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Introduzione

Le curve ellittiche hanno suscitato interesse nella matematica per le loro proprietà straor-
dinarie e le numerose applicazioni in diversi ambiti. Storicamente, il loro nome deriva dal
legame con gli integrali ellittici, introdotti per calcolare la lunghezza dell’arco di un’ellisse:
al di là di questa origine etimologica, non hanno una relazione diretta con le ellissi.

Le curve ellittiche sono un oggetto che può essere studiato in branche distinte della
matematica: esse vengono trattate in geometria algebrica, in analisi complessa, in teoria
dei numeri e trovano persino applicazione in crittografia.

È proprio da questa loro trasversalità che nasce l’idea della tesi, che confronta due prospet-
tive fondamentali nello studio delle curve ellittiche: quella analitica e quella aritmetica.

La tesi è articolata in tre capitoli, di cui di seguito riassumiamo brevemente i contenuti.

Il primo capitolo adotta il punto di vista dell’analisi complessa, con l’obiettivo di fornire
gli strumenti necessari per comprendere il capitolo successivo, includendo anche alcuni
approfondimenti utili al contesto.

In particolare, tratteremo nel dettaglio le funzioni ellittiche, introducendo i reticoli del
piano complesso, dai quali emergerà naturalmente il concetto di isogenia. Concludere-
mo poi con lo studio della funzione più significativa di questo quadro analitico: la ℘ di
Weierstrass.

Nel secondo capitolo, verrà per la prima volta fornita una definizione formale di curva
ellittica, seguendo il linguaggio della geometria algebrica. Verrà poi illustrata la più im-
portante interpretazione geometrica delle curve ellittiche: esse sono equivalenti ai tori
complessi. Non solo, tale corrispondenza è resa possibile proprio grazie alla ℘ di Weier-
strass, introdotta nel capitolo analitico.

Questo è un risultato estremamente rilevante, poiché rende le curve ellittiche partico-
larmente versatili: in base alla branca della matematica in cui vengono studiate, possono
essere interpretate in modi differenti, a seconda dell’aspetto della loro struttura che si
vuole evidenziare.

3



Il terzo capitolo adotta un approccio aritmetico allo studio delle curve ellittiche (o, equi-
valentemente, dei tori complessi), con l’obiettivo di descriverne la struttura modulare.

Il risultato più significativo in questo contesto è il teorema di modularità, che può essere
formulato in diverse versioni per via della sua evoluzione storica lunga e articolata.

L’idea alla base del teorema venne proposta come congettura negli anni ’50 da Taniyama
e fu successivamente riformulata in forma più precisa da Shimura. Qualche anno dopo,
Weil fornì un fondamento teorico più solido e per questo il teorema venne chiamato a lun-
go congettura Taniyama-Shimura-Weil. Negli anni ’90 Wiles dimostrò che l’enunciato era
valido per una particolare classe di curve ellittiche, il che ebbe una conseguenza fondamen-
tale: permise a Wiles, insieme a Taylor, di dimostrare l’ultimo teorema di Fermat. Anni
dopo, Breuil, Diamond, Conrad e Taylor, sfruttando i risultati di Wiles, completarono
una dimostrazione generale del teorema di modularità.

Introdurremo dunque, in quest’ultimo capitolo, le forme modulari, i sottogruppi di
congruenza e le curve modulari, con l’intento di fornire tutti gli strumenti necessari a
comprendere l’effettiva potenza del teorema di modularità, che verrà enunciato solamente
in forma complessa, senza esibirne una dimostrazione.

Tale scelta è motivata dal fatto che una trattazione dettagliata richiederebbe di lavorare
sul campo dei razionali Q, anziché sul campo dei complessi C, spostando l’attenzione dal
tema principale di questa tesi, ossia offrire una panoramica che mostri come le curve
ellittiche costituiscano un argomento profondamente trasversale in matematica.

4



Indice

1 Strumenti di analisi complessa 7
1.1 Funzioni ellittiche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Teoremi di Liouville sulle funzioni ellittiche . . . . . . . . . . . . . . 9
1.1.2 Funzioni ellittiche come funzioni sul toro complesso . . . . . . . . . 15

1.2 Reticoli: struttura algebrica e interpretazione geometrica . . . . . . . . . . 17
1.2.1 Reticoli visti come sottogruppi discreti . . . . . . . . . . . . . . . . 18
1.2.2 Dai reticoli ai tori complessi . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Isogenie e loro strumenti fondamentali . . . . . . . . . . . . . . . . . . . . 25
1.3.1 Definizioni e proprietà delle isogenie . . . . . . . . . . . . . . . . . . 26
1.3.2 Il gruppo di torsione e l’accoppiamento di Weil . . . . . . . . . . . . 33
1.3.3 Introduzione alla moltiplicazione complessa . . . . . . . . . . . . . . 33

1.4 ℘ di Weierstrass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.4.1 Costruzione ℘ di Weierstrass . . . . . . . . . . . . . . . . . . . . . 35
1.4.2 Proprietà ℘ di Weierstrass . . . . . . . . . . . . . . . . . . . . . . . 37
1.4.3 Equazione differenziale algebrica di ℘ . . . . . . . . . . . . . . . . . 43

2 Curve ellittiche e tori complessi 49
2.1 Verso la definizione di curva ellittica . . . . . . . . . . . . . . . . . . . . . 49

2.1.1 Nozioni preliminari . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.1.2 Definizione e riduzione a una forma standard . . . . . . . . . . . . . 51

2.2 Corrispondenza tra tori complessi e curve ellittiche . . . . . . . . . . . . . 53
2.2.1 Costruzione della biezione . . . . . . . . . . . . . . . . . . . . . . . 53
2.2.2 La funzione discriminante . . . . . . . . . . . . . . . . . . . . . . . 54
2.2.3 Passaggio tra toro e curva ellittica . . . . . . . . . . . . . . . . . . . 56

3 Strutture modulari delle curve ellittiche 61
3.1 Forme modulari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1.1 Funzioni debolmente modulari . . . . . . . . . . . . . . . . . . . . . 62
3.1.2 Verso la definizione di forme modulari . . . . . . . . . . . . . . . . 64
3.1.3 Esempi e osservazioni . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Sottogruppi di congruenza . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5



3.2.1 Definizioni e osservazioni fondamentali . . . . . . . . . . . . . . . . 68
3.2.2 Forme modulari rispetto a sottogruppi di congruenza . . . . . . . . 71

3.3 Curve ellittiche potenziate e curve modulari . . . . . . . . . . . . . . . . . 73
3.3.1 Definizioni e considerazioni iniziali . . . . . . . . . . . . . . . . . . 74
3.3.2 Corrispondenza tra curve modulari e spazi di parametri di curve

ellittiche potenziate . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3.3 Teorema di modularità - versione complessa . . . . . . . . . . . . . 79

Bibliografia 81

6



Capitolo 1

Strumenti di analisi complessa

In questo capitolo verranno fornite alcune nozioni di base di analisi complessa, che saranno
utili a comprendere i capitoli successivi.

Inizieremo introducendo le funzioni ellittiche e studiandone le loro proprietà fondamentali,
come ad esempio i teoremi di Liouville.

Nella seconda sezione ci soffermeremo sui reticoli : ne studieremo la struttura algebrica
e ne daremo un’interpretazione geometrica mostrando come questi diano origine ai tori
complessi. Seguirà in maniera naturale la necessità di trattare di isogenie, alle quali
dedicheremo la terza sezione.

Infine, l’ultima sezione sarà dedicata alla funzione ℘ di Weierstrass: ne illustreremo la
costruzione passo passo e approfondiremo le sue principali proprietà, che vedremo saran-
no necessarie, nel capitolo successivo, per studiare le curve ellittiche dal punto di vista
dell’analisi complessa.

Seguiremo principalmente gli approcci di [BF09] e [DS05], ma faremo anche riferimento
ad alcune nozioni presenti in [Mir95] e in [SS10].

1.1 Funzioni ellittiche

In questa sezione, definiremo i reticoli nel piano complesso, le funzioni ellittiche e altri
strumenti fondamentali per il loro studio. Ci concentreremo innanzi tutto sui teoremi di
Liouville sulle funzioni ellittiche, risultati essenziali per approfondirne le proprietà. In
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1. Strumenti di analisi complessa

seguito, vedremo come queste possano essere interpretate come funzioni definite sul toro
complesso.

Per rendere più chiara la lettura delle sezioni successive, introduciamo alcune notazioni e
definizioni di base di analisi complessa e teoria dei gruppi.

Cominciamo con quelle relative all’analisi complessa.

Notazione 1.1.1. Indichiamo con P1(C) = C ∪ {∞} lo spazio proiettivo complesso di
dimensione 1, con tale corrispondenza data da

C ∪ {∞} −→ P1(C)
x ∈ C 7−→ [x : 1]

∞ 7−→ [1 : 0]

dove con [x : 1] indichiamo le usuali coordinate omogenee.

Definizione 1.1.1. Sia U ⊆ C un insieme aperto. Una funzione

f : U −→ P1(C)

si dice meromorfa se soddisfa le seguenti proprietà:

• la controimmagine del punto all’infinito A = f−1(∞) è discreta;
• la restrizione

f |U\A : U \ A −→ C
è analitica;

• i punti di A sono poli di f .

Notazione 1.1.2. Sia U ⊆ C un aperto e sia f : U −→ P1(C) una funzione meromorfa.
Indichiamo con P(f) l’insieme dei poli di f .

Definizione 1.1.2. Sia f : U ⊆ C −→ C. Lo sviluppo in serie di Laurent di f è una
rappresentazione in serie che include termini positivi e negativi. Dunque, nel caso in cui
f sia olomorfa, coincide con lo sviluppo in serie di Taylor.

Passiamo ora ad una definizione preliminare della teoria dei gruppi, che ci sarà utile in
seguito.
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1.1. Funzioni ellittiche

Definizione 1.1.3. Un gruppo abelianoG si dice finitamente generato se esistono g1, ..., gr ∈
G tali che ogni elemento g ∈ G si scrive

g = a1g1 + ...+ argr

per certi a1, ..., ar ∈ Z o, equivalentemente, se esiste

p : Zr −→ G

omomorfismo di gruppi suriettivo.
In particolare, G si dice libero di rango r se tale scrittura è unica o, equivalentemente,

se p è un isomorfismo.

1.1.1 Teoremi di Liouville sulle funzioni ellittiche

In questa sottosezione introdurremo le definizioni di base relative alle funzioni ellittiche
ed enunceremo i tre teoremi di Liouville su queste funzioni.

Definizione 1.1.4. Siano ω1, ω2 ∈ C due vettori R-linearmente indipendenti, cioè non
nulli e tali che il loro quoziente è reale. Chiamiamo reticolo il gruppo abeliano da essi
generato, ossia:

L = ω1Z+ ω2Z = {mω1 + nω2 | m,n ∈ Z} ⊂ C .

Re

Im

ω1

ω2

ω1 + ω2

Figura 1: Reticolo generato da ω1 e ω2
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1. Strumenti di analisi complessa

Definizione 1.1.5. Una funzione ellittica associata al reticolo L è una funzione mero-
morfa

f : C −→ P1(C)

invariante per traslazioni nel reticolo, cioè tale che per ogni z ∈ C

f(z) = f(z + w)

per ogni ω ∈ L.

È sufficiente richiedere la periodicità solo rispetto ai due generatori ω1 e ω2 di L, ossia:

∀z ∈ C f(z + ω1) = f(z + ω2) = f(z) ;

per cui le funzioni ellittiche sono dette anche doppiamente periodiche.

Osservazione 1.1.1. Consideriamo f : C −→ P1(C) una funzione ellittica associata a un
reticolo L. Allora:

P(f) + L = P(f) .

Dimostrazione (dell’Osservazione 1.1.1). Preso p ∈ P(f), si ha che:

|f(z)| z→p−−→∞⇒ per w ∈ L |f(z + w)| = |f(z)| z→p−−−−−−→
z+w→p+w

∞⇒ p+ w ∈ P(f) .

Lemma 1.1.2 (Teorema di Liouville classico). Sia f una funzione intera, ovvero f : C −→
C olomorfa. Se f è limitata, allora è costante.

Dimostrazione. Poiché f è limitata, applicando la disuguaglianza di Cauchy sui dischi
di raggio arbitrario si ottiene che f ′ è identicamente nulla. Da questo segue che f è
costante.

Teorema 1.1.3 (Primo teorema di Liouville sulle funzioni ellittiche). Una funzione
ellittica senza poli è costante.

Dimostrazione. Mostriamo che una qualsiasi funzione che verifica le ipotesi è limitata.
Consideriamo l’insieme:

F = {t1ω1 + t2ω2 : 0 ≤ t1, t2 ≤ 1} ,
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1.1. Funzioni ellittiche

detto parallelogramma fondamentale associato alla base {ω1, ω2} di un reticolo L.
Per ogni punto z ∈ C esiste un punto del reticolo w ∈ L tale che z−w ∈ L ; grazie alla

periodicità delle funzioni ellittiche, è quindi sufficiente studiare la funzione su F . Tale
parallelogramma è chiuso e limitato in C, quindi qualsiasi funzione continua definita su F
è limitata. Una funzione ellittica senza poli è olomorfa su tutto il dominio di definizione e
dunque, per quanto osservato, sarà limitata su F e di conseguenza, per l’arbitrarietà di F ,
anche su tutto C. Per il Lemma 1.1.2, una tale funzione è necessariamente costante.

Dall’Osservazione 1.1.1 si ricavano le osservazioni seguenti:

Osservazione 1.1.4. Sia U ⊆ C e sia f : U −→ P1(C) una funzione meromorfa. Allora
si ha che:

z ∈ P(f)⇒ [z]L ⊆ P(f) .

Osservazione 1.1.5. Per ogni z ∈ C

Res(f, z) = Res(f, z + w)

per ogni w ∈ L. Si può quindi definire il residuo rispetto alla classe di equivalenza [z]L
come:

Res(f, [z]L) := Res(f, z)

senza ambiguità.

Teorema 1.1.6 (Secondo teorema di Liouville sulle funzioni ellittiche). Una funzione
ellittica f : C −→ P1(C) ha un numero finito di poli modulo L e vale:∑

z

Res(f, z) = 0 .

Dimostrazione. Per mostrare che il numero di poli modulo L è finito, è sufficiente consi-
derare i rappresentanti all’interno di un parallelogramma fondamentale F . L’insieme dei
poli P(f) è discreto e, poiché F è compatto, la loro intersezione P(f) ∩ F è necessaria-
mente finita.

Calcoliamo la somma dei residui integrando lungo il bordo di una regione delimitata
da un parallelogramma fondamentale, opportunamente traslato in modo da evitare la
possibile presenza di poli nella frontiera di tale parallelogramma. Consideriamo dunque:

Fa = a+ F = {a+ z : z ∈ F}

il parallelogramma ottenuto traslando F di un certo a ∈ C, scelto opportunamente.
Questo parallelogramma, così come F , è tale che: ogni orbita ha almeno un rappresentante
in Fa, quando due punti in Fa sono equivalenti allora sono necessariamente punti di
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1. Strumenti di analisi complessa

frontiera e due punti interni a Fa non possono essere in relazione tra loro.
Integrando f lungo ∂Fa otteniamo:∫

∂Fa

f = 2πi
∑
z∈Fa

Res(f, z) .

Per costruzione, non ci sono poli in ∂Fa quindi la somma è effettuata su un insieme di
rappresentanti modulo L.

Per concludere ci basta dunque mostrare che l’integrale è nullo. Questo segue imme-
diatamente dal fatto che gli integrali sui lati opposti del parallelogramma Fa si eliminano
perché il valore assunto da f , poiché periodica, è lo stesso e i lati sono orientati in maniera
opposta.

Definizione 1.1.6. Sia U ⊆ C un aperto e sia f : U −→ P1(C) una funzione meromorfa
con un polo a ∈ U . Per un noto risultato di analisi complessa, sappiamo che esiste un
numero naturale n e una funzione olomorfa h tali che possiamo scrivere

f(z) = (z − a)−n · h(z) .

Chiamiamo ordine di f in a tale intero

n = ord(f, a) .

Proposizione 1.1.7. Sia f : C −→ P1(C) una funzione ellittica associata a un reticolo L
e sia F un parallelogramma fondamentale tale che f non ha né zeri né poli in ∂F . Allora
il numero degli zeri di f in F , contati con molteplicità, è uguale al numero di poli di f in
F , contati con molteplicità, e vale:∑

p∈F

ordp(f) · p ≡ 0 (mod L) .

Dimostrazione. Per il principio dell’argomento, la differenza tra il numero di zeri e il
numero di poli di f in F , contati con molteplicità, è data da:

1

2πi

∫
∂F

f ′(z)

f(z)
dz .

Osserviamo che f ′

f
è L-periodica, dunque∫

∂F

f ′(z)

f(z)
dz = 0
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1.1. Funzioni ellittiche

da cui segue il primo punto dell’enunciato.
Osserviamo poi che∫

∂F
z
f ′(z)

f(z)
dz = ω1

∫ ω2

0

f ′(z)

f(z)
dz − ω2

∫ ω1

0

f ′(z)

f(z)
dz , (1.1)

dove ω1 e ω2 sono i vettori che generano F . Per i = 1, 2 si ha che esistono ki ∈ Z tali che∫ ωi

0

f ′(z)

f(z)
dz = 2πiki . (1.2)

Inoltre, per il teorema dei residui, si ha che

1

2πi

∫
∂F
z
f ′(z)

f(z)
dz =

∑
p∈F

ordp(f) · p . (1.3)

Combinando l’eq. (1.1). l’eq. (1.2) e l’eq. (1.3), otteniamo∑
p∈F

ordp(f) · p = ω1k2 − ω2k1 ∈ L .

Da ora in avanti considereremo una funzione ellittica associata a un reticolo L, come
una funzione il cui dominio è il toro C/L. Il motivo per cui questa assunzione è lecita
verrà chiarito nella prossima sottosezione.

Definizione 1.1.7. L’ordine dei poli di una funzione ellittica f è il numero di tutti i suoi
poli sul toro C/L, contati con la loro molteplicità:

Ord(f) = −
∑
a

ord(f, a) ,

dove a è un polo di f preso in un sistema di rappresentanti modulo L.
Per convenzione si assume Ord(f) = 0 se P(f) = ∅.

Osservazione 1.1.8. Dal Teorema 1.1.3, si deduce che:

Ord(f) = 0 ⇐⇒ f è costante.

