ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
Master’s Degree in Computer Science

Merkle-tree-based integrity verification
protocol for geo-distributed storage systems

Supervisor: Author:
Prof. Ozalp Babaoglu Santo Cariotti

Session II
Academic Year 2024/2025

Abstract

This thesis presents an integrity verification protocol for geo-distributed storage
that integrates Merkle trees, Raft consensus, and Reed-Solomon coding. It ad-
dresses the need for efficient and reliable data integrity verification in environments
where nodes may be temporarily offline, overcoming the limitations of traditional
checksum-based full file scans.

A prototype was implemented using a purpose-built Rust library to efficiently
generate Merkle tree root hashes for entire folders, combined with Raft to ensure
consistent metadata coordination across distributed nodes. Experimental evalua-
tion demonstrates that the protocol reliably verifies and localizes data corruption
across various scenarios and node conditions, maintaining correctness even under
partial cluster availability. Verification time, however, increases with cluster size
due to coordination and network overhead.

These results indicate that a Merkle-tree-based architecture coordinated through
consensus provides a robust and fault-tolerant foundation for distributed integrity
verification, while also suggesting avenues for optimization through concurrency,
adaptive file organization, and large-scale deployment.

Sommario

Questa tesi propone un protocollo di verifica dell’integrita per sistemi di storage
geo-distribuiti, basato su alberi di Merkle, algoritmo di consenso Raft e codifica
Reed-Solomon. Il protocollo consente di garantire verifiche dei dati efficienti e
affidabili anche in ambienti in cui i nodi possono essere temporaneamente offline,
superando i limiti delle tradizionali scansioni di file completi basate su checksum.

Un prototipo ¢ stato implementato tramite una libreria Rust dedicata, capace
di generare in modo efficiente gli hash delle radici degli alberi di Merkle per intere
cartelle, integrata con Raft per assicurare la coerenza dei metadati tra i nodi dis-
tribuiti. La sperimentazione dimostra che il protocollo verifica e localizza in modo
affidabile la corruzione dei dati in diversi scenari, mantenendo correttezza anche
in caso di disponibilita parziale del cluster. Il tempo di verifica, pero, aumenta
con la dimensione del cluster a causa dei costi di coordinazione e del sovraccarico
di rete.

I risultati indicano che un’architettura basata su alberi di Merkle, coordinata
tramite consenso, offre una soluzione robusta e tollerante ai guasti per la verifica
distribuita dell’integrita dei dati, suggerendo al contempo possibilita di ottimiz-
zazione attraverso concorrenza, organizzazione adattiva dei file e deployment su
larga scala.

Contents

2 Background|

[2.1.1 Merkle proofs|
[2.1.2 Applications| o
[2.1.3 Alternative Implementations
[2.2 Cryptographic Hash Functions|

[2.3.3 Practical Byzantine Fault Tolerance (PBET)|.
[2.3.4 PB-Ratt: A Byzantine Extension of Raft|
[2.3.5 Summary|

[2.4.1 Classical Reed-Solomon codingl
[2.4.2 Cubbit’s adaptation|

3__Architecturel
[3.1 Merkle Tree Library|
[3.2 File organization| 0000
[3.2.1 Storing different Merkle trees for each agent|
[3.3 A Raft Cluster for File Uploads

[3.3.1 Corruption Check| 36

[3.3.2 Corruption Check for Partial Uploads|. 36

[3.3.3 Recovery of Missing Shards| 41

[4 Implementation and Tests| 43
4.1 Filesin a Raft Clusterl 43
[4.1.1 Gateway service|. 44

[4.1.2 Agent service| 46

4.2 Testing Environment and Results| 50

5 __Conclusion| 57
(Bibliography| 60
Append 60
A Listings i
[A.1 Protobuf definition for Agent service| i
[A.2 Gateway Upload Handler Implementation| iii
[A.3 SendShard RPC Wrapper Implementationl iv
[A.4 Gateway Download Handler Implementation v
[A.5 Agent Service Initialization and gRPC Server Setup| vi
[A.6 Raft Node Initialization| vii
[A.7 Client-Side Raft Join Request| viii
[A.8 Server-Side Raft Join Handlerd ix
[A.9 Server-Side SendShard Handled00 X
[A.10 Server-Side GetShard Handler|00 00000 xi
[A.11 Raft Log Command Structure| xi
[A.12 Server-Side AckbShard Handler| xii
[A.13 Raft Log Entry Helper Functions| Xiii
[A.14 Merkle Tree Creation in Rustl Xiv
[A.15 Merkle Proof Verification in Rustl Xiv
[A.16 Merkle Tree Module Prototypes (Go)| XV
[A.17 Corruption Check Algorithm|. Xvi

1 Introduction

This thesis emerged from a practical problem encountered during the development
of a modern cloud storage: how can a geo-distributed storage system efficiently
detect data corruption without assuming that all nodes are always online? The
answer, as explored in this work, lies in rethinking corruption detection through
the use of hierarchical data structures and consensus algorithms.

1.1 Motivation

File corruption can silently compromise stored data, reduce reliability, or increase
recovery costs. Traditional approaches such as checksums, replication, or RAID
[1] provide partial solutions, but they also show limitations when applied to large-
scale and geo-distributed environments. In particular, these methods often assume
constant node availability or require full scans that become increasingly expensive
as data grows.

During my internship at Cubbitl| the first geo-distributed cloud storage provi-
der, I studied the company’s existing integrity verification protocol, which re-
lies on checksum-based verification. While functional, this approach has two key
weaknesses: it assumes that nodes are always online, and it requires heavy opera-
tions to verify integrity. Moreover, Cubbit stores files using Reed-Solomon coding,
meaning that data is distributed into shards across multiple agents, and files are
reconstructed from subsets of those shards. This introduces additional challenges,
since nodes holding useful shards may be offline at any time.

Motivated by these challenges, I explored an alternative approach based on
Merkle trees. Merkle trees, widely used in blockchain and distributed databases,
allow efficient and hierarchical verification of large datasets: instead of re-checking
entire files, integrity can be confirmed by verifying only a logarithmic number of
hashes along a path in the tree. Combined with a consensus algorithm, this struc-
ture allows folder-level integrity verification even in clusters where nodes frequently
join and leave.

Thttps://cubbit.io

https://cubbit.io

1.2 Problem Statement

Verifying file integrity at the file level quickly becomes inefficient as the dataset
grows. In Cubbit’s environment, the problem is further complicated by node churn:
data may be temporarily unavailable, yet the system must still guarantee correct-
ness.

Cubbit’s use of Reed-Solomon coding ensures that files can be reconstructed
even when some shards are missing or corrupted. However, Reed-Solomon alone
does not provide a way to verify the integrity of individual shards. This means
that a reconstructed file could include corrupted data without the system being
able to detect where the corruption occurred.

Merkle trees address this gap, providing an efficient mechanism to detect and
localize corruption by verifying a logarithmic number of hashes along an authen-
tication path. The key challenge lies in constructing and verifying Merkle trees in
a distributed setting, where some shards are stored on agents that may be offline.

This thesis addresses the need for an integrity verification protocol that:

e avoids repeated full file scans by verifying integrity at the folder and sub-
folder level;

e tolerates offline nodes by storing and synchronizing integrity metadata across
the cluster;

e integrates with Cubbit’s existing Reed-Solomon coding, ensuring that veri-
fication is possible even during partial uploads and recoveries.

The central question is: how can a Merkle-tree-based integrity verification
protocol, combined with Raft consensus and compatible with Reed-Solomon cod-
ing, provide efficient, scalable, and fault-tolerant integrity verification in a geo-
distributed cluster?

1.3 Research Objectives

The primary objective of this thesis is to design and evaluate an integrity verifica-
tion protocol for distributed storage clusters that is both efficient and resilient to
node failures. Unlike checksum-based approaches, the proposed system leverages:

e an ad hoc Merkle tree library optimized for folder-based hierarchies;
e coordination via Raft to ensure consistent integrity metadata across nodes;

e integration with Cubbit’s Reed-Solomon-based infrastructure to handle par-
tial uploads and recoveries;

The overarching goal is to demonstrate that an optimized, folder-oriented
Merkle tree, combined with consensus, can provide a scalable, fault-tolerant, and
efficient alternative to classical checksum-based corruption detection in geo-distri-
buted clusters.

1.4 Structure of the Document

This document is organized as follows:

Chapter 2 provides the necessary background and serves as a literature review.
It examines the key technologies and theoretical foundations relevant to this work,
including Merkle trees, cryptographic hash functions, consensus algorithms, and
the core component of the Cubbit infrastructure. For each of these elements,
different solutions proposed in the literature are analyzed and compared. The
chapter then introduces the selected solutions, together with the rationale for their
adoption, explaining why they are best suited to the integrity verification protocol
under consideration.

Chapter 3 describes the architecture of the proposed integrity verification pro-
tocol. It explains how the components introduced in Chapter 2 are combined and
how they interact within the overall design.

Chapter 4 presents the prototype implementation and the experimental evalu-
ation. The system is tested under different scenarios, varying both the number of
agents in the cluster and the number of files stored per agent. Controlled corrup-
tion is deliberately injected into the data, and the evaluation measures the elapsed
time between the initiation of a corruption check and the correct identification of
the corrupted file.

Chapter 5 concludes the thesis by summarizing the main contributions, high-
lighting limitations, and outlining possible directions for future work.

2 Background

This chapter is intended to provide the reader with some background information
on the technologies used in writing this thesis project.

Some of them are essential to better know why the given Merkle tree solution
is useful and works for Cubbit’s infrastructure.

2.1 Merkle Trees

Merkle trees [2] are a fundamental data structure first introduced by R. Merkle in
his PhD dissertation. This section presents the theoretical foundations of Merkle
trees, their construction, their practical applications, and the rationale for the
implementation chosen in this thesis.

A Merkle tree is a binary tree T' of height H with 27 leaves and 2% —1 internal
nodes. Each leaf stores the cryptographic hash of the underlying data, rather than
the raw data itself. The same cryptographic hash function is applied recursively at
internal nodes, which store the hash of the concatenation of their two children. For
a more detailed discussion of collision resistance in cryptographic hash functions,
see [3].

Formally, given two child nodes nje and nyigns, their parent node is defined as:

Nparent = f(nleft H nright) (21)

where || denotes bit-string concatenation and f is a cryptographic hash function.

Consider now a Merkle tree of height H > 2. A leaf node is indexed by
¢ € {0,...,2 —1}. A node at height h and position j (counting from left to
right) is denoted as yy[j], where h = 0,...,H and j = 0,...,20~" — 1. Given a
cryptographic hash function f : {0,1}* — {0,1}", the recursive definition of an
internal node is:

ynls] = f(yn=1[24] || yn-1[27 + 1]). (2.2)

The root node of the tree, known as the Merkle root, serves as a compact
commitment to all data contained in the leaves. Because hashes propagate up-
wards, even a single-bit modification in any leaf causes a change in the root hash.

8

This property makes Merkle trees powerful tools for integrity verification in large,
distributed datasets.

2.1.1 Merkle proofs

One of the most powerful features of Merkle trees is the ability to prove that a
given piece of data is part of a larger set, without revealing or recomputing the
entire dataset. Given a Merkle tree leaf, one can reconstruct the root by traversing
the path to the root and successively combining the node with its siblings.

f(nodeg ||nodess)

/ \
nodeg nodezs

f(nodeg||node;) f(nodez||nodes)

AN /N

‘ nodeg node; nodes nodes

root

f(datap) f(datay) f(datas) f(datas)

@ @

Figure 2.1: Merkle tree authentication path for data,. Leaves are hashed as node; =
f(data;), and internal nodes are computed as f(nodeics ||noderignt) (Equation [2.1). The
proof requires only the sibling nodes {nodeg, nodes3} to recompute the root.

For each height h < H, we define Auth;, to be the value of the sibling node
along the path from the leaf to the root. The set of all such siblings { Authy }; -
is called the authentication path. With this path, anyone can recompute the root
and verify inclusion by comparing against the published Merkle root.

For instance, Figure [2.1| shows the authentication path corresponding to the
second leaf.

This property, known as a Merkle proof, enables efficient verification of data
integrity. In a naive implementation, the entire Merkle tree is stored in memory. In
such a case, generating a proof for a leaf — as illustrated in Algorithm [I] - involves
traversing only the path from the leaf to the root. This reduces proof generation
from a potentially linear scan of all data (O(n)) to a logarithmic traversal of the

tree (O(logn)).

Algorithm 1: Merkle proof generation
Input: Leaf index i, full tree levels Lo, Ly, ..., Ly
Output: Merkle proof 7 for leaf [; (or None if ¢ invalid)

T 0

current <— 1

foreach level € {Lo,...,Ly_1} do

sibling_index < min(current @ 1, |level| — 1)

sibling <+ level[sibling_index]

position < Left if sibling_index < current, else Right
append (sibling.hash, position) to

current < |current/2)|

© o N o A~ W N =

end
return

-
o

Merkle proof verification algorithm for a proof 7 is illustrated in Algorithm [2|

Algorithm 2: Merkle proof verification
Input: Data d, proof 7, expected root R, hash function f
Output: true if valid, false otherwise

1 h <+ f(d)

2 foreach (sibling, position) in m do
3 if position = Left then

4 ‘ h < f(sibling||h)

5 else

6 | h < f(h||sibling)

7 end

8 end

9 return h =R

Complexity Analysis

e Proof generation: O(logn), because only the sibling nodes along the path
from leaf to root are collected.

e Proof verification: O(logn), as each step requires a single hash operation
per tree level.

e Memory: O(n) to store the full tree in memory, which allows logarithmic-
time proof generation.

10

This approach ensures that Merkle proofs remain efficient even for large datasets,
while keeping the implementation simple and compatible with our folder-level in-
tegrity checks across a Raft-coordinated cluster.

2.1.2 Applications

Merkle trees are widely used in distributed systems to ensure data integrity:

e Blockchains: Bitcoin [4], Ethereum [5], and other systems use Merkle roots
to verify transactions efficiently.

e Version control systems: Git stores commits as Merkle trees, ensuring
history integrity.

e Distributed storage: Systems such as IPFS [6] and Amazon DynamoDB
[7] use Merkle trees for consistency checks and conflict resolution.

2.1.3 Alternative Implementations

In the literature, several advanced variants of Merkle trees exist, such as XMSS
(eXtended Merkle Signature Scheme) [8] and the BDS (Buchmann-Dahmen-Szydlo)
traversal algorithm [9]. These schemes were developed in the context of post-
quantum cryptography and digital signatures. XMSS is standardized by the IETF
(RFC 8391) and provides strong security guarantees by organizing one-time sig-
natures (OTS) under a large Merkle tree, where the root of the tree serves as the
public key.

