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Introduzione

La nascita della teoria geometrica dei gruppi è attribuita al matematico
russo Mikhael Gromov con la pubblicazione nel 1987 del suo lavoro Hyper-
bolic groups ([3]). L’idea alla base dell’articolo, e successivamente di tutta la
teoria, è quella di studiare la struttura algebrica di un gruppo associandogli
una metrica, detta metrica della parola. Il principio fondante della teoria è
quindi quello di invertire il processo della topologia algebrica. La topologia
algebrica associa a oggetti geometrici degli invarianti algebrici, quali i gruppi
d’omotopia e d’omologia, studia questi oggetti e ricava proprietà di natura
geometrica. La teoria geometrica dei gruppi considera oggetti di natura al-
gebrica, ci associa una geometria e ricava proprietà di natura algebrica. Nel
suo lavoro Gromov definisce in particolare il concetto di iperbolicità di uno
spazio metrico, generalizzando le definizioni della geometria iperbolica. Lo
strumento combinatorico alla base della teoria è il grafo di Cayley associato
ad un gruppo e ad un suo insieme di generatori. Su di esso si definisce una
metrica e tale metrica viene poi ereditata dal gruppo. Il grafo di Cayley è il
ponte che permette di passare dall’interpretazione algebrica a quella geome-
trica. Al grafo di Cayley e ad altri argomenti di natura più combinatorica è
dedicato il primo capitolo di questa tesi. Sempre nel primo capitolo introdur-
remo il problema della parola, che poi risolveremo per i gruppi iperbolici nel
terzo capitolo. La natura locale dei gruppi visti come spazi metrici è banale.
La metrica della parola induce la topologia discreta sul gruppo e questo fa si
che le applicazione continue e le isometrie non siano adatte per studiare tali
spazi. Per questo introdurremo le quasi-isometrie, applicazioni che vedono
solo la natura globale degli oggetti e ignorano quella locale. Introdurremo
inoltre anche i concetti di geodetiche e quasi-geodetiche, definizioni indispen-
sabili per studiare la geometria di uno spazio metrico. Dimostreremo infine
il lemma di Švarc-Milnor, da molti considerato il teorema fondamentale della
teoria geometrica dei gruppi. Un’altra porzione molto importante e interes-
sante della teoria è lo studio delle azioni di gruppi su spazi metrici. Questa
parte, per quanto affascinante, non verrà trattata in dettaglio in questa tesi se
non per il lemma di Švarc-Milnor. Nell’ultimo capitolo definiremo finalmente
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Introduzione

gli spazi iperbolici usando il concetto di triangoli sottili. Questa definizione
non è quella originale data da Gromov ma è attribuita al matematico Ilya
Rips. Una caratteristica particolarmente interessante degli spazi iperbolici è
che in essi geodetiche e quasi-geodetiche sono strettamente legate. Questo le-
game verrà reso preciso dal teorema di stabilità e verrà usato per dimostrare
un risultato oltremodo utile che è l’invarianza per quasi-isometrie dell’iper-
bolicità. Risolveremo infine il problema della parola per gruppi iperbolici
usando le presentazioni di Dehn, introdotte per la prima volta dal matema-
tico tedesco Max Dehn per lo studio dei gruppi fondamentali delle superfici
orientabili di genere almeno 2. L’intuizione alla base della dimostrazione è
quella di sfruttare l’iperbolicità per trovare scorciatoie nei cammini chiusi
del grafo di Cayley che corrispondono a parole banali nel gruppo. Riuscire-
mo dunque a dimostrare una proprietà puramente algebrica (avere problema
della parola risolubile), usando proprietà geometriche del gruppo (l’iperbo-
licità). La principale risorsa usata per la stesura di questa tesi è il libro di
Clara Löh Geometric Group Theory, An Introduction [7].
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Capitolo 1

Teoria combinatoria dei gruppi

In questo capitolo introdurremo i concetti fondanti della teoria combina-
torica dei gruppi. Inizieremo con alcuni concetti preliminari di teoria delle
categorie, per poi passare alle definizioni di generatori, gruppo libero e descri-
zione di un gruppo tramite generatori e relazioni. Introdurremo il problema
della parola e dimostreremo che questo è risolubile per gruppi liberi. Daremo
alcune definizioni introduttive della teoria dei grafi, tra cui quelle di grafo,
cammino, ciclo e albero. Infine definiremo il grafo di Cayley associato a un
gruppo e ad un suo insieme di generatori, dimostrando poi che il grafo di
Cayley di un gruppo libero è un albero.

1.1 Teoria delle categorie

In questa sezione diamo una breve introduzione al linguaggio della teoria
delle categorie che useremo nelle sezioni e nei capitoli successivi.

Per una trattazione più approfondita si può consultare [6].

Definizione 1.1.1 (Categoria). Una Categoria C è il dato di

• Una classe Ob(C ) i cui elementi sono detti oggetti.

• Per ogni X, Y ∈ Ob(C ), un insieme HomC (X, Y ) i cui elementi sono
detti morfismi.

• Per ogni X, Y, Z ∈ Ob(C ) un’operazione

HomC (X, Y )× HomC (Y, Z) −→ HomC (X,Z)

(f, g) 7−→ g ◦ f

detta composizione.

1



1.1 Teoria delle categorie Teoria combinatoria dei gruppi

che verificano:

1. La composizione è associativa: per ogni X,Y, Z,W ∈ Ob(C ), f ∈
HomC (X, Y ), g ∈ HomC (Y, Z) e h ∈ HomC (Z,W ) si ha (h ◦ g) ◦ f =
h ◦ (g ◦ f).

2. Per ogni X ∈ Ob(C ) esiste idX ∈ HomC (X,X) tale che per ogni Y ∈
Ob(C ), f ∈ HomC (X, Y ) e g ∈ HomC (Y,X) si ha f ◦ idX = f e
idX ◦ g = g.

Notazione 1.1.2. I morfismi f ∈ HomC (X, Y ) vengono spesso denotati

f : X −→ Y oppure X
f−→ Y

Esempio 1.1.3.

• La classe degli insiemi, con morfismi le funzioni definisce una categoria
denotata Set.

• I gruppi insieme ai morfismi tra essi formano una categoria chiamata
Grp.

Definizione 1.1.4 (Isomorfismo). Siano C una categoria e f : X → Y un
morfismo. f è detto un isomorfismo se esiste g : Y → X tale che g◦f = idX
e f ◦ g = idY . In tal caso X e Y sono detti isomorfi.

Definizione 1.1.5 (Prodotto). Siano C una categoria e X,Y ∈ Ob(C ) due
oggetti. Un prodotto di X e Y è una tripla (P, p1, p2) dove P ∈ Ob(C )
è un oggetto e p1 : P → X, p2 : P → Y sono morfismi tali che per ogni
Z ∈ Ob(C ) e f : Z → X, g : Z → Y , esiste un unico morfismo h : P → Z
tale che il diagramma

Z

X P Y

f
h

g

p1p2

è commutativo. Con abuso di linguaggio chiamiamo prodotto sia la tripla
(P, p1, p2) che l’oggetto P ∈ C , sottintendendo l’esistenza delle mappe p1, p2.

Proposizione 1.1.6. Il prodotto di due oggetti, se esiste, è unico a meno
di isomorfismo. Cioè se X,Y ∈ C ammettono due prodotti (P, p1, p2) e
(P ′, p′1, p

′
2), allora P e P ′ sono isomorfi in C .
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Dimostrazione. Siano (P, p1, p2) e (P ′, p′1, p
′
2) prodotti. Allora esistono f :

P → P ′ e g : P ′ → P tali che

P

X P ′ Y

p1
f

p2

p′1p′2

P ′

X P Y

p′1 g
p′2

p1p2

commutano. In particolare f ◦ g e g ◦ f verificano ancora la proprietà della
definizione di prodotto, quindi per unicità f ◦ g = idP e g ◦ f = idP ′ .

Esempio 1.1.7. Siano G e H due gruppi. Allora il loro prodotto nella cate-
goria Grp è costituito dal prodotto insiemistico G × H con la struttura di
gruppo

(g, h) · (g′, h′) = (g · g′, h · h′)

Le mappe sono le proiezioni usuali.

La nozione duale a quella di prodotto è quella di coprodotto.

Definizione 1.1.8 (Coprodotto). Siano C una categoria e X, Y ∈ Ob(C )
due oggetti. Un coprodotto diX e Y è una tripla (C, i1, i2) dove C ∈ Ob(C )
è un oggetto e i1 : X → C, i2 : Y → C sono morfismi tali che per ogni
Z ∈ Ob(C ) e f : X → Z, g : Y → Z, esiste un unico morfismo h : C → Z
tale che il diagramma

Z

X C Y

f

i1

h
g

i2

è commutativo. Con abuso di linguaggio chiamiamo coprodotto sia la tripla
(C, i1, i2) che l’oggetto C ∈ C , sottintendendo l’esistenza delle mappe i1, i2.

Proprietà come quelle verificate da prodotto e coprodotto sono dette
proprietà universali.

Proposizione 1.1.9. Il coprodotto di due oggetti, se esiste, è unico a meno
di isomorfismo. Cioè se X,Y ∈ C ammettono due coprodotti (C, i1, i2) e
(C ′, i′1, i

′
2), allora C e C ′ sono isomorfi in C .

Dimostrazione. Analoga a 1.1.6.

Esempio 1.1.10. Siano A e B due insiemi. Allora esiste il coprodotto di A e
B in Set. Viene indicato con A⨿B e può essere definito come

A⨿B = (A× {1}) ∪ (B × {2}).
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Le mappe di inclusione sono

i : A −→ A⨿B

a 7−→ (a, 1)

j : B −→ A⨿B

b 7−→ (b, 2)

A ⨿ B viene chiamato unione disgiunta. Quando è chiaro a quale insieme
appartiene un elemento scriviamo a = (a, 1) e b = (b, 2).

Esempio 1.1.11. Il coprodotto nella categoria Grp viene indicato con G ∗H
e viene chiamato prodotto libero. Nella sezione successiva ne dimostreremo
l’esistenza.

1.2 Insiemi di generatori

Definizione 1.2.1 (Insieme di generatori). Siano G un gruppo e S ⊆ G.
Il sottogruppo generato da S in G è il più piccolo sottogruppo (rispetto
all’inclusione) di G contenente S e lo indichiamo con ⟨S⟩G. Se G è chiaro
dal contesto scriviamo semplicemente ⟨S⟩. Diciamo che S è un insieme di
generatori di G se G = ⟨S⟩G. Diciamo che G è finitamente generato se
esiste un insieme finito di generatori.

Esempio 1.2.2 (Z). Consideriamo il gruppo degli interi Z. Due possibili
insiemi di generatori sono

S1 = {1} S2 = {2, 3}

Esempio 1.2.3 (SL2(Z)). Consideriamo

SL2(Z) = {
(
a b
c d

)
∈ M2(Z) | ad− bc = 1}

e consideriamo gli elementi

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
.

Allora si ha

SL2(Z) = ⟨S, T ⟩.

Per una dimostrazione si può consultare [5].
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1.3 Generatori e relazioni

Definizione 1.3.1 (Gruppo libero). Sia S un insieme. Un gruppo libero
generato da S è il dato di un gruppo F e di una mappa i : S → G che
verifica la seguente proprietà universale: per ogni G gruppo e j : S → G
mappa, esiste un unico morfismo di gruppi φ : F → G tale che

S F

G
j

i

φ

commuta. Diciamo inoltre che F è liberamente generato da S.

Per semplicità con il termine gruppo libero ci riferiamo al gruppo F
sottintendendo la mappa i.

Osservazione 1.3.2. Se il gruppo libero esiste, allora è unico a meno di
isomorfismo.

Definizione 1.3.3 (Parole). Sia S un insieme non vuoto. Indichiamo con
S∗ l’insieme delle parole con lettere in S. Con ε indichiamo la parola vuota.

Teorema 1.3.4 (Esistenza del gruppo libero). Sia S un insieme. Allora
esiste il gruppo libero generato da S.

Dimostrazione. Sia W = (S ∪ S−1)
∗
dove con S−1 indichiamo l’insieme dei

simboli s−1 per s ∈ S. Definiamo l’insieme F red delle parole ridotte come

F red = {a1 · · · an ∈ W | ∀i ∈ {0, . . . , n− 1}, ai ̸= a−1
i+1}.

Su F red consideriamo l’operazione binaria

· : F red × F red −→ F red

(a1 · · · an, b1 · · · bm) 7−→ a1 · · · an−kbk+1 · · · bm

dove

k = max{i ∈ {1, . . . ,min(n,m)} | ∀j ∈ {1, . . . , i}, bj = a−1
n−j+1}.

Si verifica facilmente che (F red, ·) è un gruppo ed è liberamente generato da
S.
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In generale indichiamo con F (S) la classe di isomorfismo del gruppo li-
bero generato da S. Se vogliamo esplicitamente usare la descrizione della
dimostrazione scriviamo F red(S).
Perché è interessante il gruppo libero? F (S) rappresenta ‘il più piccolo grup-
po’ contenente S senza alcuna relazione tra i suoi elementi se non quelle
banali. Possiamo quindi usare F (S) come base per costruire tutti gli altri
gruppi aggiungendo delle relazioni.

Definizione 1.3.5 (Sottogruppo normale generato). Siano G un gruppo e
S ⊆ G. Chiamiamo sottogruppo normale generato da S in G il più
piccolo sottogruppo normale di G contenente S. Lo indichiamo con ⟨⟨S⟩⟩G,
⟨⟨S⟩⟩ se G è ovvio dal contesto.

Definizione 1.3.6 (Presentazione). Siano S un insieme e R ⊆ (S ∪ S−1)
∗
.

Definiamo il gruppo generato da S con relazioni R come

⟨S|R⟩ = F (S)/⟨⟨R⟩⟩F (S).

Se G è un gruppo e G ∼= ⟨S|R⟩, diciamo che ⟨S|R⟩ è una presentazione di
G.

Intuitivamente ⟨S|R⟩ è il gruppo che si ottiene uguagliando all’elemento
neutro tutte le parole in R.
Una notazione comoda nelle presentazioni è la seguente: se ab−1 ∈ R, allora
scriviamo a = b. Questa scrittura ha senso poiché in ⟨S|R⟩ vale ab−1 = e, e
quindi vale a = b.

Osservazione 1.3.7. Per ogni gruppo esiste una presentazione ovvia:

G ∼= ⟨{xg}g∈G | {xgxh = xg·h}g,h∈G}.

Esempio 1.3.8. Alcuni esempi di presentazioni sono i seguenti:

• F (S) = ⟨S|⟩

• Z2 ∼= ⟨a, b|ab = ba⟩ e più in generale

Zn ∼= ⟨a1, . . . , an|aiaj = ajai⟩.

• Indichiamo con Dn il gruppo delle simmetrie dell’n-agono regolare.
Allora

Dn
∼= ⟨r, s|rn = s2 = (sr)2 = e⟩.
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• Indichiamo con π1(Sg) il gruppo fondamentale della superficie di genere
g. Usando il teorema di Van Kampen si può mostrare che

π1(Sg) ∼= ⟨a1, b1, . . . , an, bn |
n∏

i=1

[ai, bi]⟩

dove [a, b] = aba−1b−1.

