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Abstract
This thesis investigates series expansion techniques for Feynman integrals and scatter-ing amplitudes in quantum field theory. These integrals are reduced to linear combi-nations of an independent set of master integrals, via Integration By Parts identities.The master integrals, in turn, obey systems of differential equations, whose solutionprovides an efficient method for their evaluation. We focus on solving the differentialequations using an iterative approach in the dimensional regulator ϵ, combined with aseries expansion in the relevant kinematic scales.

To improve convergence, we study and systematically develop Bernoulli-like vari-able changes, which map nearby singularities to infinity. Starting from one-scale prob-lems, we analyze their effectiveness and limitations, identifying some of their key fea-tures.
We then propose an extension of the method to multi-scale problems by introduc-ing multiple Bernoulli-like variables. Applied to two-loop amplitudes for Higgs and Zdecays into three gluons, this approach significantly reduces the number of requiredterms for accurate results. We also test it on a two-scale elliptic Feynman integral (thesunrise with two equal masses and a different mass), finding moderate improvementsdespite the complicated singularity geometry.
Our results show that Bernoulli-like transformations provide a general and efficienttool for accelerating series solutions, with potential applications to high-loop, multi-scale calculations where analytic methods are intractable.
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1 INTRODUCTION

1 Introduction
Theoretical particle physics aims to understand the fundamental constituents ofmatterand the interactions that govern their behavior. Quantum Field Theory (QFT) providesthe foundational framework for this pursuit, combining the principles of quantum me-chanics and special relativity into a unified description where particles arise as excitedstates of underlying quantum fields. Within this framework, the Standard Model (SM)stands as the most successful and experimentally validated theory to date. It describesall known elementary particles and three of the four fundamental interactions (elec-tromagnetic, weak, and strong) based on a gauge symmetry structure, described bythe symmetry group SU(3)C × SU(2)L × U(1)Y . This symmetry governs how parti-cles interact and gives rise to the rich phenomenology observed in high-energy physicsexperiments.

Scattering processes are the primary tools for probing the nature of particles andtheir interactions. By studying how particles deflect, merge, or transform when theycollide, we gain insight into the underlying forces that govern their behavior and try toanswer some of the most profound questions in fundamental physics. As experimen-tal measurements at colliders reach ever higher levels of accuracy, on the theoreticalside, making precise predictions is of fundamental importance to enable meaningfulcomparisons. High-precision comparisons are essential for both investigating proper-ties of the known particles, testing the internal consistency of the Standard Model andits predictive power, and looking for signals of new physics beyond it.
In this context, scattering amplitudes have a central role: they are the primary in-terface between theory and experiments, as they encapsulate the probabilities for var-ious outcomes of a scattering event, providing predictions that can be tested with highprecision. In quantum field theory, scattering amplitudes are typically computed usingperturbation theory, an approximation method that becomes valid when the couplingconstant of the interaction is small. This allows one to express the amplitude as a powerseries in the coupling, where each order is represented by a finite sum of Feynman di-agrams constructed according to the Feynman rules of the theory.
To obtain high-precision theoretical predictions, it is often necessary to go beyondthe lowest-order (tree-level) approximation and includehigher-order corrections. Thesecorrespond to diagrams with loops, which account for virtual particles circulating in in-termediate states: these particles are not observed, hence we need to integrate overtheir momenta. As a result, the evaluation of loop diagrams naturally gives rise to Feyn-man integrals (FIs), multidimensional integrals whose computation is a very challengingtask due to their complicated functional dependence on external momenta andmassesand the presence of divergences, requiring regularization and renormalization. In par-ticular, Feynman integrals are typically computed in dimensional regularization [6, 24],
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1 INTRODUCTION

where the spacetime dimension is continued to d = d0−2ϵ (d0 ∈ N), to regulate diver-gencies. In most applications, one is only interested in their Laurent expansion around
ϵ = 0, up to a certain order dictated by the required precision.

For a given process, achieving the desired level of precision often requires the eval-uation of hundreds or even thousands of Feynman integrals, particularly at higher or-ders in perturbation theory. Over the past two decades, powerful techniques have beendeveloped to handle this complexity. Feynman integrals can be grouped into familiesbased on their underlying topology, with each family characterized by a common setof propagators. The integrals within a given family are not all independent; they satisfylinear relations known as integration-by-parts (IBP) identities [12, 46]. These relationsmake it possible to systematically reduce the (infinite) set of integrals in a family to afinite [44] of linearly independent integrals known as master integrals (MIs).
Themaster integrals obey systems of differential equations [25, 39, 26] with respectto the kinematic invariants of the process (external momenta and internal masses). Asa result, the problem of computing all integrals in the family reduces to solving thesedifferential equations and imposing the appropriate boundary conditions.In particular, it is convenient to look for a canonical basis [23, 22], i.e. a basis of MIs forwhich the ϵ-dependence in the differential equations factorizes. In this basis, the differ-ential equations can be solved order by order in ϵ, allowing one, at least in principle, tocompute all the Laurent coefficients up to the desired order. This method has becomea cornerstone of modern multi-loop calculations in quantum field theory.
However, the complexity of the analytical results for FIs rapidly growswith the num-ber of loops and external legs, so that it is not always possible to find global analyticsolutions. Even when such solutions exist, they are often expressed in terms of highlynontrivial special function [8, 34] that are difficult to evaluate in practice.
Series expansion techniques are a powerful and pragmatic alternative. It is wellknown (see e.g. [7]) that, around any point that is not an essential singularity of a dif-ferential equation, local solutions can be expressed as generalized series expansions,which are guaranteed to converge at least up to the nearest singularity in the complexplane. In the context of Feynman integrals, the associated differential equations aretypically Fuchsian [33], meaning that they possess only regular singular points, aroundwhich series solutions can be constructed. However, these techniques have importantpractical limitations: series have a limited radius of convergence, and even within thatradius, the rate of convergence significantly decreases as one approaches the bound-ary. These challenges become particularly severe for problems involvingmultiple scalesand multiple singularities.
A common strategy to improve convergence and extend the region of validity of aseries solution involves performing a logarithmic change of variables [1] — known asa Bernoulli-like transformation — which maps the nearest singularity to infinity. This
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1 INTRODUCTION

technique has been applied to various one-scale problems [18, 37, 10], often in thespirit of experimental mathematics, where its use has been justified primarily by em-pirical success. However, to date, no comprehensive study of thismethod has been con-ducted. Moreover, a systematic generalization of the technique tomulti-scale Feynmanintegrals or full scattering amplitudes has not yet been developed.
In this thesis, we focus on series expansion techniques for both Feynman integralsand scattering amplitudes, with particular attention to the convergence issues discussedabove. We revisit the Bernoulli-like acceleration method from a more systematic per-spective, with the goal of developing a deeper theoretical understanding and gaininggreater control over its application. Then, we propose a generalization of the methodtomulti-scale problems. In particular, we demonstrate that significant improvements inconvergence for two-scale problems can be achieved by introducing two Bernoulli-likevariables (one for each scale) effectively mapping two nearby singularities to infinityand extending the region of convergence in both directions. We also briefly explorethe possibility of constructing a generalized Bernoulli-like transformation capable ofsimultaneously pushing away multiple singularities, even within one-scale problems.However, this preliminary investigation did not lead to substantial improvements.
The work is structured around a series of case studies, from which we aim to ex-tract general insights. We begin with simple one-scale problems, then move to morecomplicated two-scale examples. For the cases involving Feynman integrals, we solvethe associated systems of differential equations, by combining an iterative (order-by-order in ϵ) procedure, facilitated byworking in a canonical basis, with a series expansionin the relevant kinematic variables. In the case of full amplitudes, we directly analyzethe series expansions of known analytic expressions [20, 21]. In both contexts, we studythe convergence properties of the resulting series and investigate the effect of applyingBernoulli-like transformations to improve convergence.
The thesis is structured as follows:
• Chapter 2 introduces the fundamentals of Feynman integrals: their definitions,main properties, parametric representations, and linear relations, with a focuson integration-by-parts (IBP) identities and the concept of master integrals.
• Chapter 3 reviews the method of differential equations, emphasizing the canon-ical form and a recently proposed algorithm for constructing it, which is usedthroughout the thesis.
• Chapter 4provides anoverviewof themathematical structures appearing in Feyn-man integrals, such as periods and iterated integrals, with particular attention tomultiple polylogarithms (MPLs) and integrals over elliptic curves.
• Chapter 5 discusses series solutions of differential equations, especially via the
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1 INTRODUCTION

Frobenius method. We then revisit the Bernoulli-like change of variable froman original perspective, deriving a general expression for it, and analyzing itsconvergence-accelerating properties.
• Chapter 6 applies these methods to the bubble integral — the simplest one-loopcase—which, despite its simplicity, reveals interesting aspects related to its con-vergence behavior and the properties of Bernoulli-like variables.
• Chapter 7 focuses on the equal-mass sunrise integral — a two-loop, one-scaleproblem that allows us to refine our techniques. We also explore possible gen-eralizations of the Bernoulli-like transformation to handle multiple singularities,though without significant results.
• Chapter 8 presents the main original contribution of the thesis: a convergenceacceleration method for multi-scale problems using multiple Bernoulli-like vari-ables. We test this approach on two polylogarithmic amplitudes describing Higgsand Z-boson decays into three gluons at two loops.
• Chapter 9 applies the series expansion techniques to a two-scale elliptic Feyn-man integral — the sunrise with two equal masses and one distinct mass — andassesses the performance and limitations of the proposed acceleration methodin this more complicated setting.
• Chapter 10 summarizes the main results of this thesis and outlines possible di-rections for future research.
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2 FEYNMAN INTEGRALS

2 Feynman Integrals
In this chapter, we introduce the foundational concepts of Feynman integrals (FIs), fol-lowingmainly [2] and [48]. Weassume the reader to be already familiarwithQFT topics,which can be found in many textbooks [42, 47, 36].We begin by presenting the main definitions and general properties of FIs. We thenderive their principal parametric representations. Finally, we explore the linear rela-tions among Feynman integrals, focusing on the notions of integral families,integration-by-parts identities (IBPs), and master integrals (MIs). These concepts will play a centralrole throughout the rest of this work.
2.1 Basic definitions and properties
Let us start with the precise definition of a scalar Feynman integral.
Def. 1 A scalar Feynman integral, associated to a L-loops amplitude with E external legsand P propagators, is an integral of the following form:

I(p1, ..., pE;m
2
1, ...,m

2
P ; ν;D) =

∫ ( L∏
j=1

eγEϵ d
Dkj

iπD/2

)
N
(
{ki · kj, ki · pj};D

)∏P
j=1

(
q2j −m2

j + iδ
)νj , (1)

where ν = (ν1, ..., νp) ∈ Zp is the vector of (integer) propagator exponents, γE is theEuler-Mascheroni constant, mj (1 ≤ j ≤ P ) are the propagator masses (assumed tobe positive), kj (1 ≤ j ≤ L) are the loop momenta, pj (1 ≤ j ≤ E) are the externalmomenta.
We assume w.l.o.g. all external momenta to be incoming; they are real Minkowskimomenta, only constrained by momentum conservation, expressed by:∑E

j=1 pj = 0.The momenta flowing through propagators can be expressed as linear combinations ofloop and external momenta of the form:
qj =

L∑
j=1

αijkj +
E∑

j=1

βijpj with αij, βij ∈ {−1, 0, 1}. (2)
The numerator of (1) is assumed to be a polynomial in the scalar products betweenloop and/or externalmomenta; in the denominatorweuse theusual Feynman-Stückelbergprescription to deform the integration contour away from propagator poles. We areworking in dimensional regularization with D = D0 − 2ϵ dimensions, where D0 is apositive integer (in most casesD0 = 4).
A scalar Feynman integral, like (1), is by definition invariant under Lorentz transfor-mations in D dimensions:

I(Λp1, ...,ΛpE;m
2
1, ...,m

2
P ; ν;D) = I(p1, ..., pE;m

2
1, ...,m

2
P ; ν;D). (3)
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2 FEYNMAN INTEGRALS

As a consequence, it can only depend on the external scales: propagator masses andscalar products among external momenta, collectively denoted as:
x =

({
pi · pj

}
1≤i,j≤E

,
{
m2

j

}
1≤j≤P

)
. (4)

To simplify the notation and make Lorentz invariance manifest, in the following we willdenote integral (1) as I(x; ν;D).
Let us recap the main basic properties of Feynman integrals in dim. reg.:

Prop. 1 (Invariance under shifts and rescalings of loop momenta)Feynman integrals in dimensional regularization are invariant1 under general linear changesof variables: kµ
i → λkµ

i + vµ, with λ a nonzero real number and vµ a D-dimensionalvector independent of kµ.
Prop. 2 (Dependence on ϵ)Feynman integrals are meromorphic functions of the regulator ϵ, i.e. they can have atmost poles in the complex ϵ-plane, but no branch-cuts. We are usually interested in thefirst coefficients of the Laurent expansion around ϵ = 0, I =

∑
k≥k0

Ikϵ
k. If k0 < 0,then the integral is divergent inD0 dimensions.

Prop. 3 (Homogeneity)Feynman integrals are homogeneous functions in the external scales, i.e. under a rescal-ing of all of them: x → λ2x (coresponding to (pj,mj) → (λpj, λmj)) with λ ∈ R∗, wehave:
I(λ2x; ν;D) = λαI(x; ν;D), (5)

with αmass dimension of the integral: α = [I(x; ν;D)] = [N ] + LD − 2
∑P

j=1 νj .
Prop.4 (Scaleless integrals)A Feynman integral is said to be scaleless if it does not depend on any external scale,i.e. x = 0⃗. Scaless integrals vanish in dimensional regularization.
Proof
Prop. 3 for a scaleless integral reduces to:

I (⃗0; ν;D) = λαI (⃗0; ν;D), ∀λ ∈ R∗. (6)
Since2 α ̸= 0 in dim. reg., the previous equation can only hold if I (⃗0; ν;D) = 0.
CorollaryIf νj ≤ 0 for all 1 ≤ j ≤ P , then I(x; ν;D) = 0 in dimensional regularization, being alinear combination of scaleless integrals.
Some of these properties will be useful to derive the main result of Section 2.3: the IBPrelations.

1This property may seem trivial, but it is not: indeed, this is not true in other regularization schemes(e.g. with a cutoff as regulator).2In fact, one can easily convince himself that α = [I(x; ν;D)] = m− 2Lϵ withm ∈ Z.
6



2 FEYNMAN INTEGRALS

2.2 Parametric representations
The representation of Feynman integrals in eq. (1) is known as the momentum repre-sentation: it is naturally connected to Feynman diagrams, but it is not the most con-venient to compute these integrals and put their properties in evidence. For thesepurposes, many parametric representations have been introduced. In this section, wereview the most common ones.
2.2.1 Schwinger representation

Each denominator Dj = q2j − m2
j appearing in (1) can be rewritten using Schwinger’strick:3

1

A
νj
j

=
1

Γ(νj)

∫ ∞

0

dαj α
νj−1
j e−αjAj , for Aj > 0, Re(νj) > 0, (7)

where in our case Aj is defined by:
Aj = Q2

j +m2
j = −q2j +m2

j = −Dj, (8)
with Qj being the Euclidean version of momentum qj . Thus, our Feynman integral (1),whose numerator has been set to one for simplicity, becomes:
I =

eLγEϵ

P∏
j=1

(−1)νjΓ(νj)

∫
αj≥0

dPα

(
P∏

j=1

α
νj−1
j

)∫ ( L∏
r=1

dDkr
iπD/2

)
exp

[
−

P∑
j=1

αj(−q2j+m2
j)

]
,

(9)where α = (α1, ..., αP ) is the vector of the so-called Schwinger parameters.Because of (2), the argument of the exponential will have a quadratic dependenceon loop momenta of the form:
P∑

j=1

αj(m
2
j − q2j ) = −kTMk + 2k · r + J, (10)

where k = (k1, ...kL) is as usual the vector of loop momenta, M is a L × L matrixwhose entries are combinations of the Schwinger parameters, r is a L-dimensional vec-tor whose components also involve the external momenta, J is a scalar.
We can perform the integration over loop momenta by Wick rotating and usingthe formula for an L-dimensional gaussian integral, which also extends to dimensional

3This follows directly from de definition of Euler’s gamma function.
7



2 FEYNMAN INTEGRALS

regularization. We get:
I =

eLγEϵ

P∏
j=1

(−1)νjΓ(νj)

∫
αj≥0

dPα
( P∏

j=1

α
νj−1
j

)
[U(α)]−D/2e−

F(α;x)
U(α) , (11)

where we defined the graph polynomials (or Symanzik polynomials) U and F by:
U = detM, F = J + rTM−1r. (12)

The integral representation (11) is known as the Schwinger parameter representation.Note that U(α) only depends on the Schwinger parameters, as it was for the matrixentries ofM , whileF(α; x) also has a dependence on the external scales, coming from
r and J . One can show [48] that they are homogeneous polynomials in the Schwingerparameters: U is of degree L, F is of degree L + 1. These properties are useful forderiving the Feynman representation.
2.2.2 Feynman representation

The Feynman representation is the one that is most well known, due to its usefulnessin the computation of Feynman integrals by direct integration. It can be derived fromthe Schwinger representation or directly from themomentum representation; here, wechoose the first option. We can write the following resolution of the unity in terms ofSchwinger parameters:
1 =

∫ ∞

−∞
dt δ
(
t−

p∑
j=1

αj

)
=

∫ ∞

0

dt δ
(
t−

p∑
j=1

αj

)
, (13)

where in the last step we used the fact that the sum is non-negative. For a genericintegral over Schwinger parameters αj , changing variables to aj = αj/t and inserting(13), we get the identity:∫
αj≥0

dPα f(α1, ...αp) =

∫
aj≥0

dPa δ
(
1−

P∑
j=1

aj

)∫ ∞

0

dt tP−1f(ta1, ..., taP ). (14)

8



2 FEYNMAN INTEGRALS

Applying it to the Schwinger representation (11) and using the fact that U and F arehomogeneous of degree L and L− 1 respectively, we get:
I =

eLγEϵ

P∏
j=1

(−1)νjΓ(νj)

∫
aj≥0

dPa

(
P∏

j=1

a
νj−1
j

)
δ

(
1−

P∑
j=1

aj

)
[U(a)]−D/2

∫ ∞

0

dt tν−
lD
2
−1e−

F(a;x)
U(a)

t =

=
eLγEϵ

P∏
j=1

(−1)νjΓ(νj)

∫
aj≥0

dPa

(
P∏

j=1

a
νj−1
j

)
δ

(
1−

P∑
j=1

aj

)
[U(a)]ν−

(l+1)D
2

[F(a; x)]ν−
lD
2

∫ ∞

0

du uν− lD
2
−1e−u,

(15)where in the last step we use the substitution u = F(a;x)
U(a)

t, so that now the integral over
u is the standard definition of Γ(ν − lD

2
). In this way, we get the final formula for theFeynman parameter representation:

I =
eLγEϵ Γ(ν − lD

2
)

P∏
j=1

(−1)νjΓ(νj)

∫
aj≥0

dPa
( P∏

j=1

a
νj−1
j

)
δ
(
1−

P∑
j=1

aj

) [U(a)]ν− (l+1)D
2

[F(a, x)]ν−
lD
2

. (16)

The integration variables aj are called Feynman parameters.
In addition to its usefulness for computations, this representation also allows usto make an important observation on Feynman integrals: the powers of denominators

νi and the dimension D have a similar role in (16), in the sense that both appear asexponents of the graph polynomials. This will motivate us to look for relations not onlybetween integrals with different νi, but also with different values ofD.
2.2.3 Baikov representation

Another important parametric representation is the Baikov representation. In the strictsense, it only applies to a subset of Feynman integrals, where the number P of propa-gators equals the numberNsp of independent scalar products involving loopmomenta.The latter for an integral with L loops and E external momenta is given by: N =
L(L+1)/2+L(E− 1). This immediately follows from the fact that these scalar prod-ucts are of the following forms: k2

i (1 ≤ i ≤ L), ki · kj (1 ≤ i < j ≤ L), ki · pj(1 ≤ i ≤ L, 1 ≤ j ≤ E − 1).
Strictly speaking, a Feynman integral has a Baikov representation if P = Nsp andeach inverse propagator zs = q2s − m2

s can be expressed as a linear combination ofindependent scalar products σt:
zs = Cstσt + fs, (17)

9



2 FEYNMAN INTEGRALS

whereC is aNsp×Nsp invertiblematrix and f is aNsp-dimensional vector independentof loop momenta.
However, given an integral I that does not satisfy these conditions, it is always pos-sible to find another one Ĩ which does, and define the induced Baikov representation of

I from the Baikov representation of Ĩ . A common situation is the one where P < Nsp:in this case it is possible to introduce4 some fictitious extra propagators so that thetransformation between the zs and the σt is invertible, and then set the powers νs ofthe extra propagators to zero.
If invertible relations of the form (17) exist, thenwe can change integration variablesin (1) to the zj , which in this context take the name of Baikov variables. We get theBaikov representation of FIs (see [48] for a detailed derivation):

I =
eLγEϵ

[
detG(p1, ..., pE−1)

]E−D
2

π
Nsp−L

2 (detC)
∏L

j=1 Γ
(

D−E+2−j
2

) ∫
C
dNspz

[
B(z)

]D−L−E
2

N ({zk; x}, D)∏Nsp

s=1 z
−νs
s

, (18)

where detG(q1, ..., qn) denotes the Gram determinant of momenta q1, ..., qn and B isthe Baikov polynomial. The Gram determinants are defined by:

detG(q1, ..., qn) = det (qi · qj)1≤i,j≤n =

∣∣∣∣∣∣∣∣∣
q1 · q1 q1 · q2 · · · q1 · qn
q2 · q1 q2 · q2 · · · q2 · qn... ... . . . ...
qn · q1 qn · q2 · · · qn · qn

∣∣∣∣∣∣∣∣∣ . (19)

The Baikov polynomial B(z) is defined as the Gram determinant involving all loop mo-menta and independent external momenta, expressed in terms of Baikov variables:
B(z1, ..., zP ) = detG(k1, ..., kL, p1, ..., pE−1). (20)

The integration contour C is given by: C = C1 ∩ C2... ∩ CL−1, where:
Cj =

{ detG(kj, ...kL, p1, ..., pE−1)

detG(kj+1, ...kL, p1, ..., pE−1)
≥ 0
}
. (21)

The Baikov representation is very useful to compute cuts of Feynman integrals,which are related to their singularities by Cutkosky rules. In this representation, com-puting cuts simply corresponds to taking residues where the corresponding za are zero.We will say more about that in Section 3.4.
4This defines a complete set of Feynman integrals, as we will see in Section 2.3.1.
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2 FEYNMAN INTEGRALS

2.3 Linear relations among Feynman integrals
It is often useful to consider Feynman integrals as functions of the propagator expo-nents ν = {νj}1≤j≤P and of the space-time dimension D, for fixed values of the ex-ternal scales x. This gives rise to the concept of an integral family. In this section, wewant to show that the integrals of a family are not independent, but there are linearrelations among them, so that the family is spanned by a finite basis: this is a crucialaspect in the development of an efficient method for computing Feynman integrals, aswe will see in Chapter 3. First, we will focus on linear relations among integrals withdifferent exponents but same space-time dimension, then we will briefly discuss aboutrelations among integrals in different dimensions.
2.3.1 Families, IBPs and Master Integrals

Let us start with some definitions:
Def. 1 A family of F.I. is a (infinite) set of integrals I(x; ν;D) identified by a common setof invariants x: all integrals in the family share the same topology in terms of propaga-tors and external legs, but differ for the denominator exponents.
Def. 2 A family is said to be complete if all possible scalar products involving loop mo-menta (e.g. ki · kj , ki · pj) can be written as linear combinations of denominators.For a family which is not complete, we call irreducible scalar products (ISPs) the scalarproducts involving loop momenta that cannot be written as linear combinations of thedenominators.