In XMSS, to sign a message ¢, the authentication path of the i-th leaf is needed.
In a native way, recomputing this path would require rebuilding large parts of the
tree, which becomes impractical when the tree contains millions of leaves. To solve
this, the BDS traversal algorithm was introduced: it incrementally maintains and
updates the authentication path in O(h) time and O(h) space (where h = log,(n)
is the tree height). This makes XMSS practical for very large trees.

In our case, however, the scenario is fundamentally different. We are not
designing a post-quantum signature scheme but an integrity verification protocol
for folders in a geo-distributed storage cluster. The size of our Merkle trees is
modest: typically on the order of tens of leaves per folder. For trees of this size:

e Proofs can be recomputed directly, without significant computational over-
head.

e The space-time optimizations of BDS provide no practical benefit.

11

e The additional complexity of XMSS and BDS would introduce unnecessary
implementation overhead.

For this reason, this thesis opted for a simple Merkle tree implementation,
applied independently at the folder and sub-folder level. This keeps the system
lightweight, efficient, and easy to integrate with a consensus mechanism. It also
avoids the pitfalls of managing very large Merkle trees (as in XMSS) or the stateful
requirements of post-quantum signature schemes, which are irrelevant in our use
case.

2.2 Cryptographic Hash Functions

In the previous section, Merkle trees were discussed in detail, with particular
attention to the use of cryptographic hash functions for node construction. One
of the questions that emerged during my internship was: “what is the fastest
cryptographic hash function?”.

This section explores the motivation behind testing different cryptographic
hash functions (SHA-256, Keccak-256, and BLAKE3) within the context of this
project and why, among these, BLAKE3 was selected as the primary candidate
for benchmarking in this thesis due to its performance and modern design.

2.2.1 SHA-256

SHA-256 is part of the SHA-2 family of cryptographic hash functions, standardized
by NIST in 2001 [I0]. It produces a 256-bit output from input messages of arbitrary
length and is widely used in security protocols such as TLS, digital signatures, and
blockchain systems like Bitcoin.

The algorithm processes data in 512-bit blocks using 32-bit words. On 32-bit
architectures, this design choice makes SHA-256 relatively efficient. However, on
modern 64-bit CPUs, the reliance on 32-bit operations leads to extra instructions,
making it slower than SHA-512 and significantly less efficient than more modern
designs such as BLAKE3. By contrast, SHA-512 processes 1024-bit message blocks
with 64-bit operations, making it more efficient on such architectures. In this
thesis, however, SHA-512 was not benchmarked, as the focus was on SHA-256 and
the comparison against Keccak-256 and BLAKES.

Despite these performance limitations, SHA-256 remains a cornerstone in cryp-
tography due to its simplicity, standardization, and lack of practical vulnerabili-
ties. It is often used as a reference point in performance evaluations of newer hash
functions.

12

2.2.2 Keccak-256

Keccak-256 [11] is the 256-bit variant of the Keccak family, which won the NIST
SHA-3 competition in 2012 [12]. Unlike SHA-2, Keccak is based on a sponge
construction that alternates between absorbing input blocks and squeezing output.
This design provides strong theoretical guarantees and a high level of security
against known cryptanalytic attacks.

Although Keccak-256 is cryptographically very robust, its performance is gen-
erally slower than SHA-2 and significantly slower than BLAKE3 in software im-
plementations. However, its adoption is widespread in domains where security
guarantees are paramount. A prominent example is Ethereum, where Keccak-256
is used extensively in transaction validation, block hashing, and smart contract
execution.

In this thesis, Keccak-256 is included not because of raw speed but because of
its relevance in production distributed systems, where it demonstrates the trade-off
between cryptographic strength and computational efficiency.

2.2.3 BLAKE3

The BLAKE3 cryptographic hash function [I3] is an evolution of the BLAKE2
cryptographic hash function [14], providing higher performance and introducing
several additional features:

e Support for hashing, keyed hashing, and key derivation modes.
e No additional space cost for keyed hashing.
e Parallelizable output generation.

BLAKE3 employs a binary tree structure that splits the input into 1024-byte
chunks, which are treated as the leaves of the tree. The final chunk may be shorter,
but it cannot be empty (unless the entire input is empty). This design enables
unlimited parallelism, as each chunk can be compressed independently, allowing
efficient use of modern CPUs with SIMD instructions.

BLAKE3 achieves significantly better performance than both SHA-256 and
SHA-512 on modern 64-bit architectures. Within the SHA family, SHA-512 gen-
erally outperforms SHA-256 on 64-bit machines [L5].

BLAKES3’s superior performance derives from its fundamentally different de-
sign philosophy. Unlike the inherently sequential SHA algorithms, its tree-based
parallelism, fewer rounds, more efficient mixing function, and better cache local-
ity enable it to outperform both SHA variants regardless of word size alignment
considerations.

It provides a 128-bit security level and a 256-bit output.

13

AR — BLAKE3
9 AT —BLAKEZb
LA BLAKE2s
8 1 e] BLAKEZ0p
\ 7 BLAKE2sp
Vo - SHA512
6 \ --- SHA-256
\ . KangarooTwelve

Throughput (cpb)

0 O o o O O 0 4 @0 @0 @O 0 O 4O @
+ @ © o ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X =
@ N W E - N <+ ® © N % 0 © N L
- ® & o O =
- o b
Input Length

Figure 2.2: Single-threaded throughput of BLAKES3 and other hash functions on an
AWS c5.metal instance, measured in cycles per byte (cpb). Lower values indicate fewer
CPU cycles needed per byte.

Formally, for a message of length n > 1024 bytes, the left subtree covers a
number of bytes equal to:

210+ |logy (;‘0;2411)]

The right subtree consists of the remainder. BLAKE3 supports input of any
length 0 < ¢ < 264,

This section does not aim to describe the full BLAKE3 specification (e.g., its
compression function or internal modes of operation), but rather to emphasize its
practical performance benefits in the context of this work.

Performance

Figures and show benchmark results from an AWS c5.metal instance
equipped with dual Intel Xeon Platinum 8275CL (Cascade Lake-SP) processors
supporting AVX-512. These results highlight BLAKE3’s superior performance
compared to other widely used hash functions.

In the context of this thesis, benchmarks were also conducted using the mt-rsJ]
library to evaluate Merkle tree creation and proof generation under these three dif-
ferent cryptographic hash functions. For each function, three tests were performed

'https://crates.io/crates/mt-rs

14

https://crates.io/crates/mt-rs

BLAKE3 6866
BLAKE2b

SHA-1
BLAKE2s

MD5

SHA-512

SHA-256

484

SHA3-256 394

T T T T T
3000 4000 5000 6000 7000

Speed (MiB/s)

I T T
0 1000 2000 8000

Figure 2.3: Hashing speed comparison of BLAKES3 and other hash functions on an AWS
ch.metal instance with a 16 KiB input, using a single thread. Higher values (MiB/s)
indicate faster processing.

with node data sizes of 5 MB, 10 MB and 15 MB. In each test, the benchmark
measures the time required to construct the authentication path for a leaf, verify
the corresponding root from that path, and repeat this process for all 10 nodes of
the Merkle tree.

The results, reported in Table 2.1, demonstrate that BLAKE3 consistently
outperforms both SHA-256 and Keccak-256 in terms of execution time.

Hash function 5 MB 10 MB 15 MB
SHA-256 89.901 ms | 178.42 ms | 268.53 ms
Keccak-256 521.49 ms | 1.1334 s 1.3438 s
BLAKE3 73.091 ms | 154.68 ms | 219.79 ms

Table 2.1: Merkle tree benchmarks with 10 nodes per dataset size (5 MB, 10 MB, and
15 MB).

2.3 Consensus Protocols
This section provides background on the consensus protocols that were studied

during the internship in order to evaluate how to integrate this Merkle-tree-based
integrity verification protocol into a distributed setting. Although corruption de-

15

times out,
startsup timesout, new election
starts election

receives votes from
majority of servers

Follower Candidate

discovers current
leader or new term

discovers server
with higher term

Figure 2.4: Server states. Followers only respond to requests from other servers. If a
follower receives no communication, it becomes a candidate and initiates an election. A
candidate that receives votes from a majority of the full cluster becomes the new leader.
Leaders typically operate until they fail.

tection could be applied in a centralized environment using simple checksums, in
a distributed cluster, a consensus algorithm is needed to coordinate nodes and
ensure consistent state.

Several consensus mechanisms were examined, reflecting the long-standing de-
bate between leader-based protocols (such as Raft, PBFT, and PB-Raft) and lead-
erless approaches (such as Flutter+Blink). Each design choice has implications
for performance, fault tolerance, and implementation complexity.

2.3.1 Raft

Raft [16] is a consensus protocol designed to be understandable and practical, and
it has become widely adopted in distributed systems such as etcd [I7] and TiKV
[18]. It tolerates crash faults, but not Byzantine behavior [19].

Each server on a Raft cluster is modelled as a finite state machine with three
possible states:

e Follower: Passive state that responds to requests from the leader and can-
didates.

e Candidate: Initiates an election when a follower times out without hearing
from a leader.

e Leader: Elected through majority vote, responsible for handling client re-
quests and replicating logs.

In Figure[2.4] the three server states are illustrated using a finite state machine.

16

Leader election in Raft is randomized: followers start an election if they do not
receive a heartbeat in a randomized timeout window (e.g., 150-300 ms). Candi-
dates send RequestVote messages to all nodes, including their last log index and
term, to ensure that outdated nodes cannot become leader. If a candidate obtains
a majority of votes, it becomes the leader. Otherwise, it retries after another
randomized timeout.

Once elected, the leader replicates client requests in the form of log entries
using the AppendEntries message. Followers acknowledge receipt and once a
majority confirms an entry, it is committed and applied to the state machines.
This ensures safety (no two servers commit different values at the same log index)
and availability (progress can be made as long as a majority of nodes are reachable).

Raft is crash fault-tolerant, but not Byzantine fault-tolerant. However, its
simplicity and efficiency make it well-suited for small to medium-sized clusters.

2.3.2 Flutter+Blink

Flutter and Blink [20] are Byzantine fault-tolerant protocols that operate without
a leader and without cryptographic signatures. They require at least 5f +1 servers
to tolerate f Byzantine faults.

e Blink: Provides binary consensus using Representative Binary Consensus
(RBC), where a proposal is considered valid only if at least f + 1 correct
servers support it. This in contrast to the single correct server required by
Binary Consensus.

e Flutter: Builds on Blink to provide total-order broadcast, ensuring all
servers agree on the same sequence of client messages. It achieves low latency
with a best-case of 2A + €, where A is the network delay and e is negligible.

Flutter uses a betting mechanism where clients attach timestamps (bets) to
messages. Servers then order messages according to these bets, ensuring global
consistency without requiring a centralized leader.

This makes Flutter+Blink interesting for highly adversarial settings, as they
are leaderless, resilient to Byzantine behavior and even quantum-attack resistant
(due to the absence of signatures). However, the 5f + 1 replication requirement
can be costly in practice.

2.3.3 Practical Byzantine Fault Tolerance (PBFT)

Practical Byzantine Fault Tolerance (PBFT), introduced by Castro and Liskov in
1999 [21], was the first protocol to show that Byzantine fault tolerance could be

17

practical in asynchronous environments. PBFT tolerates up to f Byzantine faults
among 3 f + 1 replicas, using cryptographic signatures and message authentication
codes (MACs) to prevent spoofing and replay attacks.

The protocol proceeds in three phases:

1. Pre-prepare: The leader proposes an order for client requests.

2. Prepare: Replicas exchange messages to confirm the proposal and ensure
consistent ordering.

3. Commit: Replicas agree to execute the request once a quorum of matching
prepare messages is observed.

A client considers its request successful once it receives f + 1 valid replies. If
a timeout occurs, the request is retransmitted.

PBFT guarantees both safety (no two correct replicas decide differently) and
liveness (progress is eventually made under partial synchrony). However, the com-
munication overhead is high: the preparation and committing phases require O(n?)
messages, limiting scalability.

Despite being somewhat outdated, PBFT remains foundational and continues
to inspire more efficient Byzantine consensus protocols.

2.3.4 PB-Raft: A Byzantine Extension of Raft

Raft is widely used due to its simplicity and efficiency, but it only tolerates crash
faults. PBFT tolerates Byzantine faults but at a high communication cost. PB-
Raft [22] is a recent proposal that aims to combine the strengths of both.

Key features of PB-Raft include:

e BLS signatures [23]: Allow short, aggregable multi-signatures that im-
prove efficiency in log replication.

e PageRank-inspired leader election: Nodes are ranked by a probability
score. Nodes with higher scores use shorter timeouts, balancing fairness and
responsiveness.

e Semi-synchronous model: Assumes bounded network delays while toler-
ating Byzantine behavior.

Compared to PBFT, PB-Raft reduces message complexity by adopting Raft’s
two-phase replication approach while retaining Byzantine resilience.

18

2.3.5 Summary
In summary:
e Raft is practical, simple and widely adopted for crash fault tolerance.

e Flutter+Blink achieves leaderless, low-latency Byzantine consensus but
requires many Servers.

e PBFT provides strong Byzantine fault tolerance but at high communication
cost.

e PB-Raft is a hybrid approach that adapts Raft for Byzantine environments.

For the scope of this thesis, Raft was chosen as the consensus algorithm due
to its simplicity, maturity and suitability for a small cluster without Byzantine
assumptions.

2.4 Reed-Solomon

This section provides background on Reed-Solomon coding to give the reader a
clearer picture of Cubbit’s infrastructure and the context in which the proposed
integrity verification mechanism was tested.

2.4.1 Classical Reed-Solomon coding

Reed-Solomon error correction [24] is one of the most widely used error correction
codes, applied in digital communications, storage systems, and network protocols.

A Reed-Solomon code is defined over a finite field F,, where F' denotes the
finite field and ¢ is the size of its alphabet (typically a power of two, e.g., ¢ = 28
for byte-oriented operations).

Classically, a Reed-Solomon code is parameterized by two values: the block
length n, representing the total number of symbols in a codeword (data plus re-
dundancy), and the message length k, representing the number of original data
symbols, with £k < n <gq.

The encoder maps the k data symbols mg, mq,...,mi_1 to a polynomial of
degree at most k£ — 1:

P(x) = mg +mix +mox® + - + my_q2F L. (2.3)

This polynomial is evaluated at n distinct points z1, 9, ..., 2, in F,, producing
n encoded symbols. The first & symbols correspond to the original data, while the
remaining n — k symbols are redundancy.

19

The key property of Reed-Solomon coding is that any subset of k symbols
from the n encoded symbols is sufficient to reconstruct the original message using
polynomial interpolation (e.g., Lagrange interpolation). This allows recovery even
if some symbols are lost or corrupted.

