ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

DEPARTMENT OF PHYSICS AND ASTRONOMY "A. RIGHI"

SECOND CYCLE DEGREE

PHYSICS

Series expansions for scattering amplitudes

Defended by
Giovanni Luca Ferro

Supervisor
Prof. Dr. Tiziano Peraro

Co-supervisor
Prof. Dr. Lorenzo Tancredi

Graduation Session / October/ 2025
Academic Year 2024/2025



Abstract

This thesis investigates series expansion techniques for Feynman integrals and scatter-
ing amplitudes in quantum field theory. These integrals are reduced to linear combi-
nations of an independent set of master integrals, via Integration By Parts identities.
The master integrals, in turn, obey systems of differential equations, whose solution
provides an efficient method for their evaluation. We focus on solving the differential
equations using an iterative approach in the dimensional regulator ¢, combined with a
series expansion in the relevant kinematic scales.

To improve convergence, we study and systematically develop Bernoulli-like vari-
able changes, which map nearby singularities to infinity. Starting from one-scale prob-
lems, we analyze their effectiveness and limitations, identifying some of their key fea-
tures.

We then propose an extension of the method to multi-scale problems by introduc-
ing multiple Bernoulli-like variables. Applied to two-loop amplitudes for Higgs and Z
decays into three gluons, this approach significantly reduces the number of required
terms for accurate results. We also test it on a two-scale elliptic Feynman integral (the
sunrise with two equal masses and a different mass), finding moderate improvements
despite the complicated singularity geometry.

Our results show that Bernoulli-like transformations provide a general and efficient
tool for accelerating series solutions, with potential applications to high-loop, multi-
scale calculations where analytic methods are intractable.
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1 INTRODUCTION

1 Introduction

Theoretical particle physics aims to understand the fundamental constituents of matter
and the interactions that govern their behavior. Quantum Field Theory (QFT) provides
the foundational framework for this pursuit, combining the principles of quantum me-
chanics and special relativity into a unified description where particles arise as excited
states of underlying quantum fields. Within this framework, the Standard Model (SM)
stands as the most successful and experimentally validated theory to date. It describes
all known elementary particles and three of the four fundamental interactions (elec-
tromagnetic, weak, and strong) based on a gauge symmetry structure, described by
the symmetry group SU(3)¢c x SU(2);, x U(1)y. This symmetry governs how parti-
cles interact and gives rise to the rich phenomenology observed in high-energy physics
experiments.

Scattering processes are the primary tools for probing the nature of particles and
their interactions. By studying how particles deflect, merge, or transform when they
collide, we gain insight into the underlying forces that govern their behavior and try to
answer some of the most profound questions in fundamental physics. As experimen-
tal measurements at colliders reach ever higher levels of accuracy, on the theoretical
side, making precise predictions is of fundamental importance to enable meaningful
comparisons. High-precision comparisons are essential for both investigating proper-
ties of the known particles, testing the internal consistency of the Standard Model and
its predictive power, and looking for signals of new physics beyond it.

In this context, scattering amplitudes have a central role: they are the primary in-
terface between theory and experiments, as they encapsulate the probabilities for var-
ious outcomes of a scattering event, providing predictions that can be tested with high
precision. In quantum field theory, scattering amplitudes are typically computed using
perturbation theory, an approximation method that becomes valid when the coupling
constant of the interaction is small. This allows one to express the amplitude as a power
series in the coupling, where each order is represented by a finite sum of Feynman di-
agrams constructed according to the Feynman rules of the theory.

To obtain high-precision theoretical predictions, it is often necessary to go beyond
the lowest-order (tree-level) approximation and include higher-order corrections. These
correspond to diagrams with loops, which account for virtual particles circulating in in-
termediate states: these particles are not observed, hence we need to integrate over
their momenta. As a result, the evaluation of loop diagrams naturally gives rise to Feyn-
man integrals (FIs), multidimensional integrals whose computation is a very challenging
task due to their complicated functional dependence on external momenta and masses
and the presence of divergences, requiring regularization and renormalization. In par-
ticular, Feynman integrals are typically computed in dimensional regularization [6} 24],
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1 INTRODUCTION

where the spacetime dimension is continued to d = d, — 2¢ (dy € N), to regulate diver-
gencies. In most applications, one is only interested in their Laurent expansion around
e = 0, up to a certain order dictated by the required precision.

For a given process, achieving the desired level of precision often requires the eval-
uation of hundreds or even thousands of Feynman integrals, particularly at higher or-
dersin perturbation theory. Over the past two decades, powerful techniques have been
developed to handle this complexity. Feynman integrals can be grouped into families
based on their underlying topology, with each family characterized by a common set
of propagators. The integrals within a given family are not all independent; they satisfy
linear relations known as integration-by-parts (IBP) identities [12, 46]. These relations
make it possible to systematically reduce the (infinite) set of integrals in a family to a
finite [44] of linearly independent integrals known as master integrals (Mls).

The master integrals obey systems of differential equations [25,|39,[26] with respect

to the kinematic invariants of the process (external momenta and internal masses). As
a result, the problem of computing all integrals in the family reduces to solving these
differential equations and imposing the appropriate boundary conditions.
In particular, it is convenient to look for a canonical basis [23, 22], i.e. a basis of Mls for
which the e-dependence in the differential equations factorizes. In this basis, the differ-
ential equations can be solved order by order in ¢, allowing one, at least in principle, to
compute all the Laurent coefficients up to the desired order. This method has become
a cornerstone of modern multi-loop calculations in quantum field theory.

However, the complexity of the analytical results for Fls rapidly grows with the num-
ber of loops and external legs, so that it is not always possible to find global analytic
solutions. Even when such solutions exist, they are often expressed in terms of highly
nontrivial special function [8, 34] that are difficult to evaluate in practice.

Series expansion techniques are a powerful and pragmatic alternative. It is well
known (see e.g. [7]) that, around any point that is not an essential singularity of a dif-
ferential equation, local solutions can be expressed as generalized series expansions,
which are guaranteed to converge at least up to the nearest singularity in the complex
plane. In the context of Feynman integrals, the associated differential equations are
typically Fuchsian [33]], meaning that they possess only regular singular points, around
which series solutions can be constructed. However, these techniques have important
practical limitations: series have a limited radius of convergence, and even within that
radius, the rate of convergence significantly decreases as one approaches the bound-
ary. These challenges become particularly severe for problems involving multiple scales
and multiple singularities.

A common strategy to improve convergence and extend the region of validity of a
series solution involves performing a logarithmic change of variables [1] — known as
a Bernoulli-like transformation — which maps the nearest singularity to infinity. This
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1 INTRODUCTION

technique has been applied to various one-scale problems [18|, 37, |10], often in the
spirit of experimental mathematics, where its use has been justified primarily by em-
pirical success. However, to date, no comprehensive study of this method has been con-
ducted. Moreover, a systematic generalization of the technique to multi-scale Feynman
integrals or full scattering amplitudes has not yet been developed.

In this thesis, we focus on series expansion techniques for both Feynman integrals
and scattering amplitudes, with particular attention to the convergence issues discussed
above. We revisit the Bernoulli-like acceleration method from a more systematic per-
spective, with the goal of developing a deeper theoretical understanding and gaining
greater control over its application. Then, we propose a generalization of the method
to multi-scale problems. In particular, we demonstrate that significant improvementsin
convergence for two-scale problems can be achieved by introducing two Bernoulli-like
variables (one for each scale) effectively mapping two nearby singularities to infinity
and extending the region of convergence in both directions. We also briefly explore
the possibility of constructing a generalized Bernoulli-like transformation capable of
simultaneously pushing away multiple singularities, even within one-scale problems.
However, this preliminary investigation did not lead to substantial improvements.

The work is structured around a series of case studies, from which we aim to ex-
tract general insights. We begin with simple one-scale problems, then move to more
complicated two-scale examples. For the cases involving Feynman integrals, we solve
the associated systems of differential equations, by combining an iterative (order-by-
order in €) procedure, facilitated by working in a canonical basis, with a series expansion
in the relevant kinematic variables. In the case of full amplitudes, we directly analyze
the series expansions of known analytic expressions [20, [21]. In both contexts, we study
the convergence properties of the resulting series and investigate the effect of applying
Bernoulli-like transformations to improve convergence.

The thesis is structured as follows:

e Chapter 2 introduces the fundamentals of Feynman integrals: their definitions,
main properties, parametric representations, and linear relations, with a focus
on integration-by-parts (IBP) identities and the concept of master integrals.

e Chapter 3 reviews the method of differential equations, emphasizing the canon-
ical form and a recently proposed algorithm for constructing it, which is used
throughout the thesis.

e Chapter 4 provides an overview of the mathematical structures appearing in Feyn-
man integrals, such as periods and iterated integrals, with particular attention to
multiple polylogarithms (MPLs) and integrals over elliptic curves.

e Chapter 5 discusses series solutions of differential equations, especially via the
3



INTRODUCTION

Frobenius method. We then revisit the Bernoulli-like change of variable from
an original perspective, deriving a general expression for it, and analyzing its
convergence-accelerating properties.

e Chapter 6 applies these methods to the bubble integral — the simplest one-loop
case — which, despite its simplicity, reveals interesting aspects related to its con-
vergence behavior and the properties of Bernoulli-like variables.

e Chapter 7 focuses on the equal-mass sunrise integral — a two-loop, one-scale
problem that allows us to refine our techniques. We also explore possible gen-
eralizations of the Bernoulli-like transformation to handle multiple singularities,
though without significant results.

e Chapter 8 presents the main original contribution of the thesis: a convergence
acceleration method for multi-scale problems using multiple Bernoulli-like vari-
ables. We test this approach on two polylogarithmic amplitudes describing Higgs
and Z-boson decays into three gluons at two loops.

e Chapter 9 applies the series expansion techniques to a two-scale elliptic Feyn-
man integral — the sunrise with two equal masses and one distinct mass — and
assesses the performance and limitations of the proposed acceleration method
in this more complicated setting.

e Chapter 10 summarizes the main results of this thesis and outlines possible di-
rections for future research.



2 FEYNMAN INTEGRALS

2 Feynman Integrals

In this chapter, we introduce the foundational concepts of Feynman integrals (Fls), fol-
lowing mainly [2] and [48]. We assume the reader to be already familiar with QFT topics,
which can be found in many textbooks [42, 47, 36].

We begin by presenting the main definitions and general properties of Fls. We then
derive their principal parametric representations. Finally, we explore the linear rela-
tions among Feynman integrals, focusing on the notions of integral families,integration-
by-parts identities (IBPs), and master integrals (Mls). These concepts will play a central
role throughout the rest of this work.

2.1 Basic definitions and properties

Let us start with the precise definition of a scalar Feynman integral.

Def. 1 A scalar Feynman integral, associated to a L-loops amplitude with E external legs
and P propagators, is an integral of the following form:

ﬁ pe 47K ) N ({ki - kj ki - p;}; D)

imP/? HP (qj2 —m?—i—ié)yj7

I(pl,...,pE;mf,...,m%;V;D):/(

j=1 j=1

where v = (4, ..., 1,) € ZP is the vector of (integer) propagator exponents, vz is the
Euler-Mascheroni constant, m; (1 < j < P) are the propagator masses (assumed to
be positive), k; (1 < j < L) are the loop momenta, p; (1 < j < E) are the external
momenta.

We assume w.l.0.g. all external momenta to be incoming; they are real Minkowski
momenta, only constrained by momentum conservation, expressed by: Zlepj = 0.
The momenta flowing through propagators can be expressed as linear combinations of
loop and external momenta of the form:

L E
g =) ik + Y Byp;  with ay, By € {~1,0,1}. )
j=1 Jj=1

The numerator of (1) is assumed to be a polynomial in the scalar products between
loop and/or external momenta; in the denominator we use the usual Feynman-Stiickelberg
prescription to deform the integration contour away from propagator poles. We are
working in dimensional regularization with D = Dy — 2¢ dimensions, where Dy is a
positive integer (in most cases Dy = 4).

A scalar Feynman integral, like (1), is by definition invariant under Lorentz transfor-
mations in D dimensions:

I(Apy, ..., Apg;m3, ..., mp;v; D) = I(py, ..., pgsm3, ..., mp; v.D). (3)
5



2 FEYNMAN INTEGRALS

As a consequence, it can only depend on the external scales: propagator masses and
scalar products among external momenta, collectively denoted as:

L (R e U W @

To simplify the notation and make Lorentz invariance manifest, in the following we will
denote integral (1) as I(z; v; D).

Let us recap the main basic properties of Feynman integrals in dim. reg.:

Prop. 1 (Invariance under shifts and rescalings of loop momenta)

Feynman integrals in dimensional regularization are invariantfjunder general linear changes
of variables: k' — Ak 4+ v*, with X\ a nonzero real number and v* a D-dimensional
vector independent of £*.

Prop. 2 (Dependence on ¢)

Feynman integrals are meromorphic functions of the regulator ¢, i.e. they can have at
most poles in the complex e-plane, but no branch-cuts. We are usually interested in the
first coefficients of the Laurent expansion around ¢ = 0, [ = ZkaO I If ky < 0,
then the integral is divergent in D, dimensions.

Prop. 3 (Homogeneity)
Feynman integrals are homogeneous functions in the external scales, i.e. under arescal-
ing of all of them: z — Az (coresponding to (p;, m;) — (Ap;, Am;)) with A € R*, we
have:

I(N’z;v; D) = \*I(z;v; D), (5)
with & mass dimension of the integral: a = [I(z;v; D)| = [N]+ LD — 2 Zle v;.

Prop.4 (Scaleless integrals)
A Feynman integral is said to be scaleless if it does not depend on any external scale,
i.e. x = 0. Scaless integrals vanish in dimensional regularization.

Proof
Prop. 3 for a scaleless integral reduces to:

I(0;v; D) = \*I(0; v; D), VA € R*. (6)
Sinca = 0 in dim. reg., the previous equation can only hold if ](6; v; D) =0.
Corollary

If v, <Oforalll < j < P,then I(z;v; D) = 0in dimensional regularization, being a
linear combination of scaleless integrals.

Some of these properties will be useful to derive the main result of Section 2.3: the IBP
relations.

This property may seem trivial, but it is not: indeed, this is not true in other regularization schemes
(e.g. with a cutoff as regulator).
2In fact, one can easily convince himself that a = [I(z;v; D)] = m — 2Le withm € Z.

6



2 FEYNMAN INTEGRALS

2.2 Parametric representations

The representation of Feynman integrals in eq. (1) is known as the momentum repre-
sentation: it is naturally connected to Feynman diagrams, but it is not the most con-
venient to compute these integrals and put their properties in evidence. For these
purposes, many parametric representations have been introduced. In this section, we
review the most common ones.

2.2.1 Schwinger representation

Each denominator D; = qu — m? appearing in (1) can be rewritten using Schwinger’s
trick ]

1 1 & vi—1 —ai A
A_]”.j = m/o daja;’ e i for A; >0, Re(v;) >0, (7)

where in our case A; is defined by:
A, :Q?—i-m?:—q?—l—m?:—Dj, (8)

with (); being the Euclidean version of momentum g;. Thus, our Feynman integral @,
whose numerator has been set to one for simplicity, becomes:

L

€L7E6 P P vi—1 de?" a 2 2
I=— a‘>0d a 1_[1% H—mD/z exp —Zlozj(—qj—l—mj)
) J= 1= =

Y

(—1)%T (v
1

J
(9)
where a = (ay, ..., ap) is the vector of the so-called Schwinger parameters.
Because of (2), the argument of the exponential will have a quadratic dependence
on loop momenta of the form:

P
Zozj(mjz» — qu) = —kE'Mk+2k-r+J, (10)
j=1

where k = (ky,...kz) is as usual the vector of loop momenta, M is a L x L matrix
whose entries are combinations of the Schwinger parameters, r is a L-dimensional vec-
tor whose components also involve the external momenta, J is a scalar.

We can perform the integration over loop momenta by Wick rotating and using
the formula for an L-dimensional gaussian integral, which also extends to dimensional

3This follows directly from de definition of Euler’s gamma function.

7



2 FEYNMAN INTEGRALS

regularization. We get:

Lyge -
I=—5— / .>0dPO‘(HO‘?j_1)W(a)]D/Qefw(w), (1)
[T =

j=1

where we defined the graph polynomials (or Symanzik polynomials) 2/ and F by:
U = detM, F=J+r"Mr. (12)

The integral representation is known as the Schwinger parameter representation.

Note that ¢/ («) only depends on the Schwinger parameters, as it was for the matrix
entries of M, while F(«; ) also has a dependence on the external scales, coming from
r and J. One can show [48] that they are homogeneous polynomials in the Schwinger
parameters: U is of degree L, F is of degree L + 1. These properties are useful for
deriving the Feynman representation.

2.2.2 Feynman representation

The Feynman representation is the one that is most well known, due to its usefulness
in the computation of Feynman integrals by direct integration. It can be derived from
the Schwinger representation or directly from the momentum representation; here, we
choose the first option. We can write the following resolution of the unity in terms of
Schwinger parameters:

1:/Zdt5<t—jz;aj>:/Ooodt(S(t—jz:aj), (13)

where in the last step we used the fact that the sum is non-negative. For a generic
integral over Schwinger parameters «;, changing variables to a; = «;/t and inserting
(13), we get the identity:

/ dPaf(al,...ap)z/ dPa5<1—
a; >0 a; >0

P oo
A aj)/o dtt"= f(tay, ..., tap). (14)

7j=1



2 FEYNMAN INTEGRALS

Applying it to the Schwinger representation and using the fact that ¢/ and F are
homogeneous of degree L and L — 1 respectively, we get:

EL"/EE P i P - e,
! / d"a H a;’ of1— Z a; [U(a)}Dﬂ/ di =21 uert —
a]‘ZO = . 0 -

(=1)"T(v;) i=1 =

Lyge P V*W o .
= - / dPa Ha;j71 ol 1- Zaj [Z/{(aﬂ D / du uyi%ileﬂa
a;>0 ; [F(a;z)]"~= Jo

(=1 T(x;) !

i~

.
Il
—

i~

.
Il
-

(15)
where in the last step we use the substitution u = %t so that now the integral over
u is the standard definition of T'(v — %). In this way, we get the final formula for the

Feynman parameter representation:

_(+1)D
2

I ei’mé v — l?D) d’a (Ha;{j—l)5<1 _ Zaj> [Z/{(a)]”—_@. (16)
[T~ /° = = el

=1

The integration variables a; are called Feynman parameters.

In addition to its usefulness for computations, this representation also allows us
to make an important observation on Feynman integrals: the powers of denominators
v; and the dimension D have a similar role in (16), in the sense that both appear as
exponents of the graph polynomials. This will motivate us to look for relations not only
between integrals with different v;, but also with different values of D.

2.2.3 Baikov representation

Another important parametric representation is the Baikov representation. In the strict
sense, it only applies to a subset of Feynman integrals, where the number P of propa-
gators equals the number N, of independent scalar products involving loop momenta.
The latter for an integral with L loops and E external momenta is given by: N =
L(L+1)/24 L(E — 1). This immediately follows from the fact that these scalar prod-
ucts are of the following forms: £k? (1 < i < L), k; - Ei (1 <i<j <L)k-p,
1<i<L1<j<FE-1).

Strictly speaking, a Feynman integral has a Baikov representation if P = N, and
each inverse propagator z, = ¢> — m? can be expressed as a linear combination of
independent scalar products o;:

Zs = Csto-t + f57 (17)
9



2 FEYNMAN INTEGRALS

where C'isa Ny, X N, invertible matrixand f is a IV,,-dimensional vector independent
of loop momenta.

However, given an integral I that does not satisfy these conditions, it is always pos-
sible to find another one I which does, and define the induced Baikov representation of
I from the Baikov representation of I. A common situation is the one where P < N;:
in this case it is possible to introduceE] some fictitious extra propagators so that the
transformation between the z, and the o; is invertible, and then set the powers v, of
the extra propagators to zero.

If invertible relations of the form (17) exist, then we can change integration variables
in (1) to the z;, which in this context take the name of Baikov variables. We get the
Baikov representation of Fls (see [48] for a detailed derivation):

elee [detG(pl,...,pE—O}E; /dNSpZ [B<Z>}%M

_[: )
T8 (detC)Hler(%> c [T 2

(18)

where det G(¢i, ..., ¢,) denotes the Gram determinant of momenta ¢, ..., ¢, and B is
the Baikov polynomial. The Gram determinants are defined by:

dG1-q1 q1-492 - {q1°Qn
G291 q2-q2 -+ (G2°(Qn

det G(Qla ) Qn) = det (Qz : qj)lgi,jgn = . . .. . . (19)
Gn-q1 4n-q2 *°° Q4n-Qn

The Baikov polynomial B(z) is defined as the Gram determinant involving all loop mo-
menta and independent external momenta, expressed in terms of Baikov variables:

8(217 ceny Zp) = det G(k’l, ceey k?L,pl, ...,pE_l). (20)

The integration contour C is given by: C = C; N Cs... N Cr_1, Where:

L { det G(kja "'kL7p17 "'apE—l)
=

> 0. (21)
detG(kj+1,...kL,pl,...,pE_l) }

The Baikov representation is very useful to compute cuts of Feynman integrals,
which are related to their singularities by Cutkosky rules. In this representation, com-
puting cuts simply corresponds to taking residues where the corresponding z, are zero.
We will say more about that in Section 3.4.

4This defines a complete set of Feynman integrals, as we will see in Section 2.3.1.