L’uso delle presentazioni è particolarmente utile per calcolare coprodotti
nella categoria dei gruppi.

Proposizione 1.3.9. Siano G1 e G2 gruppi. Supponiamo che abbiano pre-
sentazioni G1

∼= ⟨S1|R1⟩ e G2
∼= ⟨S2|R2⟩. Allora esiste il coprodotto di G1 e

G2 e vale
G1 ∗G2

∼= ⟨S1 ⨿ S2|R1 ⨿R2⟩.

Dimostrazione. A meno di isomorfismo possiamo lavorare con le presenta-
zioni di G1 e G2. Definiamo

i1 : ⟨S1|R1⟩ −→ ⟨S1 ⨿ S2|R1 ⨿R2⟩
[w] 7−→ φ[w]

i2 : ⟨S2|R2⟩ −→ ⟨S1 ⨿ S2|R1 ⨿R2⟩
[w] 7−→ φ[w]

Sfruttando le proprietà dell’unione disgiunta si dimostra che ⟨S1⨿S2|R1⨿
R2⟩ insieme alle mappe i1 e i2 è effettivamente un coprodotto di G1 con
G2.

Definizione 1.3.10 (Finitamente presentato). Sia G un gruppo. Diciamo
che G è finitamente presentato se esistono S e R insiemi finiti tali che
G ∼= ⟨S|R⟩.

1.4 Il problema della parola

Definizione 1.4.1 (Problema della parola risolubile). Data una presenta-
zione ⟨S|R⟩ diciamo che questa ha problema della parola risolubile se
esiste un algoritmo che presa in input una parola w ∈ (S ∪ S−1)∗ determina
se questa è l’elemento neutro del gruppo.

Osserviamo come verificare se due parole rappresentano lo stesso elemen-
to in ⟨S|R⟩ equivale a stabilire se la loro differenza in senso moltiplicativo è
l’identità.
In questo contesto la parola algoritmo è informale: quello che richiediamo è
una procedura che in un tempo finito permetta di risolvere il problema. Per



1.5 Cenni di teoria dei grafi Teoria combinatoria dei gruppi

un approccio più rigoroso si veda [10].
Il problema della parola nella sua forma più generale non ha soluzione,
neppure se ci si restringe ai gruppi finitamente presentati.

Teorema 1.4.2 (Novikov-Boon-Britton). Esiste un gruppo finitamente pre-
sentato con problema della parola irrisolubile.

Dimostrazione. Per una dimostrazione si veda [10].

Per ovviare a questo problema ci si restringe allo studio di alcune classi
particolari di gruppi. Un esempio importante sono i gruppi liberi.

Teorema 1.4.3. I gruppi liberi hanno problema della parola risolubile.

Dimostrazione. Sia S un insieme e ⟨S|⟩ la presentazione del gruppo libero su
S. Sia w una parola.

• Se w è la parola vuota abbiamo finito.

• Se w non è vuota ed è ridotta allora non è l’elemento neutro.

• Se w non è vuota e non è ridotta allora eliminiamo una sottoparola del
tipo aa−1 oppure a−1a e ritorniamo al punto iniziale.

Ad ogni passo la lunghezza della parola diminuisce quindi il procedimento
termina in tempo finito.

Nel capitolo 3 introdurremo i gruppi iperbolici e mostreremo che anch’essi
hanno problema della parola risolubile.

1.5 Cenni di teoria dei grafi

Definizione 1.5.1 (Grafo). Un grafo Γ è una coppia (V,E) dove

• V è un insieme non vuoto.

• E è un sottoinsieme (possibilmente vuoto) di V [2] = {e ⊆ V | |e| = 2}.

Gli elementi di V sono detti vertici, quelli di E sono detti lati.

Osservazione 1.5.2. La definizione data non tiene conto della presenza di loop
(lati che hanno per estremi lo stesso vertice) e non tiene conto della presenza
di più lati tra due vertici. Viene anche ignorata la possibile orientazione dei
lati. Questo approccio segue [7] e ha il vantaggio di minimizzare la com-
plessità combinatorica. In letteratura sono presenti molte altre definizioni
che includono le varianti menzionate sopra. Un esempio in cui vengono usati
grafi orientati è [11].
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Chiamiamo grado di un vertice v ∈ V il numero di vertici adiacenti ad
esso, cioè la cardinalità di {w ∈ V | {v, w} ∈ E}.

Un grafo può essere rappresentato graficamente in questo modo: a ogni
vertice corrisponde un punto, e a ogni lato corrisponde un segmento congiun-
gente i suoi vertici.

Esempio 1.5.3. Poniamo

V = {1, 2, 3, 4, 5}

E = {{1, 2}, {2, 3}, {3, 4}, {5, 3}, {5, 4}}.

Allora Γ1 = (V,E) è un grafo in cui, ad esempio, i vertici 5 e 4 sono adiacenti
e il grado di 4 è 3. La rappresentazione grafica di Γ è in figura 1.1.

Altri esempi di grafi Figura (1.1) sono i seguenti:

Γ2 = ({1, 2, 3, 4}, {{1, 2}, {2, 3}, {3, 1}})
Γ3 = ({1, . . . , 5}, {{i, j}|∀i ̸= j ∈ {1, . . . , 5}})
Γ4 = ({1, . . . , 7}, {{1, 2}, {2, 3}, {2, 4}, {4, 5}, {4, 6}, {6, 7}})

1

2 3

4

5

Γ1

1

2

3

4

Γ2

1

2

3 4

5

Γ3

1 2

3

45

6

7

Γ4

Figura 1.1: Rappresentazioni grafiche di Γ1, Γ2, Γ3, Γ4
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Esempio 1.5.4 (Grafo infinito). Un esempio di grafo con un numero infinito
di vertici è il seguente:

Γ5 = ({(n, 0), (n, (−1)n) |n ∈ Z},
{{(n, 0), (n, (−1)n)}, {(n, 0), (n+ 1, 0)} |n ∈ Z})

avente diagramma:

(0,0)

(0,1)

(1,0)

(1,-1)

(-1,0)

(-1,-1)

· · · · · ·

Definizione 1.5.5 (Cammino, cammino semplice). Sia Γ = (V,E) un grafo.
Un cammino in Γ di lunghezza n ∈ N è una lista ordinata di n + 1 vertici
(v0, . . . , vn) tali che per ogni i = 0, . . . , n− 1 {vi, vi+1} ∈ E. Un cammino è
detto semplice se non ci sono ripetizioni nei vertici.

Definizione 1.5.6 (Grafo connesso). Un grafo è connesso se per ogni coppia
di vertici esiste un cammino che li congiunge.

Esempio 1.5.7. I grafi Γ1, Γ3 e Γ4 dell’esempio 4 sono connessi, Γ2 non lo è.

Proposizione 1.5.8. Siano Γ = (V,E) un grafo, v, w ∈ V . Se esiste
un cammino che congiunge v e w, allora esiste un cammino semplice che
congiunge v e w.

Dimostrazione. Sia (v0, . . . , vn) un cammino tra v e w. Se in v0, . . . , vn non
ci sono ripetizioni, allora è un cammino semplice. Altrimenti esistono i, j ∈
{0, . . . , n} tali che i < j e vi = vj. Allora si può considerare il cammino
(v0, . . . , vi, vj+1, . . . , vn) di lunghezza minore di n. Induttivamente si ottiene
un cammino semplice tra v e w.

Definizione 1.5.9 (Ciclo). Sia Γ = (V,E) un grafo. Un ciclo in Γ è un cam-
mino (v0, . . . , vn) in cui v0 = vn. Un ciclo è detto semplice se ha lunghezza
n ≥ 3 e, a meno degli estremi, non ci sono ripetizioni nei vertici.

Esempio 1.5.10. (1, 4, 3, 2), (1, 2, 3), (4, 5, 2, 3) sono cicli semplici rispettiva-
mente in Γ1, Γ2 e Γ3 dell’esempio 4.
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Una famiglia particolarmente importante di grafi è costituita dagli alberi.

Definizione 1.5.11 (Albero). Un albero è un grafo connesso senza cicli
semplici.

Esempio 1.5.12. Nelle notazioni precedenti i grafi Γ1, Γ2 e Γ3 non sono alberi,
Γ4 e Γ5 lo sono.

Proposizione 1.5.13 (Caratterizzazione degli alberi). Un grafo è un albero
se e solo se per ogni coppia di vertici esiste un unico cammino semplice che
li congiunge.

Dimostrazione. Sia Γ un albero e siano v, v′ ∈ V due vertici. Per ipotesi Γ
è connesso, quindi per la proposizione 1.5.8 esiste un cammino semplice tra
v e v′. Dimostriamo l’unicità. Siano γ = (v0, . . . , vn) e γ′ = (v′0, . . . , v

′
m) due

cammini semplici tra v e v′. Se n = 0, allora per l’assenza di ripetizioni in
un cammino semplice m = 0. Supponiamo n ≥ 1. Definiamo

i = min{k ∈ {1, . . . , n} | vk è un vertice di γ}.

L’insieme è non vuoto poiché vn = v′m. Sia j ∈ {1, . . . ,m} tale che vi = v′j.
Se i > 1 oppure j > 1, allora

(v0, . . . , vi = v′j, v
′
j−1, . . . , v

′
1)

è un cammino semplice di lunghezza i+ j−1 ≥ 2, quindi è un ciclo. Dunque
i = j = 1 e la tesi segue per induzione sui cammini (v1, . . . , vn) e (v

′
1, . . . , v

′
m).

Viceversa supponiamo che ogni coppia di vertici sia connessa da esatta-
mente un cammino semplice. Ovviamente Γ è connesso. Se (v0, . . . , vn−1) è
un ciclo, allora (v0, . . . , vn−1) e (v0, vn−1) sono due cammini semplici distinti
(n ≥ 3) che congiungono v0 e vn−1.

Quando due grafi sono isomorfi? La risposta più sensata è quando, a
meno di rinominare i vertici, le due strutture di grafo sono le stesse.

Definizione 1.5.14 (Isomorfismo di grafi). Siano Γ1 = (V1, E1) e Γ2 =
(V2, E2) due grafi. Un isomorfismo tra Γ1 e Γ2 è una funzione biunivoca
f : V1 → V2 tale che

∀{v, w} ∈ E
[2]
1 , {v, w} ∈ E1 ⇐⇒ {f(v), f(w)} ∈ E2.

Se Γ1 = Γ2 = Γ, allora gli isomorfismi vengono chiamati automorfismi.
L’insieme degli automorfismi di un grafo Γ viene indicato con Aut(Γ).
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Osservazione 1.5.15. La classe dei grafi insieme agli isomorfismi tra essi forma
una categoria.

Osservazione 1.5.16. Aut(Γ) forma un gruppo rispetto alla composizione.

La definizione di automorfismi di grafi permette di definire cosa significa
per un gruppo agire su un grafo.

Definizione 1.5.17 (Azione di un gruppo su un grafo). Siano G un gruppo
e Γ = (V,E) un grafo. Un’azione di G su Γ è il dato di un morfismo di
gruppi G → Aut(Γ).

Lo studio delle azioni di gruppi su grafi ha una teoria particolarmente
ricca. A tale riguardo menzioniamo la teoria di Basse-Serre [11] che studia e
classifica in modo completo le azioni di gruppi su alberi.

1.6 Grafi di Cayley

Lo scopo della teoria combinatorica dei gruppi è quello di studiare i gruppi
associandogli degli invarianti di tipo combinatorico. Uno di questi invarianti
è costituito dal grafo di Cayley.

Definizione 1.6.1 (Grafo di Cayley). Siano G un gruppo e sia S ⊆ G un
insieme di generatori per G. Chiamiamo grafo di Cayley il grafo

Cay(G,S) = (G, {{g, g · s} | g ∈ G, s ∈ (S ∪ S−1) \ {e}}).
Osservazione 1.6.2. Per definizione Cay(G,S) = Cay(G,S ∪ S−1).

Osservazione 1.6.3. Cay(G,S) è regolare nel senso che il grado di ogni vertice
è costante ed uguale a |(S ∪ S−1) \ {e}|.
Esempio 1.6.4.

• Su Z possiamo considerare gli insiemi di generatori {1} e {2, 3}, i due
grafi di Cayley associati sono:

0 1 2-1-2
· · ·· · · Cay(Z, {1})

· · ·· · · Cay(Z, {2, 3})

0 1 2-1-2

Figura 1.2: Alcuni grafi di Cayley di Z
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• Cay(Z/6, {1}) è un esagono:

34

5

0 1

2

Figura 1.3: Cay(Z/n, {1})

Analogamente Cay(Z/n, {1}) è un n-agono. L’unica eccezione è costi-
tuita da Cay(Z/2, {1}) che è un segmento:

• Sia D4 = ⟨r, s | r4 = s2 = (rs)2 = e⟩. Allora Cay(D4, {r, s}) è

e

r3 r2

r

s

r3s r2s

rs

Figura 1.4: Cay(D4, {r, s})

• Cay(F (a, b), {a, b}) è un albero con una struttura ricorsiva:
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e a

ab

ab−1

a2

b

a−1

b−1

Figura 1.5: Cay(F (a, b), {a, b})

Proposizione 1.6.5. Siano G un gruppo e S ⊆ G un insieme di generatori.
Allora Cay(G,S) è connesso.

Dimostrazione. Siano g, h ∈ G. Scriviamo g−1h = s1 · · · sn con si ∈ S ∪S−1.
Allora (g, g · s1, g · s1 · s2, . . . , g · s1 · · · sn = h) è un cammino tra g e h.

L’idea alla base del grafo di Cayley è che ad ogni ciclo nel grafo corri-
sponde una relazione nei generatori. Sfruttando questa intuizione si ottiene
la seguente proposizione.

Proposizione 1.6.6. Sia S un insieme. Allora Cay(F (S), S) è un albero.

Dimostrazione. Usiamo la descrizione di F (S) con le parole ridotte. Suppo-
niamo esista un ciclo semplice (g, g · s1, . . . , g · s1 · · · sn−1, g · s1 · · · sn). Poiché
il ciclo è semplice si ha che la parola s1 · · · sn è ridotta. Per la condizione di
ciclo s1 · · · sn = e. Assurdo.



Capitolo 2

Teoria geometrica dei gruppi

In questo capitolo introdurremo gli strumenti principali della teoria geo-
metrica dei gruppi. Partiremo con le definizioni di isometrie, equivalenze
bilipschitziane e quasi-isometrie, mettendone in evidenza le principali diffe-
renze. Definiremo poi una metrica sui grafi connessi e la utilizzeremo per
introdurre la metrica della parola sui gruppi. Daremo quindi le definizioni di
spazi geodetici, spazi quasi-geodetici e realizzazione geometrica di un grafo,
mostrando che quest’ultima è geodetica e quasi-isometrica al grafo stesso.
Infine enunceremo e dimostreremo il lemma di Švarc-Milnor e ne daremo due
interessanti corollari.

2.1 Quasi-isometrie

Iniziamo ricordando la definizione di spazio metrico.