2.4.2 Cubbit’s adaptation

Cubbit employs Reed-Solomon coding to store files reliably across multiple nodes
in its geo-distributed network. Unlike the classical definition, in Cubbit’s imple-
mentation the total number of shards stored across the network is n + k, where n
denotes the number of data shards and k& the number of redundancy shards.

For example, with three nodes, a file could be split into three data shards,
distributed one per node. If the system is configured with £k = 1, only n = 2
shards are required to reconstruct the original file. Thus, even if one node is
offline, the user can still recover the file successfully.

20

3 Architecture

This chapter describes the architecture of the proposed integrity verification pro-
tocol. First, the Rust library developed specifically for this project is introduced,
designed to operate efficiently both at the folder level and on individual data
items. Then, the organization of the Merkle tree within the system is discussed,
including how the nodes (also referred to as agents) exchange information through
the Raft cluster. Particular attention is given to scenarios in which some agents
are temporarily unavailable (during uploads or during corruption checks) and how
the system leverages the Raft log to maintain a consistent view of per-agent root
hashes. This ensures that integrity verification can proceed safely and correctly,
even when some agents lag behind or remain offline, independently of the Reed-
Solomon requirement.

3.1 Merkle Tree Library

As discussed in Section [2.1], the integrity verification protocol relies fundamentally
on the Merkle tree data structure. Despite the widespread use of Merkle trees
in the literature and in applications such as blockchains, there are relatively few
general-purpose and reusable libraries available online. This is largely because
implementations are often developed ad hoc, tailored to the needs of a specific
infrastructure or application domain.

To overcome this limitation, a dedicated library was developed in Rust[l] named
mt-rs. The library is distributed under a BSD-3 Licence on Crates.id?] with its
source code publicly available at https://github.com/boozec/mt|

Hasher The construction of a Merkle tree begins with the definition of a hasher,
i.e., the cryptographic hash function applied to the leaves and internal nodes of
the tree. This enables direct experimentation with different trade-offs between
performance and security. The design allows developers to implement custom

https://www.rust-lang.org
’https://crates.io/crates/mt-rs

21

https://github.com/boozec/mt
https://www.rust-lang.org
https://crates.io/crates/mt-rs

© 000 N O U s W N =

=
[=}

© 0 N O U R W N

hashers by instantiating the trait Hasher, which requires only the implementation
of the hash method. Listing[I]illustrates a simple example of a user-defined hasher.

use mt_rs: :hasher: :Hasher;
pub struct FooHasher;
impl Hasher for FooHasher {
fn hash(&self, input: &[u8]) -> String {
let sum: u32 = input.iter().map(|&b| b as u32).sum(Q);
format! ("foo_{:x}", sum)
}
}

Listing 1: Example of a custom hasher FooHasher, which hashes an input as a string
with the prefix "foo_” followed by the sum of the integer values of its bytes, in hexadec-
imal format.

The library provides three default hashers: SHA256Hasher, Keccak256Hasher,
and Blake3Hasher. They correspond to the functions analyzed in Section [2.2]

Tree construction A Merkle tree is represented by the structure shown in List-
ing[2] It can be instantiated either from raw in-memory data using the new method
or from the contents of files and folders using the from_paths method (Listing [3)).
This dual approach supports both synthetic testing and real-world scenarios, such
as integrity verification of storage systems, by avoiding repeated disk reads.

pub struct MerkleTree {
/// Leaf nodes at the base of the tree
/// (may tinclude a duplicate for even pairing).
leaves: Vec<Node>,
/// Height of the tree (number of levels including root).
height: usize,
/// Root mode of the Merkle tree.
root: Node,
}

Listing 2: MerkleTree structure definition, where Node is an ad hoc structure that
includes additional information and methods.

22

impl MerkleTree {
pub fn new<I, T, H>(hasher: H, data: I) -> Self
where
I: Intolterator<Item = T>,
T: AsRef<[u8]>,
H: Hasher + 'static + std::marker::Sync,

{7+ ... %%
pub fn from_paths<H>(hasher: H, paths: Vec<String>) -> Self
where
H: Hasher + 'static + std::marker::Sync + Clone,
{ /% ... %/}

Listing 3: Signatures of the new and from_paths methods. A concrete Hasher is always
provided when defining a Merkle tree.

Internally, both methods translate the input data into leaf nodes of type Node
and then invoke the builder function (Listing [4]), which assembles the tree level by
level. The construction algorithm ensures binary balance by duplicating the last
node when the number of nodes is odd.

Parallelization is achieved through the par_chunks method of the Rayon CrateEL
which splits slices into disjoint chunks and computes parent nodes concurrently.

The tree is organized into levels: the leaves at Level 1, the root at the highest
level, and internal nodes in between (Figure . This layered representation
makes the structure conceptually simple. The root node is accessible through the
root () method, and its hash can be retrieved directly. Unlike leaves and the root,
internal nodes are not stored explicitly in the MerkleTree structure.

Root
/ Level 3 \
Internal 1 Internal 2

Level 2 Level 2
Leaf 1 Leaf 2 Leaf 3 Leaf 4
Level 1 Level 1 Level 1 Level 1

Figure 3.1: An example of a binary Merkle tree with 4 leaves, showing the different
levels: leaves (Level 1), internal nodes (Level 2), and the root (Level 3).

3https://crates.io/crates/rayon

23

https://crates.io/crates/rayon

impl MerkleTree {
fn build<H>(hasher: H, mut leaves: Vec<Node>) -> Self
where
H: Hasher + 'static + std::marker::Sync,

let original_leaves = leaves.clone();
let mut height = 1;

while leaves.len() > 1 {
if leaves.len() % 2 !'= 0 {
leaves.push(leaves.last () .unwrap() .clone());

3

leaves = leaves
.par_chunks (2)
.map(|pair| {
let combined = [
pair[0] .hash() .as_bytes(),
pair[1] .hash() .as_bytes()
]

.concat();
let hash = hasher.hash(&combined) ;

Node: :new_internal (hash, pair[0].clone(), pair[1].clone())

1))
.collect();

height += 1;
by

MerkleTree {
leaves: original_leaves,
height,
root: leaves.into_iter() .next().expect("root not found"),

Listing 4: Build method for constructing the Merkle tree from the leaves upward. The
height variable tracks the number of levels.

Listing [f| demonstrates printing the Merkle tree root hash. The hash() method
of each node returns the computed hash as a string.

24

1
2
3

© 0 9 O Uk W N =

L e T B e S Y
= O © 0 N O ok W N = O

let data = &["hello".as_bytes(), "world".as_bytes()];
let tree = MerkleTree: :new(Blake3Hasher: :new(), data);
println! ("Merkle root: {}", tree.root().hash());

Listing 5: Snippet of code that prints the Merkle root hash of a tree with two byte
strings as leaves.

Proof generation and verification The library also supports Merkle proofs,
which enable verification that a given leaf belongs to a specific Merkle tree. Proofs
are generated and verified via implementations of the Proofer trait (Listing @ A
Merkle proof is expressed as sequences of ProofNode elements, which encode the
sibling hashes encountered on the path from the leaf to the root. Users may define
custom proofers if needed.

/// Represents a single step in a Merkle proof path.
pub struct ProofNode {

pub hash: String,

pub child_type: NodeChildType, // Left or Right
}

/// A Merkle proof containing the path from a leaf to the root.
pub struct MerkleProof {

pub path: Vec<ProofNode>,

pub leaf_index: usize,

pub trait Proofer {
/// Generates a Merkle proof for the data at the specified index
fn generate(&self, index: usize) -> Option<MerkleProof>;

/// Verifies that a piece of data exists in the tree using a Merkle proof
fn verify<T>(&self, proof: &MerkleProof, data: T, root_hash: &str) -> bool
where

T: AsRef<[u8]>;

Listing 6: The Proofer trait.

In this work, the DefaultProofer is used. Its implementation corresponds to
proof generation (Algorithm [1)) and proof verification (Algorithm . Unlike the
MerkleTree structure, which does not store internal nodes, the DefaultProofer
retains all levels.

Verification proceeds by iteratively reconstructing the root hash from the leaf

25

© 000 N O O s W N =

AR W W W W W W W W W W NN NN NN NN N KN R R e e e
= O © 0 9 O G hA DR R O O LN 0 AR ® N RO © N OO A W N = O

and its authentication path, comparing the result with the expected root. The
implementation in Rust is reported in Listing [7]

impl<H> Proofer for DefaultProofer<H>
where
H: Hasher,
{
fn generate(&self, index: usize) -> Option<MerkleProof> {
if index >= self.levels[0].len() { return None; }
let mut path = Vec::new();
let mut current_index = index;
for level in &self.levels[..self.levels.len() - 1] {
let sibling_index = (current_index ~ 1) .min(level.len() - 1);
let sibling = &level[sibling_index];
let child_type = if sibling_index < current_index {
NodeChildType: :Left
} else {
NodeChildType: :Right
I
path.push(ProofNode {
hash: sibling.hash().to_string(), child_type
B
current_index >>= 1;
¥
Some (MerkleProof { path, leaf_index: index })
}

fn verify<T>(&self, proof: &MerkleProof, data: T, root_hash: &str) -> bool
where
T: AsRef<[u8]>,

{
let mut current_hash = self.hasher.hash(data.as_ref());
for proof_node in &proof.path {
let combined: String = match proof_node.child_type {
NodeChildType: :Left =>
format! ("{}{3}", proof_node.hash, current_hash),
NodeChildType: :Right =>
format! ("{}{3}", current_hash, proof_node.hash),
};
current_hash = self.hasher.hash(combined.as_bytes());
}
current_hash == root_hash
}

Listing 7: Implementation of the Proofer trait for DefaultProofer. The proof is built
by traversing the tree levels and collecting sibling hashes along the path.

26

© 0 N O Uk W N

NONONON NN N R R e R e R e e
S A W N R, O © N O U A W N R~ O

Example and Conclusion The complete workflow of the library is illustrated
in Listing [§] In this test, a Merkle tree is constructed from the folder pics, which
contains three files. The program verifies the basic properties of the tree, such as
its height, and root hash, before generating a Merkle proof for the first leaf. Fi-
nally, the proof is successfully verified against the computed root hash, confirming
the correctness of both tree construction and proofing. This example brings to-
gether the key components of the mt-rs library (hashers, tree building, and proof
generation) and demonstrates their integration in practice, concluding the presen-
tation of the Merkle tree library by showing how the system operates end-to-end
on real data.

let hasher = Blake3Hasher::new();
let folders = vec![String::from("pics/")];

let tree =
MerkleTree: :from_paths(hasher.clone(), folders);

assert_eq! (tree.height(), 3);
assert_eq! (
tree.root () .hash(),
"a08c44656fb3£561619b8747a0d1dabe97126d9ed6eOcafbd7ce08ebel2d55ca"
);

let proofer = DefaultProofer: :new(
hasher.clone(),
// Recurstively hashes the contents of files and directories.
hash_dir(hasher.clone(), folders),

)3

let proof = proofer.generate(0).expect("proof generation failed");

assert! (proofer.verify(
&proof,
// Read the content of the first leaf read by the folder pics/
&fs::read("pics/photo0.png") .expect("file not found"),
"a08c44656fb3£561619b8747a0d1dabed7126d9ed6eOcafbd7ce08ebel2d55ca"
)5

Listing 8: End-to-end test of the mt-rs library: building a Merkle tree from the folder
pics (with three files), checking its properties, and verifying that a proof for the first leaf
matches the expected root hash.

27

3.2 File organization

This section describes how files are structured and managed within the proposed in-
tegrity verification protocol, highlighting the integration of Merkle trees with Cub-
bit’s existing Reed-Solomon-based infrastructure. As discussed in Section [2.4.2]
each file is split into n + k shards, with each shard distributed to a different agent
(i.e., node).

To uniquely identify each file and its shards, the original filename is converted
into a random lowercase hexadecimal string (e.g., ££f4c4b3). Each shard is then
appended with the identifier of the agent storing it (e.g., ££4c4b3.1 for the shard
on Agent 1), facilitating tracking and reconstruction.

When a user downloads a file, the system retrieves the shards from the re-
spective agents and reconstructs the file using the Reed-Solomon algorithm. The
reconstructed file is then returned to the user. In reality, the complete flow also
involves encryption and decryption steps, but these are not relevant to understand-
ing how files are organized for the purposes of this discussion.

As explained in Section [3.1] the developed Merkle tree library can operate di-
rectly on a list of folders. For this reason, the file organization within the proposed
architecture can easily adopt a two-level folder hierarchy. For example, given a file
named ff4c4b3, the file is stored under the path £f/4c/4b3. Another file, such
as ff4c61a, is stored under the path ff/4c/61a, meaning that the folder £f/4c
contains both files. This hierarchical organization is illustrated in Figure [3.2

ff

4c

4b3 61a

Figure 3.2: Organization of files under the folder £f, represented as a tree structure.

From this figure, the reader can observe that 4c can be regarded as an internal
node with two leaves. For a larger example, Figure [3.3] shows how the same
organization scales when more files are stored in the folder £f. At this scale, the
overall structure resembles a larger tree with £f as the root.

It is important to clarify, however, that the diagrams so far represent directory
trees, not Merkle trees. In a Merkle tree, internal nodes are not simply folders
but cryptographic hashes computed from their children (the leaves or subtrees).

28

For this reason, the second-level folders in the figure cannot directly be considered
internal nodes of a single Merkle tree. Instead, the entire filesystem should be
viewed as a Merkle tree forest: each second-level folder forms an independent
Merkle tree, while each top-level folder can itself be treated as a Merkle tree
whose leaves are the root hashes of its subfolders.

/ ff \
00 4c 7d fa
78a 4b3 61la 56b 99d 9of 4bh3

Figure 3.3: Extended example of file organization under ff, represented as a tree
structure with multiple files.

If the leaves of a Merkle tree correspond to individual file blocks or shards,
then a single root hash can represent the entire £f folder. Alternatively, smaller
Merkle trees can be built independently for each subfolder. For instance, in Figure
[3.3] one could compute four Merkle root hashes for the second-level folders and
one root hash for the top-level folder ff.

This arrangement, referred to here as a Merkle tree forest, allows up to 256
top-level folders. Since only lowercase hexadecimal strings are used, ensuring com-
patibility with both case-sensitive and case-insensitive filesystems, the range spans
from 00 to £f. Each top-level folder can contain up to 256 second-level folders, as
the namespace is determined by four hexadecimal characters. Dividing the data
into smaller trees is crucial for scalable and efficient verification, as will be detailed
in the following section.

