
Scuola di Scienze

Corso di Laurea Magistrale in Informatica

Mechanized, Type-Based
Enforcement of Non-Interference

in Choreographic Languages

Relatore:
Saverio Giallorenzo

Correlatore:
Marco Peressotti

Presentata da:
Marco Bertoni

Sessione Ottobre 2025
Anno Accademico 2024/2025

The method of ‘postulating’ what we want has many advantages;

they are the same as the advantages of theft over honest toil.

Russel - 1919

Contents

1 Introduction 1

2 Background 5
2.1 Choreographies . 5

2.1.1 Processes . 5
2.1.2 Syntax . 6
2.1.3 Semantics . 7
2.1.4 Notes on expressivity . 12
2.1.5 Notes on small-step semantics 12

2.2 Information flow analysis . 12
2.3 Non-Interference . 14

2.3.1 Definition . 15
2.4 Lean Proof Assistant . 17

2.4.1 Underlying theory . 17
2.4.2 Lean features used in project 17

3 Enforcement of the Non-Interference Property in Choreographies 19
3.1 Definition of the flow-policy . 20
3.2 Intuitive presentation of the type-system 20

3.2.1 A motivating example for Program Counter labeling 20
3.2.2 Typing procedure calls . 21
3.2.3 Putting it all together . 21

3.3 Formal definition of the Type System 22
3.3.1 Judgment relation . 22
3.3.2 Typing Rules for Expressions 22
3.3.3 Typing Rules for Instructions 23
3.3.4 Typing Rules for Choreographies 24

4 Soundness of the Type System 25
4.1 Overall Statement and Proof Obligations 25
4.2 Instrumented Choreographies . 28

4.2.1 Syntax . 28

4.2.2 Lowering and Lifting of [Chor] 29

4.2.3 Low Equivalence of [Chor] . 30

4.2.4 Well-Formedness of [CStore] 31

4.2.5 Correctness of [CStore] . 31

4.2.6 Low Equivalence on [CStore] 32

4.2.7 Semantics . 32

4.2.8 Extension of the Type System 34

4.3 Auxiliary Lemmas . 35

4.3.1 Completeness Lemma . 35

4.3.2 Completeness of Type Extension 42

4.3.3 Preservation Lemma . 43

4.3.4 Unwinding Lemma . 44

4.4 Main Proof . 44

5 Construction of ∆ 47

5.1 Context Reconstruction Algorithm 47

5.1.1 Local Expression Reconstruction 48

5.1.2 Choreography Reconstruction 49

5.2 Proof of Well-Typedness . 50

5.2.1 Creating δ . 50

5.2.2 One step soundness . 51

5.2.3 Well-Typed δ . 53

5.3 Proof of pc Subsumption . 53

5.4 Termination . 54

5.5 Extension to Full Type Inference . 54

6 Lean mechanization 55

6.1 Naming Conventions . 55

6.2 Imported Definitions and Results . 55

6.2.1 Encoding of L . 55

6.2.2 Reference choreographies . 56

6.3 Project Structure . 56

6.4 Coverage of the Mechanization . 59

6.5 An Illustrative Example . 59

7 Conclusion 67

7.1 Extensions . 68

Appendices 71

Appendix A Proofs on Syntactic Transformations 73
A.1 Sequential Composition and ≀ · ≀ . 73
A.2 Process Substitution and ≀ · ≀ . 73
A.3 Store Update and ⌊·⌋ . 73
A.4 Process Substitution and ⌈·⌉ . 74

Appendix B Decomposition of Sequential Composition Execution 75
B.1 [Chor] Sequential Composition . 75
B.2 Chor Sequential Composition . 76

Appendix C Helper Lemmas for Constraint Reconstruction 77
C.1 Monotonicity of ϕC . 77
C.2 Rewriting η in cansolve . 77
C.3 Substitution in cansolve . 78

Chapter 1

Introduction

Distributed software can be seen as a set of communicating components that jointly
implement protocols such as authenticating a user, booking a ticket, or reconciling
a payment. At this scale, two concerns have to be considered: correct coordination
among participants and confidentiality of the data they manipulate. Choreographic
languages address the first concern by describing protocols from a global point of
view, from which compliant local behaviours can be derived [22]. This work tackles
the second concern: ensuring, by construction, that a choreography does not leak
secret information to public observers.

Motivating example: account recovery without username enumeration
We illustrate a tiny choreography for password recovery. We consider the existence
of an user to be sensitive information, which should not be leaked to the public. We
define three processes: the service s, the mailer m and the requester r. Any informa-
tion observable by the requester is considered public. The predicate exists(email)
(which reads: does an account with email email exist?) returns a sensitive datum.
We want to be able to differentiate between the two programs in Figure 1.1. In the
insecure choreography (left), the requester r first sends an email address to the ser-
vice s. Then s evaluates the sensitive predicate exists(email). If it holds, s forwards
the address to the mailer m and replies to r with the literal message email sent;
otherwise, it replies with unknown user. Since we fixed the public observer to be r,
the two executions are distinguishable at r by the content of s→ r, so an attacker
learns the secret bit exists(email) from a low observation. In the safe choreography
(right), s still branches on exists(email), but the branch only affects the internal
action toward m (either send the email or skip); the behavior visible to r is uniform,
as s always replies with check your inbox. Thus runs that differ only in the secret
predicate yield the same low observation at r, preventing username enumeration and
restoring non-interference with respect to the low-observer r.

1

Insecure variant

r.email -> s.email

if s.exists(email) then

s.email -> m.email

s." email sent" -> r.msg

else

s." unknown user" -> r.msg

Safe variant

r.email -> s.email

if s.exists(email) then

s.email -> m.email

else

skip

s."check your inbox" -> r.msg

Figure 1.1: Side-by-side comparison of the safe and insecure account recovery chore-
ographies.

Information flow security offers a principled way to reason about confidentiality.
Following Denning’s lattice model of security classes [11], to every piece of data is
assigned a security class ordered by a relation ⊑ over a security lattice L .

We focus on a property named non-interference [12]: intuitively, changes to data
at a chosen observation level low ∈ L must not affect what an attacker at level low
can observe. In conventional languages, non-interference is often enforced statically
by type systems that rule out both explicit flows (e.g. assigning a secret directly to a
public variable) and implicit flows (e.g. branching on a secret and thereby revealing
information through control flow) [32].

This thesis develops a mechanized, type-based enforcement of non-interference
for a core choreographic language with procedures, message-passing, selections, as-
signments, and conditionals. The enforcement is policy-parametric: given a user-
specified lattice of security classes and an observation level low, the type system
rejects any choreography in which high-security data could influence low-observable
behaviour. The typing judgement has the form

∆ ; Γ ; pc ⊢ C,

where Γ assigns security classes to program variables, pc ∈ L tracks the current
control level, and ∆ summarizes how procedures may be called safely at different
control levels. Typing is compositional on the structure of choreographies.

To obtain these results, two technical devices are key. First, we adopt a standard
program-counter discipline: the control level pc records the influence of secrets on
the current point of execution; once raised (e.g., by branching on a secret), it restricts
subsequent low-observable actions until control returns to a lower level. Second, to
support modular verification in the presence of recursive procedures, we introduce a
procedure context ∆ mapping each procedure and control level to a set of admissible
variable typings. Intuitively, ∆ captures the summary of how a procedure may be
used safely. We show how to construct such a ∆ from the procedure definitions by
generating and solving constraints, in the spirit of type reconstruction [27].

2

The enforcement target is a standard, small-step reference semantics for chore-
ographies. Following common practice in the information-flow literature [32], we
consider a termination-insensitive attacker: divergence itself is not deemed an ob-
servation. To state the main theorem conveniently, we pair the reference semantics
with a natural (big-step) judgement that tracks an entire execution. The main result
of the thesis is:

Soundness (Termination-Insensitive Non-Interference). If ∆; Γ;⊥ ⊢ C
and two initial stores are low-equivalent w.r.t. Γ, then the low-observable
outcomes of running C from those stores are indistinguishable to an
attacker at level low.

Soundness is proved by a standard progress and preservation [27] argument tailored
to choreographies; well-typedness ensures that:

• explicit flows respect the policy encoded by Γ;

• implicit flows are tracked so that no low-observable action depends on high
secrets;

• procedure calls are safe thanks to the invariants captured by ∆.

The main theorem is mechanized in the Lean proof assistant [10], building on
an existing Lean formalization of choreographies and standard libraries for order-
theoretic structures. Mechanization provides machine-checked assurance that the
informal intuitions above are realized precisely.

Contributions. Summarizing, the main results of this thesis include:

• A policy-parametric information-flow type system for choreographies, track-
ing both data and control via a program-counter discipline and supporting
recursion through a procedure context ∆.

• A soundness theorem stating that well-typed choreographies satisfy termination-
insensitive non-interference with respect to the reference semantics.

• A context reconstruction method that computes ∆ from procedure defini-
tions by constraint generation and solving, together with proofs of its well-
formedness properties.

• A Lean mechanization of the language, the type system, and the proofs, in-
tegrating with prior formalizations and Mathlib’s order-theoretic infrastruc-
ture [21].

3

Structure of the thesis. Chapter 2 introduces choreographies, recalls the essen-
tials of lattice-based information-flow control and non-interference, and summarizes
the Lean features used in the mechanization. Chapter 3 presents the language and
the type system, motivating each typing rule on representative constructs. Chapter
4 states and proves termination-insensitive non-interference for well-typed programs,
using a natural-semantics presentation to express the attacker’s observations. Chap-
ter 5 develops the construction of the procedure context ∆ and establish its required
properties. Chapter 6 documents the Lean mechanization, its organization, and the
connections to the pen-and-paper development. The appendices collect auxiliary
syntactic lemmas used throughout the proofs.

4

Chapter 2

Background

2.1 Choreographies

Unless otherwise indicated, all content in this chapter is derived from: Introduction
to Choreographies [22] by Fabrizio Montesi, updated with the errata corrige present
in Montesi’s website [23].

Choreographies are formal descriptions of the intended collaborative behavior of
processes in concurrent and distributed systems. They act as protocols that specify
how different components should interact to achieve a shared goal, such as authen-
ticating a user or completing a purchase online.
Although choreographies are written in a different style than traditional local pro-
grams, they execute like normal languages: through a sequence of transitions that
represent communication and computation steps. However, instead of capturing the
state of a single process, a choreography represents the global state of all partici-
pants involved, encompassing the joint execution and interactions that collectively
implement the protocol.

2.1.1 Processes

The cornerstone of the language will be the notion of process. Processes are inde-
pendent participants in a choreography; they can perform local computation and
interact with other processes by communicating with them. From the perspective
of computer systems, processes are abstract representations of computer programs
executed concurrently; each process possesses its own control state and memory.
In this work, processes are usually ranged over by p, q, r, s, . . . and the infinite set of
process names will be referred to as PName.

5

2.1.2 Syntax

We introduce the following language, called Recursive Choreographies and defined
by the following context-free grammar:

C ::= {Xi(p⃗i) = Ci}i∈I
C ::= I;C | 0
I ::= p.e → q.x | p → q[L] | p.x := e | if p.e then C1 else C2 | X(p⃗) | q : X(p⃗).C
e ::= v | x | f(e⃗)

Let us explain the grammatical entities introduced:

• C denotes the context of procedure definitions :
A set of procedure definitions is a (possibly empty) set of equations of the
form X(p⃗) = C, read procedure X has parameters p⃗ and body C, where
all procedure names are distinct. We call the parameters p⃗ of a procedure
definition the formal parameters of the procedure1.

• C denotes a choreography, which can either be a terminated choreography 0
(the choreography that prescribes no interactions) or the sequential composi-
tion of an instruction I and a continuation C
We denote with Chor the set of all entities generated by this non-terminal.

• I denotes an instruction, which can be one of the following:

– A communication p.e → q.x, where process p evaluates the expression
e locally and communicates the resulting value to process q which stores
it in its local variable x.

– A selection p → q[L]. Label selections are required for the correct
coordination of distributed branching, and solve a problem known as
knowledge of choice [6]. Since the discussion of this problem goes beyond
the scope of this work, we will just treat it as an arbitrary instruction of
the language.

– A local assignment p.x := e, where p evaluates expression e and stores
the resulting value in its variable x.

– A conditional if p.e then C1 else C2, which reads process p evaluates
expression e, and then the choreography proceeds as C1 if the result of the
evaluation is the value true, or as C2 otherwise. Thus, we now assume
that the set of possible values contains the Boolean value true. Given a

1The symbol p⃗ refers to the sequence p1, p2, . . . , pn, consisting of the individual components pi,
where n ∈ N is unspecified

6

conditional if p.e then C1 else C2, e is called the guard of the condi-
tional; and the two choreographies C1 and C2 are called the branches of
the conditional or, more precisely, C1 is the then-branch and C2 is the
else-branch.

– A procedure call X(p⃗), which reads run procedure X with the processes
p⃗. We call the processes p⃗ the arguments of the procedure call.

– A run time term X(p⃗).C, The key motivation behind the introduction
of run time terms is to correctly represent distributed recursion. They
syntactically denote the intermediate states originating from the inde-
pendent procedure calls executed by the processes participating in the
choreography. The discussion of this topic goes beyond the scope of this
work, we will just treat run time terms as arbitrary instruction of the
language.

• e denotes a local expression, which can take three forms:

– A constant value v. We write Val for the set of all possible values.

– A variable x. We write Var for the set of all possible variable names.

– A function call f(e⃗), where f is a function name and e⃗ are the arguments
of f . A function name f is a reference to a function that maps value tuples
to values. The idea is that these functions can be evaluated locally, in the
sense that processes compute their results without communicating with
other processes. For this reason, we call functions ranged over by f also
local functions.

We use Expr for the set of entities generated by e

2.1.3 Semantics

The interpretation for Choreographies is given as small-step operational semantics
[28], forming a Labeled Transition System (S,TLabel,

.−→).
S is the configuration space, TLabel represents the set of possible transition labels
and

.−→ represents the transition relation.

Configuration and Choreographic Store

The configurations have the form ⟨C,Σ,C ⟩. C and C were defined previously in
this document. Σ represents the choreographic store. Let us now define it.

A process store σ models the memory of a process, mapping variables to values.
Formally, a process store is a function from variables to values:

σ : Var −→ Val.

7

We write PStore for the set of all process stores. It will often be necessary to
update the content of a store, so we define a notation for that purpose. Namely, we
write σ[x 7→ v] for the update of store σ with the new mapping x 7→ v:

σ[y 7→ v](x) =

{
v if x = y

σ(x) otherwise.

A choreographic store (i.e., CStore) Σ models the memory state of an entire
system: it maps process names to their respective process stores. Formally,

Σ : PName −→ PStore.

We shall write Σ[p.x 7→ v] for the update of store Σ such that the local variable
x of process p is now mapped to v:

Σ[q.x 7→ v](p) =

{
Σ(p)[x 7→ v] if p = q

Σ(p) otherwise.

Store updates are left associative, that is:

Σ[p.x 7→ v][q.y 7→ u] = (Σ[p.x 7→ v])[q.y 7→ u].

We adopt extensional equality for both local and choreographic stores: two pro-
cess stores are deemed equal if they return the same value for each variable, and
two choreographic stores are considered equal if they return equal process stores for
each process.

Local Expression Evaluation

Given a PStore σ, expression e and value v, the notation σ ⊢ e ↓ v reads as e is
evaluated to the value v under the process store σ. It is defined as the least relation
derived by the following inference schema:

σ ⊢ v ↓ v σ ⊢ x ↓ σ(x)
σ ⊢ e1 ↓ v1 · · · σ ⊢ en ↓ vn ⊢ f(v1, . . . , vn) ↓ v

σ ⊢ f(e1, . . . , en) ↓ v

We do not specify a system for deriving propositions of the kind ⊢ f(v⃗) ↓ v, since it
is not important for our development: this system would depend on how functions
are defined, which we choose to abstract from. Instead, we will just assume that
such a system exists, and that for any f and v⃗, it is always possible to derive ⊢ f(v⃗)
for some v.

