].

• Secondo strato nascosto (128 neuroni): Raffina le rappresentazioni con LayerNorm,
ReLU e Dropout(0.1).

• Terzo strato nascosto (64 neuroni): Compatta le informazioni, con le stesse
tecniche di regolarizzazione.

• Strato di output (output dim=6): Predice i target.

Implementazione Implementato in PyTorch con LayerNorm, Dropout(0.1) e con
weight decay = 1e-5 nell’ottimizzatore Adam (lr=0.005). Il gradient clipping (max norm

= 1.0) previene esplosioni del gradiente. HuberLoss(reduction=’mean’) è utilizzata.
I dati sono suddivisi in training (70%), validation (15%) e test (15%), con batch di
dimensione 512 e 1000 epoche, con early stopping (patience=30). Il codice è:

class MLP(nn.Module):

def __init__(self , input_dim , hidden_dims , output_dim):

super(MLP , self).__init__ ()

layers = []

prev_dim = input_dim

for dim in hidden_dims:

layers.append(nn.Linear(prev_dim , dim))

layers.append(nn.LayerNorm(dim))

layers.append(nn.ReLU())

layers.append(nn.Dropout (0.1))

prev_dim = dim

layers.append(nn.Linear(prev_dim , output_dim))

self.network = nn.Sequential (* layers)

def forward(self , x):

return self.network(x)

input_dim = X_train.shape [1]

hidden_dims = [256, 128, 64]

output_dim = y_train.shape [1]

model = MLP(input_dim , hidden_dims , output_dim).to(device)

optimizer = torch.optim.Adam(model.parameters (), lr=0.005 ,

weight_decay =1e-5)

criterion = nn.HuberLoss(reduction=’mean’)

scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer ,

mode=’min’, factor =0.7, patience =15)

epochs = 1000

batch_size = 512

57

model = train_model(model , X_train , y_train , X_val , y_val , epochs ,

batch_size , patience =30)

Iperparametri Testati

• hidden dims = [256, 128, 64], [512, 256, 128], [1024, 512, 256]: Stra-
ti compatti.

• batch size = da 256, 512 fino a 1024]: Batch grande per stabilità.

• epochs = da 100 a 700: Massimo,con incrementi di 50, con early stopping.

• Regolarizzazione L2.

– optimizer = Adam,RMSprop,AdamW

– lr = da 0.005 a 0.0000001

– weight decay = 1e-5

• layer normalization = True: LayerNorm per ogni strato.

• scheduler = ReduceLROnPlateau: Fattore 0.7, patience=15.

• early stopping = 30: Ferma dopo 30 epoche senza miglioramenti.

• criterion = HuberLoss: Robusta agli outlier.

Fonti La LayerNorm è descritta in [5], il dropout in [46], HuberLoss in [25], e l’imple-
mentazione in PyTorch su https://pytorch.org/.

3.4 Contextual Bandit

3.4.1 Introduzione al Multi-Armed Bandit

Il problema del Multi-Armed Bandit (MAB) è un framework classico di reinforcement
learning, utilizzato per modellare decisioni in ambienti con incertezza, bilanciando l’e-
splorazione di opzioni sconosciute e lo sfruttamento delle opzioni note per massimizzare
una ricompensa cumulativa [44]. Il termine deriva dall’analogia con un giocatore d’az-
zardo che deve scegliere tra più slot machine (“banditi a un braccio”), ciascuna con
una distribuzione di ricompense sconosciuta, decidendo quale leva tirare per ottenere il
massimo guadagno. Formalmente, un MAB è modellato come un insieme di K “bracci”
(azioni), ciascuno associato a una distribuzione di ricompense sconosciuta con valore at-
teso µk. L’agente sceglie un braccio at al tempo t, osserva una ricompensa rt e aggiorna
la propria stima della distribuzione per massimizzare la ricompensa cumulativa su un
orizzonte temporale T . La sfida principale è il compromesso tra esplorazione (provare
bracci per raccogliere informazioni) e sfruttamento (scegliere il braccio con la migliore
ricompensa stimata) [48].

58

Funzionamento

Il funzionamento di un MAB si basa su algoritmi che bilanciano esplorazione e sfrutta-
mento. Tra i più comuni troviamo:

• Epsilon-Greedy: Sceglie il braccio con la ricompensa media ottimale (basandosi
sulle attuali conoscenze) con probabilità 1− ϵ e un braccio casuale con probabilità
ϵ, garantendo esplorazione. In breve l’algoritmo ϵ-greedy segue il seguente processo
decisionale [48]:

At =

{
maxQt(a) (con probabilità 1− ϵ)

Random(a) (con probabilità ϵ)
(3.1)

Figura 3.1: Dove Qt(a) è la stima della ricompensa attesa al tempo t per l’azione a mentre
At è l’azione al tempo t

• Upper Confidence Bound (UCB): Seleziona il braccio con il massimo valo-
re di una stima ottimistica, combinando la ricompensa media con un termine di
incertezza proporzionale al numero di volte che il braccio è stato scelto [4].

• Thompson Sampling: Usa un approccio bayesiano, campionando le ricompen-
se attese da una distribuzione a posteriori e scegliendo il braccio con il valore
campionato più alto [49].

Il regret, definito come la differenza tra la ricompensa attesa di una strategia ottimale
e quella ottenuta, è una metrica chiave per valutare le prestazioni degli algoritmi MAB
[32]. L’obiettivo è minimizzare il regret su T iterazioni.

Usi Comuni

I MAB trovano applicazione in scenari in cui è necessario ottimizzare decisioni in tempo
reale con risorse limitate, come:

• Ottimizzazione di contenuti online: Selezione dinamica di articoli o annunci
per massimizzare clic o engagement [38].

• Test clinici: Allocazione di pazienti a trattamenti sperimentali per ottimizzare i
risultati minimizzando i fallimenti [18].

• Routing adattivo: Ottimizzazione dei percorsi in reti per ridurre i tempi di
latenza [53].

• Gestione di progetti di ricerca: Allocazione di risorse in organizzazioni come
fondazioni scientifiche o aziende farmaceutiche [53].

59

Applicazioni Reali in Aziende

• Google Analytics: Google ha utilizzato MAB per ottimizzare la visualizzazione
dei risultati di ricerca, bilanciando l’esplorazione di nuove configurazioni con lo
sfruttamento di quelle più efficaci [29].

• The Washington Post: Utilizza MAB per testare titoli, miniature di immagini
e articoli suggeriti, massimizzando i clic in finestre temporali brevi, sfruttando la
natura time-sensitive delle notizie [23].

• Stitch Fix: Implementa MAB nella sua piattaforma di sperimentazione per otti-
mizzare le raccomandazioni di prodotti, utilizzando metriche come il lifetime value
(LTV) per valutare le scelte [17].

• Udemy: Applica MAB per il ranking delle unità di raccomandazione (es. caroselli
di corsi), affrontando il problema di ordinamento come un MAB per migliorare
l’engagement degli utenti [50].

3.4.2 Contextual Bandit: Definizione e Differenze

I Contextual Bandit (CB) sono un’estensione dei MAB che incorporano informazioni
contestuali per personalizzare le decisioni. In un CB, l’agente riceve un vettore di contesto
vt ∈ Rd al tempo t, che descrive caratteristiche dell’ambiente o dell’utente (es. dati
demografici, preferenze, comportamento passato). L’agente sceglie un braccio at in base
al contesto, osserva una ricompensa rt e aggiorna il modello per prevedere la ricompensa
attesa per ciascun braccio dato il contesto [33]. La differenza principale rispetto ai MAB
è che i CB modellano la dipendenza tra ricompense e contesto, consentendo decisioni
personalizzate piuttosto che una singola scelta ottimale per tutti gli utenti [45].

Funzionamento

I CB utilizzano algoritmi che combinano il contesto con le stime delle ricompense. Tra i
più noti:

• LinUCB: Assume una relazione lineare tra contesto e ricompensa attesa, uti-
lizzando un intervallo di confidenza per bilanciare esplorazione e sfruttamento
[33].

• LinRel: Simile a LinUCB, ma usa la decomposizione ai valori singolari per stimare
l’incertezza invece della regressione ridge [53].

• UCBogram: Stima funzioni di ricompensa non lineari tramite un estimatore a
tratti costanti (regressogramma) [53].

• Oracle-based: Riduce il problema a una serie di problemi di apprendimento
supervisionato, senza assumere una forma specifica della funzione di ricompensa
[53].

Il regret in un CB è definito rispetto alla strategia ottimale che sceglie il miglior braccio
per ciascun contesto, rendendo il problema più complesso ma più flessibile rispetto ai
MAB [45].

60

Differenze rispetto al Multi-Armed Bandit

• Incorporazione del contesto: I MAB cercano un unico braccio ottimale per
tutti gli utenti, mentre i CB selezionano il braccio migliore per ciascun contesto,
consentendo personalizzazione [38].

• Complessità computazionale: I CB richiedono modelli più complessi per gestire
vettori di contesto ad alta dimensionalità, aumentando il costo computazionale
rispetto ai MAB [37].

• Personalizzazione: I CB sfruttano informazioni contestuali (es. caratteristiche
dell’utente o dell’azione) per decisioni 1:1, mentre i MAB si basano solo sulle
ricompense passate [38].

• Applicazioni: I MAB sono adatti a problemi con ricompense stazionarie e senza
contesto, mentre i CB eccellono in scenari dinamici e personalizzati [45].

Applicazioni Reali di Contextual Bandit

• Instacart: Utilizza CB per personalizzare le raccomandazioni di prodotti in base
al contesto dell’utente (es. posizione, storico acquisti), affrontando la sfida di uno
spazio di feature ampio [47].

• Stitch Fix: Integra CB nella sua piattaforma per raccomandazioni personalizzate
di abbigliamento, utilizzando il contesto delle preferenze degli utenti per migliorare
il lifetime value [17].

• Azienda di ridesharing (non specificata): Ha implementato CB per persona-
lizzare promozioni per conducenti e passeggeri, richiedendo un team di 50 ingegneri
senior per gestire la complessità [37].

• Optimizely: Usa CB per fornire esperienze personalizzate su siti web, adattando
contenuti in tempo reale in base a caratteristiche come dispositivo, posizione o
comportamento dell’utente [38].

3.4.3 Implementazione Contextual Bandit

Il modello Contextual Bandit (CB) è stato adottato per affrontare il problema di allo-
cazione dinamica dei budget pubblicitari nelle campagne PPC di Amazon, bilanciando
esplorazione e sfruttamento per ottimizzare la ricompensa attesa, definita come una com-
binazione di vendite e costi. Questo modello si basa sull’integrazione con una rete Multi-
Layer Perceptron (MLP) precedentemente addestrata, descritta nella Sezione 3.3.1, per
inizializzare le stime delle ricompense. Questa sezione descrive il funzionamento generale
del Contextual Bandit, il processo di implementazione, i dettagli specifici del modello uti-
lizzato e la pipeline completa, con particolare attenzione agli aspetti del bandit, evitando
di approfondire l’MLP, che sarà trattato nel capitolo successivo.

Funzionamento del Contextual Bandit

Un Contextual Bandit è un’estensione del problema Multi-Armed Bandit (MAB), che
incorpora informazioni contestuali per personalizzare le decisioni. In questo contesto,

61

ogni “braccio” rappresenta un’azione possibile (es. una strategia di bidding), e il vet-
tore di contesto descrive caratteristiche specifiche della campagna PPC, come lancio,
performance, Day of Week, Match Type Encoded, similarity, Cluster e 384 embed-
ding SBERT, come descritto nel Capitolo 2.2. L’obiettivo è selezionare l’azione che
massimizza la ricompensa attesa, definita come (3.2), dove k è un fattore di penaliz-
zazione per i costi (nel codice, k = 0.5). Il modello utilizza un approccio basato su
Thompson Sampling, campionando le ricompense attese da distribuzioni gaussiane per
ogni azione e aggiornando le stime in base alle ricompense osservate [49].

R = sales− k ∗ spent (3.2)

Figura 3.2: Formula per la stima del reward atteso (R), dove sales rappresenta le vendite
generate e spent la spesa pubblicitaria sostenuta per una determinata keyword in un dato
giorno di campagna. Il parametro k regola l’entità della penalizzazione associata ai costi.

Il funzionamento si articola in tre fasi principali:

• Inizializzazione: Le stime iniziali delle ricompense per ciascun braccio sono calco-
late utilizzando le predizioni dell’MLP su un set di dati, selezionando i contesti con
ricompense superiori al quantile 0.8 per inizializzare i parametri delle distribuzioni
gaussiane (mu e sigma).

• Selezione delle azioni: Per ogni contesto, il modello campiona ricompense at-
tese da una distribuzione normale per ogni azione e sceglie l’azione con la ricom-
pensa campionata più alta. Questo approccio bayesiano bilancia esplorazione e
sfruttamento [11].

• Aggiornamento: Le distribuzioni gaussiane (mu e sigma) di ciascun braccio ven-
gono aggiornate con una media ponderata basata sui contesti selezionati, garan-
tendo che il modello si adatti dinamicamente ai nuovi dati osservati [32].

Il regret, definito come la differenza tra la ricompensa massima possibile e quella otte-
nuta, è calcolato per valutare le prestazioni del modello. La pipeline include anche una
funzione per identificare il contesto ottimale, che massimizza la ricompensa attesa, utile
per suggerire strategie di bidding ottimali.

Implementazione del Modello

Il modello Contextual Bandit è stato implementato in PyTorch come una classe ContextualBandit,
che definisce un insieme di modelli lineari (uno per ogni azione) per stimare le ricompense
attese in base al contesto. La pipeline include l’inizializzazione con l’MLP, l’addestra-
mento del bandit, il calcolo del regret e la ricerca del contesto ottimale. Di seguito, i
dettagli specifici del modello e della pipeline.

Struttura del Modello La classe ContextualBandit è definita con i seguenti com-
ponenti:

• Input: Un vettore di contesto di dimensione context dim (es. 391, incluse le
feature e la Cluster derivata dal clustering).

62

• Modelli lineari: Una lista di num actions modelli lineari (nn.Linear), ciascuno
mappante il contesto a una ricompensa scalare per un’azione specifica.

• Distribuzioni gaussiane: Per ogni azione, i parametri mu (media) e sigma (de-
viazione standard) modellano la distribuzione delle ricompense attese, utilizzate
per il campionamento in stile Thompson Sampling.

• Metodo forward: Calcola le ricompense attese per tutte le azioni dato un conte-
sto.

• Metodo sample rewards: Campiona ricompense da distribuzioni gaussiane per
ogni azione, utilizzando torch.normal per implementare Thompson Sampling.