10



2 FEYNMAN INTEGRALS

2.3 Linear relations among Feynman integrals

It is often useful to consider Feynman integrals as functions of the propagator expo-
nents v = {v;}1<j<p and of the space-time dimension D, for fixed values of the ex-
ternal scales x. This gives rise to the concept of an integral family. In this section, we
want to show that the integrals of a family are not independent, but there are linear
relations among them, so that the family is spanned by a finite basis: this is a crucial
aspect in the development of an efficient method for computing Feynman integrals, as
we will see in Chapter 3. First, we will focus on linear relations among integrals with
different exponents but same space-time dimension, then we will briefly discuss about
relations among integrals in different dimensions.

2.3.1 Families, IBPs and Master Integrals

Let us start with some definitions:

Def. 1A family of F.I. is a (infinite) set of integrals I(z; v; D) identified by a common set
of invariants x: all integrals in the family share the same topology in terms of propaga-
tors and external legs, but differ for the denominator exponents.

Def. 2 A family is said to be complete if all possible scalar products involving loop mo-
menta (e.g. k; - kj, k; - p;) can be written as linear combinations of denominators.
For a family which is not complete, we call irreducible scalar products (ISPs) the scalar
products involving loop momenta that cannot be written as linear combinations of the
denominators.

If an integral family is complete, then the numerator of (1) can consequently be
rewritten, so that the original integral is a linear combination of integrals with numera-
tors equal to one. Note that every family of Fls can be completed by introducing some
"fictitious" denominators corresponding to the ISPs. So from now on we will always
assume to deal with complete families.

Now we want to show that the integrals of such a family are not all independent,
but there are some linear relations among them, called IBP relations [12, 46], so that
each integral of the family can be generated by a finite basis.

Theorem 1 (IBP relations)
Given a Feynman integral in dimensional regularization, I = f dPk;F(k;, ), we have

/d%%[wm@, )] =0, (22)

for every D-dimensional vector v#; in other words, integrals of total derivatives vanish
in dim. reg.

5For simplicity we are stating the theorem for a single loop integral, but it is also valid in the multi-loop
case for all present loop momenta.
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2 FEYNMAN INTEGRALS

Proof
Using Prop. 1, we have that:

¢ Under an infinitesimal shift, &' — k!' + evt:

I = /deiF(ki +ev,..) = I—i—ev”/dei%F(ki,...) +o(e?).  (23)

Therefore: [ dk; -2 [v" F (k;, ...)] = 0, for v* independent of k'

e Under an infinitesimal rescaling, k! — ek!":

%)
DI+/ dPkik!' — F(k;, ...)

o +o(€). (24)

I= eDG/deiF(eEki, L) =1I+e

Therefore: [ dPk; 2 [k!'F(k;, ...)] = 0.

This completes the proof.

The previous theorem can be used to find linear recursion relations among the in-
tegrals of a complete family. In fact, when the differential operator a%v“ in the LHS

of acts on a propagator, it shifts the value of the exponent by one and produces
a numerator, which may not be present in the original integral. However, if v* is cho-
sen to be a linear combination of loop and external momenta, then the numerator will
be a polynomial in scalar products involving loop momenta and consequently it will
be expressible in terms of inverse propagators, being the family complete. Therefore,
the vanishing quantity in is nothing but a linear combination of integrals of the
same family (same denominators), whose coefficients are in general rational functions
of the scales x and the regulator ¢. These linear recursion relations in the propagator
exponents are called IBP relations; they allow us, at least in principle, to express ev-
ery integral of the family as a linear combination of a basis of integrals, called Master
Integrals (Mls).

One can show that the number of Mls for any family is always finite [44] and it is
also possible to predict it. However, different bases can be chosen and a clever choice
can notably simplify the calculations, as we will see later on.

To better organize the reduction to Mils, it is useful to divide the family into sectors.
Def. 3 A sector is a set including all Feynman integrals of a family sharing the same set
of active propagators, where a propagator is said to be active if it is raised to a strictly
positive power (v; s.t. 6(v;) = 1). Therefore, the sector an integral belongs to can be
identified by a vector:

Sl (v1,...,vp)l = (0(11),...,0(vp)) = 0(v), (25)
12



2 FEYNMAN INTEGRALS

where 6 is the Heaviside step-function. There is a natural ordering on sectors: 0(v) >
o) ifv; > v, foralll <i < P.

From our discussion about IBPs, it is evident that IBPs for a certain integral I (x; v; D)
will involve integrals from its same sector (v) or from lower sectors. This fact signif-
icantly simplifies the reduction to Mls: in general, it is not possible to find a solution
to IBP relations in closed form; however, since we are typically interested in computing
only the specific integrals which appear in our amplitude, we only need to solve IBPs in
the subsectors involving the needed denominators.

In practice, the recursion problem can be turned into an algebraic problem: we
write down all the IBPs including the integrals we need to reduce, then we solve for the
"complicated" integrals in terms of the "simpler’E] ones. This approach is the basis for
the Laporta algorithm [27], which has been implemented in many public codes.

However, for integrals with several loops and external legs, solving the IBP rela-
tions is still very challenging and modern techniques have been recently developed:
tools from algebraic geometry (Syzygy equations) to get relations with lower powers
of denominators; numerical evaluations over finite fields [35] (to avoid complexity of
intermediate analytic expressions), followed by a reconstruction of the final analytic
result.

2.3.2 Dimension-shift relations

Up to now we only considered linear relations among Feynman integrals with different
propagator exponents v, but same space-time dimension D and invariants z. However,
as noted at the end of Section 2.2.2, the Feynman representation shows us that there
is not a big difference between the dimension D and the exponents v;. Therefore, it is
reasonable to look for relations among Feynman integrals in different dimensions.

Let us now state two theorems [45, 30] that relate integrals whose space-time di-
mensions differ by two.

Theorem 1
For Feynman integrals depending on generic non-zero propagator masses, we have:
I(z;v; D —2) = (—1)LL{<i i)[(m v; D) (26)
Y Y am%7 M 8m]2) ) ) )

where the operator appearing in the rhs is given by the first Symanzik polynomial, with
the Schwinger/Feynman parameters replaced by the differential operators -2

Bm? :

Using this theorem, an integral in (D — 2) dimensions can be written as a linear
combination of integrals in D dimensions with shifted (because of the action of the

%Tipically, we consider as simpler integrals the ones with fewer denominators or smaller exponents.
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2 FEYNMAN INTEGRALS

mass derivatives) exponents. Carrying out the inverse operation requires an additional
theorem:

Theorem 2 An integral in (D + 2) dimensions can be written as a linear combination of
integrals in D dimensions as:

2LG(p17 "'7pE—1>

I(z;v;D+2) = D-L-E+2),

B(bl,...,bLJrE,l)[(.T; V] D), (27)

where (z), is the Pochhammelﬂ symbol, B is the Baikov polynomial defined in (20),
and the b; are the operators that lower the value of the exponent v, i.e.:

bl (x;v; D) = I(z;v1, ..., v — ay ..., vp; D) (28)

The relations and are known as dimension-shift relations. They can be very
useful when computing Feynman integrals via the method of differential equations,
that we will describe in the next section. In fact, for some integral families, it is easier
to cast the differential equations in a simple form in D = 2 — 2¢ than in the standard
D = 4 — 2e¢ dimensions; then, at the end, one can reconstruct the physical integrals via
these relations.

’The Pochhammer symbol is defined as: (a), = a(a + 1)...(a +n —1) = F(F“(:;l) with (a)o = 1.

14




3 THE METHOD OF DIFFERENTIAL EQUATIONS

3 The method of differential equations

As discussed previously, the IBP relations allow us to reduce the computation of the
infinitely many Fls of a family to that of a finite number of Master Integrals. There
are different techniques to compute Mls, but the most successful one is the method
of differential equations [25, 39, [26], based on the fact that Mls satisfy systems of dif-
ferential equations in the invariants. In this section, we present the main steps of the
method, which are the following: obtaining the differential equations, finding a basis
where they take a simpler form (canonical basis), and then solving them with the ap-
propriate boundary conditions. For this review chapter, we mainly follow [2, 22, |4].

3.1 Obtaining the differential equations

For a complete family of FIs depending on the scales z = (zy, ..., x5), let us fix a basis
of Mis, represented as a vector I(x,¢) = (Iy(z;v';¢€), ..., In(2; 0V €))7, where vi =
{l/;}lgjgp is the set of exponents appearing in the denominators of the i-th integral and
we assume that the integrals are ordered in the vector from lower to higher sectors, i.e.
O(v') <0(v?) < ... <O@N).

We can argue that the derivatives of Mls w.r.t. an external scale are still integrals of
the same family. In fact, when computing the derivative of f(:v, €) with respect to an
external scale z;, it is possible to take the derivative under the sign of integral, so that it
acts directly on the integrand. If x; = mj2 the operator 0,,, will simply shift by one the
exponents of all denominators containing m;. If z; is a scalar product between external
momenta, z; = p;-pk, then we need to express J,, in terms of the differential operators
Ojr = pf%; this is done by employing the chain rule: O;;, = p?% = zlp;‘g%éa%,
and then inverting the system to find a%' The operators O;;, act on the integrand in
a similar way as discussed (see Section 2.3.1) for the operators on the LHS of (22), i.e.
without producing new denominators. Therefore, at the end, for the derivatives of Mis,
we get linear combinations of integrals of the same family, which can be reduced to Mls
using IBP identities.

This means that the derivative of a master integral with respect to an external in-
variant x; gives a linear combination of master integrals, so we can write:

— —

Op, I(z,€) = Ay (x,€) (2, €), (29)

where A, (z,€) isa N x N matrix. This is a system of linear first-order differential
equations in the invariant x; satisfied by the Mils. Since IBPs only involve rational coef-
ficients, then the entries of A, (x, €) are rational functions in « and e. Moreover, if, as

-

we assumed, the integrals in I(z, ¢) are ordered from the lowest to the top level sec-
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3 THE METHOD OF DIFFERENTIAL EQUATIONS

tor, therﬂthe matrix will be in block lower-triangular form: every block on the diagonal
corresponds to the homogeneous part of the corresponding sector.

Repeating this procedure for all the scales z; we get a system of differential equa-
tions for each of them; we can rewrite these systems in a more compact form in terms
of a total differential d = > ;_, 0,,dx;:

— —

dl(z,€) = A(z,€)I(z,€), (30)

where A(z,e) = Y7 | A, (z, €)dz; is a matrix of one-forms, whose coefficients are
rational functions in z and e.

3.2 Some properties of the differential equations

Let us now discuss the main properties of the differential equations satisfied by the Mls.

1. Integrability condition
The total differential satisfies the condition d?> = 0, in fact:

9 0
2 d(zj: a—%dxj> - z]: T 0 1y =0, (31)

where we used the fact that the wedge product between differential forms is anti-
symmetric, while second partial derivatives are symmetric. This gives a constraint on
Az, €):

0=d*l=d(Al) = (dA)T — ANdl = (dA— ANA)I, (32)

where we used to express dI. Therefore, the matrix A(z, €) must satisfy the inte-
grability condition:
dA(z,e) — A(x,e) N A(z,€e) = 0. (33)

Using the definition of the differential operator d and the antisymmetry of the wedge
product, this can be rewritten as a set of differential relations among the matrices
Ay, (z,€):

O Ay, — Op, Ay — Ag; A, + A Ay, = 0 Vi, g o, (34)

which can be used to check the correctness of the differential equations.

2. Euler scaling relation
Since Feynman integrals are homogeneous functions in the external scales x; (see Prop.
3 of Section 2.1), then the derivatives 0., I (x; v; €) will not be independent, even if the

8Recall that an integral can only couple to integrals with the same or smaller number of propagators,
since derivatives cannot produce new denominators.
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3 THE METHOD OF DIFFERENTIAL EQUATIONS

scales z; are independent. In fact, by Euler’s theorem for homogeneous functions, we
can write for a generic Feynman integral:

;xiaixif(x;u; €) = %I(:)j; v €). (35)

If we now change variables (z1,...,z5) — (y1,..-,¥s) = (X1/Ts, ..., x5 1/Ts, T), WE
have:

s P s—1 o P s—1 P 8y8 8yz 5
Zzlxza_xl :Zzlxza_xz—i_xsa_xs :Zzl%a (81‘8 ays Zaxsayz> _ysays

(36)

Plugging in eq. and solving the resulting differential equation, we get:
I(w;vie) =y 2 (yy, ., ys—ri vi€) = 28212y [2g, oo, Tsy JTsi vi€).  (37)

This means that the non trivial functional dependence of (z;v; €) is only in the ratios
x;/xs (1 < i < s — 1), or equivalently we can always set one scale (e.g. z;) to one
and take derivatives only with respect to the other (s — 1) scales. This also tells us that
a one-scale integral has a trivial scale dependence, so it cannot be computed with the
method of differential equations, but we need to employ other techniques, e.g. direct
integration using Feynman parameters.

Eq. can be rewritten for a basis of master integrals as:
.0 - 1. .
Z_I ) =3 ) sy )y 38
;x op, @0 = 5[I(@. ] (. €) (38)

where [f(x, €)] = diag([[l(x, v o), In(z, v, e)}) is the diagonal matrix made
up of the mass dimensions of the Mls. This is known as the Euler scaling relation and
provides another check for the correctness of the differential equations.

3. Change of basis
As already said, the basis of Mls is not unique; in fact we can always perform a change
of basis from I(z, €) to J(z, €) by setting:

—

J(z,€) = R(z,e)I(z,e¢), (39)

where R(x, €) is some invertible matrix. We assume it to be rational in ¢, and we call the
transformation rational/ algebraic/ transcendental depending on whether the matrix
entries of R(z, €) are rational/ algebraic/ transcendental in 2. We want to see how our
differential equations behave under a change of basis; plugging in them we
get:
dJ(z,e) = A'(z,€)J(z,¢€), (40)
17



3 THE METHOD OF DIFFERENTIAL EQUATIONS

where:
A(z,€) = R(z,¢)[A(z,e)R"(z,€) — dR™ ' (z,€)]. (41)

We can see that the new basis satisfies differential equations of the same form as (30),
whose matrix A'(z, €) is related to the original matrix A(z, ¢) by the transformation
(@1). Equivalently, the single differential equations will now take the form:

— —

Op,J(x,€) = A, (x,€)J(2,€), (42)
where:
Al (z,€) = R(z,e) Ay, (z, )R (z,€) + [0, R(z, €)| R (z,€). (43)

It is interesting to notice that this transformation is similar to the gauge transformation
for a non-abelian gauge potential: A, — A), = UA, U — (9,U)U".

Note also that, while A(z, €) is a matrix of rational one-forms (as a consequence of
IBPs), if the transformation is not rational, then the matrix entries of A’(z, €) will
not be rational. Thus, it is useful to give the following definition: an IBP-basis is a basis
related to the original basis of integrals in which we solved IBPs by a rational transfor-
mation; in such a basis, the differential equations will still involve rational coefficients.

3.3 Canonical form of differential equations

We want to perform a change of the basis of Mls, so that the differential equations take
a form which is as simple as possible. Let us state the following conjecture [23], which
has been supported by all multi-loop computations performed up to now:

Conjecture 1

For every IBP-basis f(x, €), satisfying the differential equation (30), there exists a (possi-
bly transcendental) transformation to a new basis J(x, €), described by (39), such that:

— -

dJ(x,e) = A'(x,€)J(x,€) with  A'(z,¢) = efl(a:), (44)

where fl(x) is a matrix of one-forms with at most logarithmic singularitiesﬂ

Such a basis, where the e-dependence factorizes in the differential equations, is
called a canonical basis and the corresponding differential equations are said to be
in canonical form.

The simplest possibility is to have a canonical dlog-form:

Az) = Z A; dlogp;(z), (45)

?Equivalently, we can say that the matrices A;i (z, €) have at most single poles.
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3 THE METHOD OF DIFFERENTIAL EQUATIONS

where A; are constant matrices and p;(x) are algebraic functions. However, it is not
always possible to cast differential equations in this form.

Now we want to describe how canonical differential equations can be solved. Let’s
consider a system of differential equations in canonical form:

dJ(z,€) = €A(x)J (z,€) (46)
and suppose that we already know the value of f(xo, €) at a certain point z = x,
which provides a valid boundary condition for our problem. The value of f(m, €) at
point & can be obtained by parallel transporting the solution from x to x along a path
~ connecting the two points; the independence of the result on the specific chosen
path (homotopy invariance) is guaranteed by the integrability condition (33), which for

systems in canonical form reduces to the simpler conditions:
dA(x) =0 : A(z) N A(z) =0, (47)

showing in particular that A(x) must be a matrix of closed one-forms.
The precise criterion for homotopy invariance will be discussed in Section 4.1.2.

The solution of can be formally written in terms of a path-ordered exponential:

; [y A()

In particular, the path-ordered exponential provides a matrix-valued general solution to
the system of differential equations, the value of f(xo, ¢) fixes the boundary conditions.

Coming back to our analogy with gauge theories, if we think of the matrix fl(x) as
the analogous of a gauge potential, then the path-ordered exponential represents a
Wilson line connecting points z, and x along ~v; the independence on the path is a con-
sequence of having a vanishing curvature tensor, as we can read from the integrability

condition written in the form of (34).

—

J(x,€) = Pexp (o, €). (48)

However, as previously mentioned, we are never interested in finding a global so-
lution in ¢, but we just want to compute the first coefficients of its Laurent expansion
around € = 0: the main advantage of the canonical form is that it makes this task partic-
ularly easy. Indeed, plugging the ansatz f(x, €) = D k>ko J) (x)€* in the canonical
DEs and solving it order by order in ¢, we can easily see that the lowest order
(nonzero) coefficient Jo) is a constant vector, which can be fixed by using the bound-
ary conditions; each new order is determined from the previous one by an additional
integration (together with the boundary conditions):

{ﬂko)(m) = const

TO(e) = ) + [2 ADDE) k> ko “

'OHere we are assuming the expansion to start from a certain index kg, whose value is determined
from the boundary conditions.
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This tells us that, at every order in ¢, the Laurent coefficients can be expressed in terms
of "iterated integrals", whose precise mathematical definition will be given in the next
chapter.

Note that the same conclusion could have been obtained by expanding the path-
ordered exponential appearing in the formal solution (48). Moreover, one can exploit
the homotopy invariance to choose a path which makes the iterated integrals easy
to evaluate in terms of known classes of special functions: typically one chooses a
piecewise-constant path, i.e. a composition of segments where all variables except one
are constant, producing in this way iterated integrals in one variable.

3.4 Cuts and differential equations

Cuts of Feynman integrals play a crucial role in understanding their analytic structure
and revealing physical discontinuities associated with unitarity. In this section, we first
explain how they can be easily computed using Baikov representation; then we dis-
cuss their relations with differential equations: cuts satisfy the same DEs as the original
Mils, maximal cuts give a solution of homogeneous equations and contain the leading
singularities. We mainly follow [48].

Cuts of a Feynman integral are defined as the integrals obtained from it by putting
a subset of its propagators on-shell. In the momentum representation, cutting the j-th
propagator clearly corresponds to performing the replacement:

1
—— =27 8(qg2 —m?), (50)
qu _ mJQ ( J J)
then one has to compute the remaining momentum-space integral. Particularly im-
portant is the maximal cut, where we cut all the propagators whose exponents v; are

positive.

The computation of cuts becomes much easier in the Baikov representation (18), as
the integration variables z; are the inverse propagators; therefore, cutting propagators
turns the original integral into a lower-dimensional one. In fact, in this representation,
the replacement reads:

1
— = 2mid(z5). (51)
Zj
For v; = 1, this corresponds to removing the integration over z;, setting z; = 0 in the

Baikov polynomial. In formulas:

D—-L—-F
2

P
[B(Zl,...,Zj,...,Zp)}
I:A d 7 I
JAIL) =g .

i=17%i
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(21, 00y 221, 0, Zj4 1, ooy 2 2
Cut,I = (2mi)A /(Hdzz> ! -1 - Cha Pﬂ , (53)
Z#J HZ’:/Z
3

where [ is the original integral, C'ut., I is the one with cut j-th propagator, A is the usual
prefactor appearing in the Baikov representation formula (18).

We can also interpret the result of the integration over the variable z;, correspond-
ing to the cut propagator, as the residue of the original integrand at z; = 0, or equiva-
lently as its integral along a smalﬂ anti- clockwise ~; around z; = 0. In fact, writing the

original Feynman integral as I = [,([], dz) L2, where f(z) is regular at z; = 0, we

have for the integral over z;:
_ f{ a2, 1) (4
2;=0 % Zj

where we treated f as a function of only z; and in the last step we used the residue
theorem.

This implies that a cut Feynman integral in the Baikov representation can be inter-
preted as the original Feynman integral with a modified integration domainE] This ob-
servation has an important consequence connected to the differential equations. One
can argue that the cut master integrals satisfy the same differential equations as the
original master integrals [38], based on the following:

zZj

f(zj)>

Zj

Wi/dzjf(z)5(zj) = 2mf(z)‘ =27 Res(

Theorem 1

Let I denote a basis of Feynman master integrals satisfying the differential equatlons
dl = Al Suppose I is another set of integrals, defined by the same integrands as Iin
Baikov representation, but integrated over a different contour C’ in Baikov space. The
deformed integrals I will satisfy the same differential equations as f ie. dI' = Af’,
provided that the new integration contour C’ satisfies the following requirements:

1. IBPs still hold, i.e. [,, dw = [,., w = 0;

2. thevariation of the integral with respect to the kinematic variables comes entirely
from the integrand, i.e. a% Jow= o g_c;;

3. the symmetries among the integrals are preservedE]

"By "small", here we mean that it must not enclose any singularities other than z; = 0.