8

Transition Label

Given two different processes p, q, a selection label L and a value v, we defineTLabel
as the set of objects generated by the following grammar:

TLabel ::= τ@p | p.v → q | p → q[L] | p.then | p.else

Process Names of a Choreography

Before defining the transition relation, we need to define a few auxiliary operators.
The first one is the function pn, formalizing the concept of process names mentioned
in an entity.
We overload the pn name and define two different functions disjoint on their domain,
respectively on choreographies and transition labels. The one used at any given time
will be clear from the argument.

pn : Chor −→ 2PName

pn(0) ≜ ∅
pn(I;C) ≜ pn(I) ∪ pn(C)

pn(p.e → q.x) ≜ {p, q}
pn(p → q[L]) ≜ {p, q}
pn(p.x := e) ≜ {p}

pn(if p.e then C1 else C2) ≜ {p} ∪ pn(C1) ∪ pn(C2)

pn(X(p⃗)) ≜ {p⃗ }
pn(q : X(p⃗).C) ≜ {q}

pn : TLabel −→ 2PName

pn(τ@p) ≜ {p}
pn(p.v → q) ≜ {p, q}
pn(p → q[L]) ≜ {p, q}

pn(p.then) ≜ {p}
pn(p.else) ≜ {p}

9

Sequential Composition Operator

The operator is defined as follows, both on choreographies and instructions :

0 # C = C

(I;C ′) # C = (I # C); (C ′ # C)

I # C =

{
q : X(p⃗).(C ′ # C) if I = q : X(p⃗).C ′

I otherwise

Process substitution

The name substitution of a process p is defined as:

p[r/s] ≜

{
s if p = r

p otherwise

We can now define the name substitution for choreographies :

0[r/s] ≜ 0

(I;C)[r/s] ≜ (I[r/s]); (C[r/s])

(p.e → q.x)[r/s] ≜ (p[r/s].e) → (q[r/s]).x

(p → q[L])[r/s] ≜ (p[r/s]) → (q[r/s])[L]

(p.x := e)[r/s] ≜ (p[r/s]).x := e

(if p.e then C1 else C2) ≜ if (p[r/s]).e then (C1[r/s]) else (C2[r/s])

(X(p⃗)[r/s]) ≜ X(p⃗ [r/s])

(q : X(p⃗).C)[r/s] ≜ q[r/s] : X(p⃗ [r/s]).(C[r/s])

Transition Relation

At this point we have all the necessary machinery to define the transition relation
.−→ as the smallest relation derived by the following inference schemata:

Σ(p) ⊢ e ↓ v

⟨p.x := e;C,Σ,C ⟩ τ@p−−→ ⟨C,Σ[p.x 7→ v],C ⟩
local

Σ(p) ⊢ e ↓ v

⟨p.e → q.x;C,Σ,C ⟩ p.v→q−−−→ ⟨C,Σ[q.x 7→ v],C ⟩
com

10

⟨p → q[L];C,Σ,C ⟩ p→q[L]−−−−→ ⟨C,Σ,C ⟩
sel

Σ(p) ⊢ e ↓ true

⟨if p.e then C1 else C2;C,Σ,C ⟩ p.then−−−→ ⟨C1 # C,Σ,C ⟩
cond-then

Σ(p) ⊢ e ↓ v v ̸= true

⟨if p.e then C1 else C2;C,Σ,C ⟩ p.else−−−→ ⟨C2 # C,Σ,C ⟩
cond-else

X(q⃗) = C ∈ C p⃗ = p1, . . . , pn i ∈ [1, n]

⟨X(p⃗);C ′,Σ,C ⟩ τ@pi−−−→ ⟨p1 : X(p⃗).C ′; . . . ; pi−1 : X(p⃗).C ′; pi+1 : X(p⃗).C ′; . . . ; pn : X(p⃗).C ′;C[q⃗/p⃗] # C ′,Σ,C ⟩
call-first

⟨q : X(p⃗).C ′;C,Σ,C ⟩ τ@q−−→ ⟨C,Σ,C ⟩
call-enter

⟨C,Σ,C ⟩ µ−→ ⟨C ′,Σ′,C ⟩ pn(I) ∩ pn(µ) = ∅
⟨I;C,Σ,C ⟩ µ−→ ⟨I;C ′,Σ′,C ⟩

delay

⟨C1,Σ,C ⟩ µ−→ ⟨C ′
1,Σ

′,C ⟩ ⟨C2,Σ,C ⟩ µ−→ ⟨C ′
2,Σ

′,C ⟩ p /∈ pn(µ)

⟨if p.e then C1 else C2;C,Σ,C ⟩ µ−→ ⟨if p.e then C ′
1 else C ′

2;C,Σ
′,C ⟩

delay-cond

Let us now say a few words about these rules:

• LOCAL, COM, COND-THEN, COND-ELSE need no explanation.

• Rule CALL-FIRST, CALL-ENTER deal with running a procedure. The mo-
tivation behind the seemingly complicated rules goes beyond the scope of this
work and can be found in Montesi’s book [22]. The main intuition is the
following: processes are independent and can enter the procedure at any in-
terleaved order, but we need some syntactical marker in the choreography to
correctly coordinate distributed recursion. What needs to be noted is that
the rule CALL-FIRST looks up the procedure definition from the context,
performs processes substitutions to replace the formal parameters with the
arguments and inserts it into the continuation of the running choreography.
The rule CALL-ENTER removes one by one the runtime terms introduced by
CALL-FIRST.

• Rule DELAY captures in choreographies the notion that processes are inde-
pendent of each other.

• Rule DELAY-COND, models the concurrent execution of instructions that are
independent of a conditional, thus complementing DELAY.

11

Multi-step transitions For notational ease, we define · ↠ · as the transitive,
reflexive closure of · .−→ ·.

2.1.4 Notes on expressivity

The presented language can be shown to be Turing Complete [8]. For Turing-
complete languages, any nontrivial extensional (i.e., semantic) property of programs
is undecidable [29]. If a property depends only on the function computed by a
program and holds for some but not all computable functions, then there is no
algorithm that always decides whether an arbitrary program has that property.
The property we will consider in the main contribution of this work and which will
be introduced in the next chapter is semantic in this sense, so no complete decision
procedure exists in general.

2.1.5 Notes on small-step semantics

Because big-step semantics collapses the entire execution into a single relation be-
tween initial and final states, it inherently lacks the granularity required to represent
instruction-level reordering. Consequently, it is inapplicable to model out-of-order
execution: a feature that fundamentally relies on the scheduling and interleaving of
micro-steps.

2.2 Information flow analysis

In modern computing systems, the handling and protection of data is of critical
importance [16]. With the proliferation of interconnected systems, sensitive data
such as personal information, financial records, and classified communications is
constantly processed, transmitted, and stored [36]. Ensuring that this information
is handled securely and does not unintentionally or maliciously flow to unauthorized
entities is a major challenge in computer science and software engineering [36]. Infor-
mation Flow Analysis [11] is a set of techniques aimed at analyzing how information
propagates through a program or system, with the goal of identifying potential leaks
or violations of security policies.

In Denning’s formulation [11], secure information flow means that all data trans-
fers conform to a flow policy defined by a relation →, where A → B indicates that
information is permitted to flow from security class A to security class B. Se-
curity classes correspond to disjoint classes of information. They are intended to
encompass security classifications. Each object in the system is bound to a security
class.

Information flows can arise in two principal ways:

12

• Explicit flows occur when operations like assignment or message passing
directly transfer information from one location to another.

• Implicit flows occur when the control structure of the program (e.g., condi-
tionals or loops) induces a dependency between variables, such that the value
of one variable may be inferred from the control decisions influenced by an-
other, without any explicit data transfer. For example:

public = 1

if secret == 0:

public = 0

Listing 2.1: Example of implicit flow

This code creates an implicit flow from secret to public, even though public

is not explicitly assigned from secret.

Secure flow analysis of any system must capture both types of flows to ensure that
all data transfers respect the flow relation.

A central result of Denning’s work is the recognition of a lattice structure over
the flow relation. The lattice ensures that:

• Every pair of classes has a unique least upper bound (join ⊔) and greatest lower
bound (meet ⊓). If a value computed from multiple sources is assigned to a
target, then the composite class of the sources (computed using the least upper
bound operator) must be allowed to flow into the class of the target.

• Security of individual operations implies the security of sequences of opera-
tions, by transitivity of →.

Information Flow Analysis can be conducted using:

• Static analysis, which inspects code without executing it to verify that all
potential flows are secure.

• Dynamic analysis, which tracks actual flows during execution by tagging
and monitoring data.

• Hybrid approaches, which use static guarantees and insert run time checks
where necessary.

Denning’s Information Flow Analysis provides a formal framework for reasoning
about how data propagates through programs, enabling the development of tools and
techniques that can be evaluated against a mathematically grounded, lattice-based
policy structure.

13

Is information-flow control enough? Information-flow analysis, as usually for-
mulated at the language level, reasons about flows that are explicit in values and
implicit in control flow according to the operational semantics [30]. Side channels
(e.g., timing, termination, resource usage, cache effects, message sizes, or scheduler-
dependent behavior) [18] fall outside this view, unless the semantics and the attacker
observation model explicitly make them observable. Any security guarantee should
therefore be read relative to the chosen observation model. When side channels mat-
ter, they can be brought into scope by enriching the semantics with cost or timing
observables and adopting timing-/step-sensitive definitions [2].

2.3 Non-Interference

Denning’s work [11] is primarily concerned with the design and specification of
information flow policies rather than their enforcement in concrete programming
languages. Notably, the lattice model does not define how to formally relate a
program’s execution semantics to the flow policy. While the model is sound as a
representation of policy, it operates at an abstract level, and leaves open the question
of how to rigorously ensure that actual programs respect the intended information
flow restrictions.2

The notion of non-interference [12] provides a semantic formalization that ad-
dresses this limitation. Informally, non-interference requires that variations in high-
security (confidential) inputs must not influence low-security (observable) outputs
[32]. This condition captures the intuitive idea that secret data should not interfere
with what an external observer can learn from the behavior of a program. Impor-
tantly, non-interference can be defined with respect to the program’s operational
semantics, thereby allowing for formal soundness proofs of enforcement mechanisms
that guarantee compliance with the security policy [32].

In contrast, purely dynamic enforcement mechanisms such as run time monitors
are unable to detect certain classes of implicit information leaks [30]. Let us look
back at the example code in 2.1. Dynamic mechanisms typically monitor only the
path that is actually taken during execution. If this program is executed with
secret ̸= 0, the conditional branch is skipped and no assignment to public occurs.
A dynamic monitor observing this trace would see no operation involving public,
and thus incorrectly conclude that no illegal information flow has occurred3. An
attacker observing the final value of public still gains information: public, having
value 1, implies that the condition secret == 0 did not hold. That is, the attacker

2In the concluding section of her paper, Denning briefly surveys various enforcement mecha-
nisms, including compiler-based techniques and hardware support. However, this survey is based
on intuitive arguments rather than being a formal account.

3Unless monotonically increasing label creep [30] is accepted as result of the analysis.

14

can rule out one possible value for secret. While the leaked information may appear
small, it is nonetheless a violation of confidentiality.

This illustrates a fundamental shortcoming: dynamic enforcement cannot reason
about potential flows along branches not taken. Since information flow security
is a property of all possible executions [30] [11], such mechanisms are inherently
incomplete in capturing the full security implications of a program. In contrast,
static approaches can be equipped to reason about all program paths [32] and thus
offer a more precise and rigorous framework for enforcing confidentiality.

2.3.1 Definition

Let us consider a simple imperative programming language [34] with commands
such as assignments, sequencing, conditionals, and loops. A program state s is
typically modeled as a mapping from variables to values [34], that we will partition
into high and low components: s = ⟨sh, sl⟩, where sh contains high-security data
and sl contains low-security data.

The semantics of a program C is given [17] [26] by a function [[C]] : S → S⊥,
where S is the set of program states and S⊥ = S ∪ {⊥} includes a special element
⊥ representing non-termination.

Let s1 ≡L s2 denote that two states are low-equivalent i.e., they agree on all
low-security variables: sl1 = sl2.

Then, the formal definition of non-interference is [32] [12], for all s1, s2 ∈ S:

s1 ≡L s2 ⇒ [[C]](s1) ≈L [[C]](s2)

Here, ≈L denotes observational equivalence4 from the perspective of a low-security
observer. In a termination sensitive setting [14], this relation is defined as follows:

[[C]](s1) ≈L [[C]](s2) iff


[[C]](s1) = ⊥ and [[C]](s2) = ⊥,

or

[[C]](s1), [[C]](s2) ∈ S and [[C]](s1) ≡L [[C]](s2)

(2.1)

This definition ensures that, for any two initial states that agree on low-security
data, their respective executions are indistinguishable to an attacker who observes
only low-security outputs and can detect (non-)termination.

4This notion of observational equivalence can be naturally extended to account for additional
observables beyond final low-security state and termination behavior [30]. For instance, one may
define ≈L to reflect distinctions based on execution time (capturing timing channels), on the
sequence of outputs to public channels (capturing event traces), or on probabilistic distributions
over outputs (capturing probabilistic leakage).

15

Termination Sensitivity

When formalizing non-interference, a key consideration is whether termination be-
havior should be treated as an observable effect [14]. This leads to two distinct
variants of the property: termination sensitive non-interference and termination
insensitive non-interference.

Termination-sensitive non-interference requires that secret inputs cannot af-
fect either the final low-observable state or whether the program terminates [33].
Formally, in this setting, the observational equivalence relation ≈L is defined as
shown in 2.1. To illustrate why termination sensitive non-interference may be prefer-
able, consider the following program:

if secret == 0:

while True: pass

In this example, the secret variable influences whether the program terminates.
Specifically, if secret is zero, the program diverges, otherwise it terminates imme-
diately. Thus, an attacker who observes termination behavior can directly infer the
value of secret, revealing confidential information through the program’s termina-
tion. This scenario provides a strong rationale for adopting termination sensitive
non-interference in settings where termination or responsiveness is observable.

Termination-insensitive non-interference by contrast, assumes that non-ter-
mination is not observable by the attacker [12]. Under this weaker definition, the
observational equivalence relation ≈L only requires that whenever two executions
terminate, they yield indistinguishable low-observable states [32]:

[[C]](s1) ≈L [[C]](s2) iff [[C]](s1), [[C]](s2) ∈ S =⇒ [[C]](s1) ≡L [[C]](s2)

In this setting, divergences influenced by secret data are allowed.
The choice between these two definitions ultimately depends on the attacker

model assumed. Termination-sensitive non-interference provides stronger guaran-
tees and is well-suited for high-assurance scenarios in which termination behavior
is observable by the attacker. Termination-insensitive non-interference is weaker
but simplifies analysis and enforcement by eliminating the need to handle issues
related to termination or infinite loops, which is particularly important because
non-interference cannot be enforced in a sound and precise manner in the presence
of these behaviors [25].

16

2.4 Lean Proof Assistant

A proof assistant is an interactive system for developing machine-checked mathe-
matics. Mechanized proofs5 provide stronger assurance by forcing full formalization
and having a small trusted checker verify every inference, catching subtle gaps and
mistakes that pen-and-paper often miss. They also yield reproducible, maintainable,
and scalable artifacts (proof scripts) that anyone can re-run, audit, and extend with
automation, making it feasible to verify large, evolving systems [13]. These guaran-
tees are particularly useful for meta-theoretic results about programming languages,
where small omissions (e.g. missing cases in an induction) are common and subtle [4].

2.4.1 Underlying theory

Lean is based on a version of dependent type theory known as the Calculus of Con-
structions [7] (i.e. CoC), with a countable hierarchy of non-cumulative universes
and inductive types [3]. Dependent type theory is a powerful and expressive lan-
guage allowing you to express complex mathematical assertions.
Lean employs a cumulative hierarchy Type0 ⊂ Type1 ⊂ · · · (universe polymor-
phism) to avoid paradoxes while retaining expressivity [20]. Inductive types are the
general well-founded tree types (initial algebras of polynomial functors) that sub-
sume familiar datatypes like naturals, lists, and trees and justify their structural
recursion and induction principles [20].

Under the Curry-Howard correspondence, propositions are types and proofs are
programs inhabiting those types [15]. Using the Lean programming language we
are able to write proof-terms that inhabit arbitrary propositions, expressed in CoC,
by type-checking. An inhabited proposition is considered as true. This view of the
Curry-Howard correspondence gives us proof irrelevance, that is, two proof-terms
are considered equal if they construct the same type.

Proofs are usually written by the user in an higher-level, tactics language and
then compiled to proof-terms. As we said, we can view a term as a representation of
a construction or mathematical proof; tactics are commands, or instructions, that
describe how to build such a term. Soundness of the proof system ultimately rests on
a small trusted kernel : a compact type-checker that implements Lean’s dependent
type theory and accepts only well-typed proof-terms [10].