Osservazione 1.1.9. Dal Teorema 1.1.6 si deduce che non esistono funzioni ellittiche di
ordine 1.
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1. Strumenti di analisi complessa

Dimostrazione (dell’Osservazione 1.1.9). L’insieme dei poli modulo L non può ridursi a
un solo elemento perché un polo semplice ha sempre residuo diverso da 0 per definizione.

Discorsi analoghi valgono anche per gli zeri di una funzione ellittica.

Definizione 1.1.8. Per b ∈ C chiamiamo:

• punti di livello b di f = zeri di f(z)− b ;

• insieme dei punti di livello b di f = insieme degli zeri di f(z)− b ;

• ordine dell’insieme dei punti di livello b di f = ordine di zero di f(z)− b = numero
dei punti di livello b di f in C/L contati con la molteplicità (in notazione b-Ordf ).

Osserviamo che ∞-Ordf = Ord(f).

Teorema 1.1.10 (Terzo teorema di Liouville sulle funzioni ellittiche). Una funzione el-
littica non costante f assume su C/L ogni valore lo stesso numero di volte contate con
molteplicità, ovvero:

Ord(f) = b-Ordf per ogni b ∈ P1(C) .

Dimostrazione. Se b =∞, la tesi segue direttamente.
Sia dunque b ∈ C. Chiamiamo

g(z) = f(z)− b e h(z) =
f ′(z)

g(z)
.

Poiché f è ellittica, lo è anche f ′ . Infatti, per z ∈ C e l ∈ L si ha

f ′(z + l) = lim
t→0

f(z + l + t)− f(z + l)

t
= lim

t→0

f(z + t)− f(z)
t

= f ′(z) .

Segue che anche h è ellittica e quindi possiamo applicare il secondo teorema di Liouville.
Per a ∈ C si ha che:

a è un polo per f ⇐⇒


a è un polo per g (o equivalentemente per f)
oppure
a è uno zero per g

Inoltre:

Res(h, a) = ord(g, a)

{
< 0 se a è un polo per g (o equivalentemente per f)
> 0 se a è uno zero per g
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1.1. Funzioni ellittiche

Otteniamo quindi:

0 =
∑
a

Res(h, a) =
∑

a∈Z(g)

ord(g, a) +
∑

a∈P(f)

ord(g, a) = b-Ordf −Ord(f)

e dunque Ord(f) = b-Ord(f).

1.1.2 Funzioni ellittiche come funzioni sul toro complesso

In questa sottosezione descriveremo come le funzioni ellittiche possano essere interpretate
come funzioni definite sul toro complesso.

Ai fini del nostro discorso, e per quelli che affronteremo nei capitoli successivi, è utile
richiamare un lemma sulle superfici di Riemann. Prima di enunciarlo, forniamo una
definizione.

Definizione 1.1.9. Diciamo che uno spazio topologico X è una superficie di Riemann
se è connesso, di Hausdorff, a base numerabile ed è dotato di una classe di equivalenza di
atlanti. Per una definizione formale di atlante complesso si rinvia a [Mir95].

Lemma 1.1.11. Siano S1 e S2 superfici di Riemann e sia f : S1 −→ S2 una mappa
olomorfa. Se S1 è compatta, allora f è suriettiva.

Dimostrazione. Per il Teorema della mappa aperta, l’immagine f(S1) è aperta in S2.
Poiché f è continua e S1 è compatta, f(S1) è compatta. Le superfici di Riemann sono spazi
di Hausdorff quindi f(S1) è anche chiusa, poiché compatta in uno spazio di Hausdorff.
Essendo S2 connessa, necessariamente sarà f(S1) = S2.

Poiché per definizione una funzione ellittica f è periodica rispetto a un certo reticolo L,
risulta naturale considerare la relazione di equivalenza:

z ≡ w (mod L) ⇐⇒ z − w ∈ L .

Osserviamo inoltre che la somma in C induce la somma in C/L

[z]L + [w]L := [z + w]L ,

operazione che non dipende dai rappresentanti e che quindi conferisce a C/L una struttura
di gruppo abeliano.
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1. Strumenti di analisi complessa

Per la proprietà fondamentale del quoziente di spazi topologici, data una funzione
ellittica f : C −→ P1(C) associata al reticolo L, esiste un’unica funzione continua

f̂ : C/L −→ P1(C)

tale che il diagramma

C P1(C)

C/L

f

π

f̂

commuta.
Una qualsiasi funzione ellittica f : C −→ P1(C), associata al reticolo L, può quindi es-

sere considerata come una funzione sul toro C/L. Per semplicità di notazione, indicheremo
ancora tale funzione con f invece che con f̂ ; ma prima di proseguire, sfruttiamo questo
discorso per dimostrare il seguente lemma, che risulterà utile più avanti nella trattazione.

Lemma 1.1.12 (Lemma di Picard per funzioni ellittiche). Una funzione ellittica

f : C −→ P1(C)

non costante associata al reticolo L assume ogni valore (complesso e ∞) di P1(C).

Dimostrazione. Per il discorso precedente, f passa al quoziente con

f̂ : C/L −→ P1(C) ,

funzione meromorfa con poli in π(P(f)). Si può dunque interpretare come mappa olomorfa
su tutto il toro C/L, se pensiamo ai poli come punti che vengono mandati all’infinito.

Poiché f è non costante, lo sarà anche f̂ ; quindi, per il Lemma 1.1.11, f̂ è suriettiva.
Segue che anche f = f̂ ◦ π è suriettiva in quanto composizione di funzioni suriettive.

Definizione 1.1.10. Sia U ⊆ C un aperto e sia f : U −→ P1(C) una funzione meromorfa.
Un punto a ∈ U si dice punto di ramificazione per f se la molteplicità di f in a (intesa
come il numero di fogli sopra f(a)) è maggiore di 1.
Un punto b ∈ P1(C) si dice punto di biforcazione per f se è immagine di almeno un punto
di ramificazione.

Indichiamo conR(f) ⊆ C/L l’insieme dei punti di ramificazione e conB(f) = f(R(f)) ⊆
P1(C) l’insieme dei punti di biforcazione.
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Osservazione 1.1.13. Sia f : C/L −→ P1(C) ellittica non costante con Ord(f) = N.
L’insieme R(f) è finito perché discreto in un compatto e l’insieme B(f) è finito in

quanto immagine di un insieme finito. Per z ∈ P1(C), si ha:

#f−1(z) =

{
< N se z ∈ B(f)

= N altrimenti
.

Osservazione 1.1.14. Sia f : C/L −→ P1(C) una funzione ellittica non costante e sia
b ∈ C.
Allora b ∈ B(f) se e solo se esiste a ∈ C tale che

f(a) = b, f ′(a) = 0 ;

inoltre ∞ ∈ B(f) per f non identicamente nulla se e solo se 0 ∈ B
(

1
f

)
.

1.2 Reticoli: struttura algebrica e interpretazione geo-
metrica

In questa sezione approfondiremo lo studio dei reticoli.
Inizieremo fornendo una definizione più generalizzata di reticolo, che ci permetta di

estendere il discorso anche al contesto di Rn, senza limitarci necessariamente nel piano
bidimensionale R2 ≃ C . Successivamente, ci concentreremo sulla relazione che c’è tra
reticoli e tori complessi, già accennata nella sezione precedente.

Prima di tutto introduciamo una definizione e una notazione di base, che utilizzeremo
frequentemente nelle sezioni successive.

Definizione 1.2.1. Chiamiamo gruppo modulare il gruppo delle matrici a coefficienti in
Z con determinante 1, cioè:

SL2(Z) = {A ∈M2(Z) | det(A) = 1} .

Notazione 1.2.1. Dato un numero complesso z ∈ C, indichiamo la sua parte reale con
ℜ(z) e la sua parte immaginaria con ℑ(z). Inoltre denotiamo:

H := {z ∈ C | ℑ(z) > 0} ⊂ C .
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1.2.1 Reticoli visti come sottogruppi discreti

Un reticolo può essere descritto come un sottogruppo discreto di Rn. Osservato in questo
modo, possiamo comprenderne meglio le proprietà.

Definizione 1.2.2. Diciamo che L ⊆ Rn è un reticolo di grado n se esistono n vettori
R-linearmente indipendenti ω1, ..., ωn tali che

L = ω1Z+ ...ωnZ .

Proposizione 1.2.1. Sia L ⊆ Rn un sottogruppo additivo. Se L è discreto, allora esistono
k ≤ n vettori R-linearmente indipendenti ω1, ..., ωk tali che

L = ω1Z+ ...+ ωkZ .

In particolare L è un reticolo di rango n nel caso in cui k = n .

Per una dimostrazione di questa proposizione si rinvia a [Neu13].

Si consideri dunque L ⊆ Rn un sottogruppo additivo discreto.
Dalla Proposizione 1.2.1 deduciamo che esiste k ∈ N, k ≤ n tale che L ≃ Zk è libero di
rango k .

Caso particolare: per n = 2 ci sono 3 possibili ranghi da cui

3 possibili sottogruppi di R2:


L = {0} , se k = 0 ;

L = w1Z gruppo ciclico, se k = 1 ;

L = w1Z+ w2Z reticolo, se k = 2 .

Applichiamo ora questo discorso al nostro contesto.

Osservazione 1.2.2. Sia f : C −→ P1(C) una funzione meromorfa non costante. Allora
l’insieme dei suoi periodi

Lf = {w ∈ C : f(z) = f(z + w) ∀z ∈ C}

è un sottogruppo discreto di C.

Per dimostrare questa osservazione, abbiamo bisogno di enunciare il principio di
identità, noto risultato in analisi complessa.
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Lemma 1.2.3 (Principio di identità). Se due funzioni olomorfe coincidono su un insieme
con un punto di accumulazione all’interno di un dominio connesso, allora coincidono
ovunque su quel dominio.

Per una dimostrazione del Lemma 1.2.3 si veda [Mod04].

Dimostrazione (dell’Osservazione 1.2.2). Supponiamo per assurdo che Lf non sia discreto
e che quindi esista un punto di accumulazione w0 ∈ Lf . Allora esiste una successione
{wn} ∈ Lf , con wn −−−−→

n→+∞
w0 .

Chiamiamo

gn(z) = f(z + wn) = f(z) ∀n ∈ N e g(z) = f(z + w0) .

Fissato z ∈ C, poiché wn −−−−→
n→+∞

w0, si ha:

gn(z) = f(z + wn) −−−−→
n→+∞

f(z + w0) = g(z) .

Ma quindi, dato che ∀n ∈ N gn(z) ≡ f(z) converge puntualmente a g(z), si ha che:

f(z) = g(z) = f(z + w0)

e quindi f coincide con la sua traslata su un insieme che contiene il punto di accumulazione
w0. Dal principio di identità segue che f deve essere necessariamente costante.

Si hanno quindi tre possibilità per Lf :

• Lf = {0} → non ci sono periodi non banali per f ;

• Lf è ciclico → f è semplicemente periodica ;

• Lf è un reticolo → f è doppiamente periodica (ellittica) .

Abbiamo dunque mostrato che i reticoli, visti come sottogruppi discreti di C descrivono
la periodicità delle funzioni meromorfe. Come già detto, quozientando il piano complesso
per un reticolo, questa struttura si traduce nella geometria dei tori.
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1.2.2 Dai reticoli ai tori complessi

Vediamo ora una serie di risultati sui reticoli in relazione con i tori complessi. In par-
ticolare, in questa sottosezione mostreremo come due reticoli possano determinare tori
isomorfi tra loro, come i generatori siano legati da trasformazioni del gruppo modulare
SL2(Z) e come i reticoli determinino l’esistenza e la forma delle funzioni olomorfe tra tori
complessi.

Lemma 1.2.4. Dati due reticoli

Λ = ω1Z+ ω2Z , Λ′ = ω′
1Z+ ω′

2Z con
ω1

ω2

,
ω′
1

ω′
2

∈ H ,

si ha che Λ = Λ′ se e solo se esiste una matrice
(
a b
c d

)
∈ SL2(Z) tale che

(
w′

1

w′
2

)
=

(
a b
c d

)(
w1

w2

)
.

Dimostrazione.
=⇒ Poiché Λ′ ⊆ Λ , si ha che esistono a, b, c, d ∈ Z tali che

ω′
1 = aω1 + bω2

ω′
2 = cω1 + dω2 ,

(1.4)

cioè esiste una matrice A =
(
a b
c d

)
∈M2(Z) tale che

(
w′

1

w′
2

)
=

(
a b
c d

)(
w1

w2

)
.

Poiché vale anche Λ ⊆ Λ′, tale matrice è invertibile, cioè A ∈ GL2(Z) e quindi detA = ±1.
Dimostriamo che detA > 0. Scriviamo un numero complesso v ∈ C arbitrario come

vettore

v =

(
ℜ(v)
ℑ(v)

)
∈ R2

e analogamente un vettore complesso (v, w) ∈ C2 come una matrice

M(v, w) =

(
ℜ(v) ℜ(w)
ℑ(v) ℑ(w)

)
∈M2(R) .
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Osserviamo che det(M(ω1, ω2)) = ℑ(ω1 · ω2).
Poiché

ω1

ω2

=
ω1 · ω2

|ω2|2
,

si ha che
det(M(ω1, ω2)) = |ω2|2 · ℑ

(
ω1

ω2

)
> 0

e analogamente si avrà
det(M(ω′

1, ω
′
2)) = ℑ(ω′

1 · ω′
2) > 0 .

Dalle eq. (1.4) si evince che

M(ω′
1, ω

′
2) =M(ω1, ω2) · AT ,

quindi, passando ai determinanti, si ottiene che

det(M(ω′
1, ω

′
2)) = det(M(ω1, ω2)) · det(AT ) .

Dunque det(A) = det(AT ) > 0 e quindi det(A) = 1.

⇐= Per ipotesi, esiste una matrice A ∈ SL2(Z) tale che(
w′

1

w′
2

)
= A

(
w1

w2

)
.

Quindi
ω′
1 = aω1 + bω2 ∈ Λ

ω′
2 = cω1 + dω2 ∈ Λ ,

e dunque Λ′ ⊆ Λ .
Essendo A invertibile, vale: (

ω1

ω2

)
= A−1

(
ω′
1

ω′
2

)
,

quindi Λ ⊆ Λ′ .

Definizione 1.2.3. Chiamiamo trasformazione di Möbius una funzione meromorfa defi-
nita da

f : P1(C) −→ P1(C)

z 7−→ az + b

cz + d

dove a, b, c, d ∈ C sono tali che ad− bc ̸= 0 .
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Osservazione 1.2.5. Gli elementi di SL2(Z) possono essere visti come particolari tra-
sformazioni di Möbius.

Osservazione 1.2.6 (Azione di SL2(Z) su H). Due reticoli sono uguali se e solo se i
rapporti dei generatori sono legati da una qualche trasformazione di Möbius in SL2(Z) .

Dimostrazione. Consideriamo due reticoli come sopra

Λ = ω1Z+ ω2Z , Λ′ = ω′
1Z+ ω′

2Z

e chiamiamo
τ :=

ω1

ω2

, τ ′ :=
ω′
1

ω′
2

.

Il Lemma 1.2.4 afferma che Λ = Λ′ se e solo se esistono a, b, c, d ∈ Z, con ad− bc = 1,
tali che

ω′
1 =aω1 + bω2

ω′
2 =cω1 + dω2 .

Ma quindi si ha che

τ ′ =
aω1 + bω2

cω1 + dω2

=
aτ + b

cτ + d
,

cioè τ ′ = f(τ) per una qualche f trasformazione di Möbius in SL2(Z) .
In altre parole, due punti τ, τ ′ ∈ H definiscono lo stesso reticolo se e solo se sono nella

stessa orbita dell’azione di SL2(Z) su H .

Nei capitoli successivi vedremo che il quoziente del piano H per l’azione del gruppo mo-
dulare può essere identificato con un sottoinsieme di C che denoteremo dominio fonda-
mentale.

Proposizione 1.2.7. Sia ϕ : C/Λ −→ C/Λ′ una funzione olomorfa tra tori complessi.
Allora esistono m, b ∈ C con mΛ ⊆ Λ′ tali che ϕ([z]Λ) = [mz + b]Λ′ .
In particolare ϕ è invertibile se e solo se mΛ = Λ′.

Dimostrazione. Consideriamo le proiezioni al quoziente

π : C −→ C/Λ, π′ : C −→ C/Λ′

e la composizione
g = ϕ ◦ π : C −→ C/Λ′ .

Questa verifica le ipotesi della proprietà di sollevamento delle mappe (perché C/Λ′ è
connesso per archi e localmente connesso per archi e C è semplicemente connesso), quindi

22



1.2. Reticoli: struttura algebrica e interpretazione geometrica

esiste ϕ : C −→ C sollevamento continuo di ϕ, cioè tale che π′ ◦ ϕ = g. Abbiamo quindi
che il seguente diagramma:

C C

C/Λ C/Λ′

ϕ

π π′

ϕ

commuta.
Consideriamo ora, per λ ∈ Λ, la funzione

fλ(z) = ϕ(z + λ)− ϕ(z)

e osserviamo che ha valori solo in Λ′. Infatti: preso z ∈ C, si ha che:

[ϕ(z + λ)]Λ′ = π′(ϕ(z + λ)) = ϕ(π(z + λ)) = ϕ([z]Λ) = ϕ(π(z)) = π′(ϕ(z)) = [ϕ(z)]Λ′ ,

quindi fλ(z) ∈ Λ′. Da questo deduciamo che fλ : C −→ Λ′ è costante, poiché funzione
continua da un connesso a un discreto.
Derivando, otteniamo che per ogni z ∈ C si ha che

ϕ
′
(z + λ) = ϕ

′
(z)

che significa che ϕ′ è Λ-periodica. Dunque, per il teorema 2.1.1, ϕ′ è costante e di conse-
guenza ϕ è un polinomio di primo grado ϕ(z) = mz + b.

Si osservi poi che mΛ ⊆ Λ′, cioè che per λ ∈ Λ si ha che mλ ∈ Λ′ . Infatti:

[mz + b]Λ′ = [ϕ
′
(z)]Λ′ = ϕ([z]Λ) = ϕ([z + λ]Λ′) = [ϕ

′
(z + λ)]Λ′ = [mz +mλ+ b]Λ′ ,

quindi:
[mλ]Λ′ = [0]Λ′ .

Mostriamo ora che se tale contenimento è proprio, allora ϕ non può essere iniettiva: sia
dunque mΛ ⊊ Λ′.
Allora esiste z ∈ Λ′ tale che z

m
/∈ Λ e quindi:

ϕ
([ z
m

]
Λ

)
=
[
ϕ
( z
m

)]
Λ′

= [z + b]Λ′
z∈Λ′
= [b]Λ′ = [ϕ(0)]Λ′ = ϕ([0]Λ) .