2This is the intersection of the original domain C with the hyperplane z; = 0.

3For example, for the bubble integral with equal internal masses we have the symmetry I,,,,, = I,,,,,;
we require the new integration contour C’ to be such that I/, =1’

ViV vovy®

21



3 THE METHOD OF DIFFERENTIAL EQUATIONS

Another consequence of is that the cut of the j-th propagator of a Feynman
integral with v; < 0 vanishes, since z; = 0 is not a singularity of the integrand, so the
corresponding residue vanishes. On the other side, a Feynman integral with ; < 0 be-
longs to a sub-sector of the family where the j-th propagator is pinched. Therefore, we
can say that cutting the j-th propagator has the effect of setting all sub-sectors where
this propagator is pinched to zero. In particular, the maximal cut will set all the subsec-
tors to zero.

This implies that the differential equations are still valid for the maximal cuts, but
they restrict to their homogeneous part. We can say that the maximal cut integrals are
a solution of the homogeneous equations for the top sector integrals.

On the other side, from what we said, it is clear that in Baikov representation the
maximal cut can be computed as the residue of the Feynman integral at the global pole,
where all the denominators vanish; therefore, at o(eo), it gives the leading singular be-
havior of the integral, often referred to as the leading singularity. Extracting the leading
singularities is a key step of the procedure to find a canonical basis, as we will explain
in the next section.

3.5 How to find a canonical form

From the discussion in Section 3.3, the great usefulness of working in a canonical basis
should be clear. Despite the existence of a canonical basis for a general problem is
still conjectural, a systematic procedure to cast differential equations in canonical form
has been recently proposed [16, 22]. This procedure, that we will largely employ in
this work, is based on five main steps, whose basic ideas are reviewed in the following
paragraphs.

3.5.1 Choice of a good initial basis

Assuming that for a given family a canonical basis exists, it will always be possible, in
principle, to reach it starting from any other basis, by performing a proper rotation.
However, for this procedure to work, the initial basis must be chosen carefully, accord-
ing to the following criteria:

¢ Avoid integrals with power-like UV or IR divergencies or such to generate differ-
ential equations whose coefficients have poles in ¢.

e For sectors with one master integral, try to select a candidate with unit leading
singularities.

e For sectors with more masters, first focus on the homogeneous equationate = 0,
in order to determine the underlying geometry, which also tells us how many
masters can be decoupled.
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o If all the integrals are decoupled, try to choose them with unit leading singulari-
ties. If n of the m masters in the sector are coupled, first choose the remaining
m — n, such to make the decoupling manifest.

e Regarding the coupled masters, the first is chosen to be a series of dlog forms
corresponding to the holomorphic differential of the first kind of that geometry.
The remaining masters in the coupled block are chosen to be linear combinations
of derivatives of the first one with respect to the internal masses.

3.5.2 Rotation by the inverse of 1//*°

Now the crucial step of the procedure comes. We know that, in the polylogarithmic
case, the canonical integrals at ¢ = 0 are iterated integrals of pure (see Section 4.4)
dlog forms, i.e. with constant leading singularities. Therefore, for a polylogarithmic
geometry and decoupled masters in the top sector, a canonical basis can be simply
found by dividing the original masters by their leading singularitiesf'f]

The idea is to generalize this procedure for coupled masters and more complicated
geometries. In the previous section, we have seen that the leading singularity is con-
tained in the maximal cuts or equivalently in the solution of the homogeneous equa-
tions in the top sector at ¢ = 0.

Therefore, in our initial basis, we have to compute the matrix W of solutions of the
homogeneous equations at ¢ = 0 for every coupled block in the top sector: this matrix
W is called Wronskian matrix or period matrix. Then, we split I into a semi-simple
part W#% and a unipotent part 1W*:

W =Ww==.Ww" (55)

The only requirements are that the semi-simple part is invertible and the unipotent one
satisfies a unipotent system of differential equations, i.e.:

AW = (Z Ui(a:)dxl-> we, (56)

where U;(z) are nilpotent matrices. This splitting is not unique in general: we perform
it in such a way that W is lower-triangular, while W* is upper-triangular with constant
diagonal entries normalized to one.

The semi-simple part W, can be seen as a "matrix version" of the leading singular-
ity; therefore, by analogy with the decoupled case, we have to rotate the basis in the
coupled block with the inverse of 11/5%.

“This is also what we did in the previous step to find a good initial basis.
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3.5.3 Going to an upper triangular e-form

Now, we can easily cast the matrix of the DEs in an upper triangular e-form, which means
that the non e-factorized terms will only appear below the diagonal of the new matrix.
We can reach this form by simply adjusting some ¢ factors and swapping the positions
of some master integrals in the basis.

3.5.4 Cleaning up the homogeneous blocks

The next step achieves full e-factorization within each homogeneous block. This is
done by shifting the master integrals which generate non ¢-factorized homogeneous
equations, by other masters in the same sector. In the simplest cases, this procedure
amounts to removing total derivatives of the functions introduced in the rotation with
the inverse of W*%. In more involved situations, however, it becomes necessary to in-
troduce new functions in terms of iterated integrals built from the same set of objects
appearing in the inverse rotation.

3.5.5 Cleaning up the inhomogeneous blocks

As a last step, we need to e-factorize the inhomogeneous blocks of the matrix of DEs.
This is achieved by shifting the Mils of a given sector by integrals in lower sectors. As for
the previous step, also here, the introduction of new functions might be required.

3.6 Boundary conditions

Fixing the boundary conditions is a fundamental step in the computation of Feynman
integrals via the method of differential equations. It is well known that in order to fix all
integration constants for a system of n first-order DEs (or equivalently for an nth-order
DE), we need to impose n boundary conditions.

A possibility is to compute analytically the master integrals at some specific kine-
matic point where they take a simple form; however, in many cases, one can obtain the
boundary information simply by imposing some physical consistency conditions with-
out any need of performing a separate calculation. For this latter approach, we need
to look at the behavior of the integrals near the singular points of the DEs: in fact, it is
well known that the solutions of a DE can have at most (but not necessarily) the sin-
gularities of the DE. We know that singularities for an amplitude come from cuts i.e.
internal propagators going on shell. It may happen that a singular point for the differ-
ential equation is not singular for a specific Ml; in that case the boundary condition is
simply provided by the regularity condition at that point: in practice, we can fix some

SIn particular, one can show that an amplitude can develop a pole when a single-particle goes on
shell, a branch-cut when two or more particles go on-shell.
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integration constants by requiring the singular part of the general solution to vanish.
This is just an example, there are other physical conditions one can exploit to fix the
boundaries even at a singular point. Another possibility is to compute numerically the
Mils at one point.
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4 Special numbers and functions in Fls

In this chapter, we review the mathematical structures — special numbers and func-
tions — that appear in the analytic expressions of Feynman integrals. We begin with a
detailed overview of iterated integrals and their properties, then state a theorem that
constrains the types of transcendental structures admissible in such integrals. Finally,
we focus on two key classes of iterated integrals relevant to Feynman integrals: multi-
ple polylogarithms (MPLs) and integrals over elliptic curves. We follow mainly [14], [2]
and [50].

4.1 Iterated integrals

As noted in the previous chapter, the Laurent expansion of Feynman integrals naturally
gives rise to iterated integrals. In this section, we want to study their mathematical
properties in detail.

4.1.1 Definition and basic properties

Def. 1 (Iterated integral)

Consider a geometric space X with local coordinates § = (¢, ..., &;). Lety : [0,1] — X
be a curve on X, and wy, ..., w,, be one-forms on X. We define the iterated integral of
W1...w, ON 7y as:

/wl...wn :/ fl(tl)dtlfn(tn>dtn =
5 0<t1<...<tn<1

1 tn t2
:\/0 dtnfn(tn)/o dtn—lfn—l(tn—l)---/(; dt1f1<t1)a

(57)

with fv() = 1,and f; : C — C defined as the pull-back of w; along ~, i.e. v*w; =
w; oy = fi(t;)dt;. We refer to the one-forms w; as letters and to w;...w, as a word of
length n; the set of all independent letters is called an alphabet.

Let us now enumerate without proofs the main properties of iterated integrals:
¢ |Independence on the parametrization of the path;

e Linearity:

/(awl...wn + Bwy..wl) = a/wl...wn - B/w’l...w;n; (58)
Y 2l

~
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e Path composition:
If v1,72 : [0, 1] — X are two paths s.t. 71(1) = 12(0), then we have:

n
/ Wy...wy, = E /wl...wk-/ Wra1---Wn; (59)
Y1072 k=0 Y M V2

e Path reversal:

/ Wy...Wy, = (—1)”/wn...w1, (60)
1 ¥

where v71(t) = (1 — t) is the reversal of path ~;

/wl...wn-/w'l...w;n = /wl...wnl_l_lw’l...w;l, (61)
o v v

where the shuffle product LU is defined recursively as:

e Shuffle product:

(wr.wp) W (W], =

= wy [(wa...wn) W (W]...wpy) ] 4 wi [(wreewp) W (wh..wl,)] (62)
with (W) W () = () W (wy...wp) = (w1...wy).

One can easily see from this definition that the shuffle product of two words gives
the sum of all possible permutations of the letters preserving the internal order-
ing of each word, e.g.:

Wi L W3y = W1waWwsWy + WiWaWaeWwy + WiW3zwswe+ (63)

+ W3W1Woly + W WaWs + W3WaWiWs.

4.1.2 Homotopy invariance

In Section 3.3, we claimed that the solution of differential equations for Mls are homo-
topy invariant functions as a consequence of the integrability condition. Here, we want
to give a precise mathematical definition of homotopy invariance for iterated integrals
and a necessary and sufficient condition for it, which we will find to be equivalent to
the integrability condition.

Def. 1 (Homotopic paths)
Two paths 71, 72 @ [0,1] — X, having the same extrema v,(0) = v(0) = x,
7 (1) = 42(1) = 24, are said to be homotopicif there existsamap ¢ : [0, 1] x[0, 1] — X
suh that:
(i) ¢(07t) :'71<t>7 ¢(1’t) :'72(t) VO<t< 1
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(ii) 9(s,0) =z,  @(s,1) =24 Vo<s<I.

Def. 2 (Homotopy invariant function)

A function f(+y) is said to be homotopy invariant if, Vy; ~ 72, we have: f(71) = f(72).
In other words, the function does not depend on the details of the path, but only on its
endpoints.

Iterated integrals are in general NOT homotopy invariant, as we can see from the
following example.

Example

Consider X = R? and the family of paths v, ; : [0, 1] — X defined by: v, s(t) = (¢", t*)
for r,s > 0. All of them have endpoints (0,0) and (1, 1). Let us compute the iterated
integral of wyw,, with w; = dx and w, = dy, along a generic path of the family:

1 to
S
/ wiwy = / rtt sty dt dty = s / dtots / R . (64)
Yr,s 0<t1<t2<1 0 0 r + S

The result depends on the path (it depends on the specific values of r and s), hence the
integral is not homotopy invariant.

Now let us give an homotopy invariance condition for iterated integrals. We first
start from the simple case of an iterated integral of length n = 1; let w be a one-form
and v, 2 be two homotopic paths. We have

/w—/w<:> w = 0. (65)
71 Y2 vyt

Note that 7,7, ' is a closed path, so if we consider a domain D such that 9D = v, ',

by Stokes’ theorem:
/ w:/ w:/ dw;. (66)
'yl'y;l oD D

For the iterated integral of w to be homotopy invariant, this last integral must vanish for
all paths v, and ~,, which happens if and only if w; is closed, i.e. dw; = 0. So, for n=1,
the necessary and sufficient condition for homotopy invariance is that the one-form is
closed. This result can be generalized to higher lengths: the iterated integral of a linear
combination w of words is homotopy invariant iff Dw = 0, where the action of the
differential D on a word of one-forms is defined by:

D(wy..wy,) = Zwl...(dwi)...wn + Zwl...(wi A Wig1).-Wp- (67)
i=1 i=1

“The equivalence follows from path composition and path reversal properties.
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This is equivalent to the integrability condition for the differential equationsE]
Moreover, if all one-forms appearing in the word are closed (as for dlogs), then on
the rhs of we are left only with the second term. This is the case for iterated inte-
grals arising from differential equations in canonical form: the first of the integrability
conditions requires closure, the second one guarantees homotopy invariance.

4.1.3 Regularization

As previously said, when solving the differential equations for Feynman integrals, it is
often convenient to fix the boundary condition at a singular point of the DEs. However,
if an end-point of the path is singular, the iterated integrals arising from the DEs will
typically be divergent. Therefore, we need to define a regularized version, that removes
divergencies, but preserves the properties of iterated integrals and coincides with the
standard definition when the integral is convergent.

For simplicity, we only consider the case in which all singularities are logarithmic
and the space X is one-dimensional. Note that this assumptions are not so restric-
tive: in fact for a system of differential equations in the canonical form all singulari-
ties are logarithmic; moreover, if the space X is not one-dimensional, we can always
split it into piece-wise constant paths, so that on each of them the problem becomes
one-dimensional. For example, let us assume that v : [0,1] — [0, z] and that some
one-forms w; have a logarithmic singularity at the origin (w; = a; dlog€ + ...), with no
other singularities in the integration contour. The regularized version of f7 W1y =

Jy wi...wy, is defined via the following steps:

1. Introduce a small cut-off ¢ and replace:

/wl...wn—>/ W1...Wy,. (68)
0 €

2. Having only logarithmic singularities, in the limit ¢ — 0:

lim [ wy..w, = Z Ii(x)log" e + o(e). (69)
k=0

e—0 c

3. The regularized version is defined by throwing away all logs:

[reg]
/ wy...wy = Io(x). (70)
”

7This shows that iterated integrals appearing in the solution are homotopy invariant.
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This procedure is called shuffle-regularization, it is easy to check that it satisfies all our
requirements. The simplest example of application is the following:

Example

d “d
?5_>/ gzlogx—logg—ﬂogx. (71)
0 €

Therefore: fw[reg] % = log .

Already from this simple example, it is clear that the result depends on our choice
of "regularization scheme"; indeed, if we rescale the cut-off, i.e. ¢ — wve, we get a
different result: f[reg] %L — Jogz — logv. However, when solving the DEs, the bound-
ary conditions will also depend on the choice of v in such a way that this dependence
cancels in the final result for the integral, as it has to be.

4.1.4 Linear independence

An important property of iterated integrals is that, under some assumptions, they are
linearly independent functions. This is particularly useful in the context of Feynman
integrals, because it leads to shorter analytic expressions that are free of hidden can-
cellations.

Let us first define linear (in)dependence for one-forms:

Def
The one-forms w; are said to be linearly dependent over an algebra of functions C, if
there exists a function f € C and some constants «; # 0 such that:

> aiw; =df. (72)
They are said linearly independent if instead holds only for o;; =0 V.

Itis possible to prove that iterated integrals are linearly independent over C as func-
tions, if and only if they involve one-forms that are linearly independent over C.
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4.2 Transcendentality and periods

Before stating a general theorem that answers our question about the kind of numbers
and functions appearing in the results of Feynman integrals, we need to recall some
basic definitions.

Def. 1 (Algebraic and transcendental numbers/functions)

A complex number is called algebraic over Q, if it is a zero of some polynomial with
rational coefficients; the set of algebraic numbers is denoted by Q. A complex num-
ber that is not algebraic is called transcendental. These definitions can be naturally
extended to functions.

To prove that a number is transcendental we can use the following:

Lemma (Hermite-Lindelmann)
Let z be a nonzero complex number. Then either z or e* is transcendental.

This implies in particular that: e, 7, 7 (n € N), (s, logq (¢ € Q) are transcendental
numbers.

We can define a class of numbers, called periods, that lie in between algebraic and
transcendental numbers:

Def. 2 (Periods)

A complex number is called a period if both its real and imaginary parts can be written
as integrals of an algebraic function with algebraic coefficients over a domain defined
by polynomial inequalities with algebraic coefficients.

eg: q€Qmlogz(z€ Q) Liy(2) (2 € Q) are periods.
Numbers that are conjectured not to be periods are: e, yg, 1/7, log7,...

Now we can state the following important theorem [5]:

Theorem (Bogner, Weinzierl)
Under suitable assumptionsf_g] the coefficients of the Laurent expansion of a Feynman
integral, normalizecff] asin (1), are periods.

We saw previously that the Laurent coefficients of Fls are expressed in terms of iter-
ated integrals. The previous theorem motivates us to consider integrals which produce
periods, therefore we have to start from an algebraic integrand: the simplest possibil-
ity is to start from a rational function. By integration, we can produce other rational
functions, or a logarithm, when we integrate over a single pole. Iterating integrations,
we can obtain rational functions, logarithms, but also new functions when we integrate

"B All scalar products p; - p; have to be negative or zero, all internal masses positive and all ratios of
invariants algebraic.

We stress the fact that this normalization for Fls is chosen so that, when expanding in ¢, the tran-
scendental numbers which are not periods (like vg) exactly cancel.
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over a single pole. These generalizations of the logarithm function are called multiple
polylogarithms (MPLs), we will study them in detail in the next section.

4.3 Multiple Polylogarithms (MPLs)

As anticipated in the previous section, the simplest and most important class of iter-
ated integrals that appears in the computation of Feynman integrals is that of Multiple
Polylogarithms (MPLs). In this section, we want to study in details their properties.

4.3.1 Basic definitions and properties

MPLs are defined recursively as:

G(ay,...,an; 2) = / dta G(ag, ..., an; ) with G(;z) = 1. (73)
0 — W

Thevector @ = (ay, ..., a,) is called vector of singularities (or indices) of the MPL and the
number of its elements is called transcendental weight of the MPL. By their definition,
it is clear that MPLs are periods for algebraic arguments.

Note that, for a,, = 0, the integral in is divergent; we can regularize it as de-
scribed in Section 4.1.3. In particular, this is equivalent to define in the case where all
the a; are vanishing:

S 1
G(0,;2) = ot log" z, (74)
n:
and then find regularized versions of the other MPLs with a,, = 0 by using shuffle
product, as explicitly shown in an example at the end of this paragraph.

We can see that MPLs contain logarithms and classical polylogarithms as special
cases, in particular we have:

1
) o= L (1-2)
Li(z) = [§ %4 = —log(1 — 2)
. z - > Pl )
Li,(2) fo %LG_l(z) = ];1 =

(75)

i) G(Op_1,1;2) = —Lin(2) where

which can be easily proved by induction.

As iterated integrals, MPLs satisfy all properties discussed in Section 4.1, including
shuffle product:

G(ay, ..oy py; 2)G(Apy g1y ooy pytng; 2) = Z G(as(1), - Qo(ny4ns); 2),  (76)
oc€eX(n1,n2)
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where Y(n1,ny) is the set of all shuffles of the n; + ny indices, i.e. the set of all per-
mutations of these indices preserving the internal ordering of the vectors (ay, ..., a,,)
and (@py 11, -+, Gnytny)-

Itis important to notice that shuffle product preserves the weight of MPLs: from a prod-
uct of two MPLs (evaluated at the same point) with respective weights n; and n,, we
get a linear combination of MPLs of weight n; + ny,. We can say that MPLs with the
shuffle product form a graded algebra, called shuffle algebra.

As mentioned above, we can use shuffle product for regularization; we can write
MPLs with trailing zeroes in terms of others which have either rightmost index non-
zero or all indices zeroes: the former are regular, the latter are regularized by (74). For
example:

G(a,0,0;2) = G(a; 2)G(0,0; 2) — G(0,0,a; z) — G(0,a,0;2) =
= G(a;2)G(0,0;2) — G(0,0,a; 2) — [G(0,a; 2)G(0; 2) — 2G(0,0,a; )] =
= G(0,0;2)G(a; 2) + G(0,0,a; z) — G(0, a; 2)G(0; 2).

(77)

4.3.2 Some other properties of MPLs

In the following, we will enumerate the main other properties satisfied by MPLs:
1. G(ay, ..., ay; z) is logarithmically divergent when z — a;.
2. G(ay, ..., an; 2) is analytic at z = 0 for a,, # 0, with G(ay, ..., a,;0) = 0.

3. G(ay,...,an;2) , as a function of z € C, has brunch cuts at most for Re(z) >
Re(a;) Vi, but not necessarily.

eg.: G(a,z) =log(1 — 2) hasabranch cut from z = Re(a) to z = o0;

G(0,1;2) = [F 4 [7 du — _[j,(2) hasabranch cutstartingat z = 1, but there

is no branch cut starting at z = 0.

4. For a, # 0, there is a rescaling invariance:

G(ay,...,an; 2) = G(Aay, ..., Aay; A\z), for a,#0, XeR" (78)

5. For a; € {—1,0,1} MPLs reduce to harmonic polylogarithms (HPLs):
H(C_ia Z) = (_1)})0(67 Z)7 (79)

where p is the number of elements in a@ that are equal to (+1).
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4.3.3 Functional relations and linear independence

It is conjectured that all functional relations among MPLs preserve the transcendental
weight.

As already seen, we can find relations among MPLs in the same variable z by using
shuffle product. However, if all the indices q; in two MPLs are different, then no rela-
tions among them can be written, so they result to be linearly independent. In fact,
if we think of MPLs as iterated integrals of linear combinations of words with letters
w; = dlog(x — a;), then it is clear that, for all a;’s different, these one-forms will be
linearly independent over C = (Q, according to the definition given in Section 4.1.4.
Therefore, the iterated integrals (MPLs) constructed from them will also be linearly in-
dependent as functions.