2.4.2 Lean features used in project

Pattern matching, recursion, and mutuality. Lean supports structural re-
cursion and induction; when definitions depend on each other (e.g. instructions and

5In this thesis, “mechanized” means that all the stated theorems have corresponding Lean
artifacts that type-check.

17

choreographies), we use mutual recursion/induction. This mirrors the mutual in-
ductive structure of the language and will reappear whenever we prove properties
by simultaneous induction on related syntactic categories.

Type classes and algebraic structure. Algebraic structure (orders, joins, bot-
tom) is provided via type classes. For the security lattice described in 2.3 we rely
on instances such as partial orders and lattice with a least element (⊥). Type-class
resolution lets us write generic lemmas that work for any instance of these interfaces
(e.g. monotonicity of joins, distributivity properties actually used in typing).

Finite collections and decidability. We use Finset to represent finite sets
(e.g. sets of process names). Membership and set operations are computable; many
lemmas require decidable equality on elements. This setup simplifies counting ar-
guments, case splits over finite supports, and proofs that manipulate environments
whose keys form finite domains.

Proof automation. In Lean, simp is the simplifier tactic: it repeatedly rewrites
goals and hypotheses using a curated set of rewrite lemmas. It is best used to
normalize terms and discharge straightforward equalities and propositional reason-
ing. Moreover, aesop is a general-purpose proof search tactic that explores intro-
duction/elimination rules, constructors, and user-declared rules in a goal-directed,
saturation-style search [19]. Both are extensible, so registering domain-specific lem-
mas/rules can make common arguments essentially automatic.

18

Chapter 3

Enforcement of the
Non-Interference Property in
Choreographies

The main contribution of this thesis is the development of a mechanism to check the
compliance of a choreography against an user specified flow policy. As argued pre-
viously, it is advantageous to develop this system statically. A static type-system,
defined as a type judgment relation, is the natural vehicle to enforce non-interference
in choreographies because it turns a semantic security requirement into a syntactic
discipline that can be checked algorithmically, integrated into compilation, and com-
positional on the inductive structure of the program. Volpano, Smith, and Irvine [32]
established the standard soundness connection between such typing judgments and
non-interference, providing a proof-theoretic route to a semantic guarantee. In this
context, soundness is defined as follows. A type-system is considered sound if, for
any flow policy Π, every program that is well-typed under Π is semantically compli-
ant with Π; that is, it satisfies termination insensitive non-interference.

The following work is greatly inspired by previous standard techniques for defin-
ing and proving soundness of type judgments [24] [35], applied to the case of the
choreographic language defined in the previous chapter.

Roadmap. The remainder of this chapter is organized as follows: Section 3.1 for-
malizes the flow policy as a security lattice; Section 3.2 develops the main intuitions
that motivate the type system; and Section 3.3 presents the formal definition of the
type system.

19

3.1 Definition of the flow-policy

Security labels are elements of a complete lattice (L ,⊑) endowed with a bottom
element ⊥ such that every l ∈ L respects ⊥ ⊑ l. These labels capture Denning’s
notion of security classes where every object manipulated by the program has an
associated security class. We implement this by assigning a security label to every
variable of the program.

A process security labeling γ models the security class i.e., security label asso-
ciated with the variables accessed by a process. Formally, a process labeling is a
function from variables to security labels:

γ : Var −→ L

We write SecPLab for the set of all process security labelings. Similarly to what
we defined for choreographic stores, we define a choreographic security labeling Γ as
a map from process names to their respective process labeling. Formally,

Γ : PName −→ SecPLab.

We write SecCLab for the set of all choreographic security labelings.
In the non-interference framework, the flow-policy is fully specified by the secu-

rity labeling: we forbid any flow of information from an object (in this case, variable)
with an higher security associated label towards an object with a lower associated
label.1

3.2 Intuitive presentation of the type-system

3.2.1 A motivating example for Program Counter labeling

As we saw, to ensure non-interference, we need to consider both implicit and explicit
flows. Let us see some examples and build the intuition behind the type-system.

• Explicit flows: Let us try to build a type-system only concerned with veri-
fying explicit flows, trying to verify the following choreography:

p.x := y + z; p.x → q.x; 0

The system can be built by composing constraints on the security labels of the
variables, more precisely this program would follow the flow-policy Γ if:

Γ p.y ⊔ Γ p.z ⊑ Γ p.x

Γ p.y ⊑ Γ q.x
1The notion of higher and lower are defined naturally from the partial order relation ⊑.

20

• Implicit flows: Now, building from the previous example, let us introduce
an implicit flow of information:

if p.(a == 0) then p.x := 0; 0 else p.x := y + z; 0; p.x → q.x; 0

We need to consider a further element: the security label of the execution
context. In this particular case, the security label of the context depends on
the security label of p.a. We can, thus, update our constraints to:

Γ p.y ⊔ Γ p.z ⊔ Γ p.a ⊑ Γ p.x

Γ p.y ⊑ Γ q.x

We model this by keeping track of pc ∈ L in the assumption of the type
judgment.

3.2.2 Typing procedure calls

Most of the foundational work on non-interference [30] builds type-systems for a
while language, but we find ourselves having to develop one for a language supporting
recursive procedures.

For this goal, we introduce a procedure security context SecFunCtx

∆ : ProcName× L → 2SecCLab

such that, for every X, pc such that Γ ∈ ∆ X pc, then the body of X is well typed
under Γ and pc.

Further discussion on how to compute the context which carries this property
will follow in Chapter 5, as of now its existence will simply be assumed.

3.2.3 Putting it all together

We are now ready to define our type judgment relation:

• Local expressions are assigned a security label by taking the supremum of the
security labels of the occurring variables

• Instructions that modify the store (assign, send) use the check discussed pre-
viously (considering also the value of pc), so explicit and implicit flows are
handled uniformly.

• Conditionals lift pc with the guard’s security label on both branches, prevent-
ing leaks through control flow.

21

• Calls are verified against ∆, which lets us reason about recursion without
unrolling.

• Choreographies compose by conjunction: sequencing preserves well-typing if
each component does.

3.3 Formal definition of the Type System

3.3.1 Judgment relation

We use three typing judgments, one for every syntactic category used to define
choreographies. We will overload the ⊢ symbol. The relation used will be clear by
the context. The three relations are denoted as follows:

• Expressions Γ p ⊢ e : ℓ

• Instructions ∆;Γ; pc ⊢ I

• Choreographies ∆;Γ; pc ⊢ C

Where ℓ ∈ L

3.3.2 Typing Rules for Expressions

Expressions are always considered local and every local function is considered de-
terministic and total. Thus we define

· ⊢ · : · : SecPLab → Expr → L

As the smallest relation following the following inference schema:

Constant
γ ⊢ v : ⊥

Variable
γ ⊢ x : γ x

N-ary function

γ ⊢ e1 : ℓ1 · · · γ ⊢ en : ℓn ℓ′ = ⊔n
i=1ℓi

γ ⊢ f(e1, . . . , en) : ℓ
′

We assume primitive functions to be label-preserving and to not introduce any extra
leak of information. The typing rule thus assumes that functions do not introduce
additional sensitivity; the result is at least as sensitive as the arguments.

22

3.3.3 Typing Rules for Instructions

Assignment
Γ p ⊢ e : ℓ′ ℓ′ ⊔ pc ⊑ Γ p x

∆;Γ; pc ⊢ p.x := e

Communication
Γ p ⊢ e : ℓ′ ℓ′ ⊔ pc ⊑ Γ q x

∆;Γ; pc ⊢ p.e → q.x

We can see how communication is treated as an assignment between processes. This
requires as assumption that communication channels are private, i.e., no other party
outside of sender and receiver can read the content of the channel.

Selection and Runtime Call Term

∆;Γ; pc ⊢ p → q[L] and ∆; Γ; pc ⊢ X(p⃗).C

Both terms are administrative, carry no data, and do not influence information-flow.
We consider them as always well-typed.

Conditionals

Γ p ⊢ e : ℓ′ ∆;Γ; ℓ′ ⊔ pc ⊢ C1 ∆;Γ; ℓ′ ⊔ pc ⊢ C2

∆;Γ; pc ⊢ if p.e then C1 else C2

Procedure Calls
Γ′ ∈ ∆(X, pc) Γ[q⃗ 7→ p⃗] ≡{q⃗} Γ

′

∆;Γ; pc ⊢ X(p⃗)

Where q⃗ is the list of formal parameters of the procedure X in the context, and p⃗ is
the list of arguments applied to the procedure call.
Let us unpack the meaning of this rule. As we know from the definition of ∆, Γ′

will be a security context that well-types the body of X. Let us now focus on the
second antecedent of the rule by defining two new operators.

Context renaming Given lists of processes q⃗ = q1, . . . , qn and p⃗ = p1, . . . , pn
(always considered of equal length), we write Γ[q⃗ 7→ p⃗] for the environment obtained
from Γ by updating the context pointed by each pi to mirror the one pointed by qi.
Formally (in the scalar case):

Γ[q 7→ p] r ≜

{
Γ p if q = r

Γ r otherwise
(3.1)

23

Restricted equality For a finite set of processes S, write Γ ≡S Γ′ when Γ and
Γ′ agree on all variables of all processes in S. Formally, considering extensional
equality between maps:

Γ ≡S Γ′ ≜ ∀r ∈ S, Γ r = Γ′ r

Given these two definitions, we can explain the meaning of the second antecedent
as follows. For every process qi in the formal parameters, then Γ′ qi is the same as
Γ pi, with pi as the process in the arguments corresponding to qi.

2

3.3.4 Typing Rules for Choreographies

The type-system composes on the instructions making up a choreography.

Sequencing
∆;Γ; pc ⊢ I ∆;Γ; pc ⊢ C

∆;Γ; pc ⊢ I ; C

Empty Choreography
∆;Γ; pc ⊢ 0

2The rule could be less strict: we could only consider single variables restriction instead of
process-level equality. The choice of using process equality was made to not over-complicate the
definitions and the proof to follow.

24

Chapter 4

Soundness of the Type System

For the type-system to be interesting, we need to prove its soundness with respect
to termination insensitive non-interference against the reference semantics.

4.1 Overall Statement and Proof Obligations

Fix a public observation level low ∈ L . Recall that [[C]] : S → S⊥ is the (par-
tial) denotational semantics of choreographies into states S extended with ⊥ (non-
termination), that s1 ≡Γ

low s2 means the two states agree on all variables labeled
⊑ low in Γ.

The soundness theorem states that well-typed programs satisfy termination in-
sensitive non-interference:

∆; Γ;⊥ ⊢ C =⇒ ∀s1, s2 ∈ S. s1 ≡Γ
low s2 ⇒ [[C]](s1) ≈? [[C]](s2).

To fully specify this theorem, we need to define an equivalence relation that encodes
the concept of low-equivalence under termination insensitive non-interference. To
join this need with the semantics presented in 2.1, we introduce a natural semantics
[17] for choreographies. We define a relation:

⟨C,Σ,C ⟩ ⇓M Σ′ (4.1)

Where:

• C ∈ Chor: Choreography

• Σ,Σ′ ∈ S: Choreographic store

• C : Procedure context

25

• M ∈ List TLabel: sequence of zero or more TLabel. We will use list nota-
tion standard to functional programming languages.

defined as the smallest relation following the following schema:

⟨0,Σ,C ⟩ ⇓[] Σ
⟨C,Σ,C ⟩ µ−→ ⟨C ′,Σ′,C ⟩ ⟨C ′,Σ′,C ⟩ ⇓M Σ′′

⟨C,Σ,C ⟩ ⇓µ::M Σ′′

We can, thus, now state the termination insensitive non-interference theorem as
follows:

∆; Γ;⊥ ⊢ C ⇒ Σ1 ≡Γ
low Σ2

⇒ ⟨C,Σ1,C ⟩ ⇓M1 Σ′
1 ⇒ ⟨C,Σ2,C ⟩ ⇓M2 Σ′

2

⇒ Σ′
1 ≡Γ

low Σ′
2

(4.2)

To justify this statement, we rely on a small set of proof obligations that connect
typing, expression evaluation, and the operational/denotational semantics. Each
obligation is stated formally and followed by a short explanation of the intuition
behind it.

Properties of procedure context

The main intuition behind the introduction of ∆ for typing procedure calls was
explained previously.

Context subsumption We say that ∆ satisfies context subsumption if lowering
the control level always maintains typing:

Γ ∈ ∆ X pc ∧ pc′ ⊑ pc =⇒ Γ ∈ ∆ X pc′ (4.3)

Typing a call to X that is valid under a more restrictive (higher) control pc must
remain valid when the analysis proves that control has become more public. This is
used in the soundness proof whenever we lower the current program counter along
a derivation (e.g., after leaving a high guard).

Well-formed procedure context We say that the procedure context C is well
formed if every procedure lists all the participants that actually appear in its body.
Formally, for every definition X(p⃗) = C ∈ C ,

pn(C) ⊆ {p⃗}. (4.4)

This property ensures that the interface X(p⃗) exposes exactly the processes that
C may mention, preventing references to undeclared processes and simplifying the

26

typing of calls. In addition to this, this notion of well-formedness for the procedure
context is a less stringent version of the notion given by Montesi’s book [22]. The
other properties needed for a context to be well-formed go beyond the scope of this
thesis, thus we will omit them.

Well-typed security procedure context We require the typing context ∆ to be
consistent with the declaration context C : every declared procedure must typecheck
under every security environment that ∆ admits for it (at any program counter).
Formally, for every clause X(p⃗) = C ∈ C and every pc ∈ L ,

∆ X pc = G =⇒ ∀Γ ∈ G. ∆;Γ; pc ⊢ C (4.5)

Here G is the set of admissible security environments for the body C at program
counter pc. It is allowed that, for some X and pc, the lookup yields an empty set
of admissible environments, i.e., ∆(X, pc) = ∅. In that case, no Γ can satisfy the
side condition Γ ∈ G in the typing rule for calls to X, so any call to X at that pc is
untypable: the derivation stops at the ∆-lookup premise. Intuitively, this expresses
that X cannot be used at program counter pc.

Freshness of formal parameters. We assume a Barendregt-style convention for
procedure parameters [5]: in the procedure-definition context C , all formal param-
eters are chosen sufficiently fresh. Concretely, for every clause X(p⃗) = C ∈ C :

1. the names in {p⃗} are pairwise distinct;

2. for every other choreography C ′ s.t. C ̸= C ′, the parameters {p⃗} do not clash
with the process names that occur in C ′:

{p⃗} ∩ pn(C ′) = ∅.

Intuitively, parameters bind the process names used inside C; by choosing them
distinct and disjoint from the names mentioned elsewhere we avoid spurious name
capture when instantiating X with actual participants (e.g., at call sites or during
inlining). We will use α-renaming implicitly to maintain this invariant.

Properties of expressions

The semantics referenced [22] is mostly underspecified when dealing with local ex-
pressions, with no indication on how to evaluate them in the general case. We wish
to keep as close as possible to the reference, thus, we abstain from specifying a
concrete semantics. We will limit ourselves to constraining local evaluation to being
deterministic. Formally, given a process store σ, expression e, and two values v1, v2:

σ ⊢ e ↓ v1 ⇒ σ ⊢ e ↓ v2 ⇒ v1 = v2

27

We assume this to prevent guards and right-hand sides from introducing spurious
non-determinism that a low observer could notice.

4.2 Instrumented Choreographies

A natural strategy to prove the main theorem stated in (4.2) is to use induction on
the length of the computation. Unfortunately, this approach is not sufficient: given
the small-step nature of the semantics we need to carry over some information
from previous execution states. More concretely, given a flow policy, the same
configuration state could be non-interferent or not depending on previous states in
the computation. Let us see an example:

if p.(a == 0) then p.x := 0; 0 else p.x := y + z; 0; 0

We know that this choreography follows non-interference for some flow-policy. Let
us denote the choreography with C. Given a C and Σ1,Σ2 such that Σ1 p.a =
0,Σ2 p.a = 1 then we have the following transitions:

⟨C,Σ1,C ⟩ τ@p−−→ ⟨p.x := 0; 0,Σ1,C ⟩

⟨C,Σ2,C ⟩ τ@p−−→ ⟨p.x := y + z; 0,Σ2,C ⟩

Clearly,
p.x := 0; 0 ̸= p.x := y + z; 0

thus the induction hypothesis could not be used. To solve this, we need a way to
be able to differentiate when choreographies are able to be different and when they
are not.