3.2.1 Storing different Merkle trees for each agent

Because each file is split into n + k shards and distributed across different nodes,
each agent maintains its own local file organization. As a result, there are effec-
tively n + k distinct filesystems, one for each agent. It should be noted that the
sets of files stored by different agents may not be identical, since some agents may
be offline during an upload. Nevertheless, the file is still successfully stored thanks
to the Reed-Solomon requirements.

To better understand this, we can consider the entire filesystem of an agent as
a tree structured as follows:

29

e Root: The global root, representing all files stored by the agent. In practice,
this is rarely used because computing a Merkle tree for this element would
require hashing the entire filesystem at once.

e Second level: The top-level folders (e.g., £f), each of which corresponds to
the root of a Merkle tree for that folder.

e Third level: The second-level (or sub) folders (e.g., £f/4c), which are
smaller Merkle trees containing only a subset of files.

e Leaves: The actual file data blocks.

The global root of the entire filesystem is avoided because it is too expensive to
compute, especially across multiple agents that may be offline at any given time.
At the other extreme, while each file could theoretically be validated individually,
storing and checking a hash for every file would reduce the system to a simple
checksum-based corruption detection scheme, which lacks scalability.

Instead, the system leverages intermediate Merkle trees at the folder levels.
These allow integrity verification to be performed at different granularities: either
locally within a subfolder or globally within a top-level folder, without the overhead
of recalculating the root hash for the entire agent’s filesystem.

Figure illustrates an example of this organization for a Reed-Solomon con-
figuration with n = 2, k = 1. In this example, the top-level and second-level folders
are highlighted with lighter and darker colors, respectively.

For each top-level folder, every agent computes and stores the Merkle root
hash obtained from a Merkle tree whose leaves correspond to the terminal files.
The same procedure is applied to second-level folders. For example, in Figure |3.4)
Agent 1 computes and stores the Merkle root hashes of fe, £ff, fe/2d, ££/4c, and
ff/6d. Agents 2 and 3 follow the same procedure, maintaining the root hashes
corresponding to their respective local filesystems.

A key property of these Merkle root hashes is that they can themselves be used
as input for higher-level Merkle trees. The system computes aggregated Merkle
trees from the folder roots and stores only the resulting root hashes in string
format. This recursive organization is illustrated in Figures and [3.6]

The distinction between top-level and second-level folder roots becomes largely
irrelevant in storage terms: both are represented uniformly in a map, where the
key is the folder identifier (two characters for a top-level folder, five for a second-
level folder) and the value is the corresponding root hash. This raises a couple of
questions: which component is responsible for storing and maintaining this map,
and why does the system use two levels of folders instead of just one?

30

Agent 1

fe ff
|
fe/2d ff/4c ff/6d
| |
0f8.1 4b3.1 6la.1 db7.1
Agent 2
fe ff
|
fe/2d ff/4c ff/6d
| |
0f8.2 4b3.2 6la.2 db7.2
Agent 3
fe ff
|
fe/2d ff/4c ff/6d
| |
0f8.3 4b3.3 6la.3 db7.3

Figure 3.4: Example of filesystems for Agent 1, Agent 2, and Agent 3.

31

fe

/ i \

fe's root of Agent 1 fe's root of Agent 2 fe's root of Agent 3
ff's root of Agent 1 ff's root of Agent 2 ff's root of Agent 3

Figure 3.5: Merkle tree constructed from the root hashes of top-level folders. Each
folder root acts as a leaf in this Merkle tree. Internal nodes are omitted for clarity.

fe/2d
T T
fe/2d's root of Agent 1 fe/2d's root of Agent 2 fe/2d's root of Agent 3
ff/4c
T T
ff/4c's root of Agent 1 ff/4c’s root of Agent 2 ff/4c’s root of Agent 3
ff/6d
T T
ff/6d's root of Agent 1 f£f/6d's root of Agent 2 ff/6d's root of Agent 3

Figure 3.6: Merkle tree constructed from the root hashes of second-level folders. Each
folder root acts as a leaf in this Merkle tree. Internal nodes are omitted for clarity.

32

3.3 A Raft Cluster for File Uploads

In Section the Raft consensus algorithm was introduced. This section ex-
plains its role within the proposed integrity verification protocol, focusing on how
Raft enables global agreement among agents on the Merkle root hashes associated
with different folders.

As discussed in the previous section, there is no practical distinction between
top-level and second-level folder roots: both are stored uniformly. The key re-
quirement is that each agent must be aware of the Merkle root hash of every
folder globally, not just for its own local filesystem. This consistency is ensured
through a Raft cluster, in which all agents act as nodes. Each node maintains
a replicated log that functions as a command list of operations for a distributed
key /value store, where folder identifiers serve as keys and the corresponding Merkle
root hashes serve as values. Ideally, every correct node maintains an identical log,
guaranteeing global agreement.

In practice, the Raft log is a sequence of messages broadcast by the leader to
all nodes. Since the Raft cluster includes all agents, the terms node and agent can
be used interchangeably. If an agent is online, it is part of the Raft cluster as well.

The log allows each agent to reconstruct two levels of a map, corresponding
to the two levels of folder roots. Whenever a node restarts or rejoins the cluster,
the log is replayed to restore state consistency. For example, in the scenarios
illustrated in Figures [3.5] and [3.6] each agent maintains a single map, as shown in
Listing [9]

roots = {
(1) Roots of top-level folders:
"fe": "root hash of fe",
"ff": "root hash of ff",

(2) Roots of second-level folders:
"fe/2d":"root hash of fe/24d",
"ff/4c":"root hash of ff/4c",
"ff/6d":"root hash of ff/64"

Listing 9: Example of a map of Merkle root hashes. Whether the key represents a
top-level or second-level folder is irrelevant for now.

Only the Raft leader is allowed to append new messages to the log. In other

words, one designated agent is responsible for broadcasting updates so that all
other agents converge on the same global map.

33

Figure shows the sequence of events when a user uploads a file via the
gateway (the service exposed for uploads and downloads). The gateway (GW)
communicates directly with all agents, and the agents form a Raft cluster. Each
action triggers local computations, and the figure illustrates how updates propa-
gate through the system:

(1) The gateway receives a file, applies Reed-Solomon encoding, and splits it
into n + k shards. It generates a random salt (e.g., two bytes) and appends
it to the filename (e.g., photo.png24). The salt prevents filename collisions
and ensures randomized placement of the shards. Each shard is then sent to
a different agent.

(2) Each agent uses a deterministic algorithm to transform the filename-+salt
into a unique hexadecimal identifier (e.g., £f4c4b3). This ensures the file
is placed in a folder not marked as corrupted. The file is then stored un-
der a two-level folder hierarchy (e.g., ££/4c/4b3). Each agent appends its
identifier (i.e., .1, .2, .3) and saves the shard locally (e.g., ££/4c/4b3.1 for
Agent 1).

(3) Each agent computes the updated Merkle root hashes for the affected folders
(e.g., £f and ££/4c) and sends them to the leader. Since any file modification
propagates to the corresponding folder root, this step ensures consistency
even when the top-level or second-level folders already contain files.

(4) The leader aggregates the roots received from all agents and computes global
Merkle roots for each folder as illustrated in Figures and (e.g., one for
ff, one for £ff/4c). The leader appends these values to the Raft log, which
is replicated across the cluster.

As a result, all agents maintain an up-to-date map from folder names to their
latest root hashes, as illustrated in Listing [9]

In contrast to the illustration in Figure |3.7, in practice the leader updates
the global root hashes incrementally, immediately after each hash is received in
step 3. Following the reception of the first update (3a), the leader computes the
corresponding root values and appends them to the Raft log; the same process
occurs after (3b) and again after (3c). Since Raft operates under a leader-based
architecture, the exact order and timing of these messages is inconsequential: once
all updates have been processed, all agents in the cluster will converge to an
identical final state. This incremental propagation is crucial in scenarios involving
partial uploads, which will be examined in the following sections.

34

X

Hl) Upload a ﬁli

(2a) Upload shard 1

I—

(2b) Upload shard 2

i "L

D (2¢) Upload shard 3

v
]

(Sa)ﬁoot hashes of £f andﬁ/llc

(3b) Root hashes of £f and ££/4c

T 1

[‘ (3¢) Root hashes of £f and £f/4c

(4a) Raft W with root hash for fiand ff/4c

‘4b) Raft log with root hash for £f and ff/4i

»

Figure 3.7: Sequence diagram for uploading a file. In this example, Agent 1 is the Raft
leader and the uploaded file has a path starting with £f/4c.

35

3.3.1 Corruption Check

While Figure illustrates how uploads are handled, an equally important ques-
tion remains: how can the system detect corrupted files? This is the purpose of
the Corruption Check process.

The process, executed at regular intervals for all top-level folders, is initiated
by the leader. This responsibility lies with the leader because it is the only agent
authorized to append new entries to the log. If corruption is detected, the leader
records the result in the Raft log, thereby propagating the information consistently
to all other agents.

Although earlier sections emphasized that top-level and second-level folders
are stored uniformly, a practical distinction emerges during corruption checks. If
a top-level folder is verified as intact, there is no need to check its subfolders.
This follows from the Merkle tree property: any modification to a leaf propagates
upward, changing the root. Thus, an unchanged top-level root implies that all
second-level folders beneath it are also intact. Conversely, if a top-level folder’s
root does not match, the leader must recursively verify all second-level folders
belonging to it.

In the best case, only the top-level folders need to be examined (a maximum of
256 keys, 16%). In the worst case, when every top-level folder fails verification, all
second-level folders must also be checked (up to 65536 keys, 16*). This scenario
corresponds to widespread corruption, where each top-level folder contains at least
one corrupted file.

Figure illustrates the process for a top-level folder:

(1) The leader queries n + k agents for the Merkle root hash of a given top-level
folder (e.g., £f). It then applies the Merkle proof verification procedure,
comparing the collected root hashes against the previously stored root (e.g.,
roots["ff"]).

(2) The leader appends the result of this verification to the Raft log, broadcast-
ing whether the folder is corrupted. If the folder is marked as corrupted,
the process is recursively repeated for all of its second-level subfolders (e.g.,
ff/4c and ££/64d).

As a result, all agents share a consistent view of which folders are marked
as corrupted. A top-level folder is corrupted if at least one of its subfolders is
corrupted.

3.3.2 Corruption Check for Partial Uploads

The mechanisms described so far assumed that all agents are continuously online.
In practice, temporary unavailability of agents is unavoidable. This subsection

36

< (la) Get root hash for £f

[«_ . Root hash for ff

- (1b) Get root hash for ff
lee o ___ Root_hash for ££ _ __ __ ____ D

- (1c) Get root hash for £ _
l Root_hash for ff VD

(2a) Raft log with corruption status for £f

I (2b) Raft log with corruption status for ££ ‘I

Figure 3.8: Sequence diagram illustrating the Corruption Check process for the top-
level folder £f. Agent 1 is the Raft leader.

extends the model by considering two cases: (i) when an agent is offline during
a file upload, and (ii) when one or more agents are offline during the corruption
check itself.

To mitigate these cases, the data structures introduced in Listing [J] are ex-
tended. Instead of storing only a single Merkle root hash per folder (both top-level
and second-level), the system also records Merkle root hashes for every agent. This
results in two complementary maps:

e roots: a map from folder identifiers to global root hashes. Each value is

the aggregated Merkle root computed over all agents’ contributions for that
folder.

e agent_roots: a map from folder identifiers to the set of per-agent root
hashes. Each value explicitly tracks the current Merkle root hash for the
corresponding folder, stored in an array indexed from 1 to n + k.

If an agent was offline during an upload, its entry in the array remains empty
for a new entry or unedited for an older one. Thanks to the Raft log, these
per-agent arrays are consistently replicated across all agents. This ensures that

37

even if a leader crashes and a new leader is elected, the corruption check remains
unaffected.

An example is shown in Listing (10, where Agent 3 was offline during certain
uploads. In this case, some entries of the roots map are computed using only two
leaves, since the third leaf in the corresponding agent_roots entries is nil.

roots = {
"fe": "root hash of fe",
"ff": "root hash of ff",
"fe/2d":"root hash of fe/24",
"ff/4c":"root hash of ff/4c",
"ff/6d":"root hash of ff/64"
}

agent_roots = {
"fe": [
"Agent 1 root hash of fe",
"Agent 2 root hash of fe",
"Agent 3 root hash of fe"
1,
"ff":["Agent 1 root hash of ff", "Agent 2 root hash of ff", nil],
"fe/2d": [
"Agent 1 root hash of fe/2d",
"Agent 2 root hash of fe/2d",
"Agent 3 root hash of fe/2d"

1,
"ff/4c":["Agent 1 root hash of ff/4c","Agent 2 root hash of ff/4c",nil],
"ff/6d":["Agent 1 root hash of ff/6d","Agent 2 root hash of ff/6d",nil]

Listing 10: Example of folder root hashes with n = 2, k = 1. Agent 3 was offline
during the upload of files in £f folder.

It is important to note that root hashes are stored at the folder level, not per
file. As a result, agent_roots[<some_folder>] may contain entries that are not
perfectly aligned across agents. For example, Agents 1 and 2 may have already
uploaded ten files into a folder, while Agent 3, having been offline, may only have
one file in the same folder.

This apparent asymmetry does not compromise correctness. The reason is
that roots[<some folder>] is computed as a Merkle root over the entire array
agent _roots[<some _folder>]. Even if one agent lags behind, the global root
still represents a consistent snapshot of the folder state across all agents. During
verification, the Merkle proof ensures that each agent’s current hash (or stored
historical hash, if offline) matches the position it contributed to in the global root.

38

Agent offline during upload If an agent is offline during an upload, the system
can still guarantee correctness as long as the Reed-Solomon requirement is satisfied.
In an n + k configuration, at least n agents must be online, since n shards are
sufficient to reconstruct the file on download.

If an agent was offline during an upload, its entry in the per-agent array re-
mains empty (or unedited). Thanks to the Raft log, these arrays are consistently
replicated across all agents. Because the system does not modify the entry corre-
sponding to the offline agent, the Merkle root computed in roots correctly reflects
the full folder state, including the filesystem status of the offline agent. Therefore,
the global Merkle root remains consistent even if some agents are temporarily
unavailable.

When the offline agent later rejoins, it synchronizes its metadata by replaying
the Raft log. However, it does not automatically reconstruct the shards it missed
during downtime. During a corruption check, the leader queries the folder root
hashes from all agents. For an agent that was previously offline, the stored value in
agent_roots is exactly what the leader expects. Thus, the check does not fail: the
Merkle root returned by the previously offline agent is consistent with the snapshot
that the leader uses for verification, assuming no corruption has occurred.

This reasoning naturally generalizes to the case where up to k agents are offline
at the same time: as long as at least n agents remain available, the system continues
to satisfy the Reed-Solomon requirement.

