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Introduction

One of the most actively studied topics in many areas of applied mathe-
matics is the theory of interacting particle systems. These statistical models
are used to describe any collection of particles, from theoretical notions to
real-world applications: such systems might represent a group of molecules
in a gas, a flock of birds, a crowd of people.

In fact, the study of particle systems dates back more than a century in statis-
tical mechanics, when physicists like Boltzmann and Maxwell were studying
the behavior of particles in a gas, laying the foundations for the various
thermodynamic laws that we know today. Boltzmann realized that it was
impractical to describe the exact configuration of over trillions of molecules.
Moreover, the molecules constantly collide into each other, a phenomenon
known as dependence in probability and statistics, which makes predicting
particle movements even harder: in any instant, a small change of the state
of one molecule could result in a much bigger and non-negligible difference
in the macroscopic scale. This is commonly known as the butterfly effect in
chaos theory. Because of all this, a statistical description is preferred: math-
ematical tools like empirical measures and stochastic processes need to be
used in order to reduce computational complexity.

For a simpler analysis, these particle systems are always assumed to be sym-
metric, evolving in a Polish state space: many results about convergence of
measures may not apply otherwise. The main concept behind propagation
of chaos is that for a large number of particles they behave almost inde-
pendently from one another. This property carries on as time evolves, as
discussed by Mark Kac in the 1950s [3], who was the one who defined chaos
in a mathematical sense and came up with the expression propagation of
chaos; Kac developed this idea during his studies about kinetic theory, but
his publications are still extended today, including machine learning, biology
and physics.
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INTRODUCTION

The goal of this thesis is to explore this asymptotic independence: for each
individual element in the system, we will use the empirical measure to define
an approximating distribution that approaches the true distribution in a rate
of O(1/N) for large Ns according to the total variation distance. This is a sig-
nificant quantitative bound, as the total variation distance is the strongest
and most intuitive amongst all metrics in the space of random measures.
Furthermore, this bound is uniform in time, that is, it holds at every time
instant.

Chapter 1 will introduce some key results about the total variation distance
and probability theory that will be used later. Chapter 2 describes the em-
pirical measures and their convergence: the aim is to show the differences
between the independent and identically distributed case and the opposite.
Finally, Chapter 3 will focus on propagation of chaos and the main setting
and achievements of this report; Section 3.1 is a brief review of infinite par-
ticle systems and remarkable contributions by de Finetti.
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Chapter 1

General results

1.1 Total variation distance

Definition 1.1 (Total variation distance). Let (£, dg) be a Polish space and
p,v two probability measures in P(E). The total variation distance between
w1 and v is defined by

= vlgy =2 _inf  P(X#Y).

XY ~v

We say that p converges to v in total variation norm if

n—o0

| = vllpy — 0.

This is the strongest norm amongst the different notions of distance in
the space of probability measures: intuitively, it shows the largest possible
difference between the probabilities assigned by two measures to the same
event.

Proposition 1.2. If i and v are two probability measures on a measurable
space (E,F), then it holds:

I = vllpy = 2sup |[u(A) —v(A)]
AeF

Proof. Since the total variation distance is defined with a coefficient 2 in
front of the infimum, we will prove that

inf P(X #Y)=sup|u(A) —v(A)|

Xeop,Y v AcF



1. General results

We adapt the proof found in Chapter 3 of [5]. Let X ~ pand Y ~ v. For
A € F we have

11(A) — v(A)] :‘ (P((X e A)N(X = Y)) + P((X € A)N (X # Y))
—<P((Y eAN(X=Y))+P((¥ € )N (X # Y)))

<[P((xenx=v)) - P((v e )n(x =7))|+

’P((XEA) (X%Y) (YeA X#Y))’:

:O+P(<(X eA)\(YeA)) ﬂ(X;«éY)) <P(X #£Y),

using the measure properties of monotonicity and additivity. We take the
supremium over A € F to obtain

sup [u(A) — v(A)| < P(X £Y),
AeF
which is true for all X ~ p and Y ~ v, meaning

sup |u(A) —v(A)| < y inf P(X#Y).
AeF

~p, Y~y
Now we need to construct a couple (X, Y') of random variables for which the
equality is true. We define p := 1 — sup .~ |u(A4) — v(A)| € [0,1] and study
each of the following cases:

1. If p = 0, then sup 7 |p(A) —v(A)] = 1 and the supports of pu and
v are disjoints. This gives > _pu(z)v(z) = 0. We can then choose
X ~ pand Y ~ v such that X and Y are two independent random

=Y () (z) =

zelR

variables. Therefore

2. If p =1, then supyc 7 |u(A) —v(A)| = 0 and p = v. We take X ~ pu
and Y = X.

3. If 0 < p < 1, then we define the following measure: p(x) A v(z) :=
min(u(z),v(x)). Let U ~ l(,u Av),V ~ Lp(,u —(pAv)) and W ~
l%p(u — (A v)). We notice that p=2 .ep (1(x) Nv(x)), because

1

> (@) M) = 5 D (u() + v(x) — |u(z) — v(@)]) =

zel zeE



1.1 Total variation distance

=1—sup |u(A) —v(A)] = p.
AeF

Now let B be a Bernoulli random variable independent of U, VW, with
P(B =1) :=p. We can finally define:

[ (WwU) ifB=1
<X’Y>_{(V,W) if B=0

This way we have X ~ p and Y ~ v, and P(V=W)=0 due to the
definition of the laws of V and W, thus

PX=Y)=PU=U)P(B=1)+P(V=W)P(B=0)=p

[

Remark 1.3. This characterization makes it easier to prove that the total

variation distance satisfies the properties of a distance: indeed, we have

I =vllpy = 0 and

It =vlpy =0 & suplu(d) —v(A)]=0 <«
AeF
s wA)—v(A)=0 VAeF & u=w.

Moreover, using the triangle inequality, it holds that ||g — vz < [ — Tllpv
+ |7 — V|| 7y, because

I = vllpy = sup [u(A) = v(A)| = sup [u(A) — 7(A) + 7(A) —v(4)] <
AeF AeF
< sup |u(A) = 7(A)| +sup [7(A) = v(A)| = |lp = 7llpy + IT7 = Vlpy
AeF AeF
Proposition 1.4. The total variation distance satisfies:

I =vllgy = sup
Illoo<1

[E poulds) - [ plopldo)

E

This is a dual representation of the total variation distance, often used in
analysis: we take the supremum of the expectation of a measurable bounded
function ¢ with respect to the measure p — v over all test functions .
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Proof. Let 7 := p— v (see [7]). Using the Hahn-Jordan decomposition, we
define two sets EY,E~ € F such that E*NE~ =0 and ETUE™ = E. We
also define

7 (A):=7(ANE") and 7 (A):=7(ANE")

which are two non-negative measures that satisfy 7 =7+ + 77,
Given a test function ¢ such that [|¢|_ <1,

/god,u—/godl/:/godT:/ gpdT*—/ pdr™ <
E E E B+ -

< /E+ 1drt — / (1) dr- =77(E)+7 (E)=27"(E)

where the latter equality holds because 0 = u(E) —v(E) = 7(E) = 71(F) —
7 (E). Likewise, [, ¢ dv— [, ¢ du < 277 (E). Moreover, we have an equality

/sodu—/sodv
E E

Furthermore, for any A € F we have

if Y = ]]_E+ — ﬂ-E*a thus

sup =277(E).

el <1

w(A) —v(A) =1(A)=77(A) — 7 (A) < 77(A) < 77(E) and similarly,

v(A) = w(A) = —7(A) =7 (A) =77 (A) <7 (A) < 7 (B) = 77(E).
This way |u(A) — v(A)| < 7F(FE), and we can achieve the equality if A = ET,

hence
/wdu—/wdv
E E

1
sup |(4) — v(4)| =7 (E) = 5 sup
AeF llello <1

1.2 Convergence of probability measures

Understanding the different types of convergence of probability measures
is a fundamental concept in probability theory and statistics [4]: a central
notion when studying sequences of measures is to determine how they behave
as they approach the limit measure. These tools will be necessary when
working with probability measures in the following sections.