We do this by introducing brackets around code able to differ.

Intuition: Given a fixed element low in L , we consider anything inside brackets
as being not observable by a participant of level l ⊑ low. We call this participant a
low-observer.

4.2.1 Syntax

We instrument choreographies with brackets to mark code fragments that are allowed
to differ across alternative executions. The syntax of (instrumented) choreographies
is given below; expressions are left abstract.

28

p, q ∈ Pid (process names)

x ∈ Var (local variables)

X ∈ ProcName (procedure names)

L ∈ Label (selection labels)

e ∈ Expr (expressions)

Choreographies:

C ∈ [Chor] ::= 0 (termination)
| C1 ; C2 (sequencing)
| [C] (bracketed fragment)
| p.x := e (assignment)
| p.e → q.x (communication)
| if p.e then C1 else C2 (conditional at p)
| X(p⃗) (procedure call with participants)

We note that [Chor] differs from Chor on a few key points.

• Flattening of instructions and choreographies: We want to be able to put inside
the brackets a sequence of instructions of arbitrary length (possibly zero), thus
we want to be able to denote as different terms, for example, [0] and 0.

• Removal of the runtime term and label selection instructions: This is not
necessary but it simplifies the soundness proof. Its justification is that both
instructions have no impact on the final computed stores and are needed by
choreographies to deal with projection [22], which goes beyond the scope of
this thesis.

4.2.2 Lowering and Lifting of [Chor]

We introduce an operator ⌊·⌋ : [Chor] → Chor that removes the instrumentation
from a choreography. The operator is defined by recursion on the structure of C:

⌊0⌋ ≜ 0

⌊C1 ; C2⌋ ≜ ⌊C1⌋ # ⌊C2⌋
⌊[C]⌋ ≜ ⌊C⌋

⌊p.x := e⌋ ≜ p.x := e;0

⌊p.e → q.x⌋ ≜ p.e → q.x;0

⌊if p.e then C1 else C2⌋ ≜ if p.e then ⌊C1⌋ else ⌊C2⌋;0
⌊X(p⃗)⌋ ≜ X(p⃗);0

29

We also define an operator ⌈·⌉ that turns a Chor into the corresponding [Chor] by
copying its shape.

We note that not every Chor is in the domain of ⌈·⌉. As a demonstrating
example, let us consider:

⌈p → q[L];0⌉

We would not know how to create an equivalent term in [Chor]. This problem will
be properly addressed in 4.3.1. For now, we will just define ⌈·⌉ as being the inverse
of lowering, defined by the following equation:

C = ⌊⌈C⌉⌋ (4.6)

Both lowering and lifting are defined also on procedure context, as follows:

⌊C ⌋ ≜ {X(p⃗) = ⌊C⌋ | X(p⃗) = C ∈ C }
⌈C ⌉ ≜ {X(p⃗) = ⌈C⌉ | X(p⃗) = C ∈ C }

4.2.3 Low Equivalence of [Chor]

We write C1 ≈low C2 to denote low–equivalence between choreographies. Intuitively,
≈low compares choreographies structurally, but forgets the contents of bracketed frag-
ments : any two bracketed subterms are considered equivalent, independently of what
they contain.
Formally, ≈low is the least relation on [Chor] closed under the following rules:

C1 ≈low C2 C ′
1 ≈low C ′

2

C1 ; C
′
1 ≈low C2 ; C

′
2

[C1] ≈low [C2]

p = p′ e = e′ C11 ≈low C21 C12 ≈low C22

if p.e then C11 else C12 ≈low if p′.e′ then C21 else C22

For all the remaining constructors, low–equivalence coincides with syntactic equality
(shape and parameters must match). Concretely:

0 ≈low 0, p.x := e ≈low p.x := e, p.e → q.x ≈low p.e → q.x,

X(p⃗) ≈low X(p⃗)

By construction, ≈low is an equivalence relation for sequencing and conditionals;
its only non-syntactic identification is the equation of bracketed fragments.

30

4.2.4 Well-Formedness of [CStore]

Before being able to present the instrumented semantics, we need to instrument the
CStore to encode the same notion of value not observable by a low-observer.

We do this by extending the previous definitions, we introduce a difference be-
tween a value and a high-value (i.e., bracketed value).

[CStore] : PName → [PStore]

[PStore] : Var → [Val]

[Val] : Val | [Val]

We then say that a [CStore] [Σ] is well formed with respect to a Γ (i.e., Γ ⊢ [Σ])
when the following property is satisfied for all p, x, v:

[Σ] p x = [v] ⇐⇒ Γ p x ̸⊑ low

Thus, encoding with ⊑ the notion of observability : a ̸⊑ low means that low can not
see the value of a

The extension of well-formedness to [PStore] is natural.
As we did for choreographies, we define a lifting function ⌈·⌉Γ for CStore. The

main difference is that the lifting function will maintain well-formedness of the
created [CStore] with respect to Γ. That is, it will choose bracketing of values
depending on the security label in Γ of the associated variables.

4.2.5 Correctness of [CStore]

We define a function ⌊·⌋ polimorfically on [Val], [PStore], and [CStore]. This
function lowers the bracketed object to its reference counterpart. Formally, given a
[Val] object ν

ν 7→

{
v if ν = [v]

v if ν = v

From now on, every occurrence of v has to be considered as either a Val object or
a [Val] object which is not bracketed. Every occurrence of [v] is a bracketed [Val].
We will use ν when it is not specified whether the object is bracketed or not.
We extend the lowering function to PStore and CStore by applying it to every
stored value.

We say that a [CStore] [Σ] is correct with respect to Σ when

⌊[Σ]⌋ = Σ

The extension of correctness to [PStore] is natural.

31

4.2.6 Low Equivalence on [CStore]

We define a notion of low-equivalence on [Val]: Given ν1,ν2 then

ν1 ≈low ν2 iff


ν1 = v1 and ν2 = v2 and v1 = v2

or

ν1 = [v1] and ν2 = [v2]

(4.7)

We extend the previous notion of low-equivalence between stores to exploit the
bracket notation. Formally given [Σ1], [Σ2], then [Σ1] ≈low [Σ2] if, for every p, x,
then

[Σ1] p x ≈low [Σ2] p x

The extension of low-equivalence to [PStore] is natural.

4.2.7 Semantics

We fix an observation level low ∈ L and a choreographic security labeling Γ. We
define the new small-step operational semantics as:

⟨C, [Σ],C ⟩ → ⟨C ′, [Σ]′,C ⟩

Assignments

[Σ] p ⊢ e ↓ v Γ p x ̸⊑ low

⟨p.x := e, [Σ], C ⟩ → ⟨0, [Σ][p.x 7→ [v]], C ⟩

[Σ] p ⊢ e ↓ [v]

⟨p.x := e, [Σ], C ⟩ → ⟨0, [Σ][p.x 7→ [v]], C ⟩

[Σ] p ⊢ e ↓ v Γ p x ⊑ low

⟨p.x := e, [Σ], C ⟩ → ⟨0, [Σ][p.x 7→ v], C ⟩

Communications

[Σ] p ⊢ e ↓ v Γ q x ̸⊑ low

⟨p.e → q.x, [Σ], C ⟩ → ⟨0, [Σ][q.x 7→ [v]], C ⟩

[Σ] p ⊢ e ↓ [v]

⟨p.e → q.x, [Σ], C ⟩ → ⟨0, [Σ][q.x 7→ [v]], C ⟩

[Σ] p ⊢ e ↓ v Γ q x ⊑ low

⟨p.e → q.x, [Σ], C ⟩ → ⟨0, [Σ][q.x 7→ v], C ⟩

32

Intuitively, these instrumented semantics for assignment and communication are
needed to preserve the well-formedness invariant of CStore. Let us look at the
assignment rules, since the communication ones follow similarly:

• If the destination cell is not low-observable (Γ p x ̸⊑ low), we always store a
bracketed value: [Σ][p.x 7→ [v]]. This preserves the invariant that [Σ] p x is
bracketed exactly when Γ p x is not observable at low.

• If the expression already evaluates to a bracketed value [v], we propagate the
bracket on write. This never un-brackets high information and thus cannot
violate well-formedness (by soundness with respect to explicit flow well-typed
programs will not allow storing [v] into a low-labeled location).

• If the destination is low-observable (Γ p x ⊑ low) and the expression evaluates
to an un-bracketed v, we update with v (no brackets). This prevents spurious
brackets in low cells and maintains that only non-low-observable locations
carry bracketed values.

Conditionals

[Σ] p ⊢ e ↓ [true]

⟨if p.e then C1 else C2, [Σ], C ⟩ → ⟨[C1], [Σ], C ⟩

[Σ] p ⊢ e ↓ true

⟨if p.e then C1 else C2, [Σ], C ⟩ → ⟨C1, [Σ], C ⟩

[Σ] p ⊢ e ↓ [v] v ̸= true

⟨if p.e then C1 else C2, [Σ], C ⟩ → ⟨[C2], [Σ], C ⟩

[Σ] p ⊢ e ↓ v v ̸= true

⟨if p.e then C1 else C2, [Σ], C ⟩ → ⟨C2, [Σ], C ⟩

Intuitively, the bracketed rules capture the dependency of control flow on in-
formation not observable at low. If the guard reduces under [Σ] to a bracketed
truth value, then the selected continuation is executed in bracketed form [Ci]: this
explicitly records that the branch choice depends on data above low and, via the
assignment and communication rules, forces all subsequent effects to remain brack-
eted and thus invisible at low. Dually, when the guard evaluates to an un-bracketed
boolean, the choice is already determined at low, so the corresponding un-bracketed
continuation Ci proceeds normally.
High-step

⟨C, [Σ], C ⟩ → ⟨C ′, [Σ]′, C ⟩
⟨[C], [Σ], C ⟩ → ⟨[C ′], [Σ]′, C ⟩ ⟨[0], [Σ], C ⟩ → ⟨0, [Σ], C ⟩

33

Sequencing

⟨C1, [Σ], C ⟩ → ⟨C ′
1, [Σ]′, C ⟩

⟨C1 ; C2, [Σ], C ⟩ → ⟨C ′
1 ; C2, [Σ]′, C ⟩ ⟨0 ; C, [Σ], C ⟩ → ⟨C, [Σ], C ⟩

Procedure calls

X(q⃗) = C ∈ C

⟨X(p⃗), [Σ], C ⟩ → ⟨C[q⃗/p⃗], [Σ], C ⟩

Multi-step transitions For notational ease, we define · ↠ · as the transitive,
reflexive closure of · → ·.

Local expression evaluation Expression evaluation is a natural extension to
the one presented in the reference semantics. The only aspect which needs careful
consideration is the extension to [Val] of ⊢ f(v⃗) ↓ ν. The extension carries brackets
from the arguments of the function to its returned values, that is: given a function

f : Val∗ → Val

we define a lifted [f] s.t. for every ν⃗, v⃗ s.t. ⌊ν⃗⌋ = v⃗ then ⌊f(ν⃗)⌋ = f(v⃗) and, if is
exists vi,νi s.t. νi ∈ ν⃗ ∧ νi = [vi] then, there exists v s.t. [f](ν⃗) = [v].

This makes our evaluation relation correct with respect to the reference (proved
by simple structural induction). In this context, we define correctness as returning
an object that, once lowered, it agrees with the reference implementation.
Formally:

⌊[σ]⌋ ⊢ e ↓ v ⇔ ([σ] ⊢ e ↓ ν ∧ ⌊ν⌋ = v) (4.8)

It is to be noted that this property, combined with assuming the reference eval-
uation as deterministic, makes local expression evaluation for the instrumented se-
mantics deterministic aswell.

4.2.8 Extension of the Type System

Most of the type system for [Chor] carries over from the one for Chor, with a new
rule to type bracketed choreographies :

∆; Γ; ℓ′ ⊢ C pc ⊑ ℓ′ ℓ′ ̸⊑ low

∆;Γ; pc ⊢ [C]

This rule makes sure that the content of C can be typed as high, ensured by the
first and last premise.
The second premise enforces that the label attached to the difference, ℓ′, dominates
the ambient program counter. In this way all influences of the current control flow,
the implicit flows tracked by pc, are subsumed by the bracket’s label ℓ′.

34

4.3 Auxiliary Lemmas

To be able to prove the main non-interference theorem as defined in 4.2, we will
firstly assume a few auxiliary lemmas. Since the majority of the proof approach is
taken directly from [24], we will abstain from reproducing them in this work when
sufficiently similar.

4.3.1 Completeness Lemma

Completeness is stated as follows:
For each

⟨C,Σ,C ⟩ ⇓M Σ′

There exists [Σ]′ such that:

⟨⌈≀C≀⌉, ⌈Σ⌉Γ, ⌈C ⌉⟩ ⇓ [Σ]′ ∧ ⌊[Σ]′⌋ = Σ′ (4.9)

The operator ≀ · ≀ will transform C into the subset of Chor for which ⌈·⌉ is well-
defined. Part of the completeness proof will be showing that the operator has no
influence on the natural semantics.

Since Chor and [Chor] have multiple small but significant differences, we pro-
ceed the completeness proof by composing consecutive steps.

Removal of Non-determinism in the Semantics

We can easily verify how the semantics given in 2.1 is non-deterministic (i.e., out-
of-order): given the same configuration it can admit multiple, different, execution
steps. It is also to be noted that the instrumented semantics is defined as fully
deterministic: any configuration that admits an execution step admits just one.

The first step to reach completeness is to prove that this non-determinism can be
discarded. This goal is achieved by considering a semantics for choreography where
the rules DELAY, DELAY-COND are omitted and where the rule CALL-FIRST
has the following form:

X(q⃗) = C ∈ C p⃗ = p1, . . . , pn

⟨X(p⃗);C ′,Σ,C ⟩ τ@p1−−−→ ⟨p2 : X(p⃗).C ′; . . . ; pn : X(p⃗).C ′;C[q⃗/p⃗] # C ′,Σ,C ⟩
call-first

It is to be noted how the new CALL-FIRST is a special case of the previous one.
This leads us to see how deterministic transitions are a subset of the transitions
admitted in the reference semantics.

35

The proof of completeness of the deterministic semantics follows from the work
from Cruz-Filipe, Montesi, and Peressotti [9]1 which proves some important prop-
erties of the semantics, those being:

• deadlock freedom: Any choreography that is not 0 can execute.

• diamond property: Any two distinct one-step reductions from the same state
are reconcilable: there exist further reductions from each successor that lead
to an identical state.

• convergence: Any two executions of a choreography that end in a terminated
choreography must finish in the same state.

C

C2

C ′
2

C1

C ′
1

C ′

µ2µ1

µ1
µ2

M

M
µ1

Using the previously stated properties, we proceed
by a graphical proof: C is able to do a step in the
reference semantics and reach a C1 configuration,
while in the deterministic semantics (denoted with
the crossed arrow) C reaches a different C2. By the
diamond property, there is a µ1 from C2 to C ′

1 (de-
picted as a dashed arrow). Since we can compose
diamonds, we can repeat this step the zero or more
times necessary to wait for µ1 to be deterministic.
Moreover no maximal computation can end with a
non-deterministic transition (which is a trivial corol-
lary of deadlock freedom) which gives us the existence of this transition. Thus,
assuming the computation from C as terminating in the reference semantics, it is
always reachable a common configuration C ′ from both C1 and C2 using the deter-
ministic semantics.
It is easy to see, by cases on the reference semantics, how, if from C there are no
two different one-step reachable C1, C2, then the transition is in the deterministic
subset.

The new semantics is deterministic as defined above: any configuration that
admits an execution step admits just one, completely specified by the first instruction
of the choreography. From now on, the deterministic semantics will be the semantics
considered for Chor.

Removal of Irrelevant Terms

We want to prove that terms not present in the image of ⌊·⌋ are not relevant to
natural semantics, making us able to use freely the ⌈·⌉ operator. We introduce the

1The language and semantics defined in the paper have some trivial differences, yet it is easy
to see how the proofs presented there can be carried over to the language and semantics used in
this thesis.