Il codice della classe ContextualBandit è:

class ContextualBandit(nn.Module):

def __init__(self , context_dim , num_actions):

super(ContextualBandit , self).__init__ ()

self.num_actions = num_actions

self.context_dim = context_dim

self.action_models = nn.ModuleList ([nn.Linear(context_dim , 1)

for _ in range(num_actions)])

self.mu = torch.zeros(num_actions , context_dim)

self.sigma = torch.ones(num_actions , context_dim)

def forward(self , context):

rewards = torch.stack([model(context) for model in

self.action_models], dim =1).squeeze (-1)

return rewards

def sample_rewards(self , context):

sampled_rewards = torch.zeros(context.size (0),

self.num_actions).to(context.device)

for a in range(self.num_actions):

sampled_mu =

torch.normal(mean=self.mu[a].to(context.device),

std=self.sigma[a].to(context.device))

sampled_rewards [:, a] = torch.matmul(context , sampled_mu)

return sampled_rewards

Inizializzazione con MLP L’inizializzazione del bandit utilizza le predizioni del-
l’MLP per calcolare una ricompensa iniziale basata su sales - k * spend. I conte-
sti con ricompense superiori al quantile 0.8 sono utilizzati per stimare mu (media) e
sigma (deviazione standard) per ogni azione. Questo approccio di warm-start accelera
la convergenza rispetto a un’inizializzazione casuale [22]. Il codice è:

def initialize_bandit_with_mlp(bandit , mlp_model , X, k, device):

mlp_model.eval()

X = X.to(device)

with torch.no_grad ():

y_pred = mlp_model(X)

rewards = compute_reward(y_pred , k)

for a in range(bandit.num_actions):

bandit.mu[a] = torch.mean(X[rewards >

rewards.quantile (0.8)].cpu(), dim =0)

bandit.sigma[a] = torch.std(X[rewards >

rewards.quantile (0.8)].cpu(), dim =0) + 1e-6

63

Funzione di Ricompensa La ricompensa è calcolata come Vendite − k · Spesa, con
k = 0.5, per bilanciare l’ottimizzazione dei ricavi con la minimizzazione dei costi. La
funzione compute reward ritrasforma i target predetti dall’MLP (np.expm1) per ottenere
valori nella scala originale:

def compute_reward(y, k=0.5):

y = np.expm1(y.cpu().numpy ())

sales = y[:, 2]

spend = y[:, 1]

reward = sales - k * spend

return torch.tensor(reward , dtype=torch.float32)

Addestramento L’addestramento del bandit utilizza l’ottimizzatore Adam (lr spe-
cificato come parametro) e la perdita MSE per minimizzare la differenza tra le ricom-
pense previste e quelle osservate. Per ogni batch, il modello campiona azioni tramite
sample rewards, calcola la perdita e aggiorna i parametri dei modelli lineari e le distri-
buzioni gaussiane (mu, sigma) con una media ponderata (90% valore precedente, 10%
nuovo). Il codice è:

def train_bandit(bandit , X, y, epochs , batch_size , lr , k, device):

bandit = bandit.to(device)

optimizer = torch.optim.Adam(bandit.parameters (), lr=lr)

criterion = nn.MSELoss ()

bandit.train ()

rewards_history = []

actions_history = []

X = X.to(device)

y = y.to(device)

for epoch in tqdm(range(epochs), desc=f"Addestramento Bandit

(lr={lr}, batch ={ batch_size })"):

indices = torch.randperm(X.shape [0])

for start in range(0, X.shape[0], batch_size):

batch_indices = indices[start:start + batch_size]

X_batch = X[batch_indices]

y_batch = y[batch_indices]

optimizer.zero_grad ()

sampled_rewards = bandit.sample_rewards(X_batch)

actions = torch.argmax(sampled_rewards , dim =1)

rewards = compute_reward(y_batch , k).to(device)

predicted_rewards = bandit(X_batch)

selected_rewards =

predicted_rewards[torch.arange(X_batch.size (0)),

actions]

loss = criterion(selected_rewards , rewards)

loss.backward ()

optimizer.step()

for a in range(bandit.num_actions):

mask = actions == a

if mask.sum() > 0:

bandit.mu[a] = 0.9 * bandit.mu[a] + 0.1 *

torch.mean(X_batch[mask].cpu(), dim=0)

bandit.sigma[a] = 0.9 * bandit.sigma[a] + 0.1 *

(torch.std(X_batch[mask].cpu(), dim=0) + 1e-6)

64

rewards_history.append(rewards.mean().item())

actions_history.append(actions.cpu().numpy ())

return rewards_history , actions_history

Calcolo del Regret La funzione calculate regret(bandit, X, y, k, device) im-
plementa la misura del regret cumulativo associato a una politica di bandit contestuale
valutata su un dataset di contesti X e osservazioni y. Di seguito si fornisce una descri-
zione dettagliata, passo per passo, del comportamento e delle operazioni effettuate dal
codice.

• Input attesi: bandit è un modello (tipicamente una sottoclasse di torch.nn.Module)
che, dato un batch di contesti X ∈ RN×d, restituisce una matrice di ricompense
predette con shape (N,A), dove A è il numero di azioni. X e y sono tensori PyTorch
contenenti rispettivamente i contesti e i target osservati; k è un parametro scala-
re usato nella funzione di calcolo della ricompensa; device indica la destinazione
(CPU/GPU).

• Variabile esterna: il codice fa riferimento a una variabile version che decide
quale procedura usare; la variabile viene settata in ambiente globale e dirige l’ese-
cuzione del codice allenando il bandit con un calcolo del regret differente a seconda
della versione scelta. Questa variabile cambia drasticamente il comportamento del
bandit, come verrà ampiamente spiegato nel Capitolo 4, in base al valore della
version i risultati cambieranno notevolmente.

Di seguito verrà esposta la modalità di esecuzione e gestione del device In principio:

• bandit.eval() mette il modello in modalità di valutazione, disattivando dro-
pout/batchnorm in training mode. Questo è appropriato per ottenere predizioni
deterministiche dal modello durante la valutazione.

• X = X.to(device) e y = y.to(device) assicurano che i tensori siano collocati
sullo stesso device del modello, evitando errori di tipo/destinazione durante le
operazioni successive.

• Vengono inizializzate due variabili numeriche: max regret e cumulative regret,
che saranno popolate e restituite come risultato della funzione.

Operazioni principali nella branch version == 1

1. rewards pred = bandit(X): il modello produce la matrice delle ricompense pre-
dette di forma (N,A).

2. max rewards = torch.max(rewards pred, dim=1)[0]: per ogni riga (contesto)
si calcola il valore massimo predetto tra le azioni. Risultato atteso ∈ RN .

3. sampled rewards = bandit.sample rewards(X): si invoca il metodo di sampling
già visto nel codice 3.4.3.

65

4. actions = torch.argmax(sampled rewards, dim=1): si seleziona l’azione scelta
dalla politica del bandit in quel campione (argmax sulle ricompense campionate)
— vettore di dimensione N contenente indici interi.

5. actual rewards = compute reward(y,k).to(device): viene calcolata la ricom-
pensa osservata a partire dai target reali y e dal parametro k. Il risultato è tra-
slato sul device corrente. Nel codice della branch 1 questa variabile viene calcolata
ma non viene utilizzata per determinare max regret o cumulative regret (vedi
osservazione sotto).

6. selected rewards = rewards pred[torch.arange(X.size(0)), actions]: per
ciascun contesto si estrae il valore di ricompensa predetta corrispondente all’azione
scelta dalla policy (indexing per riga).

7. max regret = max rewards.sum().item() e cumulative regret = (max rewards

- selected rewards).sum().item(): si sommano rispettivamente i massimi pre-
detti su tutte le istanze e la differenza tra il massimo predetto e la ricompensa pre-
detta per l’azione selezionata; il risultato viene convertito in valore Python scalare
tramite .item().

Operazioni principali nella branch version == 2

1. Si calcolano rewards pred = bandit(X) come sopra.

2. actual rewards = compute reward(y, k).to(device): qui le ricompense osser-
vate, calcolate da compute reward, vengono impiegate direttamente come bench-
mark. Il codice assegna max rewards = actual rewards, assumendo che actual-
rewards rappresenti il valore massimo raggiungibile (o la ricompensa “ottima”
osservata) per ciascun contesto.

3. sampled rewards = bandit.sample rewards(X) e actions = torch.argmax(s-
ampled rewards, dim=1): come nella versione 1 si ottengono le azioni scelte in
funzione di un campionamento.

4. selected rewards = rewards pred[torch.arange(X.size(0)), actions]: si estrae
la predizione corrispondente all’azione scelta.

5. max regret e cumulative regret sono poi calcolati usando actual rewards come
riferimento di massima e la differenza rispetto a selected rewards.

Osservazioni rilevanti sul comportamento e sulle assunzioni del codice

• Diversa definizione di benchmark: la differenza sostanziale tra le due branch
è che la versione 1 usa come benchmark il valore massimo predetto dal modello
per ogni contesto, mentre la versione 2 usa le ricompense osservate (derivate da
y) come benchmark. Questa scelta cambia radicalmente la definizione operativa di
max rewards e quindi del calcolo del regret.

• Shape e compatibilità: l’accesso rewards pred[torch.arange(X.size(0)),

actions] presuppone che rewards pred abbia shape (N,A) e che actions sia
un vettore di indici interi (dtype torch.long) di lunghezza N . Se actions o le
dimensioni non combaciano, si verificheranno errori di indexing.

66

• Ruolo di bandit.sample rewards: questa funzione è concettualmente cruciale:
essa realizza il campionamento della politica (ad es. Thompson sampling). La
sua implementazione determina il comportamento esplorativo del bandit e la na-
tura statistica delle azioni selezionate; il codice assume che il campionamento sia
riproducibile e compatibile con torch.no grad().

• Possibilità di regret negativo: il calcolo
∑

(max rewards−selected rewards)
può produrre valori negativi se selected rewards supera max rewards (ad esem-
pio per incongruenze tra predizioni e benchmark). Ciò avviene in particolare se
in versione 1 i massimi predetti sono in realtà inferiori alle predizioni per azioni
specifiche, o per discrepanze di scala tra actual rewards e rewards pred. Il feno-
meno è sintomatico di differenze semantiche tra ”massimo predetto” e ”ricompensa
osservata”.

• Uso di .sum().item(): la conversione a scalare Python è comoda per la reporti-
stica, ma occorre attenzione in presenza di dataset molto grandi (possibili overflow)
o quando si desidera conservare la granularità vettoriale delle misure.

• Dipendenza da variabili esterne: la presenza della variabile version (non
passata come argomento) rende la funzione dipendente dallo stato esterno; questo
può complicare il testing unitario e la riproducibilità se la variabile non è gestita
esplicitamente.

• Tipi e dispositivi: il codice converte actual rewards e i tensori su device, ma
non verifica esplicitamente i dtype (es. float32 vs float64) né la congruenza tra
i tipi delle variabili indicizzanti. Tali discrepanze possono causare warning o errori
silenti nelle operazioni aritmetiche.

Output La funzione restituisce due scalari Python:

(max regret, cumulative regret)

dove max regret è la somma dei valori di riferimento (massimi) su tutte le istanze
e cumulative regret è la somma delle differenze per istanza tra il riferimento e la
ricompensa effettivamente associata all’azione scelta dalla politica. Entrambe le quantità
sono computate secondo la definizione concreta scelta nella branch corrispondente alla
variabile version.

La descrizione sopra fornisce un resoconto tecnico e puntuale delle operazioni svolte
dal frammento di codice; non vengono qui tratte conclusioni in merito alla capacità di
generalizzazione del metodo, lasciando tale valutazione alle analisi empiriche e statistiche
riportate separatamente.

def calculate_regret(bandit , X, y,k,device):

bandit.eval()

X = X.to(device)

y = y.to(device)

max_regret = 0

cumulative_regret = 0

if version == 1:

with torch.no_grad ():

rewards_pred = bandit(X)

67

max_rewards = torch.max(rewards_pred , dim =1) [0]

sampled_rewards = bandit.sample_rewards(X)

actions = torch.argmax(sampled_rewards , dim =1)

actual_rewards = compute_reward(y,k).to(device)

selected_rewards = rewards_pred[torch.arange(X.size (0)),

actions]

max_regret = max_rewards.sum().item()

cumulative_regret = (max_rewards -

selected_rewards).sum().item()

elif version == 2:

with torch.no_grad ():

rewards_pred = bandit(X)

actual_rewards = compute_reward(y, k).to(device)

max_rewards = actual_rewards # Usa ricompense reali come

massimo

sampled_rewards = bandit.sample_rewards(X)

actions = torch.argmax(sampled_rewards , dim =1)

selected_rewards = rewards_pred[torch.arange(X.size (0)),

actions]

max_regret = max_rewards.sum().item()

cumulative_regret = (max_rewards -

selected_rewards).sum().item()

return max_regret , cumulative_regret

Ricerca del Contesto Ottimale La funzione find optimal input identifica il con-
testo e l’azione che massimizzano la ricompensa attesa, ritrasformando le feature stan-
dardizzate (scaler features.inverse transform) per ottenere valori interpretabili.
Utilizza l’MLP per stimare vendite, spesa e click per il contesto ottimale:

def find_optimal_input(bandit , mlp_model , X_test , y_test ,

scaler_features , features , k, device):

bandit.eval()

X_test = X_test.to(device)

with torch.no_grad ():

rewards_pred = bandit(X_test)

max_rewards , best_actions = torch.max(rewards_pred , dim =1)

best_idx = torch.argmax(max_rewards)

best_context = X_test[best_idx].cpu().numpy()

best_action = best_actions[best_idx].item()

best_reward = max_rewards[best_idx].item()

non_sbert_indices = [features.index(f) for f in

[’Impressions ’, ’lancio ’, ’performance ’, ’Day_of_Week ’,

’Match Type Encoded ’, ’similarity ’, ’Cluster ’]]

best_context_real = best_context.copy()

best_context_real[non_sbert_indices] =

scaler_features.inverse_transform(

best_context[non_sbert_indices]. reshape(1, -1))[0]

best_context_tensor = torch.tensor(best_context ,

dtype=torch.float32).unsqueeze (0).to(device)

y_pred = mlp_model(best_context_tensor)

y_pred_real = np.expm1(y_pred.cpu().numpy ())[0]

sales = y_pred_real [2]

spend = y_pred_real [1]

68

click = y_pred_real [0]

return {

’best_context ’: best_context_real ,

’best_action ’: best_action ,

’best_reward ’: best_reward ,

’predicted_sales ’: sales ,

’predicted_spend ’: spend ,

’predicted_click ’: click ,

’features ’: features

}

Dettagli della Pipeline

La pipeline completa integra le seguenti fasi:

1. Pre-elaborazione dei dati: I dati sono stati preprocessati come descritto nel
Capitolo 2.2, includendo la codifica delle feature categoriali, la standardizzazione
delle feature non-SBERT, la trasformazione logaritmica dei target e la generazione
della feature Cluster tramite UMAP e HDBSCAN. I dati sono stati convertiti in
tensori PyTorch e suddivisi in training, validation e test.

2. Inizializzazione del bandit: La funzione initialize bandit with mlp utilizza
le predizioni dell’MLP per calcolare le ricompense iniziali e inizializzare mu e sigma
per ogni azione, basandosi sui contesti con ricompense elevate (quantile 0.8).

3. Addestramento: La funzione train bandit addestra il modello per un numero
specificato di epoche, utilizzando batch per aggiornare i modelli lineari e le di-
stribuzioni gaussiane. La perdita MSE è minimizzata per allineare le ricompense
previste a quelle osservate, con un approccio Thompson Sampling per selezionare
le azioni.

4. Valutazione del regret: La funzione calculate regret valuta le prestazioni
calcolando il max regret e il cumulative regret, fornendo una misura quantitativa
dell’efficacia del modello.