If an integral family is complete, then the numerator of (1) can consequently berewritten, so that the original integral is a linear combination of integrals with numera-tors equal to one. Note that every family of FIs can be completed by introducing some"fictitious" denominators corresponding to the ISPs. So from now on we will alwaysassume to deal with complete families.
Now we want to show that the integrals of such a family are not all independent,but there are some linear relations among them, called IBP relations [12, 46], so thateach integral of the family can be generated by a finite basis.

Theorem 1 (IBP relations)Given a Feynman integral in dimensional regularization, I =
∫
dDkiF (ki, ...), we have:5∫

dDki
∂

∂kµ
i

[vµF (ki, ...)] = 0, (22)
for every D-dimensional vector vµ; in other words, integrals of total derivatives vanishin dim. reg.

5For simplicity we are stating the theorem for a single loop integral, but it is also valid in themulti-loopcase for all present loop momenta.
11



2 FEYNMAN INTEGRALS

ProofUsing Prop. 1, we have that:
• Under an infinitesimal shift, kµ

i → kµ
i + ϵvµ:

I =

∫
dDkiF (ki + ϵv, ...) = I + ϵvµ

∫
dDki

∂

∂kµ
i

F (ki, ...) + o(ϵ2). (23)
Therefore: ∫ dDki

∂
∂kµi

[vµF (ki, ...)] = 0, for vµ independent of kµ
i .

• Under an infinitesimal rescaling, kµ
i → eϵkµ

i :
I = eDϵ

∫
dDkiF (eϵki, ...) = I+ϵ

[
DI+

∫
dDkik

µ
i

∂

∂kµ
i

F (ki, ...)

]
+o(ϵ2). (24)

Therefore: ∫ dDki
∂

∂kµi
[kµ

i F (ki, ...)] = 0.
This completes the proof.

The previous theorem can be used to find linear recursion relations among the in-tegrals of a complete family. In fact, when the differential operator ∂
∂kµi

vµ in the LHS
of (22) acts on a propagator, it shifts the value of the exponent by one and producesa numerator, which may not be present in the original integral. However, if vµ is cho-sen to be a linear combination of loop and external momenta, then the numerator willbe a polynomial in scalar products involving loop momenta and consequently it willbe expressible in terms of inverse propagators, being the family complete. Therefore,the vanishing quantity in (22) is nothing but a linear combination of integrals of thesame family (same denominators), whose coefficients are in general rational functionsof the scales x and the regulator ϵ. These linear recursion relations in the propagatorexponents are called IBP relations; they allow us, at least in principle, to express ev-ery integral of the family as a linear combination of a basis of integrals, called MasterIntegrals (MIs).

One can show that the number of MIs for any family is always finite [44] and it isalso possible to predict it. However, different bases can be chosen and a clever choicecan notably simplify the calculations, as we will see later on.
To better organize the reduction to MIs, it is useful to divide the family into sectors.

Def. 3 A sector is a set including all Feynman integrals of a family sharing the same setof active propagators, where a propagator is said to be active if it is raised to a strictlypositive power (νi s.t. θ(νi) = 1). Therefore, the sector an integral belongs to can beidentified by a vector:
S[I(ν1, ..., νP )] = (θ(ν1), ..., θ(νP )) ≡ θ(ν), (25)

12



2 FEYNMAN INTEGRALS

where θ is the Heaviside step-function. There is a natural ordering on sectors: θ(ν) ≥
θ(ν ′) if νi ≥ ν ′

i, for all 1 ≤ i ≤ P .
Fromour discussion about IBPs, it is evident that IBPs for a certain integral I(x; ν;D)will involve integrals from its same sector θ(ν) or from lower sectors. This fact signif-icantly simplifies the reduction to MIs: in general, it is not possible to find a solutionto IBP relations in closed form; however, since we are typically interested in computingonly the specific integrals which appear in our amplitude, we only need to solve IBPs inthe subsectors involving the needed denominators.
In practice, the recursion problem can be turned into an algebraic problem: wewrite down all the IBPs including the integrals we need to reduce, then we solve for the"complicated" integrals in terms of the "simpler"6 ones. This approach is the basis forthe Laporta algorithm [27], which has been implemented in many public codes.
However, for integrals with several loops and external legs, solving the IBP rela-tions is still very challenging and modern techniques have been recently developed:tools from algebraic geometry (Syzygy equations) to get relations with lower powersof denominators; numerical evaluations over finite fields [35] (to avoid complexity ofintermediate analytic expressions), followed by a reconstruction of the final analyticresult.

2.3.2 Dimension-shift relations

Up to now we only considered linear relations among Feynman integrals with differentpropagator exponents ν, but same space-time dimensionD and invariants x. However,as noted at the end of Section 2.2.2, the Feynman representation shows us that thereis not a big difference between the dimensionD and the exponents νi. Therefore, it isreasonable to look for relations among Feynman integrals in different dimensions.
Let us now state two theorems [45, 30] that relate integrals whose space-time di-mensions differ by two.

Theorem 1For Feynman integrals depending on generic non-zero propagator masses, we have:
I(x; ν;D − 2) = (−1)L U

( ∂

∂m2
1

, ...,
∂

∂m2
p

)
I(x; ν;D), (26)

where the operator appearing in the rhs is given by the first Symanzik polynomial, withthe Schwinger/Feynman parameters replaced by the differential operators ∂
∂m2

i
.

Using this theorem, an integral in (D − 2) dimensions can be written as a linearcombination of integrals in D dimensions with shifted (because of the action of the
6Tipically, we consider as simpler integrals the ones with fewer denominators or smaller exponents.
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mass derivatives) exponents. Carrying out the inverse operation requires an additionaltheorem:
Theorem 2 An integral in (D+2) dimensions can be written as a linear combination ofintegrals inD dimensions as:

I(x; ν;D + 2) =
2LG(p1, ..., pE−1)

(D − L− E + 2)L
B(b1, ..., bL+E−1)I(x; ν;D), (27)

where (x)L is the Pochhammer7 symbol, B is the Baikov polynomial defined in (20),and the bi are the operators that lower the value of the exponent νi, i.e.:
bai I(x; ν;D) = I(x; ν1, ..., νi − a, ..., νP ;D) (28)

The relations (26) and (27) are known as dimension-shift relations. They can be veryuseful when computing Feynman integrals via the method of differential equations,that we will describe in the next section. In fact, for some integral families, it is easierto cast the differential equations in a simple form in D = 2 − 2ϵ than in the standard
D = 4− 2ϵ dimensions; then, at the end, one can reconstruct the physical integrals viathese relations.

7The Pochhammer symbol is defined as: (a)n = a(a+ 1)...(a+ n− 1) = Γ(a+n)
Γ(a) with (a)0 = 1.
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3 THE METHOD OF DIFFERENTIAL EQUATIONS

3 The method of differential equations
As discussed previously, the IBP relations allow us to reduce the computation of theinfinitely many FIs of a family to that of a finite number of Master Integrals. Thereare different techniques to compute MIs, but the most successful one is the methodof differential equations [25, 39, 26], based on the fact that MIs satisfy systems of dif-ferential equations in the invariants. In this section, we present the main steps of themethod, which are the following: obtaining the differential equations, finding a basiswhere they take a simpler form (canonical basis), and then solving them with the ap-propriate boundary conditions. For this review chapter, we mainly follow [2, 22, 4].
3.1 Obtaining the differential equations
For a complete family of FIs depending on the scales x = (x1, ..., xs), let us fix a basisof MIs, represented as a vector I⃗(x, ϵ) = (I1(x; ν

1; ϵ), ..., IN(x; ν
N ; ϵ))T , where νi =

{νi
j}1≤j≤P is the set of exponents appearing in the denominators of the i-th integral andwe assume that the integrals are ordered in the vector from lower to higher sectors, i.e.

θ(ν1) ≤ θ(ν2) ≤ ... ≤ θ(νN).
We can argue that the derivatives of MIs w.r.t. an external scale are still integrals ofthe same family. In fact, when computing the derivative of I⃗(x, ϵ) with respect to anexternal scale xi, it is possible to take the derivative under the sign of integral, so that itacts directly on the integrand. If xi = m2

j , the operator ∂xi
will simply shift by one theexponents of all denominators containingmj . If xi is a scalar product between externalmomenta, xi = pj ·pk, thenwe need to express ∂xi

in terms of the differential operators
Ojk = pµj

∂
∂pµk

; this is done by employing the chain rule: Ojk = pµj
∂

∂pµk
=
∑

l p
µ
j
∂xl

∂pµk

∂
∂xl

,
and then inverting the system to find ∂

∂xl
. The operators Ojk act on the integrand ina similar way as discussed (see Section 2.3.1) for the operators on the LHS of (22), i.e.without producing new denominators. Therefore, at the end, for the derivatives ofMIs,we get linear combinations of integrals of the same family, which can be reduced toMIsusing IBP identities.

This means that the derivative of a master integral with respect to an external in-variant xi gives a linear combination of master integrals, so we can write:
∂xi

I⃗(x, ϵ) = Axi
(x, ϵ)I⃗(x, ϵ), (29)

where Axi
(x, ϵ) is a N × N matrix. This is a system of linear first-order differentialequations in the invariant xi satisfied by the MIs. Since IBPs only involve rational coef-ficients, then the entries of Axi

(x, ϵ) are rational functions in x and ϵ. Moreover, if, aswe assumed, the integrals in I⃗(x, ϵ) are ordered from the lowest to the top level sec-
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3 THE METHOD OF DIFFERENTIAL EQUATIONS

tor, then8 the matrix will be in block lower-triangular form: every block on the diagonalcorresponds to the homogeneous part of the corresponding sector.
Repeating this procedure for all the scales xi we get a system of differential equa-tions for each of them; we can rewrite these systems in a more compact form in termsof a total differential d =

∑s
i=1 ∂xi

dxi:
dI⃗(x, ϵ) = A(x, ϵ)I⃗(x, ϵ), (30)

where A(x, ϵ) =
∑s

i=1Axi
(x, ϵ)dxi is a matrix of one-forms, whose coefficients arerational functions in x and ϵ.

3.2 Some properties of the differential equations
Let us nowdiscuss themain properties of the differential equations satisfied by theMIs.
1. Integrability conditionThe total differential satisfies the condition d2 = 0, in fact:

d2 = d
(∑

j

∂

∂xj

dxj

)
=
∑
i,j

∂2

∂xi∂xj

dxi ∧ dxj = 0, (31)
where we used the fact that the wedge product between differential forms is anti-symmetric, while second partial derivatives are symmetric. This gives a constraint on
A(x, ϵ):

0 = d2I⃗ = d
(
AI⃗
)
=
(
dA
)
I⃗ − A ∧ dI⃗ =

(
dA− A ∧ A

)
I⃗ , (32)

where we used (30) to express dI⃗ . Therefore, the matrix A(x, ϵ)must satisfy the inte-grability condition:
dA(x, ϵ)− A(x, ϵ) ∧ A(x, ϵ) = 0. (33)

Using the definition of the differential operator d and the antisymmetry of the wedgeproduct, this can be rewritten as a set of differential relations among the matrices
Axi

(x, ϵ):
∂xi

Axj
− ∂xj

Axi
− Axi

Axj
+ Axj

Axi
= 0 ∀i, j , (34)

which can be used to check the correctness of the differential equations.
2. Euler scaling relationSince Feynman integrals are homogeneous functions in the external scales xi (see Prop.
3 of Section 2.1), then the derivatives ∂xi

I(x; ν; ϵ) will not be independent, even if the
8Recall that an integral can only couple to integrals with the same or smaller number of propagators,since derivatives cannot produce new denominators.
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scales xi are independent. In fact, by Euler’s theorem for homogeneous functions, wecan write for a generic Feynman integral:
s∑

i=1

xi
∂

∂xi

I(x; ν; ϵ) =
α

2
I(x; ν; ϵ). (35)

If we now change variables (x1, ..., xs) → (y1, ..., ys) = (x1/xs, ..., xs−1/xs, xs), wehave:
s∑

i=1

xi
∂

∂xi

=
s−1∑
i=1

xi
∂

∂xi

+ xs
∂

∂xs

=
s−1∑
i=1

yi
∂

∂yi
+ ys

(∂ys
∂xs

∂

∂ys
+

s−1∑
i=1

∂yi
∂xs

∂

∂yi

)
= ys

∂

∂ys
.

(36)Plugging in eq. (35) and solving the resulting differential equation, we get:
I(x; ν; ϵ) = yα/2s Î(y1, ..., ys−1; ν; ϵ) = xα/2

s Î(x1/xs, ..., xs−1/xs; ν; ϵ). (37)
This means that the non trivial functional dependence of I(x; ν; ϵ) is only in the ratios
xi/xs (1 ≤ i ≤ s − 1), or equivalently we can always set one scale (e.g. xs) to oneand take derivatives only with respect to the other (s− 1) scales. This also tells us thata one-scale integral has a trivial scale dependence, so it cannot be computed with themethod of differential equations, but we need to employ other techniques, e.g. directintegration using Feynman parameters.

Eq. (35) can be rewritten for a basis of master integrals as:
s∑

i=1

xi
∂

∂xi

I⃗(x, ϵ) =
1

2

[
I⃗(x, ϵ)

]
I⃗(x, ϵ), (38)

where [I⃗(x, ϵ)] = diag
([

I1(x, ν
1, ϵ)

]
, ...,

[
IN(x, ν

N , ϵ)
]) is the diagonal matrix made

up of the mass dimensions of the MIs. This is known as the Euler scaling relation andprovides another check for the correctness of the differential equations.
3. Change of basisAs already said, the basis of MIs is not unique; in fact we can always perform a changeof basis from I⃗(x, ϵ) to J⃗(x, ϵ) by setting:

J⃗(x, ϵ) = R(x, ϵ)I⃗(x, ϵ), (39)
whereR(x, ϵ) is some invertiblematrix. We assume it to be rational in ϵ, andwe call thetransformation rational/ algebraic/ transcendental depending on whether the matrixentries ofR(x, ϵ) are rational/ algebraic/ transcendental in x. We want to see how ourdifferential equations (30) behave under a change of basis; plugging (39) in them weget:

dJ⃗(x, ϵ) = A′(x, ϵ)J⃗(x, ϵ), (40)
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where:
A′(x, ϵ) = R(x, ϵ)

[
A(x, ϵ)R−1(x, ϵ)− dR−1(x, ϵ)]. (41)

We can see that the new basis satisfies differential equations of the same form as (30),whose matrix A′(x, ϵ) is related to the original matrix A(x, ϵ) by the transformation(41). Equivalently, the single differential equations (29) will now take the form:
∂xi

J⃗(x, ϵ) = A′
xi
(x, ϵ)J⃗(x, ϵ), (42)

where:
A′

xi
(x, ϵ) = R(x, ϵ)Axi

(x, ϵ)R−1(x, ϵ) + [∂xi
R(x, ϵ)]R−1(x, ϵ). (43)

It is interesting to notice that this transformation is similar to the gauge transformationfor a non-abelian gauge potential: Aµ → A′
µ = UAµU

−1 − (∂µU)U−1.
Note also that, whileA(x, ϵ) is a matrix of rational one-forms (as a consequence ofIBPs), if the transformation (39) is not rational, then the matrix entries of A′(x, ϵ) willnot be rational. Thus, it is useful to give the following definition: an IBP-basis is a basisrelated to the original basis of integrals in which we solved IBPs by a rational transfor-mation; in such a basis, the differential equations will still involve rational coefficients.

3.3 Canonical form of differential equations
Wewant to perform a change of the basis of MIs, so that the differential equations takea form which is as simple as possible. Let us state the following conjecture [23], whichhas been supported by all multi-loop computations performed up to now:
Conjecture 1For every IBP-basis I⃗(x, ϵ), satisfying the differential equation (30), there exists a (possi-bly transcendental) transformation to a new basis J⃗(x, ϵ), described by (39), such that:

dJ⃗(x, ϵ) = A′(x, ϵ)J⃗(x, ϵ) with A′(x, ϵ) = ϵÃ(x), (44)
where Ã(x) is a matrix of one-forms with at most logarithmic singularities.9

Such a basis, where the ϵ-dependence factorizes in the differential equations, iscalled a canonical basis and the corresponding differential equations (44) are said to bein canonical form.The simplest possibility is to have a canonical dlog-form:
Ã(x) =

∑
i

Ai d log pi(x), (45)
9Equivalently, we can say that the matrices A′

xi
(x, ϵ) have at most single poles.
18



3 THE METHOD OF DIFFERENTIAL EQUATIONS

where Ai are constant matrices and pi(x) are algebraic functions. However, it is notalways possible to cast differential equations in this form.
Now we want to describe how canonical differential equations can be solved. Let’sconsider a system of differential equations in canonical form:

dJ⃗(x, ϵ) = ϵÃ(x)J⃗(x, ϵ) (46)
and suppose that we already know the value of J⃗(x0, ϵ) at a certain point x = x0,which provides a valid boundary condition for our problem. The value of J⃗(x, ϵ) atpoint x can be obtained by parallel transporting the solution from x0 to x along a path
γ connecting the two points; the independence of the result on the specific chosenpath (homotopy invariance) is guaranteed by the integrability condition (33), which forsystems in canonical form reduces to the simpler conditions:

dÃ(x) = 0 , Ã(x) ∧ Ã(x) = 0, (47)
showing in particular that Ã(x)must be a matrix of closed one-forms.The precise criterion for homotopy invariance will be discussed in Section 4.1.2.

The solution of (46) can be formally written in terms of a path-ordered exponential:
J⃗(x, ϵ) = P exp

[
ϵ

∫
γ

Ã(x′)

]
J⃗(x0, ϵ). (48)

In particular, the path-ordered exponential provides amatrix-valued general solution tothe systemof differential equations, the value of J⃗(x0, ϵ) fixes the boundary conditions.Coming back to our analogy with gauge theories, if we think of the matrix Ã(x) asthe analogous of a gauge potential, then the path-ordered exponential represents aWilson line connecting points x0 and x along γ; the independence on the path is a con-sequence of having a vanishing curvature tensor, as we can read from the integrabilitycondition written in the form of (34).
However, as previously mentioned, we are never interested in finding a global so-lution in ϵ, but we just want to compute the first coefficients of its Laurent expansionaround ϵ = 0: themain advantage of the canonical form is that it makes this task partic-ularly easy. Indeed, plugging the ansatz:10 J⃗(x, ϵ) =

∑
k≥k0

J⃗ (k)(x)ϵk in the canonicalDEs (46) and solving it order by order in ϵ, we can easily see that the lowest order(nonzero) coefficient J⃗ (k0) is a constant vector, which can be fixed by using the bound-ary conditions; each new order is determined from the previous one by an additionalintegration (together with the boundary conditions):{
J⃗ (k0)(x) = const

J⃗ (k)(x) = J⃗ (k)(x0) +
∫ x

x0
Ã(x)J⃗ (k−1)(x) k > k0

. (49)
10Here we are assuming the expansion to start from a certain index k0, whose value is determinedfrom the boundary conditions.
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This tells us that, at every order in ϵ, the Laurent coefficients can be expressed in termsof "iterated integrals", whose precise mathematical definition will be given in the nextchapter.
Note that the same conclusion could have been obtained by expanding the path-ordered exponential appearing in the formal solution (48). Moreover, one can exploitthe homotopy invariance to choose a path which makes the iterated integrals easyto evaluate in terms of known classes of special functions: typically one chooses apiecewise-constant path, i.e. a composition of segments where all variables except oneare constant, producing in this way iterated integrals in one variable.

3.4 Cuts and differential equations
Cuts of Feynman integrals play a crucial role in understanding their analytic structureand revealing physical discontinuities associated with unitarity. In this section, we firstexplain how they can be easily computed using Baikov representation; then we dis-cuss their relations with differential equations: cuts satisfy the same DEs as the originalMIs, maximal cuts give a solution of homogeneous equations and contain the leadingsingularities. We mainly follow [48].

