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Abstract

The thesis concerns a non-standard method of implementing the Functional
Renormalization Group (FRG) framework in a quantum field theory of gravity
which is capable of explicitly preserving the Becchi-Rouet-Stora-Tyutin (BRST)
symmetry of the theory at all stages of the construction. In particular, we
firstly review the functional Faddeev-Popov quantization and gauge-fixing of a
classical field theory of gravity within the background field method and the role
and properties of BRST symmetry. Secondly, we present the standard FRG
framework implementation and we discuss how the standard regularization
procedure, consisting in manually adding a quadratic regulator term in the
metric fluctuation and Faddeev-Popov ghosts to the gauge-fixed action, breaks
BRST symmetry and leads to a Wetterich-Morris equation incompatible with
the constraint imposed by BRST symmetry, i.e. the Zinn-Justin equation.
Finally, we present how a BRST-invariant FRG framework can be introduced
by combining the regularization and gauge-fixing procedures in a single step,
using a non-standard gauge-fixing choice, which allows to introduce quadratic
mass terms in the gauge-fixed action without breaking BRST symmetry, to
regularize the theory in an explicitly BRST-invariant manner. Then, we derive
the Wetterich-Morris equation stemming from the construction, proving its
compatibility with the Zinn-Justin equation and presenting its component form
within the Einstein-Hilbert truncation.
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Introduction

Introduction

One of the most important challenges in modern theoretical physics is the one of developing
a complete and consistent quantum theory of gravity, capable of describing the gravitational
interaction at the quantum level and at all energy-length scales, from the low energy
- long length infrared regime (IR) to the high energy - short length regime ultraviolet
(UV). One of the most important approaches currently pursued in the research of a such
theory is the one based on the framework of Quantum Field Theory (QFT), which already
successfully describes all other fundamental interactions, electromagnetic, strong and weak,
at the quantum level, both in special and general relativistic classic spacetimes, where
the gravitational interaction is not quantized. In fact, as widely known, the quantization
of Einstein’s theory of gravity as a quantum field theory leads at the perturbative level
to a non-renormalizable theory, unpredictive in the UV regime [1]. However, within the
Renormalization Group framework [2] and according to the Asymptotic Safety conjecture
by Steven Weinberg [3], it is possible to investigate the potential renormalizability at the
non-perturbative level of a quantum field theory of gravity, searching for a complete theory
predictive at all energy-length scales.

The thesis concerns a particular way of implementing these ideas in a quantum field theory
of gravity, the Functional Renormalization Group (FRG), in which the scale dependence
of the theory is described by an effective average action which interpolates between the
classical theory, described by the classical action, and the quantum theory, described by the
quantum effective action [4]. In particular, the thesis focuses on the problem of preserving
in this framework the fundamental symmetry possessed by a theory of quantum gravity,
the Becchi-Rouet-Stora-Tyutin (BRST) symmetry taking the place of gauge symmetry
under diffeomorphisms at the quantum level after the gauge-fixing procedure. In fact,
the standard methodology of applying this framework to quantum gravity [5] breaks
BRST symmetry, which is lost in the scale-dependent theory for a general value of the
scale. The purpose of this work is to develop an FRG framework for a theory of quantum
gravity in which BRST symmetry is instead always manifestly preserved, generalizing the
formalism introduced in [6], which allows to construct an explicitly BRST-invariant FRG
for a quantum non-abelian gauge theory, to a theory of gravity.

As far as the structure is concerned, the thesis is articulated in three parts:

1. In the first part we synthetically review the elementary principles of the theories which
constitute the basis of the second and third part, namely Quantum Field Theory and
General Relativity and the framework of the Functional Renormalization Group.

As far as QFT is concerned, we adopt the functional formalism and we consider a scalar
theory in flat spacetime to review the definition of the generating functionals, namely the
path integral, its logarithm and the effective action, their properties and relations; we also
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review the description of symmetries at the quantum level in the functional formalism,
namely the distinction between non-anomalous and anomalous symmetry and the Ward
identities.

As far the FRG framework is concerned, we review the fundamental idea and how to
implement it in the scalar QFT previously presented, namely the regularization procedure
of the generating functionals in terms of a scale-dependent quadratic regulator term added
to the action; we also review the definition of the effective average action as a scale-
dependent interpolating functional between the classic action and the quantum effective
action, and the derivation of the exact functional differential equation which describes
this interpolation, the Wetterich-Morris equation, also reviewing how it can be written
in component form, in terms of a system of differential equations for scale-dependent
couplings and how to tackle its solution in terms of truncation schemes.