Definizione 2.1.1 (Spazio metrico). Uno spazio metrico è il dato di un
insieme X non vuoto e di una funzione d : X × X → R, detta metrica o
distanza, tali per cui valgono le seguenti proprietà:

1. Positività:

∀x, y ∈ X, d(x, y) ≥ 0 e d(x, y) = 0 ⇐⇒ x = y.

2. Simmetria:

∀x, y ∈ X, d(x, y) = d(y, x).

3. Disuguaglianza triangolare:

∀x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y).

15
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Quando non c’è ambiguità indichiamo conX lo spazio metrico sottintendendo
la metrica d.

Per una trattazione completa sugli spazi metrici e sulla loro topologia si
può vedere [8].

Vogliamo definire una categoria i cui oggetti sono gli spazi metrici. Quali
dovrebbero essere i morfismi in questa categoria? La risposta non è scontata
e varia a seconda del contesto. Le definizioni di morfismi per noi più interes-
santi sono tre. La prima è quella di immersione isometrica ed è la più rigida
tra le tre. La seconda è quella di immersione bilipschitziana, meno rigida
delle isometrie ma ancora abbastanza restrittiva. Infine la terza è quella di
immersione quasi-isometrica che, oltre ad essere la più lasca, è quella che per
noi sarà più interessante.

Definizione 2.1.2 (Immersione isometrica). Siano (X, dX), (Y, dY ) spazi
metrici e f : X → Y una funzione. f è detta immersione isometrica se
per ogni x, x′ ∈ X vale

dY (f(x), f(x
′)) = dX(x, x

′).

Osserviamo che le immersioni isometriche sono iniettive. La classe degli
spazi metrici insieme alle immersioni isometriche forma una categoria de-
notata IMet. Gli isomorfismi in IMet sono, per definizione, immersioni
isometriche f : X → Y tali che esiste g : Y → X e valgono f ◦ g = idY ,
g ◦ f = idX . Si verifica facilmente che f è un isomorfismo se e solo se è
una immersione isometrica suriettiva. Gli isomorfismi in IMet sono detti
isometrie.

Definizione 2.1.3 (Immersione bilipschitziana). Siano (X, dX) e (Y, dY ) spa-
zi metrici e f : X → Y una funzione. Diciamo che f è una immersione
bilipschitziana se esiste c ∈ R+ tale che

∀x, x′ ∈ X,
1

c
· dX(x, x′) ≤ dY (f(x), f(x

′)) ≤ c · dX(x, x′).

La composizione di immersioni bilipschitziane è ancora una immersione
bilipschitziana. Infatti se f : X → Y e g : Y → Z sono immersioni bi-
lipschitziane di costanti rispettivamente c e c′, allora per ogni x, x′ ∈ X si
ha

1

c · c′
· dX(x, x′) ≤ 1

c′
· dY (f(x), f(x′)

≤ dZ(g(f(x)), g(f(x
′))

≤ c · dY (f(x), f(x′)

≤ c · c′ · dX(x, x′).
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Gli spazi metrici insieme alle immersioni bilipschitziane formano quindi una
categoria denotata BMet. Gli isomorfismi in BMet sono detti equivalenze
bilipschitziane.

Osservazione 2.1.4. Le immersioni bilipschitziane sono iniettive e, come per
le immersioni isometriche, si ha che un’immersione bilipschitziana è una
equivalenza se e solo se è suriettiva.

In particolare si ha che sia le isometrie che le equivalenze bilipschitzia-
ne sono omeomorfismi rispetto alla topologia indotta dalle metriche. Quin-
di entrambi i tipi di isomorfismo ricordano le proprietà locali degli spazi
considerati e sono abbastanza rigidi.

Definizione 2.1.5 (Immersione quasi-isometrica). Siano (X, dX), (Y, dY )
spazi metrici e f : X → Y una funzione. f è detta una immersione
quasi-isometrica di costanti c > 0 e b ≥ 0 se vale

∀x, x′ ∈ X,
1

c
· dX(x, x′)− b ≤ dY (f(x), f(y)) ≤ c · dX(x, x′) + b.

Osservazione 2.1.6. Se esistono c1, c2 > 0 e b1, b2 ≥ 0 tali che

∀x, x′ ∈ X,
1

c 1
· d(x, x′)− b1 ≤ d(f(x), f(x′)) ≤ c2 · d(x, x′) + b2

allora f è un’immersione quasi-isometrica. Infatti le costanti c = max(c1, c2)
e b = max(b1, b2) verificano la definizione.

In modo analogo a quanto fatto sopra si mostra che composizione di
immersioni quasi-isometriche è un’immersione quasi-isometrica. Si ottiene
quindi la categoria QMet′ i cui oggetti sono gli spazi metrici e i morfismi le
immersioni quasi-isometriche.

Definizione 2.1.7 (Distanza finita tra funzioni). Siano X, Y spazi metrici
e f, g : X → Y due funzioni. Diciamo che f e g hanno distanza finita se
esiste c ≥ 0 tale che

∀x ∈ X, d(f(x), g(x)) ≤ c.

Proposizione 2.1.8. Una qualsiasi mappa che ha distanza finita da un’im-
mersione quasi-isometrica è un’immersione quasi-isometrica.

Dimostrazione. Siano f : X → Y un’immersione quasi-isometrica di costanti
c, b e sia g : X → Y a distanza finita da f con costante d ≥ 0. Per ogni
x, x′ ∈ X si ha

d(g(x), g(x′)) ≤ d(g(x), f(x)) + d(f(x), f(x′)) + d(f(x′), g(x′))

≤ d+ c · d(x, x′) + b+ d

= c · d(x, x′) + 2d+ b
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e

d(x, x′) ≤ c · d(f(x), f(x′)) + c · b
≤ c · (d(f(x), g(x)) + d(g(x), g(x′)) + d(g(x′), f(x′))) + c · b
≤ c · d(g(x), g(x′)) + 2c · d+ c · b.

Quindi g è un’immersione quasi-isometrica.

Avere distanza finita è una relazione d’equivalenza sull’insieme dei mor-
fismi tra due spazi metrici nella categoria QMet′. Vogliamo dimostrare che
quozientando i morfismi rispetto alla relazione si ottiene una categoria. La
categoria quoziente è denotata QMet.

Proposizione 2.1.9. Siano X, Y, Z spazi metrici e f, g : X → Y due mappe
a distanza finita.

1. Se h : Y → Z è un’immersione quasi-isometrica, allora h◦f ha distanza
finita da h ◦ g.

2. Se h : Z → X è una mappa, allora f ◦ h ha distanza finita da g ◦ h.

Dimostrazione. Seguono entrambe in modo banale dalle definizioni. Suppo-
niamo che per ogni x ∈ X si abbia d(f(x), g(x) ≤ d.

1. Se le costanti di h sono c, b, allora per ogni x ∈ X si ha

d(h(f(x)), h(g(x)) ≤ c · d(f(x), g(x)) + b ≤ c · d+ b.

2. Sia z ∈ Z. Allora d(f(h(z)), g(h(z))) ≤ d.

Definiamo quindi la categoria QMet che ha come oggetti gli spazi metrici
e come morfismi

HomQMet(X, Y ) = HomQMet′(X, Y )/distanza finita.

La composizione è il passaggio al quoziente della composizione di funzioni:

HomQMet(X, Y )× HomQMet(Y, Z) −→ HomQMet(X,Z)

([f ], [g]) 7−→ [f ◦ g]

dove X,Y, Z sono spazi metrici. La proposizione garantisce che tale mappa
è ben posta.
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Gli isomorfismi in QMet vengono chiamati quasi-isometrie. Per de-
finizione una quasi-isometria tra due spazi metrici X e Y è una classe d’e-
quivalenza [f ] ∈ HomQMet(X, Y ), tale per cui esiste [g] ∈ HomQMet(Y,X)
e valgono [f ] ◦ [g] = [idY ] e [g] ◦ [f ] = [idX ]. In modo più esplicito una
quasi-isometria è il dato di due immersioni quasi-isometriche f : X → Y e
g : Y → X tali che f ◦ g e g ◦ f hanno distanza finita rispettivamente da idY
e idX . La seguente proposizione permette di caratterizzare le quasi-isometrie
in modo più diretto.

Definizione 2.1.10 (Sottospazi quasi-densi). Siano X uno spazio metrico e
A ⊆ X un sottoinsieme. A è detto quasi-denso se esiste c ≥ 0 tale che

∀x ∈ X,∃a ∈ A : d(x, a) ≤ c.

Proposizione 2.1.11 (Caratterizzazione delle quasi-isometrie). Siano X, Y
spazi metrici e f : X → Y una mappa. Allora f è una quasi-isometria se e
solo se è un’immersione quasi-isometrica con immagine quasi-densa.

Dimostrazione. Supponiamo che f sia una quasi-isometria. Allora esiste g :
Y → X immersione quasi-isometrica tale che f ◦ g ha distanza finita da idY .
Sia c ≥ 0 tale che d(f(g(y)), y) ≤ c per ogni y ∈ Y . Allora Im(f) è quasi-
denso in Y . Viceversa supponiamo che f sia un’immersione quasi-isometrica
con costanti (c, b) e che Im(f) sia quasi-densa con costante d. Quindi per
ogni y ∈ Y , esiste g(y) ∈ X tale che d(y, f(g(y))) ≤ d. Vogliamo mostrare
che la funzione g : Y → X cos̀ı costruita è una quasi-inversa di f . Per
definizione di g la distanza tra f ◦ g e idY è al più d. Sia x ∈ X. Allora

d(g(f(x)), x) ≤ c · d(f(g(f(x))), f(x)) + c · b
≤ c · d+ c · d.

Quindi g ◦ f ha distanza finita da idX . Manca dimostrare che g è un’immer-
sione quasi-isometrica. Siano y, y′ ∈ Y . Segue che

d(y, y′) ≤ d(y, f(g(y))) + d(f(g(y)), f(g(y′))) + d(f(g(y′)), y′)

≤ c · d(g(y), g(y′)) + b+ 2d.

Inoltre si ha

c · d(g(y), g(y′))− b ≤ d(f(g(y)), f(g(y′)))

≤ d(f(g(y)), y) + d(y, y′) + d(y′, f(g(y′)))

≤ 2d+ d(y, y′).

Riscrivendo la disuguaglianza si ottiene la tesi.
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Se tra due spazi metrici esiste una quasi-isometria, allora diciamo che
sono quasi-isometrici.

Osservazione 2.1.12. Segue dalle definizioni che ogni isometria è un’equi-
valenza bilipschitziana e che ogni equivalenza bilipschitziana è una quasi-
isometria. In generale le inclusioni opposte sono false.

Esempio 2.1.13. L’esempio principale di quasi-isometria è dato dall’inclusione
i : Z ↪→ R e, più in generale, da i : Zn ↪→ Rn. Entrambe le mappe sono
infatti immersioni isometriche, quindi immersioni quasi-isometriche, e hanno
entrambe immagine quasi densa. Ogni punto di Rn dista al più 1 da un punto
a coordinate intere. Più esplicitamente una quasi inversa dell’inclusione di Z
in R è data da

R −→ Z
x 7−→ ⌊x⌋

Definizione 2.1.14 (Diametro). Siano X uno spazio metrico e A ⊆ X.
Chiamiamo diametro di A la quantità

diam(A) = sup{d(a, a′) | a, a′ ∈ A}.

Diciamo che A è limitato se diam(A) ∈ R.

Proposizione 2.1.15. Sia X uno spazio metrico. Allora X è quasi-isome-
trico ad uno spazio metrico limitato se e solo se X è limitato. In particolare
gli spazi metrici limitati formano un’unica classe di quasi-isometria.

Dimostrazione. Siano Y uno spazio metrico limitato quasi-isometrico a X.
Sia a la costante che limita la distanza in Y . Sia f : Y → X una quasi-
isometria di costanti c e b. Allora per ogni x, x′ ∈ X si ha

d(x, x′) ≤ c · d(f(x), f(x′)) + c · b
≤ c · a+ c · b.

Viceversa se X è limitato, allora X è quasi-isometrico a sé stesso.

Osserviamo come, al contrario delle isometrie e delle equivalenze bilipschi-
tziane, le quasi-isometrie non sono in generale iniettive, suriettive, o continue
e non mantengono informazioni locali come la dimensione.
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2.2 Metrica della parola

Prima di definire una metrica sui gruppi finitamente generati definiamo
il concetto più generale di metrica su un grafo connesso.

Definizione 2.2.1 (Metrica su grafi). Sia Γ = (V,E) un grafo connesso.
Definiamo dΓ : V × V → R come

dΓ(v, w) = min{l(γ) | γ è un cammino con estremi v e w}

per ogni v, w ∈ V . Con l(γ) indichiamo la lunghezza del cammino.

Proposizione 2.2.2. Sia Γ = (V,E) un grafo connesso. Allora dΓ è una
metrica su V .

Dimostrazione. Per definizione dΓ(v, w) ≥ 0 e dΓ(v, w) = 0 se e solo se v = w.
I cammini non sono orientati, quindi la simmetria di dΓ è ovvia. Manca la
disuguaglianza triangolare. Siano v1, v2, v3 ∈ V e siano γ1 e γ2 cammini con
estremi v1, v2 e v2, v3 rispettivamente che realizzano le distanze in Γ. Allora
concatenando γ1 con γ2 si ottiene un cammino γ tra v1 e v3 di lunghezza
l(γ1) + l(γ2). Quindi

dΓ(v1, v3) ≤ l(γ) = l(γ1) + l(γ2) = dΓ(v1, v2) + dΓ(v2, v3).

Osservazione 2.2.3. La topologia indotta da dΓ su V è quella discreta.

Definizione 2.2.4 (Metrica della parola). Siano G e S come sopra. Defi-
niamo la metrica della parola su G associata ad S come

dS(g, h) = dCay(G,S)(g, h)

= min{n ∈ N | ∃s1, . . . , sn ∈ S ∪ S−1 : g−1 · h = s1 · · · sn}.

Esempio 2.2.5. Consideriamo Z con l’insieme di generatori {1}. Allora la
metrica della parola coincide con la metrica euclidea indotta da R. Più in
generale consideriamo Zn con insieme di generatori

S = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}.

La metrica definita da S non è indotta dalla metrica euclidea, ma dalla
metrica l1:

d1((x1, . . . , xn), (y1, . . . , yn)) =
n∑

i=1

|xi − yi|.
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Osservazione 2.2.6. La metrica dS è invariante per traslazioni a sinistra, cioè
per ogni g, h, t ∈ G si ha

dS(g, h) = dS(t · g, t · h).

Come cambia la metrica indotta su G cambiando insieme di generatori?

Proposizione 2.2.7. Sia G un gruppo finitamente generato e siano S, T ⊆ G
due insiemi finiti di generatori. Allora idG : (G, dS) → (G, dT ) è un’equiva-
lenza bilipschitziana. In particolare se G è bilipschitzianamente equivalen-
te (o quasi-isometrico) a X spazio metrico rispetto ad un insieme finito di
generatori, allora lo è rispetto ad ogni altro insieme finito di generatori.

Dimostrazione. Vogliamo mostrare che esiste c ≥ 0 tale che per ogni g, h ∈ G
si ha

1

c
· dS(g, h) ≤ dT (g, h) ≤ c · dS(g, h).