Se invece mΛ = Λ′, abbiamo che la funzione

ψ :
C/Λ′ −→ C/Λ
[w]Λ′ 7→

[
w−b
m

]
Λ

inverte ϕ .
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Corollario 1.2.8. Sia ϕ : C/Λ −→ C/Λ′ una funzione olomorfa tra tori complessi e siano
m e b come sopra, cioè tali che ϕ([z]Λ) = [mz + b]Λ′ e mΛ ⊆ Λ′. Allora sono equivalenti:

1. ϕ è un omomorfismo di gruppi;
2. b ∈ Λ′ e quindi ϕ([z]Λ) = [mz]Λ′ ;
3. ϕ([0]λ) = [0]Λ′ .

In particolare:

• esiste un omomorfismo di gruppi olomorfo tra tori complessi se e solo se esiste
m ∈ C∗ tale che mΛ ⊆ Λ′ ;

• esiste un isomorfismo di gruppi olomorfo tra tori complessi se e solo se esiste m ∈ C
tale che mΛ = Λ′ .

Dimostrazione.

1⇒ 3 Segue dalla definizione di omomorfismo.

3⇒ 2 Poiché
ϕ([0]Λ) = [0 + b]Λ′ ,

allora ϕ([0]λ) = [0]Λ′ se e solo se b ∈ Λ′ .

2⇒ 1 Siano [z1]Λ, [z2]Λ ∈ C/Λ . Allora

ϕ([z1 + z2]Λ) = [m(z1 + z2) + b]Λ′ = [mz1 + b]Λ′ + [mz2 + b]Λ′ = ϕ([z1]Λ) + ϕ([z2]Λ) .

Quindi ϕ è un omomorfismo di gruppi.
Vediamo ora la seconda parte dell’enunciato. Per quanto riguarda il primo punto,

se esiste una funzione olomorfa tra tori complessi (non necessariamente lineare), dalla
Proposizione 1.2.7 segue che esiste m ∈ C∗ tale che mΛ ⊆ Λ′ ; viceversa, se tale m esiste,
si può costruire un omomorfismo olomorfo definendo ϕ([z]Λ) = [mz]Λ′ . Il secondo punto
segue direttamente.

Osservazione 1.2.9. Ogni toro complesso è isomorfo a un quoziente C/Λτ dove Λτ =
Z+ τZ per un qualche τ ∈ H. Tale τ non è unico.

Dimostrazione. Sia Λ = ω1Z+ ω2Z un reticolo arbitrario con ω1

ω2
∈ H. Il Corollario 1.2.8

mostra che la mappa
ϕτ : C/Λ −→ C/Λτ

[z]Λ 7−→
[

z
ω2

]
Λτ

,
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dove τ := ω1

ω2
∈ H, è un isomorfismo.

Mostriamo che la scelta di τ non è unica. Sia dunque τ ′ tale che C/Λτ ′
∼= C/Λ ∼= C/Λτ .

Allora, dalla Proposizione 1.2.7, si deduce che τ ′ = ω′
1

ω′
2

dove ω′
1 e ω′

2 sono tali che

Λ = ω′
1Z+ ω′

2Z .

Per il Lemma 1.2.4, si ha che esiste f trasformazione di Möbius in SL2(Z) tale che
τ = f(τ ′).

Osservazione 1.2.10. Sebbene la rappresentazione di un toro complesso sotto forma di
C/Λτ non sia unica, possiamo comunque affermare che un toro complesso è univocamente
determinato da un punto in H a meno di azioni di SL2(Z).

Torneremo su questo aspetto nel capitolo in cui adotteremo un approccio aritmetico.

1.3 Isogenie e loro strumenti fondamentali

A questo punto del discorso, risulta naturale introdurre un nome per queste particolari
mappe tra tori complessi. Esse prendono il nome di isogenie. Vedremo che due casi
particolarmente semplici hanno un ruolo fondamentale: permettono di descrivere ogni
altro tipo di isogenia.

La sezione sarà organizzata nel modo seguente: inizieremo introducendo le definizioni
e le proprietà generali delle isogenie, successivamente ci concentreremo sul sottogruppo
di torsione N-esima dei tori complessi; infine, nell’ultima sottosezione, parleremo di un
ulteriore endomorfismo che questi possono ammettere.

Richiamiamo innanzi tutto una nozione di base della teoria dei gruppi di cui faremo uso
in seguito.

Definizione 1.3.1. Dato un gruppo G e un sottogruppo H ≤ G, chiamiamo indice di H
in G il numero di classi laterali sinistre di H in G, ovvero:

[G : H] = # {gH | g ∈ G} .
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1.3.1 Definizioni e proprietà delle isogenie

Iniziamo chiarendo la nozione di isogenia ed enunciandone le proprietà di base, che saranno
il punto di partenza per il proseguimento del discorso.

Definizione 1.3.2. Si dice isogenia un omomorfismo olomorfo non nullo tra tori com-
plessi.

Osservazione 1.3.1. Ogni isogenia è suriettiva e ha nucleo finito.

Dimostrazione. Un’isogenia ϕ : T1 −→ T2 è in particolare una funzione olomorfa e non
costante tra superfici di Riemann compatte, quindi per il Lemma 1.1.11, è suriettiva. Per
quanto riguarda il nucleo, questo è finito perché è un discreto (gli zeri di una funzione
olomorfa sono isolati) in un compatto (il toro T1).

Soffermiamoci ora su due specifici esempi, fondamentali poiché, come vedremo, ogni
isogenia può essere espressa come una composizione di essi.

Esempio 1.3.1 (Mappa moltiplicazione per un intero).
Presi N ∈ N∗ e Λ ⊂ C reticolo, la funzione

[N ] :
C/Λ −→ C/Λ
[z]Λ 7−→ [Nz]Λ

è un’isogenia perché NΛ ⊆ Λ e vale il punto 2 del Corollario 1.2.8
Il suo nucleo è detto insieme dei punti di N-torsione di C/Λ ed è isomorfo a ZN × ZN .

Osservazione 1.3.2. Sia End(C/Λ) l’anello degli endomorfismi su C/Λ e consideriamo
il sottoanello degli endomorfismi dati dalle mappe moltiplicazioni per un intero:

S = {[N ] | N ∈ Z} ⊂ End(C/Λ) .

Allora S è isomorfo a Z.

Dimostrazione. Consideriamo la funzione naturale
ϕ : Z −→ {[N ] | N ∈ Z}
N 7−→ [N ]

.

Tale mappa è un omomorfismo perché ϕ(N +M) = [N +M ] = [N ] + [M ] .
Per mostrare l’iniettività, si osservi che, se N ∈ Z è tale che [N ] è l’endomorfismo

nullo, allora per ogni z ∈ C si ha che Nz ∈ Λ; dunque, se N fosse diverso da 0, questo
implicherebbe che, dato che NC = C, C ⊆ Λ che è assurdo.

Infine, tale mappa è suriettiva perché per ogni [N ] ∈ {[N ] | N ∈ Z} si ha che [N ] = ϕ(N)
per N ∈ Z.
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Esempio 1.3.2 (Mappa quoziente ciclica).
Per N ∈ N∗, Λ reticolo e G ≤ ker([N ]) sottogruppo ciclico tale che G ∼= ZN , abbiamo che
gli elementi [g]Λ ∈ G sono tali che Ng ∈ Λ. Se consideriamo l’insieme dei rappresentanti:

{g ∈ C : Ng ∈ Λ} ⊆ C ,

otteniamo un insieme che genera un reticolo contenente Λ, cioè un sovra-reticolo di Λ, che
con un piccolo abuso di notazione, chiamiamo ancora G.
La proiezione:

π :
C/Λ −→ C/G
[z]Λ 7→ [z]G

è un’isogenia. Inoltre essa ha nucleo ker(π) = G.

Osservazione 1.3.3. Ogni isogenia è una composizione delle isogenie appena mostrate.

Per dimostrarlo, abbiamo bisogno dei seguenti risultati di teoria dei gruppi abeliani
finitamente generati.

Lemma 1.3.4. Sia G un gruppo abeliano finitamente generato di rango r e sia H ≤ G
un sottogruppo di rango s . Allora esiste {γ1, ..., γr} base di G e esistono t1, ..., ts ∈ Z tali
che {t1γ1, ..., tsγs} è una base di H.

Una dimostrazione del Lemma 1.3.4 è disponibile in [Ste03]

Corollario 1.3.5. Ogni gruppo abeliano finitamente generato si può scrivere

Za ⊕
⊕
i

Zti

per certi a, ti ∈ Z .

Dimostrazione (del Corollario 1.3.5). Dalla Definizione 1.1.3 deduciamo che, per il Primo
teorema di omomorfismo, un gruppo abeliano finitamente generato può essere visto come
quoziente di un gruppo abeliano libero per un suo sottogruppo. Sia quindi G/H un gruppo
abeliano finitamente generato, dove G è un gruppo abeliano libero di rango r e H ≤ G è
di rango s.

Per il Lemma 1.3.4, esistono t1, ..., ts ∈ Z e esiste un isomorfismo

ϕ : G −→ Zr
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tale che ϕ(H) ha come base {t1e1, ..., tses} , dove con ei indichiamo l’i-esimo vettore della
base canonica di Rr.
Passando al quoziente, otteniamo

G/H = Zs−r ⊕ Zt1 ⊕ ...⊕ Zts .

Corollario 1.3.6. Sia N ∈ N∗ e sia K isomorfo a un sottogruppo di ZN × ZN . Allora
esistono n, n′ ∈ N∗ tali che

K ∼= Zn × Znn′ .

Dimostrazione. Poiché ZN × ZN è un gruppo abeliano finitamente generato, anche K lo
è. Identifichiamo ZN × ZN con Z2/NZ2 tramite la proiezione

π : Z2 −→ ZN × ZN .

Quindi, chiamando K̃ = π−1(K), si ha che K ∼= K̃/NZ2. Per il Lemma 1.3.4, esistono
t1, t2 ∈ Z tali che

K̃ = t1Z+ t2Z .

Poiché NZ2 ⊆ K̃, ti divide N e quindi

K ∼=
t1Z
NZ

+
t2Z
NZ
∼= ZN/t1 + ZN/t2 .

Prendendo n il massimo comun divisore di N
t1

e N
t2

e prendendo n′ tale che nn′ è il minimo
comune multiplo, otteniamo che

K ∼= Zn × Znn′ .

Dimostrazione (dell’Osservazione 1.3.3). Consideriamo un’isogenia arbitraria:

ϕ :
C/Λ −→ C/Λ′

[z]Λ 7→ [mz]Λ′

e chiamiamo
K = ker(ϕ) = {[z]Λ ∈ C/Λ : mz ∈ Λ′}

che, come prima, leggiamo come il sovra-reticolo K = m−1Λ′ ⊂ C di Λ. Sia N l’ordine di
K. Allora, per [z]Λ ∈ K, si ha che [Nz]Λ = [0]Λ, cioè K ⊂ ker([N ]) ∼= ZN × ZN .
Quindi, per il Corollario 1.3.6, esistono n, n′ ∈ N∗ tali che K ∼= Z/n × Z/nn′. Se
consideriamo le mappe:
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• [n] da C/Λ in se stesso → porta K in nK,

• π : C/Λ −→ C/nK → ha nucleo nK,

• f : C/nK −→ C/Λ′ definita da [z]nK 7→
[
m
n
· z
]
mK=Λ′ → è un isomorfismo;

otteniamo che:

ϕ = f ◦ π ◦ [n] :
C/Λ C/Λ C/nK C/Λ′

[z]Λ [nz]Λ [nz]nK [mz]Λ′

[n] π f

Osservazione 1.3.7. Essere isogeni è una relazione di equivalenza.

Per mostrare questo fatto, abbiamo innanzi tutto bisogno della seguente definizione.

Definizione 1.3.3. Data un’isogenia ϕ : C/Λ −→ C/Λ′, la funzione

ϕ̂ : C/Λ′ −→ C/Λ

si dice isogenia duale di ϕ se vale:

ϕ̂ ◦ ϕ = [deg(ϕ)]

dove deg(ϕ) := #ker(ϕ).

Osservazione 1.3.8. Tale isogenia esiste sempre ed è unica.

Dimostrazione (dell’Osservazione 1.3.8). Consideriamo come prima un’isogenia arbitra-
ria

ϕ : C/Λ −→ C/Λ′

[z]Λ 7−→ [mz]Λ′

dove m ̸= 0 e mΛ ⊆ Λ′.
Per il Lemma 1.3.4, esiste una base {ω1, ω2} di Λ′ e esistono n1, n2 ∈ N∗ tali che
{n1ω1, n2ω2} è una base di mΛ .

Segue che n1n2Λ
′ ⊆ mΛ e quindi

n1n2

m
Λ′ ⊆ Λ .
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Deduciamo che esiste:
ϕ̂ : C/Λ′ −→ C/Λ

[z]Λ′ 7−→
[n1n2

m
z
]
Λ

isogenia duale di ϕ e osserviamo che ϕ̂ ◦ ϕ risulta essere una mappa moltiplicazione (per
l’intero n1n2), cioè:

ϕ̂ ◦ ϕ = [n1n2].

Poiché ϕ è suriettiva, questa è una condizione che determina univocamente ϕ̂.

Osservazione 1.3.9. n1n2 = deg(ϕ).

Dimostrazione (dell’Osservazione 1.3.9).
{

ω1

m
, ω2

m

}
è una base di ker(ϕ) e

{
n1ω1

m
, n2ω2

m

}
è

una base di Λ e questo implica che l’ordine di ker(ϕ) è n1n2.

Dimostrazione (dell’Osservazione 1.3.7). Essere isogeni è una relazione riflessiva perché
un toro è sempre isogeno a se stesso tramite l’identità; è simmetrica perché, se un toro
C/Λ è isogeno a un toro C/Λ′ tramite un’isogenia ϕ, allora il toro C/Λ′ è isogeno al toro
C/Λ tramite l’isogenia duale ϕ̂; è transitiva perché la composizione di isogenie è ancora
un’isogenia.

Studiamo ora alcune delle proprietà principali delle isogenie duali.

Proposizione 1.3.10.

1. deg(ϕ) = deg(ϕ̂).

2. L’isogenia duale della mappa moltiplicazione per un intero è se stessa.

3. L’isogenia duale della mappa quoziente ciclica

π : C/Λ −→ C/G ,

dove G ≤ ker([N ]) e G ∼= ZN per N ∈ N∗, è anch’essa una mappa quoziente ciclica.
In particolare, se chiamiamo π̂ l’isogenia duale di π, si ha che

π̂ ◦ π = [N ] .

4. L’isogenia duale di un isomorfismo è la sua inversa. Ovvero, se chiamiamo ϕ tale
isomorfismo, si ha

ϕ̂ = ϕ−1
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5. L’isogenia duale di una composizione di isogenie è la composizione delle isogenie
duali in ordine invertito, cioè:

ϕ̂ ◦ ψ = ψ̂ ◦ ϕ̂ .

6. Se ϕ1, ϕ2 : C/Λ −→ C/Λ′ sono due isogenie tali che ϕ1 + ϕ2 è un’isogenia non
nulla, allora l’isogenia duale della somma è la somma delle isogenie duali, cioè:
ϕ̂1 + ϕ2 = ϕ̂1 + ϕ̂2.

Dimostrazione.
1. La mappa [deg(ϕ)] ha grado (deg(ϕ))2 e il grado di una composizione è il prodotto

dei gradi.

2. Segue direttamente dal fatto che [N ] ◦ [N ] = [N2] e che deg([N ]) = N2.

3. Osserviamo innanzi tutto che

deg(π) = #ker(π) = #G = N ,

quindi otteniamo che
π̂ ◦ π = [deg(π)] = [N ] .

Consideriamo ora H il complementare di G in ker([N ]) . Si ha che, x ∈ H ⊂
ker([N ]), se e solo se

(π̂ ◦ π)(x) = [N ](x) = 0

da cui deduciamo che
ker(π̂) = π(H)

che è un sottogruppo ciclico di C/G. Chiamando G′ := π(H), otteniamo un sovra-
reticolo di G ⊂ C e quindi otteniamo che l’isogenia duale

π̂ : C/G −→ C/Λ ≃ C/G′ ,

è ciclica. In altre parole, abbiamo ottenuto che l’isogenia duale di π quozienta il toro
di arrivo (il codominio C/G di π) nella direzione complementare a G in ker([N ]).

4. Segue direttamente dal fatto che gli isomorfismi hanno grado 1 e che la mappa
identità corrisponde all’isogenia moltiplicazione [1].

5. Date due isogenie ψ : C/Λ −→ C/Λ′ e ϕ : C/Λ′ −→ C/Λ′′, si ha che:

(ϕ ◦ ψ) ◦ (ψ̂ ◦ ϕ̂) = ϕ ◦ [deg(ψ)] ◦ ϕ̂ = [deg(ψ)] ◦ ϕ ◦ ϕ̂ =

= [deg(ψ)] ◦ [deg(ϕ)] = [deg(ψ) · deg(ϕ)] = [deg(ϕ ◦ ψ)]

e quindi ψ̂ ◦ ϕ̂ = ϕ̂ ◦ ψ .
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6. Mostriamolo leggendo le isogenie come moltiplicazioni per matrici a coefficienti
interi. Consideriamo un’isogenia arbitraria:

ϕ :
C/Λ −→ C/Λ′

[z]Λ 7−→ [mz]Λ′

dove Λ = ω1Z + ω2Z con ω1

ω2
∈ H, Λ′ = ω′

1Z + ω′
2Z con ω′

1

ω′
2
∈ H e m ̸= 0 è tale che

mΛ ⊂ Λ′.
Si ha quindi che esiste α =

(
a b
c d

)
∈M2(Z) tale che(

mω1

mω2

)
= α

(
ω′
1

ω′
2

)
e questo significa che ω1/ω2 = α(ω′

1/ω
′
2) e quindi det(α) > 0, poiché ℑ(ω1/ω2),ℑ(ω′

1/ω
′
2) >

0.
Osserviamo che:

deg(ϕ) = #ker(ϕ) = [m−1Λ′ : Λ] = [Λ′ : mΛ] = det(α) ,

da cui deduciamo che, date due isogenie ϕ e ψ, la matrice associata alla composizione
sarà

M(ϕ ◦ ψ) =M(ϕ) ·M(ψ) .

