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Abstract in Italian

I Tipi Comportamentali definiscono come le informazioni vengono scambiate nei
sistemi distribuiti. Un esempio sono i Tipi di Sessione Multiparty (MPST), che de-
scrivono le interazioni tra piu partecipanti attraverso protocolli globali e le loro con-
troparti locali. Garantire una corretta implementazione, inclusa 1’assenza di dead-
lock e la conformita alla sessione, € un problema di interesse primario nei MPST.
Mentre la maggior parte della ricerca si concentra sulla comunicazione punto-a-
punto, i sistemi reali spesso utilizzano modelli di comunicazione differenti, come la
messaggistica basata su mailbox o l'ordinamento causale dei messaggi. Una sfida
fondamentale ¢ che protocolli validi in un modello di comunicazione possono fal-
lire in un altro. In questo lavoro, sviluppiamo un framework, basato sui MPST,
flessibile e parametrizzato da diverse semantiche di comunicazione di rete, tra cui
asincrona, punto-a-punto, con ordinamento causale e sincrona. Studiamo il prob-
lema dell’realizabilita da una prospettiva semantica, con I'obiettivo di comprenderne
i limiti fondamentali. I miei contributi includono una dimostrazione di indecidibilita
per la realizabilita debole sotto semantica sincrona e miglioramenti al tool RESCU
per la verifica dell’assenza di deadlock nei sistemi sincroni. Questo approccio incor-
pora i modelli di comunicazione come parametro e fornisce una base per la verifica
dei sistemi distribuiti oltre i classici scenari.
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Abstract in English

Behavioural Types define how information is exchanged in distributed systems. An
example are Multiparty Session Types (MPST), which describe interactions between
multiple participants using global protocols and their local counterparts. Ensuring
correct implementation, including deadlock freedom and session conformance, is a
central concern in MPST. While most research targets peer-to-peer communication,
real-world systems often use different communication models such as mailbox-based
or causally ordered messaging. A key challenge is that protocols valid in one model
may fail in another. In this work, we develop a flexible MPST framework parame-
terized by different network semantics, including asynchronous, peer-to-peer, causal
ordering, and synchronous. We study the realisability problem from a semantic per-
spective, aiming to understand its fundamental limits. My contributions include,
a proof of undecidability for weak realisability under synchronous semantics, and
enhancements to the RESCU tool for checking deadlock freedom in synchronous
systems. This approach embeds communication models as a parameter, and it pro-
vides a basis for verifying distributed systems beyond classical settings.
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Chapter 1

Introduction

Informally, a distributed system is a collection of independent computing entities
(called also processes, actors, nodes, or participants; with slightly differences in the
meaning) that communicate and coordinate their actions through message passing
over a medium of communication (typically an asynchronous network), with the
goal of solving a common problem. For example, a client-server application can
be seen as a form of distributed system, where the shared objective is to provide
services to an end user.

Distributed systems make it possible to address challenges that are hard to solve
without such an architecture, such as high availability and elastic scalability. How-
ever, these benefits come with their own set of challanges that computer scientists
need to address, for example, ensuring reliability in the presence of failures in critical
systems, and maintaining data consistency. Distributed systems are widely adopted
in domains such as cloud computing, critical infrastructures, and telecommunication-
oriented applications (i.e. autonomous cars, aerospace systems, etc.). Given their
ubiquity, it is crucial to study every aspect of their design, execution, and ver-
ification. To manage these complexities in a mathematical way, researchers rely
on formal abstractions and rigorous methodologies. These allow us to move from
ad-hoc engineering practices to systematic approaches with provable guarantees.

One recurring difficulty in distributed systems’ development is writing correct pro-
grams. Avoiding programming and logical errors is inherently hard, even for expe-
rienced developers. To mitigate this, many abstractions have been introduced, and
computer scientists have focused their efforts on developing formal frameworks that
provide guarantees about program behavior.

Formal methods for distributed systems offer mathematically rigorous techniques to
specify, design, and verify such systems. They are valuable both during design and



development, by helping detect errors early, and during analysis, by enabling the
study of critical properties such as safety, liveness, and deadlock-freedom. Two
primary approaches are model checking verification and correctness by-construction.
Model checking systematically explores a system’s state space to confirm properties,
while by-construction verification ensures correctness through the design process
itself, preventing errors from being introduced.

Among the many aspects of distributed systems, communication is particularly
prone to subtle errors and inconsistencies. To reason formally about communication
protocols, several models have been proposed, including the Calculus of Commu-
nicating Systems (CCS), the m-calculus, and choreographies [47]. In this context,
Multiparty Session Types (MPST) [33] stand out as a powerful framework. MPST
are designed specifically to formalize and verify structured communication among
multiple participants, providing strong guarantees about protocol correctness.

MPST describe communication through a global type, which specifies the entire
interaction among all participants. This global type is then projected into local types,
one for each participant. Local types act as contracts, ensuring that each component
adheres to the protocol. As a result, MPST allow developers to guarantee properties
such as deadlock-freedom and protocol compliance at compile time, making them
an especially appealing tool for designing robust communication protocols.

1.1 Goal

The goal of this thesis is to investigate the realisability problem for MPST,
which asks whether a global specification can be faithfully realised by a collection of
local processes in a distributed system. This question naturally arises in top-down
development methodologies, such as MPST or choreographic frameworks, where the
design begins from a global perspective and the local behaviour of each participant
is derived afterwards.

The realisability problem is central to ensuring that the distributed implementa-
tion does not diverge from the intended specification. In essence, the challenge is
to determine whether the set of projected local processes can really respect the
behaviour prescribed by the global model, while preserving essential properties such
as correctness, progress, and deadlock-freedom.

A releted-work analysis is provided in Chapter 5, where we examine how similar
problems have been addressed in other formal frameworks. To illustrate the rele-
vance of this problem, consider the following example.



Example 1.1.1. Consider four processes A, B,C, and D communicating over an
asynchronous network, with four messages z, y, z, and w to be exchanged as specified
in Listing 1.1. A natural question arises: can such a specification be faithfully
implemented in a real distributed system?

A sends B either message x or y.

3 If A sends B message x,

then C sends D message z.

; If A sends B message y,

then C sends D message w.

Listing 1.1: Example specification of message exchanges

While the specification can be expressed using several of the formalisms mentioned
earlier, some of them are capable of revealing that it is, in fact, impossible to imple-
ment in a real distributed system. The reason is that process C' cannot determine
which message to send to D without knowing which message A sent to B, because
this information is not locally available to C'.

The realisability problem in this work is examined from a theoretical perspective
to provide a more formal and precise understanding of the fundamental limits that
exist and why syntactical constraints of certain models work.

Unlike the standard approach to global types in MPST, which often relies on a purely
syntactic representation, in this work we adopt a more semantic approach. Specif-
ically, we represent global types as automata. This automata-based representation
is highly modular, incorporating various network semantics (such as asynchronous,
peer-to-peer, causal ordering, and synchronous semantics) as explicit parameters of
the framework. Such parameterization allows a flexible analysis of different com-
munication models within a unified setting. In this framework, we interpret the
semantics of a global type as a set of Message Sequence Charts (MSCs). It is
therefore useful to recall related questions that have been studied in the context
of MSCs [3, 4]. These formalisms provide both historical context and technical in-
sights, and several known results from this line of work will be directly used in this
thesis.

Message Sequence Charts (MSCs) are a standardised graphical formalism, intro-
duced in 1992 [34], used to describe trace languages for specifying communication
behaviour. Thanks to their simplicity and intuitive semantics, MSCs have been
adopted in industry to design and verify web services [25]. Figure 1.1 illustrates a
simple example based on a minimal client—server architecture. To give more con-
text, an extension of this formalism, known as High-Level Message Sequence Charts



(HMSCs), was later introduced [35]. HMSCs enable the definition of MSCs as nodes
connected by transitions and are used to model more complex patterns of message
flows by capturing sequences, alternatives, or iterations of atomic MSC scenarios.

Client Server

request

>

alnswer

<

Figure 1.1: Simple example of a client-server architecture.

The weak realisability problem for MSCs asks whether there exists a distributed
implementation that can realise all behaviours of a finite set of MSCs without in-
troducing additional ones. A stronger variant, called safe realisability, requires the
implementation to also be deadlock-free.

Remark. The term “realisability” has several synonyms in the literature. In other
works, it is often referred to as implementability or projectability. Each of these
terms, depending on the formal model considered, comes with slightly different
definitions. Some of these variations will be analysed in Chapter 5.

With MSCs, the work of Di Giusto et al. [20] introduces interesting communication
semantics and a hierarchy among them. The main goal of their study was to establish
a hierarchy that preserves monotonic properties: if a property holds for a given
communication semantics, it should also hold for all semantics contained within
it. However, they showed that this monotonicity only applies to certain properties.
In this thesis, we continue the study within the same framework, focusing on the
realisability property, as it is not monotonic over different communication semantics.

In the following paragraphs, we describe some of these communication semantics in-
formally, using examples to highlight the differences between them. Particularly, we
will later formally define synch in Definition 2.2.3, as this communication semantics
is used in the main contribution of this thesis. Chapter 5 continues the discussion
by presenting additional communication semantics and summarizing the relevance
of the work by Di Giusto et al. [20]. Some examples of different communication
semantics are illustrated in Figures 1.2 and 1.4, whose membership in these classes
can be verified using an online MSC tool [24].

Fully asynchronous. In the fully asynchronous communication model (asy),
messages can be received at any time after they have been sent, and send events

4



are non-blocking. This model can be viewed as an unordered “bag” in which all
messages are stored and retrieved by processes when needed. It is also referred to as
non-FIFO. The formal definition coincides with that of an MSC (Definition 2.2.5).
Figure 1.2 illustrates an example of asynchronous communication.

Figure 1.2: Asynchronous semantic example.

Peer-to-peer. In the peer-to-peer (p2p) communication model, any two messages
sent from one process to another are always received in the same order as they are
sent. An alternative name is FIFO. An example is shown in Figure 1.3.

my
ma

Figure 1.3: Peer-to-peer semantic example.

Synchronous. The synchronous (synch) communication model imposes the ex-
istence of a scheduling such that any send event is immediately followed by its
corresponding receive event. An example for this communication model is shown in
Figure 1.4. A formal definition is given later for this semantic (Definition 2.2.3).

The definition of these models will become central in the reduction techniques ex-
plored in this work: simplifying the study of realisability by reducing richer semantics
to the synchronous case.
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Figure 1.4: Synchronous semantic example.

1.2 Reduction to Synchronous Semantics

A central starting point for this thesis is the reduction theorem introduced in [22,
Theorem 5.3], which establishes a fundamental connection between peer-to-peer and
synchronous models of communication. This result serves as the conceptual input
of the present work, motivating both the theoretical analysis and the tool-based
developments presented in the following chapters.