This is true only if the MPLs are functions of the same variable z and this variable
does not appear in the indices. Instead, if we consider MPLs of the same weight de-
pending on different (but related) variables, it is possible to find some non-trivial rela-
tions among them. As an example, let us discuss the relation among MPLs with variables
x > 0 and —z, which is very useful when performing analytical continuation of these
functions.

We want to relate G(...; y), where y = —x + ic (¢ small positive real number), to
G(...;x). Restricting for simplicity the indices to only 1 and O, we can proceed recur-
sively on the weight. At weight n = 1, we have:

G(0;y) = logy = log(—x +ic) = logx + im = G(0; x) + i,

80
G(L;y) =log(1 —y) =log(l +z) = G(—1;z). (80)
At weight n = 2 we have 4 different MPLs, two of them are very easy to compute:
1., 1 . . ?
G(0,0;y) = élog y = §(logx +im)* = G(0,0;2) + inG(0; ) — oL
(81)
1 1
G(1,L;y) = §log2(1 —y) = §log2(1 +z)=G(-1,-1;2).
G(0, 1;y) can be computed using the expression for G(1;y). Indeed:
G0, 1y) — / T G0 = 2601y = 26y = Lo(-10). 62)
7ay_0 t i 8x ”y—l' 73/—:6 y )
Integrating back:
T dxl ,
G(0,1;y) = ?G(—l;ﬂi )+ (83)
0
where c is fixed knowing that G(0, 1;0) = G(0, —1;0) = 0; therefore we get:
G(0,1;y) = G(0, —1; ). (84)
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The last function GG(1, 0; ) can be computed from G(0, 1; y) using the shuffle product:

G(1,0;y) = G(L;9)G(0;y) — G(0,1;y) = (85)
= G(—1;2)[G(0;z) +ir] — G(0,—1;2) = inG(—1;2) + G(—1,0; x).
Repeating the same approach, it is possible to find relations among higher weight func-
tions.
Thus, already from this simple example, a very important point emerges: when deal-
ing with MPLs, if we understand functional relations for weight one functions (logs),
then we can derive all functional relations at any weight iteratively.

4.4 Transcendental weight and canonical form

Now, we are going to introduce the important concept of transcendental weight, which
is connected to the canonical form of differential equations.

Def. 1 Given a function f, which is a linear combination of iterated integrals of dlog
forms, its transcendental weight 77( f) is defined as the number of iterated integrations.
Clearly, T(fl : fg) = T(fl) + T(fz)
E.g.: T(logz) =1, T(Liy(2)) =n, T(G(al, ey O z)) =n.

This definition can be generalized to constants expressible as iterated integrals of
dlog forms,
e.g.: T (logc) = 1 (for ¢ # 0,1), T(w) = 1since log(—1) = +im, T (¢(n)) = n.

In order to see the connection with the canonical form, we need to give two more
definitions.

Def. 2 A function f is said to have uniform transcendental weight (UT function), if it is a
sum of terms with the same transcendental weights.

A stronger property is that of purity.

Def. 3 A function fis pure if it has uniform transcendental weight and its transcendental
weight is lowered by one via differentiation, i.e. 7 (df) = T(f) — 1.

For simplicity, let us focus on a case where the differential equations are in canonical
dlog form. If the lowest-order Laurent coefficients of the Mls are (UT) constants of
the same transcendental weight, then the higher-order ones, which are obtained by
iterated integrations, will also have uniform transcendental weight. We can also make
the canonical basis integrals pure functions by associating weight -1 to the dimensional
regulator e. In fact, from the canonical DEs (@8), we have: T(dJ) = T(¢) + T(A) +

-

T(J). Since T (€) = —1and T(A) = 0being A a matrix of dlog forms, we get: 7 (d.J) =

=

T(J) — 1, as claimed.
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4.5 Beyond Polylogarithms

In Section 4.3 we studied MPLs, which are the most genera[Z_G]functions one can obtain
by iterating integrations of rational differential forms R(x)dx with a finite set of poles
{ay, ..., a,, oo} onthe punctured Riemann sphere, CP' /{a, ..., a,,, oo }. We can extend
this construction to more general geometries. In particular, a case that is relevant for
physics is that of iterated integrals over an elliptic curve, that can be identified, as we
will see, with a torus. In this section, we first introduce the concept of elliptic functions
and elliptic curve and explore the connection between them; then we come back to
the problem of defining iterated integrals on elliptic curves.

4.5.1 Elliptic functions

Let us start from some basic definitions [49].
Def. 1 An elliptic function f(z) is a complex function which is:

(a) meromorphic, i.e. it has finitely many poles, but no branch-cuts;

(b) doubly periodic, i.e.: f(z) = f(z +w1) = f(z +w2) Vz, wherew;,w, € Care
two complex numbers linearly independent over R (i.e. 7 = % ¢ R), called the
two fundamental periods of f.

Def. 2 Let f be an elliptic function with fundamental periods w,,w, € C. The set of
points in the complex plane given by:

A(wy, we) = {mwy + nws|m,n € Z} (86)

is called the period lattice. Clearly, all the points of this lattice are still periods of f. The
parallelogram P of vertices {0, wy, w2, w; +ws } is called the period parallelogram of f.

Note that, due to its periodicity, an elliptic function is fully determined on C by spec-
ifying its values on the period parallelogram P. Moreover, identifying opposite sides of
P yields a torus, denoted as C/A, which is the natural domain for elliptic functions. In
this sense, an elliptic function on C descends to a well-defined meromorphic function
on the torus C/A. Another important observation is that the shape of this torus does
not depend on the specific values of w; and w,, but only on their ratio 7 = Z—f called
modulus. Therefore, we can always decide to rescale periods and define the period
lattice of an elliptic function as: A(1,7) = A(7).

In the following, we state the main basic properties [49] of elliptic functions:

2OMore precisely, given any rational function R(x), we can decompose it into partial fractions and
express its iterated integrals in terms of MPLs.
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Prop.1 For an elliptic function, the number of poles inside the period parallelogram
equals the number of zeroes.

Prop.2 An elliptic function with no poles (or equivalently no zeroes) inside the period
parallelogram is a constant.

Prop.3 Given an elliptic function f with period parallelogram P, the contour integral of
f over 9P vanishes: [, f(z)dz = 0.

Cor. 1 The sum of residues of an elliptic f inside the period parallelogram P vanishes:
Z Res[f(z)}‘ =0

20€EP =0

Cor. 2 An elliptic function has at least 2 simple poles or a double pole inside the period
parallelogram.

The simplest (and most important) example of an elliptic function is given by the
Weierstrass g-function:

e.g.
o) =p) =5+ 3 (ﬁ - %) (87)

AEA(T)\{0}

One can easily check that it satisfies the requirements of Def. 1. In fact, this function
has only double poles at the lattice points, therefore is meromorphic. The second term
in the sum guarantees uniform convergence; this property allows us to shift terms in
the sum, which is crucial for proving periodicity.

An important property of this function, that we will use later on, is that it satisfies
the following differential equation:

(¢'(2:7))° = 49" (2, 7) — gap(2;7) — g3, (88)
where ¢, g3 € C are determined by the periods of the Weierstrass p-function.

Another important result, which we will not prove, is that every elliptic function can
be written as a rational function in p(z;7) and ¢'(z; 7). This explains the central role
of Weierstrass p-function in the theory of elliptic functions.

4.5.2 Elliptic curves

Now we want to introduce the concept of elliptic curve [43] and construct the cor-
responding Riemann surface; explore intuitively its relation with the elliptic functions
previously introduced; in particular, we want to show how the Weierstrass @-function
can be useful to parametrize an elliptic curve.

Let us start from the definition of an elliptic curve:
Def. An elliptic curve is an algebraic curve in C? defined by:

E:{(z,y) € C*:y* = Pu(z)}, (89)
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where P,(x) is a polynomial of degree three or four in the complex variable x.
For example, let us assume for simplicity:

Py(z) = /(x — ay)(z — ap)(z — a3)(x — ay) with a; ER, a1 < ay < as < ay.
(90)
The function y(z) = \/Ps(z) is multivalued on the complex plane; our goal is to in-
troduce a Riemann surface on which y(x) becomes single-valued. We note that going
aroung a single q; results in a change of sign of the square root, while going around two
of them returns the function to its original value. This motivates us to introduce two
branch cuts: one between a; and a,, the other between a3 and a4.
We then take two copies of the Riemann sphere (with these branch cuts), denoted R ;.
and R _, corresponding to the two possible values of y(x) = £/ Py(x). Along each of
the branch cuts, we "open" the slits in both sheets and glue them together crosswise:
the upper edge of the cut on R, is glued to the lower edge of the cut on R _, and vice
versa. This gluing identifies points in such a way that the resulting surface accommo-
dates a well-defined single-valued function. The resulting topological surface is a torus,
i.e., a compact Riemann surface of genus one. This is the Riemann surface associated
with the elliptic curve.

One can show that it is always possible to find a change of coordinates that puts the
elliptic curve into the so called Weierstrass form [43]:

y? =42® — gor — g3,  with go, g3 € C. (91)

Note that this equation has the same form as the differential equation for the
Weierstrass p-function; in particular from the values of g, and g3, we can reconstruct
the periods of the corresponding function, that we can also rename as the periods of
the elliptic curve E.

As prevously discussed, due to its periodicity, the function ©(z;7) can be inter-
preted as a function defined on the torus C/A(7). We can therefore create a corre-
spondence between the points on this torus and the ones on the elliptic curve E via
the mapping:

¢:C/AN7) = E, 2e€C/ANT)—= (2,y) = (p(2;7),9'(2,7)) € F, (92)

where we exploited the fact that the equation of the curve in the form corresponds
to the differential equation satisfied by Weierstrass p-function.

The mapping is invertible; in particular, the point z, of the torus, corresponding
to the point (2o, yo) € F, is given by the elliptic integral of the first kind:

/mo dx o dx (93)
20 = — = .
%) y(l’) o \/4373 — g2 — g3
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e d 20 M ~. d

In fact: / R / M = 20, where we used that = = p(z; 7) has a pole
o Y@ o ¢(zT)

at z = 0 and that zq = @(zo; 7) from (92).

4.5.3 Integrals on elliptic curves

As discussed, iterated integrals of rational functions on the punctured Riemann sphere
produce MPLs: in this case, the integrand is a meromorphic function on the punctured
Riemann sphere, CP'/{ay, ..., a,, oo}. On an elliptic curve, instead, the meromorphic
functions are rational functions in (z,y) subject to the constraint (89), which defines
the elliptic curve. The most general function with this property has the form:

_ Pi(x) + Py(z)y(2)
Q1(z) + Q2(7)y(z)

where R;(z) and Ry(x) are rational functions in x, while y(z) = /Py(x). By integrat-
ing the first term over x, we get rational functions and logarithms as usual; by integrat-
ing the second one, we can get new functions. By partial fractioning this term, we can
only get terms of the form: % and —* with m € N. The (infinitely many) integrals

y(z—c)™’

of all these expressions can be reduced to integrals of the following differential forms:
_dx rdx dx dx

W1 = 9 Wy = —, W3 = —F/——, Wy =
Y Y y(x—c)

Let us analyze them in detail:

f(z) = Ri(z) + y—Rz(l‘), (94)

(95)

r—c

wy is just a dlog form, whose integral gives log(x — ¢).

e w is called elliptic differential of the first kind, or holomorphic differential, be-
cause it has no poles. Its integral can be expressed in terms of elliptic integrals of

the first kind: ) J
T
K()\) = . 6
» /0 \/(1—352)(1—)\302) (96)

e (), is called elliptic differential of the second kind, it has a double pole with van-
ishing residue. Its integral can be expressed in terms of elliptic integrals of the

second kind: .
1 _ 2
EQ\) = / dz A (97)
0

1—22

e wjs is called elliptic differential of the third kind, it has a pole with non-vanishing
residue. Its integral can be expressed in terms of elliptic integrals of the third
kind: )

d
II(n|\) = / - . (98)
o (1—nz?)\/(1—22)(1— \a?)
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Summarizing, from a single integration of meromorphic functions over an elliptic
curve, we can get rational functions, logarithms and elliptic integrals of the three kinds.
Iterating integrations, we obtain a new class of iterated integrals, called elliptic multiple
polylogarithms (eMPLs) [40]: these are iterated integrals of differential forms which
are products of one-forms of the four types seen above. Note that MPLs are a special
instance of eMPLs, obtained including only one-forms of type w;.

One can show [17] that eMPLs can be written more compactly as:

z
E(Ma, .. s @y, ..., Qg 25T) :/ dt g(”l)(t—al,r)é’(ng,...,nk;ag,...,ak;t;T).
0

(99)
This has the same form as the definition for MPLs, but now the integration kernels
g(")(z; T), with n € Ny, are some more complicated special functions

ZThey are defined as the coefficients in the expansion of the Kronecker elliptic function F(z, a; 7) in

1 oo
the variable a: F(z,a;7) = > Z g(n)(z, T)a".
n=0
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5 Series expansions of DEs for Fls

We have previously seen that, when the differential equations (DEs) for the master in-
tegrals (Mls) are cast in canonical form, they can, in principle, be solved order by order
in ¢, allowing one to compute the full Laurent expansion to any desired order. However,
it is not always possible to find global analytic solutions in the external kinematic vari-
ables. Even when such solutions exist, they are often expressed in terms of complicated
special functions that are difficult to evaluate in practice.

However, as we will see in the first section of this chapter, it is always possible to
find local generalized series solutions around a given point using Frobenius method,
provided that the point is not an essential singularity of the DEs. These series are guar-
anteed to converge at least up to the nearest singularity.

The good news is that the DEs governing Feynman integrals are expected to have
only regular singular points [33]. This means that, at least in principle, one can construct
a basis of solutions around each singularity and analytically continue them by matching
across overlapping regions of convergence, thereby reconstructing a global solution.

However, this approach comes with a practical challenge: for problems involving
many singularities or multiple scales, the series expansions tend to converge slowly, es-
pecially near the boundary of their circle of convergence. We will address this issue in
Section 5.2, introducing a change of variables that has the effect of improving conver-
gence.

5.1 Series solutions of DEs: Frobenius method

There is a systematic method for finding series solutions to linear differential equations,
known as Frobenius method, which will be the focus of this section. We will follow
mainly [41] and [7].

Consider a linear homogeneous n-th-order differential equation, written in normal

form{#
u™ (2) + p1(2)u" "V (2) + oo+ Pt () (2) + p(2)u(z) = 0, (100)

where z € C and {p,,(2) }1<m<n are rational functions of z.

Suppose that zq is a regular singular point of (100), i.e. (z — z9)"pm(2) is analytic at
z = zp, or equivalently p,,(z) has expansion:

1 o0
pm(z) = (z——zo)m ;pffg(z — 2)" m. (101)

22By normal form, we mean that the coefficient of the highest derivative is normalized to one.
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According to Fuchs’s theorem, around such a point z,, there exists at least a solution of
the form of a generalized power series:

u(z) = (2 — 20)” Z cn(z — 20)", (102)

where p € R is called the indicial exponent.

Plugging the ansatz (102) and the expansion (101) for coefficients p,,(z) in the dif-
ferential equation (100), we get:

ch Z— 2p) {k+p)(l{:+p—1) Jk+p—(n—-1))+
+(k+p>(k+p—1)...[k+p—(n—g)]ng”(z—zo)l+ .....

..... + (k+p) anlz—z +Zp(l)z—z } 0.
(103)

With some algebraic manipulationsit can be rewritten as:

[e.e]

Z{(k+p)...[k+p n—lck—i-Z[ —l4p)fk=l+p—(n=2)p" + ...

k=0

..... +(k—1+ p)p(l) +pg)] Ck—l}(z — 2)" = 0.
(104)

For this equality to be satisfied, all the coefficients of the various powers of (z—z,) must
vanish. In particular, setting to zero the lowest order coefficient, we get (excluding the
case ¢y = 0, corresponding to the trivial solution) the indicial equation:

plo—1).[p—(n=1]+p(p—1)..[p— (n—=2)p\" + ...+ pp}), + ) = 0. (105)

This is an algebraic equation of degree n, from which we can determine the possible val-
ues for the indicial exponent p, each of them producing a different solution of (100). By

2There are double sums of the form: Z oz —2)k Z Bi(z— zo)l, which can be rewritten (taking

k=0 =0
0o

k' =k+1)as: Z (z— 20) Zak/ 151

k! =
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setting to zero the higher-order coefficients of (104), we get recursive relations among
the coefficients ¢,,, which can be solved recursively, determining all of them from the
knowledge of ¢g.

For an n-th-order differential equation, we expect n independent solutions; how-
ever, it may happen that the individual equation does not give n dinstinct solutions
for p. In that case”|we can find the remaining solutions of starting from a more
general ansatz, that takes into account the possibility of having logarithmic singularities
at 2z = zp:

u(z) = (2 — 20)° Z Z Chm (2 — 20)"log™ (2 — 20). (106)
m=0 k=0

In practice, we first try to solve the system using ansatz for m, .. = 0, which
corresponds to (102). If we obtain n linearly independent solutions, we are done; oth-
erwise we increase the value of m,,,,, eventually up to (n — 1). The general solution
is a linear combination of all linearly independent solutions obtained in this way. To
find a particular solution, we need to fix the n coefficients of the linear combination by

imposing proper boundary conditions.

5.2 Convergence and Bernoulli-like variables

From the theory of differential equations, it is well known that the radius of conver-
gence of a series solution is at least the distance from the expansion point to the near-
est singularity of the equation. However, from a numerical perspective, convergence
tends to slow down significantly as one approaches the boundary of the circle of con-
vergence: increasingly higher orders in the expansion are required to maintain a fixed
level of precision.

A common strategy to improve convergence and effectively extend the radius of
convergence involves performing a change of variables that maps the singularities to in-
finity. In simple, one-scale problems it is possible to push away one singularity through
a logarithmic change of variables [1, 18], introducing what are known as Bernoulli-like
variables. However, in the presence of multiple scales and several singularities, situa-
tions frequently encountered when computing scattering amplitudes, the structure of
the problem becomes substantially more involved. Understanding and optimizing con-
vergence in these settings is still an open challenge. We will focus on these cases in the
next chapters, for the moment we just present the standard Bernoulli-like variables,
aiming to shed light on why they appear to work so well.

24We must proceed in this way also when some indicial exponents differ by an integer number; in fact,
in that case, they produce solutions of that are not independent.
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5.2.1 The standard Bernoulli variable

The Bernoulli change of variable was introduced in [1] by 't Hooft and Veltman in order
to find a series representation for the dilogarithm function with better convergence
properties. Recalling the integral definition of the dilogarithm:

Liy(z) = / ' dtw, (107)
0

it is natural to think at the following change of variable:
u= —log(1l —t), (108)
which gives:
T log(l—t z
0

t
b1 (109)

0
2 0O u" 00
= B,— = B,——, with  z = —log(1l — x),

[ XSy

where we used the definition of Bernoulli numbers B,, in terms of their generating
function: .

Uu u”
=Y B,—. 110
et —1 ; n! (110)

These numbers have interesting mathematical properties [29]. Here, we highlight those
that are most relevant for numerical applications:

1. Odd-indexed Bernoulli numbers, except By, are vanishing;

2. Even-indexed Bernoulli numbers alternate in sign;
2%
3. Their magnitude grows rapidly. Asymptotically: | Boy,| =~ 4(%) Vrk.

The new series representation (109) for the dilogarithm in the variable z, called the
Bernoulli variable, has some advantages compared to the standard one:

[e.9] n

Lis(z) =Y % (1)

n=1

The fact that the branching point x = 1 is pushed to z = +oc guarantees conver-
gence in the new variable even in regions where the original series was not convergent;
moreover, the new series representation converges much more rapidly to the function’s
value, likely due to the alternating signs of Bernoulli numbers.
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5.2.2 Bernoulli-like variables: a new perspective

It is possible to define generalized Bernoulli-like variables in order to improve conver-
gence of the series expansions for a generic function having only one finite singularity
(excluding eventually the expansion point). This type of variable transformation has
been already employed in the physics literature, particularly in the context of Feynman
integrals [18,/37,10], as a form of experimental mathematics, whose only justification is
its empirical success. Here, we want to revisit this technique from a different perspec-
tive, giving a general definition of this change of variable and trying to provide a deeper
understanding of why it is so effective, even if our justification remains heuristic rather
than fully rigorous.

Consider a generic function f(z) in the complex plane, having singularities at z = z;
and z = oo, and focus on its expansion around a point z = zg:

Z an(z — 2)". (112)

n=0

We can define the Bernoulli-like variable:

t:—log<z_zl> = 2=z (5 —2ze" (113)
20 — %1
This change of variable sends the expansion point z = z; to ¢t = 0, while the singular
points z = z; and z = oo are mapped respectively to ¢ = Fo00. This clearly extends
the region of convergence; moreover, from some numerical tests, it seems that the
rapidity of convergence is also significantly improved for a general f(z) with the above
properties.

In order to try to understand the reason for this nice numerical behavior, we can
rewrite the series in terms of the Bernoulli-like variable t. We have:

:Zanz—zo Zan 21— 20)" (1 — e H)™. (114)
n=0 n=0

Using Taylor expansion formula and the binomial theorem, we can write:

=1 . L~ (n ot
(1—e) :;k_[azﬁk (1—e™) } t:Otk:kZ:OH[j;o (j)(_lye t]} t:Otk:
_ R ( ) 1)k gtk:i(_l)n%z—:s*(k,n)tk,
b= = : k=0 ’
(115)
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where in the last step we recognized the definition of Stirling numbers®|of the second

kind [29]:
S(k,n) = %Z(—n"ﬂ' (;‘);k (116)
B

Plugging (115) in (114), our function is rewritten as a power series in t:

v
f(t) = Z (_kll) <Z%(Zo — z1)"nlS(k, n)) th. (117)

k=0 ’ n=0

This can be thought of as an analytical continuation of the series representation (112)
for the function f, since it is valid in a larger domain.