Cuts of a Feynman integral are defined as the integrals obtained from it by puttinga subset of its propagators on-shell. In the momentum representation, cutting the j-thpropagator clearly corresponds to performing the replacement:
1

q2j −m2
j

→ 2πi δ
(
q2j −m2

j

)
, (50)

then one has to compute the remaining momentum-space integral. Particularly im-portant is the maximal cut, where we cut all the propagators whose exponents νj arepositive.
The computation of cuts becomes much easier in the Baikov representation (18), asthe integration variables zj are the inverse propagators; therefore, cutting propagatorsturns the original integral into a lower-dimensional one. In fact, in this representation,the replacement (50) reads:

1

zj
→ 2πi δ(zj). (51)

For νj = 1, this corresponds to removing the integration over zj , setting zj = 0 in theBaikov polynomial. In formulas:
I = A

∫
C

( P∏
i=1

dzi

)[B(z1, ..., zj, ..., zP )]D−L−E
2∏P

i=1 z
νi
i

, (52)
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CutejI = (2πi)A

∫
C

( P∏
i=1
i̸=j

dzi

)[B(z1, ..., zj−1, 0, zj+1, ..., zP )
]D−L−E

2

P∏
i=1
i̸=j

zνii

, (53)

where I is the original integral,CutejI is the onewith cut j-th propagator,A is the usualprefactor appearing in the Baikov representation formula (18).
We can also interpret the result of the integration over the variable zj , correspond-ing to the cut propagator, as the residue of the original integrand at zj = 0, or equiva-lently as its integral along a small11 anti-clockwise γj around zj = 0. In fact, writing the

original Feynman integral as I =
∫
C(
∏

i dzi)
f(z)
zj

, where f(z) is regular at zj = 0, we
have for the integral over zj:

2πi

∫
dzjf(z)δ(zj) = 2πif(z)

∣∣
zj=0

= 2πiRes
(f(zj)

zj

)∣∣∣
zj=0

=

∮
γj

dzj
f(z)

zj
, (54)

where we treated f as a function of only zj and in the last step we used the residuetheorem.This implies that a cut Feynman integral in the Baikov representation can be inter-preted as the original Feynman integral with a modified integration domain.12 This ob-servation has an important consequence connected to the differential equations. Onecan argue that the cut master integrals satisfy the same differential equations as theoriginal master integrals [38], based on the following:
Theorem 1Let I⃗ denote a basis of Feynman master integrals satisfying the differential equations
dI⃗ = AI⃗ . Suppose I⃗ ′ is another set of integrals, defined by the same integrands as I⃗ inBaikov representation, but integrated over a different contour C ′ in Baikov space. Thedeformed integrals I⃗ ′ will satisfy the same differential equations as I⃗ , i.e. dI⃗ ′ = AI⃗ ′,provided that the new integration contour C ′ satisfies the following requirements:

1. IBPs still hold, i.e. ∫C′ dω =
∫
∂C′ ω = 0;

2. the variation of the integralwith respect to the kinematic variables comes entirelyfrom the integrand, i.e. ∂
∂x

∫
C′ ω =

∫
C′

∂ω
∂x
;

3. the symmetries among the integrals are preserved.13
11By "small", here we mean that it must not enclose any singularities other than zj = 0.12This is the intersection of the original domain C with the hyperplane zj = 0.13For example, for the bubble integralwith equal internalmasseswehave the symmetry Iν1ν2

= Iν2ν1
;we require the new integration contour C′ to be such that I ′ν1ν2

= I ′ν2ν1
.
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3 THE METHOD OF DIFFERENTIAL EQUATIONS

Another consequence of (54) is that the cut of the j-th propagator of a Feynmanintegral with νj ≤ 0 vanishes, since zj = 0 is not a singularity of the integrand, so thecorresponding residue vanishes. On the other side, a Feynman integral with νj ≤ 0 be-longs to a sub-sector of the family where the j-th propagator is pinched. Therefore, wecan say that cutting the j-th propagator has the effect of setting all sub-sectors wherethis propagator is pinched to zero. In particular, the maximal cut will set all the subsec-tors to zero.
This implies that the differential equations are still valid for the maximal cuts, butthey restrict to their homogeneous part. We can say that the maximal cut integrals area solution of the homogeneous equations for the top sector integrals.
On the other side, from what we said, it is clear that in Baikov representation themaximal cut can be computed as the residue of the Feynman integral at the global pole,where all the denominators vanish; therefore, at o(ϵ0), it gives the leading singular be-havior of the integral, often referred to as the leading singularity. Extracting the leadingsingularities is a key step of the procedure to find a canonical basis, as we will explainin the next section.

3.5 How to find a canonical form
From the discussion in Section 3.3, the great usefulness of working in a canonical basisshould be clear. Despite the existence of a canonical basis for a general problem isstill conjectural, a systematic procedure to cast differential equations in canonical formhas been recently proposed [16, 22]. This procedure, that we will largely employ inthis work, is based on five main steps, whose basic ideas are reviewed in the followingparagraphs.
3.5.1 Choice of a good initial basis

Assuming that for a given family a canonical basis exists, it will always be possible, inprinciple, to reach it starting from any other basis, by performing a proper rotation.However, for this procedure to work, the initial basis must be chosen carefully, accord-ing to the following criteria:
• Avoid integrals with power-like UV or IR divergencies or such to generate differ-ential equations whose coefficients have poles in ϵ.
• For sectors with one master integral, try to select a candidate with unit leadingsingularities.
• For sectorswithmoremasters, first focus on the homogeneous equation at ϵ = 0,in order to determine the underlying geometry, which also tells us how manymasters can be decoupled.
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3 THE METHOD OF DIFFERENTIAL EQUATIONS

• If all the integrals are decoupled, try to choose them with unit leading singulari-ties. If n of the m masters in the sector are coupled, first choose the remaining
m− n, such to make the decoupling manifest.

• Regarding the coupled masters, the first is chosen to be a series of dlog formscorresponding to the holomorphic differential of the first kind of that geometry.The remainingmasters in the coupled block are chosen to be linear combinationsof derivatives of the first one with respect to the internal masses.
3.5.2 Rotation by the inverse ofW ss

Now the crucial step of the procedure comes. We know that, in the polylogarithmiccase, the canonical integrals at ϵ = 0 are iterated integrals of pure (see Section 4.4)dlog forms, i.e. with constant leading singularities. Therefore, for a polylogarithmicgeometry and decoupled masters in the top sector, a canonical basis can be simplyfound by dividing the original masters by their leading singularities.14
The idea is to generalize this procedure for coupled masters and more complicatedgeometries. In the previous section, we have seen that the leading singularity is con-tained in the maximal cuts or equivalently in the solution of the homogeneous equa-tions in the top sector at ϵ = 0.
Therefore, in our initial basis, we have to compute the matrixW of solutions of thehomogeneous equations at ϵ = 0 for every coupled block in the top sector: this matrix

W is called Wronskian matrix or period matrix. Then, we split W into a semi-simplepartW ss and a unipotent partW u:
W = W ss ·W u. (55)

The only requirements are that the semi-simple part is invertible and the unipotent onesatisfies a unipotent system of differential equations, i.e.:
dW u =

(∑
i

Ui(x)dxi

)
W u, (56)

where Ui(x) are nilpotent matrices. This splitting is not unique in general: we performit in such away thatW ss is lower-triangular, whileW u is upper-triangular with constantdiagonal entries normalized to one.
The semi-simple partWss can be seen as a "matrix version" of the leading singular-ity; therefore, by analogy with the decoupled case, we have to rotate the basis in thecoupled block with the inverse ofW ss.

14This is also what we did in the previous step to find a good initial basis.
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3.5.3 Going to an upper triangular ϵ-form

Now,we can easily cast thematrix of theDEs in an upper triangular ϵ-form,whichmeansthat the non ϵ-factorized terms will only appear below the diagonal of the new matrix.We can reach this form by simply adjusting some ϵ factors and swapping the positionsof some master integrals in the basis.
3.5.4 Cleaning up the homogeneous blocks

The next step achieves full ϵ-factorization within each homogeneous block. This isdone by shifting the master integrals which generate non ϵ-factorized homogeneousequations, by other masters in the same sector. In the simplest cases, this procedureamounts to removing total derivatives of the functions introduced in the rotation withthe inverse of W ss. In more involved situations, however, it becomes necessary to in-troduce new functions in terms of iterated integrals built from the same set of objectsappearing in the inverse rotation.
3.5.5 Cleaning up the inhomogeneous blocks

As a last step, we need to ϵ-factorize the inhomogeneous blocks of the matrix of DEs.This is achieved by shifting theMIs of a given sector by integrals in lower sectors. As forthe previous step, also here, the introduction of new functions might be required.
3.6 Boundary conditions
Fixing the boundary conditions is a fundamental step in the computation of Feynmanintegrals via themethod of differential equations. It is well known that in order to fix allintegration constants for a system of n first-order DEs (or equivalently for an nth-orderDE), we need to impose n boundary conditions.

A possibility is to compute analytically the master integrals at some specific kine-matic point where they take a simple form; however, in many cases, one can obtain theboundary information simply by imposing some physical consistency conditions with-out any need of performing a separate calculation. For this latter approach, we needto look at the behavior of the integrals near the singular points of the DEs: in fact, it iswell known that the solutions of a DE can have at most (but not necessarily) the sin-gularities of the DE. We know that singularities for an amplitude come from cuts,15 i.e.internal propagators going on shell. It may happen that a singular point for the differ-ential equation is not singular for a specific MI; in that case the boundary condition issimply provided by the regularity condition at that point: in practice, we can fix some
15In particular, one can show that an amplitude can develop a pole when a single-particle goes onshell, a branch-cut when two or more particles go on-shell.
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integration constants by requiring the singular part of the general solution to vanish.This is just an example, there are other physical conditions one can exploit to fix theboundaries even at a singular point. Another possibility is to compute numerically theMIs at one point.
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4 SPECIAL NUMBERS AND FUNCTIONS IN FIS

4 Special numbers and functions in FIs
In this chapter, we review the mathematical structures — special numbers and func-tions — that appear in the analytic expressions of Feynman integrals. We begin with adetailed overview of iterated integrals and their properties, then state a theorem thatconstrains the types of transcendental structures admissible in such integrals. Finally,we focus on two key classes of iterated integrals relevant to Feynman integrals: multi-ple polylogarithms (MPLs) and integrals over elliptic curves. We follow mainly [14], [2]and [50].
4.1 Iterated integrals
As noted in the previous chapter, the Laurent expansion of Feynman integrals naturallygives rise to iterated integrals. In this section, we want to study their mathematicalproperties in detail.
4.1.1 Definition and basic properties

Def. 1 (Iterated integral)Consider a geometric spaceX with local coordinates ξ = (ξ1, ..., ξs). Let γ : [0, 1] → Xbe a curve onX , and ω1, ..., ωn be one-forms onX . We define the iterated integral of
ω1...ωn on γ as: ∫

γ

ω1...ωn =

∫
0≤t1≤...≤tn≤1

f1(t1)dt1...fn(tn)dtn =

=

∫ 1

0

dtnfn(tn)

∫ tn

0

dtn−1fn−1(tn−1)...

∫ t2

0

dt1f1(t1),

(57)

with ∫
γ
() = 1, and fi : C → C defined as the pull-back of ωi along γ, i.e. γ∗ωi =

ωi ◦ γ = fi(ti)dti. We refer to the one-forms ωi as letters and to ω1...ωn as a word oflength n; the set of all independent letters is called an alphabet.
Let us now enumerate without proofs the main properties of iterated integrals:
• Independence on the parametrization of the path;
• Linearity: ∫

γ

(αω1...ωn + βω′
1...ω

′
m) = α

∫
γ

ω1...ωn + β

∫
γ

ω′
1...ω

′
m; (58)
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• Path composition:If γ1, γ2 : [0, 1] → X are two paths s.t. γ1(1) = γ2(0), then we have:∫
γ1◦γ2

ω1...ωn =
n∑

k=0

∫
γ1

ω1...ωk ·
∫
γ2

ωk+1...ωn; (59)

• Path reversal: ∫
γ−1

ω1...ωn = (−1)n
∫
γ

ωn...ω1, (60)
where γ−1(t) = γ(1− t) is the reversal of path γ;

• Shuffle product:∫
γ

ω1...ωn ·
∫
γ

ω′
1...ω

′
m =

∫
γ

ω1...ωn� ω′
1...ω

′
m, (61)

where the shuffle product� is defined recursively as:
(ω1...ωn)� (ω′

1...ω
′
m) =

= ω1

[
(ω2...ωn)� (ω′

1...ω
′
m)
]
+ ω′

1

[
(ω1...ωn)� (ω′

2...ω
′
m)
]

with (ω1...ωn)� () = ()� (ω1...ωn) = (ω1...ωn).

(62)

One can easily see from this definition that the shuffle product of twowords givesthe sum of all possible permutations of the letters preserving the internal order-ing of each word, e.g.:
ω1ω2� ω3ω4 = ω1ω2ω3ω4 + ω1ω3ω2ω4 + ω1ω3ω4ω2+

+ ω3ω1ω2ω4 + ω3ω1ω4ω2 + ω3ω4ω1ω2.
(63)

4.1.2 Homotopy invariance

In Section 3.3, we claimed that the solution of differential equations for MIs are homo-topy invariant functions as a consequence of the integrability condition. Here, we wantto give a precise mathematical definition of homotopy invariance for iterated integralsand a necessary and sufficient condition for it, which we will find to be equivalent tothe integrability condition.
Def. 1 (Homotopic paths)Two paths γ1, γ2 : [0, 1] → X , having the same extrema γ1(0) = γ2(0) = x0,
γ1(1) = γ2(1) = x1, are said to behomotopic if there exists amapϕ : [0, 1]×[0, 1] → Xsuh that:(i) ϕ(0, t) = γ1(t), ϕ(1, t) = γ2(t) ∀ 0 ≤ t ≤ 1;
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(ii) ϕ(s, 0) = x0, ϕ(s, 1) = x1 ∀ 0 ≤ s ≤ 1.
Def. 2 (Homotopy invariant function)A function f(γ) is said to be homotopy invariant if, ∀γ1 ∼ γ2, we have: f(γ1) = f(γ2).In other words, the function does not depend on the details of the path, but only on itsendpoints.

Iterated integrals are in general NOT homotopy invariant, as we can see from thefollowing example.
ExampleConsiderX = R2 and the family of paths γr,s : [0, 1] → X defined by: γr,s(t) = (tr, ts)for r, s > 0. All of them have endpoints (0, 0) and (1, 1). Let us compute the iteratedintegral of ω1ω2, with ω1 = dx and ω2 = dy, along a generic path of the family:∫

γr,s

ω1ω2 =

∫
0≤t1≤t2≤1

rtr−1
1 sts−1

2 dt1dt2 = rs

∫ 1

0

dt2t
s−1
2

∫ t2

0

dt1t
r−1
1 =

s

r + s
. (64)

The result depends on the path (it depends on the specific values of r and s), hence theintegral is not homotopy invariant.
Now let us give an homotopy invariance condition for iterated integrals. We firststart from the simple case of an iterated integral of length n = 1; let ω be a one-formand γ1, γ2 be two homotopic paths. We have:16∫

γ1

ω =

∫
γ2

ω ⇐⇒
∫
γ1γ

−1
2

ω = 0. (65)
Note that γ1γ−1

2 is a closed path, so if we consider a domainD such that ∂D = γ1γ
−1
2 ,by Stokes’ theorem: ∫

γ1γ
−1
2

ω =

∫
∂D

ω =

∫
D

dω1. (66)
For the iterated integral of ω to be homotopy invariant, this last integral must vanish forall paths γ1 and γ2, which happens if and only if ω1 is closed, i.e. dω1 = 0. So, for n=1,the necessary and sufficient condition for homotopy invariance is that the one-form isclosed. This result can be generalized to higher lengths: the iterated integral of a linearcombination ω of words is homotopy invariant iff Dω = 0, where the action of thedifferentialD on a word of one-forms is defined by:

D(ω1...ωn) =
n∑

i=1

ω1...(dωi)...ωn +
n∑

i=1

ω1...(ωi ∧ ωi+1)...ωn. (67)
16The equivalence follows from path composition and path reversal properties.
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This is equivalent to the integrability condition (33) for the differential equations.17Moreover, if all one-forms appearing in the word are closed (as for dlogs), then onthe rhs of (67) we are left only with the second term. This is the case for iterated inte-grals arising from differential equations in canonical form: the first of the integrabilityconditions (47) requires closure, the second one guarantees homotopy invariance.
4.1.3 Regularization

As previously said, when solving the differential equations for Feynman integrals, it isoften convenient to fix the boundary condition at a singular point of the DEs. However,if an end-point of the path is singular, the iterated integrals arising from the DEs willtypically be divergent. Therefore, we need to define a regularized version, that removesdivergencies, but preserves the properties of iterated integrals and coincides with thestandard definition when the integral is convergent.
For simplicity, we only consider the case in which all singularities are logarithmicand the space X is one-dimensional. Note that this assumptions are not so restric-tive: in fact for a system of differential equations in the canonical form all singulari-ties are logarithmic; moreover, if the space X is not one-dimensional, we can alwayssplit it into piece-wise constant paths, so that on each of them the problem becomesone-dimensional. For example, let us assume that γ : [0, 1] → [0, x] and that someone-forms ωi have a logarithmic singularity at the origin (ωi = ai dlogξ + ...), with noother singularities in the integration contour. The regularized version of ∫

γ
ω1...ωn =∫ x

0
ω1...ωn is defined via the following steps:
1. Introduce a small cut-off ε and replace:∫ x

0

ω1...ωn −→
∫ x

ε

ω1...ωn. (68)
2. Having only logarithmic singularities, in the limit ε → 0:

lim
ε→0

∫ x

ε

ω1...ωn =
n∑

k=0

Ik(x) log
k ε+ o(ε). (69)

3. The regularized version is defined by throwing away all logs:∫ [reg]

γ

ω1...ωn = I0(x). (70)
17This shows that iterated integrals appearing in the solution are homotopy invariant.
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This procedure is called shuffle-regularization, it is easy to check that it satisfies all ourrequirements. The simplest example of application is the following:
Example ∫ x

0

dξ

ξ
−→

∫ x

ε

dξ

ξ
= log x− log ε −→ log x. (71)

Therefore: ∫ [reg]

γ
dξ
ξ
= log x.

Already from this simple example, it is clear that the result depends on our choiceof "regularization scheme"; indeed, if we rescale the cut-off, i.e. ε → vε, we get adifferent result: ∫ [reg]

γ
dξ
ξ
= log x − log v. However, when solving the DEs, the bound-ary conditions will also depend on the choice of v in such a way that this dependencecancels in the final result for the integral, as it has to be.

4.1.4 Linear independence

An important property of iterated integrals is that, under some assumptions, they arelinearly independent functions. This is particularly useful in the context of Feynmanintegrals, because it leads to shorter analytic expressions that are free of hidden can-cellations.Let us first define linear (in)dependence for one-forms:
DefThe one-forms ωi are said to be linearly dependent over an algebra of functions C, ifthere exists a function f ∈ C and some constants αi ̸= 0 such that:∑

i

αiωi = df. (72)
They are said linearly independent if instead (72) holds only for αi = 0 ∀i.

It is possible to prove that iterated integrals are linearly independent over C as func-tions, if and only if they involve one-forms that are linearly independent over C.
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4.2 Transcendentality and periods
Before stating a general theorem that answers our question about the kind of numbersand functions appearing in the results of Feynman integrals, we need to recall somebasic definitions.
Def. 1 (Algebraic and transcendental numbers/functions)A complex number is called algebraic over Q, if it is a zero of some polynomial withrational coefficients; the set of algebraic numbers is denoted by Q. A complex num-ber that is not algebraic is called transcendental. These definitions can be naturallyextended to functions.

To prove that a number is transcendental we can use the following:
Lemma (Hermite-Lindelmann)Let z be a nonzero complex number. Then either z or ez is transcendental.
This implies in particular that: e, π, πn (n ∈ N), ζ2n, log q (q ∈ Q) are transcendentalnumbers.

We can define a class of numbers, called periods, that lie in between algebraic andtranscendental numbers:
Def. 2 (Periods)A complex number is called a period if both its real and imaginary parts can be writtenas integrals of an algebraic function with algebraic coefficients over a domain definedby polynomial inequalities with algebraic coefficients.
e.g.: q ∈ Q, π, log z (z ∈ Q), Li2(z) (z ∈ Q) are periods.
Numbers that are conjectured not to be periods are: e, γE , 1/π, log π,...

Now we can state the following important theorem [5]:
Theorem (Bogner, Weinzierl)Under suitable assumptions,18 the coefficients of the Laurent expansion of a Feynmanintegral, normalized19 as in (1), are periods.

We saw previously that the Laurent coefficients of FIs are expressed in terms of iter-ated integrals. The previous theoremmotivates us to consider integrals which produceperiods, therefore we have to start from an algebraic integrand: the simplest possibil-ity is to start from a rational function. By integration, we can produce other rationalfunctions, or a logarithm, when we integrate over a single pole. Iterating integrations,we can obtain rational functions, logarithms, but also new functions when we integrate
18All scalar products pi · pj have to be negative or zero, all internal masses positive and all ratios ofinvariants algebraic.19We stress the fact that this normalization for FIs is chosen so that, when expanding in ϵ, the tran-scendental numbers which are not periods (like γE) exactly cancel.
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over a single pole. These generalizations of the logarithm function are called multiplepolylogarithms (MPLs), we will study them in detail in the next section.
4.3 Multiple Polylogarithms (MPLs)
As anticipated in the previous section, the simplest and most important class of iter-ated integrals that appears in the computation of Feynman integrals is that of MultiplePolylogarithms (MPLs). In this section, we want to study in details their properties.
4.3.1 Basic definitions and properties

MPLs are defined recursively as:
G(a1, ..., an; z) =

∫ z

0

dt

t− a1
G(a2, ..., an; t) with G(; z) = 1. (73)

The vector a⃗ = (a1, ..., an) is called vector of singularities (or indices) of theMPL and thenumber of its elements is called transcendental weight of the MPL. By their definition,it is clear that MPLs are periods for algebraic arguments.Note that, for an = 0, the integral in (73) is divergent; we can regularize it as de-scribed in Section 4.1.3. In particular, this is equivalent to define in the case where allthe ai are vanishing:
G(⃗0n; z) =

1

n!
logn z, (74)

and then find regularized versions of the other MPLs with an = 0 by using shuffleproduct, as explicitly shown in an example at the end of this paragraph.
We can see that MPLs contain logarithms and classical polylogarithms as specialcases, in particular we have:

i) G(⃗an; z) =
1

n!
logn

(
1− z

a

)
,

ii) G(⃗0n−1, 1; z) = −Lin(z) where
Li1(z) =

∫ z

0
dt
1−t

= − log(1− z)

Lin(z) =
∫ z

0
dt
t
Lin−1(z) =

∞∑
k=1

zk

kn
,

(75)
which can be easily proved by induction.

