
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea in Matematica

On the Numerical Solution of Large-scale
Differential Riccati Equations

Tesi di Laurea in Analisi Numerica

Relatore:

Chiar.mo Dott. Davide Palitta

Correlatore:

Chiar.mo Dott. Jens Saak

Presentata da:

Eugenio Mancinelli

Anno Accademico 2025-2026

Alla mia famiglia,

agli amici,

e a Bologna.

Abstract

This thesis investigates efficient numerical methods for solving large-scale Differential
Riccati Equations (DREs), which commonly arise in optimal control and filtering prob-
lems. The DRE is discretized in time using Backward Differentiation Formula (BDF)
schemes, leading to a sequence of Algebraic Riccati Equations (AREs) solved via iter-
ative techniques such as the Newton–Kleinman method, Newton’s method with exact
line search, and low-rank ADI-based algorithms. A modified ADI scheme is then pro-
posed, allowing for nonzero initial iterates and enabling the reuse of previous solutions
to accelerate convergence. The performance of the low-rank methods is validated on
the rail profile cooling problem, modeled within the Linear Quadratic Regulator (LQR)
framework. Numerical experiments confirm the expected convergence order O(hp) and
demonstrate that the proposed low-rank approaches substantially improve computational
efficiency and scalability for high-dimensional problems.

INDEX INDEX

Index

Introduction xi

Preliminaries 1

1 Matrix Equations 11

1.1 Linear Matrix Equations . 11
1.1.1 Sylvester equations . 11
1.1.2 Lyapunov equations . 13
1.1.3 Stein equations . 17

1.2 Algebraic Riccati Equations . 19
1.2.1 Nonsymmetric algebraic Riccati equations 20
1.2.2 Continuous-time algebraic Riccati equation 22

2 Large Scale Methods 27

2.1 Alternating Direction Implicit . 28
2.1.1 Low-rank ADI . 30

2.2 Newton’s Method . 37
2.2.1 Newton-Kleinman . 37
2.2.2 Exact Line search . 44

2.3 RADI method . 45

3 New extension of the ADI method 49

4 Differential Riccati Equations 55

4.1 Discretization schemes . 56
4.1.1 Midpoint rule . 56
4.1.2 Trapezoidal rule . 56
4.1.3 Backward Differentiation Formulas 57
4.1.4 Rosenbrock Methods . 60

4.2 Applications . 63
4.2.1 Linear Quadratic Regulator . 63

INDEX INDEX

4.2.2 The Tracking problem . 66

5 Numerical Results 69

5.1 Cooling problem . 70
5.2 Experiments . 72

5.2.1 Order of Convergence . 73
5.2.2 Large-Scale Comparison . 74
5.2.3 Conclusions . 85

Bibliography 87

INDEX INDEX

List of Figures

5.1 Sparsity pattern of Â. Nonzero values are colored while zero values are
white. 70

5.2 Initial mesh (left) and partitioning of the boundary (right) 72
5.3 Convergence behavior using as inner solvers Newton-Kleinman and RADI

for n = 109. 75
5.4 Convergence behavior using as inner solvers Newton-Kleinman and RADI

for n = 1357. 76
5.5 Rank evolution for n = 1357. 78
5.6 Rank evolution for n = 5177. 81
5.7 Rank evolution for n = 20209. 83
5.8 Rank evolution for n = 79841. 84
5.9 Dependence of average solution rank on problem size for different BDF

orders (p). 86

v

LIST OF FIGURES LIST OF FIGURES

List of Tables

2.1 Complexity of CF-ADI and ADI.
J is the total number of ADI iterations. 33

5.1 Number of nonzero (nnz) elements in the coefficient matrices of (5.6). . . 71
5.2 Comparison for the solution of (5.6) with n = 1357. 77
5.3 Comparison for the solution of (5.6) with n = 5177. 80
5.4 Comparison for the solution of (5.6) with n = 20209. 82
5.5 Comparison for the solution of (5.6) with n = 79841. 83

vii

LIST OF TABLES LIST OF TABLES

List of Algorithms

1 Naive algorithm for the Sylvester equation 12
2 Bartels and Stewart algorithm for the Sylvester equation 14
3 Bartels and Stewart algorithm for the Lyapunov equation 16
4 Bartels and Stewart algorithm for the Stein equation 18
5 Invariant subspace method for CARE . 26
6 ADI method . 29
7 ZZH-factorization based ADI method . 34
8 LDLT-factorization based ADI method 36
9 Column Compression . 36
10 Initial Guess for Newton’s Method for CAREs 41
11 Newton-Kleinman with ADI . 42
12 Newton-Kleinman with CF-ADI . 43
13 Newton’s method with exact line search 46
14 RADI method with reduced use of complex arithmetic 48
15 ADI with a non-zero initial guess . 50
16 LDLT-factored BDF method of order p to solve (4.1) 59

ix

LIST OF ALGORITHMS LIST OF ALGORITHMS

Introduction

This thesis aims to provide a comprehensive treatment of the fundamental theory
behind Differential Riccati Equations, along with a detailed description of advanced al-
gorithms for their solution.
Differential Riccati Equations (DREs) form a class of matrix equations that arise fre-
quently in optimal control and filtering problems, particularly in large-scale systems
governed by complex dynamics. The increasing demand from a wide range of applica-
tions has, over the years, stimulated significant research into the design and analysis of
efficient numerical algorithms for solving these equations.
Their numerical solution involves a sequence of techniques that gradually transform the
original problem into a more tractable form. We begin by discretizing the DRE in time
using either a Backward Differentiation Formula (BDF) or a Rosenbrock method. This
leads to the need to solve an Algebraic Riccati Equation (ARE) at each time step. Since
the resulting ARE is generally nonlinear, we employ iterative linearization techniques
such as the Newton-Kleinman scheme or Newton’s method with exact line search.
At each Newton’s iteration, we must solve a Sylvester or, more commonly, a Lyapunov
equation. For this task, we adopt the Alternating Direction Implicit (ADI) method,
which is well-suited to large-scale problems due to its favorable memory and computa-
tional properties.
While direct methods, such as the Bartels-Stewart algorithm or invariant subspace meth-
ods, can also be used to solve the linear step, they rely on the Schur decomposition of
the coefficient matrices, which has a computational cost of O(n3), n being the problem
dimension, making them impractical for high-dimensional systems.
To ensure computational and memory efficiency, it is essential to exploit the low-rank

xi

xii Introduction

structure often present in the problem’s data. However, this is not straightforward due
to the interaction of multiple parameters across the different algorithms.
The situation becomes even more challenging in the non-autonomous case, where the
coefficient matrices of the differential equation depend explicitly on time. In this setting,
each time step requires the evaluation of time-varying matrices, and greater care must be
taken in selecting low-rank approximations, as the rank of the solution may significantly
change over time.
The aforementioned solvers can be extended to this setting, but the optimal way to do
that, in order to speed up the convergence, remains an open question. This thesis focuses
on improving solvers for large-scale DREs by analyzing the key parameters that influence
convergence and by implementing a modified ADI scheme that allows for non-zero initial
iterates, specifically, reusing the solution from the previous time step. This approach
has already shown to be beneficial for AREs and it brings promising computational ad-
vantages in the time-dependent case as well.
This thesis is structured into five chapters as follows. The first chapter provides an
overview of AREs and DREs, including useful definitions and theoretical results. The
second chapter presents in detail various numerical schemes for solving AREs. It be-
gins with a description of the ADI method, discussing its convergence behavior and
the techniques used for selecting shift parameters. Next, it presents and compares two
iterative methods commonly employed to solve quadratic matrix equations: the New-
ton–Kleinman method and Newton’s method with exact line search. The chapter then
introduces a more recent approach for solving low-rank AREs: the RADI method. Fi-
nally, it discusses how the previously described algorithms can be adapted to handle
time and memory constraints efficiently and introduces the CF-ADI and LDLT-ADI al-
gorithms. The third chapter presents a modified ADI scheme that allows for nonzero
initial iterates, with the aim of accelerating convergence. It also provides the MATLAB
implementation of this scheme and reports two new results concerning the numerical so-
lutions computed by using the method. The fourth chapter covers the time-discretization
techniques used to transform a DRE into a sequence of AREs, focusing on BDF schemes
and Rosenbrock methods. It concludes with the presentation of two classical, yet im-
portant, applications in control theory: the Linear Quadratic Regulator (LQR) problem

Introduction xiii

and the Tracking problem. Finally, the fifth chapter describes the rail profile cooling
problem and presents its mathematical model. In control theory, this problem is solved
via the LQR approach, which gives rise to a differential Riccati equation. For different
problem sizes, we discretize the corresponding DRE using a BDF scheme and apply some
of the low-rank methods introduced in Chapter 3 to solve the resulting algebraic Riccati
equations. We first investigate the error behavior of the solution, demonstrating that
it follows the expected order, i.e. O(hp) where h is the time step size of the discretiza-
tion and p is the BDF order. We then compare the different ARE solvers in terms of
runtime, average number of iterations, and average rank of the solution, focusing on
large-dimensional problems.

Notation

We present here the notation that will be used throughout this work.

• flops : floating point operations;

• N := {1, 2, . . .}: set of natural numbers;

• R: set of real numbers;

• R≥0 := {x ∈ R : x ≥ 0}, R< := {x ∈ R : x < 0};

• C: set of complex numbers;

• If z ∈ C, we denote the real part of z by ℜ(z), and its imaginary part by ℑ(z);

• C< := {z ∈ C : ℜ(z) < 0};

• Let M = R or M = C and m,n ∈ N. Mm×n is the set of m×n matrices with entries
in M;

• In is the identity matrix of size n× n;

• Given a matrix A, we denote with AT its transpose and with A the matrix obtained
by applying the complex conjugate to its entries. The conjugate transpose of A is
defined as AH :=

(
A
)T. We apply the same definitions to vectors;

• Given A ∈ Rn×n, we say that it is symmetric if A = AT. If A is complex and it
holds A = AH, then we say that A is Hermitian;

• Given A ∈ Rn×n, we say that it is orthogonal if AAT = ATA = In. If A ∈ Cn×n,
we say that it is unitary if AAH = AHA = In;

xv

• Given a matrix A, its spectrum spec(A) is the set of all the eigenvalues of A. We
define the spectral radius of A as the quantity ρ(A) := max{|λ| : λ ∈ spec(A)};

• Given an n× n square matrix A = (ai,j)i,j=1,...,n, we define trace(A) :=
n∑

i=1

ai,i;

• Let X : R → Cn×m, t 7→ X(t), be a differentiable function, where n,m ∈ N. We
denote its derivative by Ẋ := dX(t)

dt
.

Preliminaries

Matrix norms

Definition 0.0.1. Let M be the set of either real or complex numbers and m,n ∈ N. A
matrix norm is a function || · || : Mm×n → R≥0 that satisfies the following properties:
For all scalars α ∈ M and matrices A,B ∈ Mm×n,

• ||A|| ≥ 0;

• ||A|| = 0 ⇐⇒ A = 0m,n;

• ||αA|| = |α| ||A||;

• ||A+B|| ≤ ||A||+ ||B||;

• ||AB|| ≤ ||A|| ||B||;

where 0m,n is the m× n zero matrix.

Definition 0.0.2. Given a vector norm || · ||, i.e. a norm whose argument is a vector,
the corresponding matrix norm on Cm×n is defined by

||A|| = max
x∈Cn,||x||=1

||Ax||.

A few commonly used norms in Cn are:

• ||x||1 =
n∑

i=1

|xi|,

• ||x||2 =

(
n∑

i=1

|xi|2
) 1

2

,

1

• ||x||∞ = max
i=1,...,n

|xi|.

The corresponding matrix norms on Cm×n are given by

• ||A||1 = max
j= ...,n

m∑
i=1

|ai,j|,

• ||A||2 = ρ(AHA)1/2,

• ||A||∞ = max
i=1,...,m

n∑
j=1

|ai,j|.

The above norms are called the 1-norm, 2-norm, and ∞-norm, respectively. Another ma-
trix norm that is used frequently, especially for numerical experiments, is the Frobenius
norm || · ||F .

Definition 0.0.3. Let A ∈ Cm×n. We define the Frobenius norm of A as

||A||F :=

(
m∑
i=1

n∑
j=1

|ai,j|2
) 1

2

= (trace(AHA))
1
2 .

Definite and semi-definite matrices

Definition 0.0.4. We say that a matrix A ∈ Cn×n is positive definite if ℜ(xHAx) > 0

for any x ∈ Cn \ {0} with ||x||2 = 1. In this case, we write A ≻ 0.

Definition 0.0.5. We say that a matrix A ∈ Cn×n is positive semi-definite if ℜ(xHAx) ≥
0 for any x ∈ Cn with ||x||2 = 1. In this case, we write A ⪰ 0.

Given two matrices A and B, the notation B ⪰ A means that B − A ⪰ 0. Let us
now recall a few important characterizations.

Theorem 0.0.6. Let A ∈ Cn×n. A is positive semi-definite if and only if A = BHB,
for some B. If A is real, B can be real as well and the decomposition can be written as
A = BTB.

Moreover, A is positive definite if and only if such a decomposition exists with B invert-
ible.
More generally, A is positive semi-definite with rank k if and only if a decomposition
exists with a k × n matrix B of full rank, i.e. of rank k.

Let us consider the negative counterpart of the previous definitions.

Definition 0.0.7. We say that a matrix A ∈ Cn×n is negative definite if −A is positive
definite. In this case, we write A ≺ 0.

Definition 0.0.8. We say that a matrix A ∈ Cn×n is negative semi-definite if −A is
positive semi-definite. In this case, we write A ⪯ 0.

Remark 0.0.9. A is negative (semi)-definite if and only if −A is positive (semi)-definite.

Definition 0.0.10. We say that a matrix is indefinite if it is neither positive semi-definite
nor negative semi-definite.

The following result characterizes the definiteness of a matrix based on its spectrum.

Theorem 0.0.11. Let A ∈ Rn×n be symmetric. Then all its eigenvalues are real and
their sign characterize the definiteness of A as follows:

• A is positive definite if and only if all its eigenvalues are positive;

• A is positive semi-definite if and only if all of its eigenvalues are non-negative;

• A is negative definite if and only if all of its eigenvalues are negative;

• A is negative semi-definite if and only if all of its eigenvalues are non-positive;

• A is indefinite if and only if it has both positive and negative eigenvalues.

Hamiltonian matrices

As we will see later, Hamiltonian matrices play a crucial role in the context of alge-
braic Riccati equations .

Definition 0.0.12. Let J be the matrix

[
0 In

−In 0

]
.

A 2n× 2n complex matrix H is said to be Hamiltonian if JH is Hermitian, i.e. JH =

HHJ H.

Let’s observe that J −1 = J H = JT = −J , and therefore H is Hamiltonian if and
only if JTHJ = −HH. By partitioning H into four n× n blocks and writing explicitly
Definition 0.0.12, one can prove that H is Hamiltonian if and only if it has the form

H =

[
A G

Q −AH

]
,

where G and Q are Hermitian matrices of size n. It follows that J is Hamiltonian.

Remark 0.0.13. The property JTHJ = −HH implies that H is similar to −HH, so
that its spectrum is symmetric with respect to the imaginary axis, i.e. the non-imaginary
eigenvalues of H come in pairs (λ,−λ), and therefore they can be ordered in such a way
that

ℜ(λ1) ≤ . . . ≤ ℜ(λn) ≤ 0 ≤ ℜ(λn+1) ≤ . . . ≤ ℜ(λ2n).

Notice that if H has no eigenvalues that lie on the imaginary axis, then there are stable
and antistable invariant subspaces corresponding to n eigenvalues with negative real part
and positive real part, respectively.

Kronecker product and its properties

Definition 0.0.14. If A is an m×n matrix and B is a p× q matrix, then the Kronecker
product A⊗B is the pm× qn block matrix

A⊗B =


a11B · · · a1nB

...
am1B · · · amnB

.

In the following, we list several properties that we will use later in this work.
Properties of the Kronecker product:

1. Bilinearity and associativity:

A⊗ (B + C) = A⊗B + A⊗ C,

(B + C)⊗ A = B ⊗ A+ C ⊗ A,

(kA)⊗B = A⊗ (kB) = k(A⊗B),

(A⊗B)⊗ C = A⊗ (B ⊗ C),

A⊗ 0 = 0⊗ A = 0,

where A,B,C are matrices, 0 is the zero matrix, and k is a scalar.

2. Non-commutativity:
In general,

A⊗B ̸= B ⊗ A.

3. The mixed-product property:
Given A,B,C,D matrices of suitable sizes, then

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

4. Vectorization property:
Given A,B,X matrices of suitable sizes, then

vec(AXB) = (BT ⊗ A) vec(X),

where vec(X) is the vectorization operator applied on X, formed by stacking its
columns on top of one another.

5. Spectrum:
Suppose that A and B are square matrices of size n and m respectively, and let
spec(A)={λi : i = 1, . . . , n} and spec(B)={µj : j = 1, . . . ,m} be their spectra.
Then the eigenvalues of A⊗B are λiµj for all i = 1, . . . , n, j = 1, . . . ,m. Moreover,
the eigenvalues of Im ⊗ B + A ⊗ In are given by λi + µj for all i = 1, . . . , n, j =

1, . . . ,m.

Matrix Decompositions

In the following, we list a few useful factorizations that we will employ throughout
the thesis.

QR decomposition

Theorem 0.0.15. Let A ∈ Cm×n with m ≥ n. Then there exist Q ∈ Cm×m unitary and
R ∈ Cm×n upper triangular such that

A = QR =
[
Q1, Q2

] [R1

0

]
= Q1R1,

where Q1 is m× n, Q2 is m× (m− n) and R1 is n× n upper triangular matrix.

The factorization A = QR is called QR factorization and the decomposition A =

Q1R1 is called thin QR factorization. In general, computing this decomposition requires
O(mn2) flops, which becomes O(n3) flops when m = n.

Schur decomposition

Real Schur decomposition

Theorem 0.0.16. Let A ∈ Rn×n. Then A can be written as

A = QHQT ,

where Q ∈ Rn×n is an orthogonal matrix and H ∈ Rn×n is either upper or lower quasi-
triangular.

A quasi-triangular matrix is a block triangular matrix whose diagonal blocks are of
size 1× 1 or 2× 2.

Complex Schur decomposition

Theorem 0.0.17. Let A ∈ Cn×n. Then A can be expressed as

A = QUQH,

for some unitary matrix Q ∈ Cn×n and some upper triangular matrix U ∈ Cn×n.

Let us observe that in both cases, U and A are similar matrices and therefore share the
same spectrum, which is given by the diagonal entries of U . Moreover, the computational
complexity of both decompositions is O(n3).

Singular Value Decomposition

Theorem 0.0.18. Let A ∈ Cm×n. Then A can be factorized as

A = UΣV H,

where U ∈ Cm×m is a unitary matrix, Σ ∈ Rm×n is a rectangular diagonal matrix with
non-negative entries on the diagonal and V ∈ Cn×n is a unitary matrix.

The factorization A = UΣV H is called singular value decomposition (SVD) of A.
If A is real, then U and V can be guaranteed to be real orthogonal matrices and, in that
context, the SVD is denoted UΣV T.

The diagonal entries σi = Σii of Σ are uniquely determined by A and are known as the
singular values of A.
Without any assumption on A, the complexity of SVD is O(mn2), thus O(n3) if m = n.