5. Ottimizzazione del contesto: La funzione find optimal input identifica il con-
testo e l’azione ottimali, ritrasformando le feature per interpretabilità e utilizzando
l’MLP per stimare i target associati.

La pipeline è progettata per essere modulare e scalabile, con salvataggio delle stime delle
ricompense e delle azioni in rewards history e actions history per analisi successive.

Iperparametri Testati

Gli iperparametri del bandit includono:

• num actions: Numero di azioni possibili, nel codice viene inizializzata a 5, fonda-
mentale per definire i bracci.

• context dim: Dimensione del contesto (es. 391 con Cluster).

• lr: Tasso di apprendimento per l’ottimizzatore Adam, passato come parametro
alla funzione train bandit.

69

• batch size: Dimensione del batch per l’addestramento.

• epochs: Numero di epoche per l’addestramento.

• k = 0.5: Fattore di penalizzazione nella funzione di ricompensa.

È stata condotta una grid search, i parametri sono stati scelti per bilanciare convergenza
e prestazioni.

Fonti

Il modello si basa su Thompson Sampling [49], con dettagli implementativi ispirati a [11].
La teoria dei Contextual Bandit è descritta in [33] e [32]. L’inizializzazione warm-start
è supportata da [22]. L’implementazione in PyTorch si basa su [39].

3.4.4 Altri esperimenti effettuati

In questa sezione vengono presentati e discussi gli esperimenti condotti al fine di valutare
l’efficacia del modello di Contextual Bandit applicato alle campagne pubblicitarie PPC di
Amazon. L’obiettivo principale è stato quello di analizzare in che modo l’integrazione di
una rete Multi-Layer Perceptron (MLP) potesse contribuire a ridurre il tempo necessario
al bandit per convergere verso un comportamento ottimale, limitando cos̀ı il regret nelle
fasi iniziali di apprendimento. In scenari caratterizzati da scarsità di dati storici, come
quello considerato in questa tesi, l’utilizzo di un modello neurale permette infatti di
realizzare un processo di warm start, evitando di partire completamente da zero nella
fase esplorativa.

Durante le prime iterazioni sperimentali è emerso un problema critico: il regret calco-
lato dal bandit risultava negativo e di magnitudine elevata (in media alcune centinaia),
con valori che in alcuni casi raggiungevano circa −800%. Una tale situazione non è ma-
tematicamente plausibile, in quanto implica che l’algoritmo sia in grado di performare
meglio rispetto allo scenario reale di riferimento, portando a risultati distorti e potenzial-
mente fuorvianti. Tale anomalia era riconducibile alla modalità con cui era stato definito
il meccanismo di calcolo della ricompensa (reward). Nella prima implementazione (3.4.3),
infatti, la reward era derivata direttamente dai dati reali (y), con la conseguenza che il
bandit poteva erroneamente sovrastimare le vendite. Questo effetto era ulteriormente
amplificato dall’ottimizzazione del parametro K, che modulava le predizioni verso valori
atipici, causando rewards artificialmente elevate.

Per superare questa criticità, si è modificata la definizione della funzione di ricompen-
sa, calcolandola non più sui dati reali, bens̀ı sulle predizioni generate dal bandit stesso,
in linea con l’impostazione classica della teoria dei bandit. In questo modo, i risultati ot-
tenuti si sono dimostrati più coerenti con la realtà: il regret medio è tornato ad assumere
valori positivi, oscillando in un intervallo compreso tra lo 0% e il 40%. Tale correzione
ha reso i risultati più interpretabili e scientificamente validi.

Oltre alla ridefinizione della funzione di ricompensa, è stata condotta una serie di
esperimenti volti a confrontare diverse configurazioni del modello. In particolare, si è
analizzato:

• l’utilizzo congiunto di bandit e MLP(3.4.3);

• l’impiego del bandit in assenza di MLP;

70

• l’integrazione di un’MLP priva di pesi iniziali, per valutare l’impatto dell’addestra-
mento da zero;

• l’inserimento di una rete neurale di dimensioni ridotte all’interno del bandit, al fine
di esplorare l’efficacia di architetture più compatte.

È opportuno sottolineare che i primi tre esperimenti sopra menzionati non verranno
descritti nel dettaglio dal punto di vista implementativo, poiché la metodologia adottata
risulta relativamente banale. In particolare, nel secondo caso è stato sufficiente disatti-
vare la riga di codice responsabile della chiamata alla MLP, consentendo cos̀ı al bandit
di operare senza alcun supporto neurale. Analogamente, nel terzo esperimento è stata
disattivata la riga che caricava i pesi pre-addestrati della rete, forzando di fatto l’MLP
a partire da zero. Tali modifiche, pur essendo concettualmente rilevanti per l’analisi
comparativa dei risultati, non introducono alcuna complessità tecnica significativa e non
richiedono pertanto un’illustrazione programmatica approfondita all’interno della tesi.

Utilizzo di una Neural Network nel contextual bandit

In questa implementazione del ContextualBandit si introduce la possibilità di utilizzare,
per ciascuna azione, una rete neurale di tipo Multi-Layer Perceptron (MLP) anziché
un singolo strato lineare. Questo consente al modello di apprendere rappresentazioni
più complesse del contesto, migliorando potenzialmente la capacità predittiva in scenari
caratterizzati da alta dimensionalità e non linearità. Di seguito si riporta il codice:

class ContextualBandit(nn.Module):

def __init__(self , context_dim , num_actions):

super(ContextualBandit , self).__init__ ()

self.num_actions = num_actions

self.context_dim = context_dim

if(bandit_nn):

self.action_models = nn.ModuleList ([

nn.Sequential(

nn.Linear(context_dim , 64), # Primo strato nascosto

nn.ReLU(),

nn.Linear (64, 32), # Secondo strato nascosto

nn.ReLU(),

nn.Linear (32, 1) # Strato di output

) for _ in range(num_actions)

])

else:

self.action_models = nn.ModuleList ([nn.Linear(context_dim ,

1) for _ in range(num_actions)])

self.mu = torch.zeros(num_actions , context_dim)

self.sigma = torch.ones(num_actions , context_dim)

Il cuore di questa implementazione risiede nel blocco condizionato dalla variabile
bandit nn. Quando essa è attiva, ciascun modello associato a una delle possibili azioni
viene realizzato come una rete neurale sequenziale composta da tre livelli principali:

• Primo strato nascosto: nn.Linear(context dim, 64). Questo livello riceve
in input il contesto, rappresentato da un vettore di dimensione context dim, e
lo proietta in uno spazio latente di dimensione 64. La scelta di aumentare la

71

dimensionalità rispetto all’input consente al modello di catturare combinazioni più
ricche e complesse delle variabili contestuali. L’attivazione ReLU introdotta subito
dopo riduce la linearità del modello e permette di apprendere funzioni non lineari,
fondamentali in scenari reali dove le relazioni tra contesto e reward non sono quasi
mai lineari.

• Secondo strato nascosto: nn.Linear(64, 32). Qui si riduce la dimensiona-
lità dallo spazio a 64 unità a 32 unità. Questa riduzione graduale ha lo scopo di
comprimere le informazioni mantenendo al contempo le caratteristiche più rilevan-
ti. Anche in questo caso, la funzione di attivazione ReLU permette di introdurre
ulteriore non linearità e di garantire una migliore capacità di generalizzazione.

• Strato di output: nn.Linear(32, 1). L’ultimo livello restituisce un singolo
valore, che rappresenta la stima del reward atteso per l’azione corrispondente dato
il contesto. Si tratta di un’uscita scalare, coerente con il paradigma del bandit,
dove l’obiettivo è stimare il guadagno potenziale di ciascuna azione in funzione
delle informazioni disponibili.

Nel caso in cui la variabile bandit nn non sia attiva, il modello adotta un ap-
proccio più semplice e lineare: per ciascuna azione viene definito un singolo strato
nn.Linear(context dim, 1). Questa configurazione corrisponde a un modello linea-
re classico(già visto nel paragrafo 3.4.3) , in cui la previsione del reward è ottenuta
tramite una combinazione lineare delle feature contestuali.

Questa implementazione risulta dunque flessibile: da un lato permette di mantenere
la semplicità e l’efficienza di un modello lineare, dall’altro consente di sfruttare la potenza
espressiva delle reti neurali profonde qualora si voglia affrontare un problema con relazioni
complesse tra contesto e reward.

Optimal inputs: ricerca delle migliori keyword

Un ulteriore elemento di rilievo negli esperimenti effettuati è rappresentato dalla funzione
find optimal input, il cui obiettivo è individuare, a partire dai modelli già allenati, le
combinazioni ottimali di iperparametri di addestramento per trovare il bandit che meglio
minimizza il regret. Questa procedura permette quindi di ricavare, per la configurazione
scelta, le 10 migliori azioni in termini di reward previsto, fornendo una base operativa
utile per la valutazione dell’impatto delle scelte di targeting sulle performance delle
campagne PPC.

Il codice della funzione è riportato di seguito:

def find_optimal_input(bandit , mlp_model , X_test , y_test ,

scaler_features , features , k, device , top_n =10):

bandit.eval()

X_test = X_test.to(device)

with torch.no_grad ():

Predict rewards for each context and action

rewards_pred = bandit(X_test) # Shape: (N, num_actions)

max_rewards , best_actions = torch.max(rewards_pred , dim =1) #

Max reward and action per context

Get the top N contexts with highest rewards

top_n_indices = torch.topk(max_rewards , k=min(top_n ,

len(max_rewards)), largest=True).indices

72

top_contexts = X_test[top_n_indices].cpu().numpy()

top_actions = best_actions[top_n_indices].cpu().numpy ()

top_rewards = max_rewards[top_n_indices].cpu().numpy ()

Convert contexts to real values (inverse standardization)

non_sbert_indices = [features.index(f) for f in [’lancio ’,

’performance ’, ’Day_of_Week ’, ’Match Type Encoded ’,

’similarity ’]]

top_contexts_real = top_contexts.copy()

top_contexts_real [:, non_sbert_indices] =

scaler_features.inverse_transform(top_contexts [:,

non_sbert_indices])

Predict targets with MLP for Sales , Spend , Clicks , and

Impressions

if(mlp_model):

top_contexts_tensor = torch.tensor(top_contexts ,

dtype=torch.float32).to(device)

y_pred = mlp_model(top_contexts_tensor)

y_pred_real = np.expm1(y_pred.cpu().numpy ())

else:

y_pred_real = np.expm1(y_test[top_n_indices].cpu().numpy ())

results = []

for i in range(len(top_n_indices)):

result = {

’best_context ’: top_contexts_real[i],

’best_action ’: top_actions[i],

’best_reward ’: top_rewards[i],

’predicted_sales ’: y_pred_real[i, 2], # 7 Day Total

Sales

’predicted_spend ’: y_pred_real[i, 1], # Spend

’predicted_click ’: y_pred_real[i, 0], # Clicks

’predicted_impression ’: y_pred_real[i, 5], #

Impressions

’features ’: features

}

results.append(result)

return results

La logica implementata si articola nei seguenti passaggi principali:

• Valutazione del bandit: il modello viene posto in modalità eval e, senza
aggiornamento dei gradienti, calcola i reward previsti per ciascun contesto e azione.

• Selezione delle azioni ottimali: per ogni contesto si individua l’azione con
reward massimo e si ordinano le migliori combinazioni, estraendo i primi N risultati
(per default N = 10).

• Riconversione delle feature: i contesti selezionati vengono riportati alle scale
originali tramite l’inversa dello standardizzatore, cos̀ı da rendere leggibili i valori
reali di input.

• Predizione delle metriche di business: se disponibile, la rete MLP viene utiliz-
zata per stimare grandezze operative (vendite, spesa, click, impression). In assenza
di MLP, vengono invece recuperati i valori reali di test.

73

• Strutturazione dei risultati: per ciascuna delle top combinazioni viene creato
un dizionario che include contesto, azione ottimale, reward previsto e metriche di
business associate.

In sintesi, la funzione consente di tradurre le capacità predittive del modello in rac-
comandazioni pratiche, identificando i contesti più promettenti e le azioni più redditizie
da intraprendere, e rendendo cos̀ı il bandit uno strumento operativo per l’ottimizzazione
delle campagne pubblicitarie.

Tabella 3.1: Esempio di ”optimal input”: Top 10 combinazioni ottimali di keyword e
parametri stimati dal bandit con MLP.

Keyword Comb. Azione Reward Previsto Vendite Previste Spesa Prevista Click Previsti

burro struccante da viaggio 1 3 0.1150 0.87 1.00 13.00

burro struccante al cocco 2 3 0.1141 1.37 1.00 1.00

detergente viso 3 3 0.1113 0.46 1.00 4.00

latte detergente viso pelle mista 4 3 0.1102 1.53 1.00 1.00

burro struccante viso e occhi naturale 5 3 0.1098 0.42 1.00 3.00

burro struccante viso e occhi 6 3 0.1098 2.04 3.00 1255.00

struccante viso e occhi 7 3 0.1098 1.22 2.00 54.00

garnier struccante waterproof 8 3 0.1097 0.91 1.00 1.00

struccante viso e occhi 9 3 0.1096 0.42 1.00 31.00

burro struccante spugna 10 3 0.1092 0.48 1.00 1.00

Oltre alle colonne visibili in Tabella 3.1 sono presenti nell’ouput originale del modello
anche ulteriori colonne quali Predicted Impression,lancio,performance,Day of Week,Match
Type Encoded,similarity,sbert 0,sbert 1,. . . ,sbert 383 i quali sono stati esclusi per
permettere una migliore visualizzazione di un esempio di output.

74

Capitolo 4

Risultati ottenuti

In questo capitolo vengono presentati e analizzati i risultati sperimentali derivanti dai
modelli introdotti nel Capitolo 3. L’obiettivo principale è quello di valutare le prestazioni
delle diverse configurazioni proposte, discutendo in maniera critica gli errori di predizione
e i valori di regret associati. Per ciascun modello testato, e per le relative varianti,
verranno quindi messi in evidenza i punti di forza, le limitazioni e le implicazioni in
termini di applicabilità pratica al contesto delle campagne pubblicitarie PPC su Amazon.

Un’attenzione particolare sarà riservata alle architetture che integrano reti neurali,
con particolare focus sull’approccio Contextual Bandit. Quest’ultimo rappresenta infatti
il nucleo innovativo della ricerca, ed è il modello che meglio si presta a mettere in evidenza
la relazione tra contesto e scelte di ottimizzazione pubblicitaria. Nei casi più significativi,
i risultati saranno accompagnati da rappresentazioni grafiche costruite ad hoc, al fine
di facilitare la comprensione visiva dei comportamenti osservati e delle dinamiche di
apprendimento.

La struttura del capitolo segue un approccio comparativo: dapprima verranno pre-
sentati i risultati dei modelli di base, successivamente quelli delle loro varianti, per poi
approfondire i casi in cui l’integrazione di una MLP o l’applicazione del Contextual Bandit
hanno portato a un miglioramento (o peggioramento) delle prestazioni. In questo modo,
sarà possibile costruire un quadro completo che metta in luce l’efficacia e le criticità delle
diverse soluzioni esplorate.