36

operator ≀C≀ defined by structural recursion on C as follows:

≀ 0 ≀ ≜ 0

≀ p.e → q.x; C ′ ≀ ≜ p.e → q.x; ≀C ′≀
≀ p → q[L]; C ′ ≀ ≜ ≀C ′≀
≀ p.x := e; C ′ ≀ ≜ p.x := e; ≀C ′≀

≀ if p.e then C1 else C2; C ′ ≀ ≜ if p.e then ≀ C1 ≀ else ≀ C2≀; ≀C ′≀
≀ X(p⃗); C ′ ≀ ≜ X(p⃗); ≀C ′≀

≀ q : X(p⃗).C; C ′ ≀ ≜ ≀C ′≀

It is easy to verify how, for any C, ⌈≀C≀⌉ is well-defined as by definition 4.6.
We extend the operator ≀ · ≀ on procedure context, as follows:

≀C ≀ ≜ {X(p⃗) = ≀C≀ | X(p⃗) = C ∈ C }

We now prove that this operator is complete with respect to the semantics: for
each C such that

⟨C,Σ,C ⟩ ⇓M Σ′

There exists M∗ such that:

⟨≀C≀,Σ, ≀C ≀⟩ ⇓M∗
Σ′ (4.10)

Proof:
We proceed by induction on the size of M

• size: 0 In this case the C = 0 and by definition ≀C≀ = 0, thus the conclusion
holds.

• size: n+1 In this case we have two hypothesis:

⟨C,Σ,C ⟩ µ−→ ⟨C ′,Σ′,C ⟩ (H1)

∃M ′, ⟨≀C ′≀,Σ′, ≀C ≀⟩ ⇓M ′
Σ′′ (IH)

By inversion of (H1) we find that C = I;C⋆, we proceed by cases on the
structure of I:

– assign, communication: By further inversion of (H1) we find C⋆ = C ′.
We now find:

≀C≀ = ≀I;C⋆≀ = ≀I;C ′≀ = I; ≀C ′≀
Using (IH) we construct M∗ = µ :: M ′

37

– selection, runtime term: By further inversion of (H1) we find C⋆ = C ′

and Σ = Σ′.
We now find:

≀C≀ = ≀I;C⋆≀ = ≀I;C ′≀ = ≀C ′≀

Using (IH) we construct M∗ = M ′

– function call : By further inversion of (H1) we find X(p⃗) = CX ∈ C ,
C ′ = p2 : X(p⃗).C⋆; . . . ; pn : X(p⃗).C⋆;CX [q⃗/p⃗] # C⋆ and Σ = Σ′

We now find:
≀C≀ = ≀X(p⃗);C⋆≀ = X(p⃗); ≀C⋆≀

Which can do a µ step of the operational semantics and reach:

p2 : X(p⃗).C⋆; . . . ; pn : X(p⃗).C⋆; ≀CX ≀ [q⃗/p⃗] # ≀C⋆≀

Which can do n− 1 steps τ@p2, . . . , τ@pn and reach

≀CX ≀ [q⃗/p⃗] # ≀C⋆≀

We now look at C ′ and notice, by reasoning on the definition of sequential
composition and process substitution (proven in Appendix A):

≀C ′≀ = ≀p2 : X(p⃗).C⋆; . . . ; pn : X(p⃗).C⋆;CX [q⃗/p⃗] # C⋆≀
= ≀CX [q⃗/p⃗] # C⋆≀ = ≀CX [q⃗/p⃗] ≀ # ≀ C⋆≀ = ≀CX ≀ [q⃗/p⃗] # ≀C⋆≀

Using (IH) we construct

M∗ = µ :: τ@p2 :: . . . :: τ@pn :: M ′

– conditional (for brevity we will only consider the true case, the other one
follows by symmetry): By further inversion of (H1) we find C ′ = C1 # C⋆

and Σ = Σ′.
We now find:

≀C≀ = ≀ if p.e then C1 else C2; C⋆ ≀ = if p.e then ≀ C1 ≀ else ≀ C2≀; ≀C⋆≀

Which can do a µ step and reach:

≀C1 ≀ # ≀ C⋆≀ = ≀C1 # C⋆≀ = ≀C ′≀

Using (IH) we construct M∗ = µ :: M ′

□

38

Ramifications on the Semantic for Procedure Calls

Since, as we saw in the previous section, runtime terms are irrelevant for the com-
putation, we will now change the semantics for CALL-FIRST to the following rule,
which also makes CALL-ENTER unreachable:

X(q⃗) = C ∈ C

⟨X(p⃗);C ′,Σ,C ⟩ ·−→ ⟨C[q⃗/p⃗] # C ′,Σ,C ⟩
call

The correctness of this change follows from the previous proof: since both rules
have as result ≀-equivalent configurations (we will omit a formal discussion of this
equivalence) the state reached by the computation is unchanged.
The justification for not specifying the transition label associated with the inference
rule is that we are going to mostly ignore the transition labels from now on.

Completeness of the instrumented semantics

We take a C,C for which ⌈·⌉ is well defined. We have to prove that, given:

⟨C, ⌊Σ⌋,C ⟩ ⇓M Σ′

then there exists Σ′′ such that:

⟨⌈C⌉,Σ, ⌈C ⌉⟩ ⇓ Σ′′ ∧ Σ′ = ⌊Σ′′⌋

Proof:
We proceed by induction of the size of · ⇓M ·:

• size: 0 : We have
C = 0 = ⌈C⌉ and ⌊Σ⌋ = Σ′

so the conclusion follows with Σ′′ = Σ

• size: n + 1 : We have the following hypothesis:

⟨C, ⌊Σ⌋,C ⟩ .−→ ⟨C⋆,Σ⋆,C ⟩ (H1)

⟨C⋆,Σ⋆,C ⟩ ⇓· Σ′ (H2)

∀ Σ♡, ⌊Σ♡⌋ = Σ⋆ ⇒ ⟨⌈C⋆⌉,Σ♡, ⌈C ⌉⟩ ⇓ Σ′′ ∧ ⌊Σ′′⌋ = Σ′ (IH)

We proceed by inversion on (H1)

– LOCAL: Inversion gives us:

C = p.x := e; C⋆ (I1)

⌊Σ⌋ p ⊢ e ↓ v (I2)

Σ⋆ = ⌊Σ⌋[p.x 7→ v] (I3)

39

By correctness of the local evaluation (4.8) and (I2) we find:

Σ p ⊢ e ↓ [v] ∨ Σ p ⊢ e ↓ v (4.11)

We proceed by cases on the hypothesis:

∗ case left: By definition of ⌈·⌉ we have:

⌈C⌉ = p.x := e; ⌈C⋆⌉

We do the following execution steps:

⟨p.x := e; ⌈C⋆⌉,Σ, ⌈C ⌉⟩
→ ⟨0; ⌈C⋆⌉,Σ[p.x 7→ [v]], ⌈C ⌉⟩
→ ⟨⌈C⋆⌉,Σ[p.x 7→ [v]], ⌈C ⌉⟩

From which, using the fact that (equivalences on syntactic transfor-
mations are proved in Appendix A)

⌊Σ♡⌋ = ⌊Σ[p.x 7→ [v]]⌋ = ⌊Σ⌋[p.x 7→ v] = Σ⋆

We can use the induction hypothesis (IH)

∗ case right: We have two possible rules regarding assignment with
(4.11) as antecedent, depending on the value of Γ p x. We proceed
by law of excluded middle and find:

Γ p x ̸⊑ low ∨ Γ p x ⊑ low (4.12)

In the left case, we proceed exactly as the previously specified proof
case, adjusting the inference rule used for the first step. In the right
case, we follow similarly, with the only difference being:

Σ♡ = Σ[p.x 7→ v]

– COM: The inductive case follows similarly to the LOCAL one, substitut-
ing p.x with q.x when needed.

– COND-THEN: Inversion gives us:

C = if p.e then C1 else C2; C ′ (I1)

C⋆ = C1 # C ′ (I2)

⌊Σ⌋ p ⊢ e ↓ true (I3)

Σ⋆ = ⌊Σ⌋ (I4)

40

By definition of ⌈·⌉ we have:

⌈C⌉ = if p.e then ⌈C1⌉ else ⌈C2⌉; ⌈C ′⌉

We use lemma (B.2) on (IH) and find:

⟨⌈C1⌉,Σ, ⌈C ⌉⟩ ↠ ⟨0,Σ†, ⌈C ⌉⟩ ∧ ⟨⌈C ′⌉,Σ†, ⌈C ⌉⟩ ⇓ Σ′′

Which lets us construct the following computation:

⟨if p.e then ⌈C1⌉ else ⌈C2⌉; ⌈C ′⌉,Σ, ⌈C ⌉⟩
→ ⟨⌈C1⌉; ⌈C ′⌉,Σ, ⌈C ⌉⟩
↠ ⟨0; ⌈C ′⌉,Σ†, ⌈C ⌉⟩
→ ⟨⌈C ′⌉,Σ†, ⌈C ⌉⟩ ⇓ Σ′′

– COND-ELSE: This inductive step is symmetric with respect to COND-
THEN

– CALL: Inversion gives us:

C = X(p⃗); C ′ (I1)

X(q⃗) = CX ∈ C (I2)

C⋆ = CX [q⃗/p⃗] # C ′ (I3)

Σ⋆ = ⌊Σ⌋ (I4)

By definition of ⌈·⌉ we have:

⌈C⌉ = X(p⃗); ⌈C ′⌉

We use lemma (B.2) on (IH) and find:

⟨⌈CX [p⃗/q⃗]⌉,Σ, ⌈C ⌉⟩ ↠ ⟨0,Σ†, ⌈C ⌉⟩ ∧ ⟨⌈C ′⌉,Σ†, ⌈C ⌉⟩ ⇓ Σ′′

By definition of ⌈C ⌉, then:

X(q⃗) = ⌈CX⌉ ∈ ⌈C ⌉

Which lets us construct the following computation (equivalences on syn-
tactic transformations are proved in Appendix A):

⟨X(p⃗); ⌈C ′⌉,Σ, ⌈C ⌉⟩
→ ⟨⌈CX⌉[q⃗/p⃗]; ⌈C ′⌉,Σ, ⌈C ⌉⟩
= ⟨⌈CX [q⃗/p⃗]⌉; ⌈C ′⌉,Σ, ⌈C ⌉⟩
↠ ⟨0; ⌈C ′⌉,Σ†, ⌈C ⌉⟩
→ ⟨⌈C ′⌉,Σ†, ⌈C ⌉⟩ ⇓ Σ′′

□

41

Putting all the Steps Together

We saw how, starting from a maximal computation

⟨C,Σ,C ⟩ ⇓M Σ′

We can:

• Replace every non-deterministic aspect of the computation without chang-
ing the result, thus letting us reason only on the deterministic subset of the
semantics.

• Remove terms which do not affect the computation result, thus letting us
ignore them.

• Construct a computation in the instrumented semantics that maintains low-
equivalence for stores.

Thus, since by definition:
⌊⌈Σ⌉Γ⌋ = Σ

then the completeness lemma as stated in (4.9) is proven. □

4.3.2 Completeness of Type Extension

This lemma tells us that lifting a choreography maintains typing.
Formally:

∆; Γ;⊥ ⊢ C ⇒ ∆;Γ;⊥ ⊢ ⌈≀C≀⌉

Proof:
The type judgment is clearly maintained by ≀·≀ because the only effect of the operator
is to remove instructions. The following is a more general case, easy to verify by
inverting the typing rule for sequences (which is basically a conjunction):

∆; Γ;⊥ ⊢ I;C ⇒ ∆;Γ;⊥ ⊢ C

We can verify that lifting maintains typing by noticing that ⌈C⌉ never introduces
a bracketed term and for any non-bracketed term the typing rules are syntactically
equivalent between Chor and [Chor]. □

42

4.3.3 Preservation Lemma

The preservation lemma (i.e., subject reduction) states that the operational seman-
tics preserves typing, that is starting from a well-typed configuration executing a step
of the semantics gives us a well-typed configuration. We are now working only in the
instrumented semantics, thus, we will omit the redundant brackets when sufficiently
clear.
A configuration ⟨C,Σ,C ⟩ is well-typed for a pc ∈ L when:

∆,Γ, pc ⊢ C and Γ ⊢ Σ

The preservation lemma is stated as follows:

∆,Γ, pc ⊢ C ∧ Γ ⊢ Σ ∧ ⟨C,Σ,C ⟩ → ⟨C ′,Σ′,C ⟩ ⇒ ∆,Γ, pc ⊢ C ′ ∧ Γ ⊢ Σ′ (4.13)

It is easy to see how the preservation lemma can be easily carried over to · ↠ ·.

Proof:
The majority of the preservation proof follows directly from [24], thus, we will explain
only the part which differs.
The main difference between our instrumented syntax and the language presented
in [24] is the presence of recursive procedures.

The inductive case that we have to consider is:

∆,Γ, pc ⊢ X(p⃗) (H1)

⟨X(p⃗),Σ,C ⟩ → ⟨CX [q⃗/p⃗],Σ,C ⟩ (H2)

X(q⃗) = CX ∈ C (H3)

By inversion on (H1) we find:

Γ′ ∈ ∆(X, pc) (H11)

Γ[q⃗ 7→ p⃗] ≡{q⃗} Γ
′ (H12)

By definition of ∆, then

Γ′ ∈ ∆(X, pc) ⇒ ∆,Γ′, pc ⊢ CX

We now state a lemma which will not be proven in this document (since it is quite
long and syntactical), but is part of the Lean artifact.

∆,Γ′, pc ⊢ C ⇒ pn(C) ⊆ q⃗

⇒ Γ′′ ≡{q⃗} Γ
′ ⇒ ∆,Γ′′, pc ⊢ C

43

From well-formedness of procedure context (assumed in 4.4) we know that pn(CX) ⊆
q⃗ thus we find

∆,Γ[q⃗ 7→ p⃗], pc ⊢ CX

We now introduce another lemma, proven in the Lean code but for which the
proof (for the same reasons as above) will not be reproduced in this document.

∆,Γ[q⃗ 7→ p⃗], pc ⊢ C ⇒ ∆,Γ, pc ⊢ C[q⃗/p⃗]

This lemma requires freshness of formal parameters to be proven, assumed in 4.1.
We now remind ourselves the conclusion to be proven, that is:

∆,Γ, pc ⊢ CX [q⃗/p⃗] ∧ Γ ⊢ Σ

The left-hand side is proven by the previous chain of steps. The right-hand side is
easy to prove from hypothesis of the preservation lemma. □

pc subsumption: Subsumption of procedures invocation (used in the proof in [24]
for conditional steps) is directly given by the assumption in 4.3

4.3.4 Unwinding Lemma

The unwinding lemma states that the operational semantics preserves low-equal
configurations. We formalize this as follows.
Given well-typed C1, C2 in [Chor], well-formed Σ1,Σ2 in [CStore], then:

C1 ≈low C2 ∧ Σ1 ≈low Σ2 ∧ ⟨C1,Σ1,C ⟩ → ⟨C ′
1,Σ

′
1,C ⟩

implies that there either exist C ′
2,Σ

′
2 s.t.

⟨C2,Σ2,C ⟩ ↠ ⟨C ′
2,Σ

′
2,C ⟩ ∧ C ′

1 ≈low C ′
2 ∧ Σ′

1 ≈low Σ′
2 (4.14)

or that ⟨C2,Σ2,C ⟩ diverges.
The proof of this lemma is mostly unchanged from the one presented in [24] since

the differences between the two languages treated are not relevant. For this reason,
we omit the proof from this document.