Invariant subspaces

The concept of an invariant subspace for a matrix is crucial for the analysis and
solution of algebraic Riccati equations.

Definition 0.0.19. Given an n× n matrix A and an m-dimensional subspace V ⊆ Cn,
we denote by AV the subspace {y ∈ Cn : y = Ax, x ∈ V}. We say that V is an invariant
subspace for A if AV ⊆ V , i.e. Ax ∈ V for any x ∈ V .

Remark 0.0.20. If V is a n×m full rank matrix whose columns span the subspace V ,
then V is invariant for A, if and only if there exists an m×m matrix Λ such that

AV = V Λ.

Observe that spec(Λ) ⊆ spec(A).

Fréchet derivative

The concept of Fréchet derivative is used to extend the notion of classical derivative
to functions defined on normed spaces.

Definition 0.0.21. Let V and W be normed vector spaces, and U ⊆ V be an open
subset of V . A function F : U → W is called Fréchet differentiable at x ∈ U , if there
exists a bounded linear operator A : V → W such that

lim
||h||V →0

||F(x+ h)−F(x)− Ah||W
||h||V

= 0.

Equivalently, in Landau notation,

F(x+ h) = F(x) + Ah+ o(||h||V).

If there exists such an operator A, it is unique, so we write F ′
x = A and call it the Fréchet

derivative of F at x.

For our purposes, U and V will be spaces of the form Cn×m. In these cases, the
Fréchet derivative of F : Cn×m → Cn×m in X ∈ Cn×m is the function F ′

X : Cn×m →
Cn×m, E 7→ F ′

X [E].

Properties of the Fréchet derivative:

1. Linearity:
Let F ,G : V → W be differentiable at x and c a scalar. Then

(cF)′x = cF ′
x,

(F + G)′x = F ′
x + G ′

x.

2. Chain rule:
Let F : U → Y be differentiable at x ∈ U and G : Y → W differentiable at
y = F(x). Then the composition G ◦F : U → W is differentiable at x and it holds

(G ◦ F)′x = G ′
y ◦ F ′

x.

Notions from control theory

Throughout this work, we will focus on continuous-time systems, but the definitions
and results that follow can be adapted to discrete-time systems as well.

Definition 0.0.22. We define the stability region as the open left half-plane C< := {z ∈
C : ℜ(z) < 0} and we say that a matrix A is stable if all its eigenvalues lie in C<. We
say that A is antistable if all its eigenvalues lie outside the closure of the stability region,
i.e. in C> := {z ∈ C : ℜ(z) > 0}.

Let us now introduce the fundamental notions of controllability, observability, stabi-
lizability, and detectability, for a dynamical system.

Definition 0.0.23. Let A ∈ Cn×n, B ∈ Cn×m, C ∈ Cm×n, and Ω ⊂ C. The pair (A,B)

is called controllable or reachable at λ ∈ C if rank([A− λIn, B]) = n; controllable in Ω if
it is controllable at any λ ∈ Ω; and controllable if it is controllable at any λ ∈ C.

Definition 0.0.24. Let A ∈ Cn×n and C ∈ Cm×n. The pair (C,A) is called observable
is (AH, CH) is controllable.

Definition 0.0.25. Let A ∈ Cn×n and B ∈ Cn×m. The pair (A,B) is called stabilizable
if it is controllable outside the stability region, i.e. for all λ ∈ C≥ := {z ∈ C : ℜ(z) ≥ 0}.

The following result illustrates the relationship between stability and stabilizability.

Theorem 0.0.26. The pair (A,B) is stabilizable if and only if there exists a matrix
K ∈ Cm×n such that A − BK is stable. Moreover, if m = n, B ⪰ 0, and (A,B) is
stabilizable, then there exists K ∈ Cn×n such that K ⪰ 0 and A−BK is stable.

Definition 0.0.27. Let A ∈ Cn×n and C ∈ Cm×n. The pair (C,A) is called detectable
if (AH, CH) is stabilizable.

Hamilton-Jacobi-Bellman equation

The Hamilton-Jacobi-Bellman (HJB) equation is a partial differential equation that
describes how the value function of a system evolves over time and space. Before stating
that result, we have to clarify the notions of cost function and value function for a system.

Definition 0.0.28. The cost function J defines the total cost incurred by following a
control policy over time. Given t0 ∈ [0, tend] and a continuous-time system subject to

ẋ(t) = f(t, x(t), u(t)), x(t0) = x0,

the cost function has the form

J(t0, x0, u) =

∫ tend

t0

L(t, x(t), u(t))dt+ ϕ(x(tend)),

where x(t) is the state of the system at time t, u(t) the control input, L(t, x, u) the
instantaneous cost and ϕ(x(tend)) the terminal cost at final time tend.
The value function or cost-to-go function V represents the minimum cost achievable from
a given state and time onwards, assuming optimal control from that point. V has the
form

V (t, x(t)) = min
u

[∫ tend

t

L(τ, x(τ), u(τ))dτ + ϕ(x(tend))

]
, V (tend, x(tend)) = ϕ(x(tend)).

The Hamilton-Jacobi-Bellman equation is a nonlinear partial differential equation that
characterizes the value function V for an optimal control problem as solution of

min
u

{
L(t, x, u) +

∂V (t, x)

∂x
ẋ+

∂V (t, x)

∂t

}
= 0,

with V (tend, x(tend)) = ϕ(x(tend)) and ẋ = f(t, x, u).

Chapter 1

Matrix Equations

In this chapter, we present classical results and solvers for some of the most com-
mon matrix equations. In particular, we classify linear matrix equations into Sylvester,
Lyapunov, and Stein equations. For each of these, we present a Kronecker-based direct
solver and a version of the Bartels–Stewart algorithm. We then address the quadratic
case, i.e. algebraic Riccati equations, describing an invariant subspace method based on
the Schur decomposition for computing solutions.

1.1 Linear Matrix Equations

We start by introducing the simplest case one may try to solve: the linear case.
Depending on their structure, linear matrix equations are classified into the following
three groups: Sylvester, Lyapunov, and Stein equations.

1.1.1 Sylvester equations

Definition 1.1.1. A Sylvester equation is a matrix equation of the form

AX +XB = Q, (1.1)

where X ∈ Rm×n is the unknown, and the coefficient matrices are A ∈ Rm×m, B ∈
Rn×n, Q ∈ Rm×n.

11

By using the operator vec, see Property 4 of the Kronecker product, we can transform
(1.1) into the linear system

(In ⊗ A+BT ⊗ Im) vec(X) = vec(Q). (1.2)

Remark 1.1.2 (Uniqueness of the solution). From Property 5 of the Kronecker product,
the eigenvalues of the system matrix are all the summations λi + µj, where spec(A) =
{λi : i = 1, . . . ,m} and spec(B) = {µj : j = 1, . . . , n}, and it follows that the matrix is
non singular if and only if λi + µj ̸= 0 for any i, j, i.e. spec(A) ∩ spec(−B) = ∅. In this
case, the Sylvester equation admits a unique solution.

A first naive method to solve (1.1) is computing the solution vec(X) of the linear
system (1.2), and then recover X by reshaping. Note that (1.2) is a mn × mn system
and solving it with the Gaussian elimination with partial pivoting costs O((mn)3) flops,
i.e. O(n6) if m = n. Therefore it is impractical for large-scale problems.
In Algorithm 1 we report the implementation of this approach.

Algorithm 1 Naive algorithm for the Sylvester equation
function X = sylv_naive(A,B,Q)

1: [m,n] = size(Q)

2: % Construct the Kronecker linear system

3: H = kron(In, A) + kron(BT , Im)

4: q = reshape(Q,m · n, 1)
5: % Solve the linear system

6: Solve H · x = q for x

7: % Reshape back to matrix form

8: X = reshape(x,m, n)

9: return X

A more advanced scheme is the Bartels and Stewart algorithm [3] which exploits
the complex Schur decomposition (see Preliminaries) of A and BT in order to solve a
Sylvester equation with upper and lower triangular coefficients. In particular, let us
consider the following decompositions:

A = UÃUH, BT = V B̃TV H,

where Ã and B̃T are upper triangular and U, V are unitary. Then we can rewrite (1.1)
in terms of Ã and B̃ as follows:

ÃX̃ + X̃B̃ = Q̃, (1.3)

with X̃ = UHXV and Q̃ = UHQV , where V =
(
V H
)T. We exploit the fact that Ã and

B̃ are upper and lower triangular, respectively, by considering the linear-system version
of (1.3), i.e.

(In ⊗ Ã+ B̃T ⊗ Im) vec(X) = vec(Q). (1.4)

The latter can be written in the form

Ãk,kX̃k,l + X̃k,lB̃l,l = Q̃k,l −
m∑

i=k+1

Ãk,iX̃i,l −
n∑

j=l+1

X̃k,jB̃j,l, for k = m, . . . , 1, l = n, . . . , 1.

(1.5)
Once we solve (1.3), we recover X using X = UX̃V T. If m = n, the overall cost of this
algorithm turns to 60n3 flops, i.e. O(n3).
We report the implementation of this method in Algorithm 2.

1.1.2 Lyapunov equations

Definition 1.1.3. A Lyapunov equation is a particular Sylvester equation of the form

AX +XAT = Q, (1.6)

where X,A,Q ∈ Rn×n and Q = QT.

By vectorizing the equation (1.6) with the vec operation, we can rewrite it in the
form of the linear system

(In ⊗ A+ A⊗ In) vec(X) = vec(Q). (1.7)

Remark 1.1.4 (Uniqueness of the solution). From Property 5 of the Kronecker product,
it follows that the eigenvalues of the system matrix are all the summations λi+λj for
i, j = 1, . . . , n, where spec(A) = {λi : i = 1, . . . , n}. The system is invertible, i.e.
equation (1.6) has a unique solution, if and only if A has no pairs of eigenvalues of the
kind (λ,−λ). Note that this is true when A is stable.

Algorithm 2 Bartels and Stewart algorithm for the Sylvester equation
function X = sylv_bs(A,B,Q)

1: [m,n] = size(Q)

2: % Complex Schur decomposition

3: [U, Ã] = schur(A, ’complex’)

4: [V, B̃] = schur(BT , ’complex’)

5: Q̃ = UHQV

6: X̃ = zeros(m,n)

7: % Backward substitution for Sylvester recurrence

8: Solve (Ã+ B̃(n, n) · Im) · X̃(:, n) = Q̃(:, n) for X̃(:, n)

9: for j = n− 1 : −1 : 1 do

10: r =
∑n

k=j+1 B̃(k, j) · X̃(:, k)

11: v = Q̃(:, j)− Ã · r
12: Solve (Ã+ B̃(j, j) · Im) · X̃(:, j) = v for X̃(:, j)

13: end for

14: % Reconstruct the solution

15: X = UX̃V T

16: return X

Remark 1.1.5 (Hermiticity of the solution). Observe that if we apply the conjugate
transpose operation on both sides of equation (1.6), we obtain

AXH +XHAT = Q. (1.8)

Therefore, if X is solution of (1.6), then XH is solution of the same equation. Under the
assumption of existence and uniqueness, X = XH, i.e. the solution is Hermitian.

As before, one could compute the solution of (1.6) by solving the linear system (1.7).
The implementation follows straightforwardly from Algorithm 1 by replacing line 3 with
H = In⊗A+A⊗In. However, solving this system using Gaussian elimination with partial
pivoting generally requires O(n6) flops. Let us see how we can exploit the symmetry of
the Lyapunov equation by using the Bartels and Stewart algorithm. In this case, we
need to compute the Schur decomposition only for one matrix, because once we know
the decomposition of A, we also know it for AT. By substituting

A = UÃUH, AT = UÃTUH,

into (1.6), the latter becomes

ÃX̃ + X̃ÃT = Q̃, (1.9)

where X̃ = UHXU , i.e. X = UX̃UH, and Q̃ = UHQU. Finally, the following system

(In ⊗ Ã+ Ã⊗ In) vec(X) = vec(Q), (1.10)

can be written as

Ãk,kX̃k,l + X̃k,lÃl,l = Q̃k,l −
n∑

i=k+1

Ãk,iX̃i,l −
n∑

j=l+1

X̃k,jÃj,l, for l, k = n, . . . , 1. (1.11)

Remark 1.1.6. Since X̃ is the solution of (1.9), it follows from Remark 1.1.5 that it is
Hermitian. Moreover, note that the reconstruction of the solution X = UX̃UH preserves
Hermiticity. Indeed, since X̃ = X̃H, we have XH = UX̃HUH = UX̃UH = X.

See Algorithm 3 for an implementation.

Algorithm 3 Bartels and Stewart algorithm for the Lyapunov equation
function X = lyap_bs(A,Q)

1: n = size(Q, 1)

2: % Complex Schur decomposition

3: [U, Ã] = schur(A, ’complex’)

4: Q̃ = UHQU

5: X̃ = zeros(n)

6: % Backward substitution for Lyapunov recurrence

7: Solve (Ã+ Ã(n, n) · In) · X̃(:, n) = Q̃(:, n) for X̃(:, n)

8: for i = n− 1 : −1 : 1 do

9: v = Q̃(:, i)− X̃(:, i+ 1 : n) · Ã(i, i+ 1 : n)H

10: Solve (Ã+ Ã(i, i) · In) · X̃(:, i) = v for X̃(:, i)

11: end for

12: % Reconstruct the solution

13: X = UX̃UH

14: return X

1.1.3 Stein equations

Definition 1.1.7. A Stein equation is a linear matrix equation of the form

X − AXB = Q, (1.12)

where X ∈ Rm×n, Q ∈ Rm×n, A ∈ Rm×m and B ∈ Rn×n.

Using Property 4 of the Kronecker product, we can transform (1.12) into

(Imn −BT ⊗ A) vec(X) = vec(Q), (1.13)

since Imn = In ⊗ Im.

Remark 1.1.8 (Uniqueness of the solution). The eigenvalues of the system matrix are
all the terms of the form 1 − λiµj for i = 1, . . . ,m, j = 1, . . . , n, where spec(A) = {λi :

i = 1, . . . ,m} and spec(B) = {µj : j = 1, . . . , n}, and it follows that the matrix is non
singular if and only if λiµj ̸= 1 for any i, j.

A naive approach to solve (1.12) is considering the linear system (1.13). For this
case, the code is the same of Algorithm 1 but we replace line 4 with H = Imn −BT ⊗A

A more efficient algorithm is developed by adapting the Bartels and Stewart scheme to
this case. Let

A = UÃUH, BT = V B̃TV H,

be the Schur form of A and BT respectively. Then, we can rewrite (1.12) as

X̃ − ÃX̃B̃ = Q̃, (1.14)

where X̃ = UHXV and Q̃ = UHQV . We present the implementation of this approach in
Algorithm 4.

A particular case of the Stein equation is the symmetric Stein equation.

Definition 1.1.9. A symmetric Stein equation is a particular Stein equation of the form

X − AXAT = Q, (1.15)

where X ∈ Rn×n and A,Q ∈ Rn×n with Q = QT.

Algorithm 4 Bartels and Stewart algorithm for the Stein equation
function X = stein_bs(A,B,Q)

1: [m,n] = size(Q)

2: % Complex Schur Decomposition

3: [U, Ã] = schur(A, ’complex’)

4: [V, B̃] = schur(BT, ’complex’)

5: Q̃ = UHQV

6: X̃ = zeros(m,n)

7: Solve (Im − B̃(n, n)Ã)X̃(:, n) = Q̃(:, n) for X̃(:, n)

8: for j = n− 1 : −1 : 1 do

9: Rj =
n∑

k=j+1

B̃(k, j)X̃(:, k)

10: Solve (Im − B̃(j, j)Ã)X̃(:, j) = Q̃(:, j) + ÃRj for X̃(:, j)

11: end for

12: % Reconstruct the solution

13: X = UX̃V T

14: return X

Note that using the vec operator, we can rewrite (1.15) as

(In2 − A⊗ A) vec(X) = vec(Q). (1.16)

Remark 1.1.10 (Uniqueness of the solution). The eigenvalues of the system matrix are
all the terms of the form 1−λiλj for i, j = 1, . . . , n, where spec(A) = {λi : i = 1, . . . , n}.
Therefore, the system (1.16) has a unique solution if and only if λiλj ̸= 1 for i, j.

Remark 1.1.11 (Hermiticity of the solution). If we apply the conjugate transpose of
both sides of equation (1.15), we obtain

XH − AXHAT = Q. (1.17)

It follows that if X is a solution of (1.15), then also XH is. Under the assumption of
existence and uniqueness, the solution is Hermitian.

In order to solve (1.15), we can proceed simply by solving the system (1.16), but it
has a cost of O(n6) flops, or by adapting Algorithm 4 to this case, by considering only
one Schur decomposition, and it has a cost of O(n3) flops.
In the literature, one may find a slightly different and more general version of the previous
equations. This is because, when discretizing a PDE via the finite element or finite
difference method, the resulting matrix equations typically involve additional coefficient
matrices. In the following, we report only the generalized definitions of these equations.
For more details, see [19, 42].

Definition 1.1.12. A generalized Sylvester equation is a matrix equation of the form
AXB+CXD = Q, where the coefficient dimension and the unknown X have consistent
dimensions.

Definition 1.1.13. A generalized Lyapunov equation is a matrix equation of the form
AXEH+EXAH = Q, where the coefficient dimension and the unknown X have consistent
dimensions, and Q = QH.

1.2 Algebraic Riccati Equations

A more general class of matrix equations includes those with a quadratic term in-
volving the unknown. These equations are called Algebraic Riccati Equations, which

we refer to as AREs. The name Riccati comes from their similarity with the Riccati
differential equation

x′(t) = ax(t)2 + bx(t) + c, (1.18)

where the unknown function x(t) appears both in the linear and quadratic term.
Algebraic Riccati equations are encountered in many applications from different areas,
including optimal control and robust control [40, 29], filtering problems [4] and differential
games [1]. Solving algebraic Riccati equations is fundamental in many computational
problems for model reduction and controller design of dynamical linear systems. The
interest in algebraic Riccati equations is motivated not only by the increasing demand
from a wide range of applications, especially in the engineering field, but also by the
new mathematical framework that has been developed for their study. Since the 1950s
and 1960s researchers have implemented many numerical algorithms to solve matrix
equations, but it is only in the last few years that the attention shifted on the study
of large-scale equations, coming from real-world problems. In this section, we introduce
several useful theoretical concepts related to algebraic Riccati equations, along with a
classical algorithm for computing their solutions.

1.2.1 Nonsymmetric algebraic Riccati equations

Definition 1.2.1. A Nonsymmetric Algebraic Riccati Equation (NARE) is a matrix
equation of the form

C +XA+DX −XBX = 0, (1.19)

where X ∈ Rm×n is the unknown, and A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and D ∈ Rm×m

are the coefficients.

We associate this equation with the matrix

H =

[
A −B

−C −D

]
∈ R(m+n)×(m+n).

The solutions of (1.19) can be put in one-to-one correspondence with certain invariant
subspaces of H. In fact, one can easily prove that X is a solution of (1.19) if and only if

H

[
In

X

]
=

[
In

X

]
(A−BX).

In particular, the columns of

[
In

X

]
span an invariant subspace for H and the set of

eigenvalues of A − BX is a subset of the eigenvalues of H. This justifies the following
result.

Theorem 1.2.2 ([20]). The matrix X ∈ Cm×n is a solution of (1.19) if and only if there

exists an n-dimensional invariant subspace V of H such that the columns of

[
In

X

]
span

V . Moreover, it holds that

[
In 0

X Im

]−1

H

[
In 0

X Im

]
=

[
A−BX −B

0 −(D −XB)

]
.