Nel nostro caso quindi, poiché vale la relazione ϕ ◦ ϕ̂ = [deg(ϕ)], si avrà che:

M(ϕ) ·M(ϕ̂) =M([deg(ϕ)]) =⇒ α · α̂ = deg(ϕ) · I2 = det(α) · I2
e quindi:

M(ϕ̂) = α̂ = det(α) · α−1 =

[
d −b
−c a

]
Dunque avremo che l’isogenia somma:

ϕ1 + ϕ2 : C/Λ −→ C/Λ′

[z]Λ 7→ [(m1 +m2)z]Λ′

è associata alla matrice:

M(ϕ1 + ϕ2) = α1 + α2 =

[
a1 + a2 b1 + b2
c1 + c2 d1 + d2

]
e quindi, per il discorso appena fatto, l’isogenia duale ϕ̂1 + ϕ2 sarà associata alla
matrice:

M(ϕ̂1 + ϕ2) =

[
d1 + d2 −b1 − b2
−c1 − c2 a1 + a2

]
= α̂1 + α̂2

che prova quanto volevamo dimostrare.
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1.3.2 Il gruppo di torsione e l’accoppiamento di Weil

Consideriamo ora il gruppo di torsione N -esima, che svolge un ruolo centrale nello studio
delle isogenie. In particolare, su di esso introdurremo l’accoppiamento di Weil, strumento
fondamentale per comprenderne la struttura.

Sia Λ = ω1Z+ω2Z un reticolo e sia N ∈ N∗. Il sottogruppo di torsione N -esima di C/Λ è

ker([N ]) = {[g]Λ ∈ C/Λ : [N ]([g]Λ) = [0]Λ} = ⟨
[
ω1

N

]
Λ
,
[
ω2

N

]
Λ
⟩ ≃ ZN × ZN .

Esso rappresenta l’analogo bidimensionale del sottogruppo di torsione N -esima di R/Z ≃
S1, ovvero l’insieme delle radici N -esime dell’unità:{

z ∈ C : zN = 1
}
= ⟨e

2πi
N ⟩ ∼= ZN .

Questa analogia suggerisce l’esistenza di una sorta di prodotto interno

ker([N ])× ker([N ]) −→ µN ,

che introduciamo di seguito.

Definizione 1.3.4. Sia N ∈ N∗ e consideriamo la mappa [N ] da C/Λ in se stesso, dove
Λ = ω1Z+ ω2Z e ω1

ω2
∈ H.

Presi P,Q ∈ ker ([N]), esiste α ∈M2(ZN) tale che(
P
Q

)
= γ

([
ω1

N

]
Λ[

ω2

N

]
Λ

)
.

Definiamo allora il l’accoppiamento di Weil su torsione N -esima come la mappa

eN : ker([N ])× ker([N ]) −→ µN

(P,Q) 7−→ e
2πidet(γ)

N .

Questo strumento non è stato introdotto a caso: riapparirà infatti nel capitolo dedicato
all’approccio aritmetico, quando parleremo di curve ellittiche potenziate.

1.3.3 Introduzione alla moltiplicazione complessa

Alcuni tori complessi ammettono altri endomorfismi oltre all’isogenia [N ]: in tal caso si
dice che sono dotati di moltiplicazione complessa.

Per fornire un esempio di questo, abbiamo bisogno della seguente definizione.
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Definizione 1.3.5. Un intero positivo n ∈ N∗ si dice privo di quadrati se nella sua
fattorizzazione in numeri primi

n = pr11 · pr22 · ...prss

nessun fattore è ripetuto (e quindi r1 = ... = rs = 1 ), cioè n non è diviso da nessun
quadrato.

Lemma 1.3.11. Sia Θ = τZ+ Z, dove

τ =


√
d con d ∈ Z− privo di quadrati e tale che d ≡ 2, 3 (mod 4)

oppure
−1+

√
d

2
con d ∈ Z− privo di quadrati e tale che d ≡ 1 (mod 4)

.

In entrambi i casi, Θ è un anello.

Dimostrazione. La parte meno immediata da mostrare è la chiusura del prodotto. Siano
dunque a+ bτ, c+ dτ ∈ Θ due elementi generici e calcoliamo

(a+ bτ)(c+ dτ) = ac+ (bc+ ad)τ + bdτ 2 .

Dunque l’obiettivo è mostrare che τ 2 si scrive come combinazione lineare in Z di 1 e
τ . Se τ =

√
d, allora τ 2 = d ∈ Z ; se invece τ = −1+

√
d

2
, con d ∈ Z− privo di quadrati e

congruo a 2 o 3 modulo 4, chiamando
√
d = s, si ottiene che s = 2τ + 1 e quindi

τ 2 =
1− 2s+ d

4
=
d− 4τ − 1

4
= −τ + d− 1

4
∈ Θ

perché d−1
4
∈ Z.

Consideriamo un ideale Λ ⊆ Θ. Allora per un qualsiasi numero complesso m ∈ Θ, si ha
che mΛ ⊂ Λ e questa condizione mi garantisce che la moltiplicazione per m data da

(m) : C/Λ −→ C/Λ
[z]Λ 7−→ [mz]Λ

è ben definita perché manda il reticolo nel reticolo. In particolare abbiamo così mostrato
che (m) ∈ End(C/Λ).

Si può dimostrare che End(C/Λi) ∼= Λi . Per questo risultato, e per ulteriori approfon-
dimenti sulla moltiplicazione complessa, si rinvia a [Sin].
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1.4 ℘ di Weierstrass

In questa sezione verrà introdotta la funzione ℘ di Weierstrass. Mostreremo, non solo che
si tratta di una funzione ellittica con proprietà estremamente utili, che la rendono uno
strumento fondamentale per lo studio dell’analisi complessa, ma anche che, grazie ad essa,
è possibile studiare qualsiasi altra funzione ellittica in maniera più agevole. In particolare,
per poter dimostrare tali risultati, sarà necessario parlare dei campi di funzioni ellittiche,
che esamineremo in maniera concisa, cercando di renderli il più chiari possibile.

1.4.1 Costruzione ℘ di Weierstrass

Il nostro obiettivo è costruire un esempio quanto più semplice possibile di funzione ellit-
tica non costante.
Sappiamo che non esistono funzioni ellittiche non costanti di ordine 1; perciò ci sofferme-
remo sul caso di ordine 2. In questo caso, la funzione cercata avrà, modulo il reticolo L,
o due poli semplici con residui opposti o un polo doppio con residuo nullo.

Proviamo dunque a definire una funzione ellittica di ordine 2 con un solo polo doppio in
0 modulo L, in modo da ottenere che ogni altro polo coincida con un punto del reticolo.

Un primo tentativo di definizione di una tale funzione, prendendo un reticolo L ⊂ C
arbitrario, potrebbe essere il seguente:

f(z) =
∑
ω∈L

1

(z − ω)2
.

Questa funzione ha poli doppi nei punti del reticolo L. Tuttavia, non possiamo affermare
che f converga assolutamente per qualsiasi scelta di L. Per esempio, se scegliamo L =
Z+ iZ, la serie non converge.
Infatti, separando i termini otteniamo

f(z) =
1

z2
+
∑
ω∈L∗

1

(z − ω)2

e chiamando la sommatoria g(z), per ω = m+ in, con m,n ∈ Z, calcolando g(0), si arriva
al termine

1

|m+ in|2
=

1

m2 + n2

che non converge, come mostra il seguente lemma.
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Lemma 1.4.1. La serie: ∑
(m,n)∈Z2

(m,n)̸=(0,0)

1

(m2 + n2)α
, α ∈ R

converge se e solo se α > 1.

Una dimostrazione di questo lemma si può trovare al capitolo V3 di [BF09] o al capitolo
9 di [SS10].

Vediamo un altro risultato di convergenza che ci servirà a definire la funzione desiderata.

Lemma 1.4.2. Sia L = ω1Z+ ω2Z ⊂ C reticolo. Allora la serie∑
ω∈L∗

1

|ω|s

converge per s > 2.

Dimostrazione. ∀n ∈ N∗ costruiamo

Pn parallelogramma di vertici ± nω1 ± nω2

∂P1

∂P2

∂P3

ω1

ω2

Re

Im

ω1 + ω2

2ω1 + 2ω2

3ω1 + 3ω2

Figura 2: Frontiere dei parallelogrammi P1, P2 e P3
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e chiamiamo Ln = ∂Pn ∩ L in modo da ottenere

L∗ =
⋃
n∈N∗

Ln .

Siano c1, c2 > 0 tali che per ogni ω ∈ L∗ si ha

n · c1 ≤ |ω1| ≤ n · c2 .

Osservando che ∑
ω∈L∗

1

|ω|s
=

+∞∑
n=1

∑
ω∈Ln

1

|ω|s
,

possiamo stimare la somma così:

+∞∑
n=1

8n

ns · cs2
≤

+∞∑
n=1

∑
ω∈Ln

1

|ω|s
≤

+∞∑
n=1

8n

ns · cs1
.

La tesi segue direttamente.

Definizione 1.4.1. Dato un reticolo L, la funzione definita da

℘(z) =


1

z2
+

∑
ω∈L\{0}

[
1

(z − ω)2
− 1

ω2

]
, se z ∈ C \ L ,

∞ , se z ∈ L .

è chiamata ℘ di Weierstrass associata al reticolo L.

1.4.2 Proprietà ℘ di Weierstrass

In questa sottosezione analizzeremo le proprietà fondamentali della funzione ℘ di Weier-
strass. Alcune di esse ci permetteranno di verificare che questa è effettivamente una fun-
zione ellittica con poli di ordine 2 nei punti del reticolo. Osserveremo poi che ℘ ammette
uno sviluppo di Laurent in 0 particolarmente utile per le applicazioni successive.
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Osservazione 1.4.3. La ℘ di Weierstrass associata al reticolo L è pari.

Dimostrazione. Per z ∈ C \ L, si ha

℘(−z) = 1

z2
+
∑
ω∈L

[
1

(−z − ω)2
− 1

ω2

]
=

1

z2
+
∑
ω∈L

[
1

(z + ω)2
− 1

ω2

]
=

=
1

z2
+
∑
−ω∈L

[
1

(z − ω)2
− 1

ω2

]
= ℘(z)

Proposizione 1.4.4. La ℘ di Weierstrass associata al reticolo L converge assolutamente
su C \ L ed è una funzione meromorfa su C con poli doppi in L.

Dimostrazione. Fissiamo z ∈ C \ L e prendiamo R tale che z ∈ BR(0), palla di raggio R
centrata in 0.

Spezziamo la somma

℘(z) =
1

z2
+
∑

|ω|≤2R

[
1

(z − ω)2
− 1

ω2

]
+
∑

|ω|>2R

[
1

(z − ω)2
− 1

ω2

]
e osserviamo che

1

z2
+
∑

|ω|≤2R

[
1

(z − ω)2
− 1

ω2

]
è una funzione olomorfa in C \ (L ∩ B2R(0)) con poli doppi in L ∩ B2R(0) .
Per quanto riguarda l’altro termine, invece, sfruttando la stima∣∣∣∣ 1

(z − ω)2
− 1

ω2

∣∣∣∣ = ∣∣∣∣ 2zω + z2

(z − ω)2 · ω2

∣∣∣∣ ≤ ∣∣∣∣ 2|ω| ·R +R2

|ω|4 − |ω|2 ·R2

∣∣∣∣ ,
otteniamo una frazione con ω che ha esponente 1 al numeratore e 4 al denominatore,
dunque si deduce che la serie ∑

|ω|>2R

[
1

(z − ω)2
− 1

ω2

]

converge in BR(0). Ne consegue che ℘ è una funzione olomorfa su C \L con poli doppi in
L.
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Proposizione 1.4.5. La derivata della ℘ di Weierstrass associata al reticolo L ha poli
tripli in L, è dispari ed è L-periodica.

Dimostrazione. Derivando ℘ termine a termine, si ottiene

℘′(z) = −2
∑
ω∈L

1

(z − ω)3
.

Ragionando come per l’Osservazione 1.4.3, si ottiene

℘′(−z) = −℘(z) ;

per vedere la periodicità, prendiamo l ∈ L e calcoliamo

℘′(z + l) = −2
∑
ω∈L

1

(z + l − ω)3
= −2

∑
l−ω∈L

1

(z + l − ω)3
= ℘′(z) .

Corollario 1.4.6. Sia L un reticolo. Allora la ℘ di Weierstrass ad esso associata è
L-periodica.

Dimostrazione. Sia L = ω1Z+ ω2Z.
La funzione ℘, la funzione z 7→ ℘(z + ω1) e la funzione z 7→ ℘(z + ω2) sono tutte

primitive di ℘′.
Dunque differiscono di una costante, cioè esistono a e b in C tali che

℘(z + ω1) = ℘(z) + a e ℘(z + ω2) = ℘(z) + b .

Quindi, poiché ℘ è pari, si ha che

℘
(
−ω1

2

)
= ℘

(ω1

2

)
= ℘

(
−ω1

2

)
+ a

e analogamente
℘
(
−ω2

2

)
= ℘

(ω2

2

)
= ℘

(
−ω2

2

)
+ b .

Segue che a e b sono entrambi nulli.

Osservazione 1.4.7. Dato il reticolo L = ω1Z + ω2Z, chiamiamo ω3 = ω1 + ω2. Allora
per ogni i = 1, 2, 3 si ha che ωi è uno zero di ℘′.
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Dimostrazione. ℘′ è dispari ed è L-periodica. Quindi

℘′
(ωi

2

)
= −℘′

(
−ωi

2

)
= −℘′

(ωi

2

)
.

Notazione 1.4.1. D’ora in avanti, per i = 1, 2, 3, indicheremo

ai := ℘
(ωi

2

)
.

Lemma 1.4.8 (Caratterizzazione invariante degli zeri di ℘′). Sia L un reticolo e consi-
deriamo la ℘ di Weierstrass ad esso associata.
Allora a ∈ C è uno zero di ℘′ se e solo se

a /∈ L e 2a ∈ L .

In particolare ci sono esattamente 3 zeri di ℘′ modulo L.

Dimostrazione. Supponiamo a verifichi la condizione dell’enunciato. Si ha che

℘′(a) = ℘′(a− 2a) = ℘′(−a) = −℘′(a)

quindi ℘′(a) = 0. Questo ci dà un’ulteriore prova del fatto che se L = ω1Z+ ω2Z allora i
punti

ω1

2
,

ω2

2
e

ω1 + ω2

2

sono zeri di ℘′. Poiché ℘′ ha un solo polo triplo modulo L, tali zeri sono gli unici modulo
L e sono tutti e tre semplici.

Proposizione 1.4.9. Data la ℘ di Weierstrass associata al reticolo L = ω1Z+ω2Z, vale:

(℘′(z))2 = 4(℘(z)− a1)(℘(z)− a2)(℘(z)− a3) .

Dimostrazione. Chiamiamo

F (z) = (℘(z)− a1)(℘(z)− a2)(℘(z)− a3)

e denotiamo come prima ω3 := ω1 + ω2. L’obiettivo è mostrare che (℘′(z))2 = 4 · F (z) .
Gli unici zeri di F modulo L sono ωi

2
, i quali hanno tutti molteplicità 2. Allo stesso

modo, (℘′)2 ha zeri doppi in tali punti (in quanto sono zeri semplici di ℘′).
Inoltre F ha, modulo L, un unico polo in 0 di ordine 6 (poiché ℘ ha un polo doppio in 0).
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Lo stesso vale per (℘′)2 (perché ℘′ ha un polo triplo in 0).
Si deduce quindi che la funzione

(℘′)2

F

non ha poli ed è L-periodica e quindi, per il Teorema 1.1.1., è costante. Rimane da
mostrare che tale costante è 4.

Osserviamo che, vicino a 0, possiamo scrivere

℘(z) =
1

z2
+ ...

quindi

℘′(z) = − 2

z3
+ ...

dove nei puntini ci saranno termini con z di grado più alto. Quindi

(℘′(z))2 =
4

z6
+ ...

e perciò la costante cercata è proprio 4.

Proposizione 1.4.10. Consideriamo la ℘ di Weierstrass associata al reticolo L e due
punti z1, z2 ∈ L. Allora:

℘(z1) = ℘(z2)

se e solo se
z1 ≡ ±z2 (mod L) .

Dimostrazione. Fissato z1 in C, consideriamo la funzione

f : C −→ P1(C)
z 7−→ ℘(z1)− ℘(z2)

e osserviamo che

f(z) =
1

z21
− 1

z22
+
∑
ω∈L∗

[
1

(z1 − ω)2
− 1

(z2 − ω)2

]
è ellittica e ha zeri nei punti z1 ≡ ±z2 (mod L).

Da questa proposizione deduciamo la seguente conseguenza importante riguardo la rami-
ficazione di ℘ : C/L −→ P1(C).
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Osservazione 1.4.11. Ci sono 4 punti di biforcazione in P1(C) : a1, a2, a3,∞. Ciascuno
di loro ha esattamente una preimmagine con molteplicità 2 in C/L, mentre tutti gli altri
punti di P1(C) hanno esattamente 2 preimmagini (con molteplicità 1).

Questo risultato geometrico ci ha permesso di comprendere meglio la struttura dei poli di
℘, che possiamo analizzare nel dettaglio tramite il suo sviluppo in serie di Laurent in 0.

Osservazione 1.4.12. Lo sviluppo di ℘ in serie di Laurent in 0 è

℘(z) =
1

z2
+

+∞∑
n=0

a2nz
2n . (1.5)

Dimostrazione. Riprendiamo la Definizione 1.4.1 e sviluppiamo i termini della somma

1

(z − ω)2
=

1

ω2

(
1− z

ω

)−2

.

Sfruttando la serie geometrica generalizzata

(1 + x)α =
+∞∑
k=0

(
α

x

)
xk, α ∈ R

con α = −2, otteniamo

1

ω2

(
1− z

ω

)−2

=
1

ω2

(
1 + 2

z

ω
+ 3

z2

ω2
+ 4

z3

ω3
+ ...

)
.

Quindi si ha

1

(z − ω)2
− 1

ω2
=

1

ω2

(
2
z

ω
+ 3

z2

ω2
+ 4

z3

ω3
+ ...

)
=

+∞∑
k=1

(k + 1)
zk

ωk+2

e di conseguenza

℘(z) =
1

z2
+
∑
ω∈L∗

+∞∑
k=1

(k + 1)
zk

ωk+2
=

=
1

z2
+

+∞∑
k=1

(k + 1)

(∑
ω∈L∗

1

ωk+2
zk

)
=

1

z2
+

+∞∑
k=1

(k + 1)Gk+2z
k

dove la serie
Gn = Gn(L) =

∑
ω∈L∗

1

ωn
(1.6)
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è detta serie di Eisenstein.