As iterated integrals, MPLs satisfy all properties discussed in Section 4.1, includingshuffle product:
G(a1, ..., an1 ; z)G(an1+1, ..., an1+n2 ; z) =

∑
σ∈Σ(n1,n2)

G(aσ(1), ..., aσ(n1+n2); z), (76)
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where Σ(n1, n2) is the set of all shuffles of the n1 + n2 indices, i.e. the set of all per-mutations of these indices preserving the internal ordering of the vectors (a1, ..., an1)and (an1+1, ..., an1+n2).It is important to notice that shuffle product preserves theweight ofMPLs: from a prod-uct of two MPLs (evaluated at the same point) with respective weights n1 and n2, weget a linear combination of MPLs of weight n1 + n2. We can say that MPLs with theshuffle product form a graded algebra, called shuffle algebra.
As mentioned above, we can use shuffle product for regularization; we can writeMPLs with trailing zeroes in terms of others which have either rightmost index non-zero or all indices zeroes: the former are regular, the latter are regularized by (74). Forexample:

G(a, 0, 0; z) = G(a; z)G(0, 0; z)−G(0, 0, a; z)−G(0, a, 0; z) =

= G(a; z)G(0, 0; z)−G(0, 0, a; z)− [G(0, a; z)G(0; z)− 2G(0, 0, a; z)] =

= G(0, 0; z)G(a; z) +G(0, 0, a; z)−G(0, a; z)G(0; z). (77)
4.3.2 Some other properties of MPLs

In the following, we will enumerate the main other properties satisfied by MPLs:
1. G(a1, ..., an; z) is logarithmically divergent when z → a1.
2. G(a1, ..., an; z) is analytic at z = 0 for an ̸= 0, withG(a1, ..., an; 0) = 0.
3. G(a1, ..., an; z) , as a function of z ∈ C, has brunch cuts at most for Re(z) >

Re(ai) ∀i, but not necessarily.
e.g.: G(a, z) = log

(
1− z

a

) has a branch cut from z = Re(a) to z = ∞;
G(0, 1; z) =

∫ z

0
dt
t

∫ t

0
du
u−1

= −Li2(z) has a branch cut starting at z = 1, but thereis no branch cut starting at z = 0.
4. For an ̸= 0, there is a rescaling invariance:

G(a1, ..., an; z) = G(λa1, ..., λan;λz), for an ̸= 0, λ ∈ R∗. (78)
5. For ai ∈ {−1, 0, 1}MPLs reduce to harmonic polylogarithms (HPLs):

H (⃗a, z) = (−1)pG(⃗a, z), (79)
where p is the number of elements in a⃗ that are equal to (+1).
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4.3.3 Functional relations and linear independence

It is conjectured that all functional relations among MPLs preserve the transcendentalweight.As already seen, we can find relations among MPLs in the same variable z by usingshuffle product. However, if all the indices ai in two MPLs are different, then no rela-tions among them can be written, so they result to be linearly independent. In fact,if we think of MPLs as iterated integrals of linear combinations of words with letters
ωi = dlog(x − ai), then it is clear that, for all ai’s different, these one-forms will belinearly independent over C = Q, according to the definition given in Section 4.1.4.Therefore, the iterated integrals (MPLs) constructed from them will also be linearly in-dependent as functions.

This is true only if the MPLs are functions of the same variable z and this variabledoes not appear in the indices. Instead, if we consider MPLs of the same weight de-pending on different (but related) variables, it is possible to find some non-trivial rela-tions among them. As an example, let us discuss the relation amongMPLswith variables
x > 0 and −x, which is very useful when performing analytical continuation of thesefunctions.

We want to relate G(...; y), where y = −x + iε (ε small positive real number), to
G(...; x). Restricting for simplicity the indices to only 1 and 0, we can proceed recur-sively on the weight. At weight n = 1, we have:

G(0; y) = log y = log(−x+ iε) = log x+ iπ = G(0; x) + iπ,

G(1; y) = log(1− y) = log(1 + x) = G(−1;x).
(80)

At weight n = 2 we have 4 different MPLs, two of them are very easy to compute:
G(0, 0; y) =

1

2
log2 y =

1

2
(log x+ iπ)2 = G(0, 0; x) + iπG(0; x)− π2

2
,

G(1, 1; y) =
1

2
log2(1− y) =

1

2
log2(1 + x) = G(−1,−1; x).

(81)

G(0, 1; y) can be computed using the expression forG(1; y). Indeed:
G(0, 1; y) =

∫ y=−x+iε

0

dt

t
G(1; t) =⇒ ∂

∂x
G(0, 1; y) =

1

x
G(1; y) =

1

x
G(−1; x). (82)

Integrating back:
G(0, 1; y) =

∫ x

0

dx′

x′ G(−1; x′) + c, (83)
where c is fixed knowing thatG(0, 1; 0) = G(0,−1; 0) = 0; therefore we get:

G(0, 1; y) = G(0,−1; x). (84)
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The last functionG(1, 0; y) can be computed fromG(0, 1; y) using the shuffle product:
G(1, 0; y) = G(1; y)G(0; y)−G(0, 1; y) =

= G(−1;x)[G(0; x) + iπ]−G(0,−1; x) = iπG(−1; x) +G(−1, 0;x).
(85)

Repeating the same approach, it is possible to find relations among higher weight func-tions.Thus, already from this simple example, a very important point emerges: whendeal-ing with MPLs, if we understand functional relations for weight one functions (logs),then we can derive all functional relations at any weight iteratively.
4.4 Transcendental weight and canonical form
Now, we are going to introduce the important concept of transcendental weight, whichis connected to the canonical form of differential equations.
Def. 1 Given a function f , which is a linear combination of iterated integrals of dlogforms, its transcendental weight T (f) is defined as the number of iterated integrations.Clearly, T (f1 · f2) = T (f1) + T (f2).
E.g. : T (log z) = 1, T (Lin(z)) = n, T

(
G(a1, ..., an; z)

)
= n.

This definition can be generalized to constants expressible as iterated integrals of
dlog forms,
e.g.: T (log c) = 1 (for c ̸= 0, 1), T (π) = 1 since log(−1) = ±iπ, T (ζ(n)) = n.

In order to see the connection with the canonical form, we need to give two moredefinitions.
Def. 2 A function f is said to have uniform transcendental weight (UT function), if it is asum of terms with the same transcendental weights.

A stronger property is that of purity.
Def. 3 A function f is pure if it has uniform transcendental weight and its transcendentalweight is lowered by one via differentiation, i.e. T (df) = T (f)− 1.

For simplicity, let us focus on a casewhere the differential equations are in canonicaldlog form. If the lowest-order Laurent coefficients of the MIs are (UT) constants ofthe same transcendental weight, then the higher-order ones, which are obtained byiterated integrations, will also have uniform transcendental weight. We can also makethe canonical basis integrals pure functions by associating weight -1 to the dimensionalregulator ϵ. In fact, from the canonical DEs (46), we have: T (dJ⃗) = T (ϵ) + T (Ã) +

T (J⃗). SinceT (ϵ) = −1 andT (Ã) = 0being Ã amatrix ofdlog forms, we get: T (dJ⃗) =

T (J⃗)− 1, as claimed.
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4.5 Beyond Polylogarithms

In Section 4.3 we studied MPLs, which are the most general20 functions one can obtainby iterating integrations of rational differential forms R(x)dx with a finite set of poles
{a1, ..., an,∞}on the punctured Riemann sphere,CP1/{a1, ..., an,∞}. We can extendthis construction to more general geometries. In particular, a case that is relevant forphysics is that of iterated integrals over an elliptic curve, that can be identified, as wewill see, with a torus. In this section, we first introduce the concept of elliptic functionsand elliptic curve and explore the connection between them; then we come back tothe problem of defining iterated integrals on elliptic curves.
4.5.1 Elliptic functions

Let us start from some basic definitions [49].
Def. 1 An elliptic function f(z) is a complex function which is:
(a) meromorphic, i.e. it has finitely many poles, but no branch-cuts;
(b) doubly periodic, i.e.: f(z) = f(z + ω1) = f(z + ω2) ∀z, where ω1, ω2 ∈ C aretwo complex numbers linearly independent over R (i.e. τ = ω2

ω1
/∈ R) , called thetwo fundamental periods of f .

Def. 2 Let f be an elliptic function with fundamental periods ω1, ω2 ∈ C. The set ofpoints in the complex plane given by:
Λ(ω1, ω2) = {mω1 + nω2|m,n ∈ Z} (86)

is called the period lattice. Clearly, all the points of this lattice are still periods of f . Theparallelogram P of vertices {0, ω1, ω2, ω1 +ω2} is called the period parallelogram of f .
Note that, due to its periodicity, an elliptic function is fully determined onC by spec-ifying its values on the period parallelogram P . Moreover, identifying opposite sides of

P yields a torus, denoted as C/Λ, which is the natural domain for elliptic functions. Inthis sense, an elliptic function on C descends to a well-defined meromorphic functionon the torus C/Λ. Another important observation is that the shape of this torus doesnot depend on the specific values of ω1 and ω2, but only on their ratio τ = ω2

ω1
, calledmodulus. Therefore, we can always decide to rescale periods and define the periodlattice of an elliptic function as: Λ(1, τ) ≡ Λ(τ).

In the following, we state the main basic properties [49] of elliptic functions:
20More precisely, given any rational function R(x), we can decompose it into partial fractions andexpress its iterated integrals in terms of MPLs.
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Prop.1 For an elliptic function, the number of poles inside the period parallelogramequals the number of zeroes.
Prop.2 An elliptic function with no poles (or equivalently no zeroes) inside the periodparallelogram is a constant.
Prop.3 Given an elliptic function f with period parallelogram P , the contour integral of
f over ∂P vanishes: ∫

∂P
f(z)dz = 0.

Cor. 1 The sum of residues of an elliptic f inside the period parallelogram P vanishes:∑
z0∈P

Res
[
f(z)

]∣∣∣
z=z0

= 0.
Cor. 2 An elliptic function has at least 2 simple poles or a double pole inside the periodparallelogram.

The simplest (and most important) example of an elliptic function is given by theWeierstrass ℘-function:
e.g.

℘(z; τ) := ℘(z) =
1

z2
+

∑
λ∈Λ(τ)\{0}

(
1

(z − λ)2
− 1

λ2

)
. (87)

One can easily check that it satisfies the requirements of Def. 1. In fact, this functionhas only double poles at the lattice points, therefore is meromorphic. The second termin the sum guarantees uniform convergence; this property allows us to shift terms inthe sum, which is crucial for proving periodicity.
An important property of this function, that we will use later on, is that it satisfiesthe following differential equation:

(℘′(z; τ))2 = 4℘3(z; τ)− g2℘(z; τ)− g3, (88)
where g2, g3 ∈ C are determined by the periods of the Weierstrass ℘-function.

Another important result, which wewill not prove, is that every elliptic function canbe written as a rational function in ℘(z; τ) and ℘′(z; τ). This explains the central roleof Weierstrass ℘-function in the theory of elliptic functions.
4.5.2 Elliptic curves

Now we want to introduce the concept of elliptic curve [43] and construct the cor-responding Riemann surface; explore intuitively its relation with the elliptic functionspreviously introduced; in particular, we want to show how the Weierstrass ℘-functioncan be useful to parametrize an elliptic curve.
Let us start from the definition of an elliptic curve:

Def. An elliptic curve is an algebraic curve in C2 defined by:
E :

{
(x, y) ∈ C2 : y2 = P4(x)

}
, (89)

37



4 SPECIAL NUMBERS AND FUNCTIONS IN FIS

where P4(x) is a polynomial of degree three or four in the complex variable x.
For example, let us assume for simplicity:
P4(x) =

√
(x− a1)(x− a2)(x− a3)(x− a4) with ai ∈ R, a1 < a2 < a3 < a4.(90)The function y(x) =

√
P4(x) is multivalued on the complex plane; our goal is to in-troduce a Riemann surface on which y(x) becomes single-valued. We note that goingaroung a single ai results in a change of sign of the square root, while going around twoof them returns the function to its original value. This motivates us to introduce twobranch cuts: one between a1 and a2, the other between a3 and a4.We then take two copies of the Riemann sphere (with these branch cuts), denotedR+andR−, corresponding to the two possible values of y(x) = ±

√
P4(x). Along each ofthe branch cuts, we "open" the slits in both sheets and glue them together crosswise:the upper edge of the cut onR+ is glued to the lower edge of the cut onR−, and viceversa. This gluing identifies points in such a way that the resulting surface accommo-dates a well-defined single-valued function. The resulting topological surface is a torus,i.e., a compact Riemann surface of genus one. This is the Riemann surface associatedwith the elliptic curve.

One can show that it is always possible to find a change of coordinates that puts theelliptic curve into the so called Weierstrass form [43]:
y2 = 4x3 − g2x− g3, with g2, g3 ∈ C. (91)

Note that this equation has the same form as the differential equation (88) for theWeierstrass ℘-function; in particular from the values of g2 and g3, we can reconstructthe periods of the corresponding function, that we can also rename as the periods ofthe elliptic curve E.
As prevously discussed, due to its periodicity, the function ℘(z; τ) can be inter-preted as a function defined on the torus C/Λ(τ). We can therefore create a corre-spondence between the points on this torus and the ones on the elliptic curve E viathe mapping:

ϕ : C/Λ(τ) → E, z ∈ C/Λ(τ) → (x, y) = (℘(z; τ), ℘′(z, τ)) ∈ E, (92)
where we exploited the fact that the equation of the curve in the form (91) correspondsto the differential equation (88) satisfied by Weierstrass ℘-function.

Themapping (92) is invertible; in particular, the point z0 of the torus, correspondingto the point (x0, y0) ∈ E, is given by the elliptic integral of the first kind:
z0 =

∫ x0

∞

dx

y(x)
= −

∫ ∞

x0

dx√
4x3 − g2x− g3

. (93)
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In fact:
∫ x0

∞

dx

y(x)
=

∫ z0

0

℘′(z; τ)dz

℘′(z; τ)
= z0, where we used that x = ℘(z; τ) has a pole

at z = 0 and that x0 = ℘(z0; τ) from (92).
4.5.3 Integrals on elliptic curves

As discussed, iterated integrals of rational functions on the punctured Riemann sphereproduce MPLs: in this case, the integrand is a meromorphic function on the puncturedRiemann sphere, CP1/{a1, ..., an,∞}. On an elliptic curve, instead, the meromorphicfunctions are rational functions in (x, y) subject to the constraint (89), which definesthe elliptic curve. The most general function with this property has the form:
f(x) =

P1(x) + P2(x)y(x)

Q1(x) +Q2(x)y(x)
= R1(x) +

1

y(x)
R2(x), (94)

where R1(x) and R2(x) are rational functions in x, while y(x) =√P4(x). By integrat-ing the first term over x, we get rational functions and logarithms as usual; by integrat-ing the second one, we can get new functions. By partial fractioning this term, we canonly get terms of the form: xm

y
and 1

y(x−c)m
, withm ∈ N. The (infinitely many) integralsof all these expressions can be reduced to integrals of the following differential forms:

ω1 =
dx

y
, ω2 =

xdx

y
, ω3 =

dx

y(x− c)
, ω4 =

dx

x− c
. (95)

Let us analyze them in detail:
• ω4 is just a dlog form, whose integral gives log(x− c).
• ω1 is called elliptic differential of the first kind, or holomorphic differential, be-cause it has no poles. Its integral can be expressed in terms of elliptic integrals ofthe first kind:

K(λ) =

∫ 1

0

dx√
(1− x2)(1− λx2)

. (96)
• ω2 is called elliptic differential of the second kind, it has a double pole with van-ishing residue. Its integral can be expressed in terms of elliptic integrals of thesecond kind:

E(λ) =

∫ 1

0

dx

√
1− λx2

1− x2
. (97)

• ω3 is called elliptic differential of the third kind, it has a pole with non-vanishingresidue. Its integral can be expressed in terms of elliptic integrals of the thirdkind:
Π(n|λ) =

∫ 1

0

dx

(1− nx2)
√

(1− x2)(1− λx2)
. (98)
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Summarizing, from a single integration of meromorphic functions over an ellipticcurve, we can get rational functions, logarithms and elliptic integrals of the three kinds.Iterating integrations, we obtain a new class of iterated integrals, called elliptic multiplepolylogarithms (eMPLs) [40]: these are iterated integrals of differential forms whichare products of one-forms of the four types seen above. Note that MPLs are a specialinstance of eMPLs, obtained including only one-forms of type ω4.
One can show [17] that eMPLs can be written more compactly as:

E(n1, . . . , nk; a1, . . . , ak; z; τ) =

∫ z

0

dt g(n1)(t− a1, τ) E(n2, . . . , nk; a2, . . . , ak; t; τ).

(99)This has the same form as the definition (73) for MPLs, but now the integration kernels
g(n)(z; τ), with n ∈ N0, are some more complicated special functions.21

21They are defined as the coefficients in the expansion of the Kronecker elliptic function F (z, α; τ) in
the variable α: F (z, α; τ) =

1

α

∞∑
n=0

g(n)(z, τ)αn.
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5 Series expansions of DEs for FIs
We have previously seen that, when the differential equations (DEs) for the master in-tegrals (MIs) are cast in canonical form, they can, in principle, be solved order by orderin ϵ, allowing one to compute the full Laurent expansion to any desired order. However,it is not always possible to find global analytic solutions in the external kinematic vari-ables. Evenwhen such solutions exist, they are often expressed in terms of complicatedspecial functions that are difficult to evaluate in practice.

However, as we will see in the first section of this chapter, it is always possible tofind local generalized series solutions around a given point using Frobenius method,provided that the point is not an essential singularity of the DEs. These series are guar-anteed to converge at least up to the nearest singularity.
The good news is that the DEs governing Feynman integrals are expected to haveonly regular singular points [33]. Thismeans that, at least in principle, one can constructa basis of solutions around each singularity and analytically continue them bymatchingacross overlapping regions of convergence, thereby reconstructing a global solution.
However, this approach comes with a practical challenge: for problems involvingmany singularities or multiple scales, the series expansions tend to converge slowly, es-pecially near the boundary of their circle of convergence. We will address this issue in

Section 5.2, introducing a change of variables that has the effect of improving conver-gence.
5.1 Series solutions of DEs: Frobenius method
There is a systematicmethod for finding series solutions to linear differential equations,known as Frobenius method, which will be the focus of this section. We will followmainly [41] and [7].

Consider a linear homogeneous n-th-order differential equation, written in normalform:22
u(n)(z) + p1(z)u

(n−1)(z) + .....+ pn−1(z)u
′(z) + pn(z)u(z) = 0, (100)

where z ∈ C and {pm(z)}1≤m≤n are rational functions of z.Suppose that z0 is a regular singular point of (100), i.e. (z − z0)
mpm(z) is analytic at

z = z0, or equivalently pm(z) has expansion:
pm(z) =

1

(z − z0)m

∞∑
l=0

p(l)m (z − z0)
l ∀m. (101)

22By normal form, we mean that the coefficient of the highest derivative is normalized to one.
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According to Fuchs’s theorem, around such a point z0, there exists at least a solution ofthe form of a generalized power series:
u(z) = (z − z0)

ρ

∞∑
n=0

cn(z − z0)
n, (102)

where ρ ∈ R is called the indicial exponent.
Plugging the ansatz (102) and the expansion (101) for coefficients pm(z) in the dif-ferential equation (100), we get:
∞∑
k=0

ck(z − z0)
k
{
(k + ρ)(k + ρ− 1)...[k + ρ− (n− 1)]+

+ (k + ρ)(k + ρ− 1)...[k + ρ− (n− 2)]
∞∑
l=0

p
(l)
1 (z − z0)

l + .....

.....+ (k + ρ)
∞∑
l=0

p
(l)
n−1(z − z0)

l +
∞∑
l=0

p(l)n (z − z0)
l
}
= 0.

(103)
With some algebraic manipulations,23 it can be rewritten as:
∞∑
k=0

{
(k + ρ)...[k + ρ− (n− 1)]ck +

k∑
l=0

[
(k − l + ρ)...[k − l + ρ− (n− 2)]p

(l)
1 + .....

.....+ (k − l + ρ)p
(l)
n−1 + p(l)n

]
ck−l

}
(z − z0)

k = 0.

(104)
For this equality to be satisfied, all the coefficients of the various powers of (z−z0)mustvanish. In particular, setting to zero the lowest order coefficient, we get (excluding thecase c0 = 0, corresponding to the trivial solution) the indicial equation:
ρ(ρ− 1)...[ρ− (n− 1)] + ρ(ρ− 1)...[ρ− (n− 2)]p

(0)
1 + .....+ ρp

(0)
n−1 + p(0)n = 0. (105)

This is an algebraic equation of degreen, fromwhichwe can determine the possible val-ues for the indicial exponent ρ, each of them producing a different solution of (100). By
23There are double sums of the form: ∞∑

k=0

αk(z− z0)
k

∞∑
l=0

βl(z− z0)
l, which can be rewritten (taking

k′ = k + l) as: ∞∑
k′=0

(z − z0)
k′

k′∑
l=0

αk′−lβl.
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setting to zero the higher-order coefficients of (104), we get recursive relations amongthe coefficients cm, which can be solved recursively, determining all of them from theknowledge of c0.
For an n-th-order differential equation, we expect n independent solutions; how-ever, itmay happen that the individual equation (105) does not givendinstinct solutionsfor ρ. In that case,24 we can find the remaining solutions of (100) starting from a moregeneral ansatz, that takes into account the possibility of having logarithmic singularitiesat z = z0:

u(z) = (z − z0)
ρ

mmax∑
m=0

∞∑
k=0

ck,m(z − z0)
k logm(z − z0). (106)

In practice, we first try to solve the system using ansatz (106) formmax = 0, whichcorresponds to (102). If we obtain n linearly independent solutions, we are done; oth-erwise we increase the value of mmax, eventually up to (n − 1). The general solutionis a linear combination of all linearly independent solutions obtained in this way. Tofind a particular solution, we need to fix the n coefficients of the linear combination byimposing proper boundary conditions.
5.2 Convergence and Bernoulli-like variables
From the theory of differential equations, it is well known that the radius of conver-gence of a series solution is at least the distance from the expansion point to the near-est singularity of the equation. However, from a numerical perspective, convergencetends to slow down significantly as one approaches the boundary of the circle of con-vergence: increasingly higher orders in the expansion are required to maintain a fixedlevel of precision.

A common strategy to improve convergence and effectively extend the radius ofconvergence involves performing a change of variables thatmaps the singularities to in-finity. In simple, one-scale problems it is possible to push away one singularity througha logarithmic change of variables [1, 18], introducing what are known as Bernoulli-likevariables. However, in the presence of multiple scales and several singularities, situa-tions frequently encountered when computing scattering amplitudes, the structure ofthe problem becomes substantially more involved. Understanding and optimizing con-vergence in these settings is still an open challenge. We will focus on these cases in thenext chapters, for the moment we just present the standard Bernoulli-like variables,aiming to shed light on why they appear to work so well.
24Wemust proceed in this way also when some indicial exponents differ by an integer number; in fact,in that case, they produce solutions of (100) that are not independent.
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5.2.1 The standard Bernoulli variable

The Bernoulli change of variable was introduced in [1] by ’t Hooft and Veltman in orderto find a series representation for the dilogarithm function with better convergenceproperties. Recalling the integral definition of the dilogarithm:
Li2(x) =

∫ x

0

dt
log(1− t)

t
, (107)

it is natural to think at the following change of variable:
u = − log(1− t), (108)

which gives:
Li2(x) = −

∫ x

0

dt
log(1− t)

t
=

∫ z

0

du
u

eu − 1
=

=

∫ z

0

∞∑
n=0

Bn
un

n!
=

∞∑
n=0

Bn
zn+1

(n+ 1)!
, with z = − log(1− x),

(109)

where we used the definition of Bernoulli numbers Bn in terms of their generatingfunction:
u

eu − 1
=

∞∑
n=0

Bn
un

n!
. (110)

These numbers have interestingmathematical properties [29]. Here, we highlight thosethat are most relevant for numerical applications:
1. Odd-indexed Bernoulli numbers, except B1, are vanishing;
2. Even-indexed Bernoulli numbers alternate in sign;
3. Their magnitude grows rapidly. Asymptotically: ∣∣B2k

∣∣ ≈ 4
(

k
πe

)2k√
πk.