4.1 Analisi dei Risultati dei Modelli di Regressione

I risultati riportati nella Tabella 4.1 descrivono le performance di tre modelli di ap-
prendimento supervisionato — XGBoost, LGBMRegressor e RandomForestRegressor
— nella predizione di cinque metriche chiave delle campagne pubblicitarie Amazon:
Clicks, Spend, 7 Day Total Sales, 7 Day Total Orders (#) e 7 Day Conversion

Rate. Le metriche di valutazione considerate sono l’Errore Assoluto Medio (MAE),
l’Errore Quadratico Medio della Radice (RMSE) e il coefficiente di determinazione (R2).

Di seguito si presenta un’analisi dettagliata delle performance dei modelli, confron-
tando punti di forza e limitazioni per ciascun target, con particolare attenzione alla loro
applicabilità nel contesto dell’ottimizzazione delle campagne pubblicitarie.

75

Tabella 4.1: Sintesi delle metriche di performance per modello e target (esclusi: Timestamp,
Impressions e colonna MAPE). I valori migliori di R2 per ciascun target sono evidenziati in
grassetto.

Modello Target MAE RMSE R2

XGBoost

Clicks 0.1051 0.2441 0.5527

Spend 0.2718 0.4175 0.5362

7 Day Total Sales 1.4191 3.5152 0.5241

7 Day Total Orders (#) 0.0734 0.1723 0.4903

7 Day Conversion Rate 0.0627 0.1512 0.5242

LGBMRegressor

Clicks 0.3577 0.3812 -6.9549

Spend 0.3070 0.3644 -1.0453

7 Day Total Sales 0.4037 1.7457 -5.1210

7 Day Total Orders (#) 0.0440 0.1084 0.5698

7 Day Conversion Rate 0.0399 0.0992 0.5790

RandomForestRegressor

Clicks 0.0579 0.1748 0.7707

Spend 0.2131 0.3401 0.6923

7 Day Total Sales 1.7070 4.1251 0.3447

7 Day Total Orders (#) 0.0835 0.1955 0.3439

7 Day Conversion Rate 0.0781 0.1827 0.3056

76

4.1.1 Performance sui Clicks

Per la metrica Clicks, il RandomForestRegressor ottiene le migliori performance, con
un MAE di 0.0579, un RMSE di 0.1748 e un R2 pari a 0.7707, indicando un’elevata
capacità predittiva e una buona spiegazione della varianza nei dati. XGBoost segue con
un MAE di 0.1051, un RMSE di 0.2441 e un R2 di 0.5527, mostrando prestazioni accet-
tabili ma inferiori rispetto a RandomForest. LGBMRegressor, invece, presenta risultati
insoddisfacenti, con un MAE di 0.3577, un RMSE di 0.3812 e un R2 negativo (-6.9549),
suggerendo che il modello non riesca a catturare la variabilità dei dati e produca predi-
zioni meno accurate della media. Questo risultato può derivare da una configurazione
iperparametrica non ottimale o da una sensibilità del modello alla distribuzione dei dati.

4.1.2 Performance su Spend

Per Spend, il RandomForestRegressor conferma la propria superiorità, con un MAE di
0.2131, un RMSE di 0.3401 e un R2 di 0.6923, dimostrando una buona capacità di
predire i costi delle campagne. XGBoost mostra risultati simili, con un MAE di 0.2718,
un RMSE di 0.4175 e un R2 di 0.5362, leggermente inferiori ma comunque competitivi.
LGBMRegressor, pur presentando un MAE (0.3070) e un RMSE (0.3644) comparabili,
mostra un R2 negativo (-1.0453), segnalando una scarsa capacità di spiegare la varianza
rispetto a un modello baseline. La superiorità di RandomForest può essere attribuita
alla sua capacità di modellare relazioni non lineari, mentre LGBM sembra soffrire di una
configurazione non adeguata per questa metrica.

4.1.3 Performance su 7 Day Total Sales

Per 7 Day Total Sales, LGBMRegressor ottiene il MAE più basso (0.4037), suggeren-
do una maggiore precisione nelle predizioni puntuali rispetto a XGBoost (MAE 1.4191) e
RandomForest (MAE 1.7070). Tuttavia, il suo RMSE (1.7457) e il R2 negativo (-5.1210)
evidenziano errori significativi e un’incapacità di catturare la variabilità complessiva.
XGBoost (RMSE 3.5152, R2 0.5241) e RandomForest (RMSE 4.1251, R2 0.3447) mo-
strano performance migliori in termini di R2, ma errori puntuali più elevati. La difficoltà
di predire le vendite totali, influenzate da fattori esterni come stagionalità e promozioni,
potrebbe spiegare le basse performance complessive.

4.1.4 Performance su 7 Day Total Orders (#)

Per 7 Day Total Orders (#), LGBMRegressor si distingue con il MAE più basso (0.0440),
un RMSE di 0.1084 e un R2 pari a 0.5698, dimostrando una buona capacità predittiva.
XGBoost segue con un MAE di 0.0734, un RMSE di 0.1723 e un R2 di 0.4903, mentre
RandomForest risulta meno performante (MAE 0.0835, RMSE 0.1955, R2 0.3439). La
solidità di LGBM su questa metrica può essere attribuita alla sua capacità di gestire
distribuzioni complesse grazie al boosting basato su gradienti.

4.1.5 Performance su 7 Day Conversion Rate

Per 7 Day Conversion Rate, LGBMRegressor raggiunge nuovamente le migliori per-
formance, con un MAE di 0.0399, un RMSE di 0.0992 e un R2 pari a 0.5790, superando
XGBoost (MAE 0.0627, RMSE 0.1512, R2 0.5242) e RandomForest (MAE 0.0781, RMSE

77

0.1827, R2 0.3056). Ciò indica che LGBM è particolarmente efficace nel predire il tasso
di conversione, una metrica cruciale per valutare l’efficacia delle campagne pubblicitarie.
Le performance inferiori di RandomForest possono derivare dalla tendenza a sovradat-
tarsi in presenza di relazioni complesse, mentre XGBoost fornisce un buon compromesso
tra accuratezza e generalizzazione.

4.1.6 Confronto Complessivo e Riflessioni

Analizzando le performance complessive, il RandomForestRegressor emerge come il più
robusto su Clicks e Spend, con i valori più alti di R2 (0.7707 e 0.6923). Per contro, su
7 Day Total Sales, 7 Day Total Orders (#) e 7 Day Conversion Rate, LGBMRe-
gressor si dimostra superiore in termini di MAE, pur mostrando valori di R2 negativi su
altre metriche. XGBoost rappresenta un compromesso equilibrato, offrendo prestazioni
consistenti senza eccellere in alcun target specifico.

Le differenze prestazionali possono essere attribuite a peculiarità dei modelli:

• RandomForestRegressor: eccelle nella gestione di relazioni non lineari e si di-
mostra robusto su dataset rumorosi, ma presenta limiti su metriche più variabili e
complessità computazionale elevata.

• LGBMRegressor: performa bene su target discreti come Orders e Conversion

Rate, ma soffre su variabili continue come Clicks, Spend e Sales, probabilmente
a causa di un tuning iperparametrico non ottimale.

• XGBoost: bilancia precisione e generalizzazione, ma senza raggiungere le migliori
performance in alcuna metrica. La sua configurazione appare stabile, ma non
pienamente ottimizzata.

4.1.7 Limitazioni e Prospettive Future

Le performance dei modelli evidenziano alcune limitazioni. I valori negativi di R2 in
LGBMRegressor per alcune metriche suggeriscono un potenziale sovradattamento o
un’incapacità di catturare la variabilità intrinseca dei dati. Inoltre, le difficoltà riscon-
trate nella predizione di 7 Day Total Sales mostrano la necessità di includere fattori
esterni come stagionalità e promozioni.

Per migliorare le performance, si propongono:

• tuning più approfondito degli iperparametri, specialmente per LGBMRegressor ;

• arricchimento delle feature con informazioni esterne (dati stagionali, prezzi, attività
dei competitor);

• uso di modelli ensemble che combinino i punti di forza di RandomForest, XGBoost
e LGBM.

4.1.8 Implicazioni per l’Ottimizzazione delle Campagne

I risultati ottenuti sono stati utilizzati per inizializzare il contextual bandit, come descritto
nel capitolo successivo. La scelta di RandomForest per Clicks e Spend, e di LGBM per
7 Day Total Orders (#) e 7 Day Conversion Rate, si rivela strategica per fornire

78

predizioni iniziali più accurate, migliorando l’efficacia dell’inizializzazione e riducendo il
regret cumulativo. Tuttavia, il bilanciamento tra accuratezza puntuale (MAE) e capacità
di generalizzazione (R2) resta cruciale per selezionare il modello più appropriato in base
al target e al contesto operativo.

4.2 Analisi dei Risultati con la Rete Neurale MLP

Dopo aver esaminato i modelli di regressione basati su alberi decisionali, l’attenzione è
stata rivolta alla valutazione di una rete neurale multilayer perceptron (MLP), adde-
strata sugli stessi dati utilizzati in precedenza. L’obiettivo era verificare se un approccio
basato su modelli neurali potesse migliorare le capacità predittive, soprattutto in contesti
caratterizzati da non linearità e interazioni complesse tra variabili.

Il modello MLP è stato configurato con più strati densi e funzioni di attivazione
non lineari, addestrato variando iperparametri chiave quali il tipo di ottimizzatore, la
dimensione del batch e il learning rate. Le metriche di valutazione adottate sono state
analoghe a quelle dei modelli di regressione tradizionali, con un’attenzione particolare
al valore medio dell’errore quadratico medio della radice (RMSE) calcolato per ciascun
target.

4.2.1 Statistiche descrittive delle metriche RMSE

Figura 4.1: Distribuzione delle metriche RMSE

Le statistiche descrittive dei valori di RMSE per le diverse metriche (Fig. 4.1) mo-
strano una distribuzione relativamente stabile, con deviazioni standard contenute. In
particolare, i valori medi oscillano tra 0.1408 (Impressions) e 1.7253 (Clicks). Si os-
serva inoltre che i valori minimi e massimi si collocano entro un intervallo ristretto, a
conferma della stabilità del processo di addestramento.

Ad esempio, per la metrica 7 Day Total Orders (#) il valore medio di RMSE è
pari a 0.6639, con una deviazione standard di appena 0.0216, a testimonianza di una
variabilità molto limitata. All’opposto, Clicks presenta un RMSE medio sensibilmente

79

più elevato (1.7253) e con maggiore variabilità (std = 0.4450), indicando una maggiore
complessità predittiva.

Un grafico dedicato (Fig. 4.1) illustra in maniera visiva la distribuzione dei valori di
RMSE per ciascun target, mettendo in evidenza le differenze di scala e di variabilità.

4.2.2 Matrice di correlazione tra metriche RMSE

Figura 4.2: Correlazione metrica RMSE tra i target

La matrice di correlazione (4.2) calcolata sui valori di RMSE evidenzia relazioni
interessanti tra le metriche. Si nota una forte correlazione tra Clicks, Spend e 7 Day

Total Sales, con coefficienti superiori a 0.89, suggerendo che gli errori commessi dal
modello in queste metriche tendono a muoversi in maniera sincrona.

D’altra parte, la correlazione tra 7 Day Total Orders (#) e le prime tre metriche
è molto debole (coefficiente massimo 0.1081), indicando che la predizione del numero di
ordini segue un comportamento indipendente rispetto alle metriche legate a click e spesa.
Una correlazione particolarmente significativa emerge invece tra 7 Day Total Orders

(#) e 7 Day Conversion Rate (0.6816), dato atteso in quanto entrambe le metriche
derivano da relazioni dirette con le conversioni.

Il grafico associato alla matrice di correlazione (4.2) consente di visualizzare in modo
intuitivo queste dipendenze, rafforzando l’interpretazione numerica.

80

4.2.3 Effetto del tipo di ottimizzatore

Figura 4.3: Confronto tra i vari optimizer e il loro RMSE medio

L’analisi degli ottimizzatori adottati (Adam, AdamW e RMSprop) (4.3) mostra perfor-
mance sostanzialmente equivalenti. I valori medi di RMSE si collocano rispettivamente
a 0.5645, 0.5655 e 0.5684, con differenze minime e deviazioni standard simili (intorno a
0.10). Questo risultato indica che, a parità di altre condizioni, il tipo di ottimizzatore non
rappresenta un fattore discriminante per il miglioramento sostanziale delle performance.

Il grafico di confronto (4.3) evidenzia questa sovrapposizione, mostrando distribuzioni
molto vicine tra i tre metodi.

4.2.4 Effetto della dimensione del batch

La dimensione del batch ha mostrato un impatto più rilevante sulle performance. Con un
batch size di 256, l’RMSE medio si riduce a 0.5429, inferiore rispetto a 0.5649 per 512 e a
0.5907 per 1024. La crescita dell’errore con batch più ampi suggerisce che aggiornamenti
più frequenti (batch più piccoli) favoriscono una convergenza più stabile e accurata.

Il grafico relativo (4.4) conferma tale andamento, evidenziando come le distribuzioni
di RMSE si spostino progressivamente verso valori più elevati con l’aumento del batch
size.

4.2.5 Influenza del learning rate

Il learning rate si conferma un iperparametro cruciale per l’ottimizzazione della rete
neurale. Valori troppo bassi (ad esempio 10−5) producono RMSE medi più elevati, con
casi che superano 0.77, indicando una convergenza lenta e poco efficace. Al contrario,
un learning rate pari a 5× 10−4 porta a valori medi sensibilmente inferiori (fino a 0.4981

81

Figura 4.4: Confronto tra batch size e il loro RMSE medio

Figura 4.5: Confronto tra le learning rate e RMSE medio

con AdamW), suggerendo un equilibrio ottimale tra velocità di convergenza e stabilità
dell’addestramento.

Il grafico dedicato (4.5) mostra l’andamento dell’RMSE medio in funzione del learning
rate, stratificato per tipo di ottimizzatore, consentendo di osservare come la combinazione
AdamW + 5× 10−4 risulti la più performante nel complesso.

82

4.2.6 Discussione complessiva

L’analisi complessiva della MLP mostra come il modello riesca a catturare le relazioni tra
variabili in maniera soddisfacente, con buone performance soprattutto per le metriche
relative agli ordini e al tasso di conversione, caratterizzate da bassa variabilità e RMSE
contenuti. Tuttavia, la predizione di click e spesa rimane più complessa, come evidenziato
dai valori medi di RMSE più elevati e da correlazioni forti tra le metriche di errore.

Dal punto di vista degli iperparametri, emerge chiaramente che la scelta della di-
mensione del batch e del learning rate ha un impatto molto più marcato rispetto alla
selezione dell’ottimizzatore. In particolare, batch più piccoli e learning rate moderati
consentono di ottenere i risultati migliori.

Queste osservazioni saranno fondamentali per orientare la successiva fase di integra-
zione della MLP nel framework di contextual bandit, dove la stabilità e l’accuratezza delle
predizioni iniziali rivestono un ruolo centrale nel contenimento del regret cumulativo.

4.3 Confronto tra le Implementazioni del Contex-

tual Bandit

Dopo aver analizzato nel dettaglio il funzionamento del Contextual Bandit e le sue va-
rianti, questa sezione è dedicata al confronto tra i due approcci principali discussi nel
capitolo 3.4. In particolare, si andrà a valutare come le modifiche introdotte nella secon-
da implementazione abbiano influenzato i risultati ottenuti, con particolare attenzione
alla variazione dei valori di regret e alla coerenza scientifica dei dati.