1.2 Convergence of probability measures

Remark 1.5. Throughout this review, the expression (u, ) will be used as
an alternative notation for the integral of a test function ¢ over a measure

L.

Definition 1.6 (Weak convergence). A sequence of probability measures
(un) N converges weakly (or in distribution) towards p when

N—00
Vo € Co(E), (un, ) = (1,)
Since (un)n, p € P(E), the weak convergence in P(F) is defined as the
related weak-x convergence in Cy(E)*, given that P(F) is a subset of C,(E)*.
Remark 1.7. In probability theory, this means that

lim Efp(un)] = Elp(p)]

N—oo

for all ¢ € Cy(E)

We also recall other types of convergence for a more complete picture of
the topic.

Definition 1.8. We consider a sequence (X,,),en of random variables defined
on a probability space (2, F, P)

1. We say X,, converges in probability towards X if

lim P(|X,,— X|>¢)=0 Ve>D0.

n—oo
2. We say X,, converges in LP towards X for p > 1 if

lim E[|X, — X|"] =0.

n—oo
3. We say X,, converges almost surely towards X if

lim X, (w) = X(w)

n—o0

for almost every w € (.

Among all types of convergence, almost sure convergence is the strongest
. it requires that X, (w) converges to a limit for almost every outcome w. The
following result is an important milestone in probability theory and statistics
that we will use in the following sections.



1. General results

Theorem 1.9 (Strong Law of Large Numbers). Let (X,,)nen be a sequence
of independent and identically distributed random variables. We consider

1 n
My =~ ;X

which is the sample mean of the first n random wvariables of the sequence.
Then it holds:

M, "=° E[X;] almost surely.



Chapter 2

Empirical measures

This section will introduce a fundamental object in probability and statis-

tics. The empirical measure addresses the problem of approximating an un-
known probability measure through empirical samples. Empirical measures
is greatly used in many fields such as econometrics and finance. The approx-
imation improves as the sample size increases, which motivates the need of a
mathematical analysis in order to understand the different properties of the
true measure.
The ideal case occurs when the samples are independent and identically dis-
tributed, which allows us to apply some relevant results in Section 2.1. How-
ever, in many real-world situations, this assumption does not apply, since
there are often some dependencies, like in the study of finite particle sys-
tems; Section 2.2 is dedicated to a non-i.i.d setting as we try to preserve
some of the theoretical results using the concept of exchangeability.

2.1 [Il.i.d. setting

Definition 2.1 (Empirical measure). Let (X7, X5, ..., X,,) be a collection of
independent and identically distributed random variables with values in the
state space F/. The empirical measure associated to this sequence is defined

1 n
Hn t= ﬁzzl(sXv

For all n € N the empirical measure is a discrete probability measure

as:

which puts % mass on each sample. If p is the true probability measure, Port-

7
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manteau’s theorem grants weak convergence of (i, )nen towards g, meaning
[ f dun — [ f du for all bounded continuous functions f (see Appendix A).
However, convergence in total variation often fails as seen in the example
below.

Example 2.2. We choose X1, Xs,..., X, ~ UJ0,1], independent random
variables with the uniform distribution on [0,1]. The empirical measure will

be
1 n
Hn = E ;:1 5Xi'

We have 1, —3 1 weakly, where y is the Lebesgue measure on [0,1]. Indeed,
using the Strong Law of Large Numbers, we get

[ s =330y =S ) = [ o= [ ran

for all f € Cy(]0,1]). Now we define A4,, = {X1, Xo,..., X,,} € [0,1]: this is
a countable set for all n € N, meaning p(A,) = 0, thus

[t = pellpy = sup |pn(A) = p(A)] 2 [pn(An) — p(An)| =1 - 0] = 1.
AC[01]

So taking the limit n — oo, ||f, — ||, cannot converge to zero.