The new series representation (109) for the dilogarithm in the variable z, called theBernoulli variable, has some advantages compared to the standard one:
Li2(x) =

∞∑
n=1

xn

n2
. (111)

The fact that the branching point x = 1 is pushed to z = +∞ guarantees conver-gence in the new variable even in regions where the original series was not convergent;moreover, the new series representation convergesmuchmore rapidly to the function’svalue, likely due to the alternating signs of Bernoulli numbers.
44



5 SERIES EXPANSIONS OF DES FOR FIS

5.2.2 Bernoulli-like variables: a new perspective

It is possible to define generalized Bernoulli-like variables in order to improve conver-gence of the series expansions for a generic function having only one finite singularity(excluding eventually the expansion point). This type of variable transformation hasbeen already employed in the physics literature, particularly in the context of Feynmanintegrals [18, 37, 10], as a form of experimental mathematics, whose only justification isits empirical success. Here, we want to revisit this technique from a different perspec-tive, giving a general definition of this change of variable and trying to provide a deeperunderstanding of why it is so effective, even if our justification remains heuristic ratherthan fully rigorous.
Consider a generic function f(z) in the complex plane, having singularities at z = z1and z = ∞, and focus on its expansion around a point z = z0:

f(z) =
∞∑
n=0

an(z − z0)
n. (112)

We can define the Bernoulli-like variable:
t = − log

( z − z1
z0 − z1

)
⇐⇒ z = z1 − (z1 − z0)e

−t. (113)
This change of variable sends the expansion point z = z0 to t = 0, while the singularpoints z = z1 and z = ∞ are mapped respectively to t = ±∞. This clearly extendsthe region of convergence; moreover, from some numerical tests, it seems that therapidity of convergence is also significantly improved for a general f(z)with the aboveproperties.In order to try to understand the reason for this nice numerical behavior, we canrewrite the series (112) in terms of the Bernoulli-like variable t. We have:

f(z) =
∞∑
n=0

an(z − z0)
n =

∞∑
n=0

an(z1 − z0)
n(1− e−t)n. (114)

Using Taylor expansion formula and the binomial theorem, we can write:
(1− e−t)n =

∞∑
k=0

1

k!

[ ∂k

∂tk
(1− e−t)n

]∣∣∣
t=0

tk =
∞∑
k=0

1

k!

[ n∑
j=0

(
n

j

)
(−1)je−tj

]∣∣∣
t=0

tk =

=
∞∑
k=0

n∑
j=0

(
n

j

)
(−1)j+k j

k

k!
tk =

∞∑
k=0

(−1)n+kn!

k!
S(k, n)tk,

(115)
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where in the last step we recognized the definition of Stirling numbers25 of the secondkind [29]:
S(k, n) =

1

n!

n∑
j=0

(−1)n+j

(
n

j

)
jk. (116)

Plugging (115) in (114), our function is rewritten as a power series in t:
f(t) =

∞∑
k=0

(−1)k

k!

(
k∑

n=0

an(z0 − z1)
nn!S(k, n)

)
tk. (117)

This can be thought of as an analytical continuation of the series representation (112)for the function f , since it is valid in a larger domain.
Moreover, in analogy with the dilogarithm case, the rapid convergence of the seriescan be reasonably attributed to two structural features of the coefficients. First, thecoefficients exhibit an alternation of signs, which naturally leads to partial cancellationsbetween successive terms. Second, each coefficient contains a sum of terms alreadyappearing in the previous orders. This structure effectively acts as a "resummation" ofearlier terms, but with partial cancellations. The combination of these two aspects isexpected to play a crucial role in accelerating convergence.
This alternating character also has practical implications for numerical computa-tions: from standard calculus, it is well known that in alternating series with decreasingtermmagnitudes, the truncation error is bounded by the absolute value of the first ne-glected term. This provides a simple and effective estimate of the numerical error, thatwe will largely employ in the following.

25It is interesting to notice that these special numbers are related to Bernoulli numbers, in fact: Bk =
k∑

n=0

(−1)n+k n!

n+ 1
S(k, n).
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6 A simple case: the 1-loop bubble
In this chapter, we apply the machinery previously described to the simplest nontrivialcase: the equal-mass bubble integral. Thanks to the simplicity of the problem, muchof the analysis can be carried out analytically. We begin by deriving the IBP relations,selecting a basis of master integrals, and obtaining the corresponding differential equa-tions. After identifying a canonical basis, we solve the system exactly in terms of mul-tiple polylogarithms (MPLs). Then, we construct (analytically) series solutions around
s = 0 and s = 4m2. Finally, we useMathematica to evaluate both the exact and the se-ries solutions, compare them numerically, and accelerate convergence by introducinga Bernoulli-like variable for each expansion.
6.1 IBPs and MIs
In this section, we derive the IBP relations for the bubble integral family in the equalmass case and choose a basis of master integrals for it.

The bubble integral family with equal internal masses is characterized by two de-nominators: {
D1 = k2 −m2

D2 = (k + p)2 −m2
, (118)

where k and p are respectively the loop and the external momenta, m is the mass ofinternal lines.

Figure 1: General bubble integral with labeled momenta.
The generic integral of this family looks like:

Ia1,a2 =

∫
1

Da1
1 Da2

2

, where

∫
≡ eγEϵ

∫
dDk

iπD/2
. (119)

There are two invariants: x = {p2 ≡ s,m2}, of which only one is independent, as wewill check explicitly. The family is complete, since there are two denominators and two
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6 A SIMPLE CASE: THE 1-LOOP BUBBLE

scalar products involving the loop momentum k: {k2, k · p}, so that we can write from(118): {
k2 = D1 +m2

k · p = D2−D1−s
2

. (120)
Note also that, being the internal masses equal, the family has an additional simmetry:

Ia1,a2 = Ia2,a1 , (121)
as one can easily check by performing the shift: k → −k − p.
The IBP relations can be derived from:∫

∂

∂kµ

vµ

Da1
1 Da2

2

= 0 with vµ = {kµ, pµ}. (122)
Using (120) to express the scalar products appearing in the numerator, we get:(D − 2a1 − a2)Ia1,a2 − 2a1m

2Ia1+1,a2 − a2(2m
2 − s)Ia1,a2+1 − a2Ia1−1,a2+1 = 0

(a1 − a2)Ia1,a2 + a1sIa1+1,a2 − a2sIa1,a2+1 − a1Ia1+1,a2−1 + a2Ia1−1,a2+1 = 0
.

(123)These are the IBPs for the bubble integral family with equal internal masses. We findthat there are two MIs, which we can choose to be I1,0 and I1,1, to which any otherintegral of the family can be related. Note that the first MI is a tadpole, so it belongsto a subsector; the second one is in the top26 sector. They are showed in the followingFigure 2:

Figure 2: Our choice of masters for the equal-mass bubble integral family.

6.2 Differential equations
Let us derive the differential equations for the chosen basis of MIs.

26By top sector, we mean the sector having the largest number of active denominators.
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6 A SIMPLE CASE: THE 1-LOOP BUBBLE

We can easily rewrite ∂
∂s

in terms of ∂
∂pµ

:
∂

∂s
=

1

2s
pµ

∂

∂pµ
. (124)

We have:
∂m2I1,0 = ∂m2

∫
1

D1

=

∫
1

D2
1

= I2,0, ∂sI1,0 = 0,

∂m2I1,1 = ∂m2

∫
1

D1D2

=

∫
1

D2
1D2

+

∫
1

D1D2
2

= I2,1 + I1,2 = 2I2,1,

∂sI1,1 = ∂s

∫
1

D1D2

= − ∂sD2

D1D2
2

= − 1

2s

∫
D2 −D1 + s

D1D2
2

= − 1

2s
(I1,1 − I2,0 + sI2,1).

(125)
Using IBPs (123), we can rewrite I2,0 and I2,1 in terms of the MIs, getting the systems ofdifferential equations in the two invariants:

∂

∂m2

(
I1,0
I1,1

)
=

(
D−2
2m2 0

− D−2
m2(4m2−s)

2(D−3)
4m2−s

)(
I1,0
I1,1

)
, (126)

∂

∂s

(
I1,0
I1,1

)
=

(
0 0

D−2
s(4m2−s)

−1
2

(
1
s
+ D−3

4m2−s

))(I1,0
I1,1

)
. (127)

One can easily check that theseDEs satisfy the integrability condition aswell as the Eulerscaling relation. We can also check that only one scale is independent, by performingthe change of variable: {
m̃2(m2, s) = m2

s̃(m2, s) = s
m2

. (128)
We get:

m̃2 ∂

∂m̃2

(
I1,0
I1,1

)
=

(
D−2
2

0
0 D−4

2

)(
I1,0
I1,1

)
,

∂

∂s̃

(
I1,0
I1,1

)
=

(
0 0

D−2
m̃2s̃(4−s̃)

−1
2

(
1
s̃
+ D−3

4−s̃

))(I1,0
I1,1

)
.

(129)

The first equation gives the trivial mass dependence, the second is the non-trivial one.Note that the latter is equivalent to (127) for m2 = m̃2 = 1, so we could directly set
m = 1 from the beginning and derive only the system in s:

∂

∂s

(
I1,0
I1,1

)
=

(
0 0

D−2
s(4−s)

−1
2

(
1
s
+ D−3

4−s

))(I1,0
I1,1

)
. (130)
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6.3 Canonical form
For this simple case, we could directly solve the non-canonical equation (130). How-ever, to anticipate what we will do in more complicated cases, we decide to work in acanonical basis: {

J1 = I2,0

J2 =
√

s(s− 4)I2,1
. (131)

Note that we construct the canonical basis starting from integrals with the first denom-inator squared27 and normalizing the second master by its leading singularity. Now wewant to write the differential equations in this basis.
Taking derivatives with respect to s, we get:

∂sJ1 = ∂s

∫
1

D2
1

= 0,

∂sJ2 = ∂s

[√
s(s− 4)

∫
1

D2
1D2

]
=

s− 2√
s(s− 4)

I2,1 +

√
s(s− 4)

2
I2,2.

(132)

Using IBP relations (123), we can rewrite:
I2,2 =

D − 4

s(s− 4)
I2,0 +

(6−D)s− 4

s(s− 4)
I2,1. (133)

Therefore, the differential equations in the new basis take the form:
∂

∂s

(
J1
J2

)
= ϵ

(
0 0
1√

s(s−4)
− 1

s−4

)(
J1
J2

)
. (134)

As expected, the system is now in canonical form (ϵ-dependence factorizes); however,in this basis thematrix entries are no longer rational functions in s. For this simple case,it is possible to rationalize them by performing the change of variable:
s = −(1− y)2

y
, (135)

where y is called the Landau variable. Now the canonical DEs take the form:
∂

∂y

(
J1
J2

)
= ϵ

(
0 0
− 1

y
1
y
− 2

y+1

)(
J1
J2

)
. (136)

It is important to notice that, while the DEs in s have singular points at s = 0, s = 4and s = ∞, (136) is singular only for y = −1 (corresponding to s = 4), y = 0 and
y = ∞ (both corresponding to s = ∞). Thiswill be importantwhen imposing boundaryconditions: we cannot use regularity at y = 1 (s = 0) as a BC, since this information isalready encoded in the DEs (136).

27We choose I2,1 since it is UV finite in D = 4 − 2ϵ, so it is a good initial integral according to thecriteria in Section 3.5.1.
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6 A SIMPLE CASE: THE 1-LOOP BUBBLE

6.4 Solving the canonical equations
We want to solve the canonical DEs (136). The only non-trivial equation is the secondone, since the first one simply tells us that the tadpole J1 does not depend on s. There-fore, J1 has to be computed by direct integration, getting:

J1 = I2,0 = eγEϵΓ(ϵ) =
1

ϵ
+ ϵ

π2

12
− ϵ2

ζ(3)

3
+ o(ϵ3). (137)

Expanding the second of (136) in ϵ, we get:
∂

∂y
J
(n)
2 (y) =

(1
y
− 2

y + 1

)
J
(n−1)
2 (y)− 1

y
J
(n−1)
1 , (138)

where J (n)
1 (already known from (137)) and J (n)

2 are the order n coefficients of the Lau-rent expansions in ϵ, respectively for J1 and J2. Therefore, we can write:
J
(n)
2 (y) =

∫
dy
[(1

y
− 2

y + 1

)
J
(n−1)
2 (y)

]
− J

(n−1)
1 log(y) + c(n), (139)

where the coefficients c(n) are fixed order by order in ϵ by imposing a suitable boundarycondition (BC). In particular, we know that the physical integral I2,1(s) has a branch cutfor s > 4, but is regular at s=0; therefore the canonical integralJ2(s) =√s(s− 4)I2,1(s)will satisfy J2(s = 0) = 0, or equivalently:
J2(y = 1) = 0. (140)

This is our boundary condition.
From (137), (138) and (140), it is evident that J (n)

2 = 0 ∀n < 0; using (139), we cancompute recursively the Laurent coefficients for n ≥ 0.Since (139) (or equivalently (136)) only contains dlogs of rational functions (dlog(y),
dlog(y + 1)), then the solution at any order can be expressed in terms of MPLs. Forexample, at second order in ϵ, we get:

J2(y) =−G(0; y) + ϵ
[π2

6
+ 2G(−1, 0; y)−G(0, 0; y)

]
+ ϵ2

[
− π2

3
G(−1; y)+

+
π2

12
G(0; y)− 4G(−1,−1, 0; y) + 2G(−1, 0, 0; y) + 2G(0,−1, 0; y)+

−G(0, 0, 0; y) + 2ζ(3)
]
+ o(ϵ3).

(141)
Note that this solution has a branch cut for y < 0, which corresponds to s > 4. Toexpress the solution in this region, we need to perform an analytical continuation28 forMPLs.

28The procedure is the one described in Section 4.3.3. As usual, the correct sign for the imaginary partis given by Feynman prescription: s → s+ iε, or equivalently y → y + iε ≡ −x+ iε (ε > 0, x > 0).
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6.5 Series expansions around s=0 and s=4
For this problem, we have been able to rationalize the canonical DEs and to find a globalsolution in the external scale s. However, as previouslymentioned, inmore complicatedsituations, it is only possible to find local series solutions around specific points. It isinstructive to try these techniques already for this simple case. In particular, in thissection, we will look for series solutions around s = 0 and s = 4.

Consider the second of the canonical DEs (134), which can be rewritten in the form:
(s− 4)

√
s
∂J2(ϵ, s)

∂s
= ϵ
[√

s− 4J1(ϵ)−
√
sJ2(ϵ, s)

]
, (142)

with J1(ϵ) given by (137). As a solution around s = 0, we take the ansatz:
J2(ϵ, s) =

∞∑
n=0

bn(ϵ)s
n+ 1

2 , (143)
where the coefficients bn(ϵ) are functions of ϵ, which can be expanded around ϵ = 0up to the needed order. Note also that this ansatz automatically satisfies the boundarycondition J2(ϵ, s = 0) = 0. Plugging (143) in (142), using the expansion for √s− 4around s = 0, and equating the coefficients of the same powers, we get the recursionrelations:{

b0(ϵ) = −iϵJ1(ϵ)

bn(ϵ) =
1

4n+2

[
(n− 1

2
+ ϵ)bn−1(ϵ)− ϵJ1(ϵ)

(−4)1/2−n

n!
Γ(3/2)

Γ(3/2−n)

] . (144)

For the expansion around s = 4, we can proceed in a similar way, but we need a moregeneral ansatz, which takes into account the presence of a logarithmic singularity:
J2(ϵ, s) =

∞∑
n=0

αn(ϵ) · (s− 4)n +
∞∑

m=0

βm(ϵ) · logm(s− 4). (145)
Plugging in the differential equation (142), we find:{

αn(ϵ) =
ϵJ1(ϵ)

n+1/2+ϵ
(−4)1/2−n

n!
Γ(3/2)

Γ(3/2−n)

βm(ϵ) = − ϵ
m
βm−1(ϵ)

, (146)

where β0(ϵ) =
∞∑

k=k0

ϵkβ
(k)
0 has to be determined by imposing suitable boundary con-

ditions. We can observe that, since β
(k)
0 = 0 ∀k < k0, then (146) implies that:
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β
(k)
m = 0 ∀k < k0 + m; in other words, at order ϵk, (145) only contains coefficients

b
(k)
m withm ≤ k − k0:

J
(k)
2 =

∞∑
n=0

α(k)
n · (s− 4)n +

k∑
m=0

β(k)
m · logm(s− 4), (147)

where we used the fact that in this case k0 = 0.As a boundary condition, we can impose, order by order in ϵ, thematching between(147) and the series solution around s=0 when both are evaluated at s=2: at order k0 =
0 we determine β

(0)
0 , from (146) we compute β

(1)
1 , then from matching at order 1 we

determine β(1)
0 , etc...

6.6 Study of convergence and Bernoulli-like variables
Now we want to study the numerical convergence of the series solutions found in theprevious section, comparing results with the analytical expectations. Then, we will in-troduce Bernoulli-like variables to improve convergence, as discussed in Section 5.2.2.

The expansion around s = 0 is expected to have radius of convergence r0 = 4, sincethe nearest singularity lies at s = 4. This is confirmed by our numerical results shown inthe plots on the left of Figure 3. The relative difference between the series expansions(truncated to 10 orders) and the exact values of the first three Laurent coefficients of
J2 is below 10−4 throughout most of the interval s ∈ [−4, 4], with larger deviationsonly near the endpoints. Increasing the expansion to 100 orders allows us to reach thisaccuracy across the entire interval; however, in the remaining part of the real s-axis,the series still fails to provide even a single digit of precision.

Regarding the expansion around s = 4, the nearest singularity of the differentialequation is at s = 0; however, this is not a singular point of the particular solutioncorresponding to J2. It is therefore interesting to investigate whether this "spurious"29singularity still affects the radius of convergence.
Our numerical results, shown in the plots on the left of Figure 4, indicate that theradius of convergence is R4,num = 4: this suggests that the coefficients of the seriessolution "remember" that s = 0 was a singular point of the differential equation. Thisbehavior is consistent with the general theory of linear differential equations and isfurther confirmed by analitically computing the radius of convergence directly fromthe closed-form expression for the coefficients αn, derived in (146). For large n, the

29By spurious we mean that this is a singularity of the differential equations, but not of the physicalsolution (it disappears when imposing the boundaries).
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coefficients α(k)
n , where k is the (fixed) order in ϵ, are given by:

α(k)
n ∼ J

(k)
1

n+ 1/2

(−4)1/2−n

n!

Γ(3/2)

Γ(3/2− n)
. (148)

By applying the ratio test, we find:
R4,th = lim

n→∞

∣∣∣∣∣α(k)
n+1

α
(k)
n

∣∣∣∣∣ = 4 ∀k . (149)
Therefore, it is evident that in this case the radius of convergence is limited by the near-est singular point of the differential equation, even though this point is regular for theparticular solution under consideration. There are also special cases forwhich such spu-rious singularities do not affect the radius of convergence: we will see some examplesof this behavior later on.

As previously mentioned, for the expansion around s = 0, the convergence is slownear the extrema of the interval [−4, 4] and totally absent in the external region of thereal s-axis. We can define a Bernoulli-like variable of the form proposed in (113):
t = − log

(
1− s

4

)
⇐⇒ s = 4(1− e−t). (150)

This transformation maps s = 0 to t = 0, s = 4 and s = ∞ to t = ∞. In practice,we perform this change of variable in our series solution and re-expand up to the sameorder; then we estimate the accuracy of our results by computing the relative errorwith respect to the exact solution, previously found.
The advantage of using this new variable is twofold:
1. The convergence of the series for |s| < 4 is much faster than before. In fact,including only 10 orders we can get a similar precision to the one obtained with100 orders when using the variable s. Another interesting observation is that,including more than 50 orders, the relative precision stabilizes around 10−16.
2. There is convergence also for points of the complex s-plane that lie outside theoriginal circle of convergence. In particular, as showed in the plots on the right ofFigure 3, for all values of t corresponding to s ∈ R the series is now convergent.However, it is interesting to notice that convergence is a bit slower in a smallregion around the singularity s = 4, that was pushed away.
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Figure 3: Relative truncation errors along the real s-axis in the expansions around s = 0 of J2 upto o(ϵ2). Different colors indicate the error at each point. Left: original series; right:Bernoulli-like variable series. For each case, two plots are shown, corresponding totruncation at 10 and 100 orders, respectively.
Summarizing, using this Bernoulli-like variable, we are able to cover the entire real s-axis with high accuracy (> 4 digits) using only one expansion point (s = 0) and includingfew orders (≃10 orders) in the expansion.
In alternative, one can choose s = 4 as expansion point. In this case, the properBernoulli-like variable is defined by:

t = − log
(s
4

)
⇐⇒ s = 4e−t. (151)

This transformation maps s = 4 to t = 0, s = 0 and s = ∞ to t = ∞. The effect onconvergence is analogous to the previous case, as showed in Figure 4.
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Figure 4: Relative truncation errors along the real s-axis in the expansions around s = 4 of J2up to o(ϵ2). Different colors indicate the error at each point. Left: original series;right: Bernoulli-variable series. For each case, two plots are shown, corresponding totruncation at 10 and 100 orders, respectively.
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7 The equal-mass sunrise
This chapter focuses on the equal-mass sunrise integral, which is the simplest examplefeaturing an elliptic geometry. Full analytic and full series expansion treatments of theproblem can be found in [28] and [37], respectively. Here, instead, we combine aniterative method, facilitated by working in a canonical basis, with a series expansionapproach.

The IBP reduction and derivation of the differential equations are carried out usingdedicated computational tools [32]. We then construct a canonical basis following theprocedure outlined in Section 3.5, which includes solving the homogeneous block viathe Frobenius method. The canonical system is solved iteratively in ϵ, constructing ateach order series expansions in s around its singular points, with boundary conditionsfixed numerically. Finally, we analyze the convergence of the series solutions and studythe effect of Bernoulli-like changes of variables on their behavior.
7.1 MIs and differential equations
Let us introduce the sunrise integral familywith equalmasses and derive the differentialequations.