Moreover, in analogy with the dilogarithm case, the rapid convergence of the series
can be reasonably attributed to two structural features of the coefficients. First, the
coefficients exhibit an alternation of signs, which naturally leads to partial cancellations
between successive terms. Second, each coefficient contains a sum of terms already
appearing in the previous orders. This structure effectively acts as a "resummation" of
earlier terms, but with partial cancellations. The combination of these two aspects is
expected to play a crucial role in accelerating convergence.

This alternating character also has practical implications for numerical computa-
tions: from standard calculus, it is well known that in alternating series with decreasing
term magnitudes, the truncation error is bounded by the absolute value of the first ne-
glected term. This provides a simple and effective estimate of the numerical error, that
we will largely employ in the following.

2|t is interesting to notice that these special numbers are related to Bernoulli numbers, in fact: B), =
k
!
S 1) S (k).

n+1

n=0
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6 A simple case: the 1-loop bubble

In this chapter, we apply the machinery previously described to the simplest nontrivial
case: the equal-mass bubble integral. Thanks to the simplicity of the problem, much
of the analysis can be carried out analytically. We begin by deriving the IBP relations,
selecting a basis of master integrals, and obtaining the corresponding differential equa-
tions. After identifying a canonical basis, we solve the system exactly in terms of mul-
tiple polylogarithms (MPLs). Then, we construct (analytically) series solutions around
s = 0and s = 4m?. Finally, we use Mathematica to evaluate both the exact and the se-
ries solutions, compare them numerically, and accelerate convergence by introducing
a Bernoulli-like variable for each expansion.

6.1 IBPs and Mls

In this section, we derive the IBP relations for the bubble integral family in the equal
mass case and choose a basis of master integrals for it.

The bubble integral family with equal internal masses is characterized by two de-

nominators:
{D1 = K — m?

where k and p are respectively the loop and the external momenta, m is the mass of
internal lines.

Figure 1: General bubble integral with labeled momenta.

The generic integral of this family looks like:

1 dP
— TE€
fana / proy e / ‘ / inD/2° 119)

There are two invariants: © = {p2 = s, mz}, of which only one is independent, as we
will check explicitly. The family is complete, since there are two denominators and two
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scalar products involving the loop momentum k: {k2, k - p}, so that we can write from
(118):

2:D 2

_ Do—D;—s

k -p = %

Note also that, being the internal masses equal, the family has an additional simmetry:
Ial,a2 - ](12,04’ <121)

as one can easily check by performing the shift: £ — —k — p.
The IBP relations can be derived from:

/ O _ Y g with o= k" p) (122)
okr D DY B
Using (120) to express the scalar products appearing in the numerator, we get:

2

2
(D —2a1 — aQ)]ahaz — 2a1m Ia1+1,a2 - a2(2m - S)Ia1,a2+1 - a2]a1—17a2+1 =0

(a1 — a2)lay 0 + 1810y 1.0 — 02510y ag+1 — @1 lay+1,09-1 + @2lay—1,05+1 = 0
(123)
These are the IBPs for the bubble integral family with equal internal masses. We find
that there are two Mls, which we can choose to be I, ¢ and I, ;, to which any other
integral of the family can be related. Note that the first Ml is a tadpole, so it belongs
to a subsector; the second one is in the top?|sector. They are showed in the following

Figure

0

Il.lJ Il "

Figure 2: Our choice of masters for the equal-mass bubble integral family.

6.2 Differential equations

Let us derive the differential equations for the chosen basis of Mls.

26By top sector, we mean the sector having the largest number of active denominators.
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We can easily rewrlte |n terms of

9 — i #i, (124)

ds 25" OpH

We have:

Om2I1 0 = 8m2/D1 /D2 I, Osl1p =0,

1
Om2I11 = O, — =1 Iio =215,
2171 2/D1D2 /D%DQ +/D1D§ 21+ 112 2.1
0sD 1 Dy — D 1
8[11—3/ 2 2 1+s

D1D2 DlD% 2s DlD% 28( 1,1 2,0 +s 271)
(125)

Using IBPs (123), we can rewrite I5 o and I ; in terms of the Mls, getting the systems of
differential equations in the two invariants:

0 (Lo P 0\ (o
o) — m? g o) 126
om? (Il,l> <_ m?2 (ng—s) %1(752 —35) Il,l ( )

9 (I o 0 0 Lo
_ P = _ 127
Os ([1,1) <s(417)n—22s) -5t s)) ([11 127

One can easily check that these DEs satisfy the integrability condition as well as the Euler
scaling relation. We can also check that only one scale is independent, by performing
the change of variable:

~2 2 _ 2
{m (m ’S)__ " (128)

. 9 (L _ % DO ) Lo
om? \1i1 0 =/ \Ui1/)’
9 (o) _( 0 0 Iy
95 \ 111 mg(:;z—g) _%(é + Z) 53) Iia
The first equation gives the trivial mass dependence, the second is the non-trivial one.

Note that the latter is equivalent to (127) for m?> = m? = 1, so we could directly set
m = 1 from the beginning and derive only the system in s:

9 (I 0 0 Lo

- ) — _ . ’ . 130

05 (m) (sa_z —%(%+Z’_§)) (Im (130
49

We get:
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6.3 Canonical form

For this simple case, we could directly solve the non-canonical equation (130). How-
ever, to anticipate what we will do in more complicated cases, we decide to work in a

canonical basis:
J =1
{ 17720 . (131)

Jo = /s(s —4)I2,

Note that we construct the canonical basis starting from integrals with the first denom-
inator squarecF_7] and normalizing the second master by its leading singularity. Now we
want to write the differential equations in this basis.

Taking derivatives with respect to s, we get:

1
ang_as/F%_o,

1 s—2 s(s —4) (132)
88J:85[\/33—4/ ]: Iy + Iys.
2 ( ) D%DQ 8(8 — 4) 2,1 2 2,2
Using IBP relations (123), we can rewrite:
D—4 6—D)s—4
( Js—4, (133)

I, —
227 (s —4) * s(s —4) ’

Therefore, the differential equations in the new basis take the form:

o (1 _ 0 0 Ji

As expected, the system is now in canonical form (e-dependence factorizes); however,
in this basis the matrix entries are no longer rational functions in s. For this simple case,
it is possible to rationalize them by performing the change of variable:
1— 2
N ) o (135)
Yy

where y is called the Landau variable. Now the canonical DEs take the form:

o (J 0 0 Jl)
e — . 136
oy (J2) ‘ (‘% Y y%) (Jz (136)

It is important to notice that, while the DEs in s have singular pointsat s = 0, s = 4
and s = oo, is singular only for y = —1 (corresponding to s = 4), y = 0 and
y = oo (both corresponding to s = oo). This will be important when imposing boundary
conditions: we cannot use regularity at y = 1 (s = 0) as a BC, since this information is
already encoded in the DEs (134).

27We choose I since it is UV finite in D = 4 — 2¢, so it is a good initial integral according to the
criteria in Section 3.5.1.
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6.4 Solving the canonical equations

We want to solve the canonical DEs (136). The only non-trivial equation is the second
one, since the first one simply tells us that the tadpole .J; does not depend on s. There-
fore, J; has to be computed by direct integration, getting:

17 ¢(3)

Jl = ]2’0 = eyEEF(G) = Z + 612 - 62T + 0(€3>. (137)

Expanding the second of (134) in ¢, we get:

0 ) L2 e )
T 1P y) = (— - —)J ) (138)
By 2 (y) Yy y+l 2 (y) Y 1
where Jl(") (already known from (137)) and Jzn) are the order n coefficients of the Lau-
rent expansions in ¢, respectively for .J; and J,. Therefore, we can write:

1 2
T (y) = /d [(— - —)J(”_l) ] —J" D og(y) + ™, (139
> (Y) v, ~ 5 1)% (W) = 2(y) (139)
where the coefficients ¢(™) are fixed order by order in ¢ by imposing a suitable boundary
condition (BC). In particular, we know that the physical integral 15 ;(s) has a branch cut
for s > 4, butis regular at s=0; therefore the canonical integral J5(s) = /s(s — 4)I51(s)
will satisfy J(s = 0) = 0, or equivalently:

Jo(y =1) = 0. (140)

This is our boundary condition.

From (137), (138) and (140), it is evident that JQ(”) = 0 Vn < 0; using (139), we can

compute recursively the Laurent coefficients for n > 0.
Since (or equivalently (138)) only contains dlogs of rational functions (dlog(y),
dlog(y + 1)), then the solution at any order can be expressed in terms of MPLs. For
example, at second order in ¢, we get:
7.[_2 7T2
J(y) == G(0;y) + e[g +2G(-1,0;y) — G(0,0; y)] + ¢ [ - 5 G(=Ly)+
2

+ %G(O; y) —4G(=1,-1,0;y) +2G(—1,0,0;y) +2G(0, —1,0; )+

— G(0,0,059) +2((3)] + ofe").
(141)
Note that this solution has a branch cut for y < 0, which corresponds to s > 4. To

express the solution in this region, we need to perform an analytical continuation?®|for
MPLs.

28The procedure is the one described in Section 4.3.3. As usual, the correct sign for the imaginary part
is given by Feynman prescription: s — s + ie, or equivalentlyy — y +ic = —z +ic (¢ > 0,z > 0).
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6.5 Series expansions around s=0 and s=4

For this problem, we have been able to rationalize the canonical DEs and to find a global
solution in the external scale s. However, as previously mentioned, in more complicated
situations, it is only possible to find local series solutions around specific points. It is
instructive to try these techniques already for this simple case. In particular, in this
section, we will look for series solutions around s = 0 and s = 4.

Consider the second of the canonical DEs (134), which can be rewritten in the form:

(s - 4)ys2 )

with J;(€) given by (137). As a solution around s = 0, we take the ansatz:

= e[Vs — 4Ji(€) — V/sJa(e, 5)], (142)

Ja(€,8) = Z bn(e)s"J“%, (143)
n=0

where the coefficients b, (¢) are functions of ¢, which can be expanded around ¢ = 0
up to the needed order. Note also that this ansatz automatically satisfies the boundary
condition Jy(¢,s = 0) = 0. Plugging in (142), using the expansion for /s — 4
around s = 0, and equating the coefficients of the same powers, we get the recursion
relations:

{ bo(e) = —ieJy(e)

12— 144
u(€) = iz [ (1 = 3+ Obaa(€) — ea(e) L EO (144)

4n+2 n! I'(3/2—n)

For the expansion around s = 4, we can proceed in a similar way, but we need a more
general ansatz, which takes into account the presence of a logarithmic singularity:

Jo(e,8) = Z an(e) - (s —4)" + Z Bm(€) - log™ (s —4). (145)

Plugging in the differential equation (142), we find:

{an<e>: Q4 TG/

nti/24e  nl  I(3/2-n) (146)
Bm(e) = _%Bmfl(e)

where Gy(e) = > ekﬁék) has to be determined by imposing suitable boundary con-
k=ko

ditions. We can observe that, since ﬁék) = 0 Vk < kg, then (146) implies that:
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fff) =0 Vk < kg —+ m; in other words, at order ¢, (145) only contains coefficients
b with m < k — k:

0o k
I — Sal® (s =4+ 3 Y - log™ (s - 4), (147)
n=0

m=0

where we used the fact that in this case &y = 0.

As a boundary condition, we can impose, order by order in ¢, the matching between
(147) and the series solution around s=0 when both are evaluated at s=2: at order k, =
0 we determine 680), from we compute 651), then from matching at order 1 we

determine 6((]1), etc...

6.6 Study of convergence and Bernoulli-like variables

Now we want to study the numerical convergence of the series solutions found in the
previous section, comparing results with the analytical expectations. Then, we will in-
troduce Bernoulli-like variables to improve convergence, as discussed in Section 5.2.2.

The expansion around s = 0 is expected to have radius of convergence ro = 4, since
the nearest singularity lies at s = 4. This is confirmed by our numerical results shown in
the plots on the left of Figure[3l The relative difference between the series expansions
(truncated to 10 orders) and the exact values of the first three Laurent coefficients of
J5 is below 10~* throughout most of the interval s € [—4, 4], with larger deviations
only near the endpoints. Increasing the expansion to 100 orders allows us to reach this
accuracy across the entire interval; however, in the remaining part of the real s-axis,
the series still fails to provide even a single digit of precision.

Regarding the expansion around s = 4, the nearest singularity of the differential
equation is at s = 0; however, this is not a singular point of the particular solution
corresponding to Js. It is therefore interesting to investigate whether this "spurious’Fj]
singularity still affects the radius of convergence.

Our numerical results, shown in the plots on the left of Figure [4} indicate that the
radius of convergence is 74 num = 4: this suggests that the coefficients of the series
solution "remember" that s = 0 was a singular point of the differential equation. This
behavior is consistent with the general theory of linear differential equations and is
further confirmed by analitically computing the radius of convergence directly from
the closed-form expression for the coefficients «,, derived in (146). For large n, the

29By spurious we mean that this is a singularity of the differential equations, but not of the physical
solution (it disappears when imposing the boundaries).
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6 ASIMPLE CASE: THE 1-LOOP BUBBLE

coefficients ag’“, where k is the (fixed) order in ¢, are given by:

o AT (=4 T(3/2)

k) . 148
T nT12 ol T(3/2-n) (148)
By applying the ratio test, we find:
(k)
Ryg = lim |~ =4 k. (149)
n—oo an

Therefore, it is evident that in this case the radius of convergence is limited by the near-
est singular point of the differential equation, even though this point is regular for the
particular solution under consideration. There are also special cases for which such spu-
rious singularities do not affect the radius of convergence: we will see some examples
of this behavior later on.

As previously mentioned, for the expansion around s = 0, the convergence is slow
near the extrema of the interval [—4, 4] and totally absent in the external region of the
real s-axis. We can define a Bernoulli-like variable of the form proposed in (113):

t = —log <1 - Z) — s=4(1—- e_t). (150)

This transformation maps s = 0tot = 0, s = 4and s = cotot = oo. In practice,
we perform this change of variable in our series solution and re-expand up to the same
order; then we estimate the accuracy of our results by computing the relative error
with respect to the exact solution, previously found.

The advantage of using this new variable is twofold:

1. The convergence of the series for |s| < 4 is much faster than before. In fact,
including only 10 orders we can get a similar precision to the one obtained with
100 orders when using the variable s. Another interesting observation is that,
including more than 50 orders, the relative precision stabilizes around 10716,

2. There is convergence also for points of the complex s-plane that lie outside the
original circle of convergence. In particular, as showed in the plots on the right of
Figure 3] for all values of t corresponding to s € R the series is now convergent.
However, it is interesting to notice that convergence is a bit slower in a small
region around the singularity s = 4, that was pushed away.
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Original series for |2 around s=0 (epsOrd=0, sOrd=10) Bernoulli series for J2 around s=0 (epsOrd=0, sOrd=10)
-20-18-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 -20-18-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 1012 14 16 18 20
M dig<l W 1<dig<2 W 2<dig<4 M dig=4 W dig>2
QOriginal series for J2 around s=0 (epsOrd=0, sOrd=100) Bernoulli series for ]2 around s=0 (epsOrd=0, sOrd=100)
-20-18-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 -20-18-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20
M dig<l W 1<dig<2 M 2<dig<4 W dig=4 W dig>4
QOriginal series for ]2 around s=0 (epsOrd=1, sOrd=10) Bernoulli series for )2 around s=0 (epsOrd=1,s0rd=10)
-20-18-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 -20-18-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20
M dig<l M l<dig<2 M 2<digea M dig>4 W 1<dig<2 M 2<dig<d M dig>4
Original series for ]2 around s=0 (epsOrd=1, sOrd=100) Bernoulli series for |2 around s=0 (epsOrd=1,s0rd=100)
-20-18-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 -20-18-16-14-12-10-8 -6 -4 -2 0 2 4 6 & 10 12 14 16 18 20
B dig<l1 = 1<dige2 M 2<dig<a Edig>4 M dig>4
Original series for ]2 around 5=0 (epsOrd=2, sOrd=10) Bernoulli series for J2 around 5=0 (epsOrd=2,50rd=10)
-20-18-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 -20-18-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20
M dig<l M 1<dig<2 M 2<digcs M dig>4 M dig=4
Original series for ]2 around s=0 (epsOrd=2, sOrd=100) Bernoulli series for ]2 around s=0 (epsOrd=2,5s0rd=100)
-20-18-16-14-12-10-8 -6 -4 -2 0 2 4 6 B 10 12 14 16 18 20 -20-18-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 1012 14 16 18 20
B dig<l ¥ 1<dig<2 M 2<dig<4 Edig=4 W dig>4

Figure 3: Relative truncation errors along the real s-axis in the expansions around s = 0 of J5 up
to o(e?). Different colors indicate the error at each point. Left: original series; right:
Bernoulli-like variable series. For each case, two plots are shown, corresponding to
truncation at 10 and 100 orders, respectively.

Summarizing, using this Bernoulli-like variable, we are able to cover the entire real s-
axis with high accuracy (> 4 digits) using only one expansion point (s = 0) and including
few orders (~10 orders) in the expansion.

In alternative, one can choose s = 4 as expansion point. In this case, the proper
Bernoulli-like variable is defined by:

t = —log (Z) — 5= de . (151)

This transformation maps s = 4tot = 0, s = 0 and s = co tot = oo. The effect on
convergence is analogous to the previous case, as showed in Figure[4]
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Original series for ]2 around s=4 (epsOrd=0,s0rd=10)

Bernoulli series for J2 around s=4 (epsOrd=0,s0rd=10)

-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24
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Original series for J2 around s=4 (epsOrd=0,s0rd=100)
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Bernoulli series for )2 around s=4 (epsOrd=0,s0rd=100)
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Original series for J2 around s=4 (epsOrd=1, s0rd=10)

-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24

W dig=4

Bernoulli series for J2 around s=4 (epsOrd=1,50rd=10)

-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24

M dig<l M 1<dig<2 W 2<dig<4 M dig>4

Original series for ]2 around s=4 (epsOrd=1, sOrd=100)

-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 1012 14 16 18 20 22 24

I 1<dig<2 M 2<dig<4 M dig>4

Bernoulli series for ]2 around s=4 (epsOrd=1,50rd=100)
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Original series for J2 around s=4 (epsOrd=2, sOrd=10)

-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 1012 14 16 18 20 22 24
W dig>4

Bernoulli series for J2 around s=4 (epsOrd=2, sOrd=10)

-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24

M dig<1 N 1<dig<2 B 2<dig<4 M dig>4

Qriginal series for J2 around s=4 (epsOrd=2, sOrd=100)

-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24

H 2<dig<4 M dig>4

Bernoulli series for )2 around s=4 (epsOrd=2, sOrd=100)

-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24

M dig<l M l<dig<2 M 2<dig<4 MW dig>4

-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 1012 14 16 18 20 22 24

W dig>4

Figure 4: Relative truncation errors along the real s-axis in the expansions around s = 4 of .J,
up to 0(62). Different colors indicate the error at each point. Left: original series;
right: Bernoulli-variable series. For each case, two plots are shown, corresponding to
truncation at 10 and 100 orders, respectively.
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7 THE EQUAL-MASS SUNRISE

7 The equal-mass sunrise

This chapter focuses on the equal-mass sunrise integral, which is the simplest example
featuring an elliptic geometry. Full analytic and full series expansion treatments of the
problem can be found in [28] and [37], respectively. Here, instead, we combine an
iterative method, facilitated by working in a canonical basis, with a series expansion
approach.

The IBP reduction and derivation of the differential equations are carried out using
dedicated computational tools [32]. We then construct a canonical basis following the
procedure outlined in Section 3.5, which includes solving the homogeneous block via
the Frobenius method. The canonical system is solved iteratively in ¢, constructing at
each order series expansions in s around its singular points, with boundary conditions
fixed numerically. Finally, we analyze the convergence of the series solutions and study
the effect of Bernoulli-like changes of variables on their behavior.

71 Mis and differential equations

Let us introduce the sunrise integral family with equal masses and derive the differential
equations.

The sunrise integral family is a two-loop family, associated to Feynman diagrams
with two external and three internal lines, as shown in the following figure:

k1
T
T
J’J

=
\

b
ki — ks —p

Figure 5: General sunrise integral with labeled momenta.

This topology involves two loop momenta, k; and ks, and one external momentum,
p. For simplicity, in this chapter we consider the case where all three internal lines carry
the same mass m. Thus, the generic integral of this family reads:

62735

/ dPkydP ks,
i ) (kg = m)n (k] —m2) [(ky = ke — p)? —m?]”

(152)

IV1,V2,V3 =
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7 THE EQUAL-MASS SUNRISE

There are five possible scalar products involving loop momenta, but only three de-
nominators; therefore, we need to introduce two fictitious denominators to complete
the family. In particular, we choose: D, = (k; — p)?, D5 = (ks — p)>.

Differently from the previous chapter, the IBP reduction and the derivation of the
differential equations for this family are performed using computer algebra systems, in
particular we used the software Reduze [32]. The reduction reveals that there are three
master integrals (Mls): in particular, we choose as masters the two-loops tadpole I, ; o
and the two sunrises I, ; ; and I, ; ;. They are showed in the following Figure@

Oy [N AR
N _

Liio I Iz

Figure 6: Our choice of masters for the equal-mass sunrise integral family.