Osserviamo che, poiché per ogni ω ̸= 0 nel reticolo, si ha che anche −ω appartiene al
reticolo, allora per n dispari si avrà Gn = 0 . Possiamo quindi riscrivere la somma come

1

z2
+

+∞∑
k=1

(k + 1)Gk+2z
k =

1

z2
+

+∞∑
n=1

(2n+ 1)G2(n+1)z
2n .

Chiamando, per n ≥ 1
a2n = (2n+ 1) ·G2(n+1) ,

otteniamo la scrittura desiderata.

In alternativa, i coefficienti dello sviluppo in serie di Laurent di ℘ si possono ricavare
applicando la formula di Taylor alla funzione

f(z) := ℘(z)− 1

z2
.

Infatti, calcolando induttivamente le derivate

f (n)(z) = (−1)n(n+ 1)! ·
∑
ω∈L∗

1

(z − ω)n+2

si ottiene
f (2n)(z) = (2n+ 1)! ·

∑
ω∈L∗

1

(z − ω)2n+2
.

Sostituendo z = 0, si conclude:

a2n =
f (2n)(0)

(2n)!
=

(2n+ 1)!

(2n)!
·
∑
ω∈L∗

1

ω2(n+1)
= (2n+ 1) ·

∑
ω∈L∗

1

ω2(n+1)
= (2n+ 1) ·G2(n+1) .

1.4.3 Equazione differenziale algebrica di ℘

L’obiettivo di questa sottosezione è formulare l’equazione differenziale algebrica soddisfat-
ta dalla funzione ℘ di Weierstrass, un risultato che permette di comprendere meglio le
funzioni ellittiche.

La somma, la differenza e il quoziente (con denominatore non nullo) di funzioni ellittiche
è ancora una funzione ellittica. Dunque l’insieme di tutte quelle associate a un certo
reticolo L è un campo: lo chiamiamo K(L).
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Le funzioni costanti sono funzioni ellittiche quindi la funzione data da

C −→ K(L)

c 7−→ funzione ellittica costante uguale a c

induce un isomorfismo di C con il sottocampo delle funzioni costanti in K(L).

Per arrivare all’equazione di ℘ cercata, è necessario comprendere la struttura del campo
K(L) poiché ciò ci permette di dimostrare che ogni funzione ellittica può essere espressa
in termini di ℘ e della sua derivata ℘′.

Sia f ∈ K(L) una funzione ellittica associata al reticolo L e sia

P (w) = a0 + a1w + ...+ amw
m ∈ C[w] .

Allora la composizione

P (f)(z) = a0 + a1f(z) + ...+ am(f(z))
m

è una funzione ellittica. Osserviamo che, per il Lemma 1.1.12, P (f) è non identicamente
nulla se e solo se f è non costante e P è non identicamente nulla.

Rivediamo questo discorso più in generale. Indichiamo con:

C(z) =
{
f(z) =

p(z)

q(z)
: p, q ∈ C[z] e q ̸≡ 0

}
l’insieme delle funzioni razionali e consideriamo R ∈ C(z). Questa può quindi essere
scritta come quoziente di funzioni polinomiali R = P

Q
con Q non identicamente nulla.

La funzione ellittica R(f) := P (f)
Q(f)

dipende solo da R e non dalla scelta della rappresenta-
zione in frazione.

Per f ∈ K(L) definiamo il sottocampo ad essa associato:

C(f) := {g ∈ K(L) : ∃R ∈ C(z), g = R(f)} ⊆ K(L) .

Ora che abbiamo introdotto il campo C(f), cerchiamo di comprenderne le struttura. Il
prossimo lemma mostra che è meno complicata di quanto si possa pensare: dimostreremo,
infatti, che questo campo è isomorfo al campo delle funzioni razionali.

Lemma 1.4.13. Per ogni f ∈ K(L) non costante si ha:

C(z) ≃ C(f) ⊆ K(L) .
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Dimostrazione. Consideriamo la mappa

Ff :
C(z) −→ K(L)

R 7−→ R(f) .

Tale mappa è un omomorfismo perché, per R, R̃ ∈ C(z), si ha che

Ff (R + R̃) = (R + R̃)(f) = Ff (R) + Ff (R̃) .

Inoltre, per il Lemma 1.1.12, se R(f) = R̃(f) allora R = R̃. Questo significa che Ff è
iniettiva.

Quindi Ff induce un ismorfismo sull’immagine, che è data da C(f). Segue che

C(z) ≃ C(f) .

Abbiamo quindi appena caratterizzato i sottocampi di K(L) generati da una funzione
ellittica non costante. Quello a cui siamo interessati ora è descrivere l’intera struttura
del campo K(L). Vedremo, più avanti in questa sezione, che in realtà sono sufficienti
le funzioni ℘ e la sua derivata per ottenere tutto K(L): mostreremo, in particolare, che
K(L) è un’estensione algebrica finita di grado 2 di un campo razionale.

Cerchiamo per prima cosa di caratterizzare le funzioni ellittiche pari, concentrandoci
innanzi tutto su quelle che hanno tutti i poli nel reticolo.

Lemma 1.4.14. Sia f ∈ K(L) pari e tale che tutti i suoi poli sono punti del reticolo L.
Allora f può essere espressa come polinomio in ℘, cioè:

f(z) = a0 + a1℘(z) + ...+ an(℘(z))
n, per certi ai ∈ C

dove il grado di tale polinomio è n = Ord(f)
2

.

Dimostrazione. Se f è costante, non c’è nulla da dimostrare. Supponiamo dunque che
non lo sia. Per il Teorema 1.1.3, f ha almeno un polo (che per ipotesi è un punto del
reticolo).

Per la periodicità di f , i poli sono esattamente tutti e soli i punti di L, incluso 0. Lo
sviluppo in serie di Laurent di f in 0 conterrà solo termini di grado pari (per la parità di
f) tra cui almeno uno di grado negativo:

f(z) = a−2nz
−2n + a−2(n−1)z

−2(n−1) + ..., n ≥ 1 .
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Sfruttando il noto sviluppo in serie di Laurent di ℘ (eq. (1.5)) dato da

℘(z) = z−2 + ... ,

definiamo
g(z) = f(z)− a−2n · (℘(z))n .

Osserviamo che g è una funzione ellittica pari con tutti i poli contenuti nel reticolo L.
Possiamo dunque induttivamente eliminare tutti i termini con grado negativo dalla parte
principale di f così da ottenere una funzione ellittica senza poli che sarà quindi costante.

Sospendiamo ora l’ipotesi restrittiva secondo la quale i poli sono contenuti nel reticolo.

Proposizione 1.4.15. Qualsiasi funzione ellittica pari è rappresentabile come funzione
razionale in ℘.
In altre parole, il campo delle funzioni ellittiche pari associate a un reticolo L equivale al
campo C(℘) ed è quindi isomorfo al campo delle funzioni razionali C(z).

Dimostrazione. Cerchiamo di ricondurci al caso particolare precedentemente affrontato.
Sia f una funzione ellittica pari non costante associata al reticolo L. Se a è un polo di
f che non appartiene a L, allora ℘(a) è un valore in C e possiamo definire la funzione
ellittica

z 7→ (℘(z)− ℘(a))N · f(z)
che, se prendiamo N sufficientemente grande, ha una singolarità rimovibile in a .

Denotiamo
{a1, ..., am}

l’insieme dei poli di f , modulo L , non congrui a 0 modulo L.

Induttivamente possiamo considerare N1, ..., Nm sufficientemente grandi in modo che la
funzione ellittica

g(z) = f(z) ·
m∏
i=1

(℘(z)− ℘(ai))Ni

abbia poli solo in L.
Segue che, per il Lemma 1.4.14, la funzione g può essere espressa come polinomio in ℘

e dunque concludiamo.

Studiamo ora le funzioni ellittiche dispari per poi giungere a un risultato generale.

Proposizione 1.4.16. Ogni funzione ellittica dispari si può scrivere come prodotto di
una funzione ellittica pari con ℘′
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Dimostrazione. Poiché il quoziente di due funzioni dispari è pari, se consideriamo una
funzione ellittica dispari f otteniamo che

g =
f

℘′

è una funzione ellittica pari. La tesi segue direttamente.

Ora che abbiamo caratterizzato le funzioni ellittiche, sia pari che dispari, possiamo enun-
ciare il seguente risultato generale.

Teorema 1.4.17. Sia f ∈ K(L). Allora esistono funzioni razionali R e S tali che

f = R(℘) + ℘′ · S(℘) ,

cioè
K(L) = C(℘) + ℘′ · C(℘) = C[℘, ℘′] .

Dunque K(L) è uno spazio vettoriale di dimensione 2 sul campo C(℘).

Dimostrazione. Osserviamo che, se z 7→ f(z) è ellittica, allora anche z 7→ f(−z) lo è.
Quindi ogni funzione si scrive come somma di una funzione ellittica pari e una dispari:

f(z) =
1

2
(f(z) + f(−z)) + 1

2
(f(z)− f(−z)) .

Unendo i risultati della Proposizione 1.4.15 e della Proposizione 1.4.16, otteniamo la
tesi.

Questo teorema mostra quindi, come avevamo preannunciato, che le funzioni ℘ e ℘′ sono
sufficienti a generare l’intero campo K(L).

Osservazione 1.4.18. Il campo K(L) è un’estensione di C(℘) di grado 2 di un campo
razionale.

A questo punto risulta naturale chiedersi quale sia la relazione che lega ℘ e ℘′. Iniziamo
col mostrare come può essere scritta (℘′)2 come polinomio in ℘. Vedremo che questo
passaggio è proprio ciò che ci permetterà di giungere all’equazione algebrica di ℘ cercata.

Esempio 1.4.1 ((℘′)2 come polinomio in ℘). Sfruttiamo gli stessi ragionamenti delle
dimostrazioni precedenti.

℘(z) = z−2 + 3 ·G4 · z2 + 5 ·G6 · z4 + ... (1.7)
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⇒ ℘′(z) = −2 · z−3 + 6 ·G4 · z + 20 ·G6 · z3 + ... (1.8)

⇒ (℘′(z))2 = 4 · z−6 − 24 ·G4 · z−2 − 80 ·G6 + ... (1.9)

vogliamo quindi eliminare il termine con z−6 e quello con z−2 dall’eq. (1.9).
Calcoliamo potenze di ℘ fino a quando ci servono (grado 3) a partire dall’eq. (1.7):

(℘(z))2 = z−4 + 6 ·G4 + 10 ·G6 · z2 + ... (1.10)

(℘(z))3 = z−6 + (3G4 + 6G4) · z−2 + (10G6 + 5G6) + ...

= z−6 + 9 ·G4 · z−2 + 15 ·G6 + ...
(1.11)

Unendo l’eq. (1.9) e l’eq. (1.11) otteniamo:

(℘′(z))2 − 4(℘(z))3 = −60 ·G4 · z−2 − 140 ·G6 + ... (1.12)

⇒ (℘′(z))2 − 4(℘(z))3 + 60 ·G4 · ℘(z) = −140 ·G6 + ... (1.13)

che è una funzione ellittica senza poli e quindi è costante (in particolare i puntini sono 0).
Abbiamo dunque ottenuto che la scrittura di (℘′)2 come polinomio in ℘ è:

(℘′)2 = 4℘3 − 60 ·G4 · ℘− 140 ·G6 . (1.14)

Scriviamolo sotto forma di enunciato.

Teorema 1.4.19 (Equazione differenziale algebrica per ℘). Sia L un reticolo, allora la ℘
di Weierstrass ad esso associato verifica la seguente equazione differenziale algebrica

(℘′(z))2 = 4 · (℘(z))3 − g2 · ℘(z)− g3 (1.15)

dove

g2 = g2(L) = 60 ·G4 = 60 ·
∑
ω∈L∗

ω−4 e g3 = g3(L) = 140 ·G6 = 140 ·
∑
ω∈L∗

ω−6 .

Concludiamo osservando una proprietà particolarmente comoda dei coefficienti appena
definiti, che risulterà molto utile nei capitoli successivi.

Osservazione 1.4.20. Per ogni m ∈ C∗, si ha che

Gn(mΛ) = m−n ·Gn(Λ)

e di conseguenza

g2(mΛ) = m−4 · g2(Λ) e g3(mΛ) = m−6 · g3(Λ) .
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Capitolo 2

Curve ellittiche e tori complessi

In questo capitolo ci concentreremo sulle curve ellittiche e sul loro legame con i tori com-
plessi: mostreremo che, di fatto, questi due oggetti sono intercambiabili. Questo risultato
semplifica significativamente lo studio delle curve ellittiche e ci sarà particolarmente uti-
le nel capitolo successivo, quando affronteremo le curve ellittiche da un punto di vista
aritmetico.

Nella prima sezione, esibiremo formalmente la definizione di curve ellittiche e mostreremo
come queste possano essere ridotte a una forma standard, più facile da trattare.

La seconda sezione, invece, esplora la corrispondenza tra curve ellittiche e tori complessi.
Mostreremo, in particolare che è grazie alla funzione ℘ di Weierstrass, studiata nel capitolo
analitico, che abbiamo la possibilità di associare a una curva ellittica un toro complesso
e viceversa.

Adotteremo principalmente gli approcci di [BF09] e [DS05], ma ci serviremo anche di
definizioni e risultati presenti in [Hat02], [Smi04] e [Har13].

2.1 Verso la definizione di curva ellittica

In questa sezione, dopo aver richiamato alcune nozioni di base di geometria algebrica,
verranno finalmente introdotte le curve ellittiche, protagoniste di questa tesi.
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2. Curve ellittiche e tori complessi

2.1.1 Nozioni preliminari

Definizione 2.1.1. Una varietà algebrica affine (complessa) è il luogo degli zeri comuni
di una famiglia di polinomi {Fi}i∈I in C[x1, ..., xn], ovvero:

V = V({Fi}i∈I) ⊂ Cn .

Definizione 2.1.2. Una varietà algebrica proiettiva (complessa) è il luogo degli zeri
comuni di una famiglia di polinomi omogenei {Fi}i∈I in C[x1, ..., xn+1], ovvero:

V = V({Fi}i∈I) ⊂ Pn(C) .

Definizione 2.1.3. La dimensione di uno spazio topologico X è l’estremo superiore di
tutti gli interi n tali che esiste una successione Z0 ⊂ Z1 ⊂ ... ⊂ Zn di sottoinsiemi chiusi
irriducibili di X, dove con irriducibili intendiamo sottoinsiemi che non possono essere
espressi come un’unione propria di due sottoinsiemi chiusi.

Definizione 2.1.4. La dimensione di una varietà algebrica X è la dimensione di X come
spazio topologico.

Definizione 2.1.5. Chiamiamo curva algebrica una varietà algebrica di dimensione 1.

Definizione 2.1.6. Diciamo che uno spazio topologico X è una superficie topologica se
X è di Hausdorff, a base numerabile e tale che ogni punto ammette un intorno omeomorfo
a un aperto di R2.

Definizione 2.1.7. Sia X una superficie topologica compatta e orientabile. Definiamo il
genere di X come

g(X) =
1

2
rk(H1(X,Z))

dove, per il concetto di rango del primo gruppo di omologia di X a coefficienti in Z,
seguiamo la terminologia adottata da [Hat02].

Osservazione 2.1.1. La definizione precedente fornisce un intero bene definito. Infatti,
per il teorema di Hurewicz, si ha che

H1(X,Z) ∼= π1(X)ab ,

cioè il primo gruppo di omologia singolare a coefficienti in Z è isomorfo all’abelianizzato
del gruppo fondamentale.

Dalla costruzione standard di una superficie compatta e orientabile si ottiene che X può
essere realizzata identificando a coppie i lati di un poligono convesso con 4n lati (detto
4n-gono), etichettati

a1, b1, a
−1
1 , b−1

1 ...an, bn, a
−1
n , b−1

n .
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Applicando il teorema di Van Kampen si ottiene che

π1(X) = ⟨a1, b1, ..., an, bn | a1b1a−1
1 b−1

1 ...anbna
−1
n b−1

n = 1⟩

e, abelianizzando, si ottiene che π1(X)ab ∼= Z2n e quindi è un gruppo abeliano libero di
rango pari. Segue che anche H1(X,Z) lo è e dunque il genere g della Definizione 2.1.7 è
effettivamente un intero e, in particolare, g = n.

Per approfondimenti riguardo questo tema rimandiamo alla sezione 2.A di [Hat02].

2.1.2 Definizione e riduzione a una forma standard

Disponiamo ora di tutti gli strumenti necessari per fornire una definizione formale di cur-
va ellittica. In questa sottosezione osserveremo, in particolare, che possiamo concentrarci
sullo studio di curve ellittiche viste come cubiche piane descritte da un’equazione specifica
e dunque con una forma molto più semplice da studiare. Questo passaggio è fondamen-
tale perché ci permetterà, nella sezione successiva, di sfruttare la ℘ di Weierstrass per
raggiungere così l’obiettivo che ci eravamo posti all’inizio del capitolo.

Definizione 2.1.8. Una curva ellittica è una curva liscia proiettiva di genere 1.

Osservazione 2.1.2. Se guardiamo una curva ellittica X come una superficie topologica,
questa è compatta e orientabile di genere g = 1. Questo implica, per l’Osservazione 2.1.1,
cheX è isomorfa a un quadrilatero con i lati identificati a coppie, cioèX è topologicamente
un toro.

a

a

b b

Figura 3: Rappresentazione del toro come quadrato con lati identificati

Proposizione 2.1.3. Ogni curva ellittica è isomorfa a una cubica piana.

La dimostrazione di questo risultato segue dal teorema di Riemann-Roch, per il quale si
rinvia a [Har13].
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Osservazione 2.1.4. Assumendo che X sia una curva ellittica già espressa come cubica
piana, con un opportuno cambio di coordinate, ci si può ricondurre a una curva cubica
piana della forma:

X̃ = X̃(a2, a3) =
{
[x : y : z] ∈ P2(C) | zy2 = 4x3 − a2z2x− a3z3

}
per qualche a2, a3 ∈ C.

Osservazione 2.1.5. Il polinomio

P̃ (x, y, z) = zy2 − 4x3 + a2z
2x+ a3z

3

è l’omogeneizzato di
P (x, y) = y2 − 4x3 + a2x+ a3 .

Denotiamo dunque con

XP = X(a2, a3) =
{
(x, y) ∈ C2 | y2 = 4x3 − a2x− a3

}
la curva affine associata a X̃(a2, a3).