We recall that the cumulative distribution function (CDF) of a distribu-
tion y is a real valued function defined as F),(z) = p((—o0, z]); in our case,
the CDF of the empirical measure p, is

n

Fu(e) = (=00, ) = — 3" 1 (X0)

=1

which is called the empirical cumulative distribution function (ECDF). As n
goes to infinity, F;, converges uniformly to F), almost surely: this is stated
by Glivenko-Cantelli’s theorem, the idea of the proof uses the strong law of
large numbers, as

RS
- Y Loom)(Xi) “ Ellxy<n] = P(Xi < 2) = F,
=1



2.2 Non i.i.d setting

2.2 Non i.i.d setting

Since we need to link empirical measures to propagation of chaos, we
also have to consider non independent frameworks: this is because in a finite
particle system all the elements collide into each other (the particles are said
to interact), meaning that the particle distributions depend on each other. As
a result, every property in the last section usually fail: the only assumption
we need to make is some type of symmetry.

Definition 2.3 (Exchangeability). A family of random variables (X*);c; is
exzchangeable when the law of (X*);c; is invariant under every permutation
of a finite number of indexes i € I.

This means that the joint distribution of the sequence (Xi, X, ..., X,,)
equals the joint distribution of (X,a), Xo(2),..., Xo@m)) for any n € N and
any permutation ¢ € §,,. With this hypothesis, the empirical measure does
converge weakly to a (random) non fixed measure, which can depend on
different factors.

Example 2.4 (Pdélya urn). Suppose we have an urn with a black ball and
a white ball. At each iteration we draw a ball from the urn uniformly, we
reinsert it and add another ball of the same color. Let X,, = {b,w} indicate
the color drawn at the n-th iteration.

The variables X, Xs,..., X, are not i.i.d because every draw depends on
the previous ones, however they are exchangeable because the probability of
extracting a certain color sequence does not depend on the order but only
on the number of balls in the urn. Let’s define the empirical measure:

1

It evaluates the frequency of both outcomes in the first n draws, so p,(b) =

Number of blacks drawn in n iterations
n

fixed value « := lim,, o £ (b), which is drawn uniformly from [0,1]: conse-

. As n goes to infinity, this ratio converges to a

quently, we get
L == 1y = by + (1 — )by,

which is a Bernoulli random variable with a non fixed parameter «. Intu-
itively, if the first ball drawn is black, the second iteration will likely result
in a black draw, meaning « will likely be greater than 0.5.
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w; these are neither

Example 2.5. Let X,, ~ Be,, where p, =
identically distributed nor exchangeable. The empirical measure is charac-
terized by:

We want to prove that the empirical measure does not converge weakly.
Let’s assume it does converge to a random measure p: by choosing ¢ = id in
n—o0

Remark 1.7 we would get E[u,(1)] — E[u(1)], but this cannot be verified
by any measure p because

n

Elpa(1)] = - S E[(X = 1) = -3 p = Y0 00

, : 2n
=1 =1

is a real-valued sequence that does not converge as n — oo due to the
oscillations of the sine function.

These examples illustrate that exchangeability can still lead to weak con-
vergence of empirical measures, as opposed to Example 2.5.



Chapter 3

Propagation of chaos

So far we have illustrated the main tools about empirical measures and
their general properties. The final step of this thesis is to use these concepts
in order to establish the framework necessary for studying the propagation
of chaos.

Let us recall the setting and all the key assumptions:

e F is the state space, assumed to be Polish (i.e. separable and com-
pletely metrizable);

e We consider a system of N particles in F, described by:

XIN = (XtN)teI = (Xt17 T vXtN)tEI;

e Each element X7 is a stochastic process in the space E: it is a function
that keeps track of the position of the i-th particle at time ¢t € I = [0, T];

e We also assume that (X}, ..., XV) are exchangeable; this means that at
any time ¢, X}, ..., X}V are exchangeable according to Definition 2.3.
Since X}V is a finite system, the N particles, as well as the related
stochastic processes, are not independent: the particles interact with
each other and their trajectory is affected by collisions. Because of
this, for a large number of particles, it becomes impractical to work
with a microscopic description, as we need to keep track of every single
position. Therefore, a statistical analysis is required so that we can ap-
proximate the particles behavior without storing too much information;

11



3. Propagation of chaos

e We define f¥ € P(E") as the true joint distribution of the N-particle
system: it simply indicates the configuration of the system at time ¢
all at once;

e For bigger values of IV, it is best to use the empirical measure:

N
1
Hay = ;5)(; € P(E).