Agents offline during corruption check A more challenging scenario arises
when some agents are offline during the corruption check itself. The set of agents
currently online may differ from those that participated in the original upload. If
the leader cannot collect the current Merkle root for a folder from all agents (even
when some entries in agent_roots are nil) the corruption check for that folder
must rely on the available data. Consequently, the check process is adapted to
handle offline agents gracefully.

During a corruption check for a folder, the leader iterates over all n+k positions:

e If agent 7 is online, it requests the current root hash from that agent.

e If agent i is offline, it retrieves the saved value from the corresponding slot
in agent _roots.

Once all n 4+ k values are collected, the leader performs the Merkle proof ver-
ification against the global root hash stored in roots. This process is illustrated
in Figure

Returning to the example: suppose Agent 2 goes offline while Agent 3 comes
online. During the corruption check of folder £f, the system uses the stored value
of Agent 2’s root from agent roots["f£f"] [2], while requesting a fresh root from

39

Retrieve saved
Is Agent i online? — root hash from
hashes["ff"] [i]

yes

Request current
root hash
from Agent i

l

Verify Merkle
tree proof
with collected
hashes and
roots["ff"]

Figure 3.9: Corruption check process for the top-level folder ff, considering some
agents may be offline.

40

Agent 3. If the Merkle proof verification succeeds, this guarantees that all currently
online agents are consistent and uncorrupted. In this case, the status of offline
agents is irrelevant:

e If the proof holds, online agents have uncorrupted data.

e If the proof fails, at least one online agent is corrupted, and the outcome is
marked as a corruption regardless of the offline agents.

This highlights an important distinction: the Corruption Check process (Sec-
tion[3.3.1)) itself does not rely on the Reed-Solomon requirement of having n correct
shards. Instead, it depends only on the fact that the Raft log ensures a consis-
tent view of the per-agent root hashes across all agents. Offline agents may lag
behind in state (or even remain offline for the entire process) without affecting the
verification. In fact, it would be possible to perform the corruption check even
if more than k£ agents are offline. The correctness of the two cases considered
(Agents offline during upload and Agents offline during the corruption check) is
ensured because the first case already satisfies the Reed-Solomon reconstruction
requirement, while the verification itself relies solely on the consistency guaranteed
by Raft. Therefore, the corruption check can safely verify the folder state based
on the available information, independently of the offline agents.

3.3.3 Recovery of Missing Shards

In the previous subsection, the reader learned what happens when an agent is
offline during a file upload. This subsection discusses how missing shards are
reconstructed when a previously offline agent comes back online.

The sequence diagram illustrated in Figure is simplified: every time a new
shard is uploaded, the agent sends an acknowledgment to the leader. This allows
the leader to maintain an up-to-date view of the cluster, tracking which agents
are online and which have stored a shard for a given file, avoiding active pings
or status checks. The acknowledgment is asynchronous, so the leader does not
block waiting for responses. Meanwhile, the user receives confirmation through
the gateway (GW), which handles shard uploads synchronously. In other words,
shard storage and acknowledgment to the leader are independent processes.

Thanks to Raft, the leader keeps a log of all received acknowledgments. Record-
ing this information in the Raft log ensures that every node in the cluster knows
which agents were offline during the upload of a file.

During the download process, some previously online agents might now be
offline, and vice versa. Even if the set of online agents at upload time satisfied the
Reed-Solomon requirement, there is no guarantee that the currently online agents

41

hold enough shards (at least n) to reconstruct the file. When this happens, a
recovery phase is necessary to restore the missing shards to ensure reconstruction.

Similar to the Corruption Check process, a Recovery process can be triggered
to deliver missing shards to previously offline agents. The leader coordinates this
process. To maintain consistency, the receiving agent recalculates the Merkle
roots for both the top-level and second-level folders affected by the newly received
shard. It then sends the updated roots back to the leader, which updates the
corresponding i-th entries in agent_roots and recomputes the global roots for
the folders. Once the missing shard is successfully restored, the leader records the
update in the Raft log to notify all nodes that the shard has been sent and the
new values for the relevant roots and agent_roots maps have been established.

Retaking the previous example shown in Listing [10] after a full recovery all
entries in agent_roots are filled, as illustrated in Listing |11}

roots = {
"fe'": "new root hash of fe",
"ff" "new root hash of ff",
"fe/2d":"new root hash of fe/2d",
"ff/4c":"new root hash of ff/4c",
"ff/6d":"new root hash of ff/6d4"
}

agent_roots = {
"fe": L
"Agent 1 root hash of fe",
"Agent 2 root hash of fe",
"Agent 3 root hash of fe"
1,
#[...]
"ff/64": L
"Agent 1 root hash of ff/6d4",
"Agent 2 root hash of ff/64",
"Agent 3 root hash of ff/6d4"
1,

Listing 11: Example of folder root hashes with n = 2, kK = 1 after every agent received
all the shards.

This chapter described how the Merkle tree solution was designed and inte-
grated with a Raft cluster, explaining step by step how the main issues were
addressed. The next chapter focuses on the implementation, presenting the devel-
oped solution and evaluating it through system-wide testing.

42

4 Implementation and Tests

This chapter provides a practical overview of the proposed integrity verification
protocol by presenting a real implementation developed specifically for this work.
The implementation consists of a standalone binary application built around the
mt-rs library, employing the BLAKE3 cryptographic hash function, the Raft con-
sensus algorithm, and the Reed-Solomon coding.

Rather than including extensive code listings, which would not significantly
contribute to the goals of this thesis, the discussion highlights selected code snip-
pets that illustrate how the individual components operate together in a coherent
system. Finally, the chapter presents a series of benchmarks designed to evaluate
the behavior of the implementation under various scenarios, such as node failures,
varying numbers of agents, and datasets of different sizes and file counts.

4.1 Files in a Raft Cluster

As discussed in Section [3.3] the system is built upon a Raft cluster integrated with
a storage mechanism based on Reed-Solomon coding. To study this integration, a
GOE] application was implemented, reconstructing a Cubbit-like infrastructure by
layering a Raft cluster on top of Reed-Solomon redundancy. Go was chosen for
its gentle learning curve and widespread adoption, including by companies such
as Cubbit. Following the common project layout recommended for Go[25] all the
developed services are organized within a single module. This structure avoids
redundancy, such as duplicating the service message definitions described later.
Each service is maintained separately as a distinct binary under the cmd folder, in
accordance with Go best practices.

To investigate the communication patterns between the system components,
two service APIs were implemented: a REST API, commonly used for web services,
and a gRPCﬂ, developed by Google and based on Protocol Buffers (Protobuf),
which allows precise definition of the message types transmitted over the network.

'https://go.dev/
*https://grpc.io/

43

https://go.dev/
https://grpc.io/

Listing illustrates the Protobuf definitions used by the agents, including
messages for both gateway-agent and agent-agent interactions.

The distinctive feature of gRPC is that the Protobuf file can be directly com-
piled into Go code using a simple CLI, as shown in Listing

protoc --go_out=. \
--go_opt=paths=source_relative \
—--go-grpc_out=. \
--go-grpc_opt=paths=source_relative \
agent.proto

Listing 12: Protobuf compiler command that generates Go code from the service
definition located at agent.proto.

This command generates two Go files:

e agent.pb.go, which contains the standard Protobuf message definitions and
serialization code.

e agent _grpc.pb.go, which contains the gRPC client and server stubs nec-
essary to implement the service endpoints in Go. The methods defined in
Listing are represented as an interface in this file, and they must be
implemented to enable communication between a gateway and the agent
service, or among agents themselves.

Together, these files constitute the foundation for both gateway-to-agent and
inter-agent communication in the system.

4.1.1 Gateway service

The Gateway service acts as the entry point for the user, as illustrated in step
1 of Figure 3.7 It is exposed via a REST API and manages file uploads and
downloads by splitting files into n + k£ shards using the Reed-Solomon algorithm
and distributing them across the agents. The REST interface is intentionally
minimal in this prototype, offering only two endpoints: one for uploading and one
for downloading files. The upload endpoint requires the local file path and the
desired filename, while the download endpoint requires only the filename.

Go provides a straightforward mechanism to instantiate a web server, as shown
in Listing [I3] The mux server maps REST paths to functions, referred to as
handlers.

44

e oW o e

mux := &http.ServeMux{}

mux .HandleFunc("/upload", UploadHandler)

mux .HandleFunc("/download/{filename}", DownloadHandler)
http.ListenAndServe ("<url>", mux);

Listing 13: Instantiation of a simple web server in Go.

Upload handler A partial implementation of the upload handler is shown in
Listing

Some clarifications on the code in Listing are in order. The details of
file encryption are omitted, since they are not central to the current discussion.
Similarly, the internal implementation of Reed-Solomon encoding is abstracted:
the key point is that the function reedSolomon.Create returns the n + k shards
from the encrypted file. Error handling is also simplified for readability, and the
specific contents of the jsonResponse are not reported, as they are not relevant
to the design.

The critical part lies in lines 14-16, where the SendShard method from the
custom rpc module is invoked. This method serves as a wrapper around the
generated gRPC client code contained in agent_grpc.pb.go. Its role is to establish
the connection, transmit the shard, and delegate the call to the gRPC stub. The
implementation of this wrapper is presented in Listing [A.3]

However, this implementation alone is not sufficient. A corresponding gRPC
server must also be defined to handle the data transmitted in lines 27-31. As
explained earlier, the code in agent_grpc.pb.go only provides the interface defi-
nition; the concrete server-side logic needs to be implemented in order to process
the incoming shard data. This aspect will be discussed in detail in the next section.

Download handler Equally important, though similar in structure to the pre-
viously presented UploadHandler, is the DownloadHandler. While not strictly
necessary for system testing, it is useful in both real-world scenarios and tests, for
example to verify that a downloaded file is not corrupted. A partial implementa-
tion is shown in Listing [A.4]

As with the UploadHandler, certain implementation details are omitted for
simplicity, such as how the correct salt is determined for each file and the internal
workings of the Reed-Solomon reconstruction algorithm. The rpc.GetAllShards
function serves as a wrapper, analogous to SendShard in Listing [A.3] Internally, it
executes gRPC calls to the GetShard method defined in the Protobuf file (Listing
[A1)). The server-side handling will be discussed in the following section.

45

4.1.2 Agent service

Each agent is responsible for storing its assigned shards locally and participates
as a node in the Raft cluster. The total number of agents corresponds to the
Reed-Solomon configuration n + k. Communication between the gateway and
agents is implemented using gRPC, which enables efficient binary data transfer
and supports a wide range of commands. Inter-agent communication also relies on
gRPC, providing operations such as shard acknowledgments, cluster membership
management, and retrieval of the current Merkle root hash for a given folder.

Instance new agent The Agent service must instantiate a new gRPC server
at startup, while also initializing its participation in the Raft cluster. When a
node starts a new cluster, the process is referred to as bootstrapping. A simplified
version of the Agent service startup is shown in Listing [A.5]

Some details are omitted in Listing [A.5] such as error handling, but two ele-
ments are particularly important: the Server struct, which implements the service
interface generated from the Protobuf definition, and the newRaft function, which
initializes a new Raft instance.

For this prototype, the HashiCorp Raft implementation®| has been adopted. A
partial implementation of newRaft is shown in Listing

Here, the id field identifies the node (e.g., nodeA), while raftAddress specifies
the address where the Raft instance listens (e.g., 0.0.0.0:4001). This address is
distinct from the one used by the gRPC server.

Several components in Listing deserve further attention. The logs store
persists the sequence of Raft log entries, ensuring that all operations proposed to
the cluster are durable. The stable store maintains critical metadata, such as the
current term and cluster configuration, which must survive restarts. The snaps
store provides periodic snapshots of the state machine, enabling log compaction
and preventing unbounded growth. Finally, the fsm represents the finite state
machine, which applies committed log entries to the storage layer, managing shard
placement and retrieval.

Together, these components enable each agent to participate reliably in the
Raft consensus protocol, preserving consistency and fault tolerance across the dis-
tributed system.

The reader may notice that the cluster is bootstrapped only within the if
statement in lines 24-33 of Listing[A.6] The bootstrap flag is passed when calling
newRaft at startup. Importantly, only one node per cluster performs the bootstrap
step during initialization. All other agents must join the cluster by sending a
JoinRaft request over gRPC, as illustrated in Listing

3https://github.com/hashicorp/raft

46

https://github.com/hashicorp/raft

Meanwhile, the bootstrap node must handle these incoming gRPC requests,
which is possible because every Raft node is also an agent, as shown in Listing
[A.8 As always, some details are omitted to have simpler snippets, such as the
various error handling.

Handlers for upload and download The two gRPC calls SendShard and
GetShard, introduced in Listings and [A.4] are handled by the agents’ gRPC
servers, as illustrated in Listings and [A.10] For simplicity, error handling and
some path resolution details are omitted.

The key aspect to note is the inner go-function in Listing [A.9] lines 9-28.
This function retrieves the top-level and second-level folder roots for the shard.
Differently than Figure [3.7] it then prepares a single gRPC request containing
both roots (concatenated; each root is 32 bytes) and sends it to the leader. If the
sender itself is the leader, the message is processed locally.

Command structure As introduced in Section [3.3.3] agents send acknowledg-
ments to confirm that a shard has been successfully stored during a file upload.
This mechanism can also be observed in the SendShard function in Listing [A.9]
lines 24 and 26.

Before presenting the server-side implementation of the AckShard call, it is
necessary to clarify how messages are applied to the Raft log. This is achieved
through a command-style object, consisting of an operation code (a simple integer)
and an action value (an interface{} in Go). The Raft log interprets entries by
first examining the operation code and then processing the corresponding action
value. The definition is shown in Listing [A.11]

The action value can then be extracted with a cast to a concrete type and
dispatched using a switch statement on instance’s Code.

Acknowledgment For simplicity, some details on the handling of the AckShard
call on the server-side are omitted, including error handling and the explicit check
that the current node processing the request is indeed the cluster leader. The
server-side implementation is shown in Listing while Listing illustrates
how new messages are applied to the Raft log.

The function shardAcknoledge updates the acknowledgment status for a given
shard using a boolean array, where the i-th position corresponds to Agent 7. Up-
dates are applied with a bitwise-or (done[i] || prevDone[i]) and protected with
a mutex to prevent race conditions during concurrent r.Apply calls.

The functions saveRoot and saveAgentHash persist Merkle roots and per-
agent roots, respectively, as shown in Listing Unlike in previous sections,
the two folder levels are split into four global maps (rootsl, roots2, hashesl,

47

hashes?2), which simplifies extensions to deeper folder hierarchies while also im-
proving efficiency.

Each command action is associated with a concrete type such as ShardDone,
MerkletreeRootHash, or MerkletreeHash. This design choice makes it easier to
parse and interpret actions later on. Since Raft log messages are stored as raw
bytes, serializing them into structured types provides a reliable way to access and
manipulate individual parameters.