Nel prossimo esempio, cerchiamo di fornirne una visualizzazione in R.

Esempio 2.1.1. Nelle figure seguenti viene rappresentata la curva

X(a2, a3) ∩ R2 =
{
(x, y) ∈ R2 : y2 = 4x3 − a2x− a3

}
per due scelte di a2, a3 ∈ R.

Figura 4: y2 = 4x3 − 4x+ 0.5 Figura 5: y2 = 4x3 − 0.5x+ 1.5
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2.2. Corrispondenza tra tori complessi e curve ellittiche

2.2 Corrispondenza tra tori complessi e curve ellittiche

In questa sezione verrà mostrata concretamente la corrispondenza che c’è tra tori com-
plessi e curve ellittiche, scritte nella forma semplice menzionata nell’Osservazione 2.1.4 e
nell’Osservazione 2.1.5.

Per prima cosa, vedremo come costruire, tramite la ℘ di Weierstrass, una mappa olo-
morfa biettiva tra un toro complesso C/Λ e una curva ellittica del tipo X̃(a2, a3), definita
nella sezione scorsa.

Successivamente vedremo, non solo che da un toro complesso C/Λ possiamo ottenere
una curva ellittica che soddisfa le equazioni

y2 = 4x3 − a2x− a3 a2 − 27a23 ̸= 0 , (2.1)

ma vedremo anche che vale il viceversa.

2.2.1 Costruzione della biezione

Dall’equazione differenziale algebrica di ℘ (eq. (1.15)), deduciamo che per ogni z ∈ C \Λ
si ha che (℘(z), ℘′(z)) ∈ X(g2, g3), dove g2 = g2(Λ) e g3 = g3(Λ).
Questo ci fornisce la seguente mappa olomorfa tra varietà complesse

ϕ :
C/Λ \ {[0]Λ} −→ X(g2, g3)

[z]Λ 7−→ (℘(z), ℘′(z)) .

Proposizione 2.2.1. Tale mappa è biunivoca.

Dimostrazione.

• Suriettività.
Sia (u, v) ∈ X(g2, g3) e consideriamo la ℘ di Weierstrass associata al reticolo Λ

℘ : C/Λ −→ P1(C) ,

che è suriettiva per il Lemma 1.1.11. Quindi esiste [z]Λ ∈ C/Λ tale che ℘(z) = u e
si ha:

(u, v) = (℘(z), v) ∈ X(g2, g3) ,

quindi
v2 = 4 · (℘(z))3 − g2 · ℘(z)− g3 = (℘′(z))2

⇒ v2 − (℘′(z))2 = 0⇒ (v − ℘′(z))(v + ℘′(z)) = 0⇒ ℘′(z) = ±v.
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2. Curve ellittiche e tori complessi

Si hanno quindi due casi: se (u, v) = (℘(z), ℘′(z)) allora (u, v) = ϕ([z]Λ) ; altrimenti
(u, v) = (℘(z),−℘′(z)) = (℘(−z), ℘′(−z)), poiché ℘ è pari e ℘′ è dispari, e quindi
(u, v) = ϕ([−z]Λ) .

• Iniettività.
Siano [z]Λ, [w]Λ ∈ C/Λ \ {[0]Λ} tali che ϕ([z]Λ) = ϕ([w]Λ) cioè

℘(z) = ℘(w) e ℘′(z) = ℘′(w).

Per la Proposizione 1.3.4., z ≡ ±w (mod Λ), quindi:
se z ≡ w (mod L), allora [z]Λ = [w]Λ ∈ C/Λ \ {[0]Λ} ;
se invece z ≡ −w (mod L), allora

℘′(z) = ℘′(w) = ℘′(−z) = −℘′(z)⇒ ℘′(z) = 0

e dunque, per il lemma 1.3.5. si ha

2z ∈ L⇒ z ≡ −z ≡ w (mod Λ)⇒ [z]Λ = [w]Λ ∈ C/Λ \ {[0]Λ} .

Abbiamo così mostrato che la curva affine X(g2, g3) è in biezione con il toro privato di un
punto C/Λ \ {[0]Λ}.

Osserviamo che possiamo estendere la funzione ϕ della Proposizione 2.2.1 in modo tale
da ottenere la biezione tra la curva X̃(g2, g3) e l’intero toro C/Λ, menzionata all’inizio di
questa sezione. Scriviamolo più precisamente sotto forma di enunciato.

Teorema 2.2.2. Consideriamo la ℘ di Weierstrass associata al reticolo Λ.
La mappa

C/Λ −→ X̃(g2, g3) ⊂ P2(C)

[z] 7−→

{
[1 : ℘(z) : ℘′(z)], z /∈ Λ

[0 : 0 : 1], z ∈ Λ

è una biezione.

2.2.2 La funzione discriminante

Abbiamo dunque verificato l’esistenza di una mappa olomorfa biettiva tra un toro com-
plesso C/Λ e una curva ellittica del tipo X̃(a2, a3).
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Ricordiamo che l’obiettivo di questa sezione è mostrare come sia possibile ottenere,
in modo concreto, a partire da un toro complesso C/Λ, una curva ellittica che soddi-
sfi le equazioni eq. (2.1), e viceversa. A tal fine, introdurremo, in questa sottosezione,
la funzione discriminante e ne analizzeremo alcune proprietà, che risulteranno utili per
concludere.

Definizione 2.2.1. Chiamiamo funzione discriminante la seguente:

∆ :
H −→ C
τ 7−→ (g2(τ))

3 − 27 · (g3(τ))2 .

Lemma 2.2.3. La funzione ∆ non è mai nulla in H.

Per dimostrarlo, abbiamo bisogno di introdurre la definizione di discriminante di un
polinomio di grado n.

Definizione 2.2.2. Sia

p(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0 ∈ C[x]

un polinomio di grado n a coefficienti in C e siano x1, ..., xn ∈ C le sue radici. Definiamo
il discriminante di p come:

a2n−2
n ·

∏
1≤i<j≤n

(xi − xj)2 .

Osservazione 2.2.4. Un polinomio di grado n a coefficienti in C ha radici distinte se e
solo se il suo discriminante è non nullo.

Lemma 2.2.5. Sia
p(x) = ax3 + bx2 + cx+ d ∈ C[x]

un polinomio di grado 3 a coefficienti in C. Allora il discriminante di p è dato dal numero
complesso

18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2 .

Dimostrazione (del Lemma 2.2.5). Siano x1, x2, x3 ∈ C le radici di p che riscriviamo come:

p(x) = a(x− x1)(x− x2)(x− x3) .

Otteniamo dunque l’identità

ax3 + bxx + cx+ d = a(x− x1)(x− x2)(x− x3)
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2. Curve ellittiche e tori complessi

da cui deduciamo il seguente sistema di equazioni
b = −a(x1 + x2 + x3)

c = −a(x1x2 + x1x3 + x2x3)

d = −ax1x2x3
⇒


− b

a
= x1 + x2 + x3 := C1

− c
a
= x1x2 + x1x3 + x2x3 := C2

−d
a
= x1x2x3 := C3

.

Dalla Definizione 2.2.2 si deduce che il discriminante di p è dato da

a4(x1 − x2)2(x1 − x3)2(x2 − x3)2 . (2.2)

Svolgendo i calcoli esplicitamente, si mostra che possiamo riscrivere la quantità

k = (x1 − x2)2(x1 − x3)2(x2 − x3)2

in funzione di C1, C2 e C3 , così da ottenere che

a4k = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2 .

Dimostrazione (del Lemma 2.2.3). Sia τ ∈ H e denotiamo pτ (x) = 4x3 − g2(τ)x− g3(τ).
Osserviamo che ∆(τ) è uguale al discriminante cubico di pτ a meno di un multiplo

scalare. Infatti, per il Lemma 2.2.5, si ha che il discriminante cubico di pτ è dato da

18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2 = 16(g2(τ))
3 − 16 · 27(g3(τ))2 = 16∆(τ)

e quindi ∆ si annulla in H se e solo se pτ ha discriminante cubico nullo.
Dall’equazione algebrica della ℘ di Weierstrass (eq. (1.15)), si deduce che, per la

Proposizione 1.4.9, possiamo riscrivere il polinomio pτ come

4(x− a1)(x− a2)(x− a3) .

Questo polinomio ha radici distinte (a1, a2 e a3 sono distinti per la Proposizione 1.4.10) e
dunque, per l’Osservazione 2.2.4, non può avere discriminante nullo. Segue che ∆(τ) ̸= 0
per ogni τ ∈ H.

2.2.3 Passaggio tra toro e curva ellittica

Abbiamo ora a disposizione tutte le basi per poter proseguire il discorso principale. Espli-
citiamo la corrispondenza in entrambe le direzioni: da toro a curva ellittica e viceversa.

Con il seguente corollario, mostriamo come da un toro complesso C/Λ possiamo passare
a una curva ellittica data dalle eq. (2.1).
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Corollario 2.2.6. Sia Λ = ω1Z + ω2Z un reticolo. Allora la curva X = X(a2, a3) (con
a2 = g2(Λ) e a3 = g3(Λ)) verifica la condizione di liscezza

a32 − 27a23 ̸= 0 .

Cioè, dal toro complesso C/Λ possiamo passare a una curva ellittica che verifica le eq. (2.1).

Dimostrazione. Sia τ = ω2

ω1
e osserviamo che

Λ = ω1Z+ ω2Z = ω1(Z+ τZ) = ω1 · Λτ .

Per l’Osservazione 1.4.20, si ha

g2(Λ) = ω−4
1 · g2(τ)

g3(Λ) = ω−6
1 · g3(τ) .

Perciò

(g2(Λ))
3 − 27 · (g3(Λ))2 = ω−12

1 · ((g2(τ))3 − 27 · (g3(τ))2) = ω−12
1 ·∆(τ).

che è diverso da 0 per il Lemma 2.2.3.

Osservazione 2.2.7. Abbiamo chiamato

a32 − 27a23 ̸= 0

condizione di liscezza in quanto è proprio grazie ad essa che si può verificare, calcolando
le derivate rispetto a x e y del polinomio P definito nell’Osservazione 2.1.5, che la curva
X(a2, a3) è effettivamente non singolare, cioè liscia.

Definiamo e studiamo ora qualche proprietà di un’altra importante funzione, che ci sarà
utile sia nel discorso corrente sia nello studio delle forme modulari nei capitoli successivi.

Definizione 2.2.3. Chiamiamo funzione modulare la seguente:

j : H −→ C

τ 7−→ 1728 · (g2(τ))
3

∆(τ)
.

Proposizione 2.2.8. La funzione modulare j:

1. È olomorfa.
2. È suriettiva.
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2. Curve ellittiche e tori complessi

Dimostrazione.

1. Segue dal fatto che il Lemma 2.2.3 garantisce che j(τ) abbia denominatore non nullo
per ogni τ ∈ H.

2. Si dimostra assumendo per assurdo che esista un elemento c ∈ C tale che j(τ) è
diverso da c per ogni τ ∈ H.

Consideriamo
1

2πi

∫
γ

j′(τ)

j(τ)− c
dτ ,

scegliendo γ in modo tale che il Principio dell’argomento garantisca che quell’inte-
grale sia nullo. Sfruttando l’invarianza di j per le trasformazioni

(
1 1
0 1

)
e
(
0 −1
1 0

)
e

sfruttando il suo sviluppo

j(τ) =
1

q
+ ...

(dove q = e2πiτ ), si arriva a mostrare che tale integrale è non nullo. Questo contrad-
dice quando detto precedentemente.
Per maggiori dettagli si veda la sezione 1.1. di [DS05].

Con la seguente proposizione, mostriamo come passare da una curva ellittica data dalle
eq. (2.1) a un toro complesso.

Proposizione 2.2.9. Sia X(a2, a3) una curva che soddisfa la condizione di liscezza

a32 − 27a23 ̸= 0 .

Allora esiste un reticolo Λ tale che a2 = g2(Λ) e a3 = g3(Λ).
Cioè, da una curva ellittica che verifica le eq. (2.1) possiamo passare a un toro complesso
C/Λ.

Dimostrazione.

• Caso a2 = 0.
Consideriamo µN := e

2πi
N una qualsiasi radice N -esima dell’unità e osserviamo che

µNΛµN
= ΛµN

. Per semplicità di notazione, chiamiamo ΛµN
= L.

Abbiamo visto che, per n dispari, Gn(L) è nullo; mentre, per n pari, abbiamo

Gn(L) =
∑
λ∈L∗

1

λn
=

∑
λ∈µNL∗

1

λn
=

∑
µNσ∈µNL∗

1

(µNσ)n
= µ−n

N

∑
σ∈L∗

1

σn
= µ−n

N ·Gn(L) ,
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quindi si ha
(1− µ−n

N ) ·Gn(L) = 0 .

Il reticolo Λ che stiamo cercando deve soddisfare la condizione

g2(Λ) = a2 = 0 ,

ma per definizione
g2(Λ) = 60 ·G4(Λ)

si annulla se e solo se G4(Λ) si annulla. Per quanto detto in precedenza, avremmo
bisogno di un reticolo Λ = ΛµN

tale che µ−4
N ̸= 1.

Inoltre, la condizione nelle ipotesi della proposizione

a32 − 27a23 ̸= 0

viene verificata soltanto se a3 ̸= 0, quindi il reticolo cercato Λ deve anche essere tale
che g3(Λ) non si annulli. Ma per definizione

g3(Λ) = 140 ·G6(Λ)

è non nullo se e solo se G6(Λ) è non nullo. Dunque, sempre per quanto detto in
precedenza, ci servirebbe un reticolo Λ = ΛµN

tale che µ−6
N = 1.

Prendendo N = 3, si verificano le due condizioni desiderate. Infatti, µ−4
3 = µ2

3 ̸= 1
mentre µ−6

3 = (µ3
3)

2 = 1. Prendiamo dunque il reticolo

Λ = mΛµ3

con m un qualche numero complesso. Si ha che

g2(Λ) = m−4g2(Λ3) = 0 = a2 ;

g3(Λ) = m−6g3(Λµ3) .

Scegliendo quindi m tale che

m−6 =
a3

g3(Λµ3)
,

otteniamo il reticolo cercato.

• Caso a3 = 0.
Ragionando analogamente si dimostra che il reticolo cercato in questo caso è

Λ = mΛµ4 = mΛi

dove m è un numero complesso tale che

m−4 =
a2

g2(Λi)
.
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• Caso a2, a3 ̸= 0.
Poiché la funzione modulare j : H −→ C è suriettiva per la Proposizione 2.2.8, si ha
che:

∃ τ ∈ H : j(τ) = 1728 · a32
a32 − 27a23

∈ C.

Segue che

j(τ) = 1728 · (g2(τ))
3

∆(τ)
= 1728 · (g2(τ))

3

(g2(τ))3 − 27(g3(τ))2
,

e quindi vale l’uguaglianza:

1728 · a32
a32 − 27a23

= 1728 · (g2(τ))
3

(g2(τ))3 − 27(g3(τ))2

⇒ a32 − 27a23
a32

=
(g2(τ))

3 − 27 · (g3(τ))2

(g2(τ))3

⇒ 1− 27 · a
2
3

a32
= 1− 27 · (g3(τ))

2

(g2(τ))3

⇒ a32
(g2(τ))3

=
a23

(g2(τ))3
.

Preso ω1 ∈ C∗, chiamiamo ω2 = τ · ω1 e consideriamo Λ = ω1Z+ ω2Z = ω1Λτ .
Per l’Osservazione 1.4.20, si ha che

g2(Λ) = ω−4
1 g2(τ) e g3(Λ) = ω−6

1 g3(τ) .

Quindi, scegliendo ω1 ∈ C∗ tale che

ω−4
1 =

a2
g2(τ)

,

otteniamo che
(ω−4

1 )3 =
a23

(g3(τ))2
⇒ ω−6

1 = ± a3
g2(τ)

.

Dunque, a meno di prendere i · ω1 invece che ω1, otteniamo che:

g2(Λ) = a2 e g3(Λ) = a3 .

Possiamo quindi concludere che i tori complessi (superfici di Riemann, oggetti analitici)
e le curve ellittiche (soluzioni di polinomi cubici, oggetti algebrici) sono equivalenti.
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Capitolo 3

Strutture modulari delle curve ellittiche

In questo capitolo adotteremo un approccio di tipo aritmetico allo studio delle curve
ellittiche.

Il risultato centrale, da questo punto di vista, è il teorema di modularità, il quale afferma
che ad ogni curva ellittica definita su Q è associata una forma modulare. Come anticipato
nell’introduzione, poiché in questa tesi ci occupiamo solo di curve ellittiche definite su
C, ci concentreremo su una versione meno forte del teorema. Ne enunceremo dunque la
versione complessa: ogni curva ellittica, definita su C, con invariante modulare razionale,
proviene da una curva modulare. Sarà quindi necessario chiarire cosa intendiamo con
curva modulare e con invariante modulare.

Per farlo, per prima cosa introdurremo il concetto di forma modulare, inizialmente definita
rispetto al gruppo modulare SL2(Z). Osserveremo, però, che questa definizione risulta
piuttosto restrittiva e ci chiederemo quindi se sia possibile estenderla a sottogruppi parti-
colari di SL2(Z). Mostreremo che è effettivamente così e che questi sottogruppi prendono
il nome di sottogruppi di congruenza.

Una volta introdotti e studiati questi oggetti fondamentali, potremo definire, nella terza
sezione, le curve modulari come quozienti del semipiano H rispetto a tali sottogruppi.

Mostreremo poi un risultato fondamentale: le curve modulari sono in corrispondenza
biunivoca con gli spazi di parametri di curve ellittiche potenziate, di cui forniremo una
definizione formale. In termini intuitivi, ciò significa che i punti di una curva modulare
parametrizzano curve ellittiche potenziate. Questa corrispondenza ci fornirà l’intuizione
chiave per enunciare il teorema di modularità in forma complessa.

Per gran parte della trattazione di questo capitolo seguiremo l’approccio esposto in [DS05].
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3.1 Forme modulari

Questa sezione è dedicata allo studio delle forme modulari.
Dopo aver richiamato alcune nozioni preliminari e aver illustrato che cosa significa per

una funzione essere debolmente modulare, introdurremo una definizione formale di forma
modulare rispetto a SL2(Z), cercando di motivare in maniera completa perché richiediamo
determinate condizioni.

Concluderemo presentando alcuni esempi significativi e alcune osservazioni utili.

Fissiamo una notazione che ricorrerà in questa sezione e nelle prossime.