Intuitively, the theorem suggests that reasoning about realisability can be made more
tractable under synchronous semantics, particularly within automata-based frame-
works. In synchronous communication, send and receive actions are tightly coupled,
eliminating the nondeterminism caused by message buffering in asynchronous sys-
tems and allowing a more direct correspondence between specification and imple-
mentation.

Formally, the theorem, stated in full in Chapter 4 as Theorem 2, shows that if a
global type is realisable under synchronous semantics, then, under suitable condi-
tions, it is also realisable in more general communication models such as peer-to-peer
semantics. This reduction relies on specific constraints, including orphan-freedom
(ensuring that no message remains unmatched) and deadlock-freedom (guaranteeing
global progress).

We present the theorem here informally, using the standard meanings of terms that
have already been introduced: a global type G is deadlock-free realisable in p2p if
and only if the following four conditions hold

the language generated by G’s local type has synchronous semantics;

all G’s projections are orphan-free;

the projections of G are deadlock-free in p2p semantics;

G is deadlock-free realisable in synchronous semantics.

The first and second conditions are already known to be decidable and can be au-



tomatically verified. The focus of this thesis is instead on the third and fourth
condition, namely checking whether a global type is realisable in synchronous se-
mantics. The undecidability result presented in Chapter 3 shows that this condition
cannot be verified in general. Consequently, the theorem above must be refined by
introducing further restrictions that ensure decidability.

This observation motivates the second part of the thesis: Chapter 4 presents the ex-
tension of the RESCU tool, which provides practical verification of properties such
as deadlock-freedom and progress. These results should be understood as building
blocks toward identifying restricted subclasses of synchronous systems that admit
decidable realisability checks, complementing the undecidability findings of the the-
oretical contribution.

1.3 Contributions

The developments presented in this thesis can be grouped into two main contribu-
tions, one theoretical and one practical, both closely connected:

e a proof of the undecidability of the weak realisability problem under the
synchronous semantics of our framework (Theorem 1);

e an extension and improvement of the model-checking tool RESCuU [27], en-
abling the verification of deadlock-freedom and progress for synchronous sys-
tems.

These two contributions are closely connected: they both address the realisability
problem, but from two complementary angles. The first contribution establishes un-
decidability, showing that in the general case the weak realisability problem cannot
be solved for synchronous semantic. This motivates the second contribution: once
undecidability is proven, there is a clear need to identify suitable restrictions of the
problem that yield decidability results. The model-checking framework presented
in the second part of the thesis could be a foundational step towards this direc-
tion, providing practical verification techniques that can serve as building blocks for
further decidability analyses.

The thesis is structured as follows. Chapters 2 and 3 then introduce the formal defi-
nitions and present the main theoretical contribution. Chapter 4 develops the prac-
tical contributions through the RESCU tool. Chapter 5 presents a detailed overview
of related work, comparing different approaches in the literature and highlighting
how this thesis departs from them. Finally, Chapter 6 concludes with a discussion
of the results and outlines directions for future research and development.






Chapter 2

Preliminaries

In this section, the fundamental concepts and definitions necessary to contextualize
the main contributions of this work are presented. We, first, introduce automaton,
executions, and Message Sequence Charts (MSC), followed by an examination of
communication model’s semantics that are particularly interesting. Then, the no-
tions of Global Type and Realisability are defined within the scope of this work,
along with the foundational elements required to understand the theoretical contri-
butions.

2.1 Standard notions on automata

Words and alphabet. ¥ is used to denote a set of finite words. Arr denotes a set
of finite action used for a global type. For a string s, let s' denote the I-th character
of the string.

Definition 2.1.1 (NFA). A non-deterministic finite automaton (NFA) is a tuple
A= (Q,%,9,q, F), where ) is a finite set of states, ¥ is a finite alphabet, 0 :
Q x (X U{e}) — @ is the transition relation, ¢y € @ is the initial state, and F' C Q
is the set of accepting states.

We write §*(s, w) to denote the set of states s’ reachable from s along a path labelled
with w. The language accepted by A, denoted Lyorqs(AA), is the set of words w € ¥*
such that 6*(go,w) N F # 0.

Definition 2.1.2 (DFA). A deterministic finite automaton (DFA) is an NFA where
the transition relation ¢ is a partial function ¢ : Q x X — ). The DFA is complete
if ¢ is total.



Definition 2.1.3 (Determinization). To every NFA A = (Q, X%, 4, qo, F'), we asso-
ciate the DFA det(A) = (Q',%, 4, ¢, F'), where Q' = 29, ¢} = {q}, F’ is the
set of subsets of () that contain at least one accepting state, and ¢ is defined by

§(S,a) =UJ{0*(s,a) | se€ S} forall S € @', a e X.
We write A for the automaton obtained from A by setting F' = Q.

2.2 Execution, Communication Models and MSC

We assume a finite set of processes P = {p,q,...,P1,P2,...} and a finite set of
messages (labels) Ml = {m1, ma,...}. We consider two kinds of actions:

e send actions, of the form !mP~4, executed by process p when sending message
m to gq;

e receive actions, of the form ?mP~? executed by process ¢ when receiving m
from p.

Furthermore, we write Act for the set P x P x {l,7} x M of all actions, and Act,
for the subset of actions executable by p (i.e., !mP~? or ?7m?7?). When processes
are clear from the context, we abbreviate send and receive actions as !m and ?m,
respectively.

An event n of a sequence of actions w € Act” is an index i € {1,...,length(w)}.
It is a send event (resp. receive event) if wl[i] is a send (resp. receive) action. We
denote by eventsg(w) (resp. eventsg(w)) the set of send (resp. receive) events of w,
and events(w) = eventsg(w) Ueventsg(w). When all events are labelled with distinct
actions, we identify an event with its action.

Executions.

An execution is a well-defined sequence of actions e € Act®, where a receive action
is always preceded by a unique corresponding send action.

Definition 2.2.1 (Execution). An ezecution over P and M is a sequence of actions
e € Act® together with an injective mapping src. : eventsg(e) — eventsg(e) such
that for each receive event i labelled ?mP~?, its source src.(i) is labelled !m?~? and
srce (i) < i.

For a set of executions &, let Prefixes(€) be the set of all prefixes of executions in
E. The projection proj,(e) of e on process p is the subsequence of actions in Act,.
A send event s is matched if there exists a receive event r such that src(r) =s. An
execution is orphan-free if all send events are matched, i.e., if src is surjective onto
eventsg(e).

10



Communication Models.

In this thesis, we focus on a communication model: the synchronous model (synch).
Nonetheless, this work forms part of a broader and more general project. Some
results presented here naturally extend to a wide range of communication models,
often requiring only mild additional assumptions. Please, refer to the Chapter 5 for
a broader discussion. From this perspective, we introduce a general definition of a
communication model.

Definition 2.2.2 (Communication model). A communication model com is a set
Eom Of executions.

In the synchronous model synch, every send is immediately followed by its matching
receive.

Definition 2.2.3 (synch). An execution e = (w,src) belongs to Eynen if for every
send event s € eventsg(e), the event s+ 1 is a receive event with src(s + 1) = s.

Furthermore, the source function src is defined as follows.

Definition 2.2.4 (src function for synch). If e is an execution in synch, then for
every receive event ¢ we define src.(i) =i — 1.

Message Sequence Charts.

While executions correspond to a total order of events in a system, message sequence
charts (MSCs) provide a distributed view, using a partial order on events. For a
tuple M = (w,),ep, cach w, € Act), is a sequence of actions executed by process p,
according to some total, locally observable order. We write events(M) for the set
{(p,7) | p € Pand 0 < ¢ < length(w,)}. The label action(n) of an event n = (p,17)
is the action w,[i]. The event 7 is a send (resp. receive) event if it is labelled with
a send (resp. receive) action. We write eventsg(M) (resp. eventsg(M)) for the set
of send (resp. receive) events of M. We also write msg(n) for the message sent or
received at 7, and proc(n) for the process executing 7. Finally, we write n; <. 72
if there exists a process p and indices i < j such that n; = (p,7) and 7 = (p, 7).

Definition 2.2.5 (Message Sequence Chart). An MSC over P and M is a tuple
M = ((wp)pep, src) where

1. for each process p, w, € Act, is a finite sequence of actions;

2. src : eventsp(M) — eventsg(M) is an injective function from receive events
to send events such that for all receive event 1 labelled with ?7m?~9, src(n) is
labelled with !m?~4.

11



For an execution e, msc(e) is the MSC ( (wp)pep, src) where w),, is the subsequence of
e restricted to the actions of p, and src is the lifting of src. to the events of (w,),ep.

Example 2.2.1. Consider the MSC depicted in Figure 2.1. It consists of P =
{p,q,r} and M = {my, ma, ms} with M = ((w,,w,, w,),src), where w, = lm;?mo,
Wq = malmalms, w, = Tms, SI’C((p, 2)) = <Q7 2)7 Src<(Q7 1)) = (p> 1)7 and SI’C((T, 1)) =
(¢,3)-

Figure 2.1: Simple example with an exchange of three messages.

Given a set of processes P, an MSC M = ((wp)pep, src) is said to be a prefix of an-
other MSC M’ = ((w;)pep, src/ ), denoted by M <, M’, if the following conditions
hold:

e for every p € P, the sequence w), is a prefix of wy;
e for every receive event e of M, it holds that src’(e) = src(e).

The concatenation of two MSCs M; and M, is the MSC Mj - M, obtained by stacking
M, vertically above M. Formally, let My = ((w),)pep, src1) and My = ((w}))pep, Srca).
Then: (i) for each process p, the sequence is w, = w,, - w?; (ii) the source function
src is defined so that src(e) = src;(e) for all receive events e belonging to M;, with

ie{1,2}.
Happens-before relation and linearisations

In a given MSC M, an event n happens before n/, if n and 7’ are events of a same
process p and happen in that order on the timeline of p; n is send event matched by
n'; and a sequence of such situations defines a path from 7 to 7'.

Definition 2.2.6 (Happens-before relation). Let M be an MSC. The happens-
before relation over M is the binary relation <,, defined as the least transitive
relation over events(M) such that:

e for all p,i,j, if i < j, then (p,i) <, (p,7), and

12



e for all receive events 7, src(n) <,,; 1.

Example 2.2.2. Consider the Example 2.2.1. The following happens-before rela-
tions are valid:
I'my <M my <M Imeo <M !mg <M ?m3

and
Imy <, Tmy <, Img <, Tma.

Definition 2.2.7 (Linearisation). A linearisation of an MSC M is a total order <
on events(M) that refines <,,: for all events n, 7/, if n <, 1, then n < 7/’.