Finally, the merkletree.RootHash function, used to compute folder roots, will
be discussed in detail in the following paragraph.

Compute Merkle trees As seen in the previous paragraph, there is a call to
merkletree.RootHash, which takes as input an array of per-agent hashes of a
top-level or second-level folder. Similarly, the reader may also have noticed a
call to merkletree.FolderRootHash, which instead takes an entire top-level or
second-level folder as input. These two usages appear in Listings and [A.9]
respectively.

At first glance, one might assume that these calls are directly invoking the
Rust Merkle tree library. However, as explained in Section [3.1], the Merkle tree
was implemented as a library in Rust, not as a standalone binary. To make it usable
from the Go-based system, a dedicated binary was developed in Rust, wrapping
the library functionality and exposing simple command-line options for root hash
generation and proof verification. The flow in illustrated in Figure 4.1}

A partial implementation of this Rust binary is shown in Listing [A.14] De-
pending on the flag ——file, the binary constructs a Merkle tree either from a set of
files or from raw data provided as arguments. For instance, after compiling and in-
stalling the binary as mt-rs-bin, the command mt-rs-bin --file ff computes
the Merkle root hash for the folder £f, which corresponds to the use case in Listing
[A.9 Alternatively, aggregating per-agent root hashes allows commands such as
mt-rs-bin hashl-ff hash2-ff hash3-ff to compute the global root hash for
folder £f, as required in Listing In both cases, the binary produces only the
Merkle root hash as a string, which the Go application captures and stores.

The binary can be extended with additional modes, such as proof verification.
In this case, passing a ——proof flag triggers Merkle proof validation instead of tree
creation, as shown in Listing[A.15] The proof is always generated and verified from
the first leaf of the input data. The output is a boolean value (true or false)
indicating whether the proof is valid.

For completeness, the Go module merkletree provides methods for proof ver-
ification and root computation; their prototypes are in Listing [A.16] These are
thin wrappers that internally call the Rust binary via exec.Command and capture
its output. This design avoids the need for complex Go-Rust bindings, while tak-

48

Go application

API call

-

merkletree
Go module

system call

-

binary execution

~

root hash / proof Rust binary

1
1
1
1
1
1
|
1
! exec.Command
1
1
1
1
1
1
1
1

(mt-rs-bin)

library call

Rust Merkle
tree library

Figure 4.1: Interaction between Go and Rust components. The Go merkletree module
invokes the Rust binary via exec.Command, which delegates computation to the Rust
Merkle tree library.

ing advantage of the high-performance Rust implementation of the Merkle tree
library. In this way, the performance-critical logic remains in Rust, whereas the
Go application retains a clean and simple interface for Merkle tree operations.

Signal corruptions Finally, this paragraph illustrates how the leader signals
data corruption for a folder to the other agents in the Raft cluster. In Listing
the reader has already seen the command code SignalCorruption, which
is used here as the operation code. The associated action is defined by a folder
name (top-level or second-level) and a boolean CorruptionStatus flag.

When the Corruption Check process (Section is triggered, the leader
follows the sequence shown in Figure (3.8, while also respecting the flow for handling
offline agents as illustrated in Figure 3.9

A partial implementation of this flow is presented in Listing [A.17 The global
maps hashesl and hashes?2 store folder names as keys and per-agent hashes as
values, and can be used as a backup if some agents are offline. If the first re-
trieved data for a top-level folder does not verify against its Merkle proof, the
algorithm iteratively checks each second-level folder nested within it. The func-
tion merkletree.IsPathCorrupted builds a Merkle proof from the provided data

49

and compares the computed root hash with the reference root. Internally, it in-
vokes the mt-rs-bin binary, as explained in the previous paragraph.

Consistency is ensured by Raft: the function saveCorruptionState updates
a global corruptions map that associates each folder (independently of its level)
with a boolean value. Since every update is persisted in the Raft log, each node in
the cluster can rebuild the map locally and remain synchronized with the cluster
state.

4.2 Testing Environment and Results

The previous section described how the system was implemented and how each
component interacts within the complete flow, from a user that uploads a file to
the leader performing the Corruption Check process (showed in Section .

This section presents the testing environment, the scenarios used during eval-
uation, and the obtained results. The tests were executed on a cluster of nine
machines running Ubuntu 24.04.1 LTS (GNU/Linux 6.8.0-51-generic x86_64). The
specifications of the virtual machines are summarized in Table[d.T The nodes were
geographically distributed across the European continent.

Node ID IPv4 Country | CPU(s) | RAM | Disk
GW 51.15.221.121 France 8 32 GB | 45 GB
Agent 1 212.47.241.22 France 4 16 GB | 45 GB
Agent 2 51.15.138.169 France 4 16 GB | 45 GB
Agent 3 51.159.178.75 France 4 8 GB | 45 GB
Agent 4 51.158.75.32 France 4 8 GB | 45 GB
Agent 5 51.158.233.202 | Netherlands 4 8 GB | 45 GB
Agent 6 51.15.108.2 | Netherlands 4 8 GB | 45 GB
Agent 7 151.115.42.176 Poland 4 8 GB | 45 GB
Agent 8 151.115.104.48 Poland 4 8 GB | 45 GB

Table 4.1: Specifications of the machines used in the testing environment.

Each test scenario considered four parameters:

e Number of agents: total number of agents participating in the Reed-
Solomon configuration of n + k£ nodes.

e Number of offline agents: number of agents intentionally disconnected
during the corruption check.

e Number of files: number of files included in the test.

20

e File size: size of each uploaded file. In the first four tests, each file is divided

into n + k shards, so the size of a single shard equals —fesize __
) number of agents

All scenarios consider that some agents, respecting the Reed-Solomon require-
ment, could be offline during the uploads. In these scenarios, the time required
for shard recovery, as described in Section is included in the measurement.
The corruption check procedure begins only after all shards have been successfully
uploaded to the cluster. The total elapsed time, measured in seconds, is recorded
from the initiation of the corruption check until its completion. A test is consid-
ered valid only if the system successfully detects any data corruption. Each plotted
value represents the average total elapsed time over three independent runs.

Test 1: Large files, all agents online In the first scenario, 100 files of 100 MB
each were uploaded, yielding a total dataset of 10 GB. Each file was divided into
n + k shards and distributed across the agents in the cluster. All agents remained
online during the corruption check. Figure [4.2] shows the elapsed time for the
corruption check as the number of agents increases from 3 to 8. As expected,
the elapsed time increases with the number of agents, primarily due to additional
network communication, coordination, and data verification overhead. The elapsed
time ranges from 1.373 seconds with 3 agents to 23.892 seconds with 8 agents.

100 files of 100 MB each

I I I

o5 | 23.802 |

= 20|]
[eb}

E 5] |
e}
<D}

Z 10| |
E
€2

5, ;.

O, ;.

| | | | | |

3 4 5 6 7 8
Number of agents

Figure 4.2: Elapsed time for the corruption check with 100 files of 100 MB each, with
all agents online. Each agent stores 100 x (100 MB / number of agents) of data.

51

Test 2: Many small files, all agents online The second test involved 10,000
files of 1 MB each, maintaining the same total dataset size of 10 GB. This scenario
highlights the impact of a high file count relative to file size. As shown in Figure
4.3 elapsed time increases substantially with the number of agents, from 0.469
seconds with 3 agents to 81.032 seconds with 8 agents. The growth compared to
Test 1 indicates that the number of files significantly influences corruption check
performance, primarily due to the overhead of managing numerous small shards.

10,000 files of 1 MB each

80

60]
50]
40 | 1
30 |]
20 |]
10 | 1

Elapsed time (s)

3 4 5 6 7 8
Number of agents

Figure 4.3: Elapsed time for the corruption check with 10,000 files of 1 MB each, with
all agents online. Each agent stores 10,000 x (1 MB / number of agents) of data.

52

Test 3: Large files, but small dataset This test evaluates system perfor-
mance on a small dataset consisting of 10 files, each 1 GB in size, under different
cluster sizes. All agents remained online during the corruption check. Figure 4.4
shows the elapsed time as the number of agents increases from 3 to 8. As expected,
the elapsed time grows with the number of agents, mainly due to increased network
communication overhead and coordination between nodes.

Interestingly, even though the total dataset size (10 GB) is comparable to
Tests 1 and 2, the overall elapsed time is significantly lower. This suggests that
the system handles a smaller number of large files more efficiently than many
smaller files. This behavior could indicate that the corruption check mechanism
scales better with file size than with file count.

10 files of 1 GB each

51 i
4l 3.856 |
=
(D]

g 3y)
o]
g 21 |
=
=
1l i
0f i
l l l l l l

3 4 5 6 7 8
Number of agents

Figure 4.4: Elapsed time for the corruption check with 10 files of 1 GB each, with all
agents online. Each agent stores 10 x (1 GB/number of agents) of data.

23

Test 4: Small files, partially offline agents The fourth scenario evaluates the
effect of offline agents. 1,000 files of 150 KB each were uploaded, and elapsed time
was measured both with all agents online and with a subset of agents offline during
the corruption check. Figure 4.5 compares the two configurations. Offline agents
introduce additional latency due to the timeout before retrieving the previous
saved hash, with elapsed times ranging from 28.2 to 91.338 seconds, compared to
3.1 to 69.221 seconds when all agents are online.

1,000 files of 150 KB each

I
100 | —
86.510 _Drads
80| —
= 69.221
O
£ 60} |
e
T
2 A0 5o 30001 f
&)
20 | —
3.1
0 - .

3 4 5 6 7 8
Number of agents

Figure 4.5: Elapsed time of the corruption check with 1,000 files, each 150 KB in size.
Each agent stores 1,000 x (150 KB / number of agents) of data. In blue with none
offline agents; in red with offline agents.

o4

Test 5: Very large number of tiny files The last test evaluates system
performance with an extremely large number of very small files. The dataset
consisted of one million files, distributed across different cluster configurations.
Unlike the previous tests, where file sizes varied with the number of agents, in this
case each file had a fixed size of 4 KB. Consequently, increasing the number of
agents also increases the total global dataset size, allowing an assessment of how
the system handles both a high file count and a growing overall workload.

Figure [4.6| shows the total elapsed time for the corruption check as the num-
ber of agents increases. Despite the large file count, the system maintains ac-
ceptable performance, with time increasing gradually as more agents participate.
This behavior highlights the scalability of the corruption check mechanism, which
efficiently verifies tasks across nodes. However, the absolute elapsed time is signif-
icantly higher than in previous tests with fewer, larger files, reinforcing that per-
file management overhead dominates when processing millions of small files. The
test demonstrates that while the system remains operationally robust, optimizing
metadata handling and batching operations could further improve scalability for
dataset dominated by small files.

1,000,000 files of 4 KB each

90 82.430

60 |
o0 |
40
30 |
20| |
10 |

3 4 5 6
Number of agents

Elapsed time (s)

Figure 4.6: Elapsed time for corruption check on very large datasets. The total dataset
size increases with the number of agents: 12 GB for 3 agents, 16 GB for 4 agents, 20
GB for 5 agents, and 24 GB for 6 agents. Each agent stores 4 GB of data.

95

Results The experimental evaluation demonstrates that the system maintains
correctness and functional reliability across a wide variety of scenarios. However,
performance degrades as the cluster size increases, primarily due to the coordina-
tion and communication overhead introduced by the Raft consensus, as well as the
computational cost of Merkle tree operations and network latency when retrieving
root hashes from agents.

In Test 1, with 100 files of 100 MB each (10 GB total), the elapsed time
increased from 1.37 seconds with 3 agents to 23.89 seconds with 8 agents. This
trend shows that the system remains functional but becomes progressively slower
as coordination overhead grows.

In Test 2, using 10,000 files of 1 MB each (10 GB total), elapsed time increased
from 0.47 seconds with 3 agents to 81.03 seconds with 8 agents. This represents
about 170x increase, clearly showing that scenarios with many small files amplify
the cost of synchronization and consensus, leading to diminishing performance
returns as the cluster expands.

Test 3, with 10 files of 1 GB each (10 GB total), exhibited a milder increase
(from 0.62 seconds to 3.86 seconds) indicating that the system handles large files
more efficiently. Compared to Tests 1 and 2, this suggests that performance loss
is primarily driven by the number of files (and resulting coordination steps), not
by total data size.

In Test 4, with 1,000 files of 150 KB each (150 MB total), the system was
evaluated under partial node unavailability. When some agents were offline, exe-
cution time increased by roughly 9x (for example, from 3.1 seconds to 28.2 seconds
with 3 agents). However, the relative slowdown diminished with larger clusters,
confirming that Raft’s fault-tolerant synchronization mitigates the effects of offline
nodes, albeit at a cost in latency.

Finally, Test 5, involving one million files of 4 KB each, measured total pro-
cessing time from 26.31 seconds to 82.43 seconds as dataset size grew from 12 GB
to 24 GB. Despite the large number of files, absolute latency grows and the system
continues to process data at a predictable rate.

Overall, the results show that the system is robust but not performance-
scalable. It preserves data integrity and correctness under varying dataset and
node conditions, but verification time increases disproportionately with the num-
ber of agents and files. These findings highlight the trade-off between distributed
consistency and performance in consensus-based integrity verification protocols.

26

5 Conclusion

This thesis presented the design and implementation of a Merkle-tree-based in-
tegrity verification protocol for geo-distributed storage systems. The proposed
system integrates Merkle trees, the Raft consensus algorithm, and Reed-Solomon
coding to provide a reliable corruption detection mechanism that remains func-
tional even when some agents are temporarily offline.

The developed prototype demonstrated that it is possible to maintain a con-
sistent and verifiable integrity state across distributed agents without relying on
full file scans or constant node availability. Raft ensures that integrity metadata
is synchronized cluster-wide, while Merkle trees allow hierarchical and efficient
integrity checks at the folder or subfolder level.

The experimental results confirmed the correctness and resilience of the ap-
proach under different scenarios and network conditions. However, the tests also
revealed a clear performance limitation: verification time increases as the number
of agents grows, mainly due to consensus and communication overhead. The sys-
tem remains functionally correct but becomes slower in larger clusters, particularly
in scenarios with many small files, where metadata synchronization dominates the
cost.

Despite this, the proposed architecture fullfils its primary objective: enabling
fault-tolerant, verifiable, and consistent corruption detection in distributed envi-
ronments. Its design makes it extensible to new optimizations and deployment
models.

Future Work and Considerations Several directions emerge for further re-
search and practical refinement:

e Adaptive Merkle tree deployment per customer. Since corruption
checks behave differently depending on filesystem organization, the system
could apply Merkle trees adaptively based on customer usage. Some cus-
tomers store many small files, while others handle few but very large files.
Maintaining a dedicated filesystem per customer (for each agent) would also

o7

improve security and isolation, avoiding shared-state interference between
unrelated datasets.