This type of approach is commonly used in various optimization prob-
lems: we choose to study a one dimensional object, which belongs to
P(FE), instead of fN € P(EN).

While the theory of propagation of chaos involves analyzing how stochastic
processes behave over time, it is helpful to first consider a static framework,
as the dynamic theory heavily relies on static results; it also enables us
to establish important approximation results (like the one in Theorem 3.2)
without dealing with time complexity. For this reason, from now on we will
drop the ¢ subscript and focus on the behavior of the particle system X% at
a fixed time in I.

If we consider the following bijective map

®: EN — P(E)

o N

we see that the law of the empirical measure is given by pyn ~ f¥N o ®! =:
FN. More precisely, there is a one-to-one mapping between the quotient
EN/S, and Py(E), where Py(E) indicates the space of empirical measures
of size N on E.

Lemma 3.1. Vo € C,(E), it holds that:

E[(pav, 0)] = (f',¢)

Proof. By simply applying exchangeability and linearity of the expected
value, we get:

E[(pav, )] =E {/E @(x)duXN(x)} =[ [%éwxz)] _
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LS 2/ D) = 5V [ @@ = (1)
0]

This relation allows to derive the first marginal of fV from the expecta-
tion of the empirical measure; thanks to the exchangeability we can actually
reconstruct the law of every particle. The k-marginals also match the natural
definition of marginal from the joint distribution for each 1 < k < N:

(¥ o) = (Y, op @ 150VR)

Theorem 3.2 (Approximation rate of marginals). For 1 < k < N, let the
moment measure F* € P(E¥) be defined by:

<ﬁk,¢k> :/ (V¥ op) FN(dv), Vi, € Cy(E").
P(E)

Then it holds that
< 2k(k —1)

k_ Tk
-7
I/ ¥

Proof. Given that F'V is the law of the random measure iy~ we get <ﬁk, gpk>
= <[E [uﬁm ,gpk> for all o, € Cy(E¥); so for any test function ¢y, we have:

<f’“,sok> = (E[u5k]  on) =

- L e e ) TR [ sk £ (@)

Using the symmetry of f* and the definition of marginal we also get:

fk Spk> / N' Z SOk 7"'7x0(k))fN(djN)

geSN

and we combine the two:

4<f'f—fk,w>\:1<fk,w>—<m>i:

( |Z§0k ‘Wz <MIN7()0k>) FN(dzY)

ocESN

<

sup
xNGEN

F 3 e ) = (i )|

.UESN
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We rewrite the first part as

1 o o 1 7 [
ngpk(iﬁ (1),,x(k)):m Z ka<.’L‘1,...,[Bk),

ocESN 1] 4eeeylf )
pairwise distinct

where Ay n := N!/(N — k)! represents the number of pairwise distinct tuples

(41, ...,1x) of integers between 1 and N, whereas for the second part we have:
1 i i
<M?}§;S@k>:m.2 cpk(xl,...,x’f):

1 . ,
= — Z gOk(xll,...,.TZk)+Rk7N,

U15eelk
pairwise distinct

where Ry n keeps track of the non pairwise distinct tuples (i.e. there is at
least one repetition). If we go back to the expression inside the supremum
we get:

1
ﬁ Z (pk(xO(l)a S ’xa(k)) - </JJ§J§? (Pk>

’ cESN

NF— A , ,
—| kN Z op(z™, ... 2"%) — Rpny| <

U150k
pairwise distinct

NF — Ay n AN Ap N
R A 1— =) =2 1— === ).

Lastly, we obtain that

Agn o i k—1\"
-2 Tl (-~ ) <1-(1-2—) ;
N* 1_! N)= N )

7=

<

using the formula (1 — z)* > 1 — kz for |x| < 1 from the binomial series we
get
-1\" —1
P (kY JEE D
N N
and we conclude by using Proposition 1.4. O

This theorem is a major result in the theory of propagation of chaos: it
provides a quantitative bound on the total variation norm between the k-
marginal f* and the k-th moment measure F*: their difference with respect
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to the strongest norm is controlled by a fixed constant which goes to zero as
N — 00, meaning that as the number of particles increases the k-th moment
measure characterizes the marginal f*.