As far as General Relativity is concerned, we adopt the metric formulation of the theory
and we review the fundamental principles, namely the general relativity principle and the
equivalence principle, and how those are translated in the language of differential geometry,
recalling the definitions of the fundamental geometric objects and the Einstein equations;
we also review the lagrangian formulation of the theory in terms of an action principle, i.e.
the characterization of the theory as classical field theory of the gravitational interaction
with the metric as dynamical field; finally, we review the characterization of the theory as
gauge theory with diffeomorphisms of the metric, i.e. the functional variation induced by
a general change of coordinates, as gauge transformations.

2. The second part of the thesis has a double role. Firstly, we review the definition of a
Quantum Einstein Gravity (QEG) theory as a quantum field theory for the gravitational
interaction compatible with the general relativity principle, and thus gauge-symmetric
under diffeomorphisms, which is non-renormalizable at the perturbative level and whose
renormalizability is intended to be studied with renormalization group techniques at the
non-perturbative level, within the Weinberg’s asymptotic safety conjecture. In particular,
we highlight the difficulties which one has to overcome in the practical construction of the
theory, namely the necessity of using a gauge-fixing procedure to remove gauge redundancy
and obtain a well-defined path integral and the one of using the background field method
in order to have a well-defined notion of coarse-graining in the FRG framework. We thus
present the implementation of the background field method in terms of a background
metric and a metric fluctuation and how infinitesimal diffeomorphisms are reinterpreted
either as true or background gauge transformations; as gauge-fixing method we adopt
the Faddeev-Popov quantization method, also in its variants in presence of a Nakanishi-
Lautrup auxiliary field and a noise field. We then present the general form of the
BRST transformations for the metric fields and the Faddeev-Popov ghosts and the BRST
symmetry of the gauge-fixed action with its fundamental properties, at the classical and
quantum levels, namely its nilpotency and its description at the quantum level in terms of
a Ward-Takahashi equation; we also stress how the symmetry is present for any choice of
gauge-fixing, and how the non-gauge-fixed action and the gauge-fixing sector introduced
in the Faddeev-Popov quantization are separately BRST-invariant.

Secondly, we specialize the discussion to the theory with the standard choice of gauge-fixing,
reviewing the various terms introduced in the gauge-fixed action and reviewing the specific
appearance of BRST symmetry and its properties, in particular the Zinn-Justin equation
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describing the constraint imposed by the symmetry on the quantum effective action. We
then review the standard implementation of the FRG framework via the regularization of
the gauge-fixed action with quadratic terms for the metric fluctuation and the ghosts, and
we discuss how those produce an explicit breaking of BRST symmetry, which is then lost
in the regularized scale-dependent theory, as represented by the emergence of a modified
Zinn-Justin equation for the effective average action. Finally, we review the derivation of
the standard Wetterich-Morris equation describing the FRG flow of the effective average
action, stressing its incompatibility with BRST symmetry, due to the non-BRST-invariant
nature of the regularization procedure; we also review the component form of the equation
within the Einstein-Hilbert truncation.

3. In the third part of the thesis we present the central matter of the work and the main
results obtained. In particular, we first review how the fundamental idea introduced in [6] is
translated in a gravitational theory, namely combining the gauge-fixing and regularization
procedures in a single step and using a non-standard gauge-fixing to introduce the regulators
necessary for an FRG regularization directly as part of the gauge-fixing terms, so that
BRST symmetry is always manifestly preserved, since we are formally performing just a
particular gauge-fixing and the gauge-fixing sector of the action is always BRST-invariant,
in particular no non-BRST-invariant regulator is manually added to the action.

We articulate the construction in two steps. Firstly, we present a non-standard gauge-fixing
which allows to introduce in the action quadratic mass terms for the metric fluctuation and
the Faddeev-Popov ghosts and also reproduce the standard gauge-fixing terms, describing
the specific appearance of BRST symmetry and its properties, in particular the non-
standard Zinn-Justin equation describing the constraint imposed by the symmetry on the
quantum effective action.

Secondly, we implement the FRG regularization by simply promoting the mass parameters
to suitably defined FRG regulators obtaining by construction a BRST-invariant regularized
scaled-dependent theory, whose effective average action satisfies for each value of the scale
the constraint imposed by the Zinn-Justin equation. Finally, we derive the non-standard
Wetterich-Morris equation stemming from the construction, discussing its non-standard
properties, proving its expected compatibility with the constraint imposed by the Zinn-
Justin equation and deriving its component form within the Einstein-Hilbert truncation
and employing a particular regularization scheme.
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Notations

In the manuscript we adopt the following conventions and notations:

® We work in natural units in which the speed of light in the vacuum and the reduced
Planck’s constant are 1:

c=1=nh

The value of Newton’s gravitational constant G is instead not set to 1 and its symbol
left explicit.