Remark 1.2.3. A consequence of the previous theorem is that the spectrum of H is
given by the union of the spectra of A−BX and XB −D.

Corollary 1.2.4. 1. If the columns of

[
Y

Z

]
span an n-dimensional invariant subspace

V of H such that Y ∈ Cn×n is invertible, then X := ZY −1 is a solution of (1.19).

2. Any

[
Y1

Z1

]
, with Y1 ∈ Cn×n, whose columns span V , is such that Y1 is invertible

and X = Z1Y
−1
1 .

Proof. 1. By the definition of invariant subspace, there exists a matrix Λ ∈ Cn×n

such that H

[
Y

Z

]
=

[
Y

Z

]
Λ. Since Y is invertible by hypothesis, we can rewrite this

expression as

H

[
In

ZY −1

]
Y =

[
In

ZY −1

]
Y Λ.

By setting X = ZY −1 and T = Y ΛY −1, we have that H

[
In

X

]
=

[
In

X

]
T. Thus, by

Theorem 1.2.2, we can conclude that X is a solution of (1.19).

2. Assume now that the columns of

[
Y1

Z1

]
span the same subspace V . Then, we can

write its columns as a linear combination of the columns of

[
Y

Z

]
, i.e. there exists

a nonsingular matrix T such that

[
Y1

Z1

]
=

[
Y

Z

]
T, i.e. Y1 = Y T , Z1 = ZT .

Therefore, Y1 is invertible because it is the product of invertible matrices, and
Z1Y

−1
1 = ZTT−1Y −1 = X.

Definition 1.2.5. We say that an n-dimensional invariant subspace of H is a graph
subspace if it is spanned by the columns of an (n+m)× n matrix whose leading n× n

submatrix is invertible.

From the previous results, it follows

Theorem 1.2.6. There is a one-to-one correspondence between the solutions of a NARE
and the n-dimensional graph invariant subspaces of the matrix H.

There are several special cases derived from (1.19) that one can study, but we will
focus only on the symmetric case, usually referred to as the continuous-time algebraic
Riccati equation.

1.2.2 Continuous-time algebraic Riccati equation

Definition 1.2.7. A Continuous-time Algebraic Riccati Equation (CARE) is a special
case of a NARE of the form

C +XA+ ATX −XBX = 0, (1.20)

where X ∈ Rn×n is the unknown and A,B,C ∈ Rn×n are the coefficients, with B =

BT, C = CT.

Remark 1.2.8 (Hermiticity of the solution). By taking the complex conjugate on both
sides of (1.20), it follows that if X is a solution of the equation, then also XH is. Therefore,
under the assumption of existence and uniqueness, the solution is Hermitian.

Note that in this case the matrix H has the form H =

[
A −B

−C −AT

]
and it is a

Hamiltonian matrix.

Definition 1.2.9. We say that a solution X of (1.20) is (almost) stabilizing if the
spectrum of A − BX is contained in the (closed) left half-plane C<. Similarly, we say
that a solution X of (1.20) is (almost) antistabilizing if the spectrum of A − BX is
contained in the (closed) right half-plane C>.

Remark 1.2.10. From a direct computation, it is easy to observe that a solution X is
Hermitian if and only if [

In XH
]
J

[
In

X

]
= 0,

where J is the matrix defined previously.

The following theorem presents a sufficient condition for the uniqueness of a Hermitian
stabilizing solution for (1.20).

Theorem 1.2.11 ([18]). If H has no pure imaginary eigenvalues and there exists a
solution X such that A − BX is stable, then X is the unique stabilizing solution, in
particular X is Hermitian.

In the study of CAREs, we are usually interested in the maximal and minimal Her-
mitian solutions, where the semiordering is meant with respect to positive definiteness.
In the following, we list a few results concerning the existence and uniqueness of almost
stabilizing and antistabilizing solutions for (1.20).

Theorem 1.2.12 ([5]). Assume B ⪰ 0. There exists a unique Hermitian solution X+ of
(1.20) such that the eigenvalues of A−BX+ have nonpositive real part if and only if the
pair (A,B) is stabilizable and the partial multiplicities of the pure imaginary eigenvalues
of H, if any, are all even.

Theorem 1.2.13 ([5]). Assume B ⪰ 0. There exists a unique Hermitian solution X−

of (1.20) such that the eigenvalues of A − BX− have nonnegative real part if and only
if the pair (−A,B) is stabilizable and the partial multiplicities of the pure imaginary
eigenvalues of H, if any, are all even.

Definition 1.2.14. We call the solutions X+ and X− of the previous two theorems
maximal and minimal solutions of (1.20), respectively.

To better understand the origin of this definition, let us consider the following theo-
rem:

Theorem 1.2.15 ([5]). Assume B ⪰ 0. Suppose that the CARE (1.20) has X+ and X−

among its solutions. If X is any other Hermitian solution, then X− ⪯ X ⪯ X+.

Let us now examine how the notions of stabilizability and detectability for a dynam-
ical system are linked to the properties of the maximal and minimal solutions of the
corresponding CARE.

Theorem 1.2.16 ([5]). Let B,C ⪰ 0. The pair (A,B) is stabilizable if and only if the
matrix X+ is the unique Hermitian positive semidefinite solution of (1.20) such that
the eigenvalues of A − BX+ have nonpositive real part. The pair (A,B) is stabilizable
and (A,C) is detectable if and only if the matrix X+ is the unique Hermitian positive
semidefinite solution of (1.20) such that the eigenvalues of A− BX+ have negative real
part.

A similar result holds for X−.

Theorem 1.2.17 ([5]). Let B,C ⪰ 0. The pair (−A,B) is stabilizable if and only if the
matrix X− is the unique Hermitian negative semidefinite solution of (1.20) such that the
eigenvalues of A − BX− have nonnegative real part. The pair (−A,B) is stabilizable
and (−A,C) is detectable if and only if the matrix X− is the unique Hermitian negative
semidefinite solution of (1.20) such that the eigenvalues of A − BX− have positive real
part.

For more details, see [5, 46].
From the previous theory, it follows that any solution of an algebraic Riccati equation can
be obtained from an invariant subspace of a suitable matrix. The most straightforward
way to find an invariant subspace is through eigenvectors, but this procedure may be
ill-conditioned, so we will consider a more numerically stable scheme based on the Schur
decomposition.
Theorem 1.2.6 shows that in order to compute the stabilizing solution of (1.20), it is

sufficient to compute a basis of the stable invariant subspace of H =

[
A −B

−C −AT

]
,

which is unique by the splitting of eigenvalues of H. To do that, we first compute the
complex Schur decomposition of H, i.e. H = UTUH, with U ∈ C2n×2n unitary and
T ∈ C2n×2n upper triangular. Then, we reorder T by permuting its columns so that the
eigenvalues with negative real parts are in the top-left block, the stable subspace:

H = UV V HTV V HU∗ = UnewTnewU
H
new,

where V ∈ C2n×2n is a unitary matrix. By partitioning Unew and Tnew into four n × n

blocks

Unew =

[
U11 U12

U21 U22

]
, Tnew =

[
T11 T12

0 T22

]
,

we can write

H

[
U11

U21

]
=

[
U11

U21

]
T11,

and, thus, the stabilizing solution is given by X = U21U
−1
11 . Note that since we have to

compute the Schur decomposition of H to obtain X, the complexity cost of this method
is O(n3) flops.
The implementation is shown in Algorithm 5.

In the literature, one may also find a more general version of CAREs called generalized
continuous-time algebraic Riccati equations.

Definition 1.2.18. A Generalized Continuous-time Algebraic Riccati Equation (GCARE)
is an equation of the form

C + ETXA+ ATXE − ETXBXE = 0, (1.21)

where all the coefficient matrices belong to the space Rn×n, with B = BT and C = CT.

Remark 1.2.19. Recall that if det(E) ̸= 0, then det(ET) ̸= 0. Therefore, under the
assumption that E is nonsingular, by multiplying (1.21) on the left by E−∗1 and on the
right by E−1, the GCARE is reduced to the CARE

C̃ +XÃ+ ÃTX −XBX = 0,

where Ã = AE−1 and C̃ = E−∗CE−1.

1We denote E−T =
(
ET
)−1.

Algorithm 5 Invariant subspace method for CARE
function X = inv_sub(A,B,C)

1: n = size(A, 1)

2: % Compute H and its Complex Schur Decomposition

3: H =

[
A −B

−C −AT

]
4: [U, T] = schur(H, ’complex’)

5: [V, B̃] = schur(BT, ’complex’)

6: % Reorder the Schur form to bring eigenvalues with Re(λ) < 0 to the

top-left

7: eigs_H = ordeig(T)

8: select = real(eigs_H) < 0

9: [Unew, Tnew] = ordschur(U, T, select)

10: U11 = Unew(1 : n, 1 : n)

11: U21 = Unew(n+ 1 : end, 1 : n)

12: Solve XU11 = U21 for X

13: return X

Chapter 2

Large Scale Methods

In the previous chapter, we introduced the main concepts and results that will be used
throughout this work, and we presented several classical solution methods for different
types of matrix equations. However, when dealing with real-world data, the dimensions
of the matrices are often very large. In such cases, the algorithms discussed earlier
become impractical due to their high computational cost and memory requirements. To
address large-scale problems efficiently, one typically represents the coefficient matrices
in low-rank or sparse form and develops iterative schemes that exploit this structure.
In this chapter, we present recent methods for solving Lyapunov equations and algebraic
Riccati equations. We begin with the Alternating Direction Implicit (ADI) method [4]
for solving large Lyapunov equations, followed by two of its low-rank variants based
on the ZZH [28] and LDLT [27] decomposition of the solution X. Next, we recall
Newton’s method [38] and provide two Newton-based schemes for solving CAREs: the
Newton–Kleinman method [25] and Newton’s method with exact line search [14]. Finally,
we introduce a more recent method for solving algebraic Riccati equations, the RADI
method [9]. For each of these approaches, we provide MATLAB implementations along
with observations on their properties and derivation.

27

2.1 Alternating Direction Implicit

The alternating direction implicit (ADI) method [4] is a very common scheme used
to solve large and sparse Lyapunov equations of the form

AX +XAT = Q, (2.1)

with A, Q ∈ Rn×n and Q ⪯ 0, where A is a sparse matrix and Q is a low-rank matrix.
Assume that (2.1) has a unique solution X. The ADI iteration is defined by

(A+ pkIn)Xk− 1
2
= Q−Xk−1(A

T − pkIn), (2.2)

(A+ pkIn)Xk = Q−XH
k− 1

2
(AT − pkIn), (2.3)

for k = 1, 2, . . . , kmax, where X0 = 0 is the initial guess and the shift parameters pk ∈ C
are called ADI parameters. The complete implementation is provided in Algorithm 6.

One crucial problem in the numerical implementation of the ADI method is the choice
of the shift parameters, which can significantly affect the convergence of the method, as
shown by the following theorem.

Theorem 2.1.1 ([4]). Let X be the solution of the Lyapunov equation (2.1). If A

is diagonalizable, in particular if T−1AT is a diagonal matrix, and Xk is the matrix
obtained at the k-th step of the ADI iteration with parameters p1, . . . , pk, such that
{p1, . . . , pk} = {p1, . . . , pk} and X0 = 0, then

||X −Xk||2 ≤ µ2
2(T)f(p1, . . . , pk)

2||X||2,

with µ2(T) = ||T ||2||T−1||2 and

f(p1, . . . , pk) = max
x ∈ spec(A)

∣∣∣∣∣
k∏

i=1

x− pi
x+ pi

∣∣∣∣∣ = max
x ∈ spec(A)

|Fp1(x) · · · Fpk(x)| ,

where Fγ(z) := (z + γ)−1(z − γ).

This result suggests an approach for selecting the optimal shift parameters to accel-
erate the convergence, based on solving an optimization problem. Let kmax be the fixed

Algorithm 6 ADI method
function [X, normres, iter] = adi(A,Q, p, kmax, tol)

1: n = size(A, 1), np = length(p)

2: R = −Q

3: normres = ∥R∥F
4: iter = 0

5: X1 = 0

6: cond = normres>tol && iter<kmax

7: while cond do

8: p = p(mod(iter, np) + 1)

9: T = AT − pIn

10: LHS = A+ pIn, RHS1 = Q−X1T

11: % Compute Xk− 1
2

12: Solve LHS ·Xhalf = RHS1 for Xhalf

13: RHS2 = Q−XH
halfT

14: % Compute Xk

15: Solve LHS ·X2 = RHS2 for X2

16: ∆ = X2 −X1

17: R = R + A∆+∆AT

18: iter = iter+ 1

19: normres(iter) = ∥R∥F
20: X1 = X2

21: cond = normres>tol && iter<kmax

22: end while

23: return X = X1

maximum number of ADI iterations. We aim to find the parameters that minimize the
function f(p1, . . . , pkmax) of Theorem 2.1.1, i.e. we need to solve the following min-max
problem

min
p1,...,pkmax

max
x∈R

∣∣∣∣∣
kmax∏
i=1

x− pi
x+ pi

∣∣∣∣∣ , (2.4)

where R ⊂ C is either the spectrum of A or a set containing it, and, for i = 1, . . . , k,
either pi is real or there exists j ∈ {1, . . . , kmax} such that pj = pi. The solution of (2.4)
is generally not known, but, in some cases, it is, e.g. when the eigenvalues of A are
all real and negative [44, 45]. For large-scale matrices, the whole spectrum is usually
unknown and, therefore, one uses, e.g., a small number of Ritz values which are used
to solve the optimization problem in an approximate sense to get the so called heuristic
shift parameters. Others approaches can be found in [43, 34, 28, 26].

Remark 2.1.2. From (2.2), it follows that we can express the solution Xk in terms of
the solution at the previous iteration as follows:

Xk = Fpk(A)X
H
k−1Fpk(A

T) +Rk, k ≥ 1,

where Fγ(z) is the function defined in Theorem 2.1.1 and Rk = (A + pkIn)
−1Q(I −

Fpk(A
T)) = 2ℜ(pk)(A + pkIn)

−1Q(AT + pkIn)
−1. Moreover, let us note that Fpk(A)

H =

Fpk

(
AT
)
. In fact,

Fpk(A)
H =

(
AT − pkIn

) (
AT + pkIn

)−1

= In − 2ℜ(pk)
(
AT + pkIn

)−1

=
(
AT + pkIn

)−1 (
AT − pkIn

)
= Fpk

(
AT
)
.

Since X0 and Rk are Hermitian for any k, then Xk is Hermitian for any iteration k.

2.1.1 Low-rank ADI

In the large-scale context, the structure of the Lyapunov equations we want to solve
is slightly different from (2.1). That is because we assume that the coefficient matrices in
the equation have special properties, such as sparsity or low-rank decomposition struc-
ture, in order to save computational cost and memory. Let us now introduce a variant of

the ADI method that exploits the low-rank representation of Q, called Cholesky factor
ADI (CF-ADI) [28].
Let us consider the following Lyapunov equation:

AX +XAT = −BBT, (2.5)

where A ∈ Rn×n is assumed to be stable and B ∈ Rn×l is full rank, with l ≪ n. Thus,
Q = −BBT is negative semidefinite and low-rank. Let us assume ℜ(pk) < 0 for any k.
From Remark 2.1.2, since Q ⪯ 0 and X0 = 0, it follows that Xk ⪰ 0 for each k and

rank(Xk) ≤ rank(Xk−1) + rank(B) ≤ rank(Xk−2) + 2 · rank(B) ≤ . . . ≤ k · l.

The idea of the CF-ADI method is to write Xk = ZkZ
H
k , where Zk ∈ Cn×lk is called

low-rank Cholesky factor of Xk, and to update at each iteration k the factor Zk without
forming Xk explicitly. For given ADI shifts {p1, . . . , pk} ∈ C<, the low-rank ADI method
successively computes

V1 = (A+ p1In)
−1B ∈ Cn×l (2.6)

Vk = Vk−1 − (pk + pk−1)(A+ pkIn)
−1Vk−1 ∈ Cn×l, k ≥ 2. (2.7)

At the k-th iteration, the approximate low-rank solution factor is

Zk =
[√

−2ℜ(p1)V1, . . . ,
√
−2ℜ(pk)Vk

]
∈ Cn×kl,

i.e.

Zk =
[
Zk−1,

√
−2ℜ(pk)Vk

]
.

Let us now investigate the low-rank nature of the residual [26]. For k ≥ 2, the identity
(2.7) can be written as

Vk = (In − (pk + pk−1)(A+ pkIn)
−1)Vk−1 = (A− pk−1In)(A+ pkIn)

−1Vk−1

=

(
k∏

j=2

(A− pj−1In)(A+ pjIn)
−1

)
(A+ pkIn)

−1B. (2.8)

Moreover, observe that the matrices A ± pIn and (A + qIn)
−1 commute for all p, q ∈

C \ spec(A). In fact,

(A+ pIn)(A+ qIn)
−1 = In + (p− q)(A+ qIn)

−1 = (A+ qIn)
−1(A+ pIn) (2.9a)

(A− pIn)(A+ qIn)
−1 = In − (p+ q)(A+ qIn)

−1 = (A+ qIn)
−1(A− pIn). (2.9b)

Let us denote Wk−1 :=

(
k−1∏
j=1

(A− pjIn)(A+ pjIn)
−1

)
B and set W0 = B. Thus, (2.8)

becomes

Vk = (A+ pkIn)
−1

(
k−1∏
j=1

(A− pjIn)(A+ pjIn)
−1

)
B = (A+ pkIn)

−1Wk−1.

It follows that

Wk = (A− pkIn)Vk = (A− pkIn)(A+ pkIn)
−1Wk−1

= (In − 2ℜ(pk)(A+ pkIn)
−1)Wk−1 = Wk−1 − 2ℜ(pk)Vk ∈ Cn×l.

Therefore, we have found a recurrence relation to update the residual Wk−1 using Vk.
From (2.8), we obtain another expression to write Wk:

Wk = (A− pkIn)Vk =
k∏

j=1

(A− pjIn)(A+ pjIn)
−1B = PkB, (2.10)

with Pk = Pk(A, p1, . . . , pk) :=
k∏

j=1

(A− pjIn)(A+ pjIn)
−1. To justify the introduction of

Wk, we recall [11], where it is proved that the Lyapunov residual at the k-th step Rk can
be written as

Rk = AZkZ
H
k + ZkZ

H
k A

T +BBT = PkBBTPk = WkW
T
k ,

i.e. at iteration k, the residual has rank at most l. Actually, if pk /∈ spec(A) for any k,
then the rank is exactly l.

Remark 2.1.3 (Real arithmetic). As we have already enlightened, the choice of the ADI
shifts is crucial for improving the convergence of the method. One aspect we should also

care about is that complex shifts require complex arithmetic computations and more
memory. For this purpose, Benner et al. [10] introduced a reformulated low-rank ADI
iteration, where they exploit the fact that the ADI shifts need to occur either as a real
number pk ∈ R< or as a pair of complex conjugate numbers pk ∈ C<, pk+1 = pk.

Remark 2.1.4 (Complexity). The CF-ADI method results in considerable savings in
computational time and memory, and the complexity of this method is considerably less
than that of standard ADI as shown in Table 2.1 [28].

Table 2.1: Complexity of CF-ADI and ADI.
J is the total number of ADI iterations.