We write lin(M) for the set of all linearisations of M. We often identify a linearisation
with the execution it induces.

Example 2.2.3. Considering the Example 2.2.1, let M be the MSC in Figure 2.1.
The elements of the set lin(M) are

!ml?ml !mg?mglmg?mg,

!ml?ml !mglmg?mg?mg,

!m1 ?m1 !mglmg?mg?mg.

Given an MSC M, we write lingom(M) to denote lin(M) N Eeom; the executions of
lincom (M) are called the linearisations of M in the communication model com.

Definition 2.2.8 (com-linearisable MSC). An MSC M is linearisable in a com-
munication model com if lingm (M) # 0. We write Mcom for the set of all MSCs
linearisable in com.

Example 2.2.4. Consider the Example 2.2.1 and the respective linearisation listed
in Example 2.2.3. The MSC M is linearisable in the synch communication model
because lingynch (M) # 0. The only element of lingnen (M) is

!ml?ml !mg?mzlmg?mg.

All the send events are followed by the respective receive events.

13



Communicating finite state machines.

We recall the definition of communicating finite state machines [11].

Definition 2.2.9 (CFSM). A communicating finite state machine (CFSM) is an
NFA with e-transitions A over the alphabet Act. A system of CFSMs is a tuple
S = (-Ap)peIP’-

Given a system of CFSMs & = (A,)yep, We write S for the system of CFSMs
S = (A,)ep where all states are accepting, i.e., I, = Q.

Definition 2.2.10 (Executions of CFSMs in com). Given a system S = (A, ),ep and
amodel com, LT (S) is the set of executions e € Eom such that proj,(e) € L,,qqs(Ap)
for all p.

We write L&7(S) for the set {msc(e) | e € LT(S)}.

msc exec

A system is orphan-free if, whenever all machines have reached an accepting state,
no sent message remains in transit, i.e. no message is sent but not received.

Definition 2.2.11 (Orphan-free). A system S is orphan-free in a model com if all

. T om
its executions in L0 (S) are orphan-free.

Remark. All synchronous executions are orphan-free by definition.

A system is said to be deadlock-free if every partial execution (i.e., an execution
that may have stopped before reaching a final state) can always be extended to a
complete or accepting execution. Intuitively, this means that the system can never
reach a state in which all processes are waiting indefinitely, and no further progress
is possible.

Definition 2.2.12 (Deadlock-freedom). A system S is deadlock-free in com if, for
every execution e € L

¢ € LOM(S).

exec

com

oM (S), there exists a completion e’ such that e <, € and

Remark. This definition captures the idea that, in a deadlock-free system, no
reachable configuration represents a permanent waiting state, every intermediate
behaviour can eventually lead to a valid full execution. In other words, the system’s
communication and synchronisation structure guarantees continuous potential for
progress. This definition of deadlock-freedom may differ from many other definitions
used in other works, because for different application domains there are distinct in-
terpretations of deadlock-freedom. In some system, it is crucial that all participants
eventually reach a final state and terminate. Instead, in other systems, it may be
acceptable for a server to remain indefinitely receptive to incoming requests, i.e.
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distributed computing. For a detailed discussion of this property and its verification
within our framework, refer to Chapter 4.

2.3 Global Types

This section introduces the fundamental notions required to understand the formal
proof presented in Chapter 3, focusing in particular on the concepts of Global Types
and Weak Realisability.

Definition 2.3.1 (Global Type). An arrow is a triple (p,q,m) € P x P x M with
p # q; we often write p ~» ¢ instead of (p,q,m), and use Arr to denote the finite
set of arrows. A Global Type G is a deterministic finite automaton (DFA) over the
alphabet Arr.

We use the notation p <% ¢ to denote the round-trip exchange of a message m: first
p sends m to ¢, and then ¢ sends back the same message m to p. This serves as an
acknowledgment message for p, ensuring that both directions of communication are
explicitly represented in the model.

Remark. In our setting, global types are viewed as automata that generate a lan-
guage of MSCs (Definition 2.3.1 and 2.3.3), following the line of work by Di Giusto
et al. [22]. It is important to note that this notion of global types differs signifi-
cantly from the one commonly adopted in the Multiparty Session Types (MPST)
literature, where global types are usually defined as structured syntactic descrip-
tions of communication protocols. Here, the automata-based interpretation aligns
with other lines of work that study of the realisability problem, providing a formal
foundation for reasoning about synchrony, causality, and implementability. For a
comparison and discussion of similarities and differences with other formalisms, refer
to Chapter 5.

Example 2.3.1. An example of a global type expressed as an automaton is the
following. Consider the not-realisable specification stated in Listing 1.1. The speci-
fication automaton depicted in Figure 2.2 is a DFA A = (Q, %, 9, qo, F'), where:

e P={A B,C, D},
Q ={1,2,3,4,5} is the set of states;

e X={A5 B AL B C% D,C% D} is the alphabet Arr;

The transition function § : Q x ¥ — (@ is defined as:

5(1,AL B)=2, 6(1,AL B)=3, §12,C5D)=4, §3,C% D)=5
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e The initial state is ¢p = 1;

e The set of accepting states is F' = {4,5}.

Figure 2.2: Listing 1.1°s global type.

The projection of a global type G on a process p is the CFSM G, obtained by

replacing each arrow ¢ — 7 in the transitions of G with the corresponding local
action of p: !mP~" if p = q, 7m%7P if p = r, and ¢ otherwise.

Definition 2.3.2 (Projected system of CFSMs). The projected system of CFSMs
proj(G) associated with a global type G is the tuple (G,),ep, where each G, is the
local behaviour of process p obtained via projection from G.

We can now formally define the relationship between MSCs and global types. Intu-
itively, the semantics of a global type is rapresented by a set of MSCs, allowing us
to reason about multiple message sequence scenarios.

A global type defines a language of MSCs in two different ways, one existential and
one universal. Let £, 4.(G) be the set of sequences of arrows w accepted by G.
Informally, the existential MSC language £ (G) of a global type G is the set of
MSCs that admit at least one representation as a sequence of arrows in L4 (G),
and the universal MSC language LY _(G) of a global type G is the set of MSCs
whose representations as sequences of arrows are all in £ (G). We will just give

the formal definition of £2_(G):

words

Definition 2.3.3 (£J_(G)).

‘Camsc(G) déf {msc(w) | w e Lwords(G)}

When a global type is implemented in a concrete system, its semantics depends on
the chosen communication model.
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Definition 2.3.4 (Global Type Language). Let G be a global type and com a

communication model. The language of G in com is L7 (G) %ef U{lincom (M) | M €
Lree(G)}

We can now finally give the definitions of weak and safe realisability.

Definition 2.3.5 (Weak realisability). A global type G is weak realisable in the
communication model com if there is a system CFSM & such that the following
condition hold: L20(S) = L0 (G).

exec exec

Although this work does not focus on safe realisability, we will still define it formally
to highlight the main differences and similarities with other works in Chapter 5.

Definition 2.3.6 (Safe realisability). A global type G is safe realisable in the com-
munication model com if there is a system S that is weak realisable and S is deadlock-
free in com (Def. 2.2.12).

The definition of Weak realisability corresponds to the property of global type con-
formance: all system executions faithfully follow the behaviours prescribed by the
global type. When com is p2p or synch, our notion of safe realisability coincides with
the notion of safe realisability introduced in [5]. This equivalence does not extend
to more general communication models, such as the mailbox model [22]. We are
now ready to present the main contributions of this work.
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Chapter 3

Weak-Realisability is Undecidable
for Synchronous (Global Types

This chapter presents the first main contribution of this thesis, formalised in Theo-
rem 1, which establishes that Weak-realisability is undecidable for synchronous global
types. This result complements the broader reduction theorem introduced in Sec-
tion 1.2, where we showed how the realisability problem for peer-to-peer systems can
be reduced to the study of realisability under synchronous semantics. Here, we fo-
cus exclusively on this synchronous setting, proving that even in such a constrained
communication model, weak realisability remains undecidable.

To support this proof, Chapter 2 introduced the necessary background on Message
Sequence Charts (MSCs), Global Types, and Weak-realisability. In this chapter, we
build upon those foundations by formally defining the core constructions used in the
proof of Theorem 1. The proof itself is inspired by the classical reduction of Alur
et al. [5], which we extend and adapt to the framework of synchronous global types.
Along the way, we emphasise the main conceptual and technical differences between
our approach and the original construction, clarifying how these adaptations enable
the result to hold in the synchronous semantic setting.

3.1 Definitions

The proof is a reduction from the Relaxed Post Correspondence Problem
(RPCP), a variant of the classical Post Correspondence Problem (PCP). RPCP
was shown to be undecidable by Alur et al. [5], via reduction from PCP. The main
idea is to encode the existence of a solution to an RPCP instance into the non-
realisability of our formal specification. In the original proof, MSCs are directly used
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to build an HMSC called M*. In our case, we will define a global type (called L*)
built from global types. A generic solution for the RPCP problem will correspond
to the global type L*. Therefore, we need to prove:

A € RPCP <= L*is not realisable.

Definition 3.1.1 (Relaxed Post Correspondence Problem). Given a set of tiles
{(v1,wy), (vg, w3), ..., (vr, w,)}, determining whether there exist indices i1, ..., i,, such
that

Lig Ly = Yiy " Yins
where z;,,y;; € {vi;, w;; }, such that:
e there exists at least one index 7, for which z;, # v;,, and

e for all j <m, y;, -y, is a strict or not-strict prefix of x;, -+ - z;;.

Intuitively, RPCP requires that the concatenation on the left-hand side always grows
at least as fast as the right-hand side, while ensuring that at least one chosen tile
differs between the two sequences. Moreover, in constructing the strings, we may
freely choose which element of each tile (either v; or w;) contributes to the left or
right sequence.

Example 3.1.1 (Simple RPCP instance). Consider the tile set
(vi,w1) = (b, bb), (vg,wz) = (a, ab), (vs,ws) = (c, c).
Take the index sequence (2,1, 3) and the choices
L1 = Wz, Y1 = V2; T2 = V1, Yo = Wi; T3 = U3, Y3 = Ws.

Then
T1Tox3 = ab b ¢ = abbc, Y1Y2ys = a bb ¢ = abbc,
so the two sides are equal.

We now check the RPCP conditions:

e at least one mismatch: here x; # y; and x5 # yo, so the “some index
differs” condition holds;

e prefix property: for every prefix length j we have y; ---y; is a prefix of
ARERE T

— j =1: y; = ais a prefix of x; = ab;
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— J = 2: y1y2 = abb is a prefix of x1xy = abb;

— J = 3: y1y2y3 = abbc is a prefix of xxo1r3 = abbc.