The sunrise integral family is a two-loop family, associated to Feynman diagramswith two external and three internal lines, as shown in the following figure:

Figure 5: General sunrise integral with labeled momenta.
This topology involves two loopmomenta, k1 and k2, and one external momentum,

p. For simplicity, in this chapter we consider the case where all three internal lines carrythe same mass m. Thus, the generic integral of this family reads:
Iν1,ν2,ν3 =

e2γEϵ

iπD

∫
dDk1d

Dk2

(k2
1 −m2)ν1(k2

2 −m2)ν2
[
(k1 − k2 − p)2 −m2

]ν3 . (152)
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There are five possible scalar products involving loop momenta, but only three de-nominators; therefore, we need to introduce two fictitious denominators to completethe family. In particular, we choose: D4 = (k1 − p)2,D5 = (k2 − p)2.
Differently from the previous chapter, the IBP reduction and the derivation of thedifferential equations for this family are performed using computer algebra systems, inparticular we used the software Reduze [32]. The reduction reveals that there are threemaster integrals (MIs): in particular, we choose as masters the two-loops tadpole I1,1,0and the two sunrises I1,1,1 and I2,1,1. They are showed in the following Figure 6:

Figure 6: Our choice of masters for the equal-mass sunrise integral family.
There is only one independent kinematic scale in the problem, which we take to be

s ≡ p2. Settingm = 1, the differential equations for the master integrals in d = 2− 2ϵdimensions take the form:
∂

∂s

I1,1,0
I1,1,1
I2,1,1

 =

 0 0 0
0 −1+2ϵ

s
−3

s

− 2ϵ2

(s−1)(s−9)
− (s−3)(1+5ϵ+6ϵ2)

s(s−1)(s−9)
9+27ϵ−10sϵ−s2(1+ϵ)

s(s−1)(s−9)

I1,1,0
I1,1,1
I2,1,1

 ,

(153)where the first equation simply tells us that the tadpole does not depend on s, as wealready knew.
The advantage of working around d0 = 2 dimensions is that the two integrals inthe top sectors are both UV (and IR) finite. This makes the original basis a convenientstarting point for constructing a canonical basis. The physical results in d = 4 space-time dimensions can then be recovered using dimensional shift relations.

7.2 Finding a canonical form
Nowwe want to write the DEs (153) in canonical form, so that it is easier to solve them.As discussed, this corresponds to performing a particular rotation of our basis I⃗ of MIsto a newbasis J⃗ = RI⃗; the corresponding transformation for thematrix A of the systemis given by (43), that in our case becomes:

A′ = RAR−1 +
∂R

∂s
R−1, with A′(ϵ, s) = ϵÃ(s). (154)

To construct the rotation matrix, we follow the procedure described in Section 3.5.
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1. As previously observed, the two masters in the top sector are finite in d0 = 2dimensions. First, we rotate them to a derivative basis, where we take as thirdmaster the derivative of the second one w.r.t the scale s. This is a good initialbasis, which makes the following steps easier. This rotation is described by thematrix:
R1 =

1 0 0
0 1 0
0 −1+2ϵ

s
−3

s

 . (155)

2. Then, we compute the Wronskian30 matrix of the homogeneous equations forthe top sector integrals at ϵ = 0:
W (s) =

(
ω0(s) ω1(s)
ω′
0(s) ω′

1(s)

)
. (156)

The functions appearing in the matrix W are complicated transcendental func-tions, which can be interpreted as the periods on an elliptic curve. However theycan be computed explicitly through series expansions. Specifically, ω0 is repre-sented by a regular power series, whileω1 includes logarithmic terms. The detailsof this computation are provided in the next section.
Then we split W into a unipotent part Wu and a semi-simple part Wss, as de-scribed in Section 3.5. In particular, we take:

Wu =

(
1 ω1

ω0

0 1

)
Wss =

(
ω0 0
ω′
0

detW
ω0

)
, (157)

where we do not need the explicit form of the matrixW to compute its determi-nant. In fact, it is known that the Wronskian matrix satisfies a matrix version ofthe original differential equations:
W ′(s) = Â(s)W (s), (158)

where Â(x) denotes the 2 × 2 top-sector block of the full differential equationmatrix A(x). Its general solution is given by:
W (s) = exp

[∫
Â(s)ds

]
. (159)

30We recall that this is the matrix whose columns contain the independent solutions of the homoge-neous 2x2 system for the integrals in the top sector (I1,1,1, ∂sI1,1,1).
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Therefore, using the matrix identity det(eM) = etrM , valid for a generic squarematrixM , we have :31

detW (s) = exp

[∫
Â(s)ds

]
. (160)

Note also that, by performing the splitting according to (157), the unipotent partcontains a pure logarithm (i.e. with constant coefficient normalized to one), whilethe semi-simple part has uniform transcendental weight zero. This semi-simplecomponent can be viewed as analogous to the leading singularity in the decou-pled case. This observation justifies the procedure of rotating the basis in the topsector by the inverse of the semi-simple part. The rotation matrix is given by:

R2 =

1 0 0
0

W−1
ss

0

 . (161)

This is the crucial step; however, after applying this rotation, the matrix of thesystem is not yet fully ϵ-factorized.
3. We also have to rescale the third integral by a factor 1

ϵ
, to account for the factthat it involves one fewer integration compared to the second one.32 In addition,we multiply all the 3 masters by a factor ϵ2: this is just our choice to obtain an ϵexpansion beginning at order zero. Therefore:

R3 =

ϵ2 0 0
0 ϵ2 0
0 0 ϵ

 . (162)

At this stage, only the matrix entry A32 is not yet ϵ-factorized.
4. To achieve a full ϵ-factorization, our last step is to shift the third master by a termproportional to the second one. This corresponds to performing an additionalrotation of the form:

R4 =

1 0 0
0 1 0
0 f(s)ω2

0(s) 1

 , (163)
31Note that this determines detW up to a prefactor (on the rhs there is an indefinite integral) depend-ing on our choice for the normalization of ω0 and ω1.32This ensures that the resulting basis satisfies the uniform transcendentality (UT) property.
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where f(s) is chosen in such a way that the unwanted terms vanish. In our case,we must take f(s) = 3
2
s2 − 5s− 9

2
, in order to obtain the canonical form of thedifferential equations:

∂

∂s

J1
J2
J3

 = ϵ

 0 0 0

0 − 3s2−10s−9
2s(s−1)(s−9)

1
ω2
0(s)s(s−1)(s−9)

6ω0(s)
(s+3)4ω2

0(s)

4s(s−1)(s−9)
− 3s2−10s−9

2s(s−1)(s−9)


J1
J2
J3

 . (164)

It is important to stress that the rotation matrix R = R4R3R2R1 and the resultingcanonical equations dependon the functionω0(s), forwhichwehave not found a globalanalytical form, but just some series expansions. Therefore, using these expansions for
ω0(s) in the rotation, we can only construct some (different) "local" canonical bases,each of them valid in a neighborhood of the corresponding expansion point.
7.3 How to solve the homogeneous system
In this section, we describe how to find two fundamental solutions to the homogeneoussystem in the top sector at ϵ = 0, which define the Wronskian matrix (156). The sys-tem consists of two coupled first-order linear differential equations; however, havingperformed a rotation to the derivative basis by using (155), we can immediately rewritethem as a unique linear second-order differential equation:

I ′′(s) = − 3s2 − 20s+ 9

s(s− 1)(s− 9)
I ′(s)− s− 3

s(s− 1)(s− 9)
I(s). (165)

This differential equation has only regular singular points at: s = 0, s = 1, s = 9and s = ∞. We can find local series solutions around them via Frobenius method. Inparticular, for all singular points, the indicial equation gives two coincident solutions(ρ1 = ρ2 = 0); this implies that the two independent solutions of the DE around one ofthese points, say s0, will be a regular solution ω(s0)
0 and a logarithmic divergent solution

ω
(s0)
1 . In particular, for the finite singularities s = 0, 1, 9 we have:

ω
(s0)
0 (s) =

∞∑
n=0

a(s0)n (s− s0)
n,

ω
(s0)
1 (s) =

∞∑
n=0

b(s0)n (s− s0)
n + log(s− s0)ω

(s0)
0 (s).

(166)

By plugging (166) in the differential equation (165), we get recursion relations forthe coefficients a(s0)n and b
(s0)
n ; the recursion is initialized by imposing some initial con-ditions, in our case we simply choose:33 a(s0)0 = 1, b(s0)0 = 0.

33It is understood that an = 0 ∀n < 0, bn = 0 ∀n < 0.
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Note that, while it is possible to obtain series solutions to (165) using built-in functionsin Mathematica, this numerical approach becomes inefficient when many terms in theseries expansion are required. To overcome this, we implement a symbolic procedurebased on the Frobenius method: we first define a function that extracts the recursionrelations analytically, and then use these relations to compute the series coefficientsup to the desired order.
In particular, for the recursion relations, we get:

a(0)n =
1

9n2

[
− (n− 1)2a

(0)
n−2 + (10n2 − 10n+ 3)a

(0)
n−1

]
,

b(0)n =
1

9n3

[
− n(n− 1)2b

(0)
n−2 + n(10n2 − 10n+ 3)b

(0)
n−1+

− 2(n− 1)a
(0)
n−2 + 2(5n− 3)a

(0)
n−1

]
.

(167)


a(1)n =

1

8n2

[
(n− 1)2a

(1)
n−2 − (7n2 − 7n+ 2)a

(1)
n−1

]
,

b(1)n =
1

8n3

[
n(n− 1)2b

(1)
n−2 − n(7n2 − 7n+ 2)b

(1)
n−1+

− 2(n− 1)a
(1)
n−2 − (7n− 4)a

(1)
n−1

]
.

(168)


a(9)n =

1

72n2

[
− (n− 1)2a

(9)
n−2 − (17n2 − 17n+ 6)a

(9)
n−1

]
,

b(9)n =
1

72n3

[
− n(n− 1)2b

(9)
n−2 − n(17n2 − 17n+ 6)b

(9)
n−1+

− 2(n− 1)a
(9)
n−2 − (17n− 12)a

(9)
n−1

]
.

(169)

To find solutions around s = ∞, we rewrite (165) setting y = 1/s and look forsolutions around y0 = 0 of the form:
ω
(∞)
0 (y) = y

∞∑
n=0

a(∞)
n yn,

ω
(∞)
1 (y) = y

∞∑
n=0

b(∞)
n yn + log(y)ω

(∞)
0 (y).

(170)

We find: 
a(∞)
n =

1

n

[
− 9(n− 1)2a

(∞)
n−2 + (10n2 − 10n+ 3)a

(∞)
n−1

]
,

b(∞)
n =

1

n2

[
− 9n(n− 1)2b

(∞)
n−2 + n(10n2 − 10n+ 3)b

(∞)
n−1+

− 18(n− 1)a
(∞)
n−2 + 2(5n− 3)a

(∞)
n−1

]
.

(171)
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7.4 Solving the canonical DEs via series expansions
Let us describe the procedure used to find series solutions to the canonical differentialequations and fix the boundary conditions.

The canonical DEs (164) can be solved order by order in ϵ, as discussed in Section
3.3:
∂sJ⃗

(n)(s) = Ã(s)J⃗ (n−1)(s) =⇒

{
J⃗ (n0) = const (n0 = 0)

J⃗ (n)(s) =
∫
dsÃ(s)J⃗ (n−1)(s) + c(n)

.

(172)However, unlike the simpler case of the bubble integral, here the matrix entriesof Ã(s) contain more complicated functions of s, including ω0(s), which is an ellipticperiod associatedwith the underlying geometry of the problem. Although a full analyticsolution to the system is known in terms of elliptic functions [9], this representation isoften cumbersome and less suitable for numerical evaluations. A more efficient andflexible approach is to work with series expansions.
We therefore construct local solutions around the singular points of the differentialequations, using amore systematicmethod than the one used for the bubble, wherewerelied on an ansatz. Specifically, we expand the matrix Ã(s) around the point of inter-est, using for ω0(s) the series representations previously found; then, we integrate thesystem iteratively, starting from the lowest nontrivial order in ϵ, according to (172). Theintegration constants at each order are fixed by imposing suitable boundary conditions.
Clearly, the precision of the resulting Laurent coefficients J (n) improves as moreterms are included in the s-expansion. The main limitation, however, is that integrat-ing expressions with many terms can become computationally expensive when usingstandard Mathematica integration routines. Fortunately, the integrands that appear ineach step are structurally simple, usually consisting of combinations of powers, loga-rithms, and products of the two. Therefore, it is convenient to implement a customintegration function that integrates them through direct pattern-based replacements:this significantly improves performance.
As previously mentioned, the leading-order coefficients J⃗ (n0), along with the inte-gration constants at higher orders in ϵ, are fixed by imposing boundary conditions. Intotal, three boundary conditions are required. The simplest way to fix them is by eval-uating the three master integrals numerically at a specific point, which can be doneefficiently using the package AMFlow[31], and then matching these values to the corre-sponding truncated series solution evaluated at the same point: in this way, the numer-ical values of the integration constants can be determined order by order in ϵ. Thesenumerical values are then matched34 to an appropriate set of known analytical con-

34The matching is carried out numerically using the Mathematica function FindIntegerNullVector, by
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stants. The uniform transcendentality (UT) property of the canonical basis plays a cru-cial role in this process, as it constrains the transcendental weight of the constants thatcan appear at each order in ϵ, significantly narrowing down the possible combinations.
From unitarity, we know that the sunrise integral develops a branch cut starting at

s = 9, corresponding to the physical thresholdwhere all three internal lines go on-shell.In contrast, the points s = 0 and s = 1, while being singularities of the associateddifferential equations, are not physical singularities of the integrals themselves: thatparticular solution remains regular at these points.
As a result, when expanding the differential equations around the spurious singu-larities (s = 0, s = 1), the boundary values can be computed directly at the expansionpoint. Conversely, when working around the physical singularities (s = 9, s = ∞), thenumerical evaluation must be performed at a nearby (non-singular) point.
Note that, when expanding around the spurious singularities s = 0 and s = 1, wecan also use regularity as a boundary condition, imposing the coefficient of the loga-rithms in the general solution to vanish. However, other two BCs have to be imposedin order to fix all the constants.
An important remark is that the expansions for the canonical integrals around dif-ferent points are not expected to match in the common regions of convergence sinceeach of them is referred to a different canonical basis (see also the observation at theend of Section 7.2), the one constructed around the specific expansion point. However,by rotating the various series solutions back to the pre-canonical basis, one can easilycheck that they match, as expected.

7.5 Study of convergence and Bernoulli-like variables
In this section, we want to study convergence of the series expansions found for themaster integrals of the sunrise family. To avoid confusion, it is convenient to performthis analysis after rotating the series back to the pre-canonical basis;35 moreover weonly focus on the leading-order (order 0) in ϵ for the two integrals in the top sector.Then we introduce Bernoulli-like variables and study their effect on convergence. Thisanalysis is inspired by [37], though it includes several original observations and devel-opments.

Here, differently from the case of the bubble integral, in estimating the error of ourseries solution, we avoid relying on analytic results, as for more complicated problemssuch expressions will be either unavailable or impractical to evaluate (this is precisely
comparing the high-precision numerical values with a predefined set of transcendental constants.35In principle one can also do this analysis directly for the solutions in the canonical basis, howeverthe radius of convergence will be influenced by that of the expansion for ω0.
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where series expansionmethods prove especially effective). Instead, we assess conver-gence by defining the truncation error as the relative variation between two successivepartial sums upon including onemore order. Specifically, we define the numerical inter-val of convergence of a series as the region along the real s-axis where the truncationerror after summing 100orders is less than 10−4 (except eventually near the endpoints).The results for the master36 I1,1,1 are shown in the following figure:

Figure 7: Relative truncation errors along real s-axis of the series for I1,1,1 respectively around
s = 0, 1, 9 when including 100 orders. Each color corresponds to a certain precision,expressed in digits. From these plots, we can estimate the convergence radius.

According to our numerical results and the criterion above, the expansion around
s = 0 has radius of convergence r0 = 9. This is one of the special cases, mentionedpreviously, where a spurious singularity (s = 1 in this case) does not affect the conver-gence of the series. This behavior is consistent with Fuchs theorem on series solutionsof differential equations, since it only gives a lower bound for the radius of convergence.

In contrast, the expansion around s = 9 turns out to have a radius of convergence
r9 = 8, indicating that the spurious singularity at s = 1 does influence the convergenceof the series in this case. This is analogous to what we observed in the expansion of thebubble integral around its physical singularity at s = 4.Regarding the expansion around s = 1, the radius of convergence is r1 = 8: the spu-rious singularity at s = 0 is not seen by the series coefficients, but the physical one at
s = 9 is.

Using the variable s, we are able to cover the entire real s-axis using three expansionpoints: the expansion around s = 0 covers the region−9 < s < 9, the one around s =
9 covers 1 < s < 17, the one around s = ∞ covers 17 < s < +∞ and−∞ < s < 0.

36For the other master I2,1,1, the convergence plots are roughly the same.
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Also in this case, we can improve convergence by rewriting the series in terms ofBernoulli-like variables. For the expansion around s = 0, we can define the variable:
t = − log

(
1− s

9

)
⇐⇒ s = 9(1− e−t), (173)

which maps s = 0 to t = 0, s = 9 and s = ∞ to t = ∞.This change of variable works quite well. Including only 20 orders in the expansion,we get a similar precision to the one obtained with 70 terms in the original series in thevariable s. Moreover, there is convergence also for points in the complex plane outsidethe original circle of convergence: in particular, we are able to cover (the correspondingof) the entire37 real s-axis with a precision better than 4 digits, by including only 16orders in the accelerated expansion, as shown in the following figure:

Figure 8: Relative truncation error for expansions of I1,1,1 and I2,1,1 with 16 terms. Left: originalseries; right: series in Bernoulli variable. Each color corresponds to a certain error, asindicated by the legend.

Even if the accelerated expansion around s = 0 is enough for numerical evaluations,it is still interesting to study the effect of a Bernoulli-like change of variable on the otherexpansions. Particularly interesting is the case of the expansion around s = 9. Thecorresponding Benoulli-like variable is defined by:
t = − log

(s− 1

8

)
⇐⇒ s = 1 + 8e−t, (174)

so that the expansion point s = 9 is mapped to t = 0, while s = 1 and s = ∞ are sentto t = ∞.The results for the expansion of I1,1,1 are reported in the following Figure 9.
37To be precise, near the singularity s = 9 that we pushed away, the convergence is a bit slower. Thisseems to be a general feature of the Bernoulli variable.
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Figure 9: Relative truncation errors along the real s-axis in the expansions around s = 9 of I1,1,1.Different colors indicate the error at each point. Left: original series; right: Bernoulli-variable series. In the first row both series are truncated at 20 orders, in the secondone at 100 orders.
This expansion has an interesting feature. The series in the Bernoulli variable con-verges rapidly along most of the positive real s-axis, and more slowly on the negativeside. However, there is a small region, roughly corresponding to the interval [−1, 1],where the series fails to converge entirely. In this region, even after including 100 terms,the relative truncation error remains of order one, yielding no meaningful digits of pre-cision.
This behavior is caused by the spurious singularity at s = 0, which affects conver-gence. Naively, onemight expect the radius of convergence to be 9, since the expansionis centered at s = 9 and the closest singularity is now at s = 0. However, because theexpansion is performed in the Bernoulli-like variable t, convergence is not limited by theactual singularities of the original function in the complex s-plane, but rather by howthose singularities are mapped into the complex t-plane. Specifically, s = 0 is mappedto t0 = 3 log 2− iπ, so the series is guaranteed to converge only inside a circle of radius

r = |t0| =
√

(3 log 2)2 + π2 in the complex t-plane.
The exterior of this disk, when mapped back into the s-plane, identifies38 a regionwhose intersection with the real axis lies mostly within [−1, 1]. Therefore, the Bernoullichange of variable (174) effectively compresses the divergent behavior into a narrowregion, enabling rapid convergence almost everywhere else. This explains the observedbehavior.
More generally when there are many singularities, pushing one of them away alsochanges the relative positions of the others with respect to the expansion point andthis could also have bad effects on convergence. Therefore, for problems with many

38Note, however, that we are not claiming all points in the excluded region map to s ∈ [−1, 1], onlythat most of them do. Conversely, using (174), one finds that the condition −1 ≤ s ≤ 1 corresponds to
t = u + i(2k + 1)π, with u ≥ 2 log 2, k ∈ Z. Thus, all such points satisfy |t| ≥ √

(2 log 2)2 + π2, somost of them lie outside the circle of convergence in t-plane.
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singularities, a naive Bernoulli-like change of variable is not guaranteed to work. In thenext section, we will discuss an attempt of generalization for integrals with multiplesingularities.
7.6 An attempt of generalizing Bernoulli-like transformations
We ask whether it is possible to generalize the standard Bernoulli-like change of vari-ables in the presence of multiple singularities, in such a way that more than one finitesingularity is mapped to infinity, potentially leading to improved convergence.

For simplicity, we consider a problem with two finite singularities (excluding theexpansion point) and a third singularity at infinity. One possible approach in order tosimultaneously send both finite singularities to infinity, while preserving the singularityat infinity, is to apply two consecutive Bernoulli-like transformations.
Let us now analyze this procedure in a general setting.We consider a complex function f(s), with singularities at s = s1, s = s2, and atinfinity, and focus on its expansion around a point s = s0. The singularity at s = s1 canbe pushed to infinity by performing a first Bernoulli-like change of variable:

t = − log

(
s− s1
s0 − s1

)
⇐⇒ s = s1 + (s0 − s1)e

−t. (175)
Under this transformation, the location of the second singularity, s = s2, in the complext-plane becomes:

t2 = − log

(
s2 − s1
s0 − s1

)
. (176)

To push this second singularity further away, we introduce a second Bernoulli-like vari-able:
z = − log

(
t− t2
−t2

)
= − log

(
1− t

t2

)
, (177)

where we used the fact that the original expansion point s = s0 corresponds to t0 = 0.The resulting double Bernoulli-like variable z is thus given by:
z = − log

[
1− 1

a
log

(
s− s1
s0 − s1

)]
⇐⇒ s = s1 + (s0 − s1)e

a(1−e−z), (178)
where we defined a = log

(
s2−s1
s0−s1

).
This transformation maps the expansion point s = s0 to z = 0, and sends the singu-larities s = s1, s = s2, and s = ∞ to infinity, but along three distinct directions in thecomplex z-plane.
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At first glance, this appears to be a promising change of variable for improving con-vergence. However, numerical tests show that this transformation does not yield aninfinite radius of convergence in the z-plane, as one might hope.The reason becomes clear upon inspecting the expression for s(z) in Eq. (178). Thesingularity at s = s2 arises not only in the limit z → +∞, but also at an infinite set ofcomplex points:
zn = − log

(
2πin

a

)
. (179)

The one closest to the origin dictates the radius of convergence, which remains finite.
Therefore, while this generalized changeof variable seems to pushmultiple singularitiesto infinity along different directions, it does not lead to convergence everywhere in thecomplex z -plane. Depending on the specific configuration of singularities, the resultingconvergence propertiesmay be better or worse than those obtained using the standardBernoulli-like transformation.