CF-ADI ADI

Sparse A O(Jln) O(Jn2)

Full A O(Jln2) O(n3) +O(Jn2)

In Algorithm 7, we provide the implementation of the CF-ADI in a more general
case, where the coefficient of the linear term has the form A + UV T, for U, V low-rank
matrices. In this case, we exploit this structure for the solution of the linear systems by
using the Sherman-Morrison-Woodbury identity [23].

As we will see later, the scheme we have just presented can still be improved, espe-
cially when solving differential Riccati equations with backward differentiation formulas
(see Chapter 4). In that case, the decomposition X = ZZH of the solution may lead to
complex arithmetic, which in turn makes complex storage unavoidable. In the following,
we present a recent ADI iteration based on an LDLT decomposition that keep the com-
putations in real arithmetic [27].
Let us consider a Lyapunov equation of the form

ATX +XA = −GSGT, (2.11)

where G ∈ Rn×l, l ≪ n and S = ST ∈ Rl×l. The main idea of the scheme is to split
the right-hand side of the equation in the form GSGT and the solution as X = LDLT,
where L will be of low rank and D is a symmetric and block-diagonal matrix. The ADI

Algorithm 7 ZZH-factorization based ADI method
function [Z, normres, iter] = cf_adi(A, T, U,B, p, kmax, tol)

1: np = length(p), n = size(A, 1), m = size(T, 2)

2: W = B, Z = []

3: if ∥WHW∥F < 1e − 14 then

4: Z = zeros(n, 0)

5: normres = 0, iter = 0

6: else

7: iter = 1, normres = ∥WHW∥F
8: cond = normres(iter) > tol && iter < kmax

9: while cond do

10: p1 = p(mod(iter− 1, np) + 1)

11: Ã = A+ p1I

12: if T = 0 and U = 0 then

13: V = ℜ(Ã−1W)

14: else

15: M = Ã−1W , N = Ã−1T , L = I + U⊤N

16: V = M −N(L−1(U⊤M))

17: end if

18: if ℑ(p1) == 0 then

19: W = W − 2p1V

20: V =
√

−2ℜ(p1)V
21: else

22: γ = 2
√
−ℜ(p1), δ = ℜ(p1)/ℑ(p1)

23: W = W + γ2(ℜ(V) + δ · ℑ(V))

24: V = [γ(ℜ(V) + δ · ℑ(V)), γ
√
δ2 + 1 · ℑ(V)]

25: end if

26: Z = [Z, V]

27: iter = iter+ 1, normres(iter) = ∥WHW∥F
28: cond = normres(iter) > tol&&iter < kmax

29: end while

30: end if

31: return Z

iteration becomes

LkDkL
T
k = −2ℜ(µk)(A

T + µkIn)
−1GSGT(A+ µkIn)

−1 (2.12)

+ (AT + µkIn)
−1(AT − µkIn)Lk−1Dk−1L

T
k−1(A− µkIn)(A+ µkIn)

−1, (2.13)

with L0, D0 = [] and ADI shift parameters µk ∈ C. Therefore, we can compute Lk and
Dk as follows:

Lk := [(AT + µkIn)
−1G, (AT + µkIn)

−1(AT − µkIn)Lk−1],

Dk :=

[
−2ℜ(µk)S

Dk−1

]
.

Let us simplify the denotation by setting Rk := (AT + µkIn)
−1 and Tk := AT − µkIn.

From the recurrence formula above and the commutativity of the Rk’s and Tk’s, it holds

Lk = [R1G, R2T1(R1G), . . . , Rk+1Tk(RkTk−1 . . . R2T1R1G)],

Dk =


−2ℜ(µ1)S

−2ℜ(µ2)S
. . .

−2ℜ(µk)S

 = −2diag(ℜ(µ1), . . . ,ℜ(µk))⊗ S.

Note that the introduction of the potentially indefinite matrices S and Dk in the decom-
position of the right-hand side and the solution, respectively, avoids the need for complex
storage and arithmetic. We report an implementation of this scheme in Algorithm 8.

Remark 2.1.5 (Column compression). As the iterations proceed, the number of columns
of Z in Algorithm 7, or of Lk and Dk in Algorithm 8, increases. This results in increased
memory requirements for storing the solution. One way to keep the factors as small
as possible is to perform a column compression operation at the end of the while loop.
Given a prescribed tolerance tol as a truncation criterion, a naive column compression
for the ZZH decomposition is given by Algorithm 9. For the LDLT decomposition, the
procedure is analogous [27].

Algorithm 8 LDLT-factorization based ADI method
function [L,D] = ldlt_adi(µ1, . . . , µk, A,G, S, tol)

% ADI shifts: µ1, . . . , µk ∈ C

1: W0 = G, j = 1

2: while ∥Wj−1SW
T
j−1∥2 ≥ tol · ∥GSGT∥2 do

3: Solve (A+ µjIn)Vj = Wj−1 for Vj

4: if µj ∈ R then

5: Wj = Wj−1 − 2µjVj

6: Lj = [Lj−1, Vj]

7: else

8: ηj =
√
2, δj =

ℜ(µj)

ℑ(µj)
9: Wj+1 = Wj−1 − 4ℜ(µj)

(
ℜ(Vj) + δjℑ(Vj)

)
10: Lj+1 = [Lj−1, ηj(ℜ(Vj) + δjℑ(Vj)), ηj

√
δ2j + 1ℑ(Vj)]

11: j = j + 1

12: end if

13: j = j + 1

14: end while

15: Dj = −2 diag(ℜ(µ1), . . . ,ℜ(µj))⊗ S−1

16: return L,D

Algorithm 9 Column Compression
function Z = col_comp(Z, tol)

1: [A, S,_] = svd(Z, 0)

2: Choose last index i such that S(i, i)/S(1, 1) ≥ tol

3: % Truncation

4: Z = A(:, 1: i)S(1 : i, 1: i)

5: return Z

2.2 Newton’s Method

In the previous section, we presented a highly efficient scheme for solving large-
scale Lyapunov equations. In what follows, we introduce a classic iterative approach for
solving nonlinear equations: Newton’s method [38]. We apply this method to compute
the solution of algebraic Riccati equations, which are nonlinear due to the quadratic term
involving the solution. The idea, in this case, is to linearize the ARE using Newton’s
method and then solve the resulting Lyapunov equation with the CF-ADI algorithm.
Let us now recall the general Newton’s procedure to compute the solution X of the
problem F(X) = 0, where F : V → V is a differentiable operator in a Banach space.
The iteration is defined by

Xk+1 = Xk − (F ′
Xk

)−1[F(Xk)], X0 ∈ V , (2.14)

where F ′
X is the Fréchet derivative of F at the point X. To avoid the explicit construction

of F ′
Xk

, which can be unstable and expensive, at each step we solve the equivalent problem

F ′
Xk

[Hk] = −F(Xk), Xk+1 = Xk +Hk, (2.15)

where Hk := Xk+1 − Xk is called Newton increment. Once we compute Hk, there are
different ways to update the solution. In the following, we present two of these methods:
Newton-Kleinman and Newton with exact line search.

2.2.1 Newton-Kleinman

Assume we want to solve the CARE

R(X) := Q+XA+ ATX −XSX = 0, (2.16)

where A, Q, S, X ∈ Rn×n, Q = QT, S = ST, and R(X) is the Riccati operator. As
we have already highlighted, it is nonlinear. Thus, to linearize it following (2.15), we
first have to compute the Fréchet derivative R′

X of R at X ∈ V , where, in this case,
V = Cn×n. Let H ∈ Cn×n and h ∈ R. Then,

R(X + hH) := Q+XA+ hHA+ATX + hATH −XSX − hXSH − hHSX − h2HSH.

Therefore, by applying the definition of Fréchet derivative,

lim
h→0

[R(X + hH)−R(X)] = lim
h→0

(
hHA+ hATH − hXSH − hHSX − h2HSH

)
= (A− SX)TH +H(A− SX),

we conclude that the Riccati operator R is differentiable at X and R′
X [H] = (A − SX)TH +

H(A− SX), for any H ∈ Cn×n. The Newton iteration (2.15) applied to (2.16) is given by

R′
Xk

[Hk] = −R(Xk), Xk+1 = Xk +Hk. (2.17)

To compute the solution Hk, we need to solve a Lyapunov equation. This can be done efficiently

using either the ADI or CF-ADI method, depending on the structure of the coefficient matrices,

see Algorithms 6 and 7. In particular, let us notice that Hk is Hermitian, as it is solution of a

Lyapunov equation. Moreover, if X0 is Hermitian, then Xk+1 is also Hermitian for any k. Let

us now recall that Newton’s method requires an initial guess X0 to start [21], and its choice

is crucial for the convergence of the method: an initial guess that is too far from the exact

solution may cause the method to fail, whereas one that is close to the solution can significantly

accelerate convergence. In the following, we state a few results that characterize good choices

for X0 when solving CAREs.

Theorem 2.2.1 ([25, 20]). Assume that S, Q ⪰ 0 and the pairs (A,S) and (AT, Q) are

stabilizable. If X0 is any Hermitian matrix such that spec(A − SX0) ⊂ C<, then Newton’s

method applied to (2.16) yields a sequence of Hermitian matrices {Xk}k≥0 such that

1. spec(A− SXk) ⊂ C< for every k;

2. X1 ⪰ X2 ⪰ . . . ⪰ X+;

3. lim
k→∞

Xk = X+;

4. for any matrix norm || · ||, there exists a constant c > 0 such that ||Xk+1 − X+|| ≤
c||Xk −X+||2 for k ≥ 0, i.e. the convergence is globally quadratic;

where X+ is assumed to be the unique stabilizing solution of the equation.

Under the hypotheses of the previous theorem, it’s sufficient to choose a Hermitian stabiliz-

ing matrix X0 in order to guarantee the quadratic convergence of the method. In what follows,

we investigate a numerical procedure to choose such an X0, so that the method becomes self-

contained. We begin by recalling the following lemma.

Lemma 2.2.2 ([37]). Let F, Q ∈ Cn×n. If either Q is positive definite or Q = −GGH, G ∈
Cn×m and m ≤ n, with the pair (F,G) controllable, then the Lyapunov equation FX+XFH =

−Q has a positive definite solution if and only if F is a stable matrix.

Assume now that A is stable and S ⪰ 0. Let (A,S) also be controllable, i.e. rank([A −
λIn, S])=n for any λ ∈ C.

Remark 2.2.3. (A,S) is controllable if and only if rank([A−λIn, S])=n for any λ ∈ spec(A). In

fact, if λ /∈ spec(A), then A−λIn is invertible, thus rank(A−λIn)=n and rank([A−λIn, S])=n.

The converse also holds.

Let λ ∈ spec(A) and β > 0. Then −(λ+ β) ∈ spec(-(A+ βIn)). We want to choose β such

that, for any λ ∈ spec(A), spec(−(A+ βIn)) ⊂ C< , i.e.

ℜ(−(λ+ β)) < 0,

i.e.

β > −ℜ(λ).

For this purpose, we can choose β > 0 and β > max
λ∈ spec(A)

−ℜ(λ) = − min
λ∈ spec(A)

ℜ(λ). Observe

now that (A + βIn, S) is controllable. In fact, using Remark 2.2.3, if µ ∈ spec(A + βIn),

then there exists λ ∈ spec(A) such that µ = λ + β. Therefore, for any µ ∈ spec(A + βI),

rank([(A + βIn)−µIn, S])=rank([(A + βIn − λIn − βIn, S])=rank([A − λIn, S])=n, for any

λ ∈ spec(A). Similarly, we can prove that (−A−βIn,
√
2S) is controllable. Now, using Lemma

2.2.2 with F = −(A+ βIn) and G =
√
2S, we can conclude that there exists a unique positive

definite solution X̂ to

(A+ βIn)X +X(A+ βIn)
T = 2SST. (2.18)

Let us define X−1 := STX̂−1, which is well-defined since X̂ ≻ 0, thus invertible. Then, we can

rewrite equation (2.18) as

(A− SX−1)X̂ + X̂(A− SX−1)
T = −2βX̂. (2.19)

Again, from Lemma 2.2.2 with F = A − SX−1 and Q = 2βX̂ ≻ 0, and using that X̂ is the

positive define solution of FX +XFT = −Q, we can conclude that F = A − SX−1 is stable,

i.e. X−1 is a stabilizing matrix. However, in general, X−1 is not Hermitian, but Theorem

2.2.1 suggests to choose an initial guess which is both stabilizing and Hermitian. To do that,

let us introduce a matrix M such that M ≻ XT
−1SX−1. Note that M is positive definite,

because we assumed S ⪰ 0. In fact, for any x ∈ Rn \ {0}, we have xTMx > xTXT
−1SX−1x =

(X−1x)
T S (X−1x) ≥ 0. Hence, xTMx > 0 for any x ∈ Rn \ {0}, so M is positive definite. If we

apply Lemma 2.2.2 to the equation

(A− SX−1)
TX +X(A− SX−1) = −M, (2.20)

using the fact that A−SX−1 is stable, and so it is (A−SX−1)
T, and M ≻ 0, we can deduce that

there exists a unique solution X0 that is positive definite. By adding and subtracting suitable

terms, and setting X = X0, we can rewrite (2.20) in this form

(A−SX0)
TX0+X0(A−SX0) = −M−(X0−X−1)

TS(X0−X−1)−X0SX0+XT
−1SX−1. (2.21)

Finally, applying Lemma 2.2.2 again, we get that A − SX0 is stable, i.e. X0 is the Hermitian

stabilizing solution we were looking for.

Remark 2.2.4. In the more general case in which (A,S) is just stabilizable, it can happen that

the matrix X̂ we previously obtained is just positive semidefinite, and not positive definite. In

that case, a stabilizing matrix X−1 is given by X−1 = STX̂†, where X̂† is the Moore-Penrose

inverse of X̂, often called pseudoinverse of X̂. This case is particularly relevant for large-scale

problems, where the system is often only stabilizable. In such settings, the existence of a positive

semidefinite solution is actually desirable: it ensures stabilizing properties while allowing for

a low-rank representation. Conversely, if the solution were positive definite, i.e. a full-rank

matrix, no exact low-rank decomposition would exist. Therefore, the semidefinite nature of X̂

is not a limitation, but rather an inherent and advantageous feature of large-scale stabilizable

systems.

In the following, we provide the algorithm structure to compute a suitable initial guess X0,

see Algorithm 10.

The Newton–Kleinman method refers to Kleinman’s reformulation of Newton’s method for

algebraic Riccati equations [25], in which each Newton step is expressed as the solution of a

Lyapunov equation. In large-scale settings, these Lyapunov equations are often solved efficiently

using iterative schemes such as the ADI method. Algorithm 11 solves

Q+XA+ATX −XSX = 0, A, Q, S ∈ Rn×n, (2.22)

while Algorithm 12 solves

CTC + ZZHA+ATZZH − ZZHBBTZZH = 0, A ∈ Rn×n, B ∈ Rn×r, C ∈ Rp×n, (2.23)

such that p+ r ≪ n.

Algorithm 10 Initial Guess for Newton’s Method for CAREs
function X = init_newton(A, S)

% Output: X, initial guess for Newton’s method

1: n = size(A, 1)

2: [U, TA] = schur(A) ▷ Real Schur decomposition
3: TD = UTS

4: β = −min
(
ℜ(ordeig(TA))

)
5: β = max(0, β) + 0.5

6: Solve (TA + βIn)X̂ + X̂(TA + βIn)
T = 2SST using Algorithm 6.

7: % Recover X

8: X = TT
DX̂

−1UT

9: % Check whether X is Hermitian or not

10: if ∥X −XT∥ > 10−13 then

11: M = XTSX + 0.5 · In
12: Solve (A− SX)TX +X(A− SX) = −M for X

13: end if

14: return X

Algorithm 11 Newton-Kleinman with ADI
function [X, normres, iter, iter_ADI] = nw_kl(Q,A, S,X0, kmax, k

ADI
max , tol, tolADI)

1: n = size(A, 1), X1 = X0

2: Rtemp = Q+ AX0 +X0A
T −X0SX0

3: normres = ∥Rtemp∥F , iter = 0

4: cond = normres > tol && iter < kmax

5: while cond do

6: Ahat = AT −X1S

7: X
(0)
ADI = 0

8: % Compute the vector params with the shift parameters

9: Solve AhatH +HAH
hat = −R using Algorithm 6:

10: [H,∼, iter_adi] = adi(Ahat,−Rtemp, params, X
(0)
ADI, k

ADI
max , tolADI)

11: X2 = X1 +H

12: iter = iter + 1

13: iter_ADI(iter) = iter_adi

14: R = Q+ AX2 +X2A
T −X2SX2

15: normres(iter) = ∥R∥F
16: Rtemp = R

17: X1 = X2

18: cond = normres(iter) > tol && iter < kmax

19: end while

20: return X1

Algorithm 12 Newton-Kleinman with CF-ADI
function [Z, normres, iter, iter_ADI] = nw_kl_lr(C,A,B, Z0, kmax, k

ADI
max , tol, tolADI)

1: n = size(A, 1), p = size(C, 1)

2: X0 = Z0Z
H
0

3: R = CTC + ATX0 +X0A−X0BBTX0

4: normres = ∥R∥F , iter = 0, Z1 = Z0

5: cond = normres > tol && iter < kmax

6: while cond do

7: Compute the vector params with the shift parameters
8: T = −Z1(Z

H
1 B), U = B, G = [CT,−T]

9: Solve (AT + TUT)X +X(AT + TUT)H = −GGH using Algorithm 7:
10: [Z2,∼, iter_adi] = cf_adi(AT, T, U,G, params, kADI

max , tolADI)

11: iter = iter+ 1, iter_ADI(iter) = iter_adi

12: % Compute residual via LDLT factorization

13: l = size(Z2, 2)

14: L = [ATZ2, Z2, C
T], Y = ZH

2 B

15: D =


Il

Il −Y Y H

Ip


16: [∼, R] = qr(L, 0)

17: normres(iter) = ∥RDRH∥F
18: cond = normres > tol && iter < kmax

19: Z1 = Z2

20: end while

21: Z = Z1

22: return Z

2.2.2 Exact Line search

Previously, we have described the canonical way to update the solution Xk once we find

Hk, i.e. by simply computing Xk+1 = Xk +Hk. A more efficient procedure to compute Xk+1 is

given by the so called Newton’s iteration with exact line search [14]. The idea is to introduce, at

each step, a Newton’s step size tk such that Xk+1 = Xk + tkHk, where tk is computed through

the minimization problem

min
t

||R(Xk + tHk)||2F .

From (2.16), we obtain

R(Xk + tHk) = R(Xk) + t[(A−BXk)
HHk +Hk(A−BXk)]− t2HkBHk.

If Vk := HkBHk and Hk solves (2.17), then

R(Xk + tHk) = (1− t)R(Xk)− t2Vk.

Thus, the quantity we want to minimize can be rewritten as

fk(t) := ||R(Xk + tHk)||2F = trace(R(Xk + tHk)
2) = αk(1− t)2 − 2βk(1− t)t2 + γkt

4,

where αk = trace(R(Xk)
2), βk = trace(R(Xk)Vk), γk = trace(V 2

k).

Let us note that if γk ̸= 0, then fk(t) has at most two local minima, one of which is the global

minimum. Conversely, if γk = 0, the function fk(t) attains its global minimum value (zero) at

t = 1. In this case, the increment Vk vanishes, meaning that any choice of t yields the same

result. This situation corresponds to stagnation of the iteration, which can occur only when

Hk = 0 or BHk = 0, i.e. when X (or equivalently BX) no longer changes, indicating that the

solution has been reached.