We have now identified the main problem to which our proof reduces. The next step
is to encode an RPCP instance into the formal model. In the original proof, MSCs
are used, but, in our case, we also need to give an encoding using global types. We
will first give the MSC one.

Definition 3.1.2 (M["). Given the index i of a tile (v;, w;), and given an interger
n € {0,1}, where:

e if n =0, then z; = vy;
e if n =1, then z; = w;;

The behavior of the MSC M is as follows: first, Process 1 synchronously sends
message m; = (i,n) to Process 2, then Process 1 transmits the index my = i to
Process 4. Subsequently, Process 4 sends ms = (i,n) synchronously to Process 3.
After these control messages, Process 2 sends the characters m} = x},...,m¢ = ¢
synchronously to Process 3 (where ¢ is the length of z;). This MSC is depicted in

Figure 3.1,

P1 P2 P3 P4

Figure 3.1: The M* MSC.

Given a RPCP instance {(vy,w1), ..., (Unm, wy)}, we associate with each pair (v;, w;)
two MSCs M and M}, following Definition 3.1.2. Each MSC M} is synchronous
(Lemma 1). Intuitively, the MSC M]* encodes the construction of a string given some
tiles through the interaction of four processes. Processes 2 and 3 are responsible for
building the string itself, while Processes 1 and 4 transmit the index information
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to Processes 2 and 3, respectively. In particular, Process 1 initiates the choice and
forwards it to Process 4. This encoding applies equally to definition 3.1.4.

Lemma 1. The MSC M belongs to Meynch.

Proof. We need to prove that M € Mgyueh. By Definition 2.2.5 of MSC, each
communication in M]* consists of a send event !mP~¢ and its corresponding receive
event ?mP~% with src(?mP~?) =lmP~?. By Definition 2.2.3 of synchronous commu-
nication model, an MSC is synchronous if there exists a linearisation in which every
send event immediately precedes its matching receive.

In M, the set of messages exchanged is
1 c
{m17m27m37mi7' <, Yy }7

with ¢ = |z;]. A valid synchronous linearisation therefore exists and is given by:

C
P

Imi?mq 'mo?ms 'ms?ms !mil?mz1 o Imitm

This linearisation satisfies the synchronous ordering constraint, as every send is
immediately followed by its matching receive. Hence, by Definition 2.2.8, M €
Msynch- O

We now define how to obtain a global type on top of an MSC.

Definition 3.1.3 (Gys). Let M € Mgynch be a message sequence chart (MSC) over
the set of processes P and messages M. We construct the corresponding global type
Gy = (Q,%,6,q, F) as follows.

e The alphabet ¥ is the set of synchronous communication arrows
Y={p q|3n, €eventsg(M), n, € eventsg(M) such that
src(n,) = 15, proc(ns) = p, proc(n,) = q, msg(n,) =m }.

e Since M € Mgyncn, there exists a synchronous linearisation w = ooy . . . oy,

where each o = p; UEN g; € X represents a complete synchronous communi-
cation step (send immediately followed by its matching receive).

o Let Q@ = {qo,q1,-..,qk}, where g is the initial state and ¢, is the unique
accepting state.

e The transition function § : Q x ¥ — (@ is defined sequentially along the
synchronous interactions of M:

Vied{l,...,k}, 6(gj-1,0)) =g

All other transitions are undefined.
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Intuitively, Gj; captures the exact synchronous execution order of M: it is the
deterministic automaton that accepts the single word w = ajas ... ap over X, rep-
resenting the sequence of message exchanges in M. Equivalently, G,; recognises the
set of MSCs whose synchronous linearisations are w. We now use this definition to
encode M in a global type format.

Definition 3.1.4 (G?). Let (v;,w;) be a tile and n € {0,1}. Set z; = v; if n = 0,

and z; = w; if n = 1. Let ¢ = |z;| and write z; = z x? - - - x¢.

The global type G (shown in Figure 3.2) is the DFA G = (Q, %, 6, qo, F'), obtained
on top of the MSC M* (Definition 3.1.2) using the construction in Definition 3.1.3,
and defined as follows:

e P = {P1, P2, P3,P4};

e M = {ml,mg,mg,mx%, oy Mge b, where my = (i,n), mg = i, mz = (i,n), and
m =x] for 1 <j <g
1

o Arr={P1<{% P2, P1<%3 P4 PALS P3 P25 P3 ... P25 P3 },
where each arrow denotes a synchronous message with acknowledgment;

e Q=1{q0,%,9%,93, 4 - - -,G3+c}, Where qq is the initial state and F' = {g3,.} is
the unique accepting state;

e The alphabet ¥ is the finite set of arrows (synchronous message labels): 3 =
(P15 P2 P1LES P4 PALS P3 Y U{P2+5P3|1<j<c}.
e The (deterministic) transition function § : @x ¥ — Q is defined by: 6(qo, P1 <>
g
P2 ) = q1, 5(q1,P1 4P4)Iq2, (5<q2,P4<4P3 ) = (3, 5(q2+]’,P2<—1>
P3) =¢34, 0 < j < c. Hence, the sequence of transitions from ¢z to gs. corre-
sponds to the synchronous exchanges between ¢ and r labelled by m,1, . .., mge.

(3,n) i
@P1<—>P2/q‘l\ P15 P4
\Z/

P2 & P3 (o) P23 P3N Pzﬁps@
N _/

Figure 3.2: The global type G}.
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Intuitively, using the costruction defined in Definition 3.1.3, we obtain a global type
whose existential language of representation correspond exactly to the given MSC.

Lemma 2. For every MSC M € Migynch, there exists a global type Gy such that
Loec(Gar) = {M}.

Proof. Let M € Mgych and let Gy, be the global type constructed as in Defini-
tion 3.1.3. By definition, G,; is the DFA that accepts exactly the synchronous
linearisation w = ayas. ..o of M, where each a; = p; UEN g; corresponds to a
complete synchronous communication. Since every execution of G,; under the syn-
chronous semantics follows the exact sequence of communications in w, it induces
the same causal and message relations as in M. Hence, the unique MSC corre-
sponding to any accepting run of Gy, is precisely M. Conversely, any MSC M’
whose synchronous linearisation is accepted by G,; must have the same sequence of
synchronous interactions as M, and therefore M’ = M. Therefore, the existential
MSC-language of G,; contains exactly M, that is,

O

Lemma 2 establishes a direct correspondence between a single synchronous MSC
and a global type. In particular, every synchroonus MSC can be captured precisely
by a global type whose language contains only that MSC. This correspondence will
be useful when embedding RPCP instances into the global type framework. We now
introduce a more structured global type, parameterized by a string S, which will
serve as the building block in the reduction.

Thanks to Lemma 2 and given that M is a synchronous MSC (Lemma 1), we can
establish now that £3_(G?) = {M}. After establishing the connection between
the MSC’s encoding and global type’s encoding, we briefly summarize the rationale

behind the design of M* and G7.

Suppose that A = (iy,a1,b1,...,%m, @m,by) is a solution to the RPCP instance.
From this solution we construct two MSCs sequences:

_ al a . b1 b
M, =M™ M M, =M M

Both M, and M, are concatenations of synchronous MSCs. We then define a third
MSC Mjo1, obtained by projecting M, onto processes P1, P2 and M, onto processes
P3, P4. Intuitively, processes P1, P2 represent the construction of the right-hand
string i, - -+ Yi,,, while processes P3, P4 represent the construction of the left-hand
string x;, - - - x;,,. The prefix property of RPCP guarantees that Mg, is acyclic and
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synchronous. Establishing that Mg, € Mgynen is non-trivial, and this step is an
addition to the original proof.

The following definition introduces the global type L*, which encapsulates all pos-
sible compositions derived from a given RPCP instance. Intuitively, for each MSC
M € M, there exists a corresponding global type G € G* that captures the be-
haviour described by M. The automaton defining L}, then combines all such global
types in G* into a single structure, allowing transitions between them through e-
moves. The determinisation of this automaton yields the global type L*, representing
the full set of possible interactions generated by the collection of MSCs.

Definition 3.1.5 (The L* global type). Given an instance {(vy,w1), ..., (Un, wn)}
of RPCP, we construct a set M* = {M?, M} | i € {1,...,m}} of MSCs over
four processes as follows. For each pair (v;,w;), we define two MSC, M? and M},
as specified in Definition 3.1.2 and illustrated in Figure 3.1. For each MSC in
M*, we construct G* using Definition 3.1.3. Every global type in G* is shaped
like Definition 3.1.4 (shown in Figure 3.2). We define the global type L% as the
automaton A = (Q, X, 4, ly, F') where:

e Q={v,vr}UUgee Q;

2 = {e} UUgeq- =%

§:Q x ¥ — 29 is defined by:
1. VG € G*, §(vy,e) = ¢§ where ¢§ is the initial state of G,
2. VG € G*, Vq§ € FC, 6(¢f,¢) = vr,
3. VG, G € G, Yq§ € FO, §(¢%,¢) = qf .

lo = vy is the initial state;
e ' = vy is the accepting state.

The automaton of L}, is shown in Figure 3.3. Finally, the Global Type L* is obtained
as the determinisation of L}, (Definition 2.1.3).

In other words, L* is a global type whose language of executions captures all possible
combinations and exchanges of choices arising in a generic instance of the RPCP
problem. This global type L* is constructed from the family of MSCs representing
all tiles, and it forms the basis for proving the non-realisability result.

Given the system of CFSMs proj(L*) and the MSC M., we need to show that
LN (proj(L*)) # LY (L*). By construction of L*, we have Mg,y € LM (proj(L*)).

exec exec msc

In contrast, Mg, ¢ LM (L*), since at least one tile differs. This demonstrates that
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there exists an execution that is valid for proj(L*) but invalid for the global type L*.
Therefore, L* is not realisable.

Figure 3.3: The automaton of the global type L.
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3.2 Undecidability proof

Given the definitions and lemmas stated in the last section, we are now ready to
present the proof for the undecidability result.

Theorem 1. Given a global type G, checking if G is weakly-realisable is undecidable.

Proof. The proof proceeds via a reduction from the RPCP problem. Given an
instance {(vy,w),..., (Um,wn)} of RPCP, we construct L* as specified in Defini-
tion 3.1.5.

We need to prove:

A € RPCP iff the global type L* is not weakly-realisable.