There is only one independent kinematic scale in the problem, which we take to be
s = p2. Setting m = 1, the differential equations for the master integralsind = 2 — 2¢
dimensions take the form:

P Lo 0 10+2 03 Lo
— |\l ] = 0 N 56 s Liail,
Os I - 2¢2 _ (s=3)(1+5e+6€%)  9427e—10se—s(1+e)

21,1 (s—1)(s—9) s(s—1)(s—9) s(s—1)(s—9) 2,11

(153)
where the first equation simply tells us that the tadpole does not depend on s, as we
already knew.

The advantage of working around d; = 2 dimensions is that the two integrals in
the top sectors are both UV (and IR) finite. This makes the original basis a convenient
starting point for constructing a canonical basis. The physical results in d = 4 space-
time dimensions can then be recovered using dimensional shift relations.

7.2 Finding a canonical form

Now we want to write the DEs in canonical form, so that it is easier to solve them.
As discussed, this corresponds to performing a particular rotation of our basis I of Mls
to a new basis J = Rf; the corresponding transformation for the matrix A of the system
is given by (43), that in our case becomes:

oR ~
A = RAR™ + a—R‘l, with  A'(e,s) = eA(s). (154)
s
To construct the rotation matrix, we follow the procedure described in Section 3.5.
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7 THE EQUAL-MASS SUNRISE

1. As previously observed, the two masters in the top sector are finite in dy, = 2
dimensions. First, we rotate them to a derivative basis, where we take as third
master the derivative of the second one w.r.t the scale s. This is a good initial
basis, which makes the following steps easier. This rotation is described by the

matrix:
1 0 0
R, =10 1 0 1. (155)
0 _l+2 _3

2. Then, we compute the Wronskian® matrix of the homogeneous equations for
the top sector integrals at e = 0:

W(s) = (“’0<S) w}(s)) . (156)

wo(s) wils)

The functions appearing in the matrix W are complicated transcendental func-
tions, which can be interpreted as the periods on an elliptic curve. However they
can be computed explicitly through series expansions. Specifically, wq is repre-
sented by a regular power series, while w; includes logarithmic terms. The details
of this computation are provided in the next section.

Then we split W into a unipotent part W, and a semi-simple part W,,, as de-
scribed in Section 3.5. In particular, we take:

1 = w 0
Wu = (0 wl0> Wss = (WZ detW) 5 (157)

wo

where we do not need the explicit form of the matrix 1 to compute its determi-
nant. In fact, it is known that the Wronskian matrix satisfies a matrix version of
the original differential equations:

W'(s) = A(s)W (s), (158)

where fl(w) denotes the 2 x 2 top-sector block of the full differential equation
matrix A(z). Its general solution is given by:

/ A(s)ds|.

3OWe recall that this is the matrix whose columns contain the independent solutions of the homoge-
neous 2x2 system for the integrals in the top sector (111 1, 0511,1,1)-

W(s) = exp (159)
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7 THE EQUAL-MASS SUNRISE

etrM

Therefore, using the matrix identity det (eM) = , valid for a generic square

matrix A/, we have £
/A(s)ds :

Note also that, by performing the splitting according to (157), the unipotent part
contains a pure logarithm (i.e. with constant coefficient normalized to one), while
the semi-simple part has uniform transcendental weight zero. This semi-simple
component can be viewed as analogous to the leading singularity in the decou-
pled case. This observation justifies the procedure of rotating the basis in the top
sector by the inverse of the semi-simple part. The rotation matrix is given by:

det W(s) = exp (160)

10 0
Ro= |0 w= |. (161)
0

This is the crucial step; however, after applying this rotation, the matrix of the
system is not yet fully e-factorized.

3. We also have to rescale the third integral by a factor % to account for the fact
that it involves one fewer integration compared to the second oneFE] In addition,
we multiply all the 3 masters by a factor €2: this is just our choice to obtain an e
expansion beginning at order zero. Therefore:

e 0 0
Ry=1[0 € 0 (162)
0 0 €

At this stage, only the matrix entry As, is not yet e-factorized.

4. To achieve a full e-factorization, our last step is to shift the third master by a term
proportional to the second one. This corresponds to performing an additional
rotation of the form:

1 0 0
Ri=10 1 0], (163)
0 f(s)wi(s) 1
$Note that this determines det W up to a prefactor (on the rhs there is an indefinite integral) depend-

ing on our choice for the normalization of wy and w;.
32This ensures that the resulting basis satisfies the uniform transcendentality (UT) property.
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7 THE EQUAL-MASS SUNRISE

where f(s) is chosen in such a way that the unwanted terms vanish. In our case,
we must take f(s) = 2s* — 5s — 2, in order to obtain the canonical form of the
differential equations:

- 0 0 0 7
B 0 3521059 1
P Jo | =€ (23(3;11)5?7)9) P2(5)5(5—1)(5-9) Jo ] . (164)
s+3)4w3 (s 352—-10s—9
/3 6wo(s) T Dy e /3

It is important to stress that the rotation matrix R = R,R3R>R; and the resulting
canonical equations depend on the function wy (), for which we have not found a global
analytical form, but just some series expansions. Therefore, using these expansions for
wo($) in the rotation, we can only construct some (different) "local" canonical bases,
each of them valid in a neighborhood of the corresponding expansion point.

7.3 How to solve the homogeneous system

In this section, we describe how to find two fundamental solutions to the homogeneous
system in the top sector at ¢ = 0, which define the Wronskian matrix (156). The sys-
tem consists of two coupled first-order linear differential equations; however, having
performed a rotation to the derivative basis by using (155), we can immediately rewrite
them as a unique linear second-order differential equation:

_332—203+9 , s—3

I(s) = s(s—1)(s — 9)I () = s(s—1)(s—9)

I(s). (165)

This differential equation has only regular singular points at: s = 0, s = 1, s = 9
and s = oo. We can find local series solutions around them via Frobenius method. In
particular, for all singular points, the indicial equation gives two coincident solutions
(p1 = p2 = 0); this implies that the two independent solutions of the DE around one of
these points, say sq, will be a regular solution wésO) and a logarithmic divergent solution

wESO). In particular, for the finite singularities s = 0, 1,9 we have:

wéSO)(S) = Z CLnSO)(S - 50>n7
wf‘))(s) _ Z b0 (s — 50)" + log(s — so)w(()s(’)(s).

By plugging (166) in the differential equation (165), we get recursion relations for
the coefficients a,, "’ and b7(f°); the recursion is initialized by imposing some initial con-
ditions, in our case we simply choose a(()SO) =1, bgs‘)) =0.

331t js understood that a,, =0 Yn < 0,b, =0 Vn <0.
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7 THE EQUAL-MASS SUNRISE

Note that, while it is possible to obtain series solutions to (165) using built-in functions
in Mathematica, this numerical approach becomes inefficient when many terms in the
series expansion are required. To overcome this, we implement a symbolic procedure
based on the Frobenius method: we first define a function that extracts the recursion
relations analytically, and then use these relations to compute the series coefficients
up to the desired order.

In particular, for the recursion relations, we get:

1
a® = — [ —(n— 1)2a,(10_)2 + (10n* — 10n + 3)61(0—)1]7

" In? "
1 0 0
b = o3 [ —n(n—1) bfl )2 +n(10n* — 10n + S)bgh)l-i— (167)
—2(n—1)a, +2(5n — 3)a£LO,)1} :
1
all) = o2 [(n - 1)2a§_)2 — (Tn® —Tn + 2)&5}_)1} :
1
b = ] [n(n — 1%, —n(n® — o+ 2)b0 + (168)
n
= 2(n 1)}, — (7n — 4)all, |.
1
a® = 5 [— (n — 1)2a,(19,)2 — (17n* — 17n + 6)a7(19,)1},
n
1
) = | = n(n = 1, — n(1n® = 17 + 66 + (169)
n
—2(n — 1)a£L) — (17n — )aﬁf_’l} .

To find solutions around s = oo, we rewrite (165) setting y = 1/s and look for
solutions around y, = 0 of the form:

w (y) =y Z ay

(170)
wi™ —yzb“’) "+ log(y) wi® (y).
We find:
al>) = % [ —9(n — 1)2a™) + (10n> = 10n + 3)a" )1] ,
bl = % [ — 9n(n — 1)%6) 4+ n(10n% — 10n + 3)b'>) + (171)

—18(n — 1)a’™), + 2(5n — 3)a$;’f>1} .
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7.4 Solving the canonical DEs via series expansions

Let us describe the procedure used to find series solutions to the canonical differential
equations and fix the boundary conditions.

The canonical DEs (164) can be solved order by order in ¢, as discussed in Section
3.3:

)N A T Jo) = const  (ng =0)
0T (s) = Als) T () — {f(”)(s) = [dsA(s)J" D (s) + ™
(172)

However, unlike the simpler case of the bubble integral, here the matrix entries
of A(s) contain more complicated functions of s, including wo(s), which is an elliptic
period associated with the underlying geometry of the problem. Although a full analytic
solution to the system is known in terms of elliptic functions [9], this representation is
often cumbersome and less suitable for numerical evaluations. A more efficient and
flexible approach is to work with series expansions.

We therefore construct local solutions around the singular points of the differential
equations, using a more systematic method than the one used for the bubble, where we
relied on an ansatz. Specifically, we expand the matrix fl(s) around the point of inter-
est, using for wy(s) the series representations previously found; then, we integrate the
system iteratively, starting from the lowest nontrivial order in ¢, according to (172). The
integration constants at each order are fixed by imposing suitable boundary conditions.

Clearly, the precision of the resulting Laurent coefficients .J* improves as more
terms are included in the s-expansion. The main limitation, however, is that integrat-
ing expressions with many terms can become computationally expensive when using
standard Mathematica integration routines. Fortunately, the integrands that appear in
each step are structurally simple, usually consisting of combinations of powers, loga-
rithms, and products of the two. Therefore, it is convenient to implement a custom
integration function that integrates them through direct pattern-based replacements:
this significantly improves performance.

As previously mentioned, the leading-order coefficients f(”O), along with the inte-
gration constants at higher orders in ¢, are fixed by imposing boundary conditions. In
total, three boundary conditions are required. The simplest way to fix them is by eval-
uating the three master integrals numerically at a specific point, which can be done
efficiently using the package AMFlow[31], and then matching these values to the corre-
sponding truncated series solution evaluated at the same point: in this way, the numer-
ical values of the integration constants can be determined order by order in €. These
numerical values are then matche to an appropriate set of known analytical con-

34The matching is carried out numerically using the Mathematica function FindIntegerNullVector, by
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stants. The uniform transcendentality (UT) property of the canonical basis plays a cru-
cial role in this process, as it constrains the transcendental weight of the constants that
can appear at each order in ¢, significantly narrowing down the possible combinations.

From unitarity, we know that the sunrise integral develops a branch cut starting at
s = 9, corresponding to the physical threshold where all three internal lines go on-shell.
In contrast, the points s = 0 and s = 1, while being singularities of the associated
differential equations, are not physical singularities of the integrals themselves: that
particular solution remains regular at these points.

As a result, when expanding the differential equations around the spurious singu-
larities (s = 0, s = 1), the boundary values can be computed directly at the expansion
point. Conversely, when working around the physical singularities (s = 9, s = 00), the
numerical evaluation must be performed at a nearby (non-singular) point.

Note that, when expanding around the spurious singularities s = 0 and s = 1, we
can also use regularity as a boundary condition, imposing the coefficient of the loga-
rithms in the general solution to vanish. However, other two BCs have to be imposed
in order to fix all the constants.

An important remark is that the expansions for the canonical integrals around dif-
ferent points are not expected to match in the common regions of convergence since
each of them is referred to a different canonical basis (see also the observation at the
end of Section 7.2), the one constructed around the specific expansion point. However,
by rotating the various series solutions back to the pre-canonical basis, one can easily
check that they match, as expected.

7.5 Study of convergence and Bernoulli-like variables

In this section, we want to study convergence of the series expansions found for the
master integrals of the sunrise family. To avoid confusion, it is convenient to perform
this analysis after rotating the series back to the pre-canonical basis moreover we
only focus on the leading-order (order O) in ¢ for the two integrals in the top sector.
Then we introduce Bernoulli-like variables and study their effect on convergence. This
analysis is inspired by [37], though it includes several original observations and devel-
opments.

Here, differently from the case of the bubble integral, in estimating the error of our
series solution, we avoid relying on analytic results, as for more complicated problems
such expressions will be either unavailable or impractical to evaluate (this is precisely

comparing the high-precision numerical values with a predefined set of transcendental constants.
%n principle one can also do this analysis directly for the solutions in the canonical basis, however
the radius of convergence will be influenced by that of the expansion for wy.
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where series expansion methods prove especially effective). Instead, we assess conver-

gence by defining the truncation error as the relative variation between two successive

partial sums upon including one more order. Specifically, we define the numerical inter-

val of convergence of a series as the region along the real s-axis where the truncation

error after summing 100 orders is less than 10~* (except eventually near the endpoints).
The results for the maste I, 1,1 are shown in the following figure:

Original series for Sunrise (1,1,1) around s=0 Original series for Sunrise (1,1,1) around s=0

-20-18-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 1917-151311-9 -7 5-3-1 1 3 5 7 9 11 13 15 17 19 21

M dig<l M 1<dige2 M 2<dig<d M dig>4 W dig<l M 1<dig<2 M 2<dig<s M dig>4

Original series for Sunrise (1,1,1) around 5=9

-11-9-7-5-3-11 3 5 7 9 11131517 19 21 23 25 27 29

B dig<1 @ 1<dig<z B 2<dig<4 W dig>4

Figure 7: Relative truncation errors along real s-axis of the series for I; 11 respectively around
s =0, 1, 9 when including 100 orders. Each color corresponds to a certain precision,
expressed in digits. From these plots, we can estimate the convergence radius.

According to our numerical results and the criterion above, the expansion around
s = 0 has radius of convergence r, = 9. This is one of the special cases, mentioned
previously, where a spurious singularity (s = 1 in this case) does not affect the conver-
gence of the series. This behavior is consistent with Fuchs theorem on series solutions
of differential equations, since it only gives a lower bound for the radius of convergence.

In contrast, the expansion around s = 9 turns out to have a radius of convergence
rg = 8, indicating that the spurious singularity at s = 1 does influence the convergence
of the series in this case. This is analogous to what we observed in the expansion of the
bubble integral around its physical singularity at s = 4.

Regarding the expansion around s = 1, the radius of convergence is r; = 8: the spu-
rious singularity at s = 0 is not seen by the series coefficients, but the physical one at
s =9is.

Using the variable s, we are able to cover the entire real s-axis using three expansion
points: the expansion around s = 0 covers the region —9 < s < 9, the one around s =
9 covers1 < s < 17, the one around s = oo covers 17 < s < 400 and—oo < s < 0.

36For the other master 11,1, the convergence plots are roughly the same.
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Also in this case, we can improve convergence by rewriting the series in terms of
Bernoulli-like variables. For the expansion around s = 0, we can define the variable:

t=—log (1 - g) s =9(1—e), (173)

whichmapss =0tot=0,s =9and s = ocotot = .

This change of variable works quite well. Including only 20 orders in the expansion,
we get a similar precision to the one obtained with 70 terms in the original series in the
variable s. Moreover, there is convergence also for points in the complex plane outside
the original circle of convergence: in particular, we are able to cover (the corresponding
of) the entir real s-axis with a precision better than 4 digits, by including only 16
orders in the accelerated expansion, as shown in the following figure:

Original series for Sunrise (1,1,1) around s=0 (sOrd=16) Bernoulli series for Sunrise (1,1,1) around s=0 (sOrd=16)
-20-18-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 -20-18-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20
M dig<l M 1cdige2 B 2<diged M dig>4 B 2<dig<s M dig>4
Original series for Sunrise (2,1,1) around s=0 (sOrd=16) Bernoulli series for Sunrise (2,1,1) around s=0 (sOrd=16)
1 ‘ ‘ ‘
-20-18-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 1012 14 16 18 20 -20-18-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 1012 14 16 18 20
M dig<l M 1<dig<2 M 2<digca M dig>4 2<diges M dig>4

Figure 8: Relative truncation error for expansions of /7 1 1 and I 1 1 with 16 terms. Left: original
series; right: series in Bernoulli variable. Each color corresponds to a certain error, as
indicated by the legend.

Even if the accelerated expansion around s = 0 is enough for numerical evaluations,
it is still interesting to study the effect of a Bernoulli-like change of variable on the other
expansions. Particularly interesting is the case of the expansion around s = 9. The
corresponding Benoulli-like variable is defined by:

t = —log (ST) = s=1+8e", (174)

so that the expansion point s = 9 is mapped to ¢t = 0, while s = 1 and s = oo are sent
tot = oc.
The results for the expansion of I ; ; are reported in the following Figure@

%"To be precise, near the singularity s = 9 that we pushed away, the convergence is a bit slower. This
seems to be a general feature of the Bernoulli variable.
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20 orders

Original series for Sunrise (1,1,1) around s=9 Bernoulli series for Sunrise (1,1,1) around s=9
‘ ‘ m
-11-9 -7-5-3-11 3 5 7 9 11131517 19 21 23 25 27 29 -11-9-7-5-3-11 3 5 7 9 11131517 19 21 23 25 27 29
M dig<l B ledig<2 B 2<dig<s M dig>4 M dig<l M 1l<digez B 2<diges M dig>4
100 orders
Original series for Sunrise (1,1,1) around s=9 Bernoulli series for Sunrise (1,1,1) around s=9
-11-9-7-5-3-1 1 3 5 7 9 1113 15 17 19 21 23 25 27 29 -11-9-7-5-3-11 3 5 7 9 11 13 15 17 19 21 23 25 27 29
M dig<t M 1ecdigez B 2<diges M dig>a B dig<l [ 1<dige2 M 2<dig<s

Figure 9: Relative truncation errors along the real s-axis in the expansions around s = 9 of I 1 ;.
Different colors indicate the error at each point. Left: original series; right: Bernoulli-
variable series. In the first row both series are truncated at 20 orders, in the second
one at 100 orders.

This expansion has an interesting feature. The series in the Bernoulli variable con-
verges rapidly along most of the positive real s-axis, and more slowly on the negative
side. However, there is a small region, roughly corresponding to the interval [—1, 1],
where the series fails to converge entirely. In this region, even after including 100 terms,
the relative truncation error remains of order one, yielding no meaningful digits of pre-
cision.

This behavior is caused by the spurious singularity at s = 0, which affects conver-
gence. Naively, one might expect the radius of convergence to be 9, since the expansion
is centered at s = 9 and the closest singularity is now at s = 0. However, because the
expansion is performed in the Bernoulli-like variable ¢, convergence is not limited by the
actual singularities of the original function in the complex s-plane, but rather by how
those singularities are mapped into the complex t-plane. Specifically, s = 0 is mapped
toty = 3log 2 —im, so the series is guaranteed to converge only inside a circle of radius
r = |to] = 1/(3log2)? + 72 in the complex t-plane.

The exterior of this disk, when mapped back into the s-plane, identiﬁef_g]a region
whose intersection with the real axis lies mostly within [—1, 1]. Therefore, the Bernoulli
change of variable effectively compresses the divergent behavior into a narrow
region, enabling rapid convergence almost everywhere else. This explains the observed
behavior.

More generally when there are many singularities, pushing one of them away also
changes the relative positions of the others with respect to the expansion point and
this could also have bad effects on convergence. Therefore, for problems with many

38Note, however, that we are not claiming all points in the excluded region map to s € [—1,1], only
that most of them do. Conversely, using (174), one finds that the condition —1 < s < 1 corresponds to
t =u+i(2k + 1), withu > 2log2, k € Z. Thus, all such points satisfy |t| > /(2log2)? + 72, so
most of them lie outside the circle of convergence in t-plane.
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7 THE EQUAL-MASS SUNRISE

singularities, a naive Bernoulli-like change of variable is not guaranteed to work. In the
next section, we will discuss an attempt of generalization for integrals with multiple
singularities.

7.6 An attempt of generalizing Bernoulli-like transformations

We ask whether it is possible to generalize the standard Bernoulli-like change of vari-
ables in the presence of multiple singularities, in such a way that more than one finite
singularity is mapped to infinity, potentially leading to improved convergence.

For simplicity, we consider a problem with two finite singularities (excluding the
expansion point) and a third singularity at infinity. One possible approach in order to
simultaneously send both finite singularities to infinity, while preserving the singularity
at infinity, is to apply two consecutive Bernoulli-like transformations.

Let us now analyze this procedure in a general setting.
We consider a complex function f(s), with singularities at s = s1, s = s, and at
infinity, and focus on its expansion around a point s = s,. The singularity at s = s; can
be pushed to infinity by performing a first Bernoulli-like change of variable:

t:—log(8_81> <— s:sl+(so—sl)e’t. (175)
So — 81

Under this transformation, the location of the second singularity, s = s», inthe complex

t-plane becomes:
ty = —log (52 — 51) . (176)

To push this second singularity further away, we introduce a second Bernoulli-like vari-

able:
t—1 t
z:—log( 2)z—log (1——), (177)
—19 to

where we used the fact that the original expansion point s = s, corresponds to ¢, = 0.
The resulting double Bernoulli-like variable z is thus given by:

1 — —:
z = —log {1 — —log ( S >} — s=s1+(s0— sl)e“(l_e ), (178)
a S — S1

S0—S81

where we defined a = log (M)

This transformation maps the expansion point s = s, to z = 0, and sends the singu-
larities s = s1, s = s9, and s = oo to infinity, but along three distinct directions in the
complex z-plane.
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At first glance, this appears to be a promising change of variable for improving con-
vergence. However, numerical tests show that this transformation does not yield an
infinite radius of convergence in the z-plane, as one might hope.