Remark 2.2.5. By differentiating f , we obtain

ḟk(t) = −2 trace((R(Xk) + 2tVk)(R(Xk + tHk))

= −2 trace((R(Xk) + 2tVk)((1− t)R(Xk)− t2Vk)).

Since ḟk(0) = −2 trace(R
(
Xk)

2
)
≤ 0, and ḟk(2) = 2 trace

(
(R(Xk) + 4Vk)

2
)
≥ 0, there exists

a local minimum of fk at some value of tk ∈ [0, 2]. Moreover, if R(Xk) ̸= 0, i.e. if Xk is not

a solution of (2.16), then ḟk(0) < 0, so the Newton step is a descent direction of ||R(Xk +

tHk)||F . Therefore, for the minimizing tk ∈ [0, 2], we have ||R(Xk + tHk)||F ≤ ||R(Xk)||F and

||R(Xk + tHk)||F = ||R(Xk)||F if and only if R(Xk) = 0.

See Algorithm 13 for the implementation. In the low-rank case, the procedure is analogous,

but cf_adi is used instead.

2.3 RADI method

In this section, we present the RADI method [9], a scheme for solving continuous-time alge-

braic Riccati equations (CAREs). It can be viewed as a generalization of low-rank methods for

Lyapunov equations and is among the fastest-converging algorithms [8]. Consider the following

CARE

Q+ATX +XA−XSX = 0, (2.24)

where Q = CTC, S = BBT, A ∈ Rn×n, B ∈ Rn×r, C ∈ Rp×n, such that p + r ≪ n. Given a

numerical solution X̂ for (2.24), a common way to measure the quality of the approximation is

to consider the norm of the residual matrix

R(X̂) := Q+ATX̂ + X̂A− X̃SX̂.

The derivation of RADI is based on the following theorem:

Theorem 2.3.1 ([9]). Let X̂ ∈ Cn×n be an approximation to a solution of (2.24).

• Let X = X̂ + X̃ be an exact solution of (2.24). Then X̃ is a solution to the residual

equation

ÃHX̃ + X̃Ã+ Q̃− X̃SX̃ = 0, (2.25)

where Ã = A− SX̂ and Q̃ = R(X̂);

• Conversely, if X̃ is a solution to (2.25), then X = X̂ + X̃ is a solution to the original

Riccati equation (2.24). Moreover, if X̂ ⪰ 0 and X̃ is a stabilizing solution to (2.25),

then X = X̂ + X̃ is the stabilizing solution to (2.24);

• If X̂ ⪰ 0 and R(X̂) ⪰ 0, then the residual equation (2.25) has a unique stabilizing

solution;

• If X̂ ⪰ 0 and R(X̂) ⪰ 0, then X̂ ⪯ X, where X is the stabilizing solution of (2.24).

Therefore, the scheme of the algorithm is the following:

1. Let X̂ = 0 be the initial guess;

Algorithm 13 Newton’s method with exact line search
function [X, normres, iter, iter_ADI] = nw_ls(Q,A, S,X0, kmax, k

ADI
max , tol, tolADI)

1: n = size(A, 1)

2: Rtemp = Q+X0A+ ATX0 −X0SX0

3: normres = ∥Rtemp∥F , iter = 0, X1 = X0

4: cond = normres > tol && iter < kmax

5: while cond do

6: % Fréchet derivative: R′
X(H) = (A− SX)HH +H(A− SX)

7: Â = A− SX1

8: X
(0)
ADI = 0

9: Compute the vector params with the shift parameters
10: Solve ÂHH +HÂ = −Rtemp using Algorithm (6):
11: [H,∼, iter_adi] = adi(ÂH,−Rtemp, params, X

(0)
ADI, k

ADI
max , tolADI)

12: iter = iter+ 1, iter_ADI(iter) = iter_adi

13: % Compute coefficients for line search

14: V = HSH

15: α = trace(RtempRtemp), β = trace(RtempV), γ = trace(V V)

16: Find t minimizing

f(t) = α(1− t)2 − 2β(1− t)t2 + γt4, t ∈ [0, 2]

17: X2 = X1 + tH, R = Q+X2A+ ATX2 −X2SX2

18: normres(iter) = ∥R∥F
19: Rtemp = R, X1 = X2

20: cond = normres(iter) > tol && iter < kmax

21: end while

22: X = X1

23: return X

2. Construct the residual equation (2.25);

3. Compute an approximation X̃1 of the stabilizing solution X̃ for (2.25);

4. Accumulate X̂ = X̂ + X̃1.

In step 3, we need to choose X̃1 ⪰ 0 and ensure that R(X̂ + X̃) ⪰ 0 in order to guarantee

uniqueness of the solution and monotonicity of the sequence of approximate solutions. With

appropriate choices of the shift parameters and by exploiting the recursive construction of the

equation factors, one obtains Algorithm 14.

Algorithm 14 RADI method with reduced use of complex arithmetic
function [Z, Y] = radi(A,B,C, tol)

% Output: X ≈ ZY −1ZT solving (2.24) with Z, Y real

1: R = CT, K = 0, Y = [], Z = []

2: while ∥RHR∥ ≥ tol · ∥CCT∥ do

3: Obtain the next shift σ

4: if first iteration then

5: V =
√

−2ℜ(σ) · (AT + σIn)
−1R

6: else

7: V =
√

−2ℜ(σ) · (AT −KBT + σIn)
−1R ▷ Use SMW if needed

8: end if

9: if σ ∈ R then

10: Z = [Z, V]

11: Ỹ = I − 1
2ℜ(σ)

(
V HB

) (
V HB

)H
12: Y =

[
Y

Ỹ

]
13: R = R +

√
−2ℜ(σ)V Ỹ −1, K = K + (V Ỹ −1)

(
V HB

)
14: else

15: Z = [Z,ℜ(V),ℑ(V)]

16: Vr = (ℜ(V))HB, Vi = (ℑ(V))HB

17: F1 =

[
−ℜ(σ)Vr −ℑ(σ)Vi

ℑ(σ)Vr −ℜ(σ)Vi

]
, F2 =

[
Vr

Vi

]
, F3 =

[
ℑ(σ)Ip
ℜ(σ)Ip

]

18: Ỹ =

[
Ip

1
2
Ip

]
− 1

4|σ|2ℜ(σ)
F1F

H
1 − 1

4ℜ(σ)
F2F

H
2 − 1

2|σ|2F3F
H
3

19: Y =

[
Y

Ỹ

]
20: R = R +

√
−2ℜ(σ) [ℜ(V) ℑ(V)]Ỹ −1(:, 1 : p)

21: K = K + [ℜ(V) ℑ(V)]Ỹ −1

[
Vr

Vi

]
22: end if

23: end while

24: return Z, Y

Chapter 3

New extension of the ADI method

In chapter 2, we introduced the standard ADI method along with two different low-rank

approaches, the ZZH-based one and the LDLT-based one. Moreover, in Theorem 2.1.1 we

presented an upper bound of the error of the numerical approximation depending on the choice

of the shift parameters. What we want to highlight now is that all the previous results and

implementation regarding the alternating direction implicit scheme have been done by assuming

a zero initial guess X0 as starting approximation for the algorithm. In this chapter, we are

presenting an extension of the ADI method in order to support a non-zero initial guess. Note

that we consider this extension only for the LDLT low-rank case.

This novelty has been formulated in [33] by considering the LDLT-type low-rank case and it

has been derived introducing the notion of fully commuting splitting schemes to solve arbitrary

linear systems. In Algorithm 15, we provide the implementation of the scheme presented in the

paper to solve

AX +XAT = −GSGT,

with a large and sparse coefficient matrix A ∈ Rn×n and a low-rank term comprised of the

factors G ∈ Rn×l and S ∈ Rl×l, where l ≪ n.

We present now the generalization of Theorem 2.1.1 for the case of an initial guess X0 ̸= 0.

Theorem 3.0.1. Let X be the solution of the Lyapunov equation (2.1) If A is diagonalizable,

in particular if T−1AT is a diagonal matrix, and Xk is the matrix obtained at the k-th step of

the ADI iteration with parameters p1, . . . , pk, such that {p1, . . . , pk} = {p1, . . . , pk}, then

||X −Xk||2 ≤ µ2
2(T)f(p1, . . . , pk)

2||X −X0||2,

49

Algorithm 15 ADI with a non-zero initial guess
function [V0, V1, . . . , T] = nonzero_adi(A,G, S, Z0, Y0, {αk})

1: Assemble initial residual factors:

R0 =
[
G Z0 AZ0

]
, T =


S

Y0

Y0


2: k = 0

3: repeat

4: if αk ∈ R then ▷ single step
5: Vk = (A+ αkIn)

−1Rk

6: Rk+1 = Rk − 2ℜ(αk)Vk

7: k = k + 1

8: else ▷ double step; requires αk+1 = αk

9: V̂k = (A+ αkIn)
−1Rk

10: δk = ℜ(αk)/ℑ(αk)

11: Vk =
√
2
(
ℜ(V̂k) + δkℑ(V̂k)

)
12: Vk+1 =

√
2(δ2k + 1)ℑ(V̂k)

13: Rk+2 = Rk − 2
√
2ℜ(αk)Vk

14: k = k + 2

15: end if

16: until converged
17: Assemble solution factors (if needed):

Z =
[
Z0 V0 V1 . . .

]
, Y = blockdiag

(
Y0, −2ℜ(α0)T, −2ℜ(α1)T, . . .

)
18: return Z, Y

with µ2(T) = ||T ||2||T−1||2 and

f(p1, . . . , pk) = max
x ∈ spec(A)

∣∣∣∣∣
k∏

i=1

x− pi
x+ pi

∣∣∣∣∣ = max
x ∈ spec(A)

|Fp1(x) · · · Fpk(x)|,

where Fγ(z) := (z + γ)−1(z − γ).

Proof. Let us recall from Remark 2.1.2 that we can express the solution Xk at iteration k in

terms of the solution Xk−1 as follows:

Xk = Fpk(A)XH
k−1Fpk

(
AT
)
+Rk,

where Rk = 2ℜ(pk)(A+ pkIn)
−1Q(AT + pkIn)

−1 and Xk is Hermitian for any k. Therefore, it

holds

Xk −X = Fpk(A)Xk−1Fpk(A)H −X +Rk

= Fpk(A)[Xk−1 −X]Fpk(A)H +Rk −X + Fpk(A)XFpk(A)
H.

Now, observe that

Rk −X + Fpk(A)XFpk(A)H = 2ℜ(pk)(A+ pkIn)
−1(Q−AX −XAT) = 0,

where the last equality holds because X is the solution of (2.1) by hypothesis. Thus, we obtain

the recurrence relation

Xk −X = Fpk(A)[Xk−1 −X]Fpk(A)H,

which leads to

Xk −X = Fpk(A) · · · Fp1(A)[X0 −X]Fp1(A)
H · · · Fpk(A)H.

Taking the 2-norm and using the submultiplicative property of matrix norms, we obtain

||Xk −X||2 ≤ ||Fpk(A) · · · Fp1(A)||2 · ||X0 −X||2 · ||Fp1

(
AT
)
· · · Fpk

(
AT
)
||2. (3.1)

From (2.9), it follows that Fp and Fq commute, so the order of the shifts is irrelevant. Moreover,

if ϕ(z) is a function defined on the spectrum of A = TDT−1, then the corresponding matrix

function ϕ(A) is defined as

ϕ(A) = Tϕ(D)T−1.

Therefore, by setting

ϕ(z) := Fp1(z) · · · Fpk(z),

we get

||ϕ(A)||2 ≤ ||T ||2 · ||ϕ(D)||2 · ||T−1||2 = µ2(T) · max
x∈ spec(A)

|ϕ(x)|. (3.2)

Since {p1, . . . , pk} = {p1, . . . , pk}, it follows that

Fp1

(
AT
)
· · · Fpk

(
AT
)
= ϕ

(
AT
)
=
(
TT
)−1

ϕ(D)TT.

Then, it holds

||ϕ
(
AT
)
||2 ≤ ||TT||2 · ||ϕ(D)||2 · ||

(
TT
)−1

||2 = µ2(T) max
x∈ spec(A)

|ϕ(x)|, (3.3)

where the last inequality follows from the identity µ2(T
T) = µ2(T). Finally, using the bounds

in (3.2) and (3.3) in (3.1), we conclude that

||Xk −X||2 ≤ µ2
2(T)

(
max

x∈ spec(A)
|ϕ(x)|

)2

||X0 −X||2, (3.4)

which proves the claim.

In the following, we present a result that provides an upper bound on the rank of the

numerical solution Xk at iteration k.

Theorem 3.0.2. Let us consider the ADI iteration described in (2.2) and let X0 be a Hermitian

initial guess. Then,

rank(Xk) ≤ rank(X0) + k · rank(Q), for any iteration k.

In particular, if Q = BBT, with B ∈ Rn×l is full rank, then

rank(Xk) ≤ rank(X0) + k · l, for any iteration k.

Proof. From Remark 2.1.2, it follows that

rank(Xk) ≤ rank
(
Fpk(A)XH

k−1Fpk(A)H
)
+ rank(Rk),

for any iteration k. Let us also note that

rank
(
Fpk(A)XH

k−1Fpk(A)H
)
= rank(XH

k−1),

rank(Rk) = rank
(
(A+ pkIn)

−1Q
[
(A+ pkIn)

−1
]H)

= rank(Q),

since the relation of congruence between matrices preserves the rank. Moreover, since X0 is

Hermitian by hypothesis, it follows from Remark 2.1.2 that XH
k−1 = Xk−1 for any k. Therefore,

we obtain the recurrence relation

rank(Xk) ≤ rank(Xk−1) + rank(Q),

that leads to

rank(Xk) ≤ rank(X0) + k · rank(Q),

for any k.

Chapter 4

Differential Riccati Equations

Differential Riccati equations are matrix-valued nonlinear differential equations with ap-

plications in various domains of engineering and science, such as optimal control [29], model

reduction of linear time-varying (LTV) systems [35], damping optimization in mechanical sys-

tems [12], control of shear flows [24], and the numerical solution of stochastic differential equa-

tions [41]. In the previous chapters, we considered only algebraic Riccati equations, but we

now turn to their differential counterpart, i.e., the case where the solution—and possibly also

the coefficients—depends on time. In particular, in this chapter we provide the definition of

the differential Riccati equation, along with various discretization methods for computing its

numerical solution [27, 15]. At the end of the chapter, we present two classical yet impor-

tant applications in engineering that motivate our interest in this topic: the Linear Quadratic

Regulator problem and the Tracking problem [29].

Definition 4.0.1. A Differential Riccati Equation (DRE) is a differential equation of the form{
Ẋ = Q+ATX +XA−XSX, t ∈ [t0, tend],

X(t0) = X0.
(4.1)

where the solution X as well as the coefficient matrices A, Q, and S may depend on time.

The equation is called autonomous if the coefficients are constant in time, and non-autonomous

otherwise.

In the following, we consider several common yet highly effective approaches for solving

differential Riccati equations (DREs). The main idea behind these methods is to apply an

appropriate discretization to the differential equation, thereby reducing it to a sequence of

55

algebraic Riccati equations. In particular, we begin with the Midpoint and Trapezoidal rules,

and then proceed to introduce Backward Differentiation Formulas [27] and Rosenbrock schemes

[15].

4.1 Discretization schemes

4.1.1 Midpoint rule

The Midpoint rule is an implicit scheme derived by applying a quadrature formula to the

integral form of equation (4.1). Given the problem (4.1), we first discretize the domain [t0, tend]

into the points {t0, t1, . . . , tn}. For each step k, let τk := tk+1 − tk denote the time-step size.

The Midpoint method applied to (4.1) [27] yields

Xk+1 = Xk + τkR
(
tk +

τk
2
,
1

2
(Xk +Xk+1)

)
,

where R(t,X) := Q + ATX + XA − XSX and Xk+1 ≈ X(tk+1). This scheme leads to the

algebraic Riccati equation for Xk+1

[
τkQk′ +Xk +

τk
2

(
AT

k′Xk +XkAk′ −
XkSk′Xk

2

)]
+

(
τk
2
Ak′ −

τk
4
Sk′Xk −

1

2
In

)H

Xk+1 +Xk+1

(
τk
2
Ak′ −

τk
4
Sk′Xk −

1

2
In

)
−Xk+1

(τk
4
Sk′

)
Xk+1 = 0,

where Ak′ ≡ A
(
tk +

τk
2

)
, Qk′ ≡ Q

(
tk +

τk
2

)
and Sk′ ≡ S

(
tk +

τk
2

)
.

4.1.2 Trapezoidal rule

Following the same philosophy as the Midpoint rule, and applying a different quadrature

formula, one can derive the Trapezoidal scheme [27]

Xk+1 = Xk +
τk
2
(R(tk, Xk) +R(tk+1, Xk+1)) .

Re-arranging the terms in the equation, we end up with the ARE

[τk
2
Qk+1 +Xk +

τk
2

(
Qk +AT

kXk +XkAk −XkSkXk

)]
+

(
τk
2
Ak+1 −

1

2
In

)T

Xk+1 +Xk+1

(
τk
2
Ak+1 −

1

2
In

)
−Xk+1

(τk
2
Sk+1

)
Xk+1 = 0,

where Qk ≡ Q(tk), Ak ≡ A(tk), Sk ≡ S(tk).

4.1.3 Backward Differentiation Formulas

The Backward Differentiation Formulas (BDFs) [27] are a family of implicit methods used to

numerically solve ordinary differential equations. The idea behind these methods is to express

the solution at a given time in terms of the already-computed solutions from previous time

steps.

The general BDF of order p allows us to discretize (4.1) as

Xk+1 =

p∑
j=1

−αjXk+1−j + τkβR(tk+1, Xk+1).

The expressions αj , β denote the determining coefficients for the p-step BDF formula given in

Table 4.2 (see [2]).

p β α1 α2 α3 α4 α5 α6

1 1 −1

2 2
3 −4

3
1
3

3 6
11 −18

11
9
11 − 2

11

4 12
25 −48

25
36
25 −16

25
3
25

5 60
137 −300

137
300
137 −200

137
75
137 − 12

137

6 60
147 −360

147
450
147 −400

147
225
147 − 72

147
10
147

(4.2)

This discretization leads to the algebraic Riccati equationτkβQk+1 −
p∑

j=1

αjXk+1−j

+

(
τkβAk+1 −

1

2
In

)T

Xk+1

+Xk+1

(
τkβAk+1 −

1

2
In

)
−Xk+1(τkβSk+1)Xk+1 = 0, (4.3)

where Qk+1 ≡ Q(tk+1), Ak+1 ≡ A(tk+1), Sk+1 ≡ S(tk+1) are the coefficient matrices and Xk+1

is the unknown. For large-scale applications the data are usually given in the low-rank form

Qk = CT
kCk, Ck ∈ Rq×n, (4.4a)

Sk = BkB
T
k , Bk ∈ Rn×m, (4.4b)

so that also the solution appears to be of low numerical rank. If we consider the decomposition

of the solution Xk = ZkZ
H
k described in the second chapter, the BDF discretization of (4.1) in

the large-scale context becomes

ĈH
k+1Ĉk+1 + ÂT

k+1Zk+1Z
H
k+1 + Zk+1Z

H
k+1Âk+1 − Zk+1Z

H
k+1B̂k+1B̂

T
k+1Zk+1Z

H
k+1 = 0, (4.5)

with

Âk+1 = τkβAk+1 −
1

2
In,

B̂k+1 =
√

τkβBk+1,

ĈH
k+1 =

[√
τkβC

T
k+1,

√
−α1Zk, . . . ,

√
−αpZk+1−p

]
.