= Assume that A = (i1, a1,b1,1%,a9,ba, ..., im, am,by) are the indices for a so-
lution to a generic RPCP problem instance, and the bits a; and b; indicate
which string (v;; or w;;) is chosen to go into the two (left and right) long
strings. Assume also synchronous communication semantic. Consider the
MSCs M, and M, obtained from the concatenation of M, = Mﬁl -+ M{™ and

M, = Mibl1 e MZ-I’;:L. The possible linearisations of both of these sequences of
MSCs must be included in the language of execution of L*, by construction
of L* (Definition 3.1.5). This means that M,, M, € L"(L*). Additionally,
My, M, € Mgy because they are sequences of MSCs included in Mgyneh
(Lemma 1). M, corresponds to the construction of the left side of the equiv-
alence of the RPCP problem, and, instead, M, represents the construction
of the right side. We then look at the projections M, |p1, M,|p2, M,|p3, and
M| py of M,, and M,|p1, My|pa, My|ps, My|ps of M, onto the 4 processes.
Given that these are projection of MSCs included in L*, they are possible exe-
cution of a CFSM S that can execute L*. Now consider the MSC M,; formed
from M,|p1, My|p2, My|ps, and M,|ps. This MSC represents the construction
of the solution to the problem. Processes 1 and 2 construct the right part
(Yiy---¥i,,) and processes 3 and 4 construct the left part (x;,...z;,,).

The claim is that the combined MSC M,,; is made by L*’s projections, there-
fore, it exists a CFSM S that My, € £L"(S), but the CFSM § is not part

msc

of the language of execution of L* L¥N(S) # LYN(L*). In other words, the
language of the execution of Mg, is included in the execution of the system,
but it is not included in the execution of L*. By definition, the first thing
to establish is that Mgy, is indeed well-formed and synchronous MSC. The
only new situation in terms of communication in Mg, is the communication
between P; and P, and between P, and P3. But the communication between

Py and Py is consistent in M,|p; and M,|ps (i.e., the sequence of messages
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sent from P; to P, in M,|p; is equal to the sequence of messages received in
M,|p4), and the communication between P, and P is consistent in M, |ps and
M,|ps because R is a solution to the RPCP. Furthermore, the acyclicity of
My, follows from the property of the solution that the string formed by the
first j words on processes 1 and 2 is always a prefix of the string formed by the
first 7 words on processes 3 and 4. Consequently, each message from P; to Py
is sent before it needs to be received. Therefore, the MSC My, is well-formed.

We now prove that the MSC Mo is synchronous, that is Mg € Mgynch.
Assume, by contradiction, that Mge ¢ Meynch. Then, there should be a cycle
of dependencies in the communication pattern. There are no communication
between P, and Py, and between P, and P3. Therefore, this cycle must involve
all processes, starting for example from P; and having this dependency graph
P, < Py <5 P3 <> Py <> P;. The only new situation that can cause a cycle are
the communication between P; and P,, and between P, and P;. We do not
need to analyse the new communication between P, and P, because it is not

feasible in any communication model, but we need to analyse the one between
P, and P; because it’s feasible in FIFO.

P1 P2 P3 P4

P (Zk7nk‘) c
g R
\; (2, 5) =

Figure 3.4: MSC communication that breaks synchrony.

For the communication between P, and Pj, the only possible cycle pattern is
depicted in Figure 3.4 showed as an MSC. Suppose P, wants to send a character
¢, but Pj is not expecting any further characters. In order for P; to resume
receiving, it must first receive an index from P,. However, P, can only send this
index after receiving it from P;, which in turn must first communicate the index
to P,. At this point, P5 needs to receive the index from P;, but it cannot do so
until it finishes sending character ¢. This creates a circular dependency among
the processes, making the communication pattern impossible. This cycle would
break the prefix property as xi...x5_1...ym = Y1...Yk_1..-Ym, but the character
¢ appears in yp...yx_1 but not in xy...y,_1 contradicting the assumption that
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Y1...Yp—1 < T1...x5_1. Therefore, we conclude that Mge1 € Meynch-

We now prove the non-realisability of L*, thanks to Mg,;. Consider the system
of CFSM proj(L*) and a linearisation wgo; € lin(Mgo1). We need to prove that
L3 (proj(L*)) # LN (L*). Given that Mg, is composed by projections of

exec exec

MSCs used to build L*, we can establish M, € LY (proj(L*)). Thanks to

mscC
M1, we can notice that £ (proj(L*)) cannot itself be in LY (L*) because
there must be some index i; where a; # b;, and no execution of the Global Type
exists in L* where, after P; announces the index, what P, sends is not identical
to what P receives. Mo, rapresents the possible execution that establish the
inequality. More formally, wee; € LI (proj(L*)), but weey & LN (L*). This
generally establish the non-realisability of L*. Example 3.2.1 shows an instance

of the construction of Mg, .

< Suppose there is some MSC M© that can be built from possible projections of
L*, but is not part of L*’s language of executions. More precisely, we want to
derive a solution to A from M®. First, it is clear that the projection M®|p,
consists of a sequence of pairs of messages (the first of each pair acknowledged),
sent from process 1 to processes 2 and 4, respectively, with messages (i,b) and
i. Likewise, in order for process 2 to receive those messages, M®|py consists
of a sequence of receipts of (i,b) pairs, and after each (i,b), either v; or w;
is sent to process 3, based on whether b = 0 or b = 1, before the next index
pair is received. Likewise, M®|p, consists of a sequence of receipts of index i
from process 1, followed by sending of (i,0) or (,1) to process 3, and M®|ps
consists of a sequence of receipt of (i,0) or (i,1) followed by receipt of v; or
w;, respectively.

Now, since M® ¢ LN(L*), for some index i the choice of v; or w; must
differ on process 2 and process 3. (Note, we are assuming that the buffers
between processes are FIFO.) Furthermore, because of the precedences, the
prefix formed by the first 7 words on process 2 must precede the (j + 1)-th
message from process 1 to process 4, which in turn precedes the (j + 1)-th
message from 4 to 3, and hence the (5 + 1)-th word on process 3. That is, the
string formed by the first j words on process 2 is a prefix of the string formed
by the first j words on process 3. Therefore, we can readily build a solution
for A from M® by building the strings of the solution taking the projections
of P, and P,. In fact, P, builds y;, - - - v;,,, and Py builds x;, - - - x;

m*

O

In this example, we will show the step-by-step construction of Mg,; from Theorem 1.
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Example 3.2.1 (M, Example of Theorem 1). Consider the tiles and the solution
of the RPCP instance in Example 3.1.1, with the tile set and the solution with index
sequence (2,1, 3)

(v, w1) = (b,bb), (vg,ws) = (a,ab), (vs,ws) = (c,c).

T1 = Wz, Y1 = V2, T2 ="V, Yg=W1; I3 =713, Y3= W3

This sequence is a solution because x1xor3 = abbc = abbc and y;y2y3 = abbc =
abbc. The prefix property and the “some index differs” condition are satisfied.

Therefore, the encoding of the solution is

A= (Zl :2,61 :1,61 :O,i2:1,&2:O,b2:1,i3=3,a320,b3:1)

Recall that for each tile of index i we have two synchronous MSCs M? and M} (see
Definition 3.1.2), where the bit indicates choosing v; (0) or w; (1) for the character
comunication. Using the concrete index sequence (2,1, 3) we form two concatenated
MSCs:

M, = My - M} - My,

M, = M - M} - M}

Here M, encodes the x-concatenation (z1,xs,23) = (ws,v1,v3) (depicted in Fig-
ure 3.5) and M, encodes the y-concatenation (depicted in Figure 3.6) (y1,y2,y3) =
<U2a Wh, w3) .

Recall that M|, denotes the projection of M onto process p.
We construct the MSC Mg, using M, and M, projections, as follows:

Msol = (My|P1; My|P27 M.’L'|P37 Mw|P4)>

i.e. processes 1,2 follow M, while 3,4 follow M,. Intuitively, My, pairs the right-
side construction (from M) with the left-side construction (from M,). Figure 3.7
illustrates the behaviour of the MSC Mg,;. Observe that when process 3 expects
to receive the second character b right after a, but process 2 cannot send it im-
mediately: it must first obtain the corresponding index and bit from process 1.
The prefix property guarantees that every partial construction of the right-hand
side is aligned with a prefix of the left-hand side, therefore preserving synchronous
semantics throughout the execution.

From Figure 3.7, it is evident that this kind of execution cannot occur in any exe-
cution of L*, even though the MSC is constructed using valid projections included
in its MSC language. More precisely, the language of L* contains only communi-
cations of the type represented by M, and M,. The exchange involving the first
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P1 P2 P3 P4

(2, 1)

(1,0)

Figure 3.5: The MSC M,.

b character in Figure 3.7 does not belong to the execution language of L*, but it
belongs to L*’s projections. This particular communication pattern demonstrates
the non-realisability of L*.

The sequence of lemmas and the main theorem collectively establish the undecid-
ability of weak-realisability for global types. Having developed the theoretical foun-
dation, we now move to the next section, where we focus on the practical aspects of
analysing realisability, and introduce the RESCU tool.
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Figure 3.6: The MSC M,.
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(3, 1)

Figure 3.7: The MSC M;g.;.
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Chapter 4

ReSCu

In the previous chapter, we examined the theoretical aspects of the realisability
problem for MPST, culminating in the main result: the undecidability of weak
realisability under synchronous semantics. This analysis not only establishes a fun-
damental limitation but also motivates the exploration of complementary directions,
such as identifying restricted, decidable subclasses or developing practical verifica-
tion techniques.

In this chapter, we shift our focus from undecidability to decidability. As introduced
in Section 1.2, our goal is to analyse the realisability problem through a reduction
approach: specifically, we reduce the study of realisability in the peer-to-peer (p2p)
communication model to the study of realisability under the synchronous semantics.
This result was showed before without a formal definition, but now, building upon
the theoretical framework developed in Chapters 2 and 3, we can state this result
rigorously.

Theorem 2 (Reduction to synch-implementability, Theorem 5.3 in [22]). A global
type G 1s deadlock-free realisable in p2p if and only if the following conditions hold:

1 £p2p(proj(G)) g PreﬁXeS(Msynch);

msc

2. proj(G) is orphan-free in p2p;

~

3. LP? (proj(G)) C Prefixes(LP? (proj(G)));

msc msc

4. G is deadlock-free realisable in synch.

An informal explanation of the four conditions is as follows:

e the language generated by the local projections of G are in synchronous se-
mantics;
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e all projections of G are orphan-free;
e the projections of G are deadlock-free in the p2p model;
e (G is deadlock-free realisable under synchronous semantics.

A detailed proof of this theorem is provided in the referenced paper, and it also
discusses the decidability of these conditions [30, 22]. The challenges, addressed in
this thesis, concern the decidability of deadlock-free realisability in the synchronous
model, which constitutes the central focus of our analysis.