From the probabilistic point of view, we can interpret the moment F* this
way: we sample a random measure v with distribution FV (which again is
the law of the empirical measure thv), then we sample k independent values
from v, thus forming the product measure v**, and we take the average of
v®* integrating over F'V.

We started our analysis with a system of interacting particles, however this
result shows that, as N increases, the laws of each particle (the k-marginals)
asymptotically become i.i.d: independent because of the definition of F* and
identically distributed due to the convergence of the empirical measure to
a random measure (Section 2.2). Natural extensions of these ideas can be
found in [3] using the notion of chaoticity developed by Kac: specifically,
given f € P(E), a sequence fV of symmetric probability measures on E¥ is
said to be f-chaotic when for any k € N and any function ¢, € Cy(EYN),

]\}l—r)noo <fN’ Pk X :ﬂ-®(N_k)> = <f®k’ ¢k> ’

This means that the k-marginal satisfies f* — f®* weakly.

3.1 Infinite particle systems

As anticipated in the previous section we will look at the highly studied
framework involving the limit N — oco. We will consider an infinite sequence
of exchangeable random variables X = (X3, X5, ...): like in the finite version
in Definition 2.3, the law of (X);c; is invariant under every permutation of an
infinite number of indexes i € I. Likewise, the set (Xj, Xy, ...) is described
by the infinite dimensional symmetric measure f*: for each £ € N we define
the k-marginal as the joint law of (X1, X, ..., X). Exchangeability is crucial
here so that the following compatibility relation is satisfied:

Vip; € Cy(E),  (f*,0; ®1%0) = (7, 0))

for 1 < j < k, which basically says that the j-marginal of f* is f7.
We also consider the infinite sequence of empirical measures: for N € N,

N
MUxyN = ZdX’
i=1
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Definition 3.3 (Moment measure). For £ € N the k-moment measure of
m € P(P(FE)) is defined by:

mr = / v (dv) € P(EY).
P(E)

Similar to Theorem 3.2 this is like saying <7Tk,g0k> =Er [<I/®k,90k>}
for o, € Cy(E¥); in addition, the moments (7%), satisfy the compatibility
property.

Definition 3.4 (Convergence determining subsets). A subset F C Cy(E)

is called convergence determining if, for any sequence (uy)y € P(E) and
w € P(E), the condition

N—xo

YoeF, (un, ) — (1)
implies that puy — p weakly.

Basically, whenever the set of test functions Cy(E) is too large it is suffi-
cient to only check test functions in a convergence determining subset. We
use the moment measures to prove the following characterization.

Proposition 3.5. A sequence (my)n € P(P(E)) of random measures con-
verges weakly towards m € P(P(FE)) if and only if

N—oo
mh 280k

for all k > 1.

Proof. The direct implication follows easily from the continuity of the maps
m — 7%, as we obtain:

(Wheoh= [ Ry T [ ) man = ()
P(E) P(E)

for ¢ € Cp(E) and for any k£ > 1.
Conversely, we consider the functions:

R,: P(E) — R
poo— (p® )

which are called monomial functions. The weak convergence of (mx)n to-
wards 7 implies that (my, R,) converges towards (m, R,) for all monomial
functions. The conclusion follows from [1], Lemma 3.9, by proving that the
subset generated by these functions is convergence determining. ]
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We now look at an important result due to de Finetti: the setting of the
classical de Finetti’s theorem is with Bernoulli random variables [2] but it
can be extended to generic E-valued random variables for some Polish space

E.

Theorem 3.6 (De Finetti). Let E be a locally compact Polish space. Con-
sider an infinite sequence (f™)n of symmetric probability measures on EN
which satisfy the usual compatibility relation. Then there exists a (unique)
measure T € P(P(E)) such that:

N =z .= /P(E) VN r(dv)

The opposite of de Finetti’s theorem is presented in the following repre-
sentation theorem: we are able to link empirical measures to infinite particle
systems.