We leave a more systematic investigation of such generalizations and their conver-gence behavior to future work. In the following chapters, we will instead focus on ex-pansion techniques for problems characterized bymultiple scales, and explorewhetherit is possible to use Bernoulli-like changes of variable to accelerate convergence and ex-tend the region of convergence. This question is particularly relevant, as expansionsinvolving two or more variables typically come with significant computational costs,both in terms of time andmemory. Therefore, achieving faster convergence could offersubstantial practical advantages.
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8 Accelerate series expansions formulti-
scale problems

In this chapter, we propose a heuristic method to extend the region of convergenceand accelerate the convergence rate of multi-variable series expansions, by introduc-ing several Bernoulli-like variables. This approach is not a fully algorithmic or generalprescription, but rather a set of guiding principles and practical steps to be mindful ofwhen dealing with multi-dimensional problems with a complicated singularity struc-ture. Our approach is inspired by the work of [19].
To test the effectiveness of this approach, we apply it to two different amplitudes:one [20] describing the decay of a Higgs boson into three gluons, and the other [21]describing the similar process for a Z boson. Both amplitudes are expressed in terms oftwo-dimensional multiple polylogarithms (2D MPLs), offering a well-controlled settingfor our analysis.

8.1 Bernoulli-like variables for 2D series expansions
Let us illustrate the procedure in the case of a two-dimensional problem.

Consider a function f(x, y), with singularities that typically form curves in the (x, y)plane. Our goal is to construct series expansions for f with improved convergence prop-erties covering a desired region. The main steps are the following:
1. Define the target region and analyze singularities

Identify the portion of the (x, y) plane to be covered. The method works betterwhen this region is bounded and the singularities are straight lines.
2. Choose the expansion points

The most critical points for expansions are the intersections of singular curves;therefore, it is reasonable to choose one of them as the expansion point. How-ever, unlike the one-dimensional case, a naive expansion around such a pointmayfail if more than two singular curves intersect at that point or if even two curvesare tangent there.
3. Apply blow-ups when necessary

In cases of complicated intersections or tangencies at the expansion point, per-form a suitable change of variables (a “blow-up”) to resolve overlapping singular-ities, effectively separating them to produce well-defined expansions.In practice, after the blow-up, the original expansion point is mapped to an entire
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line, and one must choose a specific point of it as the new expansion point. Thiscorresponds to expanding around the original point in a particular direction.
4. Analyze singularities

Carefully examine the geometry of singularities and identify the ones whichmostlimit convergence. Typically these are the ones closest to the expansion point, butnot necessarily: in fact, even singularities outside the region of interest can affectconvergence within it.
If a blow-up was performed in the previous step, this analysis must be performeddirectly in the new variables, as the transformation changes the shape and rela-tive position of the singularities and the region of interest.

5. Introduce the first Bernoulli-like variable
Starting from the series expansion in the original (or blown-up) variables, replaceone variable by performing a Bernoulli-like transformation designed to push thenearest problematic singularity to infinity. Re-expand in the new variables up tothe same order.

6. Introduce the second Bernoulli-like variable
Perform a similar transformation for the second variable, removing another limit-ing singularity, and then re-expand. There is no universal rule for which singular-ities to remove; intuition based on the transformed geometry of the singularitiesand the region of interest guides this choice, aswewill better see in the examples.

7. Cover the entire region with multiple expansions if needed
If one expansion cannot cover the full region of interest, select additional ex-pansion points following the criteria above and patch together their respectiveexpansions.

8.2 Higgs decay into three gluons at two-loops
The first amplitude used for testing our procedure is a two-loops helicity amplitude forthe decay of an Higgs boson into three gluons, computed in [20].

In the Standard Model (SM), the Higgs boson only interacts with massive particles,therefore it cannot couple directly to gluons. However, starting at one loop, it can inter-act with gluons through loops of massive quarks. Since the process starts at one loop,computing higher order corrections in the full theory is complicated. However, sincethe most important contributions come from loops involving the top quark, which isthe heaviest particle in the Standard Model, the computation can be performed in an
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Effective Field Theory (EFT),39 where the top quark is integrated out (mt = ∞). Theeffective Lagrangian is:
Lint = −λ

4
HGµν

a Ga,µν , (180)
where Gµν

a is the field strength tensor of the gluons and H is the Higgs field. In thistheory, the calculation already starts at tree-level, having anHgg vertex in addition tothe QCD vertices.
8.2.1 Kinematics

Let us describe the kinematics of our process:
H(p4) −→ g1(p1) + g2(p2) + g3(p3). (181)

The Mandelstam invariants are given by:
s12 = (p1 + p2)

2, s13 = (p1 + p3)
2, s23 = (p2 + p3)

2, (182)
and satisfy:

s12 + s13 + s23 = M2
H , (183)

whereMH is the Higgs mass. We define the dimensionless ratios:
x =

s12
M2

H

, y =
s13
M2

H

, z =
s23
M2

H

. (184)
In terms of them, (183) is rewritten as:

x+ y + z = 1. (185)
In the decay region the invariants are non-negative, e.g. for s12 we have:

s12 = (p1 + p2)
2 = 2p1 · p2 = 2(E1E2 − p⃗1 · p⃗2) = 2E1E2(1− cos θ12) > 0, (186)

where we used that for massless on-shell particles p2 = 0, |p⃗| = p0 ≡ E.This, together with (185), defines the kinematic region:
z ≥ 0, 0 ≤ y ≤ 1− z, x = 1− y − z. (187)

Therefore, there are two independent scales that will appear in the amplitude (in (187)we chose y and z, but any other choice could have been made) and the physical regionis a triangle in the plane of these two variables.
39Note that the ratiomH/mt is not that small, so it is not entirely obvious that this is a good approxi-mation, but it often is, in practice.
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8.2.2 The amplitude

In this section, we just want to briefly describe how the amplitude was computed inreference [20].
1) The first step is the tensor reduction. The amplitude has the form:

M = Sµνρ(p1, p2, p3)ϵ
µ
1ϵ

ν
2ϵ

ρ
3, (188)

where ϵi denote the polarization vectors of external gluons; Sµνρ can contain only a lim-ited number of tensor structures, built out of the gluons four-momenta and the metrictensor. One can find such a tensor basis and project the amplitude on it, so that hehas to work only with the scalar coefficients of the amplitude with respect to this basis,known as form factors. In particular, in the reference paper, they show that there arefour independent40 tensor structures, so the amplitude can be decomposed as:
M =

4∑
i=1

GiTi, (189)
where {Ti} is the basis of tensor structures, already contracted with gluon polariza-tions, and Gi are the form factors. The latter can be obtained by applying suitable pro-jector operators Pi on the full amplitude expanded in Feynman diagrams:

Gi =
∑
pol

PiM, with Pi =
4∑

j=1

c
(j)
i T †

j , c
(j)
i = (T †

j Ti)
−1. (190)

This tensor basis is useful to obtain compact expressions for the helicity amplitudes,where the external gluon polarizations are fixed:
Mλ1λ2λ3 = Sµνρ(p1, p2, p3)ϵ

µ
1,λ1

(p1)ϵ
ν
2,λ2

(p2)ϵ
ρ
3,λ3

(p3). (191)
In particular, there are only due independent helicity amplitudes for this process, whichare chosen to beM+++ andM++−: all the others can be obtained from themby parityconjugation and relabeling of gluon momenta.Using the tensor decomposition (189) in the found basis {Ti}, the helicity ampli-tudes can be written compactly in terms41 of spinor products:

M+++ = α
M4

H√
2⟨12⟩⟨23⟩⟨31⟩

, M++− = β
[12]3√
2[23][13]

, (192)
40In particular, they restrict the number of tensor structures using the transversality conditions ϵi ·pi =

0, i = 1, 2, 3 and the cyclic gauge choice: ϵ1 · p2 = ϵ2 · p3 = ϵ3 · p1 = 0.41One simply has to compute the basis elements Ti using the specific gluon polarizations, expressedin the spinor-helicity formalism.
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where the new form factorsα and β are linear combinations of the original form factors
Gi; they can also be computed directly by defining somehelicity projectors42Pα andPβ ,so that:

α =
∑
pol

PαM, β =
∑
pol

PβM. (193)

2) At each order in the perturbative expansion, the contribution of Feynman diagramsto the form factors can be written as a combination of scalar Feynman integrals. Theseintegrals are computed with the usual machinery: reduction to MIs, derivation of DEsfor MIs in the variables y and z, rotation to a canonical basis and solution of the canon-ical equations.
3) The last step, which we will not describe in detail, consists in the UV renormalizationand the IR regularization of the amplitude.
The final expressions for the form factors α and β, computed up to o(ϵ2), involve 2DMPLs [19] with the following alphabet:

{y, z, 1− y, 1− z, y + z, 1− y − z}, (194)
where the letters correspond to the singularities of the differential equations for therelevant master integrals.However, as showed in literature [13], this result can be written entirely in terms ofclassical polylogarithms.
8.2.3 Improving the convergence

We focus on the two-loop contribution to the form factor β, which has the largest ex-pression. Our goal is to obtain series expansions for it valid within the physical regionand to improve their convergence using the method described in Section 8.1.
The expression that we have to expand involves two-dimensional multiple polylog-arithms (2D MPLs) in variables y and z, with alphabet given by (194). Note that only

x = 0, y = 0 and z = 0 correspond to true43 singularities of the amplitude, associatedrespectively to the physical thresholds s12 = 0, s13 = 0, s23 = 0. The other three let-ters correspond to spurious singularities inherited from the differential equations. Theamplitude is not singular at those lines and they are also outside the physical region;however, they can still limit convergence of the series expansions.As previously said, the physical region is the triangle defined by (187). This is showedin Figure 10, together with the various singular lines.
42They are built by replacing in the expressions for α and β the Gi with the corresponding projectors

Pi; so, in the end, they will be expressed in terms of the basis elements Ti.43One can also check that these are the only singularities of the expression for β by decomposing itin a basis of rational functions and computing the symbol for the combinations of MPLs that appear ascoefficients of the expression with respect to this basis.
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Figure 10: The figure shows the physical region (highlighted) in the variables (y,z) and the singu-larities of the involved MPLs: the solid lines are singularities for the full expression,the dashed ones are spurious singularities.
Our aim is to obtain expansions with at least four-digit precision over the entireregion. We choose (y, z) = (0, 0) as the first expansion point. We note that there arethree singular lines passing through this point, thereforewe need to perform a blow-up.In particular, we set: {

y = t

z = vt
. (195)

The following plot shows how the singularities are remapped in the blown-up space:
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Figure 11: The figure shows the physical region (highlighted) in the variables (t,v) of the blow-up and the singularities of the involved MPLs: the solid lines are singularities for thefull expression, the dashed ones are spurious singularities. Note that the blow-up haschanged the relative position of singularities.
Now there are only two singularities passing trough the point (t, v) = (0, 0); there-fore the expression can be expanded in t and v around that point, which corresponds in
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8 ACCELERATE SERIES EXPANSIONS FOR MULTI-SCALE PROBLEMS

the original space to expanding around the origin (x, y) = (0, 0), approaching it alongthe direction44 of the y axis. Equivalently, we are requiring y to go to zero faster then
z; therefore we can expect the expansion to work better in the region where y < z.

In practice, using the Mathematica package PolyLogTools [15], we fiber our expres-sion involving 2DMPLs of t and vwith respect to a chosen ordering of the two variables:thismeans that, after fixing an ordering of the two variables, the expression is rewrittenas a linear combination of MPLs in the first variable, whose singularities may dependon the second one, multiplied by MPLs in the second variable whose singularities areconstant. This decomposition is performed automatically by using the function ToFi-
brationBasis. Then we can expand45 in these variables following the specified order. Inthis way, we get a well-defined series expansion for the two-loop contribution to theform factor β. In the following, we will refer to it as the "original" expansion.

The convergence of this expansion can be improved by introducing two Bernoulli-like variables, with themethod previously presented. In particular, there are four singu-lar curves we canmove: one corresponds to the original physical singularity y+z−1 =
0, the other three are the spurious singularities.Naively, one might consider choosing the physical singularity, which is also the clos-est to the expansion point, as the first to be pushed away. However, this is not a goodchoice: in fact, its effect is to extend the physical region up to infinity in such a way thatsome other singularities, previously outside, may now fall within it. This can lead to adeterioration in convergence, potentially making the situation worse than before.

Instead, a good solution is to push away the curves corresponding to the original(spurious) singularities y = 1 and z = 1. In particular, we proceed in the following way.Starting from the expression fibrated in v, we expand in that variable and then replaceit by setting:
v =

1− e−s

t
⇐⇒ s = − log(1− vt), (196)

where we introduced the first Bernoulli-like variable s, such tomap the singularity vt =
1 (or equivalently z = 1) to infinity.After re-expanding in s, we then expand the resulting expression in t and introduce asecond Bernoulli-like variable pushing away t = 1 (or equivalently y = 1), by setting:

t = 1− e−u ⇐⇒ u = − log(1− t). (197)
Finally, we re-expand in u, getting a series in the two variables (u, s).The following figure shows the physical region and the relative positions of singu-larities in the (u, s) plane:

44Recall that v = v0 identifies the direction of the line z = v0y.45This is done by using the function ExpandPolyLogs of PolyLogTools.
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Figure 12: The figure shows the remapping of physical region (highlighted) and singularities ofthe involved MPLs in the space of Bernoulli variables (u, s) : the solid lines are singu-larities for the full expression, the dashed ones are spurious singularities. Note thattwo singularities have disappeared.
Note that the previous changes of variables reintroduce a third singular line cross-ing the origin. In principle, this should be eliminated by performing again a blow-up;however, for this particular case, one can realize46 that these variables already producea well-defined expansion.
At this stage, wenumerically evaluate both theoriginal series and theone in Bernoullivariables at random points within the kinematic region. These values are then com-pared with the corresponding evaluations of the full original 47 expression. This allowsus to estimate the accuracy of both expansions as the relative difference with the cor-responding exact values, testing in this way the effectiveness of our procedure. Theresults are showed in Figure 13 where the local accuracy, computed by including 20orders in both variables, is represented by the color of each point.

46The only terms in the expansion where s and u are not separated are of the form log(s/u), so theycan be directly replaced by log(s)− log(u), producing a well-defined two-variables expansion.47In fact, in this case, it is possible to evaluate the original expression in MPLs by using the function
Ginsh of PolyLogTools.
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Original series around (0,0)
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Figure 13: Numerical errors for expansions of β around (y, z) = (0, 0) including 20 orders. Onthe left there is the expansion in the original variables, on the right the one in Bernoullivariables. Each color corresponds to a certain relative error with respect to the Ginshevaluation, expressed in terms of digits.
It is evident that the introduction of Bernoulli-like variables via the described pro-cedure has notably improved the convergence: for a fixed number of orders, we areable to get a precision larger than four-digits in a much wider region. However, twentyorders are not enough to cover the entire physical region with the required accuracy.One possibility could be to increase the number of orders, but this is unpractical fora huge expansion like this. However, as suggested in Step 7, we can repeat the sameprocedure for the other two corners of the triangle defining the kinematic region, andthen combine the three accelerated expansions.
In particular, exploiting the symmetry of the alphabet under the exchange of y, z,and x = 1 − y − z (due to the fact that the final states involves three particles of thesame kind), one can use for blowing up the same position as (195), up to relabeling of

x, y and z. In particular, choosing as expansion point (y, z) = (1, 0), corresponding to
(x, z) = (0, 0), we set: {

y = 1− (v + 1)t

z = vt
. (198)

For the expansion around (y, z) = (0, 1), corresponding to (y, x) = (0, 0), we set:{
y = vt

z = 1− (v + 1)t
. (199)

The subsequent definitions of Bernoulli-like variables are identical to (196) and (197).The following plots in Figure 14 and Figure 15 show the results for these last two expan-sions, that are analogous to the first one.
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Original series around (1,0)
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Figure 14: Numerical errors for expansions of β around (y, z) = (1, 0) including 20 orders.On the left there is the expansion in the original variables, on the right the one inBernoulli variables. Each color corresponds to a certain relative error with respect tothe Ginsh evaluation, expressed in terms of digits.

Original series around (0,1)
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Figure 15: Numerical errors for expansions of β around (y, z) = (0, 1) including 20 orders. Onthe left there is the expansion in the original variables, on the right the one in Bernoullivariables. Each color corresponds to a certain relative error with respect to the Ginshevaluation, expressed in terms of digits.
By combining the three expansions, we can obtain high-accuracy evaluations in theentire physical region. An interesting aspect is that, as shown in Figure 16, the requiredaccuracy can be obtained including only 10 orders in both Bernoulli-like variables, whileat least 20 were needed in the original variables. This is a big advantage from the pointof view of computation time and memory.

79
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Figure 16: Numerical errors for an optimal combination of the three expansions around the cor-ners of the triangle. Including only 10 orders in both variables, we get an accuracy ofmore than four digits in the entire physical region.

8.3 Z decay into three gluons at two-loops
Now, we want to apply our method to the amplitude for another process, namely thedecay of a Z boson into three gluons:

Z(p4) −→ g(p1) + g(p2) + g(p3). (200)
This amplitude was computed in [21], with the same48 procedure described in Sec-

tion 9.2.2. The kinematics is also the same and the results, up to two loops, are ex-pressed in terms of MPLs with the same alphabet as (194). The only difference is thatthis amplitude is intrinsicallymore involved, as it is not known to admit a representationin terms of classical polylogarithms, unlike the previous case.
There are two independent helicity amplitudes for this process:M+++ andM+−−.In particular, we focus on M+++, which depends on six form factors: {αi}i=1,2,3 and

{βi}i=1,2,3, whose expressions are reported in the ancillary files of the reference paper[21].
Being the physical region and the relative positions of singularities the same as forthe amplitude in the previous section, we expect to obtain accelerated series expan-sions by using identical definitions for the blow-ups and the Bernoulli-like changes ofvariables.
In the following, we report the results for the expansions of the form factor α1around the three corners; the plots on the left are referred to the original series ex-

48Apart from the complications coming from having a massive vector boson in the initial state, insteadof a scalar particle.
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pansions (the ones in the blow-up variables), those on the right are referred to thecorresponding series in Bernoulli-like variables.
Original series for α1 around (0,0)
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Figure 17: Numerical errors for expansions of α1 around (y, z) = (0, 0) including 20 orders.On the left there is the expansion in the original variables, on the right the one inBernoulli variables. Each color corresponds to a certain relative error with respect tothe Ginsh evaluation, expressed in terms of digits.

Original series for α1 around (1,0)
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Figure 18: Numerical errors for expansions of α1 around (y, z) = (1, 0) including 20 orders.On the left there is the expansion in the original variables, on the right the one inBernoulli variables. Each color corresponds to a certain relative error with respect tothe Ginsh evaluation, expressed in terms of digits.
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Original series for α1 around (0,1)

0.2 0.4 0.6 0.8
y

0.2

0.4

0.6

0.8

z

dig<1 1<dig<2 2<dig<4 dig>4

Bernoulli series for α1 around (0,1)

0.2 0.4 0.6 0.8
y

0.2

0.4

0.6

0.8

z

dig<1 1<dig<2 2<dig<4 dig>4

Figure 19: Numerical errors for expansions of α1 around (y, z) = (0, 1) including 20 orders.On the left there is the expansion in the original variables, on the right the one inBernoulli variables. Each color corresponds to a certain relative error with respect tothe Ginsh evaluation, expressed in terms of digits.
Also in this case, the introduction of two Bernoulli-like variables has extended theregion of convergence. We can combine the three accelerated expansions obtaining,with only 9 orders, an accuracy exceeding four digits in the entire kinematic region, asshowed in Figure 20. The same also works for the other form factors.

Figure 20: Numerical errors for an optimal combination of the three expansions around thecorners of the triangle. Including only 9 orders in both variables, we get an accuracyof more than four digits in the entire physical region.
This shows us that our method for accelerating 2D series expansions also works foran amplitude not expressible in terms of classical polylogarithms. In the next chapter,we will test its applicability to a problem with elliptic geometry.
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9 An elliptic 2D case: the two-masses
sunrise

In the previous chapter, we started from exact analytic expressions for two-scale am-plitudes, expanded them, and applied our acceleration method. In this chapter, bycontrast, we directly construct series solutions from differential equations, as we did insimpler one-scale cases.
We focus on the sunrise integral family with two equal masses and a third, distinctmass. The general case with arbitrary masses has been treated analytically in [3]. Aseries expansion method was proposed in [11], based on expanding the only differen-tial equations in the Mandelstam variable s, treating the problem effectively as one-dimensional. This approach was later extended into a numerical implementation in[10]. In contrast, our goal here is to derive a fully two-dimensional expansion in therelevant scales, capturing the complete structure of the problem.
While our overall strategy parallels that used in Chapter 7 for the equal-mass case,the presence of two scales introduces additional complications. Although this com-putation is much less demanding than evaluating a full amplitude, it is conceptuallyricher than the cases studied in the previous chapter: the underlying geometry is el-liptic, rather than polylogarithmic. This makes it a meaningful test case for assessinghow well our acceleration method extends beyondMPLs, which is the topic of the finalsection.

9.1 MIs and differential equations
In this section, we define the integral family, choose a basis of MIs and a set of inde-pendent scales and write the DEs for the MIs in those variables.

The topology is the same as for the equal-mass case, but now one of the threeinternal lines carries a different mass with respect to the other two. Thus, the genericintegral of this family is:
Iν1,ν2,ν3,ν4,ν5 =

e2γEϵ

iπD

∫
dDk1d

Dk2
Dν1

1 Dν2
2 Dν3

3 Dν4
4 Dν5

5with D1 = k2
1 −m2, D2 = k2

2 −M2, D3 = (k1 − k2 − p)2 −m2,

D4 = (k1 − p)2, D5 = (k2 − p)2.

(201)

As for the equal-mass case, we proceed with the IBP reduction and the derivationof the differential equations. The reduction reveals that there are 5 MIs. In particular,
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we choose the following basis of masters:
{I1 = I1,1,0,0,0, I2 = I1,0,1,0,0, I3 = I1,1,1,0,0, I4 = I1,1,2,0,0, I5 = I1,1,1,0,−1}, (202)

of which the first two are two-loops tadpoles, the last three are sunrises.
There are three scales in the problem, of which only two are independent; we cantake them to be the symmetric variables: x = s

m2 and y = s
M2 . The differential equa-tions for the master integrals in that variables have the form:

∂xI⃗(x, y) = Ax(x, y)I⃗(x, y), ∂y I⃗(x, y) = Ay(x, y)I⃗(x, y), (203)
where the explicit expressions of matrices Ax and Ay are reported in the Appendix.
9.2 Finding a canonical form
Nowwe aim towrite the DEs in canonical form. The procedure is almost identical to theequal-mass case, but there are two main complications: the top sector contains threemasters; the presence of two scales leads to two coupled systems of DEs that mustbe made canonical simultaneously. Consequently, the functions introduced during therotation must depend on both scales.