Scalability to a large number of agents. Current experiments were
limited to small clusters. It remains to be tested how the system behaves
with several dozens of agents. If corruption checks require hours to complete,
the approach could become impractical at large scale; therefore, performance
profiling for large clusters is essential.

Optimizing folder and hash map access. The use of TrieMap, po-
tentially in a concurrent implementation, could optimize lookup speed for
subfolders in hashes2, reducing blocking time during verification.

Reducing redundant root retrievals. Some performance gain might
be achieved by avoiding unnecessary get root operations, retrieving roots
randomly or selectively. However, this introduces the risk of inconsistency
or false negatives, so the safest approach remains to always query the current
Merkle root from all online agents.

Parallel verification of independent folders. Each top-level folder is
independent; therefore, Merkle root verification can be executed concurrently
across top-level directories. This parallelism could significantly reduce total
verification time without compromising correctness.

Deeper folder hierarchies. The current two-level folder model simplifies
testing but may limit scalability. Adding additional folder levels could further
localize corruption checks and reduce recomputation overhead, potentially
improving performance for large and complex filesystems.

Integration with Cubbit’s file versioning system. Cubbit’s versioning
mechanism already allows users to restore previous file states. This feature
implicitly extends the proposed protocol, enabling a combined repair and
verification process: the system can revert to a prior version of a file or
folder and then perform a corruption check, providing an additional safe-
guard against data loss.

Folder-level verification granularity. The current protocol operates at
the folder level rather than on individual files. As a result, while it can
detect that a folder contains corrupted data, it cannot directly identify which
specific file within that folder is affected. Future developments could explore
finer-grained verification to pinpoint corrupted files more precisely.

o8

In summary, this work shows that a Merkle-tree-based integrity verification pro-
tocol coordinated through Raft can provide strong correctness and resilience guar-
antees for geo-distributed storage. Although performance decreases with larger
clusters, the approach remains a robust foundation for future distributed integrity
systems. With targeted optimizations, this proposed integrity verification protocol
could evolve into a practical and efficient solution for production-scale environ-
ments such as Cubbit.

29

Bibliography

1]

Peter M Chen, Edward K Lee, Garth A Gibson, Randy H Katz, and David A
Patterson. Raid: High-performance, reliable secondary storage. ACM Com-
puting Surveys (CSUR), 26(2):145-185, 1994.

Ralph C Merkle. A certified digital signature. In Conference on the Theory
and Application of Cryptology, pages 218-238. Springer, 1989.

Ivan Bjerre Damgard. Collision free hash functions and public key signature
schemes. In Workshop on the Theory and Application of of Cryptographic
Techniques, pages 203-216. Springer, 1987.

Merkle tree in bitcoin. https://bitcoinwiki.org/wiki/merkle-tree. Ac-
cessed: 2025-09-02.

Patricia merkle trie in ethereum. https://ethereum.org/en/developers/

docs/data-structures-and-encoding/patricia-merkle-trie/. Ac-
cessed: 2025-09-02.

Merkle directed acyclic graphs in ipfs. https://docs.ipfs.tech/concepts/
merkle-dag/. Accessed: 2025-09-02.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: Amazon’s highly available key-value
store. ACM SIGOPS operating systems review, 41(6):205-220, 2007,

Johannes Buchmann, Erik Dahmen, and Andreas Hiilsing. Xmss-a practi-
cal forward secure signature scheme based on minimal security assumptions.
In International Workshop on Post-Quantum Cryptography, pages 117-129.
Springer, 2011.

Johannes Buchmann, Erik Dahmen, and Michael Schneider. Merkle tree
traversal revisited. In International Workshop on Post-Quantum Cryptog-
raphy, pages 63-78. Springer, 2008.

60

https://bitcoinwiki.org/wiki/merkle-tree
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://docs.ipfs.tech/concepts/merkle-dag/
https://docs.ipfs.tech/concepts/merkle-dag/

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Wouter Penard and Tim Van Werkhoven. On the secure hash algorithm
family. Cryptography in context, pages 1-18, 2008.

Guido Bertoni, Joan Daemen, Michaél Peeters, and Gilles Van Assche. Kec-
cak. In Annual international conference on the theory and applications of
cryptographic techniques, pages 313-314. Springer, 2013.

Nist selects winner of secure hash algorithm (sha-3) compe-
tition. https://www.nist.gov/news-events/news/2012/10/
nist-selects-winner-secure-hash-algorithm-sha-3-competition.
Accessed: 2025-09-07.

Jack O’Connor, Jean-Philippe Aumasson, Samuel Neves, and Zooko
Wilcox-O’Hearn. Blake3: one function, fast everywhere. url:
https://github.com/BLAKES3-team/BLAKES-specs/blob/master/blake3. pdf,
2021.

Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Chris-
tian Winnerlein. Blake2: simpler, smaller, fast as md5. In International
Conference on Applied Cryptography and Network Security, pages 119-135.
Springer, 2013.

Shay Gueron, Simon Johnson, and Jesse Walker. Sha-512/256. In 2011
Fighth International Conference on Information Technology: New Genera-
tions, pages 354-358. IEEE, 2011.

Diego Ongaro and John Ousterhout. In search of an understandable consensus
algorithm. wrl: https://raft.github.io /raft.pdf, 2014.

etcd performance. https://etcd.io/docs/v3.6/op-guide/performance/.
Accessed: 2025-09-03.

Raft use in tikv. https://tikv.org/deep-dive/consensus-algorithm/
raft/. Accessed: 2025-09-03.

Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382-401, July 1982.

Matteo Monti, Martina Camaioni, and Pierre-Louis Roman. Fast leaderless
byzantine total order broadcast. arXww preprint arXiw:2412.14061, 2024.

Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In
OsDI, volume 99, pages 173-186, 1999.

61

https://www.nist.gov/news-events/news/2012/10/nist-selects-winner-secure-hash-algorithm-sha-3-competition
https://www.nist.gov/news-events/news/2012/10/nist-selects-winner-secure-hash-algorithm-sha-3-competition
https://etcd.io/docs/v3.6/op-guide/performance/
https://tikv.org/deep-dive/consensus-algorithm/raft/
https://tikv.org/deep-dive/consensus-algorithm/raft/

[22]

23]

[24]

[25]

Haoran Shi, Zehua Chen, Yonggiang Cheng, Xiaofeng Liu, and Qiangian
Wang. Pb-raft: A byzantine fault tolerance consensus algorithm based on
weighted pagerank and bls threshold signature. Peer-to-Peer Networking and
Applications, 18(1):26, 2025.

Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil
pairing. In International conference on the theory and application of cryptology
and information security, pages 514-532. Springer, 2001.

Irving S Reed and Gustave Solomon. Polynomial codes over certain finite
fields. Journal of the society for industrial and applied mathematics, 8(2):300—
304, 1960.

Organizing a go module. https://go.dev/doc/modules/layout. Accessed:
2025-10-01.

62

https://go.dev/doc/modules/layout

List of Figures

p1

Merkle tree authentication path for data;. Leaves are hashed as |

node; = f(data;), and internal nodes are computed as f(nodejes||node gt)

(Equation[2.1)). The proof requires only the sibling nodes {nodey, nodess ¢

to recompute theroot.| oL 9

R.2

Single-threaded throughput of BLAKES3 and other hash tunctions |

on an AWS ch.metal instance, measured in cycles per byte (cpb). |

Lower values indicate fewer CPU cycles needed per byte.| 14

P.3

Hashing speed comparison of BLAKE3 and other hash functions |

on an AWS cb.metal instance with a 16 KiB input, using a single |

2.4

thread. Higher values (MiB/s) indicate faster processing.| 15
erver states. Followers only respond to requests from other servers.

initiates an election. A candidate that receives votes from a majority

If a follower receives no communication, it becomes a candidate and |

of the full cluster becomes the new leader. Leaders typically operate

until they fail.| oo 16

B

An example of a binary Merkle tree with 4 leaves, showing the |

different levels: leaves (Level 1), internal nodes (Level 2), and the |

root (Level 3).. 23

[3.27 Organization of files under the folder £f, represented as a tree struc- |
L urel - oo o 28
[3.3 Extended example of file organization under ff, represented as a |

| tree structure with multiple files.| 29
[3.4 Example of filesystems for Agent 1, Agent 2, and Agent 3| 31
[3.5 Merkle tree constructed from the root hashes of top-level folders. |

Each folder root acts as a leaf i this Merkle tree. Internal nodes |

are omitted for clarity.|o 32

(3.6 Merkle tree constructed from the root hashes of second-level folders. |

| Fach Told Teal 0 s Mok I Tod l

are omitted for clarity,|o 32

63

[3.7

Sequence diagram for uploading a file. In this example, Agent 1 1is

the Raft leader and the uploaded file has a path starting with £f/4c.| 35

[3.8

Sequence diagram illustrating the Corruption Check process for the

top-level folder ff. Agent 1 is the Raft leader.|

37

[3.9

Corruption check process for the top-level folder ff, considering

some agents may be offline.|

40

A1

Interaction between Go and Rust components. The Go merkletree

module invokes the Rust binary via exec.Command, which delegates

computation to the Rust Merkle tree library|.

49

A2

Elapsed time for the corruption check with 100 files of 100 MB each,

with all agents online. Each agent stores 100 x (100 MB / number

of agents) of data..

51

4.3

Elapsed time for the corruption check with 10,000 files of 1 MB

each, with all agents online. Each agent stores 10,000 x (1 MB /

number of agents) of data.| oL

52

i

Elapsed time tor the corruption check with 10 files of 1 GB each,

with all agents online. Each agent stores 10x (1 GB/number of agents)

of datal

53

4.5

Elapsed time of the corruption check with 1,000 files, each 150 KB

in size. Kach agent stores 1,000 x (150 KB / number of agents) of

data. In blue with none offline agents; in red with offline agents.| . .

o4

6

Elapsed time tor corruption check on very large datasets. The total

dataset size increases with the number of agents: 12 GB for 3 agents,

16 GB for 4 agents, 20 GB for 5 agents, and 24 GB for 6 agents.

Fach agent stores 4 GBotdata.

64

95

List of Tables

[2.1 Merkle tree benchmarks with 10 nodes per dataset size (5 MB, 10 |
MB,and 15 MB)|. 15

[4.1 Specifications of the machines used in the testing environment.|. . . 50

65

Acknowledgments

I would like to express my gratitude to my supervisor, Professor Ozalp Babaoglu,
for the support he provided throughout the development of this thesis.

I am also thankful to the Cubbit team for the ideas and inspiration that con-
tributed to this work.

Finally, my deepest thanks go to Claudia. I would not be where I am without

you.

66

A Listings

A.1 Protobuf definition for Agent service

service Agent {
rpc SendShard(ShardRequest) returns (ShardResponse) {3}
rpc GetShard(ShardGetRequest) returns (ShardGetResponse) {}
rpc AckShard(ShardAckRequest) returns (ShardAckResponse) {}
rpc GetRootHash(RootHashRequest) returns (RootHashResponse) {}
rpc JoinRaft(JoinRequest) returns (JoinResponse) {3}

© 0w N O U e W N =

NN NN NN NN N R R R e s e e e
© 0 N O O A W N R O © 0 N O Ok W N = O

}

message ShardRequest {
string filename = 1; int64 index =

}

message ShardGetRequest {
string filename = 1; int64 index

}

message ShardAckRequest {
string filename = 1; int64 index =

}
message ShardResponse {
string filename = 1; bytes salt =

}

message ShardGetResponse { bytes data

2.

’

1

message ShardAckResponse { bool status =

message RootHashRequest { bytes folder

2; bytes data

2; bytes roots

message RootHashResponse { bytes hash = 1; }

V2

Listing 14: Protobuf definitions for the Agent service, used for communication be-
tween gateways and agents, as well as among agents themselves. The file is located in

internal/proto/agent.proto.

i

A.2 Gateway Upload Handler Implementation

func UploadHandler(w http.ResponseWriter, r xhttp.Request) {

// Open the file in byte format.

// Generate a key and encrypt the file with <t.
// Encrypt the local file using a random key.
ciphertext, err := cryptography.Enc(file, key)

// Create N+K shards from the encrypted file ([][]Jbyte).
shardBytes, err := reedSolomon.Create(N, K, ciphertext)

// Generate a "good" salt to extend the filename.
// Send each shard to a different agent.
for i, shard := range shardBytes {
resp, err := rpc.SendShard(
cfg.Agents[i], filename+salt, i, shard,

)
if err '= nil {

// Handle error
}

3

// Build a JSON response for the client.
jsonResponse, _ := json.Marshal(/* ... */)

w.Header () .Set ("Content-Type", "application/json")
w.Write(jsonResponse)

Listing 15: Upload handler: Gateway orchestrates file encryption, Reed-Solomon shard
creation, and transmission to agents via the rpc.SendShard wrapper.

1l

© 0 N O U ks W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

A.3 SendShard RPC Wrapper Implementation

func SendShard(agent, filename string, index int,

data [Jbyte) (*pb.ShardResponse, error) {

dialCtx, dialCancel :=
context.WithTimeout (context.Background(), 100*time.Millisecond)
defer dialCancel()

conn, _ := grpc.DialContext(dialCtx, agent,
grpc.WithTransportCredentials(insecure.NewCredentials()),
grpc.WithBlock())

defer conn.Close()

// Instantiate the gRPC client for the Agent service.
c := pb.NewAgentClient (conn)

ctx, cancel := context.WithTimeout(context.Background(), time.Second)
defer cancel()

// Call the SendShard procedure for the i-th shard of the file.
resp, _ := c.SendShard(ctx, &pb.ShardRequest{
Filename: filename, Index: int64(index), Data: data,

b

return resp, nil

Listing 16: SendShard wrapper: intermediate function that establishes a gRPC con-
nection to the target Agent, forwards the shard data to the generated gRPC client stub
in agent_grpc.pb.go, and returns the response.

v

© 0 N O U ks W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

A.4 Gateway Download Handler Implementation

func DownloadHandler(w http.ResponseWriter, r *http.Request) {

// Retrieve the salt for a given filename
// to reconstruct the ezact file saved on agents.
endFile := getEndFile(filename, salt)

// Retrieve all shards from agents
shards, _ := rpc.GetAllShards(endFile)

// Reconstruct the entire file using Reed-Solomon,

// and store it at endFile path

_ = reedSolomon.Reconstruct(cfg.N, cfg.K, endFile, shards)
// Decrypt the reconstructed file and store it as filename

// Return the plaintext file as an attachment
w.Header ()
.Set ("Content-Disposition",
fmt.Sprintf ("attachment; filename=Ys", filename),
)

content, _ = ioutil.ReadFile(filename)
// Handle possible errors and clear temporary files

w.Write(content)

Listing 17: Download handler: logic that retrieves all shards of a file via the
rpc.GetAllShards wrapper, reconstructs the file using Reed-Solomon, decrypts it, and
returns it as a download to the user.