Per ogni g, h ∈ G si ha che dS(g, h) = dS(g
−1h, e) e analogamente per dT .

Quindi possiamo dimostrare l’enunciato con h = e. Sia g ∈ G e sia

g = s1 · · · sn

la scrittura minimale di g con elementi di S ∪ S−1. Poiché S è finito si ha

c = max{dT (s, e) | s ∈ S} < +∞.

Dall’invarianza per traslazioni si ottiene

dT (g, e) = dT (s1 · · · sn, e)
≤ dT (s1 · · · sn, s1 · · · sn−1) + dT (s1 · · · sn−1, s1 · · · sn−1)+

+ . . .+ dT (s1, e)

= dT (sn, e) + dT (sn−1, e) + . . .+ dT (s1, e)

≤ c · n
= c · dS(g, e).

Invertendo i ruoli di S e T si ottiene l’altra disuguaglianza.

La classe di quasi-isometria di un gruppo finitamente generato è quindi
indipendente dall’insieme (finito) di generatori scelto. Potremo quindi dire
che G è quasi-isometrico a (X, d), sottintendendo che tale isomorfismo è
rispetto ad un qualsiasi insieme finito di generatori.
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Esempio 2.2.8. Consideriamo i gruppi Z e Z × Z/2 dove con Z/2 = {0, 1}
indichiamo il gruppo abeliano con due elementi. Allora Z è quasi-isometrico
a Z× Z/2. Infatti se si considera l’inclusione

i : Z −→ Z× Z/2
k 7−→ (k, 0)

allora questa è una immersione quasi-isometrica con immagine quasi densa.
Possiamo vedere questo guardando i grafi di Cayley. I grafi di Z e Z ×
Z/2 rispetto agli insiemi di generatori S1 = {1} e S2 = {(1, 0), (0, 1)} sono
rispettivamente

-1 0 1

Cay(Z, S1)
(-1, 0) (0,0) (1,0)

(-1,1) (0,1) (1,1)

Cay(Z× Z/2, S2)

L’inclusione i mappa isometricamente Cay(Z, S1) nel sottografo di
Cay(Z×Z/2, S2) disegnato in rosso in figura. Sempre dai grafi risulta ovvio
come ogni punto del grafo di Cayley di Z × Z/2 sia a distanza al più uno
dall’immagine di i.

2.3 Geodetiche e quasi-geodetiche

Definizione 2.3.1 (Geodetica). Sia (X, d) uno spazio metrico. Una geode-
tica in X è una isometria

γ : I −→ X

dove I ⊆ R è un intervallo. Se I = [a, b], allora la quantità b − a viene
chiamata lunghezza della geodetica e i punti γ(a), γ(b) vengono chiamati
estremi. (X, d) è detto geodetico se per ogni coppia di punti in X esiste
una geodetica con estremi quei punti.

Esempio 2.3.2. R è geodetico. Infatti siano x, y ∈ R con x ≤ y. Poniamo

γ : [0, L] −→ R

t 7−→ (1− t

L
) · x+

t

L
· y

dove L = y − x. Un semplice calcolo mostra che γ è una geodetica.
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Esempio 2.3.3. Analogamente all’esempio sopra si dimostra che Rn è geode-
tico.

Le geodetiche appena descritte sono le uniche in Rn.

Proposizione 2.3.4. Siano x0, y0 ∈ Rn. Allora, a meno di traslazioni nel
dominio, l’unica geodetica che ha per punto iniziale x0 e per punto finale y0
è

γ : [0, L] −→ Rn

t 7−→ (1− t

L
) · x0 +

t

L
· y0

Dimostrazione. Abbiamo già mostrato che la curva γ è una geodetica. Sia
η : [a, b] → Rn una geodetica avente per estremi x0 e y0. A meno di comporre
con t 7→ t+ a possiamo supporre a = 0 e b = L. Per ogni t ∈ [0, L] vale

d(x0, y0) = L = d(x0, η(t)) + d(η(t), y0).

Necessariamente si deve avere η(t) appartenente alla retta che congiunge x0

e y0 (altrimenti la disuguaglianza triangolare sarebbe stretta). Quindi esiste
α : [0, L] → R tale che

η(t) = (1− α(t))x0 + α(t)y0.

Per ipotesi η è una geodetica, quindi vale

|t| = ∥(1− α(t))x0 + α(t)y0 − x0∥ = |α(t)|∥y0 − x0∥ = L|α(t)|.

In particolare esiste ε : [0, L] → {±1} tale che

α(t) = ε(t) · t

L
.

Per continuità ε è costante e, siccome α(L) = 1, vale ε(t) = 1. η è quindi
della forma cercata.

Esempio 2.3.5. Un altro esempio di spazio geodetico in cui si possono classi-
ficare tutte le geodetiche è il piano iperbolico H2. Per una dimostrazione si
veda [7].

Osservazione 2.3.6. Rn con la metrica euclidea e H2 sono due esempi in cui
dati due punti esiste un’unica geodetica che li congiunge. Questo non è
sempre vero. Per un controesempio si può considerare R2 con la metrica

d1((x, y), (x
′, y′)) = |x− x′|+ |y − y′|.

In (R2, d1) una qualsiasi curva definita a ”gradini” è una geodetica.
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In modo analogo alla definizione di geodetica diamo la definizione di quasi-
geodetica.

Definizione 2.3.7 (Quasi-geodetica). Siano (X, d) uno spazio metrico, c > 0
e b ≥ 0. Una quasi-geodetica di costanti (c, b) (o una (c, b)-quasi-geodetica)
è una immersione quasi-isometrica

γ : I −→ X

di costanti (c, b) dove I ⊆ R è un intervallo. Se I = [a, b] diciamo che
γ congiunge, o ha per estremi, i punti γ(a) e γ(b). (X, d) è detto quasi-
geodetico di costanti (c, b) (o (c, b)-quasi-geodetico) se per ogni coppia di
punti esiste una (c, b)-quasi-geodetica che li congiunge. (X, d) è detto quasi-
geodetico se esistono costanti (c, b) tali per cui è (c, b)-quasi-geodetico.

Proposizione 2.3.8. Sia Γ = (V,E) un grafo connesso. Allora (V, dΓ) è
(1, 1)-quasi-geodetico.

Dimostrazione. Siano v, w ∈ V e sia (v0 = v, . . . , vn = w) un cammino
(semplice) in Γ di lunghezza minima che congiunge v e w. In particolare
n = dΓ(v, w). Poniamo

γ : [0, n] −→ V

t 7−→

{
vi se t ∈ [i, i+ 1[ con 0 ≤ i ≤ n− 1

vn se t = n
.

Vogliamo mostrare che γ è una (1, 1)-quasi-geodetica. Siano 0 ≤ a ≤ b ≤ n.
Siano i, j ∈ {0, . . . , n} tali che i ≤ a < i+ 1 e j ≤ b < j + 1. Allora

dΓ(γ(a), γ(b)) = dΓ(vi, vj) = j − i

dove l’ultima disuguaglianza deriva dal fatto che se esistesse un cammino
di lunghezza minore di j − i che congiunge vi con vj, allora esisterebbe un
cammino di lunghezza minore di n che congiunge v con w. Si ha

b− 1− a ≤ j − i ≤ b− a+ 1.

Quindi γ è una (1, 1)-quasi-geodetica.

Corollario 2.3.9. Sia G un gruppo e S ⊆ G un insieme di generatori. Allora
(G, dS) è quasi-geodetico.

Dimostrazione. Segue dal fatto che dS coincide con dCay(G,S).
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Osserviamo come un grafo in generale non è quasi mai geodetico. Infatti
se ha più di un vertice la topologia indotta dalla metrica è quella discreta.
Risulta quindi comodo associare uno spazio metrico, che dimostreremo poi
essere geodetico, al grafo in questione. L’idea è molto semplice: incollare i
lati del grafo ai vertici e poi definire una distanza incollando le distanze dei
vari intervalli.

Definizione 2.3.10 (Realizzazione geometrica di un grafo). Sia Γ = (V,E)
un grafo connesso. La realizzazione geometrica di Γ è l’insieme

|Γ| =

∐
{v,w}∈E

[0, 1]× {(v, w), (w, v)}

∼
dove ∼ è la relazione d’equivalenza generata dalle relazioni

(0, (v, w)) ∼ (0, (v, w′))

(0, (v, w)) ∼ (1, (v′, v))

(1, (v, w)) ∼ (0, (w,w′))

(1, (v, w)) ∼ (0, (v′, w))

(t, (v, w)) ∼ (1− t, (w, v))

con v, w, v′, w′ ∈ V e t ∈ [0, 1] sono tali per cui sono definite le formule.

Il motivo della presenza di due segmenti per lato è l’assenza di un’o-
rientazione per Γ. Considerato un lato in Γ questo non ha un’orientazione
naturale come l’intervallo [0, 1]. Quindi aggiungiamo i due segmenti con le
due orientazioni possibili per poi incollarli tra loro percorrendoli nei versi
opposti. Questo è dato dalla quinta relazione. Le prime quattro assicurano
che gli estremi vengano incollati nel modo naturale.

Per semplicità di notazione indichiamo con (t, v, w) la classe [(t, (v, w))].
Vogliamo rendere |Γ| uno spazio metrico. Definiamo

d|Γ|((t, v, w), (t
′, v′, w′)) =

=



|t− t′| se (v, w) = (v′, w′)

|t− (1− t′)| se (v, w) = (w′, v′)

min(t+ dΓ(v, v
′) + t′,

t+ dΓ(v, w
′) + 1− t′

1− t+ dΓ(w, v
′) + t′

1− t+ dΓ(w,w
′) + 1− t′)

se {v, w} ̸= {v′, w′}

La buona definizione segue dal fatto che d|Γ| è invariante rispetto alle
relazioni che generano ∼. La simmetria e la positività della metrica sono
immediate. L’unica proprietà non banale è la disuguaglianza triangolare.
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Proposizione 2.3.11. d|Γ| verifica la disuguaglianza triangolare.

Dimostrazione. Siano (t, v, w), (t′, v′, w′), (t′′, v′′, w′′) ∈ |Γ|. Supponiamo che
{v, w} ̸= {v′, w′}, {v′, w′} ̸= {v′′, w′′} e {v, w} ̸= {v′′, w′′}. Non è restrittivo
supporre valgano

d|Γ|((t, v, w), (t
′, v′, w′)) = t+ dΓ(v, v

′) + t′

d|Γ|((t, v, w), (t
′′, v′′, w′′)) = t+ dΓ(v, v

′′) + t′′

d|Γ|((t
′, v′, w′), (t′′, v′′, w′′)) = t′ + dΓ(v

′, v′′) + t′′.

Allora

d|Γ|((t, v, w), (t
′, v′, w′)) = t+ dΓ(v, v

′) + t′

≤ t+ dΓ(v, v
′′) + dΓ(v

′′, v′) + t′

≤ t+ dΓ(v, v
′′) + t′′ + t′′ + dΓ(v

′′, v′) + t′

= d|Γ|((t, v, w), (t
′′, v′′, w′′))+

d|Γ|((t
′′, v′′, w′′), (t′, v′, w′)).

Sfruttando la disuguaglianza triangolare su R si dimostrano in modo analogo
gli altri casi.

Esempio 2.3.12.

• La realizzazione geometrica del grafo con due vertici e un lato è isome-
trica al segmento [0, 1].

• La realizzazione geometrica di Cay(Z, {1}) è isometrica a R.

Osservazione 2.3.13. Su |Γ| ci sono due topologie naturali. La prima è quella
data dalla topologia quoziente, la seconda quella indotta dalla metrica. Si
può dimostrare che se ogni vertice ha grado finito, allora le topologie coin-
cidono. Se invece un vertice ha grado infinito, allora la topologia quoziente
è strettamente più fine di quella indotta dalla metrica. Quello che si può
dimostrare è che, con la topologia quoziente, |Γ| non è metrizzabile se un
vertice ha grado infinito. Per vederlo consideriamo

X = ([0, 1]× N)/((0, k) ∼ (0, 0) per k ∈ N)

dotato della topologia quoziente con mappa quoziente π : [0, 1] × N → X.
Sia {Un}n∈N una famiglia numerabile di intorni di [(0, 0)]. Allora per ogni
n ∈ N

π−1(Un) =
∐
k∈N

U (k)
n × {k}
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con U
(k)
n ⊆ [0, 1] intorno aperto di 0. Per ogni n ∈ N esiste Vn ⊆ [0, 1] intorno

aperto di 0 contenuto strettamente in U
(n)
n . Allora

π(
∐
n∈N

Vn × {n})

è un intorno aperto di [(0, 0)] che non contiene nessuno degli Un. Quindi
[(0, 0)] non possiede un sistema fondamentale di intorni numerabile e X non
è metrizzabile.

In particolare se G gruppo è finitamente generato da S, allora ogni vertice
ha grado finito e le topologie coincidono.

Proposizione 2.3.14. Siano Γ = (V,E) un grafo connesso e |Γ| la sua
realizzazione geometrica. Allora (V, dΓ) è quasi-isometrica a (|Γ|, d|Γ|) tramite
un’immersione isometrica.

Dimostrazione. Se V contiene un solo elemento la dimostrazione è banale.
Supponiamo |V | ≥ 2. Allora, per connessione, per ogni v ∈ V esiste wv ∈ V
tale che {v, wv} ∈ E. Poniamo

i : V ↪−→ |Γ|
v 7−→ (0, v, wv).

Segue in modo immediato dalla definizione di d|Γ| che i è un’immersione
isometrica. Inoltre ogni punto di |Γ| ha distanza al più 1/2 dall’immagine di
i. Quindi i è un’immersione isometrica con immagine quasi-densa ed è una
quasi-isometria.

Lemma 2.3.15 (Concatenazione di geodetiche). Siano (X, d) uno spazio
metrico e γ1 : [0, L1] → X, . . . , γn : [0, Ln] → X geodetiche tali che per ogni
i = 1, . . . , n − 1 si ha γi(Li) = γi+1(0). Per ogni i ∈ {1, . . . , n} poniamo
Si =

∑i
k=1 Lk e S0 = 0. Definiamo

γ : [0, Sn] −→ X

t 7−→ γi(t− Si−i) per t ∈ [Si−1, Si].

Se

d(γ(0), γ(Sn)) = Sn,

allora γ è una geodetica.
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Dimostrazione. Siano a, b ∈ [0, Sn] tali che a ≤ b. Siano i, j ∈ {1, . . . , n} tali
che

Si−1 ≤ a ≤ Si

Sj−1 ≤ b ≤ Sj.

Se i = j, allora la tesi segue dal fatto che γi è una geodetica. Supponiamo
quindi i < j. Si ha

d(γ(a), γ(b)) ≤ d(γ(a), γ(Si)) + d(γ(Si), γ(Si+1)) + . . .+

+ d(γ(Sj−2), γ(Sj−1)) + d(γ(Sj−1, b))

= d(γi(a− Si−1), γi(Li)) + d(γi+1(0), γi+1(Li+1)) + . . .+

+ d(γj−1(0), γj−1(Lj−1)) + d(γj(0), γj(b− Sj−1))

= Li − a+ Si−1 + Li+1 + . . .+ Lj−1 + b− Sj−1

= b− a+ Sj−1 − Sj−1

= b− a.