We begin by focusing on the matrix Ax of DEs in the variable x, which we aim tomake canonical first. Wemove to a derivative basis, where the second integral in the topsector is taken to be the derivative of the first one (I3). Looking at the homogeneouspart of the differential equations for the three master integrals in the top sector at
ϵ = 0, we realize that I5 decouples from the others, leaving only two coupled mastersin the top sector. This implies that the underlying geometry remains elliptic.For this 2×2 coupled block, we compute the Wronskian matrix and perform a rotationby the inverse of its semi-simple part, just as in the equal-mass case. Next, we rescalethe fourth master integral by a factor49 1/ϵ.The rotation performed up to now is described by the matrix:

R1 =


ϵ2 0 0 0 0
0 ϵ2 0 0 0
0 0 ϵ2 0 0
0 0 0 ϵ 0
0 0 0 0 ϵ2

 ·


1 0 0 0 0
0 1 0 0 0
0 0 ω0(x, y) 0 0

0 0 ∂xω0(x, y)
detW (x,y)
ω0(x,y)

0

0 0 0 0 1


−1

·


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 1

 ,

(204)
49As in the equal-mass case, all three master integrals in the top sector are multiplied by a factor ϵ2for conventional normalization.
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where the x-dependence ofω0(x, y) is fixed by taking the regular solution to the secondorder partial differential equation(PDE):50
∂2
xω(x, y) +

48x2+(−1+y)2−16x(1+y)
x(16x2+(−1+y)2−8x(1+y))

∂xω(x, y)− 2(1−6x+y)
x(16x2+(−1+y)2−8x(1+y))

ω(x, y) = 0.
(205)

At this stage, we have to remove the remaining non ϵ-factorized terms. However,unlike the equal-mass case, here they are not just total derivatives of rational functionsinx, y,ω0(x, y), ∂xω0(x, y). To integrate themout, we need to introduce a new function
G(x, y) which is defined by its partial derivatives, constructed to involve ω0 and itsderivatives in such a way that the unwanted terms in Ax exactly cancel.Specifically, the additional rotation needed to achieve a canonical form for Ax is givenby:

R2 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

4G(x, y) −10G(x, y) 6G(x, y) G(x, y) 6G(x, y)
0 0 2G(x, y) 0 1

 ·


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 f(x, y)ω2

0(x, y) 1 0
0 0 h(x, y)ω0(x, y) 0 1

,

(206)where: f(x, y) = (80x2 + (−1 + y)2 − 24x(1 + y))/2, h(x, y) = 2(2x − y − 1) and
G(x, y)must satisfy:

∂xG(x, y) = −ω0(x, y). (207)
Up to this point, we have only fixed the x-dependence of ω0 and G. To make Aycanonical in the same basis, we only need to properly fix the y-dependence of thesefunctions. For ω0(x, y), the y-dependence is already fixed by the other partial differen-tial equation51 for periods:

∂yω(x, y) =
x− y

(−1 + y)y
ω(x, y) +

x− 4x2 + 3xy

2y(1− y)
∂xω(x, y). (208)

RegardingG(x, y), we can require:
∂yG(x, y) =

−2x(−1 + 4x− 3y)ω0(x, y)− x[16x2 + (−1 + y)2 − 8x(1 + y)]∂xω0(x, y)

4y(−1 + y)
.

(209)This is the only condition that G(x, y) must satisfy for the non ϵ-factorized terms tocancel in Ay. Note that it still remains defined up to a constant, which does not affectthe ϵ-factorization of DEs.
50This is the homogeneous equation in x at ϵ = 0 for the 2x2 coupled subsector.51This is the homogeneous equation in y at ϵ = 0 for the 2x2 coupled subsector.
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In the final basis, both systems of DEs are in canonical form. However, the canonicalmatrices Ãx and Ãy depend explicitly on ω0 and G; therefore, we need to evaluatethese functions. In the next section, we will find series expansions for them by solvingthe corresponding differential equations.
9.3 Series expansions for ω0(x, y) andG(x, y)

The goal of this section is to find series expansions for the functions ω0 and G, whichappear in the canonical matrices. Analytical expressions for them are known in termsof elliptic functions [16]; however, since we are interested in numerical evaluations, itis more practical to express them in the form of series expansions.
We know that ω0(x, y) is the regular solution to the PDEs (205) and (208). To de-termine it, we proceed as follows:
• First, we solve the second-order equation (205) via a Frobenius expansion in x.This determines the x-dependence of the solution. The general solution takes theform:

ω(x, y) = c0(y)ω0,x(x, y) + c1(y)ω1,x(x, y), (210)
where ω0,x and ω1,x denote respectively partial regular and singular solutions ofthe system, which differ from the full solutionsω0 andω1 bymultiplicative factorsdepending on y, that for the moment are not fixed.

• The functions c0(y) and c1(y) are determined by substituting the ansatz (210) intothe second PDE, (208). By requiring the coefficients of x and x log x to vanish, weobtain ODEs for c0(y) and c1(y), which can be solved exactly.
• Finally, we substitute the expressions for c0(y) and c1(y) back into (210) and ex-pand in y. The resulting general52 solution takes the form of a linear combinationof two independent solutions: the regular one is ω0, the one involving logarithmsis ω1.
Here, we just report the first few orders of the series solutions around (x0, y0) =

(0, 0):
ω0(x, y) = 1 + y + y2 + x(2 + 8y + 18y2) + x2(6 + 54y + 216y2) + ...,

ω1(x, y) = 4x+ 16x2 + 2y + 20xy + 144x2y + 3y2 + 54xy2 + 630x2y2 + ...+

+
[
1 + y + y2 + x(2 + 8y + 18y2) + x2(6 + 54y + 216y2) + ...

]
log x+

+
1

2

[
1 + y + y2 + x(2 + 8y + 18y2) + x2(6 + 54y + 216y2) + ...

]
log y.

(211)
52There are two integration constants coming from the solution of the DEs for c0(y) and c1(y).
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Note that their form is just the two-variable generalization of (166).
The new functionG(x, y) is determined by solving the first-order partial differentialequations (207) and (209), which respectively determines its dependence on x and y.Since both equations are first order, it is easy to write down the general solution explic-itly. We present the strategy in full generality, as it will be useful in later applications.

We are dealing with a coupled system of the form:{
∂xG(x, y) = f(x, y)

∂yG(x, y) = h(x, y)
, (212)

where f(x, y) and h(x, y) are known functions. From the first equation, we obtain apartial solution that captures the x-dependence, up to an integration "constant" thatmay depend on y:
G(x, y) = Gx(x, y) + c(y) =

∫
f(x, y)dx+ c(y). (213)

To determine the unknown function c(y), we plug in the second equation, getting:
c(y) =

∫
dy
[
h(x, y)− ∂yGx(x, y)

]
. (214)

Therefore, the full solution of the system (212) can be written as:
G(x, y) =

∫
dxf(x, y) +

∫
dy

[
h(x, y)− ∂y

∫
dxf(x, y)

]
. (215)

Note that this is defined up to a constant (indefinite integrals on the rhs) that can befixed by imposing a boundary condition. In our specific case, f(x, y) and h(x, y) cor-respond respectively to the right-hand sides of equations (205) and (208), and dependon ω0 and its derivatives. Therefore, using the series expansion previously obtained for
ω0, we can construct a series representation forG.For completeness, we now report the first few terms in this expansion:
G(x, y) = x(−1− y − y2 − y3) + x2(−1− 4y − 9y2 − 16y3) + x3(−2− 18y − 72y2 − 200y3) + ...(216)
9.4 Solving the canonical DEs by series
The next step is to find series solutions to the canonical DEs.

We have two coupled systems of first order PDEs:{
∂xJ⃗(x, y, ϵ) = ϵÃx(x, y)J⃗(x, y, ϵ)

∂yJ⃗(x, y, ϵ) = ϵÃy(x, y)J⃗(x, y, ϵ)
, (217)
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where J⃗ is the vector of canonical MIs, Ãx and Ãy are the canonical matrices.As in the one-variable case, we can look for solutions of the form:
J⃗(x, y, ϵ) =

∞∑
n=n0

ϵnJ⃗ (n)(x, y), (218)
which leads to the recursive differential equations:{

∂xJ⃗
(n)(x, y) = Ãx(x, y)J⃗

(n−1)(x, y)

∂yJ⃗
(n)(x, y) = Ãy(x, y)J⃗

(n−1)(x, y)
. (219)

As usual, the lowest nontrivial coefficient is a constant: J (n0) = c(n0); the generichigher-order coefficient J⃗ (n) is determined from the previous one by solving (219). Thissysyem is a vector-valued generalization of (212), thus its solution will be the followinggeneralization of (215):
J⃗ (n)(x, y) =

∫
dxÃx(x, y)J⃗

(n−1)(x, y)+

+

∫
dy

[
Ãy(x, y)J⃗

(n−1)(x, y)− ∂y

∫
dxÃx(x, y)J⃗

(n−1)(x, y)

]
+ c⃗(n),

(220)
where, for each order in ϵ, there is a boundary constant vector to determine.

Series solutions around specific kinematic points can be obtained iteratively, usingthe same strategy as in the equal-mass case. However, the computation is significantlymore involved. In fact, both the canonical matrices and the recursive relation (220)involve more intricate structures, and the series expansions must be performed in bothvariables, x and y.
In particular, themost computationally expensive part is the expansion of the canon-ical matrix, due to its complicated form, involving inverse powers of ω0(x, y) and highpowers of G(x, y). A direct expansion quickly becomes inefficient, especially at highorders. A more efficient approach is to decompose the matrix as:

Ã(x, y) =
4∑

i=0

Ãi(x, y)[G(x, y)]i, (221)
where each coefficient matrix Ãi may still involve factors 1/ω0 and 1/ω2

0 . We then pro-ceed as follows:
1. Pre-compute the series expansions of 1/ω0 and 1/ω2

0 using the known expan-sion of ω0. Since this is the most computationally expensive step, we perform it
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only once (for a higher order than the ones we could need) and store the resultsin a file. For subsequent calculations, we simply truncate these expansions asneeded.
2. Substitute them into the matrices Ãi and expand.
3. Expand the powersGi(x, y) using the previously obtained expansion forG(x, y).
4. Multiply each expanded Ãi by the correspondingGi and sum to reconstruct theexpansion for the full matrix Ã.

This method significantly improves performance, especially when many orders in theseries solutions are required.
For the rest, the procedure follows the same steps as in the equal-mass case. Theboundary conditions are also imposed by using the same strategy: we evaluate theMIsnumerically near the expansion point, extract the numerical values for the boundaryconstants, and match them with a proper set of known transcendental constants.

9.5 Study of convergence and Bernoulli-like variables
Our goal is to construct series expansions with good convergence properties using themethod proposed in the previous chapter.

The singularities of the DEs in the variables s,m2,M2 are located at:
{s = 0, s = M2, s = (2m−M)2, s = (2m+M)2, s = ∞}, (222)

where s = (2m+M)2 corresponds to the physical threshold for the production of thethree internal particles on-shell.In the chosen variables (x, y), the singularities of the DEs are:
{x = 0, y = 0, y = 1, (2

√
x−√

y)2 = 1, (2
√
x+

√
y)2 = 1, (x, y) → ∞}. (223)

Figure 21 shows the x-y plane with these singularities:
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0.0 0.2 0.4 0.6 0.8 1.0
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Figure 21: The region of interest(highlighted) in the variables (x,y) and the singularities of thecanonical DEs: the solid line corresponds to the physical threshold, the dashed onesare spurious singularities.
We focus on the region beyond the physical threshold, i.e. s ≥ (2m + M)2, cor-responding to the shaded area in the figure. As expansion point, we choose the origin

(x, y) = (0, 0), which corresponds to53 s = ∞. Note that, for this point, the matchingof numerical boundary values with known analytic constants is straightforward, sinceonly zeta values are expected to appear.54
For this expansion no blow-up is required, as only two singularities intersect at theexpansion point. The next step is to decide which singularities to send to infinity viaBernoulli-like changes of variables.As for the cases previously considered, also here, for similar reasons, it is not con-venient to move the true singularity, (2√x+

√
y)2 = 1.The second closest (spurious) singularity is (2√x − √

y)2 = 1, corresponding to theyellow curve in Figure 21. One might consider pushing it away via the Bernoulli-liketransformation:
u = − log

[
1− (2

√
x−√

y)2
]
⇐⇒ y =

(
2
√
x−

√
1− e−u

)2
. (224)

However, this choice also turns out to be problematic, as we can see from the fol-lowing figure:
53Or equivalently to: s = 1, m = M = 0.54This is due to the fact that this is a MUM (maximal unipotent monodromy) point.
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Figure 22: Left: original singularity structure. Right: image of the singular curves under thetransformation. Sample points in the region of interest are mapped into an irregulardomain that includes the blue singularity.
It is evident that this transformation drastically changes the geometry of our regionof interest, mapping it into a domain that contains the blue singularity, correspondingto the original line y = 0. Therefore, rather than improving convergence, this changeof variables may even make it worse.
The only remaining possibility is to push away just one spurious singularity, namelythe line y = 1, by introducing the Bernoulli-like variable:

v = − log(1− y) ⇐⇒ y = 1− e−v. (225)
As usual, to test the effectiveness of the new expansion, we generate randompointswithin the region of interest and evaluate both the original and accelerated series atthose points, using the same fixed number of terms. The relative precision is estimatedby considering as truncation error the relative variation of the partial sums when onemore order is added. A comparison of the results for the original and the acceleratedexpansions of master I1,1,1,0,0 is shown in the following figure:
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Figure 23: Relative truncation errors for expansions of master I(1,1,1,0,0) including 20 orders.Left: Original series; right: series using one Bernoulli-like variable. As usual, eachcolor corresponds to a different precision; blue: prec.>4 digits, green: 2-4 digits.
The introduction of the Bernoulli-like variable v leads to some improvement in con-vergence, but the gain is really modest. This is due to the fact that only one singularitycan be safely sent to infinity, and it is not the one that most limits convergence. How-ever, two other corners of the region remain available as potential expansion points.In particular, we expect better performance when expanding around (x, y) = (1/4, 0),since in that case two singular lines (x = 0 and y = 1) can be safely pushed to infinity.We leave the study of this expansion to future work.
This case study already shows that the acceleration method remains effective fortwo-dimensional problems beyond the polylogarithmic case, as expected.55 However,it also reveals a fundamental limitation: themethod’s effectiveness strongly depends onthe geometrical shape of the singular curves being pushed away. Bernoulli-like variablechanges work particularly well for straight-line singularities, though not exclusively, asshown in the previous chapter, when dealing with the transformed singular lines afterthe blow-up. However, they fail when applied to more complicated curves, such asthose encountered in this example. Attempting to move such curves typically distortsthe geometry of the region of interest and may cause external singularities to enter it,ultimately undermining the convergence of the expansion.

55We already applied a Bernoulli-like change of variable to the equal-mass sunrise, which is a 1D prob-lem, but already involves an elliptic geometry.
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10 Conclusions
Loop Feynman diagrams are a fundamental ingredient for high-precision predictions inquantum field theory. However, computing the associated Feynman integrals remainsa challenging task. The state-of-the-art approach involves reducing integrals to a set ofmaster integrals (MIs) via integration-by-parts (IBP) identities, followed by solving thecorresponding differential equations in the relevant kinematic variables.

In this work, we focused mainly on the second step, using in particular series ex-pansion techniques. For each integral family under study, we first cast the differentialequations in canonical form. In this form, we solved the system using an iterative ap-proach in ϵ, combined with a series expansion in the relevant kinematic scales. Thekey advantage of this method is that, once a canonical basis is found — a step whosecomplexity depends on the geometry of the problem — the remaining procedure be-comes fully algorithmic and general. In fact, unlike analytic methods, whose complexityrapidly increases with the number of loops and external legs, this method handles onlypower series and logarithms at each step, making it broadly applicable regardless of theunderlying mathematical structure.
A central challenge in this approach is the restricted regionwhere the series solutionconverges, and the progressively slower convergence near its boundary. To address it,we investigated a class of variable transformations, called Bernoulli-like variables, thatcan push nearby singularities to infinity, thereby extending the domain of validity ofthe series and accelerating its convergence. Although these techniques had been previ-ously applied empirically to one-scale problems, no systematic study of their propertieshad been performed.
In the first part of this work, starting from the study of simple one-scale problemsand some general considerations, we carried out a detailed analysis and identified sev-eral key features of Bernoulli-like variables:
• The improvement in convergence is not solely due to mapping singularities toinfinity, but is also linked to the structure of the series coefficients in the newvariable.
• The gain in precision with the number of orders is most significant at low orders;at higher orders, the relative improvement tends to saturate.
• Even spurious singularities can affect convergence and must be considered whenchoosing the right transformation.
• In the presence of multiple singularities, the next-limiting singularity after thefirst is not necessarily the second closest in the original variable, but the one
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that appears nearest in the new coordinate. However, pushing it further awaywith the same approach does not always help and can worsen convergence dueto multivaluedness and branch cut effects. We leave to future work a deeperinvestigation of generalized Bernoulli-like variables capable of handling multiplesingularities effectively.
Then, wemoved tomulti-scale problems and proposed a procedure to improve con-vergence based on the introduction of several Bernoulli-like variables, eventually afterperforming blow-ups. In particular, each original variable is replaced by a Bernoulli-likevariable designed to push away the singularity that most limits convergence. Unlike theone-dimensional case, identifying which singularities to remove is less straightforward.The optimal choice depends on how the transformation affects the geometry of the sin-gularities and the physical region of interest. We also found that this method is moreeffective when the singularities are straight lines or simple curves, as more involvedshapes tend to distort the geometry of the physical region, causing eventually externalsingularities to enter in.
We tested this method on two physically relevant two-loop amplitudes: the decaysrespectively of a Higgs and a Z boson into three gluons, both expressed in terms ofMPLs. Using three expansion points and Bernoulli-like transformations, we covered thefull physical region with relative precision better than four digits, requiring only 9–10orders in each expansion. In contrast, expansions in the original variables needed over20 orders per variable to reach comparable precision.
We also explored an elliptic two-scale example: the sunrise integral with two equalmasses and one different mass. In this case, due to the complicated geometry of thesingularities, only the (spurious) singular line y = 1 could be safely pushed away. Al-though this produced only modest improvements, it suggests that the our accelerationmethod remains valid even beyond the polylogarithmic case. Notably, the difficulty wasnot tied to the elliptic nature of the problem, but to the complicated shape of some ofthe singular curves.
A possible refinement of themethod could involve first performing a suitable changeof variables to simplify the geometry of some singular curves and then applying Bernoulli-like transformations to push them away. We leave this to future work.Another promising direction is the application to integrals with more than two scales,where identifying and controlling the dominant singularities becomes increasingly chal-lenging. Finally, this method could be particularly valuable for high-loop amplitudes,where the extremely large size and the involved mathematical structure of the expres-sions often make direct expansions impractical, as too many terms would be requiredto get accurate results. In such cases, accelerated expansions may offer a viable andefficient alternative.
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Appendix
In the following, we report the matricesAx andAy of the differential equations for thesunrise integral family with two equal massesm and a different massM :

Ax =


− ϵ

x
0 0 0 0

0 −2ϵ
x

0 0 0
0 0 0 2 0
a b c d e
2ϵ
x

−4ϵ
x

−2(2ϵ+ 1) −4(2x− y − 1) 0

 , (226)

with:
a =

2ϵ(1 + 6ϵ)

x(1− 8x+ 16x2 − 2y − 8xy + y2)
,

b = − ϵ(5x− ϵ+ 14xϵ+ yϵ)

x2(1− 8x+ 16x2 − 2y − 8xy + y2)
,

c = −(1 + 2ϵ)(−1 + 6x− y + 2ϵ+ 16xϵ+ 2yϵ)

x(1− 8x+ 16x2 − 2y − 8xy + y2)
,

d = −1− 16x+ 48x2 − 2y − 16xy + y2 + ϵ− 24xϵ+ 80x2ϵ− 2yϵ− 24xyϵ+ y2ϵ

x(1− 8x+ 16x2 − 2y − 8xy + y2)
,

e =
3ϵ(1 + 2ϵ)

x(1− 8x+ 16x2 − 2y − 8xy + y2)
.

(227)

Ay =


− ϵ

y
0 0 0 0

0 0 0 0 0

− ϵ
(y−1)y

5ϵ
2(y−1)y

−−4xϵ−2x+yϵ+2y−5ϵ
2(y−1)y

x(4x−3y−1)
(y−1)y

− 3ϵ
2(y−1)y

f g h i l

− (3y+1)ϵ
(y−1)y

5(3y+1)ϵ
2(y−1)y

m
x(12xy+4x−5y2−10y−1)

(y−1)y
−3(3y+1)ϵ

2(y−1)y

 ,

(228)
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with:
f =

ϵ (8x2ϵ+ 4x2 − 10xyϵ− 3xy + 2xϵ− x− y2ϵ+ 2yϵ− ϵ)

x(y − 1)y (16x2 − 8xy − 8x+ y2 − 2y + 1)
,

g = −ϵ (40x2ϵ+ 20x2 − 30xyϵ− 15xy − 10xϵ− 5x− 4y2ϵ+ 4yϵ)

2x(y − 1)y (16x2 − 8xy − 8x+ y2 − 2y + 1)
,

h =
(2ϵ+ 1) (−16x2ϵ− 8x2 + 16xyϵ+ 14xy − 16xϵ+ 2x+ 9y2ϵ− 2y2 + 2yϵ− 6y + 5ϵ)

2(y − 1)y (16x2 − 8xy − 8x+ y2 − 2y + 1)
,

i = −(2ϵ+ 1) (16x3 − 24x2y − 8x2 + xy2 + 14xy + x+ y3 − 2y2 + y)

(y − 1)y (16x2 − 8xy − 8x+ y2 − 2y + 1)
,

l = − 3ϵ(2ϵ+ 1)(−4x+ 3y + 1)

2(y − 1)y (16x2 − 8xy − 8x+ y2 − 2y + 1)
,

m =
12xyϵ+ 6xy + 4xϵ+ 2x+ 5y2ϵ+ 6yϵ− 8y + 5ϵ

2(y − 1)y
.

(229)
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