4.4 Main Proof

We remind ourselves the main theorem as stated in (4.2):

∆; Γ;⊥ ⊢ C ⇒ Σ1 ≡Γ
low Σ2

⇒ ⟨C,Σ1,C ⟩ ⇓M1 Σ′
1 ⇒ ⟨C,Σ2,C ⟩ ⇓M2 Σ′

2

⇒ Σ′
1 ≡Γ

low Σ′
2

44

Proof:
By completeness (4.9) we find:

⟨⌈≀C≀⌉, ⌈Σ1⌉Γ, ⌈C ⌉⟩ ⇓ [Σ]′1 and ⟨⌈≀C≀⌉, ⌈Σ2⌉Γ, ⌈C ⌉⟩ ⇓ [Σ]′2

such that
⌊[Σ]′1⌋ = Σ′

1 and ⌊[Σ]′2⌋ = Σ′
2 (4.15)

By extension of typing (4.3.2) we have:

∆; Γ;⊥ ⊢ ⌈≀C≀⌉

By definition of ⌈·⌉Γ we have

i ∈ 1, 2 ⌈Σi⌉Γ ⇒ Γ ⊢ ⌈Σi⌉Γ

We can thus use preservation (4.13) to find

Γ ⊢ [Σ]′1 and Γ ⊢ [Σ]′2

That, with (4.15) lets us reduce the proof of Σ′
1 ≡Γ

low Σ′
2 to the proof of [Σ]

′
1 ≈low [Σ]′2

We have now reduced the proof to the following:

∆; Γ;⊥ ⊢ ⌈≀C≀⌉
⇒ ⟨⌈≀C≀⌉, ⌈Σ1⌉Γ, ⌈C ⌉⟩ ⇓ [Σ]′1

⇒ ⟨⌈≀C≀⌉, ⌈Σ2⌉Γ, ⌈C ⌉⟩ ⇓ [Σ]′2
⇒ [Σ]′1 ≈low [Σ]′2

By Σ1 ≡Γ
low Σ2 and well-formedness of the contexts we have

⌈Σ1⌉Γ ≈low ⌈Σ2⌉Γ

By reflexivity of ≈low we have

⌈≀C≀⌉ ≈low ⌈≀C≀⌉

We generalize over the specific construction of ⌈Σ1⌉Γ, ⌈Σ2⌉Γ, ⌈≀C≀⌉ and just keep the
previously stated low-equivalences between them. At this point, the proof follows
by induction on the size of ⟨·, ·, ·⟩ ⇓ [Σ]′1:

• size 0 : Transition of size zero means that the first choreography is 0. By defi-
nition of ≈low the second is 0 aswell. By hypothesis, the two Σ are equivalent,
thus the conclusion follows.

45

• size n+1 : This means that the first transition is composed of at least one step
of the operational semantics:

⟨[C]1, [Σ]1, ⌈C ⌉⟩ → ⟨[C]∗1, [Σ]
∗
1, ⌈C ⌉⟩

By unwinding (4.14), we find [C2]
∗, [Σ]∗2 s.t. the low-equivalence is respected

(since we are proving termination insensitive non-interference, we have as
hypothesis that the computation from ⟨[C]2, [Σ]2, ⌈C ⌉⟩ does not diverge). By
preservation (4.13), we find well-typedness and well-formedness needed to use
the induction hypothesis, from which we prove the conclusion.

□

46

Chapter 5

Construction of ∆

We now deal with the creation of the SecFunCtx from a well-formed procedure
context (as defined in 4.4).

Let us remind ourselves the properties which we previously assumed for ∆:

• Well-typedness with respect to C : As defined in 4.5, we want

∆ X pc = G =⇒ ∀Γ ∈ G. ∆;Γ; pc ⊢ C

This property can be stated as follows: every declared procedure must type-
check under every security environment that ∆ admits for it (at any program
counter). It is to be noted that the lookup yields an empty set of admis-
sible environments in the case of untypable procedure at a certain pc i.e.,
∆ X pc = ∅.

• pc subsumption of context : For any procedure in ∆, we want the typing to be
maintained when lowering the control level, defined formally in 4.3 as:

Γ ∈ ∆ X pc ∧ pc′ ⊑ pc =⇒ Γ ∈ ∆ X pc′

Those are the two properties assumed as true and used for the previous proof of
non-interference. In the following sections, we will take ideas and terminology from
the practice of type reconstruction [27].

5.1 Context Reconstruction Algorithm

The key idea behind constructing ∆ is inferring from every function X(q⃗) = CX in
C a list of constraints such that, if Γ satisfies those constraints, then it well-types
CX .

47

5.1.1 Local Expression Reconstruction

Let us start dealing with local expressions. The idea here is to infer a symbolic
bound which can delay the computation of the security level of an expression. We
define the following syntax:

ψ ::= ⊥ | x | ψ ⊔ψ

Where ⊥ is an arbitrary symbol and x is taken from the previously defined set Var.
We define ExprBound as the set of the objects generated by the nonterminal ψ.
We associate a semantics to the syntactic category ExprBound:

[[ψ]] : SecPLab → L

That is, the semantics of a bound is defined as a map that computes the level
associated with a local expression given an security level assignment for the variables
present. We define it recursively on the structure of ψ:

[[⊥]] γ = ⊥
[[x]] γ = γ x

[[ψ1 ⊔ψ2]] γ = ([[ψ1]] γ) ⊔ ([[ψ2]] γ)

We now define the procedure of bound reconstruction ⊢ e ▷ ψ that, given an
Expr e, returns the associated bound:

⊢ v ▷⊥ ⊢ x▷ x
σ ⊢ e1 ▷ψ1 · · · σ ⊢ en ▷ψn

σ ⊢ f(e1, . . . , en)▷ ⊔n
i=1ψi

We now state and prove the correctness of this algorithm with respect to the
typing relation for Expr previously defined. Formally:

⊢ e▷ψ ∧ [[ψ]] γ = ℓ =⇒ γ ⊢ e : ℓ (5.1)

Proof:
We proceed by induction on e

• constant: we have the following:

e = v ψ = ⊥ ℓ = ⊥

The conclusion comes easily from the corresponding typing rule in 3.3.2.

• variable: we have the following:

e = x ψ = γ x ℓ = γ x

The conclusion comes easily from the corresponding typing rule in 3.3.2.

48

• local function: We have the following:

e = f(e1, . . . , en) ψ = ⊔n
i=1ψi ℓ = [[⊔n

i=1ψi]] γ (H1)

[[ψi]] = ℓi ⇒ γ ⊢ ei : ℓi (IH)

By definition of [[·]] and (H1) we find:

ℓi = [[ψi]] γ ℓ = ⊔n
i=1ℓi

Which can be used with (IH) to construct the typing derivation for:

γ ⊢ f(e1, . . . , en) : ℓ

□

5.1.2 Choreography Reconstruction

The main idea remains the same as before. We firstly define the syntactic category
Bound:

Ψ ::= ⊥ | p.x | η | Ψ ⊔ Ψ

where p.x ∈ Pid × Var, η taken from a set Fresh of variables always considered
sufficiently fresh. η will represent the security level of pc in bounds.
We define the syntactic category Constraint (the name is self-explanatory):

ω ::= Ψ ⊑ p.x

We define a constraint context (ProcConstr) δ : ProcName → Finset Constraint
which maps every procedure to the associated finite set of constraints.
We can now define the constraint reconstruction procedure δ, η ⊢ C ▷ Ψ as follows:

⊢ e▷ψe Ψp = bind ψe p

δ, η ⊢ p.x := e▷ {Ψp ⊑ p.x, η ⊑ p.x}

⊢ e▷ψe Ψp = bind ψe p

δ, η ⊢ p.e → q.x▷ {Ψp ⊑ q.x, η ⊑ q.x}

⊢ e▷ψe Ψp = bind ψe p δ, η′1 ⊢ C1 ▷ E1 δ, η′2 ⊢ C2 ▷ E2

δ, η ⊢ if p.e then C1 else C2 ▷ E1[η
′
1/η ⊔ Ψp] ∪ E2[η

′
2/η ⊔ Ψp]

δ X = q⃗, ηX , EX

δ, η ⊢ X(p⃗)▷ EX [q⃗/p⃗][ηX/η]

49

δ, η ⊢ I ▷ EI δ, η ⊢ C ▷ EC

δ, η ⊢ I;C ▷ EI ∪ EC

δ, η ⊢ 0▷ ∅
Substitution in a constraint set is defined naturally.
The function bind is defined as lifting an ExprBound into a Bound by binding
every Var into the corresponding Pid×Var

We can already state a first lemma, which will be useful in the following:
Single eta: For each constraint reconstruction E such that:

δ, η ⊢ C ▷ E

Then, the only element of Fresh that can appear in E is η, given that this property
is respected for every ηX , EX in δ. It is to be noted that it is admitted for E to have
no element of Fresh.
Proof: The proof easily follows by induction. □

We now define a couple of functions that relate constraints with security contexts:

cansolve (E : Finset Constraint) (Γ : SecCLab) (pc : L) : Proc :=

∀ (Ψ ⊑ p.x) ∈ E, [[Ψ]] Γ pc ⊑ Γ p.x

Where [[·]] for Bound is the natural extension from the one for ExprBound.

gen (δ : ProcConstr) : ProcName → L → Finset SecCLab :=

λ X. λ pc. {Γ | cansolve (δ X) Γ pc}

5.2 Proof of Well-Typedness

We are looking to prove that given a C we can use the type reconstruction algorithm
to create a δ such that gen δ creates a well-typed context (4.5) with respect to C .

5.2.1 Creating δ

We start by defining a monotonic operator ϕC : ProcConstr → ProcConstr as
follows:

ϕC : δ 7→ (X 7→ EX)

Where X(q⃗) = CX ∈ C and EX is computed as δ, η ⊢ CX ▷ EX

ϕC creates a delta by applying one pass of constraint reconstruction to every proce-
dure in the procedure context. This is needed because procedures can be mutually
recursive, thus, we need multiple passes to construct all constraints correctly. Proof
of monotonicity of ϕC is addressed in Appendix C.1.

50

5.2.2 One step soundness

We proceed by stating and proving the following:

∆ = gen δ

⇒ δ, η ⊢ C ▷ E

⇒ cansolve E Γ pc

⇒ ∆,Γ, pc ⊢ C

(5.2)

Proof: We proceed by induction on C

• case: assignment. By inversion and unrolling the definition of cansolve we
have the following hypothesis:

⊢ e▷ψe (H1)

Ψp = bind ψe p (H2)

[[Ψp]] Γ pc ⊑ Γ p.x (H3)

[[η]] Γ pc ⊑ Γ p.x (H4)

We start by constructing:
ℓ = [[ψe]] (Γ p)

By hypothesis (H1) and lemma (5.1) we find:

Γ p ⊢ e : ℓ

By (H2) and definition of [[·]] we find:

ℓ = [[Ψp]] Γ pc pc = [[η]] Γ pc

By (H3) and (H4) we thus find the premise necessary for typing

∆,Γ, pc ⊢ p.x := e

• case: communication. The case follows similarly from the previous one

• case: conditional. We have the following hypothesis:

⊢ e▷ψe (H1)

Ψp = bind ψe p (H2)

δ, η′1 ⊢ C1 ▷ E1 (H3)

δ, η′2 ⊢ C2 ▷ E2 (H4)

cansolve (E1[η/η
′
1 ⊔ Ψp] ∪ E2[η/η

′
2 ⊔ Ψp]) Γ pc (H5)

∀ pc⋆, cansolve E1 Γ pc⋆ ⇒ ∆,Γ, pc⋆ ⊢ C1 (IH1)

∀ pc⋆, cansolve E2 Γ pc⋆ ⇒ ∆,Γ, pc⋆ ⊢ C2 (IH2)

51

As before, we can use (H1), lemma (5.1) and (H2) to find:

ℓ = [[ψe]] (Γ p) (A1) Γ p ⊢ e : ℓ ℓ = [[Ψp]] Γ pc

We will now concentrate ourself to the typing of the then branch, since the
other one follows by symmetry.
By reasoning on the definition of cansolve and (H5) we find:

cansolve E1[η/η
′
1 ⊔ Ψp] Γ pc

We now apply the following lemma (proved in Appendix C.2)

cansolve E[η/η′ ⊔ Ψ] Γ pc ∧ (∀pc′, [[Ψ]] Γ pc′ = ℓ′)

=⇒ cansolve E Γ (pc ⊔ ℓ′)

We see how the second premise is true for the considered ℓ: no pc appears in
(A1).
We thus use (IH1) to find the required typing:

∆,Γ, (pc ⊔ ℓ) ⊢ C1

• case: procedure call. We have the following hypothesis:

∆ = gen δ (H1)

δ X = q⃗, ηX , EX (H2)

cansolve EX [q⃗/p⃗][ηX/η] Γ pc (H3)

We introduce the following lemmas: the first one follows from Single eta and
the second one is proven in Appendix C.3:

cansolve E[η/η′] Γ pc ⇒ cansolve E Γ pc

cansolve E[q⃗/p⃗] Γ pc ⇒ cansolve E Γ[q⃗ 7→ p⃗] pc

We apply these lemmas to (H3), which gives us:

cansolve EX Γ[q⃗ 7→ p⃗] pc

From (H2), (H1) and the definition of gen we get:

Γ[q⃗ 7→ p⃗] ∈ ∆ X pc

Thus we can use the typing rule for procedure calls, selecting Γ′ = Γ[q⃗ 7→ p⃗].
By reflexivity, is it trivial to show:

Γ[q⃗ 7→ p⃗] ≡{q⃗} Γ[q⃗ 7→ p⃗]

□

52

5.2.3 Well-Typed δ

By our definition, ProcConstr can be considered as finite, this holds because we are
working with a finite L and because the number of procedure names mentioned in
a finite choreography is always finite. By Knaster-Tarski theorem [31], there exists
a least fixed point for ϕC . Let us now reason on the previous results:
A trivial lemma of 5.2 is the following:

∆ = gen δ1

⇒ δ2 = ϕC δ1

⇒ cansolve (δ2 X) Γ pc

⇒ ∆,Γ, pc ⊢ CX

We can thus see that, choosing as δ1, a fixed point µϕC , and by using the definition
of gen, this lemma becomes:

∆ = gen µϕC

⇒ Γ ∈ ∆ X pc

⇒ ∆,Γ, pc ⊢ CX

Which makes ∆ a well-typed security procedure context. □

5.3 Proof of pc Subsumption

We remind ourselves the statement of pc subsumption for contexts:

∆ = gen δ ∧ Γ ∈ ∆ X pc ∧ pc′ ⊑ pc =⇒ Γ ∈ ∆ X pc′

Proof: By definition of gen we can rewrite the statement as follows:

cansolve E Γ pc ∧ pc′ ⊑ pc =⇒ cansolve E Γ pc′

Which we can further decompose by unfolding the definition of cansolve into:

[[Ψ]] Γ pc ⊑ p.x ∧ pc′ ⊑ pc =⇒ [[Ψ]] Γ pc′ ⊑ p.x

Which becomes:
pc′ ⊑ pc =⇒ [[Ψ]] Γ pc′ ⊑ [[Ψ]] Γ pc

Which is easily proven reasoning inductively on the structure of Ψ. □

53

5.4 Termination

Since all the operations functions defined work on finite structures, there will always
be a terminating algorithm to compute them.

5.5 Extension to Full Type Inference

The algorithm we defined is very similar to type-inference [27], but a few aspects
need to be treated formally to consider it so. Let us now give an overview of the
main ones.

• Reconstruction of constraints for the configuration’s choreography. This should
not be any harder than to reconstruct constraints from the procedure context.
A way forward would be to consider the configuration’s choreography as an
unnamed procedure inside the context.

• Proof of completeness of the constraint reconstruction algorithm with respect to
the type checking. This requires creating an order relation on the Constraint
set, such that it is possible to define a minimal set of constraints. Afterwards,
the proof would follow by proving that every Γ typing a choreography would
satisfy the minimal set of constraints reconstructed for that choreography.

We do not address these topics in this thesis because of the limited time available.

54

Chapter 6

Lean mechanization

In this chapter we present the mechanization in Lean 4 of the type system and meta-
theory developed in the previous chapters for choreographic programs. We begin by
fixing the notational conventions used in the formalization. We then describe the
external foundations we rely on. Next, we outline the structure of the project and
the role of each file, highlighting the main design choices behind the core definitions:
syntax, semantics, typing and the lowering/lifting translations. We also clarify the
coverage of the mechanization, stating which results are fully checked in Lean and
which parts remain admitted together with the rationale. Finally, we work through
a representative lemma to illustrate the proof style.

6.1 Naming Conventions

In the following, a few naming conventions are different and should be considered:

L ≜ L ps ≜ p⃗

D ≜ ∆ G ≜ Γ

BrChor ≜ [Chor]

6.2 Imported Definitions and Results

6.2.1 Encoding of L

Mathlib 4 [21] was used as library in the project. This was done so that we could
take advantage of the already mechanized math results.
The biggest contribution taken from the library is the Mathlib.Order.Lattice

module, which was used to encode L by defining it as a type variable which imple-
ments the Lattice, DecidableLE and Bot type classes.

55

6.2.2 Reference choreographies

Ongoing research is being done by Xueying Qin and Fabrizio Montesi at SDU to
mechanize the language defined in Section 2.1. My work builds on theirs, importing
the needed definitions and results. The main imported constructs are: procedure
context implementation and the syntax and semantics for reference choreographies.