Supponiamo per assurdo che d(γ(a), γ(b)) < b− a. Allora

Sn = d(γ(0), γ(Sn))

≤ d(γ(0), γ(a)) + d(γ(a), γ(b)) + d(γ(b), γ(Sn))

≤ a+ d(γ(a), γ(b)) + Sn − b

< a+ b− a+ Sn − b

= Sn.

Assurdo.

Teorema 2.3.16. Sia Γ un grafo connesso. Allora (|Γ|, d|Γ|) è geodetico.

Dimostrazione. Siano (t, v, w), (t′, v′, w′) ∈ |Γ|.
Supponiamo {v, w} = {v′, w′}. A meno di scambiare i vertici possiamo
supporre v = v′ e w = w′. Allora

γ : [0, |t′ − t|] −→ |Γ|

s 7−→ ((1− t)
s

|t′ − t|
+ t′

s

|t′ − t|
, v, w)

è la geodetica cercata.
Supponiamo {v, w} ̸= {v′, w′}. Non è restrittivo supporre che

d|Γ|((t, v, w), (t
′, v′, w′)) = t+ dΓ(v, v

′) + t′.
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Sia (v0 = v, v1, . . . , vn−1, vn = v′) un cammino di lunghezza minima in Γ che
congiunge v con v′. Definiamo per i = 1, . . . , n

γi : [0, 1] −→ |Γ|
s 7−→ (s, vi−1, vi)

e

α : [0, t] −→ |Γ|
s 7−→ (t− s, v, w)

β : [0, t′] −→ |Γ|
s 7−→ (s, v′, w′).

Per la prima parte della dimostrazione tutti i cammini definiti sono geode-
tiche. Sono verificate le condizioni del lemma 2.3.15. La concatenazione di
α, γ1, . . . , γn, β è quindi una geodetica che congiunge (t, v, w) e (t′, v′, w′).

2.4 Lemma di Švarc-Milnor

Il lemma di Švarc-Milnor è molto spesso definito per la sua importanza
il teorema fondamentale della teoria geometrica dei gruppi. Esso fornisce un
ponte tra la teoria delle quasi-isometrie vista finora e la geometria più classi-
ca. Il teorema permette infatti di determinare la classe di quasi-isometria di
un gruppo studiando come questo agisce tramite isometrie su spazi metrici.
I suoi corollari sono altrettanto notevoli e ne menzioneremo un paio alla fine
della sezione. Per approfondire l’argomento si può consultare [4].

Teorema 2.4.1 (Lemma di Švarc-Milnor). Sia G un gruppo che agisce per
isometrie su uno spazio metrico X. Supponiamo che X sia (c, b)-quasi-
geodetico e che esista A ⊆ X tale che:

1. Il diametro di A è finito.

2. I traslati di A tramite G ricoprono X, cioè
⋃
g∈G

g · A = X.

3. L’insieme S = {g ∈ G | (g · A′) ∩ A′} è finito, dove

A′ = B2b(A) = {x ∈ X | ∃a ∈ A : d(a, x) ≤ 2b}.

Allora G è generato da S (in particolare è finitamente generato) e per ogni
x ∈ X la mappa

αx : G −→ X

g 7−→ g · x

è una quasi-isometria.
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Dimostrazione. Dimostriamo che G è generato da S.
Siano g ∈ G e x ∈ A. X è (c, b)-quasi-geodetico, quindi esiste una quasi-

geodetica γ : [0, L] → X di costanti c, b che congiunge x e g · x. Sia n ∈ N
tale che

(n− 1)
b

c
< L ≤ n

b

c
.

Per i ∈ {0, . . . , n− 1} poniamo

ti = i
b

c

e definiamo tn = L. Siano xi = γ(ti). I traslati di A ricoprono X, quindi per
ogni i ∈ {0, . . . , n}, esiste gi ∈ G tale che xi ∈ gi ·A. In particolare possiamo
scegliere g0 = e e gn = g. Si ha

d(xi, xi−1) = d(γ(ti), γ(ti−1))

≤ c · (ti − ti−1) + b

≤ c · c
b
+ b

= 2b.

Quindi
xi ∈ giA ∩B2b(gi−1A) = giA ∩ gi−1A

′ ⊆ giA
′ ∩ gi−1A

′

dove per la prima uguaglianza abbiamo usato il fatto che G agisce per
isometrie. Quindi

g−1
i−1giA

′ ∩ A′ ̸= ∅.
Dunque per ogni i esiste si ∈ S tale che g−1

i−1gi = si, cioè gi = gi−1si. Per
induzione otteniamo g = gn = e · s1 · · · sn = s1 · · · sn con si ∈ S.

Dimostriamo che la mappa αx è una quasi-isometria. Mostriamo che αx è
un’immersione quasi-isometrica con immagine quasi densa. Osserviamo che
siccome G agisce per isometrie e i traslati di A ricoprono X, allora non è re-
strittivo supporre x ∈ A. Infatti esiste g0 ∈ G tale che g0x ∈ A. Componendo
αx con l’isometria

G −→ G

g 7−→ gg0

otteniamo αg0x. In particolare αx è un’immersione quasi-isometrica se e solo
se lo è αgg0 . Supponiamo quindi x ∈ A.

La mappa αx ha immagine quasi-densa. Sia x′ ∈ X. Esiste g ∈ G tale
che x′ ∈ gA. Allora

d(x′, αx(g)) = d(x′, gx) ≤ diam(gA) = diam(A).
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Per ipotesi diam(A) è finito, da cui si ottiene Im(αx) quasi-densa.
La mappa αx è un’immersione quasi-isometrica. Diamo prima una stima

di d(αx(g), αx(e)) per ogni g ∈ G. Siano γ : [0, L] → X la (c, b)-quasi-
geodetica usata nella prima parte della dimostrazione e n sempre come sopra.
Allora

d(αx(e), αx(g)) = d(γ(0), γ(L))

≥ L

c
− b

>
b

c2
(n− 1)− b

≥ b

c2
dS(e, g)−

b

c2
− b.

Supponiamo che m = dS(e, g). Esistono quindi s1, . . . , sm ∈ S ∪ S−1 tali che
g = s1 · · · sm. Si ottiene

d(x, g · x) = d(x, s1 · · · sm · x)
≤ d(x, s1 · x) + d(s1 · x, s1s2 · x) + . . .+

d(s1 · · · sm−1 · x, s1 · · · sm · x)
= d(x, s1 · x) + d(x, s2 · x) + . . .+ d(x, sm · x)
≤ 2m(diam(A) + 2b)

= 2(diam(A) + 2b) · dS(e, g)

dove abbiamo usato che G agisce per isometrie su X e che per ogni i ∈
{1, . . . ,m} si ha, per definizione di S, A′ ∩ siA

′ ̸= ∅. La tesi per g, h ∈ G
arbitrari segue applicando quanto appena visto e usando le proprietà

dS(g, h) = d(e, h−1g)

d(g · x, h · x) = d(h−1g · x).

Usiamo anche l’osservazione 2.1.6. Abbiamo quindi dimostrato che αx è una
quasi-isometria.

Osservazione 2.4.2. Il lemma di Švarc-Milnor fornisce solo una quasi isome-
tria, non un’equivalenza bilipschitziana e né tantomeno una isometria. Infatti
l’azione di Z su R verifica tutte le ipotesi del teorema ma Z e R non sono né
isometrici né bilipschitzianamente equivalenti.

Diamo una versione più geometrica del lemma di Švarc-Milnor, comune-
mente usata nelle applicazioni. Prima di enunciare il teorema è necessario
dare qualche definizione preliminare.
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Definizione 2.4.3 (Spazio metrico proprio). Sia (X, d) uno spazio metri-
co. (X, d) è detto proprio se le palle chiuse {x ∈ X | d(x, x0) ≤ r} sono
compatte.

Esempio 2.4.4. Rn con la metrica euclidea è proprio.

Proposizione 2.4.5. Sia G un gruppo e S ⊆ G un insieme di generatori.
(G, dS) è proprio se e solo se S è finito.

Dimostrazione. Se S è finito, allora le palle chiuse sono finite e quindi com-
patte. Se S non è finito, allora la palla chiusa unitaria B coincide con
S ∪ S−1 ∪ {e}. In particolare B è infinito. La topologia indotta da dS
su G è quella discreta, quindi B non è compatto.

Definizione 2.4.6 (Azione propria). Siano G un gruppo discreto e X uno
spazio topologico. Supponiamo G agisca suX per omeomorfismi. Tale azione
è detta propria se per ogni K ⊆ X sottospazio compatto, l’insieme

{g ∈ G | (g ·K) ∩K ̸= ∅}

è finito.

Per una trattazione più approfondita delle azioni di gruppi su spazi to-
pologici si guardi [8].

Esempio 2.4.7. L’azione di Z su R data dalle traslazioni è propria.

Definizione 2.4.8 (Azione cocompatta). Siano G un gruppo e X uno spazio
topologico. Supponiamo G agisca su X per omeomorfismi. Tale azione è
detta cocompatta se lo spazio quoziente G\X è compatto.

Esempio 2.4.9. Il quoziente di R rispetto all’azione per traslazioni di Z è
omeomorfo a S1, quindi l’azione è cocompatta.

Corollario 2.4.10 (Versione geometrica del lemma di Švarc-Milnor). Siano
X uno spazio metrico geodetico e G un gruppo che agisce per isometrie su
X. Se X è proprio e l’azione di G su X è propria e cocompatta, allora G è
finitamente generato e per ogni x ∈ X la mappa

G −→ X

g 7−→ g · x

è una quasi-isometria.
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Dimostrazione. Dimostriamo che sono verificate le ipotesi di 2.4.1. Sia

π : X −→ G\X

la proiezione al quoziente. π è aperta (si veda [8]), quindi

{πB(x, 1) |x ∈ X}

è un ricoprimento aperto di G\X. L’azione è cocompatta, quindi esistono
x1, . . . xn ∈ X tali che

G\X =
n⋃

i=1

πB(xi, 1).

Poniamo

A =
n⋃

i=1

B1(xi).

X è proprio, quindi A è compatto. In particolare A ha diametro finito. Per
definizione A contiene un insieme di rappresentanti rispetto all’azione di G,
quindi i suoi traslati ricoprono X. Infine, usando l’ipotesi che l’azione è
propria, si ha che

{g ∈ G | (g · A) ∩ A ̸= ∅}

è finito. Sfruttando che X è (1, 0)-quasi-geodetico possiamo applicare il
lemma di Švarc-Milnor.

Il primo corollario che enunciamo è relativo al tipo di quasi-isometria di
un gruppo.

Corollario 2.4.11. Siano G un gruppo e H ⩽ G un sottogruppo di indice
finito. Allora G è finitamente generato se e solo se H lo è. In tal caso
l’inclusione i : H ↪→ G è una quasi-isometria.

Dimostrazione. Se H è finitamente generato, allora un suo insieme finito di
generatori unito ad un insieme di rappresentanti delle sue classi laterali in G
genera il gruppo. Viceversa supponiamo G finitamente generato e conside-
riamo l’azione di H su G data dalla moltiplicazione a sinistra. L’invarianza
della metrica su G per traslazioni implica che H agisce per isometrie. Per la
proposizione 2.3.8, G è (1, 1)-quasi-geodetico. Sia B ⊆ G un insieme di rap-
presentanti per l’azione. H ha indice finito, quindi B è finito. In particolare
B ha diametro finito. Per definizione i traslati di B ricoprono G. Siccome S
è finito, l’insieme

B′ = {g ∈ G | ∃b ∈ B : d(b, g) ≤ 2}
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è finito. Di conseguenza anche

S = {h ∈ H |h ·B′ ∩B′ ̸= ∅}

è finito. Infatti se h ∈ S, allora esistono bh, b
′
h ∈ B′ tali che h·bh = b′h. Quindi

h = b′h · b−1
h . B′ è finito, quindi gli elementi della forma b′b−1 con b, b′ ∈ B

sono in numero finito. Si può quindi applicare Švarc-Milnor ottenendo che
H è finitamente generato e che l’inclusione i è una quasi-isometria.

Osservazione 2.4.12. Senza usare il lemma di Švarc-Milnor non è affatto ovvio
che G finitamente generato implichi H finitamente generato.

Come secondo corollario menzioniamo un risultato in geometria Rieman-
niana. Daremo solo un cenno della dimostrazione in quanto una prova com-
pleta richiederebbe di introdurre numerosi concetti di geometria differenziale.
Per una esposizione dettagliata si può vedere [4].

Teorema 2.4.13. Siano M una varietà Riemanniana chiusa (compatta, con-

nessa e senza bordo) e M̃ il suo rivestimento universale. Allora π1(M) è

quasi-isometrico a M̃ .

Dimostrazione. Si dimostra che l’azione di rivestimento di π1(M) su M̃ è
propria e cocompatta. È cocompatta in quanto il quoziente è M . Si dimo-
stra che è propria usando solo le proprietà di rivestimento. La struttura di
varietà Riemanniana indotta su M̃ fa si che l’azione sia per isometrie. Usando
tecniche di geometria Riemanniana si dimostra che M̃ è proprio. È possibile
quindi applicare la versione geometrica del lemma di Švarc-Milnor.

Corollario 2.4.14. I gruppi fondamentali delle superfici orientabili di genere
almeno 2 sono quasi-isometrici al piano iperbolico.

Dimostrazione. Diamo solo un cenno della dimostrazione.
Le superfici di genere almeno due possono essere costruite a partire dal

piano iperbolico come quozienti rispetto ad un gruppo di isometrie. La pro-
iezione al quoziente diventa una mappa di rivestimento e si può applicare il
teorema precedente.



Capitolo 3

Spazi e gruppi iperbolici

In quest’ultimo capitolo definiamo e studiamo spazi e gruppi iperbolici.
Iniziamo dando la definizione di spazio iperbolico tramite triangoli sottili,
per poi passare al linguaggio delle quasi-isometrie e definire in modo analogo
gli spazi quasi-iperbolici. Dimostriamo poi il teorema di stabilità, uno dei
risultati fondanti della teoria degli spazi iperbolici. Usando la metrica della
parola definiamo i gruppi iperbolici e dimostriamo che questa proprietà è
equivalente all’iperbolicità del grafo di Cayley. Dimostriamo che il prodotto
libero di gruppi iperbolici è iperbolico, dando cos̀ı un modo induttivo per
costruire esempi di gruppi iperbolici. Infine definiamo le presentazioni di
Dehn, dimostriamo che esse hanno problema della parola risolubile e che i
gruppi iperbolici ammettono tale tipo di presentazioni.

3.1 Spazi iperbolici e quasi-iperbolici

Definizione 3.1.1 (Triangolo geodetico). Sia X uno spazio metrico. Un
triangolo geodetico T è una tripla (γ1, γ2, γ3) tale che per ogni i ∈ {1, 2, 3}
γi : [0, Li] → X è una geodetica e valgono

γ1(L1) = γ2(0) γ2(L2) = γ3(0) γ3(L3) = γ1(0).

Per semplicità di notazione se γ è una curva indichiamo con γ sia la
funzione che la sua immagine.