Theorem 3.7 (De Finetti representation theorem). Let m € P(P(FE)). Then
there exists an infinite sequence of E-valued exchangeable random variables
(Xi)iew such that, for any k > 1, the joint law of (X1, ..., Xy) is 7%, More-
over, the limit
1t
i 20 € PUE)

exists almost surely and it is mw-distributed, or in other words the law of the
limit of the empirical measure is 7.

The first theorem states that an infinite exchangeable particle system
is always associated to a unique element in P(P(FE)), whereas the second
one says that a random measure can always be represented by an infinite
exchangeable particle system.

Example 3.8. Let E = {0, 1}, which means that P(E) contains all and only
probability measures of the form 7, = pd;+(1—p)dy, hence P(E) = [0, 1]. We
fix 7 = Uniform(0, 1): after sampling p from the uniform on [0, 1] we define
an infinite sequence of identically distributed random variables X; ~ Be,
which are conditionally independent, that is they are independent given the
value p sampled from 7. The sequence (X;);en is exchangeable because it
is infinite and 7, is discrete, hence we only consider the number of positive
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or negative outcomes and not their order. Furthermore we can compute the
joint law of (Xi,..., Xj) as:

1 k
P(Xl =1y 7Xk = xk) = / (szi<1 - p)lxi> W(dp) = 7T®k'
0 \i=1
Lastly about the empirical measure,

o
Mk—EiZI(SXi;

as usual, this represents the number of successes in k trials. Taking the limit
as k tends to infinity, we see that

1 k

pip(l) = T ;Xi 224 ) almost surely.

So the limit limy_,o pt5 exist almost surely and is equal to 7,; since p was
sampled form 7, this limit is decided from the distribution .



Appendix A

Portmanteau’s theorem

A good characterization of the weak convergence can be expressed in
Portmanteau’s theorem [6].

Theorem A.1. Let (P,)nen, P be probability measures. The following con-
ditions are equivalent:

i) P, converges weakly towards P;
i1) limsup,,_, . P,(F) < P(F) for all closed set F;
#ii) liminf, ., P,(A) > P(A) for all open set A;

i) lim, .o P,(B) = P(B) for all P-continuity sets B, that is a set B
which satisfies P(OB) = 0.

Proof. i) = ii). If d is the distance defined on the space E, we set d(z, F') :=
min,cp d(z, z). For € > 0, let us define f(x) := (1 — d(x, F)/e)*; this is a
bounded and (uniformly) continuous function on E because 0 < f(x) <1
for all z € F and |f(z) — f(y)| < d(z,y)/e. By definition, we have that
Ve € F, f(z) =1 and Vo € F*, f(x) = 0, where F* := {x € Eld(z, F) < €}.
Therefore for all x € F,

Ir(x) < f(z) < Lpe(x).

If we apply the expected value over P, and P, we obtain
P,(F) < /fdPn < P,(F°) and

P(F) < / fdP < P(F9).
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Using these inequalities, we get

limsup P, (F) < hmsup/fdP /fdP < P(F")
n—oo n— oo

and we conclude letting € — 0.

i1) < iii). Trivial by taking complements.

i1) & iit) = iv). For all sets B we have

P(B) > limsup P,(B) > limsup P,(B) >

n—oo n—o0

> liminf P,(B) > liminf P,(intB) > P(intB).

n—oo n—oo

If B is a P-continuity set then P(B) = P(B) = P(intB) and iv) follows.
iv) = i). Given a test function f € C,(E), we may assume without loss of
generality that 0 < f < 1 by linearity. U, := {x € E|f(z) > t} is an event,

SO we can write
0 1
/ fdp, / Po(Uy)dt — / P(UL)dt
0 0

and likewise for P. Since f is continuous, we have 0U; C {x € E|f(z) = t}:
this means that U; is a P-continuity set except for countably many ¢. We
conclude using iv) and the bounded convergence theorem:

/fdPn:/Ol Pn(Ut)dfﬁH—%o/O1 P(Ut)dt:/fdP.
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