Notazione 3.1.1. Indichiamo il disco unitario nel piano complesso con

D = {q ∈ C : |q| < 1} .

3.1.1 Funzioni debolmente modulari

In questa sottosezione introduciamo il concetto di funzione debolmente modulare, che
rappresenterà la prima condizione che richiederemo nella definizione di forma modulare.

Inizieremo richiamando il gruppo modulare SL2(Z) e descrivendo alcune sue proprietà,
che saranno necessarie per le sezioni successive.

Ricordiamo che, per l’Osservazione 1.2.5, gli elementi di SL2(Z) sono trasformazioni di
Möbius.

Osservazione 3.1.1.

• SL2(Z) è generato dalle trasformazioni(
1 1
0 1

)
: τ 7→ τ + 1 ,

(
0 −1
1 0

)
: τ 7→ −1

τ
.

• Gli elementi ±α ∈ SL2(Z) corrispondono alla stessa trasformazione. Questo perché
se α =

(
a b
c d

)
, si ha che

α =

(
a b
c d

)
: τ 7→ aτ + b

cτ + d
=
−aτ − b
−cτ − d

←p τ :

(
−a −b
−c −d

)
= −α
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• Per α ∈ SL2(Z) e τ ∈ H, vale la formula:

ℑ(α(τ)) = ℑ(τ)
|cτ + d|2

.

Definizione 3.1.1. Sia k ∈ Z. Una funzione meromorfa f : H −→ C si dice debolmente
modulare di peso k se per ogni α ∈ SL2(Z) si ha che per ogni τ ∈ H vale

f(α(τ)) = (cτ + d)k · f(τ) . (3.1)

Nelle prossime sezioni, in particolare nel Corollario 3.2.7, mostreremo che, affinché f sia
debolmente modulare di peso k, è sufficiente richiedere che:

f(τ + 1) = f(τ) e f
(
− 1

τ

)
= τ k · f(τ)

per ogni τ ∈ H.

Osservazione 3.1.2. Se f è una funzione debolmente modulare, allora per ogni α ∈
SL2(Z) si ha che τ 7→ f(τ) e τ 7→ f(α(τ)) hanno gli stessi zeri e gli stessi poli.

Osservazione 3.1.3. La modularità debole di peso 0 è SL2(Z)-invarianza.

Osservazione 3.1.4.
Sia f : H −→ C una funzione meromorfa tale che il differenziale f(τ)dτ è SL2(Z)-
invariante. Allora f è debolmente modulare di peso 2.

Dimostrazione. L’ipotesi di SL2(Z)-invarianza significa che, per τ ∈ H e α =
(
a b
c d

)
∈

SL2(Z) vale:
f(τ)dτ = f(α(τ))d(α(τ)) . (3.2)

Osserviamo inoltre che
d(α(τ)) = (cτ + d)−2dτ . (3.3)

Unendo l’eq. (3.3) e l’eq. (3.2), si ottiene che

f(α(τ)) = (cτ + d)2f(τ) .

Ci siamo soffermati su funzioni debolmente modulari di peso 2 non a caso: queste sono
particolarmente rilevanti in quanto permettono di costruire funzioni debolmente modulari
di peso k > 2 con k pari anche molto alto.
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Infatti, se f e g sono due funzioni debolmente modulari di peso 2, il loro prodotto f · g
è debolmente modulare di peso 4 e così via.

A questo punto è naturale chiedersi quale sia il comportamento delle funzioni debolmente
modulari di peso dispari.

Osservazione 3.1.5. Se f è una funzione debolmente modulare di peso k e k è dispari,
allora f è identicamente nulla.

Dimostrazione. Per definizione, si ha che per ogni α ∈ SL2(Z) vale l’eq. (3.1). In
particolare vale per α = −I e quindi

f = (−1)kI = −f ,

da cui segue che f ≡ 0.

Osservazione 3.1.6. Le funzioni debolmente modulari sono Z-periodiche.

Dimostrazione. Segue dal fatto che, applicando l’eq. (3.1) alla traslazione in SL2(Z) data
dalla matrice

(
1 1
0 1

)
: τ 7→ τ + 1, si ottiene che

f(τ + 1) = f(τ) .

3.1.2 Verso la definizione di forme modulari

Come anticipato, in questa sottosezione forniamo la definizione di forma modulare. Consi-
dereremo, innanzi tutto, funzioni debolmente modulari e richiederemo, oltre all’olomorfia
su H, la cosiddetta olomorfia all’ ∞. Spiegheremo subito, nel dettaglio, il significato di
questa condizione.

Sia f : H −→ C una funzione debolmente modulare di peso k ∈ Z. Indichiamo q = e2πiτ ,
per τ ∈ H .

Osserviamo che, poiché vale
|q| = e−2πℑ(τ) , (3.4)
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si ha che q ∈ D∗.
Consideriamo quindi, associata ad f , la funzione

g : D∗ −→ C

q 7−→ f
(

log(q)
2πi

) (3.5)

che, per la 2πiZ-periodicità del logaritmo e per l’Osservazione 3.1.6, è ben definita. Quin-
di, scrivendo f in termini di g, otteniamo che f(τ) = g(e2πiτ ) .

Si osservi che, se f è olomorfa su H, allora g è olomorfa su D∗. L’eq. (3.4) mostra che,
per ℑ(τ)→∞, si ha che q → 0. Quindi possiamo dare la seguente definizione.

Definizione 3.1.2. Sia f : H −→ C una funzione debolmente modulare e sia g : D∗ −→ C
la funzione ad essa associata, come all’eq. (3.5). Supponiamo che∞ sia un punto lontano
sulla retta degli immaginari. Diciamo allora che f è olomorfa all’ ∞ se g si estende
olomorficamente in 0.

Osserviamo dunque che, per determinare l’olomorfia di f all’∞, non è necessario calcolare
esplicitamente il suo sviluppo in serie, ma è sufficiente mostrare che esiste il lim

ℑ(τ)→∞
f(τ)

o anche che f è limitata per ℑ(τ)→∞.

Ora che abbiamo chiarito tutte le condizioni che richiediamo, possiamo fornire la seguente
definizione.

Definizione 3.1.3. Sia k ∈ Z. La funzione f : H −→ C è una forma modulare di peso k
se valgono le seguenti affermazioni:

1. f è olomorfa su H;

2. f è debolmente modulare di peso k;

3. f è olomorfa all’∞.

3.1.3 Esempi e osservazioni

In questa sottosezione presentiamo alcuni esempi di forme modulari: uno semplice e due
meno immediati. Mostreremo come da questi esempi segua l’invarianza della funzione
modulare j, definita nella Definizione 2.2.3, rispetto alle trasformazioni di SL2(Z). È
per questo motivo che, nelle sezioni successive, la chiameremo talvolta anche invariante
modulare.
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Esempio 3.1.1.

• f ≡ 0 è una forma modulare di peso k qualsiasi.

• Per ogni c ∈ C, la funzione costante f ≡ c è una forma modulare di peso 0.

Esempio 3.1.2.

Richiamiamo la serie di Eisestein definita nei capitoli precedenti (si veda l’eq. (1.5)):

Gk(τ) = Gk(Λτ ) =
∑

(c,d)∈Z2

(c,d)̸=(0,0)

1

(cτ + d)k

con k > 2 pari. Mostriamo che è una forma modulare di peso k.
Per il Lemma 1.4.1, la somma converge assolutamente e converge uniformemente sui

compatti di H. Segue che Gk è olomorfa su H (e quindi vale il punto 1 della Definizio-
ne 3.1.3) e possiamo riordinare i coefficienti della sommatoria.

Sia dunque α =
(
ã b̃

c̃ d̃

)
∈ SL2(Z) e calcoliamo:

Gk(α(τ)) =
∑

(c,d)∈Z2

(c,d)̸=(0,0)

1(
c ãτ+b̃
c̃τ+d̃

+ d
)k = (c̃τ + d̃)k ·

∑
(c,d)∈Z2

(c,d)̸=(0,0)

1

((cã+ dc̃)τ + cb̃+ dd̃)k
;

si osservi che α è invertibile quindi

(cã+ dc̃, cb̃+ dd̃) = (c, d) ·
(
ã b̃

c̃ d̃

)
̸= (0, 0) .

Abbiamo perciò ottenuto che

Gk(α(τ)) = (c̃τ + d̃)k ·Gk(τ) ,

cioè Gk è debolmente modulare di peso k (e quindi vale il punto 2 della Definizione 3.1.3).
Infine, osserviamo che Gk(τ) è limitata per ℑ(τ)→∞ (per una motivazione precisa di

questo, si veda la sezione 1.1 di [DS05]). Quindi, per il discorso precedente, Gk è olomorfa
all’∞ (e quindi vale il punto 3 della Definizione 3.1.3).

Esempio 3.1.3. Mostriamo che la funzione discriminante ∆ è una forma modulare di
peso 12.

Dall’esempio precedente deduciamo che g2 e g3 sono olomorfi su H e di conseguenza lo
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è anche ∆ (e quindi vale il punto 1 della Definizione 3.1.3).
Sempre dall’esempio precedente, segue che g2 è debolmente modulare di peso 4 e g3 è

debolmente modulare di peso 6. Dunque ∆ è debolmente modulare di peso 12 (e quindi
vale il punto 2 della Definizione 3.1.3).

Infine, guardando lo sviluppo in serie di Fourier di g2 e g3 si dimostra che per ℑ(τ)→∞
si ha che ∆(τ)→ 0 (e quindi vale vale il punto 3 della Definizione 3.1.3).

Osservazione 3.1.7.

1. La funzione modulare j è SL2(Z)-invariante;

2. La funzione modulare j non è una forma modulare.

Dimostrazione.
1. Segue dal fatto che numeratore e denominatore sono funzioni debolmente modulari

entrambe di peso 12 (si veda l’Esempio 3.1.2 e l’Esempio 3.1.3).

2. Segue dal fatto che j non verifica il punto 3 della Definizione 3.1.3 in quanto ha un
polo in ∞ (per una dimostrazione formale di questo fatto si veda [DS05]).

Osservazione 3.1.8. Non esistono forme modulari non nulle di peso dispari.
Dimostrazione. Diretta conseguenza dell’Osservazione 3.1.5.

Quanto appena osservato è proprio uno dei motivi per cui limitarsi a studiare forme
modulari rispetto a SL2(Z) costituisce una restrizione piuttosto forte, come anticipato
nell’introduzione di questo capitolo.

3.2 Sottogruppi di congruenza

In questa sezione introduciamo i sottogruppi di congruenza. Per prima cosa, forniremo la
definizione e alcune osservazioni preliminari; successivamente presenteremo una genera-
lizzazione della definizione vista nella sezione precedente, introducendo le forme modulari
rispetto a un sottogruppo di congruenza. Questo permetterà di chiarire che i sottogruppi
di congruenza non sono solamente un mezzo per definire, nella sezione successiva, le curve
modulari e le curve ellittiche potenziate, ma sono anche strumenti utili ad approfondire
lo studio delle forme modulari (su cui però non ci soffermeremo, essendo questo al di fuo-
ri dell’obiettivo principale della tesi), superando le restrizioni imposte dallo studio delle
forme modulari su SL2(Z).
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3.2.1 Definizioni e osservazioni fondamentali

Definizione 3.2.1. Sia N ∈ N∗. Si dice sottogruppo di congruenza principale di livello
N :

Γ(N) :=

{(
a b
c d

)
∈ SL2(Z) :

[
a b
c d

]
≡
[
1 0
0 1

]
(mod N)

}
.

Osservazione 3.2.1. Γ(1) = SL2(Z).

Dimostrazione. Per N = 1, la relazione[
a b
c d

]
≡
[
1 0
0 1

]
(mod 1)

è banale perché ogni numero è congruo a qualsiasi altro modulo 1.

Questo caso base appena osservato ci aiuta a comprendere che ogni sottogruppo di con-
gruenza di livello N > 1 sarà un sottogruppo proprio di SL2(Z). In particolare, all’au-
mentare di N , il sottogruppo si restringe, poiché le matrici devono essere sempre più
vicine all’identità modulo N .

Osservazione 3.2.2. Consideriamo l’omomorfismo naturale

φ1 : SL2(Z) −→ SL2(ZN)(
a b
c d

)
7−→

[
a b
c d

]
(mod N) .

Poiché Γ(N) = ker(φ1), si ha che Γ(N) ⊴ SL2(Z).
Inoltre, φ1 è suriettiva (si veda [DS05]). Quindi, per il primo teorema di omomorfismo,

otteniamo che
SL2(Z)/Γ(N) ∼= SL2(ZN)

e quindi [SL2(Z) : Γ(N)] <∞.

Definizione 3.2.2.
Un sottogruppo Γ ≤ SL2(Z) è un sottogruppo di congruenza (di livello N) se

Γ(N) ⊆ Γ .

Osservazione 3.2.3. Sia Γ ≤ SL2(Z) un sottogruppo di congruenza e sia α ∈ SL2(Z).
Allora α−1Γα è un sottogruppo di congruenza.
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Dimostrazione. Per definizione, esiste N ∈ N∗ tale che Γ(N) ⊆ Γ. Sia dunque γ ∈ Γ(N),
cioè tale che γ ∼= I2 (mod N). Quindi esiste una matriceX ∈M2(Z) tale che γ = I2+NX.
Osserviamo che

Γ ∋ α−1γα = α−1I2α + α−1NXα = I2 +N(α−1Xα) ∼= I2 (mod N)

e dunque Γ(N) ⊆ α−1Γα.

Definizione 3.2.3. Sia N ∈ N∗. Oltre al sottogruppo principale, esistono altri due
sottogruppi di congruenza di livello N particolarmente rilevanti:

• Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) :

[
a b
c d

]
≡
[
∗ ∗
0 ∗

]
(mod N)

}
;

• Γ1(N) :=

{(
a b
c d

)
∈ SL2(Z) :

[
a b
c d

]
≡
[
1 ∗
0 1

]
(mod N)

}
.

Vale dunque l’inclusione

Γ(N) ⊆ Γ1(N) ⊆ Γ0(N) ⊆ SL2(Z) .

Osservazione 3.2.4. Valgono le seguenti.

1. Γ(N) ⊴ Γ1(N) e Γ1(N)/Γ(N) ∼= ZN .

2. Γ1(N) ⊴ Γ0(N) e Γ0(N)/Γ1(N) ∼= (ZN)
∗ .

Dimostrazione. Consideriamo le mappe

φ2 : Γ1(N) −→ ZN(
a b
c d

)
7−→ b (mod N)

φ3 : Γ0(N) −→ (ZN)
∗(

a b
c d

)
7−→ d (mod N)

Queste sono entrambe suriettive. Inoltre, si ha che ker(φ2) = Γ(N) e ker(φ3) = Γ1(N);
il risultato segue dal primo teorema di omomorfismo. Per ulteriori dettagli su questo
argomento, si rinvia a [DS05].
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3. Strutture modulari delle curve ellittiche

Definizione 3.2.4. Sia α =
(
a b
c d

)
∈ SL2(Z) e sia k ∈ Z.

• Si definisce il fattore di automorfia come

j(α, τ) = cτ + d ∈ C .

• Si definisce l’operatore di peso k, denotato [α]k, su una funzione f : H −→ C
ponendo, per ogni τ ∈ H,

(f [α]k)(τ) = j(α, τ)−k f(α(τ)) .

Osservazione 3.2.5. Dato che il fattore di automorfia non è mai nullo o ∞, se f è una
funzione meromorfa allora f [α]k è meromorfa ed ha gli stessi zeri e poli di f .

È quindi opportuno fornire la seguente definizione.

Definizione 3.2.5. Sia Γ ≤ SL2(Z) un sottogruppo di congruenza. La funzione f : H −→
C si dice debolmente modulare di peso k rispetto a Γ se è meromorfa e invariante di peso
k sotto Γ, cioè se f [α]k = f per ogni α ∈ Γ.

Vediamo ora alcune proprietà di cui godono il fattore di automorfia e l’operatore di peso
k, che risulteranno utili in seguito.

Lemma 3.2.6. Per α, α′ ∈ SL2(Z) e τ ∈ H, valgono le seguenti:

1. j(αα′, τ) = j(α, α′(τ)) · j(α′, τ) ;

2. (αα′)(τ) = α(α′(τ)) ;

3. [αα′]k = [α]k[α
′]k (intesa come uguaglianza di operatori);

4. ℑ(α(τ)) = ℑ(τ)
|j(α.τ)|2

;

5.
dα(τ)

dτ
=

1

j(α, τ)2
.

Per una dimostrazione di questo lemma, si veda [DS05], sezione 1.2.

Corollario 3.2.7. Sia f : H −→ C una funzione meromorfa. Se f verifica l’eq. (3.1) per
le matrici

(
1 1
0 1

)
e
(
0 −1
1 0

)
allora vale per ogni α ∈ SL2(Z), cioè f è debolmente modulare

di peso k.
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Dimostrazione. Dal punto 3 del Lemma 3.2.6 deduciamo che se f è debolmente modulare
rispetto a un insieme di matrici, lo è anche rispetto al gruppo che esse generano. La tesi
segue direttamente dal fatto che, per il primo punto dell’Osservazione 3.1.1, si ha che

SL2(Z) =
〈(1 1

0 1

)
,

(
0 −1
1 0

)〉
.

3.2.2 Forme modulari rispetto a sottogruppi di congruenza

Il nostro obiettivo ora è fornire una definizione completa di forma modulare rispetto a un
sottogruppo di congruenza.

Ribadiamo che trattare queste particolari forme non è strettamente necessario per pro-
seguire nello studio delle curve modulari e delle curve ellittiche potenziate, che definiremo
nella sezione successiva, ma lo includiamo comunque per completezza. Come osservato
precedentemente, infatti, limitarsi alle forme modulari per SL2(Z) risulta piuttosto re-
strittivo. Considerare invece quelle rispetto ai sottogruppi di congruenza è vantaggioso per
diversi motivi: gli spazi associati a sottogruppi di congruenza sono più ricchi (per appro-
fondimenti si veda [DS05]) e, se consideriamo un sottogruppo di congruenza Γ ⪇ SL2(Z)
con I2 /∈ Γ, è possibile definire forme modulari anche di peso dispari, cosa non consentita
per SL2(Z) (si veda l’Osservazione 3.1.8).

Risulta naturale, per poter affermare che una funzione f : H −→ C è una forma modulare
di peso k rispetto a un sottogruppo di congruenza Γ ≤ SL2(Z), richiedere che f sia
olomorfa in H e debolmente modulare di peso k rispetto a Γ, così da avere coerenza con
i punti 1 e 2 della Definizione 3.1.3. Richiederemo, inoltre, che f verifichi una particolare
condizione di olomorfia che descriveremo di seguito.