Definizione 3.1.2 (Triangoli geodetici δ-sottili). Siano X uno spazio metri-
co, T = (γ1, γ2, γ3) un triangolo geodetico e δ ≥ 0. T è detto δ-sottile se
valgono

γ1 ⊆ Bδ(γ2 ∪ γ3) γ2 ⊆ Bδ(γ3 ∪ γ1) γ3 ⊆ Bδ(γ2 ∪ γ1).

36
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Figura 3.1: Triangolo δ-sottile

Definizione 3.1.3 (Spazi iperbolici). Sia X uno spazio metrico.

1. Sia δ ≥ 0. X è detto δ-iperbolico se è geodetico e ogni suo triangolo
geodetico è δ-sottile.

2. X è detto iperbolico se esiste δ ≥ 0 tale che è δ-iperbolico.

Il primo a definire il concetto di iperbolicità negli spazi metrici è stato il
matematico russo Mikhael Gromov nel suo articolo [3]. La sua definizione è
diversa da quella data sopra, che invece è attribuita da Gromov stesso a Ilya
Rips. Per una trattazione completa delle due definizioni e una dimostrazione
della loro equivalenza in spazi geodetici si può consultare [1].

Proposizione 3.1.4. Rn con la metrica euclidea non è iperbolico per n ≥ 2.

Dimostrazione. Supponiamo n = 2. Sia δ ≥ 0. Consideriamo i punti

x0 = (0, 0) x1 = (3δ, 0) x2 = (0, 3δ).

Le uniche geodetiche in R2 sono della forma descritta nella proposizione 2.3.4.
Indichiamo con [x, y] l’unica geodetica che ha per estremi x e y. Allora

inf{d((3
2
δ,
3

2
δ), x) ∥x ∈ [x0, x1]} = d((

3

2
δ,
3

2
δ), (

3

2
δ, 0))

=
3

2
δ > δ.
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In modo analogo

inf{d((3
2
δ,
3

2
δ), x) ∥x ∈ [x0, x2]} = d((

3

2
δ,
3

2
δ), (0,

3

2
δ))

=
3

2
δ > δ.

Quindi [x1, x2] ∋ (3
2
δ, 3

2
δ) /∈ Bδ([x0, x1] ∪ [x0, x2]). Per arbitrarietà di δ, R2

con la metrica euclidea non è iperbolico.
Per il caso generale è sufficiente notare che Rn contiene una copia isome-

trica di R2 (basta un qualsiasi sottospazio di dimensione 2) e che le geodetiche
che congiungono punti del piano sono contenute nel piano stesso.

Esempio 3.1.5. R è 0-iperbolico.

Esempio 3.1.6. Il piano iperbolico H2 è iperbolico (si veda [7]).

In modo del tutto analogo possiamo definire il concetto di quasi-iperbo-
licità usando curve quasi-geodetiche.

Definizione 3.1.7 (Triangoli quasi-geodetici). Siano X uno spazio metri-
co, c > 0 e b ≥ 0. Un triangolo (c, b)-quasi-geodetico T è una tripla
(γ1, γ2, γ3) tale che per ogni i ∈ {1, 2, 3} γi : [0, Li] → X è una (c, b)-quasi-
geodetica e valgono

γ1(L1) = γ2(0) γ2(L2) = γ3(0) γ3(L3) = γ1(0).

Definizione 3.1.8 (Triangoli quasi-geodetici δ-sottili). Siano X uno spazio
metrico, T = (γ1, γ2, γ3) un triangolo quasi-geodetico e δ ≥ 0. T è detto
δ-sottile se valgono

γ1 ⊆ Bδ(γ2 ∪ γ3) γ2 ⊆ Bδ(γ3 ∪ γ1) γ3 ⊆ Bδ(γ2 ∪ γ1).

Definizione 3.1.9 (Spazi quasi-iperbolici). Sia X uno spazio metrico.

1. Siano c > 0 e b, δ ≥ 0. Diciamo che X è (c, b, δ)-quasi-iperbolico
se X è (c, b)-quasi-geodetico e ogni triangolo (c, b)-quasi-geodetico è
δ-sottile.

2. Siano c > 0 e b ≥ 0. Diciamo che X è (c, b)-quasi-iperbolico se per
ogni c′ ≥ c e b′ ≥ b, esiste δ ≥ 0 tale che X è (c′, b′, δ)-quasi-iperbolico.

3. Diciamo che X è quasi-iperbolico se esistono c > 0 e b ≥ 0 tali che è
(c, b)-quasi-iperbolico.



Spazi e gruppi iperbolici 39

Sfruttando il fatto che una quasi-isometria porta triangoli quasi-geodetici
in triangoli quasi-geodetici possiamo dimostrare che la quasi-iperbolicità è
un invariante quasi-isometrico.

Lemma 3.1.10. Siano X e Y spazi metrici quasi-isometrici. Se X è quasi-
geodetico, allora anche Y è quasi-geodetico.

Dimostrazione. Siano f : X → Y una (a, b)-quasi-isometria. Supponiamo
Im(f) c-densa. Siano y, y′ ∈ Y . Esistono x, x′ ∈ X tali che f(x) e f(x′)
hanno distanza al più c da y e y′ rispettivamente. Supponiamo X (d, e)-
quasi-geodetico e sia γ una (d, e)-quasi-geodetica in X con estremi x e x′.
Poniamo

γ′ : [0, L] −→ Y

t 7−→


y se t = 0

f ◦ γ(t) se t ∈]0, L[
y′ se t = L

.

Un semplice calcolo mostra che γ′ è una quasi-geodetica con costanti che
dipendono solo da a, b, c, d, e. Quindi Y è quasi-geodetico.

Lemma 3.1.11. Siano X e Y spazi metrici. Se Y è quasi-iperbolico, X è
quasi geodetico ed esiste f : X → Y immersione quasi-isometrica, allora X
è quasi-iperbolico.

Dimostrazione. Siano c > 0 e b ≥ 0 tali cheX è (c, b)-quasi-geodetico, f è una
immersione (c, b)-quasi-isometrica e Y è (c, b)-quasi-iperbolico. Tali costanti
esistono poiché nella definizione di quasi-iperbolicità le costanti c, b possono
essere arbitrariamente grandi. Mostriamo che X è (c, b)-quasi-iperbolico.
Siano c′ ≥ c e b′ ≥ b e sia T = (γ1, γ2, γ3) un triangolo (c′, b′)-quasi-geodetico
in X con γi : [0, Li] → X. Esistono costanti c′′, b′′ che dipendono solo da
c′, b′, c, b tali che c′′ ≥ c, b′′ ≥ b e f ◦ T = (f ◦ γ1, f ◦ γ2, f ◦ γ3) è un triangolo
(c′′, b′′)-quasi-geodetico. Y è (c, b)-quasi-iperbolico, quindi esiste δ ≥ 0 tale
che f ◦ T è δ-sottile. Sia t ∈ [0, L1]. Sappiamo che

f ◦ γ1 ⊆ Bδ(f ◦ γ2 ∪ f ◦ γ3).

Non è restrittivo supporre esista t′ ∈ [0, L2] tale che

d(f ◦ γ1(t), f ◦ γ2(t′)) ≤ δ.

f è un’immersione (c, b)-quasi-isometrica, dunque

d(γ1(t), γ2(t
′)) ≤ c · d(f ◦ γ1(t), f ◦ γ2(t′)) + c · b

≤ c · δ + c · b.

Allora X è (c′, b′, c · δ + c · b)-quasi-iperbolico.
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Corollario 3.1.12. Siano X e Y spazi quasi-isometrici. Allora X è quasi-
iperbolico se e solo se Y è quasi-iperbolico.

Dimostrazione. Segue dai lemmi 3.1.10 e 3.1.11.

3.2 Teorema di stabilità

Uno dei risultati più importanti ed eleganti della teoria elementare degli
spazi iperbolici è il cosiddetto teorema di stabilità. Il teorema afferma che le
quasi-geodetiche negli spazi iperbolici possono essere approssimate in modo
uniforme da geodetiche. Questa approssimazione permette in molti casi di
poter lavorare solo con geodetiche anche in contesti quasi-isometrici. Il co-
rollario più importante del teorema afferma che l’iperbolicità è un invariante
quasi-isometrico.

Teorema 3.2.1 (Di stabilità). Siano c > 0 e b, δ ≥ 0. Allora esiste ∆ ≥ 0
tale che per ogni X spazio δ-iperbolico, γ : [0, L] → X (c, b)-quasi-geodetica
e γ′ : [0, L′] → X geodetica con γ′(0) = γ(0) e γ′(L′) = γ(L), valgono

γ ⊆ B∆(γ
′) γ′ ⊆ B∆(γ).

Prima di dare la dimostrazione serve dimostrare qualche lemma prelimi-
nare.

Definizione 3.2.2 (Lunghezza di una curva). Siano X uno spazio metrico
e γ : [a, b] → X una curva continua. Definiamo la lunghezza di γ come

LX(γ) = sup{
n∑

i=1

d(γ(ti−1, ti) |n ∈ N, a = t0 < t1 < . . . < tn = b}.

Proposizione 3.2.3 (Proprietà della lunghezza). Siano X uno spazio me-
trico e γ : [a, b] → X una curva continua. Allora

1. La lunghezza è additiva, cioè per ogni c ∈ [a, b] vale

LX(γ) = LX(γ|[a,c]) + LX(γ|[c,b]).

2. Se LX(γ) < +∞, allora la funzione [a, b] ∋ t 7→ LX(γ|[a,t]) è continua
e monotona crescente.

Dimostrazione. Per una dimostrazione si può vedere [9].
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γ(0) = γ′(0) γ(L) = γ′(L′)γ′(t)

γ(t1)

γ(t2)

x1

x2

xn

x

Figura 3.2: Costruzione dell’albero di Natale.

Definizione 3.2.4 (Distanza di un punto da un insieme). Siano X uno
spazio metrico, x ∈ X e A ⊆ X. Definiamo la distanza di x da A come

d(x,A) = inf{d(x, a) | a ∈ A}.

Lemma 3.2.5 (Dell’albero di Natale). Siano δ ≥ 0 e X uno spazio δ-
iperbolico. Se γ : [0, L] → X è una curva continua e γ′ : [0, L′] → X è
una geodetica tali che γ(0) = γ′(0) e γ(L) = γ′(L′), allora per ogni t ∈ [0, L′]
si ha

d(γ′(t), γ) ≤ δ · | log2(LX(γ))|+ 1.

Dimostrazione. Se LX(γ) = +∞, la tesi è banale. A meno di riparametriz-
zare γ possiamo supporre L = LX(γ).

Se L ≤ 1, allora per ogni t ∈ [0, L′] si ha

d(γ′(t), γ) ≤ d(γ
′(t), γ(0))

= d(γ′(t), γ′(t))

= t ≤ L′

= d(γ(0), γ(L))

≤ L ≤ 1

≤ δ · | log2(L)|+ 1.

Supponiamo L > 1. Sia t ∈ [0, L′] e sia n ∈ N tale che

L

2n+1
< 1 ≤ L

2n
.
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Per continuità della funzione s 7→ LX(γ|[0,s]) esiste t1 ∈ [0, L] tale che
LX(γ|[0,t1]) = L

2
. Per ipotesi X è geodetico, quindi esistono α1 e β1 geo-

detiche che congiungono rispettivamente i punti γ(0), γ(t1) e γ(t1), γ(L).
(γ′, α1, β1) è un triangolo geodetico e per ipotesi X è δ-iperbolico, quindi
esistono γ1 ∈ {α1, β1} e x1 ∈ γ1 tali che

d(γ′(t), x1) ≤ δ.

Inoltre, supponendo ad esempio che γ1 = α1, si ha

LX(γ1) = d(γ(0), γ(t1)) ≤ L(γ|[0,L
2
]) =

L

2
.

Iterando il procedimento si ottengono γ1 : [0, L1] → X, . . . , γn : [0, Ln] → X
geodetiche con estremi in γ, e x1, . . . , xn punti in queste geodetiche tali che

d(γ′(t), x1) ≤ δ d(x1, x2) ≤ δ . . . d(xn−1, xn) ≤ δ

LX(γi) ≤
L

2i
∀i = 1, . . . , n.

In figura 3.2 è rappresentato graficamente il procedimento appena descritto.
γn è una geodetica, quindi esiste x ∈ γn estremo tale che

d(x, xn) ≤
1

2
d(γn(0), γn(Ln).

In particolare x ∈ γ e

d(x, xn) ≤
1

2
LX(γn) ≤

L

2n+1
.

Dunque

d(γ′(t), γ) ≤ d(γ′(t), x)

≤ d(γ′(t), x1) + d(x1, x2) + . . .+ d(xn, x)

≤ δ . . . δ +
L

2n+1

≤ n · δ + 1

≤ δ · log2(L) + 1.

Lemma 3.2.6 (Approssimazione di quasi-geodetiche). Siano c > 0 e b ≥ 0.
Allora esistono c′ > 0 e b′ ≥ 0 tali che per ogni X spazio metrico geodetico
e γ : [0, L] → X (c, b)-quasi-geodetica, esiste γ′ : [0, L] → X (c′, b′)-quasi-
geodetica continua che verifica:
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1. γ(0) = γ′(0) e γ(L) = γ′(L).

2. Per ogni s, t ∈ [0, L] con s ≤ t si ha

LX(γ
′|[s,t]) ≤ c′ · d(γ′(s), γ′(t)) + b′.

3. γ′ ⊆ Bc+b(γ) e γ ⊆ Bc+b(γ
′).

Dimostrazione. Definiamo I = [0, L] ∩ Z e poniamo γ′|I = γ|I . Estendia-
mo poi γ inserendo geodetiche opportunamente riparametrizzate tra punti
successivi. Ovviamente γ′ è continua e valgono γ(0) = γ′(0), γ(L) = γ′(L).

Siano s, t ∈ [0, L] con s ≤ t. Poniamo t′ = ⌊t⌋ e s′ = ⌊s⌋. γ è una (c, b)-
quasi-geodetica e γ′ è ottenuta concatenando geodetiche (riparametrizzate),
quindi

d(γ′(s), γ(s′)) ≤ d(γ(s′ + 1), γ(s′)) ≤ c+ b

d(γ′(t), γ(t′)) ≤ d(γ(t′ + 1), γ(t′)) ≤ c+ b.

Mostriamo che γ′ è una quasi-geodetica.

d(γ′(s), γ′(t)) ≤ d(γ′(s), γ(s′)) + d(γ(s′), γ(t′)) + d(γ(t′), γ′(t)

≤ c · |s′ − t′|+ 2(c+ b) + b

≤ c · (t− s) + 2(c+ b) + b+ 2c.

Analogamente

d(γ′(s), γ′(t)) ≥ d(γ(s′), γ(t′))− d(γ′(s), γ(s′))− d(γ′(t), γ(t′))

≥ 1

c
· |t′ − s′| − 2(c+ b)− b

≥ 1

c
· (t− s)− 2(c+ b)− b− 2c.

Quindi γ′ è una (c′′, b′′)-quasi-geodetica con c′′, b′′ costanti che dipendono solo
da c e b.

Mostriamo la condizione 2. Per additività della lunghezza si ha

LX(γ
′|[s,t]) = t− s ≤ c′′ · d(γ′(t), γ′(s)) + c′′b′′.