At this point, the main idea is to solve the algebraic Riccati equation (4.5). If we linearize this

ARE by applying Newton’s method, we obtain the Lyapunov equation

Ã
(l) ∗
k+1X

(l)
k+1 +X

(l)
k+1Ã

(l)
k+1 = −G

(l)
k+1G

(l) ∗
k+1 ,

with Ã
(l)
k+1 = Âk+1 − τkβBk+1B

T
k+1X

(l−1)
k+1 and G

(l)
k+1 =

[
ĈH
k+1,

√
τkβX

(l−1)
k+1 Bk+1

]
for X

(l)
k+1 at

the l-th Newton step. Let us observe that for BDF schemes of order p ≥ 2, some of the

coefficients αj , j = 1, . . . , p, are positive, so that the scalars
√−αj in the definition of Ĉk+1

are complex. This leads to a Lyapunov equation with a complex right-hand side factor G,

which makes complex storage unavoidable. However, by using the LDLT factorization Xk+1 =

Lk+1Dk+1L
T
k+1 for the solution of the DRE, we can avoid complex data and arithmetic. The

reason is that the coefficients αj , j = 1, . . . , p, appear in the diagonal block S of the right-hand

side −GSGT, so that we do not need to take the square root of the non-positive coefficients.

The LDLT-based implementation for solving (4.1) with BDF schemes is provided in Algorithm

16.

Remark 4.1.1 (Initialization). Observe that to start a BDF method of order p > 1, the

initial values X0, . . . , Xp−1 are required with sufficient accuracy to obtain the desired order

of convergence. If they are not directly available, as usually happens, we can compute them

Algorithm 16 LDLT-factored BDF method of order p to solve (4.1)
function [L,D, t] = bdf_ldlt(A(t), B(t), C(t), a, b, kmax, tolADI, τ)

% Inputs: A(t), B(t), C(t) coefficient matrix functions, t ∈ [a, b], maximum number of
Newton’s iterations, kmax, ADI tolerance tolADI, step size τ

% Output: For each time step t = tk, (Lk, Dk, tk) such that Xk ≈ LkDkL
T
k

1: t0 = a, m = size(B, 2), q = size(C, 1)

2: for k = 0 to b−a
τ

do

3: tk+1 = tk + τ

4: Âk+1 = τβAk+1 − 1
2
In

5: ĈT
k+1 =

[
CT

k+1, Lk, . . . , Lk+1−p

]
6: for l = 1 to kmax do

7: Ã(l) = Âk+1 − τkβBk+1

(
BT

k+1L
(l−1)
k+1

)
D

(l−1)
k+1 L

(l−1) T
k+1

8: G(l) =
[
ĈT

k+1, K
(l−1)

]

9: S(l) =



τβIq

−α1Dk

. . .

−αpDk+1−p

τβIm


10: Compute the shift parameters {µk}
11: Solve Â(l) TX(l) +X(l)Â(l) = −G(l)S(l)G(l) T using Algorithm 8:
12: [L(l), D(l)] = ldlt_adi(µ1, . . . , µk, Â

(l), G(l), S(l), tolADI)

13: K(l) = L(l)
(
D(l)

(
L(l) T Bk+1

))
14: end for

15: Lk+1 = L(lmax), Dk+1 = D(lmax)

16: end for

17: return L = {Lk}, D = {Dk}, t = {tk}

using the method of order p− 1 with sufficiently small time steps. This process is then applied

recursively to the order p − 1 method in order to generate the initial values required for its

start. Therefore, starting with X0 and applying lower order methods, we can compute all the

initial guesses we need to apply order p method. See Algorithm 2 in [7] for the implementation

of these extra time steps.

4.1.4 Rosenbrock Methods

Rosenbrock methods [31] form a class of implicit schemes that approximate the solution of

differential equations through the solution of a sequence of linear systems. Their application

to differential Riccati equations is presented in [15, 27]. For order p, we have to solve p linear

systems. The general p-stage Rosenbrock method applied to (4.1) yields

(
1

τkγii
In − ∂R

∂X
(tk, Xk)

)
Ki = R

tk,i, Xk +
i−1∑
j=1

ai,jKj

+
i−1∑
j=1

ci,j
τk

Kj + γiτkRtk , (4.6)

Xk+1 = Xk +

p∑
j=1

mjKj , (4.7)

where tk,i = tk+αiτk, i = 1, . . . , p and γi,i, ai,j , ci,j , γi, mj and αi are the method coefficients,

see [22], Rtk = ∂R
∂t (tk, X(tk)) and ∂R

∂X (tk, Xk) is the Fréchet derivative

∂R
∂X

(tk, Xk) : Rn×n ∋ U → (Ak − SkXk)
HU + U(Ak − SkXk),

of R at Xk. Therefore, we can reformulate (4.6) as

ÂH
kKi +KiÂk = −R

tk,i, Xk +

i−1∑
j=1

ai,jKj

−
i−1∑
j=1

ci,j
τk

Kj − γiτkRtk ,

Xk+1 = Xk +

p∑
j=1

mjKj ,

with Âk := Ak − SkXk − 1
2τkγi,i

In, i = 1, . . . , p. Let us focus now on the first and second

order Rosenbrock schemes for an autonomous DRE [16]. Note that, since we are considering

the autonomous case, Rtk = 0. From (4.6), it follows that we can write the 1-stage Rosenbrock

scheme in the ZZH-type representation as

ÂH
kXk+1 +Xk+1Âk = −GkG

H
k , (4.8)

with γ1,1 = 1, Âk = Ak − SkXk − 1
2τk

In and the right-hand side factor

Gk =

[
CT
k , ZkZ

H
k Bk,

√
1

τk
Zk

]
∈ Rn×(q+m+zk).

In the second-order Rosenbrock method we have to solve two Lyapunov equations, and the

scheme can be reformulated as follows

ÃH
kK1 +K1Ãk = −R(Xk), (4.9a)

ÃH
kK21 +K21Ãk = −τ2kK1BkB

T
kK1 −

(
2− 1

γ

)
K1, (4.9b)

K2 = −K21 +

(
1− 1

γ

)
K1, (4.9c)

Xk+1 = Xk +
3

2
τkK1 +

1

2
τkK2, (4.9d)

with Ãk = γτk(Ak − SkXk) − 1
2In. Considering the low-rank representation of the data (4.4),

we have that

−R(Xk) = −CT
kCk −AT

kZkZ
H
k − ZkZ

H
k Ak + ZkZ

H
k BkB

T
kZkZ

H
k . (4.10)

In [16, 30] are described two possible splittings of (4.10) of the form −GkG
H
k . The first one

consider the partitioning

Gk =
[
CT
k , AT

kZk + Zk, iZkZ
H
k Bk, iAT

kZk, iZk

]
∈ Cn×(q+m+3zk),

but in this way we introduce complex arithmetic. The idea to avoid complex data is to use a

superposition approach for the splitting (4.9a) into the two equations

ÃH
k K̂1 + K̂1Ãk = −NkN

H
k , ÃH

k K̃1 + K̃1Ãk = −UkU
H
k ,

such that K1 := K̂1 − K̃1 and −GkG
H
k := −NkN

H
k + UkU

H
k , with

Nk =
[
CT
k , AT

kZk + Zk

]
∈ Rn×(q+zk), Uk =

[
ZkZ

H
k Bk, AT

kZk, Zk

]
∈ Rn×(m+2zk).

Even if we avoid complex arithmetic, this second splitting is not better than the first one,

because experiments have shown that the solution K1 = K̂1 − K̃1 is affected by numerical

inaccuracies, and therefore the scheme is not stable. For completeness, the classical low-rank

representation −GkG
H
k of the right-hand side of (4.9b) is done by setting

Gk =

[
τkT1T

T
1 Bk,

√
2− 1

γ
T1

]
∈ Rn×(m+tk),

where K1 = T1T
T
1 ∈ Rn×tk . Let us consider now the LDLT-type factorization to tackle these

issues [27]. In this case, the factors of the right-hand side −G̃kS̃kG̃
H
k in (4.8) can be written as

G̃k =
[
CT
k , Lk

]
∈ Rn×(q+lk),

S̃k =

[
Iq

DkL
T
kBkB

T
kLkDk +

1
τk
Dk

]
∈ R(q+lk)×(q+lk),

where Xk = LkDkL
T
k is the approximate solution. Observe that the number of columns of Gk

and G̃k equals the number of linear systems that has to be solved when constructing the factors

Zk and Lk for the solution of the Lyapunov equation (4.8). Therefore, with the ZZH approach

we have to solve

(q +m+ zk)− (q + lk) = m+ zk − lk

linear systems more than in the LDLT approach. Actually, since it can be shown that lz ≤ zk,

with the latter method we can save at least m system solves in every step. Therefore, if we

assume that nlyap is the constant number of Lyapunov solver steps per time step and nODE is

the number of time steps, we can avoid the computation of m · nlyap · nODE during the solution

of the DRE. For the second-order, we split the right-hand side in (4.9a)

−CT
kCk −AT

kLkDkL
T
k − LkDkL

T
kAk + LkDkL

T
kBkB

T
kLkDkL

T
k

as −G̃kS̃kG̃
T
k with

G̃k =
[
CT
k , AT

kLk, Lk

]
∈ Rn×(q+2lk),

S̃k =


Iq

Dk

Dk −DkL
T
kBkB

T
kLkDk

 ∈ R(q+2lk)×(q+2lk).

Observe that for equation (4.9a), we can save

(q +m+ 3zk)− (q + 2lk) = m+ 3zk − 2lk ≥ m+ zk,

linear system solves using the LDLT-type factorization instead of the ZZH one. Assume now

K1 = T̃1D1T̃
T
1 . The right-hand side factors G̃k and S̃k of (4.9b) can be written as

G̃k = T̃1 ∈ Rn×t̃k ,

S̃k = τ2k D̃1T̃
T
1 BkB

T
k T̃1D̃1 +

(
2− 1

γ

)
D̃1 ∈ Rt̃k×t̃k .

Note that tk and t̃k satisfy t̃k ≤ tk. Therefore, from (4.9b), we can avoid the computation of

(m+ tk)− t̃k ≥ m,

linear systems. Thus, with the LDLT low-rank representation, we can save at least (m+ zk) +

m = 2m+ zk linear system solves in each step of the Lyapunov solver. For the implementation

of first and second order of the Rosenbrock scheme see [15].

4.2 Applications

In the following, we describe and solve two classical problems that usually arise in control

theory: the linear quadratic regulator problem and the tracking problem [29].

4.2.1 Linear Quadratic Regulator

The Linear Quadratic Regulator (LQR) problem is a fundamental optimal control problem

in systems and control theory that seeks to find the best control input for a linear system to

minimize a quadratic cost function. As we will see, this problem can be formulated in both the

infinite-horizon and finite-horizon cases, and depending on the formulation, its solution will be

given by solving an ARE or a DRE, respectively.

Infinite-horizon formulation

Let us consider the continuous-time linear dynamical system in state-space form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, (4.11)

with A ∈ Rn×n and B ∈ Rn×m, where x(t) ∈ Rn is the state vector and u(t) ∈ Rm is the control

vector.

The goal is to find the optimal control u(t) that minimizes the cost function

J =

∫ +∞

0

(
xTQx+ uTRu

)
dt,

where Q ⪰ 0 is the state penalty matrix and R ≻ 0 is the control penalty matrix. The classic

procedure is to optimize the cost-to-go function V (x), which satisfies the Hamilton-Jacobi-

Bellman equation:

min
u∈Rm

[
xTQx+ uTRu+

∂V

∂x
· ẋ
]
= 0, for any x ∈ Rn.

It is well known that for the infinite-horizon problem the optimal cost-to-go function is quadratic

and does not depend on time. For simplicity, we choose

V (x) = xTSx, S ⪰ 0.

Thus ∂V
∂x = 2xTS. By construction, the terms inside the min are quadratic and convex (because

R ≻ 0), so we can take the minimum explicitly by finding the solution where the gradient of

those terms vanishes:

∂
[
xTQx+ uTRu+ ∂V

∂x · ẋ
]

∂u
= 2uTR+ 2xTSB = 0. (4.12)

This yields to

uT = −xTSBR−1,

and, thus, to the optimal control law

u = −R−1BSx = −Kx.

The matrix K is generally called feedback gain matrix. By inserting this quantity into (4.12)

and simplifying, one obtains

xT
(
Q+ SA+ATS − SBR−1BTS

)
x = 0,

and since this must hold for all x, then the matrix inside the parentheses must be zero, i.e.

Q+ SA+ATS − SBR−1BTS = 0.

Finite-horizon formulation

Let us consider a linear time-invariant system governed by a state-space equation of the

form

ẋ = Ax(t) +Bu(t), x(t0) = x0,

with A,B, x, u as before and let

J =

∫ tend

t0

(xTQx+ uTRu)dt+ xT(tend)Qendx(tend),

the finite-horizon cost function, with Qend ⪰ 0, Q ⪰ 0 and R ≻ 0. To proceed with the

formulation, we also need to investigate a particular form for the cost-to-go function V (x, t),

that now is time-dependent.

We will consider a solution of the form V (x, t) = xTS(t)x, with S(t) ≻ 0, and the HJB equation

in this case has the additional term ∂V
∂t , so that we have to solve

min
u∈Rm

[
xTQx+ uTRu+

∂V

∂x
ẋ+

∂V

∂t

]
= 0, for any x ∈ Rn, for any t ∈ [t0, tend]. (4.13)

As before, we can find the minimum by settling the gradient to zero:

∂
[
xTQx+ uTRu+ ∂V

∂x ẋ+ ∂V
∂t

]
∂u

= 2uTR+
∂V

∂x
·B = 0.

This yields to

uT = −1

2

∂V

∂x
BR−1,

and, in particular, to the optimal control

u = −1

2
R−1BT

(
∂V

∂x

)T

.

Recalling that V = xTS(t)x, we have that ∂V
∂x = 2xTS(t) and ∂V

∂t = xTṠ(t)x. Thus u =

−R−1BTS(t)x = −Kx and by substituting this quantity into (4.13), we obtain

xT
(
Q− S(t)BR−1BTS(t) + S(t)A+ATS(t) + Ṡ(t)

)
x = 0.

Therefore, S(t) must satisfy the continuous-time differential Riccati equation

−Ṡ(t) = Q+ S(t)A+ATS(t)− S(t)BR−1BTS(t), (4.14)

subject to the terminal condition

S(tend) = Qend.

Note that the solution of the previous example is exactly the steady-state solution of this

equation, defined by Ṡ(t) = 0.

Remark 4.2.1. Let us highlight that (4.14) is not subject to an initial condition, but rather

to the terminal condition S(tend) = Qend. This suggests that the appropriate approach to solve

the problem, in order to exploit the knowledge of the terminal condition, is to integrate the

equation backward in time. To this end, we perform the change of variable t 7→ t0 + tend − t [7]

to reverse time, and define Ŝ(τ) := S(t0 + tend − t), where τ = t0 + tend − t. The corresponding

problem to be solved is then given by

˙̂
S(τ) = Q+ Ŝ(τ)A+ATŜ(τ)− Ŝ(τ)BR−1BTŜ(τ), Ŝ(τ0) = Qend,

where τ0 = tend. Finally, the original solution S(t) is recovered by reversing time again, i.e.

S(t) = Ŝ(t0+ tend− t). See Algorithm 1 in [6] for an implementation of BDF methods backward

in time.

4.2.2 The Tracking problem

The Linear Quadratic Tracking (LQT) problem [29] is a classical optimal control problem

where the goal is to make a system follow a desired reference trajectory as closely as possible

over time, while possibly minimizing control effort.

Let us consider the linear time-invariant (LTI) system

ẋ(t) = Ax(t) +Bu(t), x(t0) = x0, (4.15)

and let u(t) be the control input we want to design such that x(t) ≈ xref(t) and u(t) ≈ uref(t)

over t ∈ [t0, tend], where xref(t), uref(t) is the nominal trajectory. Let

J =

∫ tend

t0

[
(x(t)− xref(t))

TQ(x(t)− xref(t)) + (u(t)− uref(t))
TR(u(t)− uref(t))

]
dt

+ (x(tend)− xref(tend))
TQend(x(tend)− xref(tend)), (4.16)

be the cost index we want to minimize, where Q ⪰ 0 penalizes the tracking error, R ≻ 0

penalizes the control effort and Qend ⪰ 0. The strategy to solve this problem is to reformulate

(4.15) and (4.16) in terms of the state error e(t) and to reduce the original problem to an LQR

problem.

Let e(t) := x(t)− xref(t) be the state error and u(t) := u(t)− uref(t). Then,

ė(t) = ẋ(t) − ẋref(t) = Ax(t) + Bu(t) − ẋref(t) = Ae(t) + Bu(t) + d(t),

where d(t) = Axref(t) +Buref(t)− ẋref(t). Moreover, we can rewrite J as

J =

∫ tend

t0

[
e(t)TQe(t) + u(t)TRu(t)

]
dt+ e(tend)

TQrefe(tend).

This is now a standard LQR problem with an affine disturbance d(t), which is known.

Let’s consider a cost-to-go function of the form

V (t, x) = xTS(t)x+ 2xTs(t) + s0(t),

with S ≻ 0. In this case, we have

∂V

∂x
= 2xTS(t) + 2sT(t),

∂V

∂t
= xTṠ(t)x+ 2xTṡ(t) + ṡ0(t),

and using the HJB (4.13) we obtain

min
u

[
e(t)TQe(t) + u(t)TRu(t) +

∂V

∂x
(Ax+Bu) +

∂V

∂t

]
= 0.

To find the optimal controller, we set

∂
[
e(t)TQe(t) + u(t)TRu(t) + ∂V

∂x (Ax+Bu) + ∂V
∂t

]
∂u

= 0,

i.e.

∂
[
e(t)TQe(t) + u(t)TRu(t) + ∂V

∂x (Ax+Bu) + ∂V
∂t

]
∂u

= 2u(t)TR+
(
2xTS(t) + 2sT(t)

)
B = 0,

uT = −
(
xTS(t) + sT(t)

)
BR−1,

u = −R−1BT (S(t)x+ s(t)) .

Therefore, we can conclude that the optimal control is given by

u(t) = uref(t)−R−1BT(S(t)x+ s(t)),

where the functions S, s, s0 satisfy

−Ṡ(t) = Q− S(t)BR−1BTS(t) + S(t)A+ATS(t),

−ṡ(t) = −Qxref(t) +
[
AT − SBR−1BT

]
s(t) + S(t)Buref(t),

−ṡ0(t) = xref(t)
TQxref(t)− sT(t)BR−1BTs(t) + 2s(t)TBuref(t),

with terminal conditions

S(tend) = Qend,

s(tend) = −Qendxref(tend),

s0(tend) = xTref(tend)Qendxref(tend).