Come ricordato, nella prima implementazione il calcolo della funzione di ricompensa
era basato direttamente sui dati reali, generando valori anomali di regret, spesso negativi
e di magnitudine elevata. Tale comportamento ha portato a risultati non plausibili, in
quanto implicavano prestazioni superiori allo scenario reale di riferimento. La ridefini-
zione della funzione di ricompensa, basata invece sulle predizioni generate dal bandit
stesso, ha consentito di riportare i risultati entro un intervallo coerente e interpretabile,
con valori medi di regret compresi tra lo 0% e il 40%.

In questa sezione verranno dunque messi a confronto i due scenari, analizzando nel
dettaglio gli effetti prodotti dal cambiamento nella definizione della ricompensa e valu-
tando l’impatto delle diverse configurazioni testate (con e senza MLP, con MLP priva di
pesi iniziali e con architetture più compatte). L’obiettivo è quello di mettere in evidenza
in che misura la seconda implementazione abbia corretto le criticità iniziali e reso i ri-
sultati più affidabili, ponendo le basi per un utilizzo più robusto del Contextual Bandit
nel contesto dell’ottimizzazione delle campagne pubblicitarie PPC su Amazon.

4.3.1 Analisi dei Risultati del Primo Modello

In questa sezione vengono presentati e commentati i risultati relativi al primo modello di
Contextual Bandit sviluppato, includendo varianti con e senza rete neurale (MLP) e con
o senza inizializzazione dei pesi. I dati sono accompagnati da rappresentazioni grafiche
(boxplot, scatter plot, heatmap e lineplot) che permettono di interpretare in modo più
chiaro le dinamiche osservate.

83

Figura 4.6: Distribuzioni del cumulative regret per ogni variante

Statistiche descrittive del Cumulative Regret

L’analisi del cumulative regret evidenzia un comportamento differente tra le varianti
di modello. Le versioni con ContextualBandit MLP (da ora chiamata anche MLP) e
ContextualBandit MLP no weights (da ora chiamata anche ”senza pesi) mostrano va-
lori medi pressoché identici (circa 26.5), con una distribuzione abbastanza simile sia
in termini di deviazione standard (24.5) che di valori estremi. La variante senza MLP
(ContextualBandit nw no MLP) si mantiene sugli stessi livelli medi (26.17), ma con un
valore massimo più contenuto (160). La variante più instabile risulta essere la Contextual-
Bandit nw no MLP, che presenta un valore medio di 50 e una deviazione standard molto
elevata (76), con picchi estremamente alti (max = 908). Questo indica una maggiore
variabilità e una minore affidabilità.

Relazione tra Cumulative Regret e Reward Medio in Test

Lo scatter plot mostra la relazione tra il cumulative regret e il reward medio. I dati
confermano che modelli più instabili, come il nw no MLP, tendono ad avere valori di
regret molto elevati, talvolta superiori a 400, a fronte di ricompense in media simili o solo
leggermente inferiori rispetto agli altri modelli. Le varianti con MLP, invece, mantengono
valori di regret contenuti con reward in linea, mostrando una maggiore coerenza.

84

Figura 4.7: Scatter plot Distribuzioni del reward medio per ogni variante

Sensibilità agli Iperparametri: Learning Rate e Batch Size

La heatmap evidenzia come i valori di regret crescano sensibilmente con l’aumento del
learning rate. Per valori molto bassi di lr (10−5), i regret medi si attestano intorno a
18–20, mentre già a lr = 10−3 si osserva un aumento netto (30–36). A lr = 5 · 10−3

i valori di regret crescono in modo considerevole, raggiungendo picchi superiori a 80.
L’effetto del batch size appare meno marcato: batch size maggiori riducono leggermente
il regret, ma l’impatto è secondario rispetto al tasso di apprendimento.

Reward Medio in Test

Tutte le varianti di modello producono un reward medio pressoché identico (0.315), con
deviazioni standard molto simili (circa 0.476). Questo suggerisce che, indipendente-
mente dall’architettura, il reward ottenuto in test rimane stabile. Le differenze tra i
modelli emergono quindi principalmente sul fronte della gestione del regret, più che sulla
massimizzazione del reward medio.

Lost Regret Medio

Il confronto sul lost regret rivela valori molto divergenti. Il modello con MLP presenta un
valore medio negativo marcato (-316) e un’elevata varianza, mentre il modello senza MLP
mostra valori positivi (257). La variante senza pesi iniziali riduce l’entità delle anomalie
(-142), mentre la versione nw no MLP si mantiene positiva (67). Questo dato conferma
l’instabilità del calcolo della funzione di ricompensa nelle prime implementazioni e la
difficoltà di ottenere valori coerenti.

85

Figura 4.8: Heatmap di confronto tra Batch size, learning rate e cumulative regret

Impatto del Learning Rate sul Cumulative Regret

L’analisi più dettagliata per modello e numero di azioni conferma quanto osservato nella
heatmap: learning rate più bassi (10−5) garantiscono regret medi più contenuti (14–22),
mentre valori crescenti portano a un peggioramento progressivo. Il modello nw no MLP
è il più sensibile, con incrementi drastici del regret già a lr = 10−3 e valori estremamente
elevati (> 200) a lr = 5 · 10−3.

Impatto del parametro k sul Cumulative Regret

L’effetto del parametro k (Fig. 4.12), calcolato con la formula 3.2 presente nel capitolo
3.4.3, mostra una chiara tendenza: valori bassi (0.2–0.3) mantengono il regret medio
su livelli contenuti (15–28), mentre valori più elevati (0.7–1.0) comportano un aumento
sostanziale, in particolare per i modelli senza inizializzazione dei pesi e senza MLP. Ad
esempio, con k = 1.0 e action = 7, il regret medio raggiunge valori oltre 76. Ciò evidenzia
la necessità di una calibratura accurata di questo iperparametro per contenere la crescita
del regret.

Risultati Optimal input

In questa sezione vengono approfondite analisi tecnico-stastitiche sui risultati ottenuti
dalla funzione riportata nel capitolo 3.4.4. Tale funzione interroga il modello contextual

86

Figura 4.9: Boxplot del reward medio

bandit per ottenere le migliori configurazioni di click, keyword, spesa e altre feature al
fine di fornire le dieci migliori strategie operative da applicare alle pubblicità.

Optimal input: Correlazione tra le Feature

Identificazione delle relazioni statistiche principali

I grafici forniscono insight sulla correlazione tra le variabili principali degli input e il
reward previsto, utilizzando una heatmap delle correlazioni e un boxplot delle distribu-
zioni di reward.

Correlazioni (Heatmap) Nel primo grafico (Fig 4.14), la heatmap mostra la correla-
zione tra variabili chiave come ”lancio”, ”performance”, ”Day of Week”, ”Match Type

Encoded” e ”similarity”. I valori di correlazione più alti in termini assoluti sono:

87

Figura 4.10: Boxplot del lost regret per versione

• Correlazione positiva (r = 0.69) tra ”Match Type Encoded” e ”Day of Week”, indi-
cando che determinati tipi di match si allineano con specifici giorni della settimana.
Questo comportamento non sembra catturare la realtà dei fatti in quanto non sono
due variabili dipendenti.

• Correlazione negativa (r = −0.65) tra ”performance” e ”Match Type Encoded”,
suggerendo che un tipo di match più preciso tende a indicare una campagna dove
non è stata prevista una strategia forte, forse per la natura selettiva e restrittiva
delle keyword.

• Correlazione negativa (r = −0.41) tra ”performance” e ”Day of Week”, indicando
che la performance può variare in base ai giorni della settimana.

Osservazione delle distribuzioni di reward (Boxplot)

Il secondo grafico (fig. 4.13) presenta i boxplot delle distribuzioni di reward per diverse
varianti di input. In particolare:

• La variante ”optimal inputs” che indica la variante con MLP di supporto mostra
un reward medio più alto (circa 0.8) con una dispersione contenuta, suggerendo
che è la configurazione migliore in termini di stabilità e performance.

88

Figura 4.11: impatto del learning rate sul cumulative regret

Figura 4.12: Variazione del cumulative regret in base al parametro K

• La variante ”optimal inputs no MLP” mostra un reward medio inferiore, con una
maggiore dispersione, suggerendo che la mancanza della MLP non permette al
modello di massimizzare correttamente il reward

• La variante ”optimal inputs MLP no weights” ha una media più bassa rispetto
alla configurazione MLP standard, ma con una deviazione standard contenuta,

89

Figura 4.13: Distribuzioni del predicted reward per i migliori input

indicando che l’assenza di pesi nella rete MLP riduce la varianza ma non migliora
la performance.

• La variante ”optimal inputs nw no MLP” Ha una media inferiore sia al modello
base sia al modello senza pesi nella MLP e ha la varianza più piccola tra tutte le
varianti, indicando un modello stabile ma poco performante.

Sintesi e implicazioni pratiche

In sintesi, il modello che utilizza l’MLP con i pesi sembra essere il più promettente, con
un reward medio alto e una bassa deviazione standard. Questo suggerisce che le configu-
razioni che sfruttano una rete neurale MLP di supporto, soprattutto quando ottimizzate
per input specifici, sono più robuste e performanti nel contesto delle campagne PPC su
Amazon.

D’altra parte, le varianti che non utilizzano l’MLP o non utilizzano pesi specifici
tendono ad avere performance inferiori o più variabili, indicando che il modello MLP
gioca un ruolo cruciale nel migliorare la predizione dei reward.

90

Figura 4.14: Heatmap per il cumulative regret per ogni variante

4.3.2 Analisi dei Risultati della Seconda Variante del Modello

In questa sezione vengono riportati e analizzati i risultati ottenuti dalla seconda variante
del modello di Contextual Bandit, caratterizzata dall’introduzione della logica di sele-
zione basata sul calcolo del reward su dati predetti. La lettura dei dati è accompagnata
da rappresentazioni grafiche che supportano l’interpretazione dei fenomeni osservati.

Statistiche descrittive del Cumulative Regret

Le statistiche (Figura 4.15) mostrano che i modelli con MLP, con e senza inizializzazione
dei pesi, e quello senza MLP presentano valori medi molto simili di cumulative regret
(circa 35.5), con deviazioni standard elevate (69), indicando un’elevata variabilità. La
variante nw no MLP si distingue con un valore medio inferiore (27.18) e una deviazione
standard leggermente più contenuta (62.77). Si osserva anche la presenza di valori minimi
negativi, che riflettono possibili situazioni di sovra-ottimizzazione o anomalie nei dati.
La distribuzione delle quartili conferma che la mediana è più bassa (intorno a 10), ma le
code lunghe causano valori massimi superiori a 200 in quasi tutte le varianti.

91

Figura 4.15: Distribuzioni del cumulative regret per ogni variante

Relazione tra Cumulative Regret e Reward Medio in Test

Lo scatter plot (Figura 4.16) mostra un’interessante dinamica: mentre la maggior par-
te dei modelli mantiene valori di regret positivi associati a reward medi positivi, alcune
configurazioni (in particolare le varianti con MLP senza pesi) evidenziano regret negativi
accompagnati da valori di reward medio negativi (fino a -0.44). Questo indica instabi-
lità nei processi di ottimizzazione, con possibili oscillazioni tra fasi di apprendimento
profittevoli e fasi in cui il modello peggiora le proprie performance.

Sensibilità agli Iperparametri (Learning Rate e Batch Size)

La heatmap (Fig 4.17) evidenzia un chiaro effetto del learning rate sul cumulative regret.
Valori bassi (10−5) portano a regret molto elevati (oltre 70), mentre incrementando
progressivamente il learning rate si osserva una riduzione consistente, fino a valori minimi
con lr = 0.005 (circa 4.6–5.5). Il batch size influenza in modo meno marcato i risultati:
a parità di learning rate, batch più grandi tendono a mantenere valori leggermente più
alti di regret, ma senza differenze sostanziali rispetto all’impatto del lr.

92

Figura 4.16: Scatter plot Distribuzioni del reward medio per ogni variante

Figura 4.17: Heatmap di confronto tra Batch size, learning rate e cumulative regret

93

Figura 4.18: Boxplot del reward medio

Reward Medio in Test

Il reward medio in test rimane pressoché invariato tra le varianti (0.314–0.315), con de-
viazioni standard intorno a 0.476. Questi risultati (Fig 4.18) confermano che, nonostante
le differenze nei valori di regret, la capacità media di generare reward rimane costante
tra i modelli.

Lost Regret Medio

I valori di lost regret (Figura 4.19) risultano positivi per tutte le varianti, con medie tra
34 e 41. Ciò rappresenta un netto cambiamento rispetto alla prima variante, dove erano
stati osservati valori negativi. Le deviazioni standard (intorno a 38–42) indicano una
moderata variabilità, ma complessivamente i risultati appaiono più stabili e coerenti.

94

Figura 4.19: Boxplot del lost regret per versione

Impatto del Learning Rate sul Cumulative Regret

Un’analisi più dettagliata (Fig. 4.20)conferma che valori bassi di learning rate (10−5)
conducono a regret medi molto elevati (oltre 70 per il modello con MLP), mentre au-
mentando lr fino a 5 · 10−3 si ottengono riduzioni significative, con valori medi inferiori
a 6. Anche in questo caso, la variante nw no MLP mostra maggiore stabilità ai valori
elevati di lr, mantenendo regret molto contenuti (tra 4.6 e 6.2).

Impatto del parametro k sul Cumulative Regret

L’analisi sul parametro k (Fig. 4.21) evidenzia una forte sensibilità del modello MLP: a
valori bassi di k (0.2), i regret medi sono molto alti (circa 98), mentre con valori crescenti
di k il regret tende a ridursi progressivamente. Per la variante nw no MLP, al contrario,
si osserva un comportamento più instabile: a k = 1.0 emergono addirittura valori medi
negativi (fino a -29), segno di anomalie nella gestione delle scelte ottimali.

95

Figura 4.20: impatto del learning rate sul cumulative regret

Figura 4.21: Variazione del cumulative regret in base al parametro K

Commento al heatmap di correlazione (“Correlazione tra Feature nei Migliori
Input”)

Il grafico mostrato (fig. 4.23) rappresenta la matrice di correlazione fra le feature sele-
zionate calcolata sui migliori input individuati dal procedimento di ottimizzazione. Di
seguito viene fornita un’interpretazione delle relazioni più significative osservate:

96

Figura 4.22: Distribuzioni del predicted reward per i migliori input

• Correlazioni forti e interpretabili:

– performance vs similarity ≈ −0.72: esiste una correlazione negativa marcata
fra la variabile performance e la similarity. Ciò indica che, nei migliori
input, contesti con elevata similarità semantica rispetto alla pagina prodotto
tendono ad avere un valore di performance più basso. Un’interpretazione
possibile è che le campagne etichettate come “performance” utilizzino keyword
meno semanticamente vicine alla pagina prodotto (ad esempio keyword ad alto
traffico ma meno specifiche). Possiamo quindi dire che il bandit cattura molto
bene il meccanismo di come Amazon collega keyword specifiche (Match type:
Exact) con la loro popolarità e flussi di ricerca.