The reason becomes clear upon inspecting the expression for s(z) in Eq. (178). The
singularity at s = s, arises not only in the limit z — +o00, but also at an infinite set of

complex points:
2min
z, = — log . (179)
a

The one closest to the origin dictates the radius of convergence, which remains finite.

Therefore, while this generalized change of variable seems to push multiple singularities
to infinity along different directions, it does not lead to convergence everywhere in the
complex z -plane. Depending on the specific configuration of singularities, the resulting
convergence properties may be better or worse than those obtained using the standard
Bernoulli-like transformation.

We leave a more systematic investigation of such generalizations and their conver-
gence behavior to future work. In the following chapters, we will instead focus on ex-
pansion techniques for problems characterized by multiple scales, and explore whether
it is possible to use Bernoulli-like changes of variable to accelerate convergence and ex-
tend the region of convergence. This question is particularly relevant, as expansions
involving two or more variables typically come with significant computational costs,
both in terms of time and memory. Therefore, achieving faster convergence could offer
substantial practical advantages.
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8 Accelerate series expansions for multi-
scale problems

In this chapter, we propose a heuristic method to extend the region of convergence
and accelerate the convergence rate of multi-variable series expansions, by introduc-
ing several Bernoulli-like variables. This approach is not a fully algorithmic or general
prescription, but rather a set of guiding principles and practical steps to be mindful of
when dealing with multi-dimensional problems with a complicated singularity struc-
ture. Our approach is inspired by the work of [19].

To test the effectiveness of this approach, we apply it to two different amplitudes:
one [20] describing the decay of a Higgs boson into three gluons, and the other [21]
describing the similar process for a Z boson. Both amplitudes are expressed in terms of
two-dimensional multiple polylogarithms (2D MPLs), offering a well-controlled setting
for our analysis.

8.1 Bernoulli-like variables for 2D series expansions

Let us illustrate the procedure in the case of a two-dimensional problem.

Consider a function f(x, y), with singularities that typically form curves in the (z, y)
plane. Our goal is to construct series expansions for f with improved convergence prop-
erties covering a desired region. The main steps are the following:

1. Define the target region and analyze singularities

Identify the portion of the (z, y) plane to be covered. The method works better
when this region is bounded and the singularities are straight lines.

2. Choose the expansion points

The most critical points for expansions are the intersections of singular curves;
therefore, it is reasonable to choose one of them as the expansion point. How-
ever, unlike the one-dimensional case, a naive expansion around such a point may
fail if more than two singular curves intersect at that point or if even two curves
are tangent there.

3. Apply blow-ups when necessary

In cases of complicated intersections or tangencies at the expansion point, per-
form a suitable change of variables (a “blow-up”) to resolve overlapping singular-
ities, effectively separating them to produce well-defined expansions.

In practice, after the blow-up, the original expansion point is mapped to an entire
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line, and one must choose a specific point of it as the new expansion point. This
corresponds to expanding around the original point in a particular direction.

4. Analyze singularities

Carefully examine the geometry of singularities and identify the ones which most
limit convergence. Typically these are the ones closest to the expansion point, but
not necessarily: in fact, even singularities outside the region of interest can affect
convergence within it.

If a blow-up was performed in the previous step, this analysis must be performed
directly in the new variables, as the transformation changes the shape and rela-
tive position of the singularities and the region of interest.

5. Introduce the first Bernoulli-like variable

Starting from the series expansion in the original (or blown-up) variables, replace
one variable by performing a Bernoulli-like transformation designed to push the
nearest problematic singularity to infinity. Re-expand in the new variables up to
the same order.

6. Introduce the second Bernoulli-like variable

Perform a similar transformation for the second variable, removing another limit-
ing singularity, and then re-expand. There is no universal rule for which singular-
ities to remove; intuition based on the transformed geometry of the singularities
and the region of interest guides this choice, as we will better see in the examples.

7. Cover the entire region with multiple expansions if needed

If one expansion cannot cover the full region of interest, select additional ex-
pansion points following the criteria above and patch together their respective
expansions.

8.2 Higgs decay into three gluons at two-loops

The first amplitude used for testing our procedure is a two-loops helicity amplitude for
the decay of an Higgs boson into three gluons, computed in [20].

In the Standard Model (SM), the Higgs boson only interacts with massive particles,
therefore it cannot couple directly to gluons. However, starting at one loop, it can inter-
act with gluons through loops of massive quarks. Since the process starts at one loop,
computing higher order corrections in the full theory is complicated. However, since
the most important contributions come from loops involving the top quark, which is
the heaviest particle in the Standard Model, the computation can be performed in an

71



8 ACCELERATE SERIES EXPANSIONS FOR MULTI-SCALE PROBLEMS

Effective Field Theory (EFT)’| where the top quark is integrated out (m; = oo). The
effective Lagrangian is:

A
ﬁint = _ZHGZVGG,MV7 (180)

where G*¥ is the field strength tensor of the gluons and H is the Higgs field. In this
theory, the calculation already starts at tree-level, having an H gg vertex in addition to
the QCD vertices.

8.2.1 Kinematics

Let us describe the kinematics of our process:

H(ps) — g1(p1) + g2(p2) + g3(p3). (181)

The Mandelstam invariants are given by:

s12 = (1 —i—p2)2, s13 = (p1 +p3)2, Sa3 = (P2 +p3)2, (182)

and satisfy:
S12 + S13 + So3 = M}y, (183)

where My is the Higgs mass. We define the dimensionless ratios:

512 513 5923 (184)

T = M—I%I, Y M z = M—?{
In terms of them, is rewritten as:
r+y+z=1. (185)
In the decay region the invariants are non-negative, e.g. for s;5 we have:
s12 = (p1+p2)” = 2p1 - p2 = 2(E1Ea — pi - p3) = 2E1 Ey(1 — cos 1) > 0, (186)

where we used that for massless on-shell particles p* = 0, |p] = p° = E.
This, together with (185), defines the kinematic region:

z >0, 0<y<1-—z2, r=1—y—z (187)

Therefore, there are two independent scales that will appear in the amplitude (in (187)
we chose y and z, but any other choice could have been made) and the physical region
is a triangle in the plane of these two variables.

39Note that the ratio m g /my is not that small, so it is not entirely obvious that this is a good approxi-
mation, but it often is, in practice.
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8.2.2 The amplitude

In this section, we just want to briefly describe how the amplitude was computed in
reference [20].

1) The first step is the tensor reduction. The amplitude has the form:
M = S,pr(plu b2, p3)€T€g€§7 (188)

where ¢; denote the polarization vectors of external gluons; S,,,, can contain only a lim-
ited number of tensor structures, built out of the gluons four-momenta and the metric
tensor. One can find such a tensor basis and project the amplitude on it, so that he
has to work only with the scalar coefficients of the amplitude with respect to this basis,
known as form factors. In particular, in the reference paper, they show that there are
four independen@ tensor structures, so the amplitude can be decomposed as:

4
M=>"GT, (189)
i=1

where {7} is the basis of tensor structures, already contracted with gluon polariza-
tions, and G, are the form factors. The latter can be obtained by applying suitable pro-
jector operators P; on the full amplitude expanded in Feynman diagrams:

4
Gi=> PM, with =Y c7f = (TiT;)" (190)
j=1

pol

This tensor basis is useful to obtain compact expressions for the helicity amplitudes,
where the external gluon polarizations are fixed:

MR — Suvp(P1, D2, D3)€) 5, (P1)€5 5, (P2) €5 5, (P3)- (191)

In particular, there are only due independent helicity amplitudes for this process, which
are chosen tobe M+ and M**~: all the others can be obtained from them by parity
conjugation and relabeling of gluon momenta.
Using the tensor decomposition (189) in the found basis {7;}, the helicity ampli-
tudes can be written compactly in termﬂ of spinor products:
M+++ = MI%I M++— — B [12]3
V2(12)(23)(31) v2[23][13]°

40|n particular, they restrict the number of tensor structures using the transversality conditions €; - p; =
0,7 = 1,2, 3 and the cyclic gauge choice: €; - po = €3 - p3 = €3 - p; = 0.

“10ne simply has to compute the basis elements 7} using the specific gluon polarizations, expressed
in the spinor-helicity formalism.

(192)
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where the new form factors o and /3 are linear combinations of the original form factors
G,; they can also be computed directly by defining some helicity projectorﬂ?a and Pg,
so that:

a=> PM,  B=> DM (193)

pol pol

2) At each order in the perturbative expansion, the contribution of Feynman diagrams
to the form factors can be written as a combination of scalar Feynman integrals. These
integrals are computed with the usual machinery: reduction to Mls, derivation of DEs
for Mls in the variables y and z, rotation to a canonical basis and solution of the canon-
ical equations.

3) The last step, which we will not describe in detail, consists in the UV renormalization
and the IR regularization of the amplitude.

The final expressions for the form factors « and (3, computed up to 0(62), involve 2D
MPLs [19] with the following alphabet:

{3/7271—%1—273/‘*‘271—19—2}7 (194)

where the letters correspond to the singularities of the differential equations for the
relevant master integrals.

However, as showed in literature [13]], this result can be written entirely in terms of
classical polylogarithms.

8.2.3 Improving the convergence

We focus on the two-loop contribution to the form factor [, which has the largest ex-
pression. Our goal is to obtain series expansions for it valid within the physical region
and to improve their convergence using the method described in Section 8.1.

The expression that we have to expand involves two-dimensional multiple polylog-
arithms (2D MPLs) in variables y and z, with alphabet given by (194). Note that only
x =0,y =0and z = 0 correspond to trueFE] singularities of the amplitude, associated
respectively to the physical thresholds s;5 = 0, s;3 = 0, se3 = 0. The other three let-
ters correspond to spurious singularities inherited from the differential equations. The
amplitude is not singular at those lines and they are also outside the physical region;
however, they can still limit convergence of the series expansions.

As previously said, the physical region is the triangle defined by (187). This is showed
in Figure[10] together with the various singular lines.

“2They are built by replacing in the expressions for « and 3 the G; with the corresponding projectors
P;; so, in the end, they will be expressed in terms of the basis elements 7.

“30ne can also check that these are the only singularities of the expression for 3 by decomposing it
in a basis of rational functions and computing the symbol for the combinations of MPLs that appear as
coefficients of the expression with respect to this basis.
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0.5F

0.0 y
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-0.5 0.0 0.5 1.0 1.5

Figure 10: The figure shows the physical region (highlighted) in the variables (y,z) and the singu-
larities of the involved MPLs: the solid lines are singularities for the full expression,
the dashed ones are spurious singularities.

Our aim is to obtain expansions with at least four-digit precision over the entire
region. We choose (y, z) = (0, 0) as the first expansion point. We note that there are
three singular lines passing through this point, therefore we need to perform a blow-up.

In particular, we set:
=1
{y . (195)
z =0t

The following plot shows how the singularities are remapped in the blown-up space:

0.0

-0.5

Figure 11: The figure shows the physical region (highlighted) in the variables (t,v) of the blow-
up and the singularities of the involved MPLs: the solid lines are singularities for the
full expression, the dashed ones are spurious singularities. Note that the blow-up has
changed the relative position of singularities.

Now there are only two singularities passing trough the point (¢, v) = (0, 0); there-
fore the expression can be expanded in ¢ and v around that point, which corresponds in
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the original space to expanding around the origin (x,y) = (0,0), approaching it along
the directioﬂ of the y axis. Equivalently, we are requiring y to go to zero faster then
z; therefore we can expect the expansion to work better in the region where y < 2.

In practice, using the Mathematica package PolyLogTools [15], we fiber our expres-
sion involving 2D MPLs of t and v with respect to a chosen ordering of the two variables:
this means that, after fixing an ordering of the two variables, the expression is rewritten
as a linear combination of MPLs in the first variable, whose singularities may depend
on the second one, multiplied by MPLs in the second variable whose singularities are
constant. This decomposition is performed automatically by using the function ToFi-
brationBasis. Then we can expanin these variables following the specified order. In
this way, we get a well-defined series expansion for the two-loop contribution to the
form factor (3. In the following, we will refer to it as the "original" expansion.

The convergence of this expansion can be improved by introducing two Bernoulli-
like variables, with the method previously presented. In particular, there are four singu-
lar curves we can move: one corresponds to the original physical singularity y +2 —1 =
0, the other three are the spurious singularities.

Naively, one might consider choosing the physical singularity, which is also the clos-
est to the expansion point, as the first to be pushed away. However, this is not a good
choice: in fact, its effect is to extend the physical region up to infinity in such a way that
some other singularities, previously outside, may now fall within it. This can lead to a
deterioration in convergence, potentially making the situation worse than before.

Instead, a good solution is to push away the curves corresponding to the original
(spurious) singularities y = 1 and z = 1. In particular, we proceed in the following way.
Starting from the expression fibrated in v, we expand in that variable and then replace
it by setting:
=€
ot
where we introduced the first Bernoulli-like variable s, such to map the singularity vt =
1 (or equivalently z = 1) to infinity.

After re-expanding in s, we then expand the resulting expression in t and introduce a
second Bernoulli-like variable pushing away ¢ = 1 (or equivalently y = 1), by setting:

v < s = —log(1 — vt), (196)

t=1—e¢"<= u=—log(l—1t). (197)

Finally, we re-expand in u, getting a series in the two variables (u, s).
The following figure shows the physical region and the relative positions of singu-
larities in the (u, s) plane:

44Recall that v = v identifies the direction of the line z = vgy.
“This is done by using the function ExpandPolyLogs of PolyLogTools.
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0.0

Figure 12: The figure shows the remapping of physical region (highlighted) and singularities of
the involved MPLs in the space of Bernoulli variables (u, s) : the solid lines are singu-

larities for the full expression, the dashed ones are spurious singularities. Note that
two singularities have disappeared.

Note that the previous changes of variables reintroduce a third singular line cross-
ing the origin. In principle, this should be eliminated by performing again a blow-up;
however, for this particular case, one can realizthat these variables already produce
a well-defined expansion.

At this stage, we numerically evaluate both the original series and the one in Bernoulli
variables at random points within the kinematic region. These values are then com-
pared with the corresponding evaluations of the full original E]expression. This allows
us to estimate the accuracy of both expansions as the relative difference with the cor-
responding exact values, testing in this way the effectiveness of our procedure. The
results are showed in Figure [13 where the local accuracy, computed by including 20
orders in both variables, is represented by the color of each point.

46The only terms in the expansion where s and u are not separated are of the form log(s/u), so they
can be directly replaced by log(s) — log(u), producing a well-defined two-variables expansion.

“In fact, in this case, it is possible to evaluate the original expression in MPLs by using the function
Ginsh of PolyLogTools.
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Original series around (0,0) Bernoulli series around (0,0)
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1.o0p, 10p
. L '-.. Co
0.8l T 08 ' -
0.6/ Sl 0.6
04Ls A 04Ly .':. N
020 o T T R 020 o
T e . *e .. . i1 e y T e . 1% .. A i LS \/
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
M dig<l M 1<dig<2 M 2<dig<4 M dig>4 M dig<l M 1<dig<2 M 2<dig<4 M dig>4

Figure 13: Numerical errors for expansions of 5 around (y, z) = (0,0) including 20 orders. On
the left there is the expansion in the original variables, on the right the one in Bernoulli
variables. Each color corresponds to a certain relative error with respect to the Ginsh
evaluation, expressed in terms of digits.

It is evident that the introduction of Bernoulli-like variables via the described pro-
cedure has notably improved the convergence: for a fixed number of orders, we are
able to get a precision larger than four-digits in a much wider region. However, twenty
orders are not enough to cover the entire physical region with the required accuracy.
One possibility could be to increase the number of orders, but this is unpractical for
a huge expansion like this. However, as suggested in Step 7, we can repeat the same
procedure for the other two corners of the triangle defining the kinematic region, and
then combine the three accelerated expansions.

In particular, exploiting the symmetry of the alphabet under the exchange of v, z,
and r = 1 — y — z (due to the fact that the final states involves three particles of the
same kind), one can use for blowing up the same position as (195), up to relabeling of
x, y and z. In particular, choosing as expansion point (y, z) = (1,0), corresponding to

(x,z) = (0,0), we set:
=1- 1)t
{y +be (198)
z =t
For the expansion around (y, z) = (0, 1), corresponding to (y, z) = (0,0), we set:
=t
=l . (199)
z=1—(v+1)t

The subsequent definitions of Bernoulli-like variables are identical to (196) and (197).
The following plots in Figure[14]and Figure[15|show the results for these last two expan-
sions, that are analogous to the first one.
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Original series around (1,0) Bernoulli series around (1,0)
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Figure 14: Numerical errors for expansions of 3 around (y,z) = (1,0) including 20 orders.
On the left there is the expansion in the original variables, on the right the one in
Bernoulli variables. Each color corresponds to a certain relative error with respect to
the Ginsh evaluation, expressed in terms of digits.
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Figure 15: Numerical errors for expansions of 3 around (y, z) = (0, 1) including 20 orders. On
the left there is the expansion in the original variables, on the right the one in Bernoulli
variables. Each color corresponds to a certain relative error with respect to the Ginsh
evaluation, expressed in terms of digits.

By combining the three expansions, we can obtain high-accuracy evaluations in the
entire physical region. An interesting aspect is that, as shown in Figure[16] the required
accuracy can be obtained including only 10 orders in both Bernoulli-like variables, while
at least 20 were needed in the original variables. This is a big advantage from the point
of view of computation time and memory.
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Convergence of combined series (10 orders)
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Figure 16: Numerical errors for an optimal combination of the three expansions around the cor-
ners of the triangle. Including only 10 orders in both variables, we get an accuracy of
more than four digits in the entire physical region.

8.3 Zdecay into three gluons at two-loops

Now, we want to apply our method to the amplitude for another process, namely the
decay of a Z boson into three gluons:

Z(ps) — g(p1) + g(p2) + 9(p3)- (200)

This amplitude was computed in [21], with the sam procedure described in Sec-
tion 9.2.2. The kinematics is also the same and the results, up to two loops, are ex-
pressed in terms of MPLs with the same alphabet as (194). The only difference is that
this amplitude isintrinsically more involved, as it is not known to admit a representation
in terms of classical polylogarithms, unlike the previous case.

There are two independent helicity amplitudes for this process: M, , and M, __.
In particular, we focus on M, . ;, which depends on six form factors: {«;};—1 23 and
{Bi}i=123, whose expressions are reported in the ancillary files of the reference paper
[21].

Being the physical region and the relative positions of singularities the same as for
the amplitude in the previous section, we expect to obtain accelerated series expan-
sions by using identical definitions for the blow-ups and the Bernoulli-like changes of
variables.

In the following, we report the results for the expansions of the form factor o
around the three corners; the plots on the left are referred to the original series ex-

48 Apart from the complications coming from having a massive vector boson in the initial state, instead
of a scalar particle.
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pansions (the ones in the blow-up variables), those on the right are referred to the

corresponding series in Bernoulli-like variables.
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Figure 17: Numerical errors for expansions of «; around (y,z) = (0,0) including 20 orders.
On the left there is the expansion in the original variables, on the right the one in
Bernoulli variables. Each color corresponds to a certain relative error with respect to
the Ginsh evaluation, expressed in terms of digits.
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Figure 18: Numerical errors for expansions of o around (y,z) = (1,0) including 20 orders.
On the left there is the expansion in the original variables, on the right the one in

Bernoulli variables. Each color corresponds to a certain relative error with respect to

the Ginsh evaluation, expressed in terms of digits.
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Figure 19: Numerical errors for expansions of «; around (y,z) = (0,1) including 20 orders.
On the left there is the expansion in the original variables, on the right the one in
Bernoulli variables. Each color corresponds to a certain relative error with respect to
the Ginsh evaluation, expressed in terms of digits.

Also in this case, the introduction of two Bernoulli-like variables has extended the
region of convergence. We can combine the three accelerated expansions obtaining,
with only 9 orders, an accuracy exceeding four digits in the entire kinematic region, as
showed in Figure[20] The same also works for the other form factors.

Convergence of combined series for al (9 orders)
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Figure 20: Numerical errors for an optimal combination of the three expansions around the
corners of the triangle. Including only 9 orders in both variables, we get an accuracy
of more than four digits in the entire physical region.

This shows us that our method for accelerating 2D series expansions also works for
an amplitude not expressible in terms of classical polylogarithms. In the next chapter,
we will test its applicability to a problem with elliptic geometry.
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9 An elliptic 2D case: the two-masses
sunrise

In the previous chapter, we started from exact analytic expressions for two-scale am-
plitudes, expanded them, and applied our acceleration method. In this chapter, by
contrast, we directly construct series solutions from differential equations, as we did in
simpler one-scale cases.

We focus on the sunrise integral family with two equal masses and a third, distinct
mass. The general case with arbitrary masses has been treated analytically in [3]. A
series expansion method was proposed in [11], based on expanding the only differen-
tial equations in the Mandelstam variable s, treating the problem effectively as one-
dimensional. This approach was later extended into a numerical implementation in
[10]. In contrast, our goal here is to derive a fully two-dimensional expansion in the
relevant scales, capturing the complete structure of the problem.