Osserviamo che, dato che Γ ⊇ Γ(N) per qualche N ∈ N∗, si ha che Γ contiene
necessariamente, per qualche h ∈ N∗, una traslazione(

1 h
0 1

)
: τ 7→ τ + h .

Si deduce quindi che, se f è debolmente modulare di peso k rispetto a Γ, allora è hZ-
periodica, cioè esiste

g : D∗ −→ C
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tale che f(τ) = g(qh) dove qh = e
2πiτ
h .

Come visto nella sezione scorsa, abbiamo che, se f è olomorfa su H, allora g è olomorfa
su D∗ e diciamo che f è olomorfa in ∞ se g si estende olomorficamente in q = 0.

Poiché siamo interessati a dare una definizione formale di forma modulare rispetto a
un sottogruppo di congruenza Γ ⪇ SL2(Z), è necessario fare particolarmente attenzione:
vedremo, infatti, che in questo caso tra i punti limite non ci sarà solamente∞, a differenza
di quando stavamo considerando Γ = SL2(Z).

Per motivare questa affermazione, forniamo innanzi tutto la seguente definizione.

Definizione 3.2.6. Dato Γ ≤ SL2(Z) un sottogruppo di congruenza, chiamiamo cuspide
di Γ una classe di Γ-equivalenza di punti in Q ∪∞.

Osservazione 3.2.8. Γ = SL2(Z) ha una sola cuspide.

Dimostrazione. Dimostriamo che tutti i punti razionali sono in relazione d’equivalenza
con ∞, tramite SL2(Z). Sia dunque

p

q
∈ Q generico (assumiamo p e q coprimi).

Si ha che, per il Lemma di Bézout, esistono s, r ∈ Z tali che

ps− qr = 1

e quindi

α =

(
p r
q s

)
∈ SL2(Z) .

Segue che

α(∞) = lim
y→∞

p(iy) + r

q(iy) + s
=
p

q

e quindi ∞ e
p

q
sono SL2(Z)-equivalenti.

Quanto appena dimostrato motiva il fatto che, quando abbiamo definito le forme modulari
rispetto a SL2(Z), è stato sufficiente richiedere l’olomorfia soltanto all’∞.

Nel caso preso in considerazione adesso, invece, ci saranno più cuspidi e quindi più punti
limite in cui richiedere olomorfia.

Osservazione 3.2.9. Il numero di cuspidi di un sottogruppo di congruenza Γ ⪇ SL2(Z)
è finito.

Dimostrazione. Nella dimostrazione dell’Osservazione 3.2.8, abbiamo visto che per ogni
m ∈ Q esiste α ∈ SL2(Z) tale che m = α(∞), quindi il numero di cuspidi di Γ sarà
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al massimo pari al numero di classi laterali Γα e cioè un numero finito in quanto, per
l’Osservazione 3.2.2, si ha che

[SL2(Z) : Γ] <∞ .

Risulta naturale quindi, definire l’olomorfia in una cuspide m = α(∞) in termini del-
l’olomorfia in ∞ dell’operatore [α]k. Questa era proprio la condizione di olomorfia che
intendevamo definire all’inizio del discorso.

Tale richiesta ha senso poiché, se assumiamo f olomorfa, per l’Osservazione 3.2.5, anche
f [α]k è olomorfa. Inoltre tale operatore è debolmente modulare rispetto a α−1Γα, che è un
sottogruppo di congruenza per l’Osservazione 3.2.3. Possiamo quindi finalmente definire
le forme modulari rispetto a un sottogruppo di congruenza di SL2(Z).

Definizione 3.2.7. Sia Γ ≤ SL2(Z) un sottogruppo di congruenza e sia k ∈ Z. Diciamo
che la funzione f : H −→ C è una forma modulare di peso k rispetto a Γ se

1. f è olomorfa su H ;

2. f è debolmente modulare di peso k rispetto a Γ ;

3. f [α]k è olomorfa in ∞ per ogni α ∈ SL2(Z) .

3.3 Curve ellittiche potenziate e curve modulari

In questa sezione ci concentreremo sulle curve modulari e sulle curve ellittiche dotate di
una struttura di torsione fissata, che chiameremo curve ellittiche potenziate.

Inizieremo fornendo le definizioni precise di curve ellittiche potenziate e introducendo
gli insiemi delle loro classi di isomorfismo, che chiameremo spazi di parametri di curve
ellittiche potenziate. Successivamente, definiremo le curve modulari come quozienti di
H per sottogruppi di congruenza, soffermandoci in particolare su quelle ottenute dai tre
sottogruppi di congruenza più rilevanti definiti nella sezione precedente.

Nella seconda sottosezione verrà presentato un teorema fondamentale che stabilisce una
biezione tra curve modulari e spazi di parametri di curve ellittiche potenziate.

Questo risultato ci consentirà, nell’ultima sottosezione, di enunciare il teorema di mo-
dularità in forma complessa.
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Per semplificare la trattazione, introduciamo una nuova notazione per indicare gli elementi
delle curve ellittiche.

Notazione 3.3.1. Nei capitoli precedenti, indicavamo gli elementi di un toro complesso
con

[z]Λ ∈ C/Λ ,

poiché ancora non avevamo mostrato la corrispondenza che sussiste tra tori complessi
e curve ellittiche; ci era quindi utile tenere traccia della classe di equivalenza data dal
quoziente per il reticolo Λ. D’ora in avanti, invece, poiché denoteremo con E la curva
ellittica che corrisponde al toro C/Λ e con Eτ la curva ellittica che corrisponde al toro
C/Λτ , indicheremo gli elementi di tali curve (o equivalentemente tori) con

[z]E ∈ E e [z]Eτ ∈ Eτ .

3.3.1 Definizioni e considerazioni iniziali

Definizione 3.3.1. Sia N ∈ N∗. Una curva ellittica potenziata per Γ0(N) è una coppia
(E,C) dove E è una curva ellittica (complessa) e C è un sottogruppo ciclico di E di
ordine N . Due curve ellittiche (E,C), (E ′, C ′) potenziate per Γ0(N) si dicono equivalenti
se esiste un isomorfismo

E
∼−−→ E ′

che manda C in C ′. Indichiamo il quoziente per tale relazione con:

S0(N) := {curve ellittiche potenziate per Γ0(N)} /∼ ; .

Definizione 3.3.2. Sia N ∈ N∗. Una curva ellittica potenziata per Γ1(N) è una coppia
(E,Q) dove E è una curva ellittica (complessa) e Q ∈ E è un punto di ordine N , cioè tale
che NQ = 0 ma nQ ̸= 0 per ogni n < N . L’equivalenza è definita analogamente a prima
e, di nuovo, indichiamo il quoziente con:

S1(N) := {curve ellittiche potenziate per Γ1(N)} /∼ .

Definizione 3.3.3. Sia N ∈ N∗. Una curva ellittica potenziata per Γ(N) è una coppia
(E, (P,Q)) dove E è una curva ellittica (complessa) e (P,Q) è una coppia di punti che
genera il sottogruppo di torsione N -esima ker([N ]) con accoppiamento di Weil

eN(P,Q) = e
2πi
N .

Due curve ellittiche (E, (P,Q)), (E ′(P ′, Q′)) potenziate per Γ(N) si dicono equivalenti se
esiste un isomorfismo

E
∼−−→ E ′
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che manda P in P ′ e Q in Q′ . Denotiamo poi

S(N) := {curve ellittiche potenziate per Γ(N)} /∼ .

Definizione 3.3.4. Chiamiamo S0(N), S1(N) e S(N) spazi di parametri di curve ellittiche
potenziate.

Osservazione 3.3.1. Gli spazi S0(N), S1(N) e S(N) costituiscono un caso elementare
di spazi di moduli, cioè insiemi che parametrizzano classi di isomorfismo di oggetti di tipo
fissato. Infatti, ogni punto di S∗(N) corrisponde a una classe di isomorfismo di curve
ellittiche potenziate.

Osservazione 3.3.2.

S0(1) = S1(1) = S(1) = {classi di isomorfismo di curve ellittiche (complesse)} := S .

Definizione 3.3.5. Sia Γ ≤ SL2(Z) un sottogruppo di congruenza che agisce su H da
sinistra. Chiamiamo curva modulare lo spazio quoziente per le orbite di Γ:

Y (Γ) = Γ\H = {Γτ | τ ∈ H} .

Denotiamo:

Y0(N) = Y (Γ0(N)) ; Y1(N) = Y (Γ1(N)) ; Y (N) = Y (Γ(N)) .

Osservazione 3.3.3.

Y0(1) = Y1(1) = Y (1) = SL2(Z)\H .

Come preannunciato nell’Osservazione 1.2.6, vale la seguente identificazione.

Osservazione 3.3.4. La curva modulare Y (1) può essere identificata con l’insieme

D =
{
τ ∈ H : |ℜ(τ) ≤ 1

2
, |τ | ≥ 1

}
.

detto dominio fondamentale, descritto nella fig. 6.

Dimostrazione. Sia τ ∈ H e mostriamo che è SL2(Z)-equivalente ad un qualche punto in
D. Applicando un numero finito di volte la trasformazione(

1 ±1
0 1

)
: τ 7→ τ ± 1
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otteniamo un elemento τ ′ nella striscia{
τ ∈ H : |ℜ(τ)| ≤ 1

2

}
.

Se τ ′ ̸∈ D significa che |τ ′| < 1 e quindi si ha

ℑ
(
− 1

τ ′

)
= ℑ

(
− τ ′

|τ ′|2

)
= ℑ

(
τ ′

|τ ′|2

)
> ℑ(τ ′) .

Consideriamo dunque − 1
τ ′

=
(
0 −1
1 0

)
τ ′ e ripetiamo il procedimento. Poiché nel disco

D ci sono solo un numero finito di punti appartenenti ad un reticolo, c’è un numero
finito di coppie di interi (c, d) tali che |cτ ′ + d| < 1. Si deduce che, per il punto 4 del
Lemma 3.2.6, dopo un numero finito di trasformazioni di τ ′ otteniamo un elemento τ ′′

con parte immaginaria maggiore di 1.

D

Figura 6: Dominio fondamentale

3.3.2 Corrispondenza tra curve modulari e spazi di parametri di
curve ellittiche potenziate

In questa sottosezione vediamo il teorema che stabilisce la corrispondenza tra curve mo-
dulari e spazi di parametri di curve ellittiche potenziate. Questo risultato offre un’intui-
zione non banale: le curve modulari possono essere viste, non più soltanto come quozien-
ti astratti del semipiano H, ma come insiemi di punti corrispondenti a curve ellittiche
potenziate.
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Teorema 3.3.5. Sia N ∈ N∗. Valgono le seguenti affermazioni.

1. Lo spazio di parametri di curve ellittiche potenziate per Γ0(N) è dato da

S0(N) =
{[
Eτ , ⟨

[
1
N

]
Eτ
⟩
]
: τ ∈ H

}
.

Inoltre, due punti
(
Eτ , ⟨

[
1
N

]
Eτ
⟩
)

e
(
Eτ ′ , ⟨

[
1
N

]
Eτ ′
⟩
)

sono equivalenti se e solo se

Γ0(N)τ = Γ0(N)τ ′ .

Quindi c’è una biezione

ψ0 : S0(N) −→ Y0(N)[
Eτ , ⟨

[
1
N

]
Eτ
⟩
]
7−→ Γ0(N)τ

.

2. Lo spazio di parametri di curve ellittiche potenziate per Γ1(N) è dato da

S1(N) =
{[
Eτ ,

[
1
N

]
Eτ

]
: τ ∈ H

}
.

Inoltre, due punti
(
Eτ ,

[
1
N

]
Eτ

)
e
(
Eτ ′ ,

[
1
N

]
Eτ ′

)
sono equivalenti se e solo se

Γ1(N)τ = Γ1(N)τ ′ .

Quindi c’è una biezione
ψ1 : S1(N) −→ Y1(N)[
Eτ ,

[
1
N

]
Eτ

]
7−→ Γ1(N)τ

.

3. Lo spazio di parametri di curve ellittiche potenziate per Γ(N) è dato da

S(N) =
{[
Eτ ,

([
τ
N

]
Eτ
,
[
1
N

]
Eτ

)]
: τ ∈ H

}
.

Inoltre, due punti
(
Eτ ,

([
τ
N

]
Eτ
,
[
1
N

]
Eτ

))
e
(
Eτ ′ ,

([
τ ′

N

]
Eτ ′

,
[
1
N

]
Eτ ′

))
sono equiva-

lenti se e solo se
Γ(N)τ = Γ(N)τ ′ .

Quindi c’è una biezione

ψ : S(N) −−−−−−−→ Y (N)[
Eτ ,

([
τ
N

]
Eτ
,
[
1
N

]
Eτ

)]
7−→ Γ(N)τ

.
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Dimostrazione. Dimostriamo il punto 1 dell’enunciato.
Sia [E,C] ∈ S0(N). Per l’Osservazione 1.2.9, si ha che esiste τ ∈ H tale che E ∼= Eτ

tramite un certo isomorfismo ϕ. Chiamando C̃ = ϕ(C) si ha che

[E,C] = [Eτ , C̃] .

Per definizione, C ≤ E è un sottogruppo ciclico di ordine N ; di conseguenza, anche
C̃ ≤ Eτ è ciclico di ordine N , quindi esiste un elemento [P ]Eτ ∈ Eτ tale che C̃ = ⟨[P ]Eτ ⟩.
In particolare, esistono a, b ∈ Z primi tra loro tali che

[P ]Eτ =
[
a
N
+ b

N
τ
]
Eτ

.

Cerchiamo ora una matrice che ci permetta di cambiare base. Per il lemma di Bézout,
esistono x, y ∈ Z tali che ax+ by = 1 . Considerando la matrice

M =

(
a −y
b x

)
∈ SL2(Z) ,

si ottiene che M(1, 0) = (a, b) , quindi possiamo scegliere
[
1
N

]
Eτ

come generatore di C̃.
Da ciò segue che

S0(N) =
{[
Eτ , ⟨

[
1
N

]
Eτ
⟩
]
: τ ∈ H

}
.

Siano ora (
Eτ , ⟨

[
1
N

]
Eτ
⟩
)
∼
(
Eτ ′ , ⟨

[
1
N

]
Eτ ′
⟩
)
.

Si ha, cioè, che esiste un isomorfismo tra le curve tale che

⟨
[
1
N

]
Eτ
⟩

∼=7−→ ⟨
[
1
N

]
Eτ ′
⟩

Per la Proposizione 1.2.7 e il Lemma 1.2.4 si ha che Eτ
∼= E ′

τ se e solo se esiste α =(
a b
c d

)
∈ SL2(Z) tale che τ ′ = α(τ). La condizione sull’immagine del sottogruppo fa sì

che c ≡ 0 (mod N) e quindi α ∈ Γ0(N), cioè

Γ0(N)τ = Γ0(N)τ ′ .

I punti 2 e 3 si dimostrano con ragionamenti analoghi, per cui si rinvia alla sezione 1.5
di [DS05].

Osservazione 3.3.6. Questo teorema, applicato al caso N = 1, fornisce un’ulteriore
dimostrazione di quanto avevamo già concluso, usando strumenti analitici, nei capitoli
precedenti.

Infatti, dal Teorema 3.3.5 si deduce che l’insieme delle classi di isomorfismo di curve el-
littiche S è in biezione con il quozienteH/SL2(Z). Ma, per l’Osservazione 1.2.10, ogni toro
complesso, o equivalentemente ogni curva ellittica, corrisponde, a meno di isomorfismo, a
un elemento del semipiano H, quozientato per l’azione di SL2(Z).
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Per l’Osservazione 3.3.6, ogni classe di isomorfismo di curve ellittiche ha un’orbita
SL2(Z)τ ∈ SL2(Z)\H ad essa associata e quindi ha un invariante ben definito j(SL2(Z)τ).

Poiché tale valore è associato anche a ogni curva ellittica E nella classe di isomorfismo
data da τ , possiamo denotarlo j(E).

Dal Teorema 3.3.5 si deduce anche che le mappe tra curve modulari si traducono in mappe
tra spazi di parametri di curve ellittiche potenziate.

Vediamo degli esempi per comprendere meglio questo fatto.

Esempio 3.3.1. La mappa
Y1(N) −→ Y0(N)

Γ1(N)τ 7−→ Γ0(N)τ

conduce alla mappa
S1(N) −→ S0(N)

[E,Q] 7−→ [E, ⟨Q⟩]
che dimentica il generatore, ricordando soltanto il gruppo che esso genera.

Esempio 3.3.2. Poiché, per l’Osservazione 3.2.4, si ha che Γ1(N) ⊴ Γ0(N), il gruppo
quoziente Γ0(N)/Γ1(N) agisce sulla curva modulare Y1(N). Tale azione si traduce in
un’azione sullo spazio di parametri S1(N) data da:

[γ] : S1(N) −→ S1(N)

[E,Q] 7−→ [E, dQ] .

dove γ =
(
a b
c d

)
∈ SL2(Z).

3.3.3 Teorema di modularità - versione complessa

Giungiamo ora al risultato più rilevante di questo capitolo aritmetico, ovvero il teorema
di modularità in forma complessa, secondo cui le curve ellittiche con valori di j razionali
provengono da curve modulari.

Prima di fornire l’enunciato preciso, però, è necessaria una puntualizzazione: le curve mo-
dulari possono essere compattificate aggiungendo le cuspidi del sottogruppo di congruenza
alle quali sono associate.

Se Γ è un sottogruppo di congruenza e Y (Γ) è la curva modulare ad esso associata,
definiamo

X(Γ) := Y (Γ) ∪ {cuspidi di Γ} .
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Si ha quindi che la curva modulare compattificata associata al sottogruppo di congruen-
za Γ è data da

X(Γ) = Y (Γ) ∪ Γ\(Q ∪ {∞}) = Γ\H̃ ,

dove H̃ = H ∪Q ∪ {∞}.

Si può dimostrare che X(Γ) è uno spazio effettivamente compatto ed è anche connesso e
di Hassdorf, ma per questo si rinvia alla sezione 2.4 di [DS05].

Teorema 3.3.7. Sia E una curva ellittica (complessa) con invariante modulare razionale,
cioè tale che j(E) ∈ Q. Allora esiste N ∈ N∗ e esiste una mappa suriettiva olomorfa tra
superfici compatte data da

X0(N) −→ E .
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