® We work within the conventions regarding spacetime dimensionality and metric signature
typically used in the applications of FRG methods, i.e. we work in D dimensions and
euclidean signature: a generic curved spacetime is described as a riemannian manifold
(M, g) with D-dimensional topological space and equipped with a metric tensor g,
with euclidean signature:

signg,, = (+,...,+)

A flat spacetime is described as a D-dimensional euclidean spacetime (R”,d) with
metric:

O = diag(1,...,1)

® [ndices appearing in the components of tensorial quantities are summed according to
the Einstein notation of repeated indices.

® Partial, covariant and functional derivatives are respectively indicated as:

5
Ip(x)

9, v,

When fields evaluated at multiple spacetime points are present in an expression, we
indicate the spacetime variable of a partial and covariant derivative as:

Ny V()

In presence of Grassmann-graded fields, left and right functional derivatives are respec-
tively indicated as:

5 5
6Y(x) oY ()
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® A « symbol denotes an understood integration:
A-B = [ P2 B@ A8 = [ yate.)Bl)

The variant «, denotes an understood integration with the invariant measure d”z,/g on
the spacetime manifold:

A«By= [ d”z\/g(x)A(z)B(x) A(z,-) o B = /dDy\/g(y)A(w,y)B(y)

® det and tr denote determinants and traces over operators with discrete indices, while
Det and Tr denote functional determinants and traces of operators with continuous
indices. In particular, Tr indicates:

Te[A(z, )] = / P rdPyb(z — y) Az, y)

The variant Tr, contains an invariant measure d”z,/g on the spacetime manifold:
Tr[A(z,y)] = [ d°x\/g(2)dys(x — y)A(z,y)

® [n quantum field theory unnormalized, normalized and connected correlation functions
are respectively indicated as:

(- )u () ()
If sources are not set to zero they are indicated as:

(- () (e
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Part 1
Fundamentals

The first part of the thesis is devoted to a synthetic review of the elementary principles of
Quantum Field Theory, General Relativity, and the Functional Renormalization Group.
The part is divided in three sections. In the first section we consider a scalar theory in flat
spacetime to review the elementary aspects of the functional formalism in QFT, namely
generating functionals and the description of symmetries in terms of Ward-Takahashi
identities. In the second section we review the implementation of the FRG framework,
discussing in particular the reqularization procedure and the Wetterich-Morris equation.
In the third section we review the fundamentals of Finstein’s General Relativity, discussing
i particular its characterization as a gauge theory under diffeomorphisms.

1.1 Elements of Quantum Field Theory

In this section we list the elementary notions of QFT, in its functional formulation, to
which we will refer in the following, considering for simplicity a scalar theory. In particular,
we briefly review the various generating functionals and the description of symmetries at
the quantum level in terms of Ward identities. We suggest for instance [7] for a detailed
review.

1.1.1 Functional formalism in euclidean signature

Consider a classical field theory for a scalar field ¢ in a D-dimensional euclidean spacetime
(RP,§) described by a generic action S[¢], given by the sum of a quadratic term describing
the free theory and one describing self-interactions:

S16) = Salo] + Suld) = [ @ (£0-+ Lun) (1.11)

In the functional formalism, quantizing the theory amounts to write and in principle
compute the path integral, i.e. the functional integral of the exponential of the classical
action. In euclidean signature the path integral is written as:

Z = /D¢e—5[¢1 (1.1.2)




Subsection 1.1.1 | Functional formalism in euclidean signature

where the integration is extended to all possible configurations of the field and the path
integral measure can be practically understood as:

D¢ = [[ dé(=) (1.1.3)

Starting from the path integral, one can define the quantum generating functionals from
which all the information on the quantum theory can be extracted by taking functional
derivatives. We now briefly recall their definition and main properties:

1. Path integral: Introduce a source field J for the scalar field, the path integral with
sources is defined as:

Z — /D¢ efs[ﬁs]*ssource[(j);t]] (114)

with the source term:

Ssourcel®; J] = — /deJ¢ (1.1.5)
It is the generator of unnormalized correlation functions:
(Ole1).-0lza)), = [ Dooar). .. oan)e 5

a 5J (1) (5J(a:n)Z[J] J=0

(1.1.6)

In perturbation theory they can be expressed as sums of correlation functions with respect
to the non-interacting path integral:

(@(x1) . B(wn)), = (D(x1) .. dlan)e o)
= (3(21) .- 3(n))g0

)

+ Z k;ll) dDyZ Il) ce gb(xn)ﬁmt(%) s Eim‘<yk)>0,u
k=1 (1.1.7)

and similarly for the path integral itself:

R
Z:Z0+kz_:( k1!> /dDyZ-...yk (LintW1) - - Lint (k). (1.1.8)