Prendendo come c′ e b′ i massimi delle costanti ottenute sopra si ottiene la
tesi.

Per la condizione 3 basta osservare che

d(γ′(t), γ(t′)) ≤ c+ b

d(γ(t), γ′(t′)) ≤ c+ b.
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γ(0) = γ′(0) γ(L) = γ′(L′)

γ(r) γ(s)

γ′′

γ′(t′)γ′(r′) γ′(s′)

γ1 ≤ ∆ γ2≤ ∆

2∆ 2∆

Figura 3.3: Curva γ′′

Possiamo ora dimostrare il teorema di stabilità

Dimostrazione del Teorema 3.2.1. Per il lemma 3.2.6 possiamo sostituire γ
con una (c′, b′)-quasi-geodetica continua, dove (c′, b′) sono costanti che dipen-
dono solo da (c, b). In particolare vale

LX(γ|[s,t]) ≤ c · d(γ(s), γ(t)) + b

per ogni s, t ∈ [0, L] con s ≤ t.
Dimostriamo che γ′ è vicina a γ. Consideriamo il caso peggiore:

∆ = sup{d(γ′(t′), γ) | t′ ∈ [0, L′]}.

Se dimostriamo che ∆ è stimato da una costante che dipende solo da c, b, δ
abbiamo finito. Per continuità delle curve esiste t′ ∈ [0, L] tale che ∆ =
d(γ′(t′), γ). Per definizione di ∆ si deve necessariamente avere t′ ≥ ∆ e
L′ − t′ ≥ ∆ (altrimenti d(γ′(t′), γ) < ∆). Definiamo

r′ = max(0, t′ − 2∆) s′ = max(L′, t′ + 2∆).

Per definizione di ∆ esistono r, s ∈ [0, L] tali che

d(γ′(r′), γ(r)) ≤ ∆ e d(γ′(s′), γ(s)) ≤ ∆.

Siano γ1 e γ2 geodetiche che hanno per estremi rispettivamente γ′(r′), γ(r) e
γ′(s′), γ(s). Sia γ′′ la curva (continua) ottenuta concatenando γ1, γ|[s,r] e γ2.
Per una rappresentazione grafica si veda la figura 3.2.

Vogliamo mostrare che ∆ ≤ d(γ′(t′), γ′′). Sia x ∈ γ′′. Se x ∈ γ|[s,r], allora
per definizione di ∆ = d(γ′(t′), γ) vale ∆ ≤ d(γ′(t′), x). Se x ∈ γ1, allora
dobbiamo considerare due casi:
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1. Se r′ = 0, allora γ1 = γ′(0) e d(γ′(t′), γ′(0)) = t ≥ ∆.

2. Se r′ = t′ − 2∆, allora

d(γ′(t′), x) ≥ d(γ′(t′), γ′(r′))− d(γ′(r′), x) ≥ 2∆−∆ = ∆.

Se x ∈ γ2 il calcolo è analogo. Applicando il lemma 3.2.5 otteniamo

∆ ≤ d(γ′(t′), γ′′) ≤ δ · | log2(LX(γ
′′)|+ 1.

Usando l’additività della lunghezza stimiamo LX(γ
′′):

LX(γ
′′) = LX(γ1) + LX(γ|[r,s]) + LX(γ2)

≤ c · d(γ(r), γ(s)) + b+ 2∆

≤ c · (d(γ(r), γ′(r′)) + d(γ′(r′), γ′(t′)) + d(γ′(t′), γ′(s′))+

+ d(γ′(s′), γ(s))) + 2∆ + b

≤ c · (∆ + 2∆ + 2∆ +∆) + 2∆ + b

= (6c+ 2)∆ + b.

Otteniamo quindi

∆ ≤ δ · | log2((6c+ 2)∆ + b)|+ 1.

Il logaritmo cresce più lentamente rispetto ad una funzione lineare, quindi ∆
è stimato dall’alto da una quantità che dipende solo da c, b, δ.

Dimostriamo che γ è vicina a γ′. Sia ∆ come sopra. Definiamo

f : [0, L] −→ R
t 7−→ d(γ(t), γ′).

γ è continua, quindi f è continua. Vogliamo mostrare che Im(f) è stimata
da una quantità dipendente solo da c, b, δ. Se f(t) ≤ ∆, abbiamo finito.
Supponiamo esista w ∈ [0, L] tale che f(w) > ∆. Sia ]r, s[⊆ [0, L] massimale
rispetto alla proprietà

f(]r, s[) ⊆]∆,+∞[.

Per continuità di f , f(w) > ∆ implica r < s (l’intervallo è non vuoto). Per
massimalità f(r) = f(s) = ∆. Definiamo

g : [0, L′] −→ R
t′ 7−→ d(γ′(t′), γ|[0,r])
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h : [0, L′] −→ R
t′ 7−→ d(γ′(t′), γ|[s,L]).

g e h sono continue e valgono (g − h)(0) ≤ 0, (g − h)(L′) ≥ 0. Quindi esiste
t′ ∈ [0, L′] tale che g(t′) = h(t′). Per la prima parte della dimostrazione le
immagini di g e h sono contenute in [0,∆]. Quindi esistono r′ ≤ r e s′ ≥ s
tali che

d(γ′(t′), γ(r′)) ≤ ∆ e d(γ′(t′), γ(s′)) ≤ ∆.

Sfruttando la condizione sulla lunghezza di γ si ottiene

LX(γ|[r,s]) ≤ LX(γ|[r′,s′]
≤ c · d(γ(r′), γ(s′)) + b

≤ 2c∆+ b.

Dunque

d(γ(w), γ′(t′)) ≤ d(γ(w), γ(r)) + d(γ(r), γ′(t′))

≤ LX(γ|[r,s]) + ∆

≤ (2c+ 1)∆ + b.

Cioè
γ(w) ∈ B(2c+1)∆+b(γ

′).

Per arbitrarietà di w si ottiene la tesi.

Come corollario dimostriamo l’invarianza per quasi-isometrie dell’iperbo-
licità.

Teorema 3.2.7. Sia X uno spazio metrico geodetico. Allora X è iperbolico
se e solo se X è quasi-iperbolico.

Dimostrazione. Le geodetiche sono in particolare quasi-geodetiche, quindi
l’implicazione da quasi-iperbolico a iperbolico è ovvia.

Supponiamo che X sia δ-iperbolico. Siano b ≥ 0 e c > 0. Sia ∆ come
nel teorema di stabilità. Vogliamo mostrare che X è (c, b, 2∆ + δ)-quasi-
iperbolico. Sia T = (γ1, γ2, γ3) un triangolo (c, b)-quasi-geodetico. X è geo-
detico, quindi esiste (γ′

1, γ
′
2, γ

′
3) triangolo geodetico avente gli stessi estremi

di T . Mostriamo che
γ1 ⊆ B2∆+δ(γ2 ∪ γ3).

Sia x ∈ γ1. Per il teorema di stabilità esiste x′ ∈ γ′
1 tale che d(x, x′) ≤ ∆.

X è iperbolico, quindi esiste y′ ∈ (γ′
2 ∪ γ′

3) tale che d(x′, y′) ≤ δ. Sempre per
il teorema di stabilità esiste y ∈ γ2 ∪ γ3 tale che d(y, y′) ≤ ∆. La tesi segue
dalla disuguaglianza triangolare.
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Corollario 3.2.8. Siano X,Y spazi metrici geodetici e quasi-isometrici.
Allora X è iperbolico se e solo se Y è iperbolico.

Dimostrazione. Supponiamo ad esempio che X sia iperbolico. Per il teorema
3.2.7 X è quasi-iperbolico. Per il corollario 3.1.12, Y è quasi-iperbolico.
Sempre per il teorema 3.2.7, Y è iperbolico.

Osservazione 3.2.9. In generale determinare se uno spazio è quasi-iperbolico
dalla definizione è particolarmente difficile. Questo deriva dal comportamen-
to a priori non regolare delle quasi-geodetiche. Il corollario appena dimostra-
to permette, per spazi geodetici, di ridurre il problema allo studio dell’iperbo-
licità, che è molto più trattabile. Infatti, al contrario delle quasi-geodetiche,
si riesce molto spesso a trovare in modo esplicito tutte le geodetiche di uno
spazio. Due esempi sono il piano iperbolico H2 e lo spazio euclideo Rn.

3.3 Gruppi iperbolici

Prima di definire l’iperbolicità nei gruppi la definiamo sui grafi.

Definizione 3.3.1 (Grafi iperbolici). Sia Γ = (V,E) un grafo connesso. Γ è
detto iperbolico se (V, dΓ) è quasi-iperbolico.

Proposizione 3.3.2. Sia Γ un grafo connesso. Allora Γ è iperbolico se e
solo se |Γ| è iperbolico.

Dimostrazione. Per la proposizione 2.3.14 e per il teorema 2.3.16 si ha che Γ
è quasi-isometrico a |Γ| e |Γ| è geodetico. La tesi segue da 3.2.7 e 3.1.12.

Figura 3.4: Triangoli geodetici in un albero

Un esempio abbastanza elementare di grafi iperbolici è costituito dagli
alberi.

Proposizione 3.3.3. Gli alberi sono iperbolici.
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Dimostrazione. Sia T un albero. L’assenza di cicli semplici in T implica
l’assenza di cicli in |T |. In particolare i triangoli geodetici in |T | sono della
forma in figura 3.3 e |T | è 0-iperbolico.

Definizione 3.3.4 (Gruppi iperbolici). Sia G un gruppo finitamente gene-
rato. G è detto iperbolico se esiste un insieme finito di generatori S ⊆ G
rispetto al quale (G, dS) è quasi-iperbolico.

Proposizione 3.3.5. Sia G un gruppo finitamente generato. Se G è iper-
bolico, allora per ogni S ⊆ G insieme finito di generatori (G, dS) è quasi-
iperbolico.

Dimostrazione. Due insiemi finiti di generatori definiscono spazi metrici qua-
si-isometrici e la quasi-iperbolicità è un invariante quasi-isometrico.

Esempio 3.3.6 (Gruppi iperbolici).

• I gruppi finiti sono iperbolici.

• Per la proposizione 1.6.6, i grafi di Cayley di gruppi liberi finitamente
generati sono alberi. Quindi per la proposizione 3.3.3 i gruppi liberi
sono iperbolici.

• In particolare Z è iperbolico.

• Per 2.4.14, i gruppi fondamentali delle superfici di genere almeno 2 sono
quasi-isometrici al piano iperbolico, quindi sono iperbolici.

• Zn per n ≥ 2 è quasi-isometrico a Rn, quindi non è iperbolico.

• Il grafo di Cayley di Z/2 ∗ Z/2 ∗ Z/2 ∼= ⟨a, b, c|a2, b2, c2⟩ è un albero,
quindi il gruppo è iperbolico.

Il prossimo teorema che vogliamo dimostrare fornisce un modo per co-
struire iterativamente gruppi iperbolici usando il prodotto libero. Per la
dimostrazione usiamo una costruzione più generale.

Definizione 3.3.7 (Wedge di spazi metrici). Siano (X, dX), (Y, dY ) spazi
metrici, x0 ∈ X e y0 ∈ Y . Il wedge di X e Y lungo i punti x0 e y0 è lo spazio
metrico ((X, x0) ∨ (Y, y0), d), definito nel modo seguente:

• (X, x0) ∨ (Y, y0) = (X
∐

Y )/x0 ∼ y0.

• d([z1], [z2]) =


dX(z1, z2) se z1 ∈ X, z2 ∈ X

dY (z1, z2) se z1 ∈ Y, z2 ∈ Y

dX(z1, x0) + dY (y0, z2) se z1 ∈ X, z2 ∈ Y

dY (z1, y0) + dX(x0, z2) se z1 ∈ Y, z2 ∈ X

.
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Se x0 e y0 sono chiari dal contesto, indichiamo il wedge con X ∨ Y .

Intuitivamente X ∨ Y è ottenuto incollando X e Y nei punti x0 e y0.
Segue in modo immediato dalla definizione che le mappe

i : X −→ X ∨ Y

x 7−→ [x]

j : Y −→ X ∨ Y

y 7−→ [y]

sono immersioni isometriche.
Per comodità indichiamo l’elemento [z] ∈ X ∨ Y semplicemente con z,

ricordando che in X ∨ Y vale x0 = y0.

Proposizione 3.3.8. Siano X, Y spazi metrici. Allora X e Y sono geodetici
se e solo se X ∨ Y è geodetico.

Dimostrazione. Supponiamo X e Y geodetici e siano z1, z2 ∈ X ∨ Y . Se
z1, z2 ∈ X oppure z1, z2 ∈ Y , allora posso usare una geodetica nello spazio
X o Y . Supponiamo z1 ∈ X e z2 ∈ Y . Per la proposizione 2.3.15, la
concatenazione di una geodetica che congiunge z1 con x0 con una geodetica
che congiunge y0 con z2 è una geodetica in X ∨ Y . Il caso z1 ∈ Y e z2 ∈ X è
analogo.

Supponiamo X ∨ Y geodetico. Siano x1, x2 ∈ X e sia γ : [0, L] → X ∨ Y
una geodetica con estremi x1 e x2. Vogliamo mostrare che γ ⊆ X. Sup-
poniamo esista γ(t) ∈ Y \ y0. X ∨ Y \ {x0 = y0} ha due componenti
connesse e γ(0), γ(L) ∈ X, quindi esistono 0 ≤ t1 < t e t < t2 ≤ L ta-
li che γ(t1) = γ(t2) = x0. Le geodetiche sono iniettive, dunque si ha un
assurdo.

Teorema 3.3.9. Siano X e Y spazi metrici. Allora X e Y sono iperbolici
se e solo se X ∨ Y è iperbolico. In particolare se X e Y hanno costanti di
iperbolicità rispettivamente δ1 e δ2, allora X ∨ Y è max(δ1, δ2)-iperbolico.

Dimostrazione. Supponiamo X ∨ Y iperbolico. Per 3.3.8, X e Y sono geo-
detici. Le mappe di inclusione sono immersioni isometriche, quindi X e Y
sono iperbolici.

Supponiamo X e Y iperbolici di costanti δ1 e δ2. Sia T = (γ1, γ2, γ3) un
triangolo geodetico in X ∨ Y con estremi z1, z2, z3. A meno di permutazione
si hanno quattro possibilità: tutti i punti sono in X, due punti sono in X
e uno in Y , due punti sono in Y e uno in X, tutti i punti sono in Y . Se
z1, z1, z3 ∈ X oppure z1, z2, z3 ∈ Y , allora la tesi segue dall’iperbolicità dei
due spazi. Supponiamo z1, z2 ∈ X e z3 ∈ Y . Per un ragionamento simile
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X Y
z1

z2

z3
x0 = y0

γ1

γ3

γ2

Figura 3.5: Triangoli geodetici in X ∨ Y .

a 3.3.8, γ1 ⊆ X ed esistono t2 ∈ [0, L2], t3 ∈ [0, L3] tali che γ2(t2) = x0,
γ3(t3) = x0 e

γ2([0, t2]) ⊆ X γ2([t2, L2]) ⊆ Y γ3([0, t3]) ⊆ Y γ3([t3, L3]) ⊆ X

(Si veda la figura 3.3). Quindi (γ1, γ2|[0,t2], γ3|[t3,L3]) e (γ2|[t2,L2], γ3|[0,t3], y0)
sono triangoli geodetici rispettivamente in X e Y . Per iperbolicità di X e Y
si ha la tesi. Il caso rimanente è analogo.