6.3 Project Structure

The project is divided into multiple files to deal with the length and complexity of
the proof. These files are the following:

• Common.lean This file contains all the definitions which are needed by all the
other files in the project. For example security labeling (Section 3.1):

-- Security Labeling for Variables of a Processes

abbrev SecPLab := Var -> L

-- Security Labeling for Variables "Globally"

abbrev SecCLab := Pid -> @SecPLab L

Or security context for procedures :

def SecFunCtx :=

ProcName -> L -> (List Pid x Finset (@SecCLab L))

• Syntax.lean This file contains the definition of the instrumented syntax, en-
coded as an inductive type, and all related lemmas and definition (for example
substitution, low equality).

• Semantics.lean This file contains both the natural semantics as defined in
Section 4.1 and the operational semantics for instrumented choreographies.
Both relations are defined as inductive types. Let us see the signatures for
them:

inductive Chor.natsem {sig: EvalSig}:

CConf -> List TransitionLabel -> CStore -> Prop

inductive BrChor.lto {G: @SecCLab L}:

BrConf -> BrConf -> Prop

56

• Typing.lean This file contains the typing relation as defined in Section 3.3
and all the helper lemmas used in the proofs. The relation is encoded as an
mutually inductive type, with the following signature:

mutual

inductive tj_i {D: @SecFunCtx L} {G: @SecCLab L}:

L -> Instruction -> Prop

inductive tj_c {D: @SecFunCtx L} {G: @SecCLab L}:

L -> Choreography -> Prop

end

57

• LowerLiftStx.lean In this file are defined and mechanized all the lower-
ing/lifting functions which this document treated at a more abstract level. A
great deal of helper and inversion lemmas are needed to make the definitions
usable in the proofs. To cite some numbers, the file is composed of 1389 lines
of code for 8 lowering/lifting functions. Let us see a few cases of the lifting
function for choreography, to see how the issue of ≀ · ≀ was dealt with:

mutual

def lift_i (i: Instruction) (H1: no_choice_i i)

(H2: no_rtcall_i i): BrChor := match i with

| Instruction.assign p e x => BrChor.ass p e x

| Instruction.cond p e c1 c2 => BrChor.cond p e

(lift_c c1 (...) (...))

(lift_c c2 (...) (by dsimp [no_rtcall_i] at H2;

apply And.right H2))

| Instruction.rtcall q x ps c => (by exfalso; apply H2)

def lift_c (c: Choreography) (H1: no_choice_c c)

(H2: no_rtcall_c c): BrChor := match c with

| Choreography.nil => BrChor.nil

| Choreography.seq i c’ => BrChor.seq

(lift_i i (...) (...))

(lift_c c’ (...) (by dsimp [no_rtcall_c] at H2;

apply And.right H2))

end

Where no rtcall is defined as follows (in file Common.lean):

mutual

def no_rtcall_i (i: Instruction): Prop := match i with

| Instruction.rtcall _ _ _ _ => False

| Instruction.cond _ _ c1 c2 => no_rtcall_c c1 /\ no_rtcall_c c2

| _ => True

def no_rtcall_c (c: Choreography): Prop := match c with

| Choreography.nil => True

| Choreography.seq i c’ => no_rtcall_i i /\ no_rtcall_c c’

end

• Completeness.lean The main theorem defined in this file is (4.9). I was not
able to finish the proof in Lean for lack of time. Since the completeness proof
is not mechanized, it was described in deeper detail in this document.

58

• Preservation.lean The main theorem proved in this file is 4.13. In the same
file are defined and proved helper lemmas (for example pc subsumption and
typing for instrumented local expressions).

• Unwinding.lean The main theorem proved in this file is 4.14. In the same file
are defined and proved helper lemmas (for example the high step lemma [24]
and helper lemmas for low equality of instrumented stores).

• NonInt.lean This file contains the main proof, corresponding to 4.2. All the
other files of the project are imported in this one to be able to define and prove
the main theorem.

6.4 Coverage of the Mechanization

Many results described in this document have been mechanized and are present
in the Lean code, but not all. Two main results are admitted and are proved
only by pen-and-paper: completeness of the reference semantics with respect to the
instrumented semantics and construction of ∆.
These two sections were not represented in Lean for time constraints: any non-trivial
lemma requires me to have first a pen-and-paper presentation. This is because, while
writing Lean code, it is very easy to concentrate on the syntactical aspects of the
proof and to lose sight of the overall strategy. Moreover, once the proof strategy
is clear, the process of encoding it in Lean can be very time consuming, and it
is sometimes difficult to correctly predict which proof steps are going to be the
most challenging. Sometimes, half a page paper presentations become hundreds
and hundreds of lines of code.

6.5 An Illustrative Example

We will now show the Lean implementation of the following lemma, used in Section
4.3.3. Let us remind ourselves the lemma statement:

∆,Γ[q⃗ 7→ p⃗], pc ⊢ C =⇒ ∆,Γ, pc ⊢ C[q⃗/p⃗]

In Lean, the same statement is expressed as:

def tj_substs {D: @SecFunCtx L} {G: SecCLab} {pc: L} {c: BrChor}

{ps qs: List Pid} {Hlen: ps.length = qs.length}:

fresh_functx D

-> @tj_bc _ _ low tjeval D (secclab_substs G ps qs Hlen) pc c

-> @tj_bc _ _ low tjeval D G pc (c.substitutions ps qs Hlen)

As we can see, most of the assumptions which are treated as implicit in the pen-

59

and-paper proof, here, need to be made explicit.

• Same length of p⃗ and q⃗: In this document, we always assumed same lenght
from the arguments of every substitution operation. Let us now see how the
substitution is defined in the Lean code:

def BrChor.substitutions (c: BrChor) (ps qs: List Pid)

(H: ps.length = qs.length): BrChor :=

match ps, qs with

| hp::tp, hq::tq =>

BrChor.substitutions (c.substitution hp hq) tp tq

(by simp_all)

| [], [] => c

Where BrChor.substitutions performs Pid substitution for choreographies
as defined in Section 2.1.3. We see how the function is only defined for inputs
of the same length, and how this requirement allows us to ignore the impossible
pattern matching cases.

• Fresh parameters for ∆: We want to encode the assumption freshness of formal
parameters as defined in Section 4.1.

def fresh_functx (D: @SecFunCtx L) :=

forall (pc: L) (X: ProcName) (qs: List Pid) (ps: Finset Pid),

qs = Prod.fst (D X pc) -> Disjoint ps qs.toFinset

We note how this property is too restricting, since it can be used with qs = ps
to prove that every procedure has an empty list of arguments. While this is
technically incorrect, it is a necessary requirement for the semantics as specified
in Section 6.2 (which were, thus, outside of my control). A cleaner solution
would be to define C as a partial function with a finite image, such that we
can enforce a partitioning of the set Pid between the procedures and the main
choreography.

60

Context Renaming

We now see how the function secclab substs encodes the context renaming oper-
ator as defined in Section 3.1. The function is defined as follows:

def secclab_substs (G: @SecCLab L) (p q: List Pid)

(h: p.length = q.length): @SecCLab L := match p, q with

| hp::tp, hq::tq =>

secclab_subst (secclab_substs G tp tq

(by simp only

[List.length_cons, add_left_inj] at h

apply h))

hp hq

| [], [] => G

Where secclab subst is the function dealing with scalar substitution, defined as
follows:

def secclab_subst (G: @SecCLab L) (p q: Pid): @SecCLab L :=

lambda r => if p = r then G q else G r

61

Proof

For the rest of the chapter there is an important note to make: my proof style in
Lean can be considered mostly backward chaining [1], that is, I tend to manipulate
the goal more than the hypothesis. Let us now see the proof body in Lean, omitting
the uninteresting induction cases.

intro Hfresh H1

induction H1

case tass l’ Htjeval Hsub =>

rw [BrChor.substitutions.inversion_ass]

apply tj_bc.tass (l’ := l’)

case a => simp_all [sec_substs_of_pid_substs]

case a => simp_all [sec_substs_of_pid_substs]

case tcond Heval _ _ IH1 IH2 =>

rw [BrChor.substitutions.inversion_cond]

rw [sec_substs_of_pid_substs (G := G)] at Heval

apply tj_bc.tcond Heval IH1 IH2

case tcall G’ pc x ps’ qs’ Hlen Hg Hqs Hgam =>

rw [BrChor.substitutions.inversion_call]

dsimp [fresh_functx] at Hfresh

apply tj_bc.tcall Hg Hqs

have Hdis1 := Disjoint.symm

(Hfresh pc x qs’ ps’.toFinset Hqs)

have Hdis3 := Disjoint.symm (Hfresh pc x qs’ qs.toFinset Hqs)

apply gam_res_eq_trans

apply (gam_res_eq_symm (gamsubsts_helper Hdis1 Hdis3))

apply Hlen

apply Eq.trans Hlen pids_substs_length

apply Hgam

Let us unpack what happens in this code snippet. The proof follows by induction on
the typing derivation tj bc. We will explain the cases for assignment, conditionals,
and procedure calls.

• assignment : The inductive cases gives us hypothesis for the typing of the ex-
pression (Htjeval) and on the order relation between ℓ and Γ p x (Hsub).
The first step rewrites the goal from:
tj bc D G pc ((BrChor.ass p e x).substitutions ps qs Hlen)

to tj bc D G pc (BrChor.ass (pid substs p ps qs Hlen) e x). Thus,
enabling us to use the typing rule for assignments. The two assumptions
of the typing rule are discharged by the proof search mechanism of Lean, us-

62

ing the following helper lemma (which is used on Heval to make it compatible
with the needed assumption):

lemma sec_substs_of_pid_substs {G: @SecCLab L}

{r: Pid} {ps qs: List Pid} {Hlen}:

(secclab_substs G ps qs Hlen) r = G (pid_substs r ps qs Hlen)

• conditional : The inductive case gives us the hypothesis for the typing of the
expression (Heval), and two inductive hypotheses for the two branches (IH1,
IH2). The typing of the expression is dealt with exactly as in the previous
case, but to be able to use the typing rule on the goal we need to apply the
inductive hypothesis.

• procedure call : We first, as we did in the previous inductive cases, invert
the process substitution to be able to use the call typing rule. The function
lookup part of the typing derivation remains the same (which finds Γ′, r⃗), thus
it remains to prove the following:

Γ′ ≡L Γ[q⃗ 7→ p⃗][r⃗ 7→ s⃗] =⇒ Γ′ ≡L Γ[q⃗ 7→ p⃗ [r⃗/s⃗]]

From the freshness of the procedure parameters we have that

r⃗ ∩ (q⃗ ∪ p⃗) = ∅

And from the fact that ≡L is an equivalence relation, we can reduce the goal
to

r⃗ ∩ q⃗ = ∅
=⇒ r⃗ ∩ p⃗ = ∅
=⇒ Γ[q⃗ 7→ p⃗][r⃗ 7→ s⃗] ≡L Γ[q⃗ 7→ p⃗ [r⃗/s⃗]]

Which is proven by the lemma gamsubsts helper, as can be seen by its sig-
nature:

lemma gamsubsts_helper {ps qs rs ss: List Pid}

{G: @SecCLab L} {Hlen1 Hlen2 Hlen3}:

Disjoint ss.toFinset rs.toFinset

-> Disjoint ss.toFinset qs.toFinset

-> gam_res_eq ss.toFinset

(secclab_substs

(secclab_substs G ps qs Hlen1) ss rs Hlen2)

(secclab_substs G ss (pids_substs rs ps qs Hlen1) Hlen3)

The proof of this lemma will be described in the next section.

□

63

Proof of gamsubsts helper

To understand it, we need to detail two more definitions:

def gam_res_eq (ps: Finset Pid) (g1 g2: @SecCLab L): Prop :=

forall (p: Pid), p in ps -> g1 p = g2 p

def Pid.substitution (p r s: Pid): Pid :=

if p = r then s else p

def pid_substs (r: Pid) (ps qs: List Pid)

(H: ps.length = qs.length): Pid :=

match ps, qs with

| hp::tp, hq::tq =>

pid_substs (r.substitution hp hq) tp tq (by simp_all)

| [], [] => r

def pids_substs (rs ps qs: List Pid)

(H: ps.length = qs.length): List Pid :=

match rs with

| h::t => (pid_substs h ps qs H) :: (pids_substs t ps qs H)

| [] => []

Which are considered self-explanatory.
We also describe two helper lemmas:

lemma helper23718 {G G’: @SecCLab L} {qs ps ps’: List Pid}

(Hlen1: qs.length = ps.length)

(Hlen2: qs.length = ps’.length):

Disjoint qs.toFinset ps.toFinset

-> Disjoint qs.toFinset ps’.toFinset

-> List.Forall (lambda a => G (Prod.fst a) = G’ (Prod.snd a))

(List.zip ps ps’)

-> gam_res_eq qs.toFinset (secclab_substs G qs ps Hlen1)

(secclab_substs G’ qs ps’ Hlen2)

This lemma says that, under correct disjointness conditions, parallel substitutions
of security labels are determined purely by the position-wise agreement of the labels
being plugged in.

lemma helper7489376 {fst snd ps qs Hlen} {rs: List Pid}:

(fst, snd) in (rs.zip (pids_substs rs ps qs Hlen))

-> (fst in rs) /\ snd = pid_substs fst ps qs Hlen

This lemma captures the intended position-preserving view of substitutions on pid

64

lists.
Now that we have all the necessary background, we can look at the body of the

proof:

intro Hdis1 Hdis2

have Hdis3: Disjoint ss.toFinset

(pids_substs rs ps qs Hlen1).toFinset

:= disjoint_of_substs2 Hdis1 Hdis2

apply helper23718 _ _ Hdis1 Hdis3

rw [List.forall_iff_forall_mem]

intro a Ha

cases a

case mk fst snd =>

simp

rw [sec_substs_of_pid_substs]

have A1 := helper7489376 Ha

rw [And.right A1]

And see that, basically, the conclusion follows from two main ideas. The first one is
that disjointness of the process names lets us reason independently on every element
of q⃗. The second one is triangular reasoning, which proves the equation in every
possible case.

65

66

Chapter 7

Conclusion

This thesis addressed the problem of enforcing confidentiality in choreographic pro-
grams. Within the broader landscape where choreographies are used to specify,
verify, or synthesize the intended interactions of distributed systems, we focused on
the complementary concern of information-flow security : ensuring, by construction,
that a choreography does not leak secret information to public observers.

Summary of contributions.

• Policy-parametric type discipline for information flow. We designed a compo-
sitional type system that is parametric in a security lattice L . The typing
judgement

∆ ; Γ ; ⊥ ⊢ C

checks a choreography C under a flow policy Γ. The rules cover core choreo-
graphic constructs (communication, selection, conditional, and procedure cal-
l/definition) and ensure that low-observable behaviour cannot be influenced
by high data or control.

• Soundness with respect to termination-insensitive non-interference. We proved
that well-typed choreographies satisfy non-interference with respect to a stan-
dard small-step reference semantics equipped with an attacker model that
observes only low effects. Formally, if C is well-typed and two initial stores
are indistinguishable at level low, then all low-observable outcomes of execut-
ing C from those stores are indistinguishable. The proof hinges on a standard
pc-discipline for control-flow and a progress and preservation argument over
the choreographic reduction relation, and it is carried out for an arbitrary
lattice L .

• Procedure-context reconstruction. We developed a reconstruction method that
derives the procedure context ∆ by generating and solving well-formedness

67

constraints extracted from the program. We proved that the reconstructed ∆
is sound for typing (every reconstructed context is admissible).

• Mechanized metatheory. All definitions and key metatheoretic results are
mechanized in Lean. The development builds on ongoing work in mecha-
nization of the theory of choreographic programming, thus the syntax and se-
mantics referenced is imported into the project. The artifact attached to the
thesis includes the policy-parametric type system with the program-counter
discipline and the termination-insensitive non-interference theorem with the
corresponding proof. The formalization reuses Mathlib’s order-theoretic in-
frastructure to encode the abstract lattice L , keeping the proofs generic in
the security policy.

Taken together, these contributions show that non-interference can be enforced at
the choreographic level by a lightweight, compositional, type discipline and that
the resulting guarantees are robust: they are independent of the particular secu-
rity lattice, stable under recursion and procedure abstraction, and validated by a
machine-checked proof. In this way, the thesis complements existing choreographic
methodologies with principled confidentiality guarantees, bringing the clarity and
modularity of choreography-based design to information-flow security.