© 0 N O U W N =

[T T S o S S e S S S
W N = O © ® N O oA W N R O

A.5 Agent Service Initialization and gRPC Server
Setup

import (
pb "<path_with_proto_files>"
VRS

)

// Server implements the gRPC service defined in the Protobuf file.
type Server struct {

pb.UnimplementedAgentServer

RaftServer *raft.Server

// Other fields
}

s := grpc.NewServer ()
reflection.Register(s)

server := server.Server{}

// Register the gRPC server with the generated Protobuf bindings.
pb.RegisterAgentServer(s, &server)

server.RaftServer = newRaft(ctx, ..., ..., ..., ...)

lis, _ := net.Listen("tcp", uri)
s.Serve(lis)

Listing 18: Agent service startup. The gRPC server is initialized and registered, and
the node joins or bootstraps a Raft cluster.

vi

© 0 N O U Re W N

WoWw W W W W W NN NN N NNNNN R B R R R s e e e
D O kE W N = O © 00 N O U RE W N O © 0NN e W NN = O

A.6 Raft Node Initialization

import (
"github.com/hashicorp/raft"
boltdb "github.com/hashicorp/raft-boltdb"
VA

func newRaft(ctx context.Context, bootstrap bool, id, raftAddress string,
fsm raft.FSM) (*raft.Raft, *raft.NetworkTransport, error) {
conf := raft.DefaultConfig()
conf.LocallD = raft.ServerID(id)

// Define the base directory for Raft persistence.

logs, _ := boltdb.NewBoltStore(filepath.Join(baseDir, "logs.dat"))
stable, _ := boltdb.NewBoltStore(filepath.Join(baseDir, "stable.dat"))
snaps, _ := raft.NewFileSnapshotStore(baseDir, 3, os.Stderr)

addr, _ := net.ResolveTCPAddr("tcp", raftAddress)

transport, _ := raft.NewTCPTransport(

raftAddress, addr, 3, 10*time.Second, os.Stderr)
r, _ := raft.NewRaft(conf, fsm, logs, stable, snaps, transport)

if bootstrap {
cfg := raft.Configuration{
Servers: [lraft.Server{{
ID: conf.LocallD,
Address: transport.LocalAddr(),
},
},

_ = r.BootstrapCluster(cfg) .Error()
}

return r, transport, nil

Listing 19: Partial implementation of the newRaft function, which initializes the Raft
consensus node.

Vil

© 0 N O U Re W N

o e T e e T Y S S
© 0 N O Uk W N = O

A.7 Client-Side Raft Join Request

// Establish a connection to a Raft member.

dialCtx, dialCancel := context.WithTimeout (context.Background(),
100*time.Millisecond)

defer dialCancel()

conn, err := grpc.DialContext(dialCtx, "<url-of-Raft-member-to-join>",
grpc.WithTransportCredentials(insecure.NewCredentials()),
grpc.WithBlock())

¢ := pb.NewAgentClient (conn)

// Send a JoinRaft request with the new node's ID and Raft address.
ctx, cancel := context.WithTimeout(context.Background(), time.Second)
defer cancel()

_, err = c.JoinRaft(ctx, &pb.JoinRequestq
Address: raftAddress, // Address such as 0.0.0.0:4002
I4d: node, // Identifier such as nodeB

b

Listing 20: Client-side gRPC call to join an existing Raft cluster. The joining agent
dials a Raft member and invokes the JoinRaft RPC with its address and identifier.

viil

© 0 N O U Re W N

W W W W W W W W W N NN NN NN N NN R e e e e e e e e e
0w N O O kA W N = O © 00 N O O Bk W N = O © 00 N 0 ks W N = O

A.8 Server-Side Raft Join Handler

func (s *Server) JoinRaft(ctx context.Context,
in *pb.JoinRequest) (*pb.JoinResponse, error) {
address := in.GetAddress()
id := in.GetId()

// Attempt to add the new server to the Raft cluster.

if err := join(s.RaftServer, id, address); err != nil {
// Handle error

}

return &pb.JoinResponse{}, nil

// If a server with the same ID or address already ezxists, it ts removed before
// the new server ts added as a voter.
func join(r *raft.Raft, nodeld, addr string) error {

configFuture := r.GetConfiguration()

for _, srv := range configFuture.Configuration().Servers {
if srv.ID == raft.ServerID(nodelId) ||

srv.Address == raft.ServerAddress(addr) {

if srv.ID == raft.ServerID(nodeld) &&
srv.Address == raft.ServerAddress(addr) {
return nil

}

// Remove the existing server before re-adding.

_ = r.RemoveServer(srv.ID, 0, 0)

}

// Add the new server as a voting member of the Raft cluster.
f := r.AddVoter(raft.ServerID(nodelId), raft.ServerAddress(addr), 0, 0)
if f.Error() !'= nil {

return f.Error()

3

return nil

Listing 21: Server-side handler for JoinRaft. The bootstrap node receives a join
request and updates the Raft cluster configuration by invoking the join helper function.

1X

© 0 N O U ks W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

A.9 Server-Side SendShard Handler

func (s *Server) SendShard(ctx context.Context,
in *pb.ShardRequest) (*pb.ShardResponse, error) {
fname := in.GetFilename()

index := in.GetIndex()

data := in.GetData()

filename := fnamel[:len(fname)-2]

salt := fname[len(fname)-2:]

go func() {
// Compute top-level and second-level folder roots
rootLvll, _ := merkletree.FolderRootHash(path.folderLvl1)
rootLvl2, _ := merkletree.FolderRootHash(path.folderLvl2)

// Prepare the acknowledgement message including both roots
req := &pb.ShardAckRequest{

Filename: filename + salt,

Index: int64(index),

Roots: append(rootLvll, rootLvl2...),

3

// Forward the roots to the leader or process locally
// if thts node is the leader
if s.Store.Raft.State() == raft.Leader {
_, err = s.AckShard(ctx, req)
} else {
_, err = c.AckShard(ctx, req)
}
O

return &pb.ShardResponse{Filename: path, Salt: []byte(salt)}, nil

Listing 22: Server-side handler for SendShard. Retrieves folder roots, stores the shard
locally, and forwards root information to the Raft leader.

© 0 N O U ks W N

e
= o

© 00 N O U ks W N =

—
=]

A.10 Server-Side GetShard Handler

func (s *Server) GetShard(ctx context.Context,

in *pb.ShardGetRequest) (*pb.ShardGetResponse, error) {
filename := in.GetFilename()
index := in.GetIndex()

// Resolve the actual path of the requested shard
f, _ := os.Open(path)
content, _ := ioutil.ReadAll(f)

return &pb.ShardGetResponse{Data: content}, nil

Listing 23: Server-side handler for GetShard. Retrieves the requested shard from local
storage and returns its content.

A.11 Raft Log Command Structure

const (
UploadAck OpCode = iota // Acknowledge the successful storage of a shard
StoreRootHash // Store a Merkle tree Toot hash
StoreAgentHash // Store a Merkle tree hash for a specific agent
SignalCorruption // Store the corruption status of a folder

)

type Command struct {
Code OpCode " json:'"code""
Action interface{} ~json:"action""

Listing 24: Command definition used for Raft log entries. Each command is identified
by an opcode and carries an action payload.

x1

© 0 N O U ks W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

A.12 Server-Side AckShard Handler

func (s *Server) AckShard(ctx context.Context,
in *pb.ShardAckRequest) (*pb.ShardAckResponse, error) {
filename := in.GetFilename ()
index := in.GetIndex()
agentHashes := in.GetRoots()

// Split concatenated roots into two 32-byte values
agentRoots := [][lbyte{agentHashes[:64], agentHashes[64:]}

// Mark the shard as acknowledged

done := make([]bool, N+K)

done[index] = true

shardAcknoledge (s.RaftServer, filename, done)

path := ... // Retrieve the final path
toplevel := path.folderLvll
secondlevel := path.folderLvl2

// Store per-agent Merkle Toots
saveAgentHash(s.RaftServer, index,
[1 [Jboyte{toplevel, secondlevell}, agentRoots)

// Compute and store global Merkle roots for the folders

rootl, _ := merkletree.RootHash(hashesl[toplevel])

root2, _ := merkletree.RootHash(hashes2[secondlevel])

saveRoot (s.RaftServer, [][lbyte{toplevel, secondlevell},
[J (Obyte{rootl, root2})

return &pb.ShardAckResponse{Status: true}, nil

Listing 25: Server-side handler for AckShard. Updates shard acknowledgments, stores
per-agent hashes, and records Merkle roots in the Raft log.

xii

© 0 N O U Re W N

WowWw W W N NN N NN NN NN B R s s s e e
W N = O © 00 N O Ok W N+ O © 00 N O ks W N = O

A.13 Raft Log Entry Helper Functions

func shardAcknoledge(r raft.Server, filename string, done []Jbool) error {
¢ := Command{
Code: UploadAck,
Action: ShardDone{ Filename: []byte(filename), Done: done },

}

raftRequestData, _ := json.Marshal(c)
return r.Apply([lbyte(raftRequestData), ltime.Second).Error()
}

func saveRoot(r raft.Server, folders [][lbyte, hashes [][Jbyte) error {
¢ := Command{
Code: StoreRootHash,
Action: MerkletreeRootHash{ Folderl: folders[0], RootHashl: hashes[0],
Folder2: folders[1], RootHash2: hashes[1] },
}

raftRequestData, _ := json.Marshal(c)
return r.Apply([lbyte(raftRequestData), ltime.Second).Error()
}

func saveAgentHash(r raft.Server, agentId int64, folders [][]byte,
hashes [][lbyte) error {
¢ := Command{
Code: StoreAgentHash,
Action: MerkletreeHash{
AgentId: agentId, Folderl: folders[0], AgentHashl: hashes[0],
Folder2: folders([1], AgentHash2: hashes[1] 1},
}

raftRequestData, _ := json.Marshal(c)
return r.Apply([Jbyte(raftRequestData), ltime.Second).Error()

Listing 26: Helper functions for applying shard acknowledgments, Merkle roots, and
per-agent hashes to the Raft log.

xiil

© 0 N O U R W N

© 0 N O Uk W N =

e e
N o= O

A.14 Merkle Tree Creation in Rust

let tree = if args.file {
MerkleTree: :from_paths(hasher, args.args)
} else {

};

let

data: Vec<Vec<u8>> = args.args.into_iter()
.map(|s| s.into_bytes()).collect();

MerkleTree: :new(hasher, data)

println! ("{}", tree.root().hash());

List

ing 27: Partial implementation of the Rust binary for Merkle tree creation.

A.15 Merkle Proof Verification in Rust

if let Some(root_hash) = args.proof {

let
let
let
let

nodes = // Butld nodes from folders or raw data ...

first_node = nodes[0].clone();

proofer = DefaultProofer: :new(hasher, nodes);

proof = proofer.generate(0).expect("Couldn't generate proof");

let verified = proofer.verify_hash(
&proof, first_node.hash().to_string(), &root_hashl[..
);
println! ("{}", verified);
} else {
// Merkle tree creation...

}

Listing 28: Extension of the Rust binary for Merkle proof verification.

Xiv

0 N O ot W N =

A.16 Merkle Tree Module Prototypes (Go)

// Verify a Merkle tree proof for some “hashes™ with a “rootHash'.
func Verify(hashes [][]byte, rootHash [lbyte) bool { ... }

// Returns the root hash of the Merkle tree generated for a folder in “path’
func FolderRootHash(path string) ([lbyte, error) { ... }

// Returns the root hash of the Merkle tree generated for a list of data
func RootHash(data [][Jbyte) ([]byte, error) { ... }

Listing 29: Prototypes of the merkletree Go module.

XV

© 0 N O U ks W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

A.17 Corruption Check Algorithm

for folderl, agentHashesl := range hashesl {
rootl := rootsl[folderi]
data := // Retrieve roots for folderl using agentHashesl (backup if needed)
isCorrupted := merkletree.IsPathCorrupted(data, rootl)

if isCorrupted {
for folder2, agentHashes2 := range hashes2 {
if strings.HasPrefix(folder2, folderl) {
root2 := roots2[folder2]
data := // Retrieve roots for folder2 using agentHashes2
isCorruptedLevel2 := merkletree.IsPathCorrupted(data, root2)

if isCorruptedLevel2 {
saveCorruptionState(s.RaftServer, folder2, true)

} else if corruptions[folder2] {
// Folder no longer corrupted, but other subfolders may be.
saveCorruptionState(s.RaftServer, folder2, false)

}
¥
saveCorruptionState(s.RaftServer, folderl, true)
} else if corruptions[folderil] {
// Update corruption status for the top-level folder
// and its second-level children.

Listing 30: Partial implementation of the corruption check algorithm. The leader
verifies Merkle proofs at both top-level and second-level folders, and signals corruption
states through the Raft log.

xXvi

	Introduction
	Motivation
	Problem Statement
	Research Objectives
	Structure of the Document

	Background
	Merkle Trees
	Merkle proofs
	Applications
	Alternative Implementations

	Cryptographic Hash Functions
	SHA-256
	Keccak-256
	BLAKE3

	Consensus Protocols
	Raft
	Flutter+Blink
	Practical Byzantine Fault Tolerance (PBFT)
	PB-Raft: A Byzantine Extension of Raft
	Summary

	Reed-Solomon
	Classical Reed-Solomon coding
	Cubbit's adaptation

	Architecture
	Merkle Tree Library
	File organization
	Storing different Merkle trees for each agent

	A Raft Cluster for File Uploads
	Corruption Check
	Corruption Check for Partial Uploads
	Recovery of Missing Shards

	Implementation and Tests
	Files in a Raft Cluster
	Gateway service
	Agent service

	Testing Environment and Results

	Conclusion
	Bibliography
	Appendix
	Listings
	Protobuf definition for Agent service
	Gateway Upload Handler Implementation
	SendShard RPC Wrapper Implementation
	Gateway Download Handler Implementation
	Agent Service Initialization and gRPC Server Setup
	Raft Node Initialization
	Client-Side Raft Join Request
	Server-Side Raft Join Handler
	Server-Side SendShard Handler
	Server-Side GetShard Handler
	Raft Log Command Structure
	Server-Side AckShard Handler
	Raft Log Entry Helper Functions
	Merkle Tree Creation in Rust
	Merkle Proof Verification in Rust
	Merkle Tree Module Prototypes (Go)
	Corruption Check Algorithm