This theoretical result directly motivates the practical contribution of this work:
the extension of the RESCU tool toward fully automated verification within our
modular framework. RESCuU (first introduced in [18, 21, 30]) is a verification tool
for reasoning about communication models and protocol design. Originally, RESCU
was developed to verify membership in the class of synchronous systems and to check
reachability of specific configurations under synchronous executions. Hence, the
tool already supports verification of the first and second conditions of the theorem.
Consequently, the next natural step was to extend its capabilities toward analysing
the third and fourth conditions, both related to deadlock-freedom. Building on
this foundation, we enhanced RESCU to reason about key behavioural properties,
specifically, deadlock-freedom and progress, which are central to the broader study of
realisability. Examining deadlock-freedom in this context is particularly valuable, as
it restricts the space of possible executions and often yields a decidable verification
problem. Through these extensions, RESCU bridges the gap between the theoretical
foundations of realisability and practical, automated analysis, serving as a building
block toward decidable realisability checks in distributed systems.

We describe the features of RESCu, the input language it adopts, and its imple-
mentation details, with particular emphasis on the extensions and modifications we
introduced to improve its capabilities [19]. The updated public repository, which
includes the new features and illustrative examples, is available at:

https://github.com/gabrielegenovese/rescu [27].

4.1 Characteristics

RESCU is a command-line tool that can check both membership in the class of synch
systems (called Realisable with Synchronous Communication or, in brief, RSC from
now on) and reachability of regular sets of configurations. It accepts input systems
with arbitrary topologies and supports FIFO and bag buffers among others. The tool
provides several options: —isrsc checks whether the system is RSC, and -mc checks
reachability of bad configurations. Both checks can be combined in a single run. The
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-fifo option overrides buffer types by treating all as FIFO. When a system is unsafe,
the —counter option (used with -mc) produces an RSC execution that leads to the
bad configuration, while the same option used with -isrsc outputs the violation
execution if the system is not RSC. Additional features include a progress display to
estimate remaining runtime during long computations, and -to_dot, which exports
the system to DOT format for visualization. Symbolic Communicating Machines
(SCM), defined and used in [43, Definition 5.1] serve as the input format of the
tool. SCMs are Communicating Finite-State Machines (CFSM, Definition 2.2.9)
extended with the use of channels and a finite set of variables (that corresponds
to message). The grammar has been updated to provide greater flexibility and
clarity. In particular, transition guards have been made optional (with a default
value : when true), and a new final keyword has been introduced to explicitly
specify final states. The updated grammar is shown in Listing 4.1. For a brief
overview of releted tools, refer to Section 5.5.

prog = <header> <aut_list> [<bad_confs>]
header ::= scm <ident>:<channels> [<bags>] <parameters>
; channels ::= nb_channels = <int>;
bags = //# bag_buffers = <int_list>
int_list = <int>
| <int_list>, <int>
parameters = parameters = <param_list>
param_list = <param>
| <param> <param_list>
param = {int | reall} <ident>;
aut_list = automaton <ident>:<initial>;<final>; <state_list>
initial ::= 1initial : <int_1list >;
final = final : <int_list>;
state_list = <state>
| <state_list> <state>
; state = state <int> : <trans_list>

trans_1list <transition>

<trans_list> <transition>

guard when true | <nothing>
transition = to <int> : when true , <int> <action> <ident>
action ggs DD | 0RO
bad_confs = bad_states: <bad_list>
bad_list = (<bad_conf >)
| <bad_1list> (<bad_conf>)
bad_conf = <bad_state>
| <bad_state> with <bad_buffers>
bad_state = automaton <ident>: in <int>: true [<bad_state>]
bad_buffers = <regular_expression>
nothing =

Listing 4.1: Modified SCM grammar
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Given the definition of SCM and the newly introduced input grammar, We now
present an example to illustrate how these concepts are applied in practice with the
tool. For clarity, the example is expressed in the CFSM notation rather than in
the SCM formalism. Consequently, channels and variables are omitted and replaced
directly by messages. However, the figures are displayed in SCM format, as they are
automatically generated by the tool.

Example 4.1.1 (Ping-Pong Example). Let the set of processes be P = {A, B}, the
set of messages M = {ping, pong}, and the set of channels consist of a single FIFO
channel 0 from A to B and from B to A. The corresponding actions are

Act = { (A, B,!,ping), (B, A, 7, ping), (B, A, !, pong), (A, B, ?,pong) }.

The system of CFSMs is S = (A4, Ag), where:

AA = (QA; 27 5A7 4o, A, FA)
with
e Q4 ={0,1,2}, initial state gy = 0, final state Fy = {2},

" (A,B,!,ping) (B,A,?,pong)
e transitions: 0 > 1

Ap = (QB,E,(SB,%,B,FB)
with
e (p = {0,1,2}, initial state gy p = 0, final state Fg = {2},

(B,A,?,ping) (A,B,!,pong)\

1 2.

e transitions: 0
This CFSM system S is showed in Figure 4.1. The corresponding input as SCM
format for the tool is showed in Listing 4.2.
scm ping_pong :

nb_channels = 1 ;
parameters

5 unit ping ;

unit pong ;

automaton A :
initial : O
final : 2
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state O
to 1

5 state 1

to 2

state 2

automat
initial
final

state O

to 1

state 1

to 2

state 2

0 ! ping ;

0 7 pong ;

on B
0

Listing 4.2: Tool’s input for Example 4.1.1

A B

Figure 4.1: Simple Ping-Pong example.
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4.2 Progress and Deadlock-Freedom

We extended RESCU with verification routines that focus on two fundamental cor-
rectness properties of distributed systems: progress and deadlock-freedom. To en-
able this, the tool constructs the synchronous system using the synchronous product
operation whenever the input SCM is recognized as realisable in synchronous com-
munication semantic (RSC). Once the system is proven to be RSC, we can safely
construct a well-formed synchronous product from it, and, given the synchronous
product, the tool elaborates the other two additional checks.

Remark. The discussion in this chapter assumes strong fairness over choices. In
other words, whenever the system encounters a nondeterministic branching, all pos-
sible continuations are treated equally and none of them can be ignored. This
assumption ensures that the verification does not overlook executions simply be-
cause they are less probable, and it avoids trivial counterexamples where a branch
is never explored. In practice, relaxing fairness assumptions can yield more realistic
analyses (e.g. prioritising certain branches or modelling schedulers with biases), but
at the cost of complicating the verification procedures. Exploring weaker or alterna-
tive fairness models is therefore an interesting direction for future work, especially
for applications where nondeterminism is influenced by external constraints such as
message delays or resource contention.

We now present the definition of the Synchronous Product for CFSMs, which I have
implemented in the tool, and it serves as a key component for the analysis.

Definition 4.2.1 (Synchronous Product). Let S = (A,),ep be a system of CFSMs,
where A, = (L, Act,, 6, lop, F)) is the CFSM associated to process p.

The synchronous product of S is the FSA P = prod (S) = (L, Arr, 4,1y, F'), where
o L = Hpep L, is the set of global locations,
e Iy = (lop)pep is the initial global state,
o ['=1]],p F)p is the set of global final states,

e ¢ is the transition relation defined as follows: (f, p g, U "V edif

(lp, 'mP70 1) € 6y, (g, TmP79 1)) € 0, 1 =1, for all v ¢ {p,q}.

Example 4.2.1 (Synchronous Product Example). Consider the system of CFSMs
S = (Aa, Ap) from the Example 4.1.1. Its synchronous product is P = prod,(S) =
(L, Arr, 4,1y, F'), where

e L=0QaxQp=10,1,2} x{0,1,2},
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[ ] l() = (0,0),
o F'={(2,2)},

ping pong

A—"5B B34
— (1,1) ——=

Thus, the synchronous product captures the joint behaviour: process A sends ping
to B, then B responds with pong to A, and both processes reach their final states
simultaneously. Figure 4.2 illustrates the product’s automaton prod,(S).

e § consists of the following transitions: (0,0) (2,2).

start

|

A—B:ping

B—A:pong

Figure 4.2: Synchronous Product of the CFSM system in Example 4.2.1.

After constructing the synchronous product, the tool performs several important
post-processing operations. In particular, it removes any unreachable nodes from
the resulting product, simplifying the structure and ensuring that only relevant
states are retained for further analysis. We can now define the two SCM properties
implemented as verification routines in the tool.

Consider the definition of deadlock-freedom for CFSMs (Definition 2.2.12). We
will report the same definition focusing on the synch communication semantic. This
implies that the system uses the synchronous product when analysing the executions
of the system (Definition 4.2.1).

Definition 4.2.2 (Deadlock-freedom in synch). A system S is deadlock-free in synch

~

if for every execution e € L"(S), there exists a completion € with e <, € and
e € LIN(S).

exec
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Remark. The notation S denotes the system obtained by treating every state as an
accepting (or final) state. This way, all possible partial executions of the system are
taken into account. The deadlock-freedom condition then requires that each such
partial execution can be extended to a complete execution of the original system
S. Intuitively, this ensures that the system cannot “get stuck” in the middle of a
computation, i.e. every execution fragment can always be continued to reach a final
state.

More precisely, a system that can reach, from its initial states, some state that does
not lead to a final state is not deadlock-free. Under this definition, even a loop
that never reaches a final state is considered a deadlock, making the property more
restrictive. This check is implemented using a reverse search algorithm starting from
the final states.

Definition 4.2.3 (Progress). A system of CFSMs § satisfies the progress property

~

in synch if for every execution e € L, . (P), with P = prod,(S),

e the execution e is also a valid execution of e € LI (P), or

~

e there exists another execution ¢’ € LM (P) such that e <p.f €/, with e # €.

Remark. As with deadlock, several distinct notions of progress exist in the liter-
ature, each capturing a different aspect of liveness in communicating systems. For
instance, Coppo et al. [14] define progress as the guarantee that every message sent
is eventually received and that every process waiting for a message eventually ob-
tains it. Other formulations of progress may focus on ensuring that no participant
remains indefinitely blocked, or that communication actions can always be extended
to form a complete execution. In general, these notions aim to ensure that systems
do not reach states of permanent inactivity, even if they are not formally deadlocked.

Intuitively, our definition of progress ensures that the system never reaches a state
where it is permanently stuck, except in the case of successful termination. This is
weaker than deadlock-freedom, since infinite executions are allowed as long as they
can always perform a new step. In particular, livelocks (loops without termination)
are considered to satisfy progress, but would violate deadlock-freedom.

Lastly, the synchronized system can be exported in DOT format (with a default
filename of sync.dot), which allows for graphical visualization of its structure and
behaviour. Some illustrative examples demonstrating these new features are in-
cluded in the examples/deadlock folder from the online repository [27]. Two of
them are showed and explained with details in the next section.
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4.3 Examples

To illustrate these notions, we present two examples. The first is the classical Dining
Philosophers problem, which shows how resource contention can lead to deadlock.
The second is a minimal looping system that demonstrates how a process may satisfy
the progress property while still failing to be deadlock-free.