7.1 Extensions

Multiple extensions from the work presented in this thesis are possible, and would be
needed to have a complete treatment of mechanized non-interference for choreogra-
phies. They are ordered by the descending importance that I personally attribute
to them.

• Extend the coverage of the mechanization. Given the time constraint, not every
result reached in this work has been mechanized. An important extension
would be to have the full coverage of the proofs presented in this document in
the Lean artifact.

• Completeness of the type inference algorithm with respect to the type rela-
tion. In other words, this requires proving that every flow-policy that well
types a choreography also satisfies the constraints found by the type-inference
algorithm. This result would also make it possible for a programmer to un-
derspecify a flow-policy, leaving to the inference algorithm the job of finding
a type for the working variables that satisfies the constraints of the specified
flow-policy.

68

• Discriminating channels security. The flow-policy can be extended to specify
the security level of every channel between processes, so that private informa-
tions are not allowed on insecure channels.

• Non-interference in the presence of non-determinism. The choreographic lan-
guage presented in [22] is extended in Chapter 10 to include non-deterministic
choice. Extensions of the notion of non-interference are present in the litera-
ture [30]. It would be particularly interesting to explore their application to
choreographic languages, since non-determinism can be seen as a key feature
of distributed software systems.

69

70

Appendices

71

Appendix A

Proofs on Syntactic
Transformations

A.1 Sequential Composition and ≀ · ≀
We need to prove the following:

≀C1 # C2≀ = ≀C1 ≀ # ≀ C2≀

Proof: This proof follows by induction on C1, unrolling the definitions of the oper-
ators involved.

A.2 Process Substitution and ≀ · ≀
We need to prove the following:

≀C[q⃗/p⃗]≀ = ≀C ≀ [q⃗/p⃗]

Proof: This proof follows by induction on C, unrolling the definitions of the oper-
ators involved.

A.3 Store Update and ⌊·⌋
We need to prove the following:

⌊Σ⌋[p.x 7→ v] = ⌊Σ[p.x 7→ [v]]⌋

Proof: We defined equivalence between stores as extensional equivalence between
maps. This theorem follows from triangular reasoning:

73

For q.y different from p.x:

⌊Σ⌋[p.x 7→ v] q.y = ⌊Σ⌋ q.y

⌊Σ[p.x 7→ [v]]⌋ q.y = ⌊Σ⌋ q.y

While simultaneously:

⌊Σ⌋[p.x 7→ v] p.x = v

⌊Σ[p.x 7→ [v]]⌋ p.x = ⌊[v]⌋ = v

A.4 Process Substitution and ⌈·⌉
We need to prove the following:

≀C[q⃗/p⃗]≀ = ≀C ≀ [q⃗/p⃗]

Proof: This proof follows by induction on C, unrolling the definitions of the oper-
ators involved.

74

Appendix B

Decomposition of Sequential
Composition Execution

B.1 [Chor] Sequential Composition

We start by proving the following lemma:

⟨C1;C2,Σ,C ⟩ ⇓ Σ′′

⇒ ∃Σ′, ⟨C1,Σ,C ⟩ ↠ ⟨0,Σ′,C ⟩ ∧ ⟨C2,Σ
′,C ⟩ ⇓ Σ′′ (B.1)

Proof: We proceed by induction on · ⇓ ·

• case nil: This case is not possible because there are no C1, C2 such that 0 =
C1;C2. Thus the goal follows by ex-falso quodlibet.

• case step: the inductive case gives us the following hypothesis:

⟨C1;C2,Σ,C ⟩ → ⟨C⋆,Σ⋆,C ⟩ (H1)

∀C⋆
1 C⋆

2 , C⋆ = C⋆
1 ;C

⋆
2

⇒ ∃Σ♡, ⟨C⋆
1 ,Σ

⋆,C ⟩ → ⟨0,Σ♡,C ⟩ ∧ ⟨C⋆
2 ,Σ

♡,C ⟩ ⇓ Σ′′ (IH)

By inversion on (H1) we find two possible cases:

– ⟨C1,Σ,C ⟩ → ⟨C⋆
1 ,Σ

⋆,C ⟩ with C⋆ = C⋆
1 ;C2

– ⟨0;C2,Σ,C ⟩ → ⟨C2,Σ
⋆,C ⟩ thus with C⋆ = C2

Both cases follow easily from the previous hypothesis. □

75

B.2 Chor Sequential Composition

We finally prove the following statement:

⟨⌈C1 # C2⌉,Σ,C ⟩ ⇓ Σ′′

⇒ ∃Σ′, ⟨⌈C1⌉,Σ,C ⟩ ↠ ⟨0,Σ′,C ⟩ ∧ ⟨⌈C2⌉,Σ′,C ⟩ ⇓ Σ′′ (B.2)

Proof: We proceed by induction on C1:

• case 0: by definition of · # · we have that:

⌈C1 # C2⌉ = ⌈C2⌉

And the conclusion follows by reflexivity of · ↠ ·, with Σ′ = Σ

• case I1;C
′
1: As induction hypothesis we have that, for all Σ♡

⟨⌈C ′
1 # C2⌉,Σ♡,C ⟩ ⇓ Σ′′ ⇒ ∃Σ⋆, ⟨⌈C ′

1⌉,Σ♡,C ⟩ ↠ ⟨0,Σ⋆,C ⟩ ∧ ⟨⌈C2⌉,Σ⋆,C ⟩ ⇓ Σ′′

By definition of ⌈·⌉, · # · we have:

⌈C1 # C2⌉ = ⌈(I1;C ′
1) # C2⌉ = ⌈I1; (C ′

1 # C2)⌉ = ⌈I1⌉; ⌈C ′
1 # C2⌉

Using lemma (B.1) we find:

∃Σ♡, ⟨⌈I1⌉,Σ,C ⟩ ↠ ⟨0,Σ♡,C ⟩ ∧ ⟨⌈C ′
1 # C2⌉,Σ♡,C ⟩ ⇓ Σ′′

Thus we prove the goal by choosing Σ′ = Σ⋆ and constructing the following execution
(the extension of the semantics rule for ·; · to · ↠ · is assumed as obvious):

⟨⌈I1⌉; ⌈C ′
1⌉,Σ,C ⟩ ↠ ⟨0; ⌈C ′

1⌉,Σ♡,C ⟩
→ ⟨⌈C ′

1⌉,Σ♡,C ⟩ ↠ ⟨0,Σ⋆,C ⟩
∧ ⟨⌈C2⌉,Σ⋆,C ⟩ ⇓ Σ′′

□

76

Appendix C

Helper Lemmas for Constraint
Reconstruction

C.1 Monotonicity of ϕC

To define and prove monotonicity we first need to define an order relation on Proc-
Constr. We define it as follows:

δ1 ≤ δ2 ≜ ∀X, δ1 X ⊆ δ2 X

By unrolling the definition of ϕC the reduce the proof of monotonicity to the fol-
lowing theorem:

δ1 ≤ δ2 ∧ δ1, η ⊢ C ▷ E1 ∧ δ2, η ⊢ C ▷ E2 =⇒ E1 ⊆ E2

Proof:
We proceed by structural induction on C. The majority of cases are trivial because
the typing rules compute E1, E2 such that E1 = E2.
The only interesting case is C = X(p⃗). By inverting · ⊢ ·▷ · we find:

EX,1 ⊆ EX,2

Since ⊆ is preserved by equal substitutions the conclusion holds. □

C.2 Rewriting η in cansolve

We need to prove:

cansolve E[η/η′ ⊔ Ψ] Γ pc ∧ (∀pc′, [[Ψ]] Γ pc′ = ℓ)

=⇒ cansolve E Γ (pc ⊔ ℓ)

77

Proof:
By unfolding the definition of cansolve we can reduce the theorem to the following:

[[Ψ⋆[η/η′ ⊔ Ψ]]] Γ pc ⊑ Γ q.y ∧ (∀pc′, [[Ψ]] Γ pc′ = ℓ) =⇒ [[Ψ⋆]] Γ (pc ⊔ ℓ) ⊑ Γ q.y

We proceed by induction on Ψ⋆:

• case bottom: Trivial

• case p.x:
[[p.x[η/·]]] Γ pc = [[p.x]] Γ pc′ = Γ p.x

• case η:

[[η[η/η′ ⊔ Ψ]]] Γ pc = [[η′ ⊔ Ψ]] Γ pc = [[η′]] Γ pc ⊔ [[Ψ]] Γ pc = pc ⊔ ℓ

While simultaneously:
[[η]] Γ (pc ⊔ ℓ) = pc ⊔ ℓ

• case sup: This case follows easily using the inductive hypothesis,
[[Ψ⋆

1 ⊔ Ψ⋆
2]] = [[Ψ⋆

1]] ⊔ [[Ψ⋆
2]] and (Ψ⋆

1 ⊔ Ψ⋆
2)[η/·] = Ψ⋆

1[η/·] ⊔ Ψ⋆
2[η/·]

C.3 Substitution in cansolve

We need to show:

cansolve E[q⃗/p⃗] Γ pc =⇒ cansolve E Γ[q⃗ 7→ p⃗] pc

Proof:
For brevity we consider only the scalar case: the extension is trivial if q⃗ is taken
sufficiently fresh (as assumed in 4.1). By unfolding cansolve we reduce the theorem
to the following:

[[Ψ[q/p]]] Γ pc ⊑ Γ (r.y[q/p]) =⇒ [[Ψ]] Γ[q 7→ p] pc ⊑ Γ[q 7→ p] r.y

We proceed by induction on the structure of Ψ:

• case bottom: Trivial

• case s.x: We have:
[[s.x[q/p]]] Γ pc ⊑ Γ (r.y[q/p])

Which by definition of [[·]] can be rewritten into:

Γ (s.x[q/p]) ⊑ Γ (r.y[q/p])

78

While simultaneously we have:

[[s.x]] Γ[q 7→ p] pc ⊑ Γ[q 7→ p] r.y

Which can be rewritten into:

Γ[q 7→ p] s.x ⊑ Γ[q 7→ p] r.y

The equation of the two constraints follows from the following lemma:

Γ[q 7→ p] r = Γ r[q/p]

Which was proven in lean as part of the proof of the unwinding lemma (4.14).

• case η: Trivial

• case sup: This case follows easily using the inductive hypothesis,
[[Ψ⋆

1 ⊔ Ψ⋆
2]] = [[Ψ⋆

1]] ⊔ [[Ψ⋆
2]] and (Ψ⋆

1 ⊔ Ψ⋆
2)[η/·] = Ψ⋆

1[η/·] ⊔ Ψ⋆
2[η/·]

79

80

Bibliography

[1] Ajlan Al-Ajlan. The comparison between forward and backward chaining. In-
ternational Journal of Machine Learning and Computing, 5(2):106–113, 2015.

[2] Jose Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and
Michael Emmi. Verifying Constant-Time implementations. In 25th USENIX
Security Symposium (USENIX Security 16), pages 53–70, Austin, TX, August
2016. USENIX Association.

[3] Jeremy Avigad, Leonardo De Moura, and Soonho Kong. Theorem proving in
lean. 2021.

[4] Brian E Aydemir, Aaron Bohannon, Matthew Fairbairn, J Nathan Foster,
Benjamin C Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn,
Stephanie Weirich, and Steve Zdancewic. Mechanized metatheory for the
masses: The poplmark challenge. In International Conference on Theorem
Proving in Higher Order Logics, pages 50–65. Springer, 2005.

[5] Hendrik P Barendregt et al. The lambda calculus, volume 3. North-Holland
Amsterdam, 1984.

[6] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. On
global types and multi-party session. Logical Methods in Computer Science, 8,
2012.

[7] Thierry Coquand and Gérard Huet. The calculus of constructions. PhD thesis,
INRIA, 1986.

[8] Lúıs Cruz-Filipe and Fabrizio Montesi. A core model for choreographic pro-
gramming. Theoretical Computer Science, 802:38–66, 2020.

[9] Lúıs Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. A formal theory of
choreographic programming. Journal of Automated Reasoning, 67(2):21, 2023.

81

[10] Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and
Jakob von Raumer. The lean theorem prover (system description). In Interna-
tional Conference on Automated Deduction, pages 378–388. Springer, 2015.

[11] Dorothy E Denning. A lattice model of secure information flow. Communica-
tions of the ACM, 19(5):236–243, 1976.

[12] Joseph A Goguen and José Meseguer. Security policies and security models. In
1982 IEEE Symposium on Security and Privacy, pages 11–11. IEEE, 1982.

[13] John Harrison, Josef Urban, and Freek Wiedijk. History of interactive theorem
proving. In Handbook of the History of Logic, volume 9, pages 135–214. Elsevier,
2014.

[14] Daniel Hedin and Andrei Sabelfeld. A perspective on information-flow control.
In Software safety and security, pages 319–347. IOS Press, 2012.

[15] William A Howard et al. The formulae-as-types notion of construction. To HB
Curry: essays on combinatory logic, lambda calculus and formalism, 44:479–
490, 1980.

[16] International Organization for Standardization. ISO/IEC 27001:2022. https:
//www.iso.org/standard/82875.html, 2022. Accessed: 2025-07-11.

[17] Gilles Kahn. Natural semantics. In Annual symposium on theoretical aspects
of computer science, pages 22–39. Springer, 1987.

[18] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side channel crypt-
analysis of product ciphers. In European Symposium on Research in Computer
Security, pages 97–110. Springer, 1998.

[19] Jannis Limperg and Asta Halkjær From. Aesop: White-box best-first proof
search for lean. In Proceedings of the 12th ACM SIGPLAN International Con-
ference on Certified Programs and Proofs, pages 253–266, 2023.

[20] Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory, volume 9.
Bibliopolis Naples, 1984.

[21] The mathlib Community. mathlib4: The lean mathematical library for lean 4.
GitHub repository, 2025. Accessed 2025-10-04.

[22] Fabrizio Montesi. Introduction to Choreographies. Cambridge University Press,
2023.

82

[23] Fabrizio Montesi. Introduction to choreographies, 2023. Available at: https://
www.fabriziomontesi.com/introduction-to-choreographies/. Accessed:
2025-07-08.

[24] Andrew Myers. Proving noninterference for a while-language using small-step
operational semantics. 2011.

[25] Minh Ngo, Frank Piessens, and Tamara Rezk. Impossibility of precise and
sound termination-sensitive security enforcements. In 2018 IEEE Symposium
on Security and Privacy (SP), pages 496–513. IEEE, 2018.

[26] Hanne Riis Nielson and Flemming Nielson. Semantics with applications, volume
104. Springer, 1992.

[27] Benjamin C Pierce. Types and programming languages. MIT press, 2002.

[28] Gordon D Plotkin. The origins of structural operational semantics. The Journal
of Logic and Algebraic Programming, 60:3–15, 2004.

[29] Henry Gordon Rice. Classes of recursively enumerable sets and their decision
problems. Transactions of the American Mathematical society, 74(2):358–366,
1953.

[30] Andrei Sabelfeld and Andrew C Myers. Language-based information-flow se-
curity. IEEE Journal on selected areas in communications, 21(1):5–19, 2003.

[31] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. 1955.

[32] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type system for
secure flow analysis. Journal of computer security, 4(2-3):167–187, 1996.

[33] Dennis Volpano and Geoffrey Smith. Eliminating covert flows with minimum
typings. In Proceedings 10th Computer Security Foundations Workshop, pages
156–168. IEEE, 1997.

[34] Glynn Winskel. The formal semantics of programming languages: an introduc-
tion. MIT press, 1993.

[35] Andrew K Wright and Matthias Felleisen. A syntactic approach to type sound-
ness. Information and computation, 115(1):38–94, 1994.

[36] Xichen Zhang, Mohammad Mehdi Yadollahi, Sajjad Dadkhah, Haruna Isah,
Duc-Phong Le, and Ali A Ghorbani. Data breach: analysis, countermeasures
and challenges. International Journal of Information and Computer Security,
19(3-4):402–442, 2022.

83

84

Acknowledgments

Ringrazio la mia famiglia per avermi supportato e i miei amici per avermi sopportato
tra Italia, Francia e Danimarca.
Ringrazio inoltre i miei supervisor Marco Peressotti e Saverio Giallorenzo per avermi
a più riprese schiarito le idee sul miglior modo di affrontare i problemi presentatisi
durante la progettazione e stesura di questa tesi. Ringrazio Fabrizio Montesi e
Xueying Qin per avermi aiutato a dimostrare in Lean lemmi ben al di sopra della
mia capacità.

85