– Match Type Encoded vs similarity ≈ +0.69: la correlazione positiva eleva-
ta suggerisce che tipologie di match più “stringenti” (es. exact/phrase, se
codificate con valori maggiori) coincidono con search terms semanticamen-
te più simili al prodotto. Questo è coerente con il comportamento atteso:
corrispondenze più precise generano maggiore similarità semantica.

• Correlazioni moderate e informazioni operative:

– lancio vs Match Type Encoded ≈ +0.30 e lancio vs similarity ≈ +0.22: le
campagne di lancio sembrano predisposte verso match più precisi e keyword
semanticamente rilevanti. In pratica, le campagne di lancio tendono a privile-
giare keyword strette e con elevata similarità, probabilmente per massimizzare
la pertinenza nelle fasi iniziali.

97

Figura 4.23: Heatmap per il cumulative regret per ogni variante

– lancio vs performance ≈ −0.23: c’è una moderata correlazione negativa fra il
flag lancio e performance, che rafforza l’ipotesi che le campagne da lancio
non coincidano necessariamente con quelle etichettate come “performance”
(obiettivi e target diversi).

• Feature quasi indipendenti:

– Day of Week risulta quasi disaccoppiata dalle altre variabili (valori molto
prossimi a 0 con le altre feature). Questo suggerisce che, nel sottoinsieme
dei migliori input, il giorno della settimana non è un driver discriminante
nella selezione degli esempi con reward elevato.

Conclusioni operative dalla heatmap: la coppia (Match Type, similarity) emer-
ge come fattore strutturante dei migliori input; inoltre la relazione negativa fra performance
e similarity indica un trade-off strategico: keyword molto affini semanticamente al pro-
dotto possono non appartenere alle campagne etichettate come “performance”. Questo
insight è utile per la selezione operativa delle keyword ottimali: non basta massimizzare la
similarità — occorre bilanciare anche la strategia di campagna (lancio vs performance)
in funzione dell’obiettivo commerciale.

98

Commento al boxplot dei Predicted Reward per i migliori input

Il secondo grafico (Fig. 4.22)mostra la distribuzione del predicted reward (valore stimato
dal modello) per i top input raggruppati per variante sperimentale. Di seguito un’analisi
precisa dei principali aspetti numerici e delle implicazioni pratiche.

Sintesi numerica (valori principali dalle statistiche):

• optimal inputs max reward (variante “max reward”): mean ≈ 0.2126, std ≈
0.0081, 25% ≈ 0.2068, 50% ≈ 0.2073, 75% ≈ 0.2193, max ≈ 0.2267.

• optimal inputs MLP no weights: mean ≈ 0.1729, std ≈ 0.0086, median ≈
0.1704, range ≈ [0.1648, 0.1938].

• optimal inputs no MLP: mean ≈ 0.1732, std ≈ 0.0125, median ≈ 0.1709, range ≈
[0.1559, 0.1943].

• optimal inputs nw no MLP: mean ≈ 0.1108, std ≈ 0.0020, median ≈ 0.1098, range ≈
[0.1092, 0.1150].

Interpretazione e osservazioni:

1. Variante “max reward” nettamente superiore in termini di reward pre-
visto: la distribuzione del gruppo optimal inputs max reward si colloca chia-
ramente su valori più alti (mediana ∼ 0.207, media ∼ 0.213) rispetto alle altre
varianti. Questo è coerente con l’obiettivo di quella variante, che esplicita una fun-
zione di selezione orientata alla massimizzazione del reward stimato: la procedura
tende a proporre input con reward atteso maggiore.

2. MLP senza pesi vs no-MLP: comportamenti simili ma con diversa di-
spersione: sia MLP no weights che no MLP mostrano mediana intorno a 0.17; la
variante senza MLP presenta però una varianza leggermente più alta (std maggio-
re), segno che la stabilità delle top candidates è leggermente inferiore quando non
si usa la MLP (o quando la MLP non è inizializzata con pesi pre-allenati).

3. Variante nw no MLP povera ma consistente: il gruppo nw no MLP ha il valore
medio più basso (∼ 0.11) ma anche la deviazione standard più piccola. Questo
indica che, pur producendo top input con reward basso, lo fa in modo consistente:
la procedura non esplora combinazioni ad alto reward in questa configurazione.

4. Presenza di outlier e loro significato: nelle distribuzioni di MLP no weights e
no MLP si osservano alcuni outlier (valori superiori o inferiori al box). Gli outlier
superiori possono indicare casi particolarmente promettenti che però andrebbero
verificati con le metriche di business (vendite, spesa, click). Gli outlier inferiori, in
particolare per nw no MLP, suggeriscono che alcune configurazioni sono poco efficaci
e probabilmente vanno scartate.

Implicazioni per la scelta operativa dei top input:

• Se l’obiettivo prioritario è massimizzare il reward stimato (metrica interna del
bandit), la variante max reward fornisce in media i migliori candidati e dovrebbe
essere preferita per generare proposte operative da testare in ambiente reale.

99

• Tuttavia, la decisione finale non può basarsi esclusivamente sul valore di reward: oc-
corre incrociare questi risultati con le predizioni delle metriche di business (vendite,
spesa e click). Ad esempio, un input con reward elevato ma con predicted spend

molto alto o con anomalie nei click (es. valori estremi) potrebbe non essere ottimale
dal punto di vista del margine.

• La variante nw no MLP, per quanto consistente, produce reward troppo bassi per
essere considerata competitiva; può comunque essere utile come baseline stabile
per confronto.

Nota su coerenza fra heatmap e distribuzioni di reward: l’elevata correlazio-
ne positiva tra Match Type e similarity (0.69) suggerisce che le top candidates della
variante max reward probabilmente includono match più stringenti e keyword semanti-
calmente vicine al prodotto questo spiega in parte l’aumento del reward medio osserva-
to per tale variante. Contemporaneamente, la correlazione negativa tra performance e
similarity indica che molte di queste top candidates potrebbero non appartenere a cam-
pagne etichettate come “performance”, rinforzando la necessità di valutare il trade-off
strategico prima di applicare le modifiche in produzione.

Alcuni spunti finali su questi risultati: usare la variante max reward per generare
un primo set di candidate, ma validare ciascuna proposta con le predizioni di vendite/-
spesa/click e con regole di sanity-check (clipping o soglie su click/impression) per evitare
di promuovere input che, pur avendo reward stimato alto, comportino rischi operati-
vi o anomalie nelle metriche di business. Questo tema verrà trattado in maniera più
approfondita nel successivo capitolo.

100

Capitolo 5

Conclusioni

In questo elaborato si è inteso sperimentare e valutare alcune tecniche di machine lear-
ning come strumento di supporto alle aziende, con l’obiettivo di renderle più competitive
in un mercato caratterizzato da forte dinamicità e da un’elevata intensità concorrenziale.
L’impiego di approcci avanzati, quali quelli approfonditi nei capitoli precedenti, si rivela
infatti fondamentale per affrontare la complessità dei dati disponibili e per sfruttare al
meglio le potenzialità insite nelle informazioni che, diversamente, resterebbero parzial-
mente inaccessibili o difficilmente interpretabili dagli operatori. In particolare, nel do-
minio delle campagne pubblicitarie Pay-Per-Click (PPC) su piattaforme come Amazon,
le dinamiche algoritmiche sottostanti risultano opache e non direttamente controllabili
dall’utente, rendendo essenziale l’adozione di strumenti analitici e predittivi capaci di
ottimizzare le decisioni strategiche.

Il presente capitolo, dedicato alle conclusioni, si propone di riprendere gli obiettivi
inizialmente definiti all’avvio della ricerca e di valutare in che misura tali obiettivi siano
stati raggiunti. Verranno quindi discussi i risultati conseguiti rispetto alle ipotesi di
partenza, mettendone in evidenza sia gli aspetti positivi sia i limiti emersi nel corso della
sperimentazione. In particolare, si analizzeranno criticamente gli esperimenti condotti,
valutando l’efficacia dei modelli presentati e discutendo i fattori che hanno influito sulle
loro prestazioni.

Un’attenzione specifica sarà rivolta anche al contributo che le metodologie adottate,
come l’impiego di reti neurali unite agli approcci basati su contextual bandit, possono
apportare alla letteratura scientifica di riferimento, ampliando le prospettive già esistenti
e aprendo a nuove possibilità di ricerca. Infine, verranno discusse le possibili evoluzioni
future di questo lavoro, evidenziando le direzioni di sviluppo più promettenti sia sul
piano accademico sia su quello applicativo.

L’obiettivo ultimo di questo capitolo non è soltanto fornire una sintesi dei risultati
ottenuti, ma anche proporre una riflessione complessiva sul valore del lavoro svolto e sulle
sue potenzialità per la ricerca e per le applicazioni reali in contesti di mercato complessi
e altamente competitivi.

5.1 Richiamo agli obiettivi della ricerca

Questo elaborato, come già discusso nella sezione 1.3, vuole analizzare le problematiche
legate all’ottimizzazione delle campagne pubblicitarie Pay-per-click che basano il loro
funzionamento sul concetto di aste o bid. La sfida che vuole affrontare questo elaborato
è quella di rendere più vantaggioso per l’azienda l’equilibrio costi-ricavi automatizzando

101

la scelta delle keyword e il loro bid rispetto alle reali proposte di Amazon. In questo ela-
borato si è cercato di raggiungere attraverso l’approccio quantitativo, analizzando i dati e
sviluppando i modelli che permetto in autonomia di massimizzare i ricavi minimizzando
i costi.

L’elaborato affronta il tema della manipolazione e dell’analisi dei dati con l’obietti-
vo di estrarre la massima quantità di informazione utile da essi e di applicarla in un
contesto ad alto valore strategico, quale l’ottimizzazione delle campagne pubblicitarie
Pay-Per-Click (PPC) su Amazon. La fonte dei dati utilizzati è stata la piattaforma di
gestione delle Ads di Amazon, dalla quale sono stati acquisiti report periodici contenenti
informazioni relative alle performance delle campagne. Tali dati, successivamente, sono
stati sottoposti a processi di data cleaning e trasformazione, con lo scopo di garantire la
qualità del dataset ed estrarre variabili rilevanti per l’analisi.

Un aspetto centrale ha riguardato il trattamento delle keyword, le quali sono state
convertite in vettori densi a 384 dimensioni mediante tecniche di rappresentazione se-
mantica, al fine di aumentarne la capacità esplicativa e di consentire una più efficace
modellazione dei rapporti tra query e prodotti. Tecniche sperimentali, descritte nella
sezione 2.2.6, hanno inoltre permesso di stabilire un collegamento semantico tra ciascu-
na parola chiave e il prodotto di riferimento, rendendo possibile una rappresentazione
più ricca e coerente del contesto pubblicitario. A valle di questa fase, è stata condotta
un’analisi esplorativa del dataset per valutarne la struttura, la qualità e la quantità di
informazione effettivamente estraibile, fornendo le basi per gli esperimenti successivi.

Come descritto nel Capitolo 3.2, sono stati dapprima implementati e testati diversi
modelli di regressione tradizionali, tra cui LightGBM, XGBoost e Random Forest. In
parallelo, si è posta attenzione sull’impiego di modelli di machine learning neurali, con
particolare riferimento a differenti configurazioni di reti Multi-Layer Perceptron (MLP)
(3.3.1). Tra le diverse varianti, è stato individuato il modello più performante e ne sono
stati salvati i pesi per utilizzi successivi.

Il modello definitivo scelto per massimizzare i profitti e minimizzare i costi non si è
tuttavia limitato a un approccio predittivo classico, bens̀ı ha fatto ricorso a un algoritmo
innovativo di tipo Contextual Bandit, approfondito nel Capitolo 3.4. Su tale algoritmo
sono stati condotti ulteriori esperimenti, mirati a individuare le migliori combinazioni
di parametri e strategie in grado di ottimizzare le scelte di spesa e allocazione delle
keyword. I risultati complessivi degli esperimenti sono stati analizzati nel Capitolo 4,
dove è stato inizialmente discusso il confronto tra i modelli di regressione classici e le MLP,
concludendo che queste ultime hanno dimostrato prestazioni superiori. Successivamente,
sempre nel Capitolo 4.3, è stata approfondita l’analisi delle performance del modello
Contextual Bandit, evidenziando il suo contributo nell’ottimizzazione delle campagne
PPC e nel miglioramento del bilancio tra costi sostenuti e profitti generati.

5.2 Sintesi dei risultati principali

In questa sezione verranno riassunti in breve quelli che sono stati i risultati dei mo-
delli allenati, nello specifico verranno discussi solo i risultati dei modelli utilizzati per
raggiungere l’obiettivo.

102

5.2.1 Valutazione complessiva dei risultati del MLP

L’allenamento delle reti neurali si è mostrato stabile nella previsione dei valori delle fea-
ture. Come già discusso nella sezione 4.2, i modelli addestrati riescono a catturare le
complessità del dataset in maniera soddisfacente, soprattutto per metriche con magni-
tudo più piccola. La previsione invece di variabili come il click e la spesa rimane più
complessa come viene mostrato dalle correlazioni tra le metriche di errore riportate in
fig. 4.2, questa caratteristica può essere imputata allo scarso bilanciamento delle feature
mostrato anche dai grafici in fig. 2.6. L’impatto dei parametri della rete come il Learning
rate non si sono dimostrati particolarmente impattanti sull’allenamento del modello, ma
è possibile affermare che per learning rate moderati e batch più piccoli è possbile otte-
nere il miglior modello. In generale le prestazioni della rete neurale non sono sufficienti
a predire i valori target in maniera precisa, questo problema può essere imputato a i
problemi seguenti

• Problemi relativi al dataset: Il dataset preso in esempio e spiegato nelle tabelle
2.1 e 2.2 contengono complessivamente più di 300.000 righe che riassumono le
attività di circa 8 mesi di pubblicità su Amazon effettuata da Wellbeauty. Questo
dataset presenta alcune problematiche:

– Scarsa rappresentatività delle strategie: Seppur il dataset è stato acquisito
attraverso la sezione di reportistica di Amazon e quindi è completo delle fea-
ture necessarie alla campagna e comprensivo dei risultati che ha ottenuto nei
precedenti mesi, non è completo delle strategie alla quale una campagna può
essere sottoposta, per esempio stategie di business rilegate a determinate cam-
pagne1. Si è cercato di interpretare attraverso i dati dei report e i nomi delle
campagne a quale strategia facessero riferimento (come visto nella sez. 2.2.3)
ma questa soluzione è troppo semplificativa e difficilmente generalizzabile dal
modello.

– mancanza di keyword per le campagne automatiche: come approfondito nella
sezione 2.2.5, quando si ricorre all’uso di campagne automatiche, la keyword
utilizzata dall’algorimo per promuovere il prodotto ad un cliente non è visi-
bile, viene rimito il campo keyword con la stringa ”*”. Questa problematica
è stata, dove possibile, risolta nella sezione 2.2.6. Nonostante i risultati più
che soddisfacenti che sono stati ottenuti, molti dati vengono esclusi dall’alle-
namento in quanto non ci sono sufficienti informazioni a derivare ne ASIN del
prodotto collegato ne la keyword originaria della ricerca.

– scarsità di dati Nonostante la quantità di righe iniziali può essere considerata
una buona quantità di dati, la fase di preprocessing ne riduce la quantità
a meno di 30.000 righe. Questa forte diminuzione di campioni sulla quale
addestrare il modello si dimostra insufficiente per una buona generalizzazione.