4.3.1 The Dining Philosophers

Example 4.3.1. Consider two philosophers Fy, P; and two forks F7, F5, arranged so
that each philosopher needs both forks to eat. If both philosophers pick up their left
fork simultaneously, each waits indefinitely for the other fork, producing a deadlock.
This captures the essence of the Dining Philosophers problem: concurrent processes
blocking one another when competing for shared resources.

This system is RSC.
There are some sink states:

3 Sink: Id=11 Configuration={{ FO0:4; F1:3; P1:2; P2:2 }}

There are some deadlock states:

5 Deadlock: Id=4 Configuration={{ FO0:2; F1:1; P1:1; P2:1 }}

; Deadlock: Id=11 Configuration={{ F0:4; F1:3; P1:2; P2:2 }}

Deadlock: Id=8 Configuration={{ F0:4; F1:1; P1:1; P2:2 }}
Deadlock: Id=7 Configuration={{ F0:2; F1:3; P1:2; P2:1 }}

Listing 4.3: Output of Example 4.3.1

The behaviour of the four participants is shown in Figure 4.3. Running the tool
on this input produces the terminal output in Listing 4.3 and the corresponding
synchronous system in Figure 4.4. In the generated figure, the red state marks a
configuration where no further actions are possible, while the three yellow states
correspond to deadlocks, i.e. executions where both philosophers wait for each other
indefinitely. The terminal output also lists the precise configurations of these prob-
lematic states.
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Figure 4.3: SCM automata representation of the Example 4.3.1.

44



start

P2—F0:req \P1—F1:req

FO—P2:ack\P1—F1l:req/P2—F0:req \F1—P1:ack

© 4 (3
P2—F1:req Pl%Fl:req@PQ:ac&{l%Pl:aCk P2—F0:req Y1—F0:req
(2 ; 7 ()

1—P2:ack kt)Pl:ac 0—P2:ack 0—Pl:ack

P1—F1l:rel /P2—F1:rel

Figure 4.4: Synchronous Product of the Example 4.3.1.
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4.3.2 Example with a loop

Example 4.3.2. Now consider two processes A and B that exchange data. At
some point, each makes a nondeterministic choice: one branch continues sending
messages indefinitely, while the other leads to termination. Once the choice to
continue is taken, however, there is no way to return to the terminating branch.
As a result, the system may remain stuck in an infinite loop, never reaching a final
state. Although both processes remain active, the system is effectively deadlocked.

This system is RSC.

The system has the progress property.

There are some deadlock states:

Deadlock: Id=17 Configuration={{ A:1; B:4 }}

5 Deadlock: Id=15 Configuration={{ A:3; B:3 }}

Listing 4.4: Output of Example 4.3.2.

The behaviour of this system is shown in Figure 4.5. Executing the tool produces
the output in Listing 4.4 and the synchronous system in Figure 4.6. In the generated
figure, yellow states highlight the deadlocked executions, while the terminal output
provides the configuration of each detected deadlock.

Remark. If the system contains a loop with at least one possible way out, this
execution is still considered without a deadlock thanks to the fairness assumption.
Fairness ensures that the exit path will eventually be taken.
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Figure 4.5: SCM automata representation of the Example 4.3.2.
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Figure 4.6: Synchronous Product of the Loop Example 4.3.2
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Chapter 5

Related work

This chapter reviews related work on the realisability problem for global types, both
within the same theoretical framework and in closely related models. The idea
of using communicating automata for global types is already well established and
adopted in various frameworks. Our approach adopts an automata-based definition
of global types, which captures a set of MSCs parameterised by the desired commu-
nication semantics. This follows the line of research initiated in [20] and extended
in [22], which aims to establish a general framework for communication semantics.

We have already presented in this thesis the asynchronous (asy), peer-to-peer (p2p),
and synchronous (sync) communication semantics. Furthermore, [20] discusses ad-
ditional semantics, among which the causal order (co) and mailbox (mb) semantics
are particularly relevant. In the causal order model, messages are delivered ac-
cording to their causal dependencies: if m; causally precedes mqy, then m; must be
received first [39]. Causality, formalised by Lamport’s “happened-before” relation,
ensures consistent delivery order and can be implemented using logical clocks. In the
mailbox model, all messages sent to the same process, regardless of sender, must be
received in the order they were sent, effectively enforcing FIFO delivery per receiver.

[20] also introduces a hierarchy of communication semantics, illustrated in a slightly
modified form in Figure 5.1. The main objective of this work was to establish
a hierarchy that preserves monotonic properties: if a property holds for a given
communication semantic, it should also hold for all semantics contained within it.
However, it was shown that this monotonicity applies only to specific properties,
some of them are listed in [20]. In contrast, it does not generally extend to the
realisability problem, which is why we focused on this problem for specific semantics,
i.e. peer-to-peer and synchronous communication.
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p2p
CcO
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sync

Figure 5.1: Hierarchy of communication model semantics.

We then examine recent advances by Stutz et al. [52], who provide a comprehen-
sive automata-theoretic treatment of the realisability problem, and trace this line
of inquiry back to early results by Alur et al. [3] and Lohrey et al. [46]. Finally, we
consider formalisms related to Multiparty Session Types (MPST), such as Choreog-
raphy Automata [7], highlighting conceptual connections and key differences with
the approach developed in this thesis.

5.1 Realisability of MSCs and HMSCs

In this section, we compare our framework with one of the earliest and most influen-
tial works on realisability, the one of Alur et al. [5], which also inspired part of our
approach. Their notion of Weak Realisability captures the idea that a specification
of Message Sequence Charts (MSCs) should already include all behaviours that are
consistent with the local views of processes. Intuitively, a set of MSCs is weakly real-
isable when, for every process, the events it observes in any MSC of the specification
are compatible with those in some MSC already in the set. This closure condition
ensures that the global behaviour can be reconstructed from the projections of in-
dividual processes, so that every implied MSC is already part of the language. Our
own definition of weak realisability coincides with theirs, as it expresses the same
fidelity concept over the local behaviour and abstracts from any deadlock-related
concern. In both cases, weak realisability focuses on the alignment between local
and global behaviours rather than on safety properties such as deadlock-freedom.
For safe realisability, we recall an informal definition of Alur et al. [5] and discuss
the differences.

Intuitively, let L be a set of MSCs. Then L is said to be safely realisable if there
exists a family of communication automata (A4; | 1 < i < n) such that L = L(] [, 4:)
and the product automaton [[; A; is deadlock-free. In this setting, a deadlock state
is a configuration of the global system from which no accepting state can be reached.
This corresponds to a situation where all processes are waiting to receive mes-
sages that are no longer available in their communication buffers, preventing further
progress. Hence, a system is deadlock-free if no such state is reachable from its
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initial configuration. This notion captures the safety aspect of realisability by en-
suring that the system never reaches a globally stalled state during execution. This
definition of safe realisability corresponds to ours in p2p or synch.

The work of Alur et al. went on further, defining specific complexity classes for dif-
ferent kinds of assumptions. For finite sets of MSCs, weakly realisability is shown
to be coNP-complete and safe realisability is shown to be decidable in P-time. The
problem was subsequently studied for HMSCs. For bounded HMSCs, safe realisabil-
ity remains decidable, and it is EXPSPACE-complete, but weak realisability becomes
undecidable. For unbounded HMSCs, safe realisability remains decidable, and it is
EXPSPACE-complete, but weak realisability becomes undecidable [5]. Later, Lohrey et
al. [46] proved in the general case, with a technique that involves five processes, that
safe realisability is undecidable, though it is decidable (and EXPSPACE-complete)
for a specific kind of HMSCs, called globally-cooperative HMSCs, introducted in
[48]. Furthermore, in the context of weak realisability, Genest et al. [26] introduced
the notion of locally-cooperative HMSCs, for which implementability can be checked
in linear time. Since every globally-cooperative HMSC is also locally-cooperative,
verifying implementability for this broader class remains at least EXPSPACE-hard, if
it is decidable at all. Lohrey et al. [46] also considered another subclass of HMSC,
called Z-closed HMSC, whose checking of safe realisability is PSPACE-complete. Most
positive results assume other struttural restrictions, like bounded channels, but [10]
introduces a new class of loop-connected HMSCs that allows unbounded channels
while maintaining realisability. Table 5.1 summarises the results presented in this
section.

5.2 Session Types

Session Types provide a type-theoretic framework for specifying and verifying com-
munication protocols among multiple participants. They ensure that interactions
follow a predefined structure, preventing common concurrency errors such as dead-
locks, orphan messages, and unspecified receptions. Session types were first for-
malised as Binary Session Types [32], which capture structured communication
between two peers. The framework later evolved into Multiparty Session Types
(MPST) [33], extending the theory to interactions among multiple participants.
Over the years, session types have been integrated into several programming lan-
guages [6], including Rust [36, 13], Haskell [45], Erlang [49], and Ocaml [50] broaden-
ing their practical relevance beyond purely theoretical models. They have also found
applications across diverse domains such as operating systems [23], web services [55],
distributed algorithms [38], and smart contracts [17].

To sum up, the typical use of MPST involves defining a protocol through a global
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type, from which the local types of each participant are derived via a projection
operation. The system implementation, composed of communicating processes, is
then verified against these local specifications using a typing system, ensuring safe be-
haviour and additional properties such as deadlock-freedom. Figure 5.2 summarises
the main elements of this framework.

1. Global type

Projection

@ @ L¢ 2. Local type

Type checking

P Py P 3. Processes

Figure 5.2: Intuitive schema of MPST framework

5.2.1 Projectability

Projectability asks whether a global type can be faithfully projected into local spec-
ifications for each participant so that the resulting local types interact without
mismatches or unintended behaviours. It corresponds to the realisability problem
studied in automata-theoretic settings, both concern whether a global specification
admits a correct distributed implementation.

However, classical projection algorithms often reject natural yet safe protocols be-
cause of strong syntactic constraints designed to ensure safety. This gap between
expressiveness and implementability has motivated the search for more permissive
definitions. Notably, the algorithm of Castagna et al. [12] was the first to aim for
full completeness, balancing safety and expressiveness.

Realisability and Restrictions in MPST

Recent work connects MPST with automata-theoretic models such as High-level
Message Sequence Charts (HMSCs). Stutz and Zufferey demonstrated that realis-
ability is decidable for global types encoded as globally cooperative HMSCs [54, 51].
Li et al. [44] later introduced a complete projection operator ensuring correctness
for all implementable global types.
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In his thesis, Stutz [52] provides a comprehensive classification of the syntactic re-
strictions that govern both expressiveness and decidability in MPST. He generalises
the traditional notion of sender-driven choice to allow a sender to branch towards
different receivers, capturing common distributed patterns such as load balancing,
while keeping the implementability problem decidable in PSPACE. This establishes
the first tight complexity bound for the class of sender-driven global types and
confirms that they can be faithfully represented as HMSCs. Note that Stutz et al.
interpret deadlocks in the sense of our progress property, and additionally define soft
deadlocks for its model. The latter gives rise to the soft implementability problem.