Corollario 3.3.10. Siano X1, . . . , Xn spazi metrici. Allora X1, . . . , Xn sono
iperbolici se e solo se il loro wedge (fatto in qualsiasi ordine) è iperbolico.
In particolare se X1, . . . , Xn hanno costanti di iperbolicità δ1, . . . , δn, allora
il wedge è max(δ1, . . . , δn)-iperbolico.

Dimostrazione. Si applica induttivamente il teorema precedente.

Usando il wedge di spazi metrici possiamo descrivere la realizzazione geo-
metrica del grafo di Cayley del prodotto libero di due gruppi tramite le
realizzazioni geometriche dei loro grafi di Cayley. Siano G,G′ due gruppi e
S ⊆ G,S ′ ⊆ G′ insiemi finiti di generatori. Indichiamo con Γ e Γ′ i due spazi
|Cay(G,S)| e |Cay(G′, S ′)|. Definiamo induttivamente i grafi Γk come segue:

• Γ1 = Γ.

• Γ2 = (Γ′, e)
∨

g∈G(Γ, g), dove la notazione indica che il wedge tra gli
spazi viene fatto contemporaneamente.

• Supponiamo di aver definito Γk−1 con k ≥ 3.

Se k = 2l, allora definiamo

Γk = (Γ′, e)
∨

g1∈G,g2,...,gl∈G\{e}
g′1,...,g

′
l−1∈G

′\{e′}

(Γk−1, g1g
′
1 · · · gl−1g

′
l−1gl).
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Se k = 2l + 1, allora definiamo

Γk = (Γ, e)
∨

g1∈G,g2,...gl,∈G\{e}
g′1,...,g

′
l∈G

′\{e′}

(Γk−1, g1g
′
1 · · · glg′l).

Dove g1g
′
1 · · · ∈ Γk−1 indica l’elemento ottenuto seguendo la successione

g1, g
′
1, . . . in Γk−1.

Osservazione 3.3.11. Siccome ad ogni vertice non viene mai incollata più di
una copia di un grafo si ha che le due topologie, quella quoziente e quella
metrica, coincidono.

Si può immaginare Γk come costruito a strati. Il primo strato è Γ1. Il
secondo strato è ottenuto incollando (Γ2, e

′) ad ogni vertice di Γ1. Lo strato
k è ottenuto incollando (Γ, e) (o (Γ′, e′) a seconda della parità di k) ad ogni
vertice diverso dall’identità dello strato precedente.

Esempio 3.3.12. Per G = Z/2 e G′ = Z/3 si ha

Γ1 = Γ2 =

Γ3 = Γ4 =

Possiamo vedere |Cay(G ∗ G′, S ∪ S ′)| come l’unione di tutti i Γk. Più
formalmente si potrebbe descrivere |Cay(G ∗G′, S ∪ S ′)| come limite diretto
della successione di spazi Γk nella categoria IMet. Per quello che vogliamo
mostrare questa descrizione non serve, perciò la evitiamo.

Tenendo a mente la costruzione appena data possiamo dimostrare che il
prodotto libero di gruppi iperbolici è iperbolico.

Teorema 3.3.13. Siano G e H gruppi. Allora G e H sono iperbolici se e
solo se G ∗H è iperbolico.

Dimostrazione. Supponiamo G∗H iperbolico. Le immersioni di G e H in G∗
H inducono delle immersioni isometriche |Cay(G,S)| → |Cay(G∗H,S∪T )|,
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|Cay(H,T )| → |Cay(G ∗H,S ∪ T )|. Tutti gli spazi sono geodetici, quindi G
e H sono iperbolici.

Supponiamo G e H iperbolici. Siano δ1, δ2 ≥ 0 tali che |Cay(G,S)|
e |Cay(H,T )| sono rispettivamente δ1-iperbolico e δ2-iperbolico. Sia T un
triangolo geodetico in |Cay(G ∗H,S ∪ T )|. Per compattezza T è contenuto
in un numero finito di copie di |Cay(G,S)| e |Cay(H,T )| con cui è costruito
|Cay(G ∗ H,S ∪ T )|. In particolare T è contenuto nel wedge di un numero
finito di spazi iperbolici di costanti δ1 e δ2. Per il corollario 3.3.10, T è
max(δ1, δ2)-sottile.

Per induzione si mostra che il prodotto libero finito di gruppi iperbolici
è iperbolico.

Esempio 3.3.14. PSL2(Z) = SL2(Z)/{±I2} ∼= Z/2 ∗ Z/3 e SL2(Z) sono
iperbolici.

3.4 Presentazione di Dehn

L’idea alla base delle presentazioni di Dehn è quella di avere delle rela-
zione che, in caso la parola sia ridotta, permettono di ridurre la lunghezza
della stringa. Dehn ha sviluppato per la prima volta l’algoritmo cercando di
risolvere il problema della parola per i gruppi fondamentali delle superfici di
genere almeno 2. Per l’approccio originale di Dehn si può consultare [2].

Se w è una parola, indichiamo con |w| la sua lunghezza.

Definizione 3.4.1 (Presentazione di Dehn). Sia ⟨S|R⟩ una presentazio-
ne finita. Diciamo che ⟨S|R⟩ è una presentazione di Dehn se esistono
u1, . . . , un, v1, . . . , vn parole che verificano:

1. R = {u1v
−1
1 , . . . , unv

−1
n }.

2. Per ogni i ∈ {1, . . . , n}, |vi| < |ui|.

3. Per ogni w ∈ F (S) tale che w = e in ⟨S|R⟩, esiste i ∈ {1, . . . , n} tale
che ui è una sottoparola di w.

La terza proprietà della definizione è la più forte ed è quella che permette
di scambiare ui con vi riducendo la lunghezza della parola. Seguente questa
idea dimostriamo che il problema della parola è risolubile per presentazioni
di Dehn.

Teorema 3.4.2. Se ⟨S|R⟩ è una presentazione di Dehn, allora essa ha
problema della parola risolubile.
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γ(0) = γ′(0) γ(L) = γ′(L′)

x

y z

x′y′ z′

Figura 3.6: Quadrilatero geodetico

Dimostrazione. Sia w una parola. Supponiamo R = {uiv
−1
i }. Se w = ε

abbiamo finito. Se w ̸= ε e w non contiene come sottoparola nessuna tra le
ui, allora per la proprietà 3 non è l’elemento neutro. Se w ̸= ε e w contiene
una sottoparola ui, allora sostituiamo ui con vi e ripetiamo il procedimento.
Ovviamente l’algoritmo termina poiché ad ogni passo riduciamo la lunghezza
della parola.

3.5 Problema della parola nei gruppi iperbo-

lici

In questa sezione dimostriamo che i gruppi iperbolici hanno una presen-
tazione di Dehn. La dimostrazione segue l’approccio di [7]. L’idea è quella di
trovare delle scorciatoie geometriche negli spazi iperbolici che poi si traducono
in semplificazioni negli elementi del gruppo.

Definizione 3.5.1 (Geodetiche locali). Siano X uno spazio metrico, γ :
[a, b] → X una curva e c > 0. γ è detta una c-geodetica locale se per ogni
t, t′ ∈ [a, b] tali che |t− t′| ≤ c, si ha

d(γ(t), γ(t′)) = |t− t′|.

Lemma 3.5.2 (Geodetiche locali in spazi iperbolici). Siano δ ≥ 0, X uno
spazio δ-iperbolico, c > 8δ, γ : [0, L] → X e γ′ : [0, L′] → X. Se γ è una
c-geodetica locale, γ′ è una geodetica e valgono γ(0) = γ′(0), γ(L) = γ′(L′),
allora

γ ⊆ B2δ(γ
′).
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Dimostrazione. Sia γ(t) = x che massimizza d(x, γ′) e sia x′ ∈ γ′ tale che
d(x, γ′) = d(x, x′). La dimostrazione prevede tre casi.

Caso 1: t− a > 4δ e t− b > 4δ. Esistono t1, t2 ∈ [a, b] tali che

t1 < t < t2 t2 − t > 4δ t− t1 > 4δ t2 − t1 ≤ c.

Poniamo y = γ(t1) e z = γ(t2). Siano γ′(t′1) = y′, γ′(t′2) = z′ ∈ γ′ che
realizzano d(y, γ′) e d(z, γ′). Siano α e β geodetiche con estremi y, y′ e
z, z′ rispettivamente. Abbiamo ottenuto (γ|[t1,t2], β, γ′|[t′1,t′2], α) quadrilatero
geodetico (si veda in figura 3.5). Applicando la definizione di iperbolicità
due volte dividendo il quadrilatero con una diagonale si ottiene che esiste
w ∈ α ∪ γ′|[t′1,t′2] ∪ β a distanza al più 2δ da x. Se w ∈ α, allora

d(x, x′)− d(y, y′) ≤ d(x, y′)− d(y, y′)

= d(x,w) + d(w, y′)− d(y, w)− d(w, y′)

≤ d(w, x′)− d(y, x′) + d(x′, w)

< 4δ − 4δ = 0

che contraddice la massimalità di d(x, x′). In modo analogo non è possibile
che w ∈ β. Quindi w ∈ γ′.

Caso 2: al più uno tra t−a e b− t è minore di 4δ. Supponiamo b− t ≤ 4δ.
Sia t1 < t tale che t − t1 > 4δ e b − t2 ≤ c. Poniamo y = γ(t1). Sia
γ′(t′1) = y′ ∈ γ′ che minimizza d(y, γ′). Sia α una geodetica con estremi y e
y′. (γ|[t1,b], γ′|[t′1,L′], α) è un triangolo geodetico, quindi esiste w ∈ α ∪ γ′ tale
che d(x,w) ≤ δ. Se w ∈ α, allora un calcolo analogo al punto 1 porta a una
contraddizione. Quindi w ∈ γ′. Il caso t− a ≤ 4δ è analogo.

Caso 3: b− a ≤ 8δ. Allora γ è una geodetica. (γ, γ′, γ(a)) è un triangolo
geodetico degenere, quindi x ∈ Bδ(γ

′).

Lemma 3.5.3 (Scorciatoie nei gruppi iperbolici). Siano G un gruppo iper-
bolico e S ⊆ G un insieme finito di generatori. Supponiamo che |Cay(G,S)|
sia δ-iperbolico. Se γ : [0, n] → |Cay(G,S)| è la realizzazione lineare a tratti
di un ciclo in Cay(G,S) di lunghezza n > 0, allora esistono t, t′ ∈ [0, n],
t < t′ tali che

L|Cay(G,S)|(γ|[t,t′]) ≤ 8δ

e γ|[t,t′] non è una geodetica.

Dimostrazione. Mostriamo che per ogni c > 8δ, γ non è una c-geodetica
locale. Supponiamo per assurdo che esista tale c. γ è un ciclo, quindi non
può essere una geodetica. In particolare n > c > 8δ. Applicando il lemma
3.5.2 con γ′ = γ(0) geodetica degenere si ottiene γ ⊆ B2δ(γ(0)). Quindi

4δ ≥ diam(B2δ(γ(0)) ≥ dS(γ(0), γ(5δ) = 5δ.
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Assurdo. Allora esistono t < t′ tali che

t′ − t ≤ 8δ e d(γ(t), γ(t′)) ̸= t′ − t

e γ|[t,t′] non è una geodetica. γ è la realizzazione lineare a tratti di un ciclo
in Cay(G,S), quindi

L|Cay(G,S)|(γ|[t,t′]) = t′ − t ≤ 8δ.

Teorema 3.5.4. Siano G un gruppo iperbolico e S ⊆ G un insieme finito
di generatori. Allora esiste R ⊆ (S ∪ S−1)∗ tale che G ∼= ⟨S|R⟩ è una
presentazione di Dehn per G.

Dimostrazione. Sia δ ≥ 0 la costante di iperbolicità di |Cay(G,S)|. Siano
D = ⌈8δ⌉+ 2 e π : F (S) → G la proiezione canonica. Definiamo

R = {uv−1 |u, v ∈ F (S), dS(π(u), e) < |u| ≤ D, π(u) = π(v),

|v| = dS(π(u), e)}
R′ = {stε | s, t ∈ S ∪ S−1, π(st) = e}.

Ovviamente R′ ⊆ R. Sia φ : ⟨S|R⟩ → G il morfismo ottenuto da π passando
al quoziente. Siccome S genera G, φ è suriettivo. Vogliamo mostrare che φ
è iniettivo e ⟨S|R⟩ è una presentazione di Dehn. Sia w ∈ (S ∪ S−1)∗ tale che
π(w) = e. Dimostriamo per induzione sulla lunghezza di w che w ∈ ⟨⟨R⟩⟩ e
che esiste u sottoparola di Dehn di w. Se w ha lunghezza 0, allora w = ε.
Supponiamo w non nulla. Consideriamo due casi:

• w ha come sottoparola un elemento di R′ ⊆ R. Supponiamo w =
w1stεw2. Ovviamente π(w2w1) = π(w−1

1 ww1) = e. Per ipotesi indutti-
va w2w1 ∈ ⟨⟨R⟩⟩. Coniugando per w−1

1 si ha w ∈ ⟨⟨R⟩⟩.

• w non contiene come sottoparola un elemento di R′. Allora la parola w
può essere interpretata come un ciclo nel grafo Cay(G,S). Applicando
il lemma 3.5.3 alla realizzazione geometrica di tale ciclo otteniamo una
decomposizione

w = w1uw2

in sottoparole w1, u e w2 tali che

dS(π(u), e) < |u| ≤ D.
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Infatti se γ è il ciclo, allora esistono t ≤ t′ tali che γ|[t,t′] non è una
geodetica e

L|Cay(G,S)|(γ|[t,t′]) = t′ − t ≤ 8δ ≤ D.

Possiamo porre u la sottoparola ottenuta seguendo γ dal primo vertice
che segue γ(t) al primo vertice che precede γ(t′). Allora

|u| ≤ L|Cay(G,S)|(γ|[t,t′]) ≤ D.

Se si avesse dS(π(u), e) = |u|, allora γ|[t,t′] sarebbe una geodetica.
Quindi dS(π(u), e) < |u|. Dunque esiste v ∈ F (S) tale che |v| =
dS(π(u), e) < |u|. u è la sottoparola cercata. Si ha

e = π(w1uw2) = π(w1vw2)

Quindi per ipotesi induttiva w1vw2 ∈ ⟨⟨R⟩⟩. Allora

w = w1uw2 = w1uv
−1w−1

1 w1vw2 ∈ ⟨⟨R⟩⟩.

Corollario 3.5.5. I gruppi iperbolici hanno problema della parola risolubile.

Osservazione 3.5.6. Il risultato del teorema 3.5.4 è puramente teorico. Infatti
è vero che nella dimostrazione si costruisce esplicitamente una presentazione
di Dehn, ma per determinarla si deve già sapere la soluzione del problema
della parola per parole di lunghezze minori od uguali a D.
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