• Problemi relativi al modello: durante la fase di creazione delle reti neurali sono
stati condotti degli esperimenti per provare diverse combinazioni delle reti come

1Le campagne di business possono essere create ad-hoc applicando strategie specifiche, come prezzi di
bid elevati per pubblicizzare maggiormente il prodotto e aumentare la visibilità del brand, nonostante
il prodotto venda in netta perdita molte aziende scelgono di sponsorizzare il loro brand tramite la
piattaforma Amazon. Altre strategie messe in atto dalle aziende (e più volte messa in atto da Wellbeauty
durante il periodo osservato) sono quelle che permetto al prodotto sponsorizzato di apparire in varie
parti della pagina prodotto, come prodotto complementare o prodotto simile.

103

già visto nelle sezioni 3.3.1,3.3.1,3.3.1. Infine è stato scelto il primo modello per
le sue prestazioni superiori agli altri. La struttura di questi modelli è stata creata
manualmente ed è una struttura semplice e con pochi livelli. nonostante sia stata
la struttura più semplice (3.3.1) ad aver ottenuto le migliori performance, non è da
escludere che aumentando la complessità della sotto struttura della rete possano
aumentare anche le performance. In rete non sono state trovate reti neurali con
scopi simili a quelli presentati in questo documento di tesi ma si sono trovati due
interessanti applicazioni di modelli che si avvicinano a questo scopo. Di seguito
vengono brevemente spiegati:

– shinleylee/Arbitrary Distribution Modeling (GitHub) : Implementa
il modello ADM (Arbitrary Distribution Modeling, KDD’22) basato su un
Multi-Layer Perceptron (MLP) per prevedere la distribuzione dei prezzi di
bid. Il repository contiene il codice Python e notebook di esempio (iPinYou,
YOYI) per addestrare il modello ADM con la Neighborhood Likelihood Loss,
ma non fornisce ne i pesi pre-addestrati pronti all’uso ne i dataset per emulare
l’esperimento effettuato.

In sintesi, i risultati ottenuti confermano come l’impiego di una rete neurale MLP rap-
presenti un passo significativo verso una modellazione più flessibile e capace di catturare
le complessità insite nei dati delle campagne pubblicitarie PPC. Tuttavia, le limitazioni
discusse – legate sia alla natura del dataset sia alla struttura del modello – evidenziano
come le prestazioni raggiunte non siano ancora sufficienti per garantire una predizione
accurata e generalizzabile in contesti reali.

Un aspetto particolarmente rilevante riguarda la qualità e la completezza dei dati: la
mancanza di keyword nelle campagne automatiche, la scarsità di informazioni ricondu-
cibili alle strategie aziendali adottate e la drastica riduzione dei campioni effettivamente
utilizzabili per l’addestramento rappresentano ostacoli critici al pieno sfruttamento del
potenziale delle reti neurali. Sul piano modellistico, sebbene le architetture semplici
abbiano mostrato risultati migliori rispetto a quelle più complesse, rimane aperta la
possibilità che strutture più sofisticate, opportunamente calibrate, possano incrementare
ulteriormente le performance predittive.

Alla luce di queste osservazioni, si può affermare che la rete neruale implementata,
pur mostrando segnali promettenti, non costituisce una soluzione definitiva per l’ottimiz-
zazione delle campagne PPC. Piuttosto, essa deve essere considerata come un tassello
fondamentale di un framework più ampio, in cui tecniche di deep learning e algoritmi di
decisione sequenziale, come i contextual bandit, possono essere combinati per sfruttare i
rispettivi punti di forza. In questo scenario, la MLP può svolgere un ruolo centrale nella
fase di warm start, contribuendo a ridurre il regret iniziale e ad accelerare la convergenza
dell’algoritmo verso strategie di bidding più efficienti.

Infine, questa analisi mette in evidenza la necessità di ulteriori sviluppi futuri, sia in
termini di arricchimento e rappresentatività dei dati, sia in termini di sperimentazione di
architetture neurali avanzate e metodologie di regolarizzazione più efficaci. Tali direzioni
di ricerca potranno consolidare il contributo di questa tesi alla letteratura scientifica e,
al contempo, fornire strumenti pratici alle aziende che intendono sfruttare l’intelligenza
artificiale per rendere le proprie campagne pubblicitarie più competitive ed efficaci.

104

5.2.2 Valutazione complessiva dei modelli di Contextual Bandit

L’analisi condotta sui due modelli di Contextual Bandit sviluppati ha permesso di
evidenziare punti di forza e criticità legate alle diverse implementazioni, nonché alle
varianti architetturali introdotte (MLP con e senza pesi - contextualbandit MLP e
ContextualBandit MLP no weights, modelli privi di MLP di supporto - Contextual-
Bandit no MLP e ContextualBandit nw no MLP-). In questa sezione vengono discusse le
implicazioni scientifiche e operative dei risultati ottenuti, con l’obiettivo di valutare in
che misura ciascun approccio possa essere considerato affidabile e coerente con il contesto
applicativo dell’ottimizzazione delle campagne PPC su Amazon.

La prima implementazione del bandit si è rivelata fortemente instabile: il calcolo
del regret, basato direttamente sui dati reali e sulla funzione descritta in 3.4.3, ha pro-
dotto valori anomali, spesso negativi e di magnitudine elevata. Tali anomalie hanno
reso difficile interpretare i risultati, in quanto il modello mostrava prestazioni appa-
rentemente superiori rispetto allo scenario reale di riferimento. In questa versione, le
varianti contextualbandit MLP e ContextualBandit MLP no weights hanno mante-
nuto una coerenza parziale nei valori medi di regret, ma hanno comunque presentato
distribuzioni molto ampie e poco controllabili. Le versioni ContextualBandit no MLP e
ContextualBandit nw no MLP hanno mostrato un livello ancora maggiore di variabilità,
con picchi di regret estremamente alti, evidenziando una mancanza di stabilità nella
capacità del modello di gestire le scelte sequenziali.

In termini di reward, la prima implementazione ha restituito valori medi simili fra le
diverse varianti, suggerendo che la capacità di generare reward non fosse influenzata in
maniera significativa dalla presenza o assenza di MLP. Tuttavia, la variabilità osservata
nel regret ha reso questa versione poco utilizzabile dal punto di vista operativo: il rischio
di adottare configurazioni che producono risultati distorti o poco realistici è risultato
troppo elevato. In altre parole, la prima implementazione si caratterizza per un trade-off
sbilanciato verso il rischio: l’algoritmo è in grado di esplorare scenari estremi, ma lo fa
al prezzo di una bassa affidabilità e di una difficile interpretabilità.

La seconda implementazione, basata sulla ridefinizione della funzione di ricompensa
come indicato in 3.4.3, ha consentito di ottenere un notevole miglioramento in termini di
stabilità e coerenza scientifica. Il calcolo del regret, effettuato sulle predizioni stimate dal
bandit stesso, ha riportato i risultati entro intervalli plausibili, con valori medi compresi
generalmente tra 0% e 40%. Questo ha reso le analisi statistiche più interpretabili e
vicine alla realtà del problema.

Le varianti architetturali hanno mostrato dinamiche differenti ma complessivamente
più controllate rispetto alla prima implementazione. Le versioni con MLP, sia con che
senza pesi, hanno presentato valori di regret comparabili, pur mantenendo una maggiore
sensibilità agli iperparametri come il learning rate. La presenza di pesi iniziali ha garan-
tito maggiore stabilità nella fase di apprendimento, riducendo la variabilità dei risultati
e migliorando la capacità del modello di convergere verso configurazioni ottimali. La
variante priva di MLP ha mostrato un comportamento più costante ma meno perfor-
mante, con valori medi inferiori di reward e una capacità limitata di esplorare soluzioni
con alto potenziale. Infine, la configurazione senza pesi né MLP ha confermato di essere
la meno performante, pur distinguendosi per una stabilità intrinseca dovuta alla minore
complessità architetturale.

Dal confronto diretto tra le due versioni emerge dunque una distinzione chiara: la
prima implementazione rappresenta un approccio ad alto rischio, capace di generare con-

105

figurazioni estreme e difficilmente interpretabili, mentre la seconda offre un compromesso
più sicuro e stabile, sacrificando parzialmente la capacità esplorativa a favore di risultati
scientificamente coerenti e operativamente più affidabili. Questo trade-off tra rischio e
sicurezza riflette una scelta metodologica cruciale: nella prima versione il modello rischia
di sovra-ottimizzare, restituendo scenari non realistici, mentre nella seconda il processo
decisionale rimane ancorato a predizioni consistenti, garantendo un maggior controllo
delle performance.

In sintesi, i risultati indicano che le configurazioni con MLP e pesi iniziali all’inter-
no della seconda versione del bandit rappresentano l’approccio più equilibrato, poiché
offrono un reward medio competitivo, una deviazione standard contenuta e una buona
coerenza con le metriche di business. Le altre varianti, pur mostrando caratteristiche
interessanti (maggiore stabilità senza MLP, minore varianza senza pesi), non raggiun-
gono lo stesso livello di affidabilità e performance complessiva. La seconda implemen-
tazione, quindi, si pone come base solida per futuri sviluppi, consentendo di costruire
un framework di ottimizzazione robusto e scientificamente valido per il dominio delle
campagne PPC su Amazon.

I problemi riscontrati con entrambe le varianti fanno emergere la difficoltà in tutti
i modelli di generalizzare i dati che sono stati utilizzati per l’addestramento. Come già
visto nella sezione 5.2.1, possiamo distinguere in due macro aree i problemi rilegati al
modello:

• Problemi legati alla rete: Come discusso nel capitolo 5.2.1, anche il contextual
bandit presenta le stesse criticità derivanti dalla rete neurale che costituisce il
core del modello (implementata nel costruttore ContextualBandit. init , vedi
eq. (3.4.3)) e dalla MLP di supporto. Tali problematiche coincidono con quelle
già evidenziate nella sezione 5.2.1. Nel modello ContextualBandit nw no MLP la
rete neurale interna corrisponde alla stessa rete neurale utilizzata nella MLP di
supporto. Questo ablation study è stato condotto per completare lo studio in
maniera sistematica; tuttavia, non si esclude che una progettazione più specifica
della rete neurale possa condurre a risultati significativamente migliori.

• Problemi legati al dataset: Poiché il dataset impiegato per l’addestramento
della MLP e del contextual bandit è lo stesso, le criticità già discusse nella sezione
5.2.1 risultano pienamente trasferibili anche a questo modello.

5.3 Sviluppi Futuri

In questa sezione si discutono i possibili sviluppi futuri di questo lavoro di ricerca, con
l’obiettivo di evidenziare i margini di miglioramento e le potenzialità ancora inesplorate.
L’analisi si articola in due direttrici principali: da un lato le migliorie legate alla qualità
e alla quantità del dataset disponibile, dall’altro le ottimizzazioni dei modelli di machine
learning utilizzati, sia in termini architetturali che metodologici. Tale prospettiva si
inserisce all’interno della letteratura scientifica più recente che sottolinea come la qualità
del dato e l’adeguata scelta dell’algoritmo rappresentino due pilastri fondamentali per
l’ottenimento di risultati solidi e generalizzabili [21, 6, 3].

106

5.3.1 Dataset: prospettive di arricchimento e ottimizzazione

Il dataset utilizzato in questo elaborato ha permesso di ottenere risultati significativi;
tuttavia, la sua struttura presenta margini di miglioramento che potrebbero ampliare
notevolmente la capacità predittiva dei modelli. Gli sviluppi futuri legati al dataset
possono essere suddivisi in più sottocategorie, come di seguito discusso.

Codificare le strategie delle campagne

Le campagne pubblicitarie su Amazon non sono tutte progettate con lo stesso obiettivo.
Alcune mirano alla massimizzazione del profitto diretto, altre alla pura visibilità del
brand, anche a costo di sostenere perdite economiche a breve termine. In letteratura,
questa dicotomia è stata spesso descritta come performance-oriented versus awareness-
oriented strategies [31].

Un miglioramento fondamentale del dataset potrebbe consistere nella codifica espli-
cita delle strategie adottate. Ciò significa aggiungere metadati che specifichino se una
determinata campagna è stata concepita per:

• incrementare la quota di mercato tramite bid elevati,

• aumentare la visibilità del brand in contesti specifici,

• promuovere prodotti complementari,

• o ancora testare nuove keyword con budget limitati.

Incorporare queste informazioni nel dataset permetterebbe ai modelli di machine
learning di apprendere schemi predittivi più robusti, adattando la funzione obiettivo in
base al contesto strategico.

Ottenere la posizione del prodotto in ricerca organica

Un secondo asse di miglioramento riguarda l’integrazione delle informazioni sul posizio-
namento organico del prodotto per una determinata keyword. Amazon, infatti, ordina i
risultati organici sulla base di parametri interni, tra cui il volume delle vendite, il tasso
di conversione e la soddisfazione del cliente.

La posizione organica ha un impatto diretto sul numero di impression ricevute dal-
l’annuncio, rappresentando un indicatore cruciale della competitività del prodotto. A
differenza della pubblicità a pagamento, che comporta un costo per click, il posiziona-
mento organico rappresenta un vantaggio competitivo gratuito e sostenibile nel tempo.
Un posizionamento organico è tanto più elevato quanto lo sono gli indicatori (recensioni,
opinioni del cliente, tipo di prodotto, competitività del prodotto) ma tra tutti, l’indica-
tore di maggior importanza sono le unità di prodotto vendute, tanto più alte migliore
sarà il posizionamento.

Integrare questa metrica nel dataset consentirebbe di stimare più accuratamente la
redditività marginale delle campagne pubblicitarie e di distinguere tra la forza intrinseca
del prodotto e l’efficacia delle strategie pubblicitarie.

107

Ottenere indicatori di forza degli altri annunci per una data keyword

Un ulteriore sviluppo riguarda la possibilità di modellare la forza competitiva degli an-
nunci concorrenti. La forza di un brand concorrente potrebbe essere stimata attraverso
vari indicatori, quali:

• volume delle vendite,

• numero e qualità delle recensioni,

• posizionamento medio nelle ricerche organiche,

• livello di investimento pubblicitario stimato.

In letteratura, sono stati proposti diversi modelli di valutazione della competitività
dei brand basati sull’analisi congiunta di vendite, reputazione online e sentiment dei
consumatori [13, 20]. L’integrazione di tali metriche consentirebbe al modello di con-
testualizzare meglio i dati osservati, introducendo una dimensione relativa rispetto alla
concorrenza diretta.

Codificare dove l’annuncio deve apparire

La localizzazione dell’annuncio all’interno dell’interfaccia di Amazon è un ulteriore aspet-
to spesso trascurato, ma di grande rilevanza. Gli annunci possono infatti apparire:

• nella pagina dei risultati di ricerca,

• all’interno della pagina prodotto come suggerimenti complementari,

• o come prodotti simili a quelli visualizzati.

Codificare questa informazione nel dataset permetterebbe di comprendere quale col-
locazione genera il miglior ritorno sull’investimento (ROI) per una determinata categoria
di prodotti o keyword. Studi precedenti hanno dimostrato che la posizione dell’annuncio
influisce significativamente sul tasso di click e di conversione [19].