While our overall strategy parallels that used in Chapter 7 for the equal-mass case,
the presence of two scales introduces additional complications. Although this com-
putation is much less demanding than evaluating a full amplitude, it is conceptually
richer than the cases studied in the previous chapter: the underlying geometry is el-
liptic, rather than polylogarithmic. This makes it a meaningful test case for assessing
how well our acceleration method extends beyond MPLs, which is the topic of the final
section.

9.1 Mis and differential equations

In this section, we define the integral family, choose a basis of Mls and a set of inde-
pendent scales and write the DEs for the Mls in those variables.

The topology is the same as for the equal-mass case, but now one of the three
internal lines carries a different mass with respect to the other two. Thus, the generic
integral of this family is:

I o 62’7E€ deldeQ
V1,V2,V3,V4,V5 i?TD Dll/l D;zDgs DZ4Dg5
with Dy = ki —m? Dy =ki — M? D3 = (ki — ky — p)*> — m?,
Dy = (k1 —P)27 D5 = (K, _p)Q-

(201)

As for the equal-mass case, we proceed with the IBP reduction and the derivation
of the differential equations. The reduction reveals that there are 5 Mls. In particular,
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we choose the following basis of masters:

{11 = D000, L2 =Tio100, Is = L1100, Lo = D100, Is = D101}, (202)

of which the first two are two-loops tadpoles, the last three are sunrises.

There are three scales in the problem, of which only two are independent; we can
take them to be the symmetric variables: * = -*; and y = ;7;. The differential equa-
tions for the master integrals in that variables have the form:

- - — -

Ol (z,y) = Ax(z,y)I(z,y), Oyl (x,y) = Ay(x,y)I(z,y), (203)

where the explicit expressions of matrices A, and A, are reported in the Appendix.

9.2 Finding a canonical form

Now we aim to write the DEs in canonical form. The procedure is almost identical to the
equal-mass case, but there are two main complications: the top sector contains three
masters; the presence of two scales leads to two coupled systems of DEs that must
be made canonical simultaneously. Consequently, the functions introduced during the
rotation must depend on both scales.

We begin by focusing on the matrix A, of DEs in the variable x, which we aim to
make canonical first. We move to a derivative basis, where the second integral in the top
sector is taken to be the derivative of the first one (I3). Looking at the homogeneous
part of the differential equations for the three master integrals in the top sector at
€ = 0, we realize that I5 decouples from the others, leaving only two coupled masters
in the top sector. This implies that the underlying geometry remains elliptic.

For this 2x2 coupled block, we compute the Wronskian matrix and perform a rotation
by the inverse of its semi-simple part, just as in the equal-mass case. Next, we rescale
the fourth master integral by a factor”| 1 /.

The rotation performed up to now is described by the matrix:

-1

e 0 0 0 0 10 0 0 0 10000

0 € 0 0 0 01 0 0 0 01000
Ri=|0 0 ¢ 00 0 0 wolz,y) 0 0 00100/,
00 0 € 0 OO@Zwo(x,y)%ag’)y)O 00020

0 0 0 0 e 00 0 0 1 00001
(204)

4 As in the equal-mass case, all three master integrals in the top sector are multiplied by a factor ¢2
for conventional normalization.
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where the x-dependence of wy(x, y) is fixed by taking the regular solution to the second
order partial differential equation(PDE){|

2(1—6z+y) _
m(16m2+(71+y)238m(1+y))w(x’ y) =0
(205)

2 48z +(—1+y)%—16z(1+y)
Oz (®:Y) + G T4y —Sali )

aacw<x7 y) -

At this stage, we have to remove the remaining non e-factorized terms. However,
unlike the equal-mass case, here they are not just total derivatives of rational functions
inx, y,wo(x,y), Oxwo(x,y). Tointegrate them out, we need to introduce a new function
G(z,y) which is defined by its partial derivatives, constructed to involve wy and its
derivatives in such a way that the unwanted terms in A, exactly cancel.

Specifically, the additional rotation needed to achieve a canonical form for A, is given
by:

1 0 0 0 0 10 0 00
0 1 0 0 0 01 0 00
Ry = 0 0 1 0 0 00 1 0 0],
0 0 2G(x,y) 0 1 0 0 h(x,y)wo(z,y) 0 1
(206)
where: f(z,y) = (8022 + (=1 + y)? — 24z(1 + y))/2, h(x,y) = 2(2z —y — 1) and
G(z,y) must satisfy:
0.G(z,y) = —wo(z,y). (207)

Up to this point, we have only fixed the z-dependence of w, and GG. To make A,
canonical in the same basis, we only need to properly fix the y-dependence of these
functions. For wy(z, y), the y-dependence is already fixed by the other partial differen-
tial equationf’|for periods:

T —y x — 42% + 3zy
— 7 w(z,y) + ——————Z0,w(x,y). (208)
(=1+y)y (#:9) 2y(L —y) (®3)

Regarding G/(x, y), we can require:

8yW(ZL’, y) =

—22(—1+ 42 — 3y)wo(z,y) — z[162% + (=1 + y)? — 8z(1 + y)]Opwo(, y)

209

This is the only condition that G(x,y) must satisfy for the non e-factorized terms to
cancel in A,. Note that it still remains defined up to a constant, which does not affect
the e-factorization of DEs.

50This is the homogeneous equation in z at € = 0 for the 2x2 coupled subsector.
S'This is the homogeneous equation in i at € = 0 for the 2x2 coupled subsector.
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In the final basis, both systems of DEs are in canonical form. However, the canonical
matrices /NL,; and fly depend explicitly on wy and G; therefore, we need to evaluate
these functions. In the next section, we will find series expansions for them by solving
the corresponding differential equations.

9.3 Series expansions for wy(z,y) and G(zx,y)

The goal of this section is to find series expansions for the functions wq and G, which
appear in the canonical matrices. Analytical expressions for them are known in terms
of elliptic functions [16]]; however, since we are interested in numerical evaluations, it
is more practical to express them in the form of series expansions.

We know that wy(z, y) is the regular solution to the PDEs (205) and (208). To de-
termine it, we proceed as follows:

e First, we solve the second-order equation (205) via a Frobenius expansion in .
This determines the x-dependence of the solution. The general solution takes the
form:

CL)(ZL', y) = CO(y)WDJ(xv y) + ¢ (y)wl,x(-ra 9)7 (210)

where wy , and w; , denote respectively partial regular and singular solutions of
the system, which differ from the full solutions wq and w; by multiplicative factors
depending on vy, that for the moment are not fixed.

e Thefunctions cy(y) and ¢; (y) are determined by substituting the ansatz (210) into
the second PDE, (208). By requiring the coefficients of x and = log x to vanish, we
obtain ODEs for ¢q(y) and ¢ (y), which can be solved exactly.

e Finally, we substitute the expressions for cy(y) and ¢ (y) back into (210) and ex-
pand iny. The resulting genera solution takes the form of a linear combination
of two independent solutions: the regular one is wy, the one involving logarithms
is w1.

Here, we just report the first few orders of the series solutions around (xg, y9) =
(0,0):

wolr,y) =1+ y+ v+ 2(2 + 8y + 18y*) + 22(6 + 5dy + 216y%) + ...,
wi(x,y) = 4o + 162 4 2y + 202y + 1442%y + 3y + Sdxy® + 6302%y> + ..+

+ [1 +y 4+ 9% + (2 + Sy + 18y%) + 22(6 + 54y + 21632) + } log z+

1
+3 [1 +y+y* +2(2 + 8y + 18y2) + 2%(6 + 54y + 216y2) + } log y.
(211)

>2There are two integration constants coming from the solution of the DEs for co(y) and ¢ (y).
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Note that their form is just the two-variable generalization of (166).

The new function G(z, y) is determined by solving the first-order partial differential
equations and (209), which respectively determines its dependence on z and y.
Since both equations are first order, it is easy to write down the general solution explic-
itly. We present the strategy in full generality, as it will be useful in later applications.

We are dealing with a coupled system of the form:
8yG(J}, y) = h($, y) ’

where f(x,y) and h(z,y) are known functions. From the first equation, we obtain a
partial solution that captures the x-dependence, up to an integration "constant" that
may depend on y:

G(z,y) = Gu(x,y) /fx y)dx + c(y). (213)

To determine the unknown function ¢(y), we plug in the second equation, getting:

cly) = /dy [h(az, y) — 0,G4(x, y)} (214)

Therefore, the full solution of the system (212) can be written as:

G(z,y) = /d;z:f(a:,y) + /dy [h(a:,y) — ay/dxf(a:,y)]. (215)

Note that this is defined up to a constant (indefinite integrals on the rhs) that can be
fixed by imposing a boundary condition. In our specific case, f(x,y) and h(z,y) cor-
respond respectively to the right-hand sides of equations and (208), and depend
on wy and its derivatives. Therefore, using the series expansion previously obtained for
wp, We can construct a series representation for G.

For completeness, we now report the first few terms in this expansion:

G(z,y) =2(=1—y —y* —y3) + 2%(=1 — 4y — 9y* — 16y3) + 23(—2 — 18y — T2y% — 200y3) +
(216)

9.4 Solving the canonical DEs by series

The next step is to find series solutions to the canonical DEs.

We have two coupled systems of first order PDEs:

{axf(a:,y,e) = eAu(w.y)J(x,y.€) (217)

0, (@, y,€) = e, (. y) I (2, y,¢)
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where J is the vector of canonical Mls, A, and A, are the canonical matrices.
As in the one-variable case, we can look for solutions of the form:

o0

J(wy,e) =Y " T"(x,y), (218)

n=ng
which leads to the recursive differential equations:

{awﬂm (2,) = Au(z, ) J" Dz, y)
i

. 219

As usual, the lowest nontrivial coefficient is a constant: J(™) = (). the generic
higher-order coefficient J(™ is determined from the previous one by solving (219). This
sysyem is a vector-valued generalization of (212), thus its solution will be the following

generalization of (215):

T (z,y) = /da:flx(x,y)f("”(x,yH
+/dy

where, for each order in ¢, there is a boundary constant vector to determine.

fly(x,y)j("_l)(x,y) — 8y/dazflx(:1:,y)j(”_l)(x,y) + &™)

(220)

Series solutions around specific kinematic points can be obtained iteratively, using
the same strategy as in the equal-mass case. However, the computation is significantly
more involved. In fact, both the canonical matrices and the recursive relation
involve more intricate structures, and the series expansions must be performed in both
variables, x and y.

In particular, the most computationally expensive part is the expansion of the canon-
ical matrix, due to its complicated form, involving inverse powers of wy(z, y) and high
powers of G(z,y). A direct expansion quickly becomes inefficient, especially at high
orders. A more efficient approach is to decompose the matrix as:

Alw,y) = Az, )Gz, )], (221)

=0

where each coefficient matrix fli may still involve factors 1/wy and 1/w?. We then pro-
ceed as follows:

1. Pre-compute the series expansions of 1/w, and 1/wg using the known expan-
sion of wy. Since this is the most computationally expensive step, we perform it
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only once (for a higher order than the ones we could need) and store the results
in a file. For subsequent calculations, we simply truncate these expansions as
needed.

2. Substitute them into the matrices /L and expand.
3. Expand the powers G*(z, y) using the previously obtained expansion for G(z, ).

4. Multiply each expanded A, by~the corresponding G and sum to reconstruct the
expansion for the full matrix A.

This method significantly improves performance, especially when many orders in the
series solutions are required.

For the rest, the procedure follows the same steps as in the equal-mass case. The
boundary conditions are also imposed by using the same strategy: we evaluate the Mls
numerically near the expansion point, extract the numerical values for the boundary
constants, and match them with a proper set of known transcendental constants.

9.5 Study of convergence and Bernoulli-like variables

Our goal is to construct series expansions with good convergence properties using the
method proposed in the previous chapter.

The singularities of the DEs in the variables s, m?, M? are located at:
{s=0,5s=M* s=(2m—M)? s=(2m+ M)?* s = oo}, (222)

where s = (2m + M)? corresponds to the physical threshold for the production of the
three internal particles on-shell.
In the chosen variables (z, y), the singularities of the DEs are:

{2=0,y=0,y=1, 2vVz —y)* =1, 2Vz+ )’ =1, (z,y) — o=} (223)

Figure[21 shows the x-y plane with these singularities:
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15F

Figure 21: The region of interest(highlighted) in the variables (x,y) and the singularities of the
canonical DEs: the solid line corresponds to the physical threshold, the dashed ones
are spurious singularities.

We focus on the region beyond the physical threshold, i.e. s > (2m + M)?, cor-
responding to the shaded area in the figure. As expansion point, we choose the origin
(z,y) = (0,0), which corresponds td*) s = cc. Note that, for this point, the matching
of numerical boundary values with known analytic constants is straightforward, since
only zeta values are expected to appearE]

For this expansion no blow-up is required, as only two singularities intersect at the
expansion point. The next step is to decide which singularities to send to infinity via
Bernoulli-like changes of variables.

As for the cases previously considered, also here, for similar reasons, it is not con-
venient to move the true singularity, (2/z + ,/y)* = 1.

The second closest (spurious) singularity is (21/z — \/5)2 = 1, corresponding to the
yellow curve in Figure One might consider pushing it away via the Bernoulli-like
transformation:

u = —log 1—(2\/_—\/@2} = y= (2\/_—\/1—6—“>2. (224)

However, this choice also turns out to be problematic, as we can see from the fol-
lowing figure:

530r equivalently to: s =1, m = M = 0.
4This is due to the fact that this is a MUM (maximal unipotent monodromy) point.
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Figure 22: Left: original singularity structure. Right: image of the singular curves under the
transformation. Sample points in the region of interest are mapped into an irregular
domain that includes the blue singularity.

It is evident that this transformation drastically changes the geometry of our region
of interest, mapping it into a domain that contains the blue singularity, corresponding
to the original line y = 0. Therefore, rather than improving convergence, this change
of variables may even make it worse.

The only remaining possibility is to push away just one spurious singularity, namely
the line y = 1, by introducing the Bernoulli-like variable:

v=—log(l—y)<=y=1—¢e". (225)

As usual, to test the effectiveness of the new expansion, we generate random points
within the region of interest and evaluate both the original and accelerated series at
those points, using the same fixed number of terms. The relative precision is estimated
by considering as truncation error the relative variation of the partial sums when one
more order is added. A comparison of the results for the original and the accelerated
expansions of master I, ; 1 9 o is shown in the following figure:
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Original series around (x,y)=(0,0) Bernoulli series around (x,y)=(0,0)
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Figure 23: Relative truncation errors for expansions of master 1(1,1,1,0,0) including 20 orders.
Left: Original series; right: series using one Bernoulli-like variable. As usual, each
color corresponds to a different precision; blue: prec.>4 digits, green: 2-4 digits.

The introduction of the Bernoulli-like variable v leads to some improvement in con-
vergence, but the gain is really modest. This is due to the fact that only one singularity
can be safely sent to infinity, and it is not the one that most limits convergence. How-
ever, two other corners of the region remain available as potential expansion points.
In particular, we expect better performance when expanding around (z,y) = (1/4,0),
since in that case two singular lines (x = 0 and y = 1) can be safely pushed to infinity.
We leave the study of this expansion to future work.

This case study already shows that the acceleration method remains effective for
two-dimensional problems beyond the polylogarithmic case, as expectedE] However,
it also reveals a fundamental limitation: the method'’s effectiveness strongly depends on
the geometrical shape of the singular curves being pushed away. Bernoulli-like variable
changes work particularly well for straight-line singularities, though not exclusively, as
shown in the previous chapter, when dealing with the transformed singular lines after
the blow-up. However, they fail when applied to more complicated curves, such as
those encountered in this example. Attempting to move such curves typically distorts
the geometry of the region of interest and may cause external singularities to enter it,
ultimately undermining the convergence of the expansion.

5We already applied a Bernoulli-like change of variable to the equal-mass sunrise, which is a 1D prob-
lem, but already involves an elliptic gecometry.
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10 Conclusions

Loop Feynman diagrams are a fundamental ingredient for high-precision predictions in
guantum field theory. However, computing the associated Feynman integrals remains
a challenging task. The state-of-the-art approach involves reducing integrals to a set of
master integrals (Mls) via integration-by-parts (IBP) identities, followed by solving the
corresponding differential equations in the relevant kinematic variables.

In this work, we focused mainly on the second step, using in particular series ex-
pansion techniques. For each integral family under study, we first cast the differential
equations in canonical form. In this form, we solved the system using an iterative ap-
proach in ¢, combined with a series expansion in the relevant kinematic scales. The
key advantage of this method is that, once a canonical basis is found — a step whose
complexity depends on the geometry of the problem — the remaining procedure be-
comes fully algorithmic and general. In fact, unlike analytic methods, whose complexity
rapidly increases with the number of loops and external legs, this method handles only
power series and logarithms at each step, making it broadly applicable regardless of the
underlying mathematical structure.

A central challenge in this approachis the restricted region where the series solution
converges, and the progressively slower convergence near its boundary. To address it,
we investigated a class of variable transformations, called Bernoulli-like variables, that
can push nearby singularities to infinity, thereby extending the domain of validity of
the series and accelerating its convergence. Although these techniques had been previ-
ously applied empirically to one-scale problems, no systematic study of their properties
had been performed.

In the first part of this work, starting from the study of simple one-scale problems
and some general considerations, we carried out a detailed analysis and identified sev-
eral key features of Bernoulli-like variables:

e The improvement in convergence is not solely due to mapping singularities to
infinity, but is also linked to the structure of the series coefficients in the new
variable.

e The gain in precision with the number of orders is most significant at low orders;
at higher orders, the relative improvement tends to saturate.

e Even spurious singularities can affect convergence and must be considered when
choosing the right transformation.

e |n the presence of multiple singularities, the next-limiting singularity after the
first is not necessarily the second closest in the original variable, but the one
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that appears nearest in the new coordinate. However, pushing it further away
with the same approach does not always help and can worsen convergence due
to multivaluedness and branch cut effects. We leave to future work a deeper
investigation of generalized Bernoulli-like variables capable of handling multiple
singularities effectively.

Then, we moved to multi-scale problems and proposed a procedure to improve con-
vergence based on the introduction of several Bernoulli-like variables, eventually after
performing blow-ups. In particular, each original variable is replaced by a Bernoulli-like
variable designed to push away the singularity that most limits convergence. Unlike the
one-dimensional case, identifying which singularities to remove is less straightforward.
The optimal choice depends on how the transformation affects the geometry of the sin-
gularities and the physical region of interest. We also found that this method is more
effective when the singularities are straight lines or simple curves, as more involved
shapes tend to distort the geometry of the physical region, causing eventually external
singularities to enter in.

We tested this method on two physically relevant two-loop amplitudes: the decays
respectively of a Higgs and a Z boson into three gluons, both expressed in terms of
MPLs. Using three expansion points and Bernoulli-like transformations, we covered the
full physical region with relative precision better than four digits, requiring only 9-10
orders in each expansion. In contrast, expansions in the original variables needed over
20 orders per variable to reach comparable precision.

We also explored an elliptic two-scale example: the sunrise integral with two equal
masses and one different mass. In this case, due to the complicated geometry of the
singularities, only the (spurious) singular line y = 1 could be safely pushed away. Al-
though this produced only modest improvements, it suggests that the our acceleration
method remains valid even beyond the polylogarithmic case. Notably, the difficulty was
not tied to the elliptic nature of the problem, but to the complicated shape of some of
the singular curves.

A possible refinement of the method could involve first performing a suitable change

of variables to simplify the geometry of some singular curves and then applying Bernoulli-
like transformations to push them away. We leave this to future work.
Another promising direction is the application to integrals with more than two scales,
where identifying and controlling the dominant singularities becomes increasingly chal-
lenging. Finally, this method could be particularly valuable for high-loop amplitudes,
where the extremely large size and the involved mathematical structure of the expres-
sions often make direct expansions impractical, as too many terms would be required
to get accurate results. In such cases, accelerated expansions may offer a viable and
efficient alternative.
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Appendix

In the following, we report the matrices A, and A, of the differential equations for the
sunrise integral family with two equal masses m and a different mass M:

- 0 0 0 0
0o —= 0 0 0
A, = 0 0 0 2 0|, (226)
a b c d e
2l 2(2+1) —4(2z—y—1) 0
with:
2¢(1+6
" (1 + 6¢)

-~ 2(1 =8z + 1622 — 2y — Szy +y2)’
€(br — €+ 14xwe + ye)

b= —
22(1 — 8x + 1622 — 2y — 8xy + y?)’
(1 +2¢)(—1+4 6z —y + 2€ + 16we + 2y¢)
N (1 — 8z + 1622 — 2y — 8xy +12)
i 1 — 162 + 482% — 2y — 162y + y? + € — 24we + 802%€ — 2ye — 24xye + y?e
N z(1 — 8z + 1622 — 2y — Sxy + 2) ’
3e(1 + 2¢)
e = .
(1 — 8z + 1622 — 2y — 8xy + y?)
(227)
—5 0 0 0 0
0 0 0 0 0
€ 5e _ —4xe—2x4ye4-2y—5e z(4dx—3y—1)  3e
Ay = (y=Dy  2(y—1)y 2(y—L)y (y—1)y 2(y—Ly )
S g h i l
_ (By+1)e  5(3y+1)e m x(12xy+4xf5y2710y71) _ 3(3y+1)e
(y—ly  2(y-1)y (y—1)y 2(y—Ly
(228)
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with:

 €(8z%e 4 4a® — 10zye — 3xy + 2w — & — y’e + 2ye — €)

/= z(y — 1)y (1622 — 8zy — 8x + 4% — 2y + 1) ’
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