A key syntactic dimension in MPST is how choice is handled when a branch of the
protocol is encountered, as this determines whether projection remains decidable.
The three main variants are:

e Directed choice: every branch shares the same sender—receiver pair, yielding a
single decision point. This ensures safety and straightforward projection but
severely limits expressiveness, as many distributed coordination patterns are

excluded [33].

e Sender-driven choice: each branch has a single sender, but receivers may differ
across branches. This generalisation captures richer interaction schemes while
retaining decidability; as mentioned, safe realisability for this fragment lies in
PSPACE [52].

e Mized choice: multiple senders may initiate branches concurrently, removing
a unique decision-maker. While this maximises expressiveness, it introduces
intrinsic nondeterminism in control flow, making implementability and its
weaker variants (e.g., soft or weak realisability) undecidable in general [52].

These results precisely delineate the boundary between expressiveness and decid-
ability in MPST. Stutz’s framework provides the first complete algorithmic account
of implementability for sender-driven global types and proves that no complete al-
gorithm can exist once mixed choice is permitted.

5.3 Choreographies

Choreographies [37] and Choreographic Programming [47, 28, 16] are other for-
malisms to describe distributed communication protocols. Choreographies empha-
size the global specification of interactions as a high-level description of the intended
message exchanges. Similarly to MPST, their goal is to ensure that a distributed
implementation can be derived in which each participant follows a local behaviour
consistent with the global description, called respectively local and global-view. This
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setting naturally connects to the realisability problem, since the key question is
whether a choreography can be faithfully implemented by a system of local pro-
cesses. In choreographies, the local-view is called End-Point Projection (EPP),
and it is derived via a projection operation from the global-view. In particular,
Choreography Automata [7] share many conceptual similarities with our notion of
global types. Both formalisms model global interaction structures through automata
over communication actions, capturing the causal dependencies among participants.
The main difference lies in the underlying semantics and the intended use: Chore-
ography Automata focus on synthesis and verification within choreographic frame-
works, while our global types are tailored to the study of realisability under different
communication semantics.

One important challenge studied in choreographic design is the knowledge of
choice problem [40, 12]. This problem can be seen as a specific instance of the
general projection problem: it arises when translating a global description into con-
sistent local behaviours. In particular, it captures the difficulty of maintaining
coherence when decisions made by one participant must be known by others.

Informally, a choreography has knowledge of choice if, whenever a branching (condi-
tional) decision is made by one participant, all other affected participants are made
aware of that decision. Without proper communication of the choice, a participant
may behave inconsistently because it lacks information to distinguish which branch
was taken. For example, if process A chooses between two branches that lead to
different sub-protocols with process B, then B must receive a signal (a “selection”)
that lets it synchronize on the correct continuation.

If the choreography lacks such a mechanism, it becomes unprojectable: EPP is not
allowed to generate local behaviours that coordinate the branching uncorrectly. This
issue is addressed, typically, by adding explicit selection messages to propagate the
choice, and how this can be automated via amendment or repair algorithms [41, 8],
which insert minimal extra communications to guarantee knowledge of choice.

Conceptually, this problem is closely related to the sender-driven choice policy high-
lighted before in the MPST framework, where multiple senders make independent
choices that must be reconciled to ensure a coherent global behaviour. In both cases,
the challenge lies in ensuring that all participants have sufficient knowledge to follow
the same branch, preserving consistency across local projections.

5.4 Other works

In his thesis [52], Stutz further investigate which syntactic and semantic restrictions
in global types are non-restrictive, that is, those that do not compromise expressive-
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ness while preserving decidability. Stutz et al. introduce Protocol State Machines
(PSMs) [53], a unifying automata-theoretic formalism that strictly generalises both
global types and HMSCs. This model captures interaction protocols as communi-
cating state machines over message-passing labels, bridging automata theory and
MPST. His results show that every sink-final ¥1-PSM can be represented as a non-
deterministic global type that preserves sender-driven or mixed-choice behaviour [52,
Thm. 8.14]. Later, Stutz et al. [53] extended this line of work, formalising PSMs
and analysing the computational complexity of type checking and realisability. They
demonstrate that, for choice-free or single-choice fragments, both problems remain
decidable (often in PTIME), whereas the introduction of mized choice renders re-
alisability undecidable. Together, these results reinforce the view that structural
constraints such as single recursion points or explicit termination are expressively
harmless, while the distinction between sender-driven and mized choice constitutes
the true boundary between decidability and undecidability in distributed protocol
implementations.

Another relevant contribution is by Guanciale et al. [29], who study the realisability
of pomsets via communicating automata. Pomsets, or partially ordered multisets,
generalise MSCs by capturing causal dependencies among events rather than total
orders. Their work defines realisability conditions ensuring both communication
correctness and termination soundness, supporting participants with internal con-
currency. Table 5.1 summarises the main results analised in the last sections. To our
knowledge, empty cells are to be considered open problems, like the safe realisability
problem for sender-driven HMSCs and PSMs.

5.5 Related Tools

Several verification tools have been developed to analyse communicating automata
and distributed systems under asynchronous or bounded communication semantics.

McScM [31] is the tool most closely related to RESCu. It takes as input a system
description and a set of bad configurations (expressed using Queue Decision Dia-
grams, QDDs, from [9]) and checks their reachability. The tool implements multiple
model-checking strategies based on abstract interpretation [15] and supports general
classes of communicating systems. In contrast to RESCU, most approaches in Mc-
ScM are semi-algorithms, requiring user-defined timeouts to terminate. However,
its strength lies in providing a diverse set of verification engines, which increases
the likelihood of obtaining conclusive verification results. Notably, RESCU reuses
the same input description language as McScM, ensuring compatibility and easing
system specification.
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Formal Model

Weak Realisability

Safe Realisability

Finite sets of MSCs | coNP-complete [5] P-time [5]
Unbounded HMSCs | Undecidable [46] Undecidable [46]
Bounded HMSCs | Undecidable [5] EXPSPACE-
(FIFO) complete [46]
Bounded HMSCs | Decidable [48] EXPSPACE-
(non-FIFO) complete [46]
Globally- - EXPSPACE-

Cooperative HMSCs

complete [48]

Locally-Cooperative
HMSCs

Linear time [26]

At most EXPSPACE-
complete [48]

Z-Closed HMSCs

PSPACE-complete [46]

Loop-connected
HMSCs (unbounded
channels)

Decidable [10]

MPST (directed | - Decidable, but incom-
choice) plete [33]

MPST (sender- | - PSPACE-complete [52]
driven choice)

MPST (mixed | Undecidable [52] Undecidable [52]
choice)

General PSMs

Undecidable [53]

Choreographic Pro-
gramming

Decidable [7]

o6

Table 5.1: Summary of computational complexity for weak and safe realisability across formal
models.

KMC [42] (for k-Multiparty Compatibility) was introduced by Lange and Yoshida
to verify whether a system could have been derived from a Multiparty Session Type
(MPST). If a system satisfies k-MC, several safety properties, such as freedom from
deadlock and orphan messages, are guaranteed automatically. Unlike RESCU and
McScM, KMC does not require the explicit specification of safety conditions but
relies on the theoretical guarantees of MPST projection.

The STAB-C tool [1, 2] implements semi-algorithms for checking k-stability, a prop-
erty that guarantees behavioural equivalence across different communication bounds.




A system is k-stable if, for any larger bound &’ > k, its behaviour remains equiva-
lent (under various notions of trace or observational equivalence). While STAB-C
focuses on detecting stability rather than verifying safety or liveness, it provides
important insight into boundedness and behavioural robustness of FIFO systems.
Unlike RESCU, which verifies multiple semantic properties such as deadlock-freedom
and progress, STAB-C focuses exclusively on membership in the class of k-stable
systems.
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Chapter 6

Conclusion

This work addressed the realisability problem for Global Types, a central concern
in the verification of distributed systems. After a brief overview of the problem,
we positioned our contribution within an ongoing research effort, bridging well-
established theoretical foundations with practical tool development.

On the theoretical side, we introduced the necessary background notions (i.e. CF-
SMs, Global Types, MSCs, and communication models) and formalised weak realis-
ability. The main contribution was to connect the realisability problem to classical
undecidability results, in particular through a reduction to the Relaxed Post Cor-
respondence Problem (RPCP). This result, presented in Chapter 3, establishes a
limitation of realisability under synchronous semantics and lays the groundwork for
exploring decidable subclasses and practical approximations.

On the practical side, detailed in Chapter 4, we improved and extended the RESCu
tool, used for checking realisability and other semantic properties of Symbolic Com-
municating Machines (SCMs). The input grammar was refined for greater usability,
and new verification routines were implemented, including checks for progress and
deadlock-freedom. The tool now also generates visual representations of synchronous
systems, along with illustrative examples. These extensions strengthen RESCU both
as a research prototype and as a practical aid for automated verification.

In Chapter 5, we analysed part of the state of the art on realisability, comparing
our definitions and results with existing approaches in the literature. This analysis
helped clarify how our formalisation of weak and safe realisability fits within, and
extends, previous frameworks, particularly those by Alur et al. [5], Lohrey et al. [46],
and Stutz et al. [52]. The comparison also highlighted key conceptual differences, es-
pecially in how communication semantics and closure properties are handled, further
motivating our formal treatment.
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6.1 Future Work

Future research directions include extending the theoretical results beyond weak
realisability toward a decidability result for safe realisability, therefore incorporating
properties such as deadlock-freedom directly into the analysis of global types. This
line of investigation will build upon the techniques developed in this work and extend
the existing results of Lohrey et al. [46].

Another important direction is the exploration of alternative communication se-
mantics, such as causal-order and mailbox-based models, which were mentioned
throughout this work. Investigating the realisability problem under these seman-
tics could shed light on how communication constraints and buffering behaviours
affect implementability and decidability. Establishing precise connections between
synchronous semantics and these more general models may also lead to new transfer
results, showing under which conditions realisability in one model implies realisabil-
ity in another.

On the practical side, a natural objective is to further enhance RESCU to support
these theoretical extensions, ultimately aiming for a complete and automated frame-
work to decide realisability for restricted classes of global types. This would enable
systematic benchmarking against existing tools and the validation of the approach
on real-world communication protocols.

Finally, it would be valuable to investigate the role of fairness and other semantic
variants, within the verification process. These extensions could help model more re-
alistic distributed environments and provide a deeper understanding of how fairness
assumptions influence the decidability and correctness of realisable systems.
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