Chapter 5

Numerical Results

In this final chapter, we present various numerical experiments and results concerning the

solution of differential Riccati equations (DREs). In particular, we employ the BDF method

of orders 1, 2, and 3 to discretize a differential Riccati equatino, and consider three differ-

ent schemes for solving the corresponding algebraic Riccati equations: the Newton–Kleinman

method with a zero initial guess, the Newton–Kleinman method initialized with the solution

from the previous time step, and the RADI method with a zero initial guess. Our focus is on

solving large-scale DREs, as typically arises in real-world problems where classical solvers are

not applicable. For this reason, we consider large, low-rank, and sparse coefficient matrices,

such that the corresponding equations must be solved using the iterative methods described in

Chapter 2.

We begin this chapter by introducing the problem on which our experiments are based: the

rail profile cooling problem. In brief, this problem consists of determining the optimal cooling

strategy, such as water spray intensities, locations, or timing, so that the rail’s temperature

distribution evolves as desired, while satisfying physical and technological constraints. As we

will see, the problem is modeled by (5.6) [13, 36]. In Table 5.1, we report the number of nonzero

elements in the coefficient matrices of the equation. It is evident that both matrices are sparse

and that, as the problem dimension increases, the proportion of nonzero entries becomes tiny.

Therefore, employing classical dense solvers for such problems is inefficient. Moreover, the

advantage of using low-rank methods becomes particularly clear for large-scale problems, e.g.

n ≥ 104. For smaller dimensions, such as n ∈ {109, 1357}, ode45 may require less computa-

tional time than our low-rank schemes. However, this is not a meaningful comparison, as the

strength of low-rank approaches lies in their ability to handle large-scale problems efficiently.

69

When ode45 is applied to a matrix differential equation, it operates on the vectorized form

of the unknown matrix, effectively solving a system of dimension n2. As a consequence, both

the computational and memory requirements grow quadratically with n, quickly becoming pro-

hibitive. In contrast, low-rank methods exploit the low-rank structure of the solution, allowing

them to efficiently compute and store compact factors even for very large n, where classical

dense solvers such as ode45 become infeasible. In Figure 5.1, we plot the sparsity pattern of Â.

(a) n = 109 (b) n = 20 209 (c) n = 79 841

Figure 5.1: Sparsity pattern of Â. Nonzero values are colored while zero values are white.

Next, we show that for different orders of the BDF method, the convergence of the solvers

follows the expected theoretical behavior, i.e., O(hp) where h is the time-step size and p is the

order of the discretization scheme. Finally, we present several tables comparing the different

solvers in terms of runtime, average number of iterations, and average rank of the solution. We

also provide graphs illustrating the evolution of the solution rank over time.

5.1 Cooling problem

In all of our experiments, we solve DREs that arise from optimal rail profile cooling problems.

This problem arises in rolling mills because different stages of the production process require

the raw material to be at specific temperatures. To achieve a high production rate while

minimizing economic costs, it is desirable to decrease the temperature to the required level as

quickly as possible before entering the next production phase. The cooling process is carried out

n nnz Â nnz Ê % nnz Â % nnz Ê

109 633 633 5.328 5.328
1 375 8 985 8 997 0.488 0.489
5 177 35 185 35 241 0.131 0.031
20 209 139 233 139 473 0.034 0.034
79 841 553 921 554 913 0.009 0.009

Table 5.1: Number of nonzero (nnz) elements in the coefficient matrices of (5.6).

by spraying cooling fluids onto the surface; however, it must be carefully controlled to ensure

that material properties such as durability and porosity meet the required quality standards.

Large temperature gradients within the rail profile can lead to unwanted deformations, loss of

rigidity, and other undesirable material characteristics. Therefore, the actual goal is to achieve

an even temperature distribution. The heat distribution is modeled by the following equation

[13, 36]:

cρ
∂x(t, ξ)

∂t
− λ∆xx(t, ξ) = 0 in R>0 × Ω, (5.1)

λ
∂x(t, ξ)

∂ν
= gi on R>0 × Γi, ∂Ω =

⋃
i

Γi, (5.2)

x(0, ξ) = x0(ξ) in Ω, (5.3)

where x is the temperature distribution, c = 7620 m2

s2 ◦C is the specific heat capacity, λ =

26.4 kg m
s3 ◦C is the thermal conductivity and ρ = 654 kg

m3 is the density of the rail profile. The

boundary ∂Ω is divided into several parts Γi, on which different boundary functions gi are

defined, allowing independent control over different surface regions. The vector ν denotes the

outer normal of the boundary. In Figure 5.2, we provide a picture of the rail profile.

After spatial discretization of (5.1), we obtain the state-space system

Eẋ =

(
λ

cρ
S +

γ

cρ
EΓ

)
x+

γ

cρ
Bu, with t > 0, x(0) = x0, (5.4)

y = Cx, (5.5)

where γ = 7.0164 kg
s3 ◦C is the coefficient of thermal conductivity at the input boundary regions,

and EΓ is a matrix specific to this problem. At this point, one can formulate an LQR problem,

as discussed at the end of the previous chapter, and the solution of the following experiments

2

3
4

9 10

1516

22

34

43

47

51

55

60 63

83
92

Figure 5.2: Initial mesh (left) and partitioning of the boundary (right)

corresponds to the solution of that control problem. In particular, we seek the matrix X that

satisfies the generalized DRE

dETXE

dt
= −CTQC − ETXÂ− ÂXE + ETXB̂R−1XE, (5.6)

X(tend) = Xend, (5.7)

where Xend is the terminal value of the solution, Â = λ
cρS + γ

cρEγ and B̂ = γ
cρB. For more

details, see [17].

5.2 Experiments

All numerical experiments were conducted on the EIKE computational server (Ubuntu

22.04.5 LTS, AMD EPYC 9554 CPU with 128 cores, 2 TB RAM) using MATLAB R2025a.

The coefficient matrices of the differential Riccati equation (5.6) for different problem dimen-

sions are provided by the function mess_get_linear_rail.m from the M.E.S.S. Toolbox [39].

For more information, see https://modelreduction.org/morwiki/FEniCS_Rail. Moreover,

to compute the shift parameters used in the algorithms, we employed the functions mess_mnmx,

mess_projection_shifts, mess_para, and mess_wachspress, which are available in the same

https://modelreduction.org/morwiki/FEniCS_Rail

toolbox. To perform the experiments, I built upon the existing functions in M-M.E.S.S.-3.1,

such as mess_bdf_dre for solving DREs via BDF discretization methods. My extensions and

modifications will be included in the next release of M-M.E.S.S.-3.1.

5.2.1 Order of Convergence

From the theory, it is known that BDF methods of order p > 6 are unstable, and that for

any p ∈ {1, . . . , 6}, the global error of the corresponding BDF scheme satisfies

max
k∈{0,...,n}

||Xk −X(tk)|| = O(hp), (5.8)

where Xk denotes the numerical solution at time tk, and X is the exact solution. Let us now

clarify how we can verify numerically that the BDF method used exhibits the expected order

of convergence. From (5.8), it follows that

E(h) = Chp + o(hp),

where E(h) = max
k∈{0,...,n}

||Xk −X(tk)||, C > 0 is a constant, and p is the order of the scheme.

This implies that, for sufficiently small step sizes h,

E(h) ≈ Chp,

so we expect E(h) to behave like f(h) = hp. Taking the natural logarithm of both E(h) and

f(h), we obtain

log(E(h)) ≈ log(C) + p log(h), log(f(h)) = p log(h).

It follows that, in a log− log plot, the two functions appear as straight lines with the same slope

p; hence, they are parallel. Therefore, the idea is to compute E(h) for small values of h, plot

the corresponding log− log graph, and check whether the curves are parallel. One main issue in

this procedure is that computing the global error E(h) requires knowledge of the exact solution

X of the equation, which is generally not available. To address this problem, we vectorized

the DRE (5.6) and solved the corresponding system of ordinary differential equations (ODEs)

using MATLAB’s built-in function ode45, which is based on an explicit Runge–Kutta (4,5)

pair. In particular, we considered step sizes hBDF ∈ {5 · 10−1, 10−1, 5 · 10−2, 10−2} for the

BDF discretization, and hode45 = 10−5 for the ode45 solver, in order to obtain a more accurate

reference solution. The choice of these parameters is motivated by the observation that using

smaller values of hBDF leads to a significant global error, causing the E(h) curve to lose its linear

behavior in the log− log plot and thus distort the expcted convergence trend. This effect occurs

because the solution computed by ode45 is itself numerical, obtained by combining fourth-

and fifth-order Runge–Kutta formulas, and is therefore also affected by discretization errors.

Consequently, for small h or large n, such errors become noticeable and, especially for BDF

orders p ≥ 3, they significantly affect the quantity ||XBDF
k −Xode45

k ||, resulting in deviations from

the expected slope in the log− log plot. Therefore, the chosen range hBDF ∈ {5 ·10−1, 10−1, 5 ·
10−2, 10−2} represents a good compromise that preserves the expected convergence behavior.

We tested the BDF schemes for orders p ∈ {1, 2, 3} and for system dimensions n ∈ {109, 1357}.
Using larger values of n in these experiments becomes problematic because ode45 is a dense

solver, which can easily lead to memory issues. To perform these tests, we decided to use two

methods as the inner ARE solver within the BDF scheme: the Newton–Kleinman method and

RADI, both initialized with a zero initial guess at each iteration. In Figure 5.3, we consider

coefficient matrices of dimension n = 109. We observe that Newton–Kleinman and RADI

exhibit the same convergence behavior for different values of h; in fact, their corresponding

lines overlap and cannot be distinguished. For p = 1 and p = 2, the line representing the

theoretical behavior and those of the numerical methods have exactly the same slope. For

p = 3, however, the lines are slightly no longer parallel for sufficiently small h. This deviation

is due to the discretization errors affecting both XBDF and Xode45, as discussed previously.

A similar effect is observed in Figure 5.4, but it is amplified due to the larger dimension

n = 1357. It should be noted that the fact that the theoretical line does not have exactly the

same slope as the others does not imply that the BDF method fails to achieve its expected order.

Rather, it reflects that Xode45 is itself a numerical solution obtained via a discretization method,

whose accuracy is insufficient compared to that of Newton–Kleinman or RADI to provide a

fully reliable reference for assessing convergence. Even in this case, the lines corresponding to

Newton–Kleinman and RADI still overlap.

5.2.2 Large-Scale Comparison

In the previous subsection, we verified that the convergence of the BDF scheme for orders

1, 2, and 3 follows the expected theoretical behavior, using both the Newton–Kleinman and

RADI methods as inner solvers. In the following, we compare different approaches for solv-

ing (5.6) in terms of runtime, average number of iterations, and average solution rank. The

inner solvers considered are: Newton–Kleinman and RADI with a zero initial guess, and New-

(a) p = 1 (b) p = 2

(c) p = 3

Figure 5.3: Convergence behavior using as inner solvers Newton-Kleinman and RADI
for n = 109.

(a) p = 1 (b) p = 2

(c) p = 3

Figure 5.4: Convergence behavior using as inner solvers Newton-Kleinman and RADI
for n = 1357.

BDF order Inner solver Runtime Avg n. iter Avg solution rank

p = 1 Newtonstand 7min 40 sec 2 116.90
Newtonprev_sol 4min 52 sec 1.3778 116.89
RADIstand 2min 20 sec 21.144 116.92

p = 2 Newtonstand 6min 56 sec 2 115.52
Newtonprev_sol 4min 15 sec 1.3667 115.49
RADIstand 2min 45 sec 19.367 115.45

p = 3 Newtonstand 6min 1 sec 2 109.36
Newtonprev_sol 3min 47 sec 1.4021 109.36
RADIstand 2min 33 sec 17.443 109.29

Table 5.2: Comparison for the solution of (5.6) with n = 1357.

ton–Kleinman initialized with the solution from the previous iteration. We refer to these solvers

as Newotnstand, RADIstand and Newtonprev_sol, respectively. The solution is computed on the

time interval [0, 45] s. In the simulation model, the time axis is scaled by 102, corresponding to

a model time interval of 4500 seconds. For the following experiments, we focus on large-scale

DREs with dimensions n ∈ {1357, 5277, 20209, 79841}. In Table 5.2, we present a compar-

ison of the three different methods for the problem of size n = 1357. It is evident that the

RADI scheme converges significantly faster than the Newton–Kleinman method with a zero

initial guess. In particular, we observe a speedup of approximately 2.37 times for orders 1 and

3, and about 2.52 for order 2. A similar trend is observed when comparing RADIstand with

Newtonprev_sol: for all BDF orders, RADIstand is roughly 1.5 times faster than Newtonprev_sol.

As expected, Newtonprev_sol outperforms Newtonstand, since in the context of differential equa-

tions the analytical solution is generally smooth, or at least differentiable. This implies that

solutions at consecutive time steps do not differ drastically for sufficiently small time refine-

ments. Consequently, initializing Newton–Kleinman with the solution from the previous time

step provides an initial guess already close to the current solution, thereby reducing the number

of iterations required for convergence.

It is worth noting that the average number of iterations of RADIstand decreases as the

BDF order increases. This is likely due to the fact that, for higher-order BDF schemes, more

accurate initial approximations are used, leading to more precise solutions of the correspond-

ing discretized AREs and consequently fewer iterations needed to reach the desired residual

(a) p = 1 (b) p = 2

(c) p = 3

Figure 5.5: Rank evolution for n = 1357.

tolerance. In contrast, the two Newton–Kleinman–based methods exhibit almost the same av-

erage number of iterations across all three BDF orders. Moreover, for all methods, the average

rank of the computed solution decreases as the BDF order increases. In particular, for p = 1,

the three methods have approximately the same average solution rank, whereas for p = 2 and

p = 3, the average rank of RADIstand becomes slightly smaller compared to that of the two

Newton–Kleinman methods, which share nearly identical ranks. Since the computational com-

plexity of the problem depends on the rank of the solution, this observation further explains why

RADI converges significantly faster than the others. In Figure 5.5, we illustrate the evolution

of the solution rank over time for the three methods. As can be seen, the rank profiles of the

different schemes are very similar, almost identical. The curves decrease because we solved (5.6)

backward in time, as the terminal condition is typically prescribed. Consequently, at the end of

the time horizon, the solution has zero rank since we start from a zero initial value, and the rank

gradually increases as we move backward in time. In particular, the rank grows rapidly during

the initial phase of the computation and then nearly stabilizes. It is also worth highlighting

that, for p = 3, the three curves start increasing earlier compared to those for p = 1 and p = 2.

This behavior results from the initialization process described in Remark 4.1.1. Specifically, for

p = 3, additional intermediate steps are introduced during which the solution is computed using

the second-order BDF scheme. As a result, while for p = 1 and p = 2 the solution begins to in-

crease after the first few time steps, for p = 3 the computation starts earlier, leading to nonzero

values in the curves sooner. In Table 5.3, we present the comparison of the three methods for

the problem size n = 5177. Here, the speedup achieved by using RADIstand becomes even

clearer. In particular, for all three BDF orders, the speedup of RADIstand over Newtonstand

is approximately 2. As n increases, we observe that both Newtonstand and RADIstand require

more time when using p = 3 compared to p = 1 or p = 2. This behavior is expected, since

a higher BDF order involves taking into account solutions from more previous time steps. As

discussed in the previous algorithms, this implies that the low-rank factors involved are larger,

leading to higher computational cost. A similar effect is expected between p = 1 and p = 2;

however, in this case, the problem size may not be large enough for the difference to be clearly

visible. We also note that, as before, the average number of iterations of RADI decreases when

higher BDF orders are used, whereas this trend is not observed for Newtonprev_sol, whose

average iteration count is lowest for p = 2 but increases for p = 1 and even more for p = 3.

Similarly, the average solution rank decreases with increasing order p, with a more pronounced

drop from p = 2 to p = 3 compared to that from p = 1 to p = 2. As the problem dimension

BDF order Inner solver Runtime Avg n. iter Avg solution rank

p = 1 Newtonstand 20min 38 sec 2 132.35
Newtonprev_sol 14min 3 sec 1.3 131.97
RADIstand 10min 32 sec 24.333 131.67

p = 2 Newtonstand 20min 12 sec 2 130.63
Newtonprev_sol 12min 52 sec 1.2889 130.60
RADIstand 9min 51 sec 23.256 130.37

p = 3 Newtonstand 22min 45 sec 2 124.42
Newtonprev_sol 13min 25 sec 1.3402 124.48
RADIstand 11min 23 sec 22.742 124.41

Table 5.3: Comparison for the solution of (5.6) with n = 5177.

n increases, the average number of RADI iterations grows compared to the values reported in

Table 5.2, whereas for the two Newton–Kleinman methods, it remains nearly unchanged. In

Figure 5.6, we show the evolution of the solution rank over time. The overall trend is very

similar to that observed in Figure 5.5, with the only difference being that the curves now reach

higher rank values.

In Table 5.4, we compare the methods for a problem of size n = 20209. As before, RADI

converges significantly faster than the Newton–Kleinman method with a zero initial guess. In

particular, we observe a speedup of approximately 2.50 times for orders 1 and 3, and about 1.60

for order 2. When compared with Newtonprev_sol, RADIstand remains faster, achieving a time

saving of up to 32 minutes for BDF3. It is also worth highlighting the different runtimes observed

for order 3. As discussed earlier, employing a higher BDF order translates, for our algorithms,

into handling matrices with larger rank, since more solution factors must be stored at each

time step. Consequently, the convergence can slow down due to the increased computational

complexity. Let us note that, even though the current problem is approximately 202092

51772
≈ 15

times larger than the one previously presented for n = 5177, the average number of iterations

per time step does not differ significantly. In particular, for the two Newton-based methods, it

is slightly smaller, while for RADI it is slightly higher. For orders 1 and 2, RADI requires on

average six additional iterations per time step, and for order 3 only four more. This increase is

relatively minor compared to the substantial growth in problem dimension, confirming that the

three low-rank implementations considered are highly suitable for solving large-scale problems.

(a) p = 1 (b) p = 2

(c) p = 3

Figure 5.6: Rank evolution for n = 5177.

BDF order Inner solver Runtime Avg n. iter Avg solution rank

p = 1 Newtonstand 2h 38min 2 145.16
Newtonprev_sol 1h 24min 1.2111 145.16
RADIstand 1h 6min 30.467 145.16

p = 2 Newtonstand 2h 13min 2 143.94
Newtonprev_sol 1h 22min 1.2 143.94
RADIstand 1h 23min 29.222 143.93

p = 3 Newtonstand 3h 2 138.11
Newtonprev_sol 1h 45min 1.2577 138.10
RADIstand 1h 13min 26.722 138.07

Table 5.4: Comparison for the solution of (5.6) with n = 20209.

Furthermore, for all methods, the average rank of the computed solution decreases as the BDF

order increases. In Figure 5.7, we illustrate the evolution of the solution rank over time for the

three methods.

Finally, the largest example we consider corresponds to n = 79841, and the results are

reported in Table 5.5. As in the previous tests, RADIstand is the fastest scheme, with a speedup

of approximately 2.5 and 1.3 when compared to Newtonstand and Newtonprevsol, respectively.

It is worth emphasizing that for large-scale problems such as this one, even a modest speedup

of 1.3 is highly significant, as it can reduce the total computational time by up to one and a half

hours. As observed before, the average number of RADI iterations per time step increases with

n, but this increase remains reasonable compared to the corresponding growth in problem size.

Indeed, this problem is about 798412

202092
≈ 16 times larger than the previous one, yet RADI requires

only about five additional iterations per time step for each BDF order. Naturally, this leads to

a longer runtime, since larger matrices make each iteration more computationally demanding.