Ottenere più dati

Infine, un miglioramento trasversale riguarda la quantità di dati a disposizione. L’acqui-
sizione di dataset più ampi e aggiornati garantirebbe una maggiore robustezza statistica,
riducendo il rischio di overfitting e consentendo l’addestramento di modelli più comples-
si. Inoltre, un dataset esteso nel tempo permetterebbe di catturare dinamiche stagionali,
variazioni dovute a eventi esterni e tendenze di lungo periodo.

5.3.2 Modelli: prospettive di miglioramento

Parallelamente alle migliorie del dataset, anche i modelli di machine learning adottati
possono essere oggetto di ulteriori sviluppi. In questa sezione si discutono le prospettive
relative alle MLP, ai modelli di contextual bandit e ad altre architetture emergenti.

108

Miglioramenti alle MLP

Creare reti MLP più complesse Le MLP utilizzate in questo elaborato si basano su
un numero limitato di strati nascosti. Tuttavia, la letteratura suggerisce che architetture
più profonde, opportunamente regolarizzate, possano catturare meglio la complessità dei
dati [21].

Tra i possibili sviluppi si annoverano:

• l’introduzione di strati addizionali con un numero crescente di neuroni,

• l’uso di funzioni di attivazione avanzate come le Swish o le Mish,

• l’applicazione di tecniche di normalizzazione come batch normalization o layer
normalization,

• e l’adozione di strategie di regolarizzazione più sofisticate, come il dropconnect.

Creare modelli diversi per derivare le feature Un’ulteriore prospettiva riguarda
la possibilità di utilizzare reti differenti per derivare rappresentazioni alternative delle
stesse feature. In letteratura, tale approccio è spesso assimilabile alle tecniche di ensemble
feature learning, che combinano i punti di forza di architetture eterogenee [16].

Un possibile schema consiste nel progettare più MLP parallele, ciascuna specializzata
nell’estrazione di feature da un sottoinsieme del dataset, per poi fonderne le rappresenta-
zioni in un livello superiore. Tale metodologia consente di ridurre il rischio che un’unica
architettura sovrastimi o sottostimi la rilevanza di determinate variabili.

Miglioramenti ai contextual bandit

Il modello di contextual bandit adottato in questo lavoro rappresenta un primo pas-
so verso un’ottimizzazione dinamica delle campagne pubblicitarie. Tuttavia, diversi
miglioramenti sono possibili:

• implementare algoritmi avanzati come Thompson Sampling with Neural Networks
[43],

• introdurre meccanismi di uncertainty estimation tramite reti bayesiane,

• esplorare versioni contextual combinatorial bandit, adatte a scenari in cui più an-
nunci devono essere selezionati contemporaneamente.

Questi sviluppi potrebbero rendere il modello più flessibile nell’adattarsi a contesti
dinamici e multi-variabili, come le piattaforme pubblicitarie digitali.

5.3.3 Altri sviluppi modellistici

Testare una implementazione con i Transformers

Una linea di ricerca particolarmente promettente riguarda l’adozione dei modelli basati
su Transformers, già affermatisi in domini come l’elaborazione del linguaggio naturale e
la visione artificiale [51, 15]. La loro capacità di catturare relazioni a lungo raggio e di
modellare interazioni complesse tra feature potrebbe rivelarsi estremamente utile anche
nel dominio delle campagne PPC.

109

Un possibile sviluppo consisterebbe nel pre-addestrare un modello Transformer sulle
keyword e sul loro embedding semantico (ad esempio tramite SBERT) e successivamen-
te adattarlo alle specifiche esigenze predittive del contesto pubblicitario. In letteratu-
ra, alcuni lavori recenti hanno mostrato che i Transformers possono superare le MLP
tradizionali in compiti di regressione complessi [54].

5.4 Conclusioni sugli sviluppi futuri

In sintesi, gli sviluppi futuri di questo progetto si articolano su due piani principali: la
raccolta di dati più ricchi e strutturati, capaci di rappresentare meglio la complessità del
dominio pubblicitario su Amazon, e l’adozione di modelli di machine learning più potenti
e sofisticati, in grado di sfruttare appieno tali dati. La sinergia tra questi due aspetti
potrà condurre a una significativa evoluzione delle capacità predittive e decisionali degli
algoritmi, avvicinando l’obiettivo di campagne pubblicitarie sempre più ottimizzate e
data-driven.

110

Bibliografia

[1] url: https://pandas.pydata.org/docs/reference.

[2] Amazon. CONTRATTO DI AMAZON ADVERTISING. 2025. url: https://
advertising.amazon.it/terms.

[3] V. Arnold e Steve Sutton. “The theory of technology dominance: Understanding
the impact of intelligent decision aids on decision makers’ judgments”. In: Advances
in Accounting Behavioral Research 1 (gen. 1998), pp. 175–194.

[4] Peter Auer, Nicolò Cesa-Bianchi e Paul Fischer. “Finite-time Analysis of the Mul-
tiarmed Bandit Problem.” In:Mach. Learn. 47.2-3 (2002), pp. 235–256. url: http:
//dblp.uni-trier.de/db/journals/ml/ml47.html#AuerCF02.

[5] Jimmy Ba, Jamie Kiros e Geoffrey Hinton. “Layer Normalization”. In: (lug. 2016).
doi: 10.48550/arXiv.1607.06450.

[6] Christopher Bishop. “Pattern Recognition and Machine Learning”. In: vol. 16.
Gen. 2006, pp. 140–155. doi: 10.1117/1.2819119.

[7] Piotr Bojanowski et al. “Enriching word vectors with subword information”. In:
Transactions of the Association for Computational Linguistics 5 (2017), pp. 135–
146.

[8] L Breiman. “Random Forests”. In: Machine Learning 45 (ott. 2001), pp. 5–32. doi:
10.1023/A:1010950718922.

[9] Jason Brownlee.What is Data Leakage in Machine Learning? https://machinelearningmastery.

com/data-leakage-machine-learning/. Accessed: 2025-06-30. 2020.

[10] Ricardo Campello, Davoud Moulavi e Joerg Sander. “Density-Based Clustering
Based on Hierarchical Density Estimates”. In: vol. 7819. Apr. 2013, pp. 160–172.
isbn: 978-3-642-37455-5. doi: 10.1007/978-3-642-37456-2_14.

[11] Olivier Chapelle e Lihong Li. “An Empirical Evaluation of Thompson Sampling”.
In: Advances in Neural Information Processing Systems. A cura di J. Shawe-
Taylor et al. Vol. 24. Curran Associates, Inc., 2011. url: https://proceedings.
neurips.cc/paper_files/paper/2011/file/e53a0a2978c28872a4505bdb51db06dc-

Paper.pdf.

[12] Tianqi Chen e Carlos Guestrin. “XGBoost: A Scalable Tree Boosting System”. In:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, ago. 2016, pp. 785–794. doi: 10.1145/2939672.
2939785. url: http://dx.doi.org/10.1145/2939672.2939785.

[13] Judith A. Chevalier e Dina Mayzlin. “The Effect of Word of Mouth on Sales: Online
Book Reviews”. In: Journal of Marketing Research 43.3 (2006), pp. 345–354. doi:
10.1509/jmkr.43.3.345.

111

[14] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”. In: arXiv preprint arXiv:1810.04805 (2019).

[15] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. 2019. arXiv: 1810 . 04805 [cs.CL]. url: https : / /

arxiv.org/abs/1810.04805.

[16] TG Dietterich. “Ensemble methods in machine learning”. In: gen. 2000, pp. 1–15.
isbn: 3-540-67704-6.

[17] Stitch Fix. Multi-Armed Bandits and the Stitch Fix Experimentation Platform.
https://multithreaded.stitchfix.com/blog/2020/08/05/bandits/. 2020.

[18] GeeksforGeeks. Multi-armed bandit problem in reinforcement learning. Lug. 2025.
url: https://www.geeksforgeeks.org/machine- learning/multi- armed-
bandit-problem-in-reinforcement-learning/.

[19] Anindya Ghose, Avi Goldfarb e Sang Pil Han. “Estimating Mobile Search and App
Discovery Functions: The Role of Relevance, Location, and Time”. In: Marketing
Science 32.5 (2014), pp. 679–701. doi: 10.1287/mksc.2013.0798.

[20] Anindya Ghose e Sha Yang. “Estimating the Welfare Effects of Search Engine
Optimization: Evidence from Online Retailing”. In: Management Science 58.12
(2012), pp. 2055–2071. doi: 10.1287/mnsc.1120.1542.

[21] Ian Goodfellow, Yoshua Bengio e Aaron Courville. Deep Learning. Book in prepa-
ration for MIT Press. MIT Press, 2016. url: http://www.deeplearningbook.
org.

[22] Dalin Guo et al. Deep Bayesian Bandits: Exploring in Online Personalized Recom-
mendations. 2020. arXiv: 2008.00727 [cs.LG]. url: https://arxiv.org/abs/
2008.00727.

[23] Shubhankar Gupta.What is multi-armed Bandit(MAB) testing?: VWO. Mag. 2025.
url: https://vwo.com/blog/multi-armed-bandit-algorithm/.

[24] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825
(set. 2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2. url: https://doi.
org/10.1038/s41586-020-2649-2.

[25] Peter J. Huber. “Robust Estimation of a Location Parameter”. In: The Annals of
Mathematical Statistics 35.1 (1964), pp. 73–101. doi: 10.1214/aoms/1177703732.
url: https://doi.org/10.1214/aoms/1177703732.

[26] huggingface. Sentence-transformers/all-minilm-L6-V2 · hugging face. Ago. 2021.
url: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2.

[27] Sergey Ioffe e Christian Szegedy. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. 2015. arXiv: 1502.03167 [cs.LG].
url: https://arxiv.org/abs/1502.03167.

[28] Hong Kao e Ian H. Witten. “Data Leakage in Data Mining: A Review”. In: ACM
SIGKDD Explorations Newsletter 20.2 (2018), pp. 30–35. doi: 10.1145/3291285.
3291290.

[29] KDnuggets. Introduction to Multi-Armed Bandit Problems. https://www.kdnuggets.
com/2023/01/introduction-multiarmed-bandit-problems.html. 2023.

112

[30] Guolin Ke et al. “LightGBM: A Highly Efficient Gradient Boosting Decision Tree”.
In: Advances in Neural Information Processing Systems. A cura di I. Guyon et al.
Vol. 30. Curran Associates, Inc., 2017. url: https://proceedings.neurips.
cc / paper _ files / paper / 2017 / file / 6449f44a102fde848669bdd9eb6b76fa -

Paper.pdf.

[31] P. Kotler, K.L. Keller e A. Chernev. Marketing Management. Pearson Educa-
tion, 2021. isbn: 9781292404813. url: https://books.google.it/books?id=
iTPTzgEACAAJ.

[32] Tor Lattimore e Csaba Szepesvari. “Bandit Algorithms”. In: (2017). url: https:
//tor-lattimore.com/downloads/book/book.pdf.

[33] Lihong Li et al. “A contextual-bandit approach to personalized news article re-
commendation.” In: WWW. A cura di Michael Rappa et al. ACM, 2010, pp. 661–
670. isbn: 978-1-60558-799-8. url: http://dblp.uni-trier.de/db/conf/www/
www2010.html#LiCLS10.

[34] Leland McInnes, John Healy e James Melville. UMAP: Uniform Manifold Ap-
proximation and Projection for Dimension Reduction. 2020. arXiv: 1802.03426
[stat.ML]. url: https://arxiv.org/abs/1802.03426.

[35] Tomas Mikolov et al. “Efficient Estimation of Word Representations in Vector
Space”. In: arXiv preprint arXiv:1301.3781 (2013).

[36] Vinod Nair e Geoffrey Hinton. “Rectified Linear Units Improve Restricted Boltz-
mann Machines Vinod Nair”. In: vol. 27. Giu. 2010, pp. 807–814.

[37] OfferFit. Love multi-armed bandits? Meet their smarter cousins. https://www.
offerfit.ai/content/blog-post/love-multi-armed-bandits-meet-their-

smarter-cousins. 2024.

[38] Optimizely. What is a multi-armed bandit? ://www.optimizely.com/optimization-
glossary/multi-armed-bandit/. 2022.

[39] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Lear-
ning Library”. In: Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 2019, pp. 8024–8035. url: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-

library.pdf.

[40] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[41] Jeffrey Pennington, Richard Socher e Christopher D Manning. “GloVe: Global Vec-
tors for Word Representation”. In: Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP). 2014, pp. 1532–1543.

[42] Nils Reimers e Iryna Gurevych. “Sentence-BERT: Sentence Embeddings using
Siamese BERT-Networks”. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. 2019, pp. 3982–3992.

[43] Carlos Riquelme, George Tucker e Jasper Snoek. “Deep Bayesian Bandits Show-
down: An Empirical Comparison of Bayesian Deep Networks for Thompson Sam-
pling”. In: International Conference on Learning Representations (ICLR). 2018.
url: https://openreview.net/forum?id=SyYe6k-CW.

113

[44] Herbert Robbins. “Some aspects of the sequential design of experiments”. In:
Bulletin of the American Mathematical Society 58.5 (1952), pp. 527–535.

[45] Towards Data Science. An Overview of Contextual Bandits. https://towardsdatascience.
com/an-overview-of-contextual-bandits-53ac3aa45034/. 2024.

[46] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”. In: Journal of Machine Learning Research 15 (giu. 2014), pp. 1929–
1958.

[47] Counting Stuff. Whatever happened to the multi-armed bandit? https://www.

counting-stuff.com/whatever-happened-to-the-multi-armed-bandit/.
2024.

[48] Richard S. Sutton e Andrew G. Barto. Reinforcement Learning: An Introduction.
Second. The MIT Press, 2018. url: http://incompleteideas.net/book/the-
book-2nd.html.

[49] WILLIAM R THOMPSON. “ON THE LIKELIHOOD THAT ONE UNKNOWN
PROBABILITY EXCEEDS ANOTHER IN VIEW OF THE EVIDENCE OF
TWO SAMPLES”. In: Biometrika 25.3-4 (dic. 1933), pp. 285–294. issn: 0006-
3444. doi: 10.1093/biomet/25.3- 4.285. eprint: https://academic.oup.
com/biomet/article- pdf/25/3- 4/285/513725/25- 3- 4- 285.pdf. url:
https://doi.org/10.1093/biomet/25.3-4.285.

[50] Udemy. Building a Multi-Armed Bandit System from the Ground Up. https :

/ / medium . com / udemy - engineering / building - a - multi - armed - bandit -

system-from-the-ground-up-a-recommendations-and-ranking-case-study-

b598f1f880e1. 2022.

[51] Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv: 1706.03762 [cs.CL].
url: https://arxiv.org/abs/1706.03762.

[52] Wenhui Wang et al. “MiniLM: Deep Self-Attention Distillation for Task-Agnostic
Compression of Pre-Trained Transformers”. In: arXiv preprint arXiv:2002.10957
(2020). url: https://arxiv.org/abs/2002.10957.

[53] Wikipedia contributors. Multi-armed bandit — Wikipedia, The Free Encyclopedia.
[Online; accessed 3-September-2025]. 2025. url: https://en.wikipedia.org/w/
index.php?title=Multi-armed_bandit&oldid=1306531721.

[54] Min Zeng et al. “Zeng et al.2023”. In: (lug. 2023).

114