However, this is an acceptable trade-off given the substantial increase in problem size. The

evolution of the solution rank for the different methods is shown in Figure 5.8, and its behavior

is almost identical to that observed in the previous experiments.

(a) p = 1 (b) p = 2

(c) p = 3

Figure 5.7: Rank evolution for n = 20209.

BDF order Inner solver Runtime Avg n. iter Avg solution rank

p = 1 Newtonstand 12h 10min 2 156.30
Newtonprev_sol 6h 15min 1.3111 156.30
RADIstand 4h 45min 35.111 156.31

p = 2 Newtonstand 11h 18min 2 154.73
Newtonprev_sol 5h 46min 1.1333 154.72
RADIstand 4h 33min 33.722 154.73

p = 3 Newtonstand 12h 11min 2 148.15
Newtonprev_sol 6h 30min 1.1959 148.16
RADIstand 4h 54min 31.041 148.14

Table 5.5: Comparison for the solution of (5.6) with n = 79841.

(a) p = 1 (b) p = 2

(c) p = 3

Figure 5.8: Rank evolution for n = 79841.

5.2.3 Conclusions

We compared the three methods for problem sizes n ∈ {1357, 5177, 20209, 79841}, and

for different BDF orders p ∈ {1, 2, 3}. Across all experiments, we observed consistent trends.

First, Newtonstand is always the slowest scheme among the three. This is expected, since it

is the least sophisticated method. As discussed earlier, Newtonprev_sol uses the solution from

the previous time step as its initial guess, starting closer to the exact solution. When the time

discretization is sufficiently fine, the smoothness of the DRE solution ensures that consecutive

solutions differ only slightly. Consequently, reusing the previous solution significantly reduces

the number of required iterations and the total runtime. The RADI method, on the other

hand, can be seen as a natural extension of the low-rank ADI scheme to quadratic matrix

equations. It is particularly efficient due to its specific low-rank structure X = ZY −1ZT, which

allows one to avoid certain expensive matrix operations. An interesting future investigation

would be to analyze the performance of the Newton–Kleinman method when using the modified

ADI algorithm introduced in Chapter 3, where the ADI iteration starts from the solution

computed in the previous Newton step. With appropriate parameter tuning, this approach

could further accelerate convergence. In such a case, one might wonder: could Newtonstand

and Newtonprev_sol become faster than RADI? Another potential direction for improvement

would be to initialize RADI with the solution from the previous time step when solving DREs.

Based on the results obtained from comparing Newtonstand and Newtonprev_sol, we expect that

this modification could yield a more substantial speedup, possibly making it the most efficient

BDF solver among those tested. A further common trend observed across all experiments is

that the average solution rank decreases as the BDF order increases. Conversely, the average

solution rank increases with the problem dimension n, as shown in Figure 5.9, which is perfectly

reasonable. In fact, for larger problem sizes, higher-rank solutions are required to accurately

capture the underlying dynamics, and thus the average rank naturally increases with n. For

all BDF methods, the curves exhibit a similar trend: a steep rise for smaller values of n,

which gradually slows as n becomes larger. From the rank-evolution curves, we consistently

observe a rapid initial growth, corresponding to the beginning of the computation, i.e. the

end of the time horizon, followed by a stabilization phase. This behavior is likely due to

the smoothness of the exact solution, which prevents large variations over time. Finally, it

is important to highlight the runtime differences between BDF orders. The computational

cost for p = 3 is noticeably higher than for p = 1 or p = 2, and this gap becomes more

significant as n increases. This behavior aligns with theoretical expectations: higher BDF

orders require storing and manipulating additional low-rank factors from previous time steps,

thereby increasing computational complexity and runtime. To conclude, one may ask: what

would happen for even larger problem sizes? Based on the results obtained for the tested

dimensions, we expect the same qualitative behavior to persist, with RADI remaining the most

efficient method overall.

(a) p = 1 (b) p = 2

(c) p = 3

Figure 5.9: Dependence of average solution rank on problem size for different BDF orders
(p).

Bibliography

[1] H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank, Coupled and Generalized

Riccati Equations, in: Matrix Riccati Equations in Control and Systems Theory, Systems

& Control: Foundations & Applications, Birkhäuser, Basel, 2003. https://doi.org/10.

1007/978-3-0348-8081-7_6.

[2] U. M. Ascher and L. R. Petzold, Computer methods for ordinary differential equations

and differential-algebraic equations, Proceedings, 1998. https://api.semanticscholar.

org/CorpusID:32366732.

[3] R. H. Bartels and G. W. Stewart, Algorithm 432: Solution of the Matrix Equation

AX +XB = C, Communications of the ACM, vol. 15, 1972. https://doi.org/10.1145/

361573.361582.

[4] D. A. Bini, B. Iannazzo, and B. Meini, Numerical Solution of Algebraic Riccati Equa-

tions, SIAM, Philadelphia, 2011. https://doi.org/10.1137/1.9781611972092.

[5] S. Bittanti, A.J. Laub, and J.C. Willems (eds.), The Riccati Equation, Com-

munications and Control Engineering, Springer-Verlag, Berlin Heidelberg, 1991. https:

//doi.org/10.1007/978-3-642-58223-3.

[6] B. Baran, P. Benner, and J. Saak, Riccati-feedback Control of a Two-dimensional

Two-phase Stefan Problem, Preprint (2022). https://arxiv.org/abs/2209.05476.

[7] B. Baran, P. Benner, J. Saak, and T. Stillfjord, Numerical methods for closed-

loop systems with non-autonomous data, Preprint (2024). https://arxiv.org/abs/2402.

13656.

[8] P. Benner, Z. Bujanović, P. Kürschner, and J. Saak, A Numerical Compari-

son of Different Solvers for Large-Scale, Continuous-Time Algebraic Riccati Equations

87

https://doi.org/10.1007/978-3-0348-8081-7_6
https://doi.org/10.1007/978-3-0348-8081-7_6
https://api.semanticscholar.org/CorpusID:32366732
https://api.semanticscholar.org/CorpusID:32366732
https://doi.org/10.1145/361573.361582
https://doi.org/10.1145/361573.361582
https://doi.org/10.1137/1.9781611972092
https://doi.org/10.1007/978-3-642-58223-3
https://doi.org/10.1007/978-3-642-58223-3
https://arxiv.org/abs/2209.05476
https://arxiv.org/abs/2402.13656
https://arxiv.org/abs/2402.13656

and LQR Problems, SIAM J. Sci. Comput., 42 (2018), pp. A957–A996. https://api.

semanticscholar.org/CorpusID:119175112.

[9] P. Benner, Z. Bujanović, P. Kürschner, and J. Saak, RADI: a low-rank ADI-type

algorithm for large scale algebraic Riccati equations, Numer. Math., 138 (2018), pp. 301–

330. https://doi.org/10.1007/s00211-017-0907-5.

[10] P. Benner, P. Kürschner, and J. Saak, Efficient handling of complex shift parameters

in the low-rank Cholesky factor ADI method, Numer. Algor., 62 (2013), pp. 225–251. https:

//doi.org/10.1007/s11075-012-9569-7.

[11] P. Benner, P. Kürschner, and J. Saak, An improved numerical method for balanced

truncation for symmetric second-order systems, Math. Comput. Model. Dyn. Syst., 19

(2013), pp. 593–615. https://doi.org/10.1080/13873954.2013.794363.

[12] P. Benner, Z. Tomljanović, and N. Truhar, Optimal damping of selected eigenfre-

quencies using dimension reduction, Numerical Linear Algebra with Applications, vol. 20,

pp. 1–17, 2013. https://doi.org/10.1002/nla.833.

[13] P. Benner and J. Saak, A Semi-Discretized Heat Transfer Model for Optimal Cooling of

Steel Profiles, in: P. Benner, D.C. Sorensen, and V. Mehrmann (eds.), Dimension

Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineer-

ing, vol. 45, Springer, Berlin, Heidelberg, 2005. https://doi.org/10.1007/3-540-27909-

1_19.

[14] P. Benner and R. Byers, An exact line search method for solving generalized continuous-

time algebraic Riccati equations, IEEE Transactions on Automatic Control, vol. 43, no. 1,

pp. 101–107, Jan. 1998. https://doi.org/10.1109/9.654908.

[15] P. Benner and H. Mena, Rosenbrock Methods for Solving Riccati Differential Equations,

IEEE Trans. Autom. Control, vol. 58, no. 11, pp. 2950–2956, 2013. https://doi.org/10.

1109/TAC.2013.2258495.

[16] P. Benner and H. Mena, Numerical solution of the Infinite-Dimensional LQR-

Problem and the associated Differential Riccati Equations, Preprint MPIMD/12-13, Max

Planck Institute Magdeburg, 2012. Available from http://www.mpi-magdeburg.mpg.de/

preprints/.

https://api.semanticscholar.org/CorpusID:119175112
https://api.semanticscholar.org/CorpusID:119175112
https://doi.org/10.1007/s00211-017-0907-5
https://doi.org/10.1007/s11075-012-9569-7
https://doi.org/10.1007/s11075-012-9569-7
https://doi.org/10.1080/13873954.2013.794363
https://doi.org/10.1002/nla.833
https://doi.org/10.1007/3-540-27909-1_19
https://doi.org/10.1007/3-540-27909-1_19
https://doi.org/10.1109/9.654908
https://doi.org/10.1109/TAC.2013.2258495
https://doi.org/10.1109/TAC.2013.2258495
http://www.mpi-magdeburg.mpg.de/preprints/
http://www.mpi-magdeburg.mpg.de/preprints/

[17] K. Eppler and F. Tröltzsch, Fast Optimization Methods in the Selective Cooling of

Steel, in: M. Grötschel, S.O. Krumke, and J. Rambau (eds.), Online Optimization of

Large Scale Systems, Springer, Berlin, Heidelberg, 2001. https://doi.org/10.1007/978-

3-662-04331-8_13.

[18] Z. Bai and J. W. Demmel and A. Ruhe, Existence, Uniqueness, and Parametrization

of Lagrangian Invariant Subspaces, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 1089–1107.

https://doi.org/10.1137/S0895479800377228.

[19] J.D. Gardiner, A.J. Laub, J.J. Amato, and C.B. Moler, Solution of the Sylvester

matrix equation AXBT + CXDT = E, ACM Transactions on Mathematical Software,

vol. 18, no. 2, pp. 223–231, 1992. https://doi.org/10.1145/146847.146929.

[20] I. Gohberg, P. Lancaster, and L. Rodman, Algebraic Riccati Equations, Indefinite

Linear Algebra and Applications, Birkhäuser, Basel, 2005, pp. 289–318. https://doi.org/

10.1007/3-7643-7350-4_14.

[21] C.-H. Guo and A. J. Laub, On a Newton-Like Method for Solving Algebraic Riccati

Equations, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 694–698. https://doi.org/10.

1137/S0895479898348519.

[22] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and

Differential-Algebraic Problems, Springer Series in Computational Mathematics, vol. 14,

2nd ed., Springer-Verlag, Berlin Heidelberg, 1996. https://doi.org/10.1007/978-3-

642-05221-7.

[23] W. W. Hager, Updating the Inverse of a Matrix, SIAM Rev., 31 (1989), pp. 221–239.

https://doi.org/10.1137/1031049.

[24] J. Hoepffner, Stability and control of shear flows subject to stochastic excitations, PhD

dissertation, KTH Royal Institute of Technology, 2006. https://urn.kb.se/resolve?urn=

urn:nbn:se:kth:diva-3929.

[25] D. Z. Kleinman, On an Iterative Technique for Riccati Equation Computations, IEEE

Trans. Automat. Control, 13 (1968), pp. 114–115. https://api.semanticscholar.org/

CorpusID:121115745.

https://doi.org/10.1007/978-3-662-04331-8_13
https://doi.org/10.1007/978-3-662-04331-8_13
https://doi.org/10.1137/S0895479800377228
https://doi.org/10.1145/146847.146929
https://doi.org/10.1007/3-7643-7350-4_14
https://doi.org/10.1007/3-7643-7350-4_14
https://doi.org/10.1137/S0895479898348519
https://doi.org/10.1137/S0895479898348519
https://doi.org/10.1007/978-3-642-05221-7
https://doi.org/10.1007/978-3-642-05221-7
https://doi.org/10.1137/1031049
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3929
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3929
https://api.semanticscholar.org/CorpusID:121115745
https://api.semanticscholar.org/CorpusID:121115745

[26] P. Kürschner, Efficient Low-Rank Solution of Large-Scale Matrix Equations, Ph.D. dis-

sertation, Shaker Verlag, Aachen, 2016. https://hdl.handle.net/11858/00-001M-0000-

0029-CE18-2.

[27] N. Lang, H. Mena, and J. Saak, On the benefits of the LDLT factorization for large-

scale differential matrix equation solvers, Linear Algebra Appl., 480 (2015), pp. 44–71.

https://doi.org/10.1016/j.laa.2015.04.006.

[28] J.-R. Li and J. White, Low Rank Solution of Lyapunov Equations, SIAM J. Matrix Anal.

Appl., vol. 24, no. 1, pp. 260–280, 2002. https://doi.org/10.1137/S0895479801384937.

[29] V.L. Mehrmann (ed.), The Autonomous Linear Quadratic Control Problem: Theory and

Numerical Solution, Lecture Notes in Control and Information Sciences, Springer-Verlag,

Berlin Heidelberg, 1991. https://doi.org/10.1007/BFb0039443.

[30] H. Mena, Numerical solution of differential Riccati equations arising in optimal control

problems for parabolic partial differential equations, Ph.D. dissertation, Escuela Politécnica

Nacional, 2007. https://bibdigital.epn.edu.ec/handle/15000/8434.

[31] H. H. Rosenbrock, Some general implicit processes for the numerical solution of dif-

ferential equations, The Computer Journal, vol. 5, no. 4, pp. 329–330, 1963. https:

//doi.org/10.1093/comjnl/5.4.329.

[32] J. Schulze and J. Saak, An extension of the low-rank Lyapunov ADI to non-zero

initial values and its applications, Preprint (2024). https://doi.org/10.48550/arXiv.

2406.13477.

[33] J. Schulze and J. Saak, A unifying framework for ADI-like methods for linear matrix

equations and beneficial consequences, arXiv:2406.13477 [math.NA], 2025. https://arxiv.

org/abs/2406.13477.

[34] J. Sabino, Solution of Large-Scale Lyapunov Equations via the Block Modified Smith

Method, Ph.D. dissertation, Rice University, 2007. https://hdl.handle.net/1911/20641.

[35] H. Sandberg, A case study in model reduction of linear time-varying systems, Automat-

ica, vol. 42, no. 3, pp. 467–472, 2006. https://doi.org/10.1016/j.automatica.2005.

10.016.

https://hdl.handle.net/11858/00-001M-0000-0029-CE18-2
https://hdl.handle.net/11858/00-001M-0000-0029-CE18-2
https://doi.org/10.1016/j.laa.2015.04.006
https://doi.org/10.1137/S0895479801384937
https://doi.org/10.1007/BFb0039443
https://bibdigital.epn.edu.ec/handle/15000/8434
https://doi.org/10.1093/comjnl/5.4.329
https://doi.org/10.1093/comjnl/5.4.329
https://doi.org/10.48550/arXiv.2406.13477
https://doi.org/10.48550/arXiv.2406.13477
https://arxiv.org/abs/2406.13477
https://arxiv.org/abs/2406.13477
https://hdl.handle.net/1911/20641
https://doi.org/10.1016/j.automatica.2005.10.016
https://doi.org/10.1016/j.automatica.2005.10.016

[36] J. Saak, Efficient Numerical Solution of Large Scale Algebraic Matrix Equations in PDE

Control and Model Order Reduction, Dissertation, Technische Universität Chemnitz, Chem-

nitz, 2009. https://nbn-resolving.org/urn:nbn:de:bsz:ch1-200901642.

[37] V. Sima, Algorithms for Linear-Quadratic Optimization, Chapman and Hall/CRC, 1996.

https://doi.org/10.1201/9781003067450.

[38] J. J. Sopka, Functional Analysis in Normed Spaces (L. V. Kantorovich and G. P. Akilov),

SIAM Rev., 11 (1969), pp. 412–413. https://doi.org/10.1137/1011077.

[39] J. Saak, M. Köhler, and P. Benner, M-M.E.S.S. – the Matrix Equations Sparse

Solvers library, https://doi.org/10.5281/zenodo.632897. See also: https://www.mpi-

magdeburg.mpg.de/projects/mess.

[40] F.L. Lewis, D.L. Vrabie, and V.L. Syrmos, Optimal Control, John Wiley & Sons,

2012. https://doi.org/10.1002/9781118122631.

[41] C. Penland and P.D. Sardeshmukh, The optimal growth of tropical sea surface

temperature anomalies, Journal of Climate, vol. 8, no. 8, pp. 1999–2024, 1995. https:

//doi.org/10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2.

[42] T. Penzl, Numerical solution of generalized Lyapunov equations, Advances in Com-

putational Mathematics, vol. 8, no. 1, pp. 33–48, 1998. https://doi.org/10.1023/A:

1018979826766.

[43] P. Benner, H. Mena, and J. Saak, On the parameter selection problem in the Newton-

ADI iteration for large-scale Riccati equations, ETNA. Electronic Transactions on Numer-

ical Analysis, 29 (2007), pp. 136–149. http://eudml.org/doc/130671.

[44] E. L. Wachspress, Iterative Solution of Elliptic Systems: And Applications to the Neutron

Diffusion Equations of Reactor Physics, Prentice-Hall, Englewood Cliffs, N.J., 1966.

[45] E. Wachspress, The ADI Model Problem, Springer, New York, NY, 2013. https://doi.

org/10.1007/978-1-4614-5122-8.

[46] J.C. Willems, Least squares stationary optimal control and the algebraic Riccati equation,

IEEE Transactions on Automatic Control, vol. 16, no. 6, pp. 621–634, December 1971.

https://doi.org/10.1109/TAC.1971.1099831.

https://nbn-resolving.org/urn:nbn:de:bsz:ch1-200901642
https://doi.org/10.1201/9781003067450
https://doi.org/10.1137/1011077
https://doi.org/10.5281/zenodo.632897
https://www.mpi-magdeburg.mpg.de/projects/mess
https://www.mpi-magdeburg.mpg.de/projects/mess
https://doi.org/10.1002/9781118122631
https://doi.org/10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2
https://doi.org/10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2
https://doi.org/10.1023/A:1018979826766
https://doi.org/10.1023/A:1018979826766
http://eudml.org/doc/130671
https://doi.org/10.1007/978-1-4614-5122-8
https://doi.org/10.1007/978-1-4614-5122-8
https://doi.org/10.1109/TAC.1971.1099831

	Introduction
	Preliminaries
	Matrix Equations
	Linear Matrix Equations
	Sylvester equations
	Lyapunov equations
	Stein equations

	 Algebraic Riccati Equations
	Nonsymmetric algebraic Riccati equations
	Continuous-time algebraic Riccati equation

	Large Scale Methods
	Alternating Direction Implicit
	Low-rank ADI

	Newton's Method
	Newton-Kleinman
	Exact Line search

	RADI method

	New extension of the ADI method
	Differential Riccati Equations
	Discretization schemes
	Midpoint rule
	Trapezoidal rule
	Backward Differentiation Formulas
	Rosenbrock Methods

	Applications
	Linear Quadratic Regulator
	The Tracking problem

	Numerical Results
	Cooling problem
	Experiments
	Order of Convergence
	Large-Scale Comparison
	Conclusions

	Bibliography