Non-interacting correlation functions can be then expressed according to the Wick theorem
[8] as sums of products of free propagators, i.e. 2-point non-interacting correlation functions

(D(@)d(y))y:
(B(z1) . d(xn))g= Y H (1.1.9)

Wick
contractions

In the Feynman diagrammatic representation, this is represented by identifying unnor-
malized correlation functions with the sum of all diagrams with n external points; in
particular the path integral is equal to the sum of all vacuum diagrams, i.e. with zero
external points. Vacuum diagrams correspond to factorizable integrals in the perturbative
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expansion of an unnormalized correlation, from which their sum, i.e. the path integral,
can be thus factorized:

(0(1) . o(an)), = (¢(21) .. @) £ (1.1.10)

leaving the sum of all diagrams with n external points and no vacuum diagrams, i.e. the
normalized correlation function:

(¢(x1) ... d(xn)) = %/ngqS(azl) o p(zn)e S
1 5 o .. 5

(1.1.11)
- Z6J(x1) (5J(3:n)Z[J] J=0
2. Path integral logarithm: The path integral logarithm is defined as:
W1J] = log Z[J] (1.1.12)
It is the generator of connected correlation functions:
(B) - S}, = o A (1.1.13)

5J(z1)  6J(zn) J=0

which in perturbation theory are given by the sum of all connected diagrams with n external
points. Indeed, by expressing the functional according to the definition and applying the
derivative rule of the logarithm, one finds that a generic normalized correlation function is
given by the sum of all possible products of connected correlation functions:

(O(x1) .. P(2n)) = (D(21) ... dan)), + (D(21)) (D(22) .. P(xn))e + - -
+ (@(1)p(22)) (D(23) - - d(an))e + -+
(1.1.14)
+(¢(x1)), - - (d(an)),
In particular, the relation:
(0(2)9(y)) = (6(2)9(y)), + (¢(2)). (6(y)), (1.1.15)

follows from setting the source to zero in the relation between second derivatives:

1ozl Wl W] W]
Z[J)6J(x)8J(y) — 0J(x)dJ(y)  0J(x) 6] (y))

(1.1.16)

The 2-point connected function (¢(x)p(y)). = (¢(z)o(y)) — (¢(x)), (¢(y)), gives the exact
propagator, expressed in perturbation theory as the free propagator plus all the connected

quantum loop corrections. In general, connected correlations functions are those entering
the LSZ reduction formula and contributing to the non-trivial scattering matrix elements
in the S-matrix of the theory.
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3. Effective action: The effective action is defined as Legendre transform of the path
integral logarithm with respect to the sources:

['[®] = sup {/d% Jo — W[J]}

J (1.1.17)

= /deJCD —WJ]

In the second it is understood that the source is expressed as J = J(®) by inverting the
relation given by imposing the extremality condition of the argument of the Legendre
transform:

o) = (olo), = 5 (11.18)

which is given by the average field in presence of sources. Similarly, we can express the
path integral logarithm via the inverse Legendre transform:

W[J] zsgp{/dD:de)—I‘[Cb}} -

= /deJd)—F[d)]

where now in the second it is understood that the multiplet of fields is expressed as
® = ®(J) by inverting the relations:

_ ol[®]
0(x)

J(z) (1.1.20)

The effective action can be defined also as solution of the integro-differential equation:

e 1ol = /ng exp{—S[qb] + /de(Sg—E;D] (¢ — CD)} (1.1.21)

which follows from equating the definition of the path integral logarithm (1.1.12) and its
expression given by the inverse Legendre transform (1.1.19), computed in J = J(®) given
by (1.1.20). This equation can be used to compute perturbatively the effective action,
which can be expressed as a sum in quantum loop corrections in increasing powers of i
(considering for a moment units in which it is not set to 1) to the classical action:

(o] = S[0] + f: AL [ (1.1.22)

The second derivative of the effective action is the inverse operator of the second derivative
of the path integral logarithm:

§2W[J] _< 520 [®] >‘1
§J(2)6J(y)  \6®(x)0P(y)

(1.1.23)




Section 1.1 || Elements of Quantum Field Theory

in the sense:

W 1J| 52T (@]
d” =§(x —
| = 5o =Y 1o
S2r[d]  §2W[J] -
dv — §(x —
| = ot ~ Y
In particular, setting the fields to zero, it gives the operator:
62T (@]
- =T@ (g, 1.1.25
000 oy Y .
whose Green function is the exact propagator:
[ 210w, 6(2)00) = 3~ v (1.1.26)

similarly to the second derivative of the classical action which, setting the fields to zero,
gives the kinetic operator of the free theory:

0%5(¢]

—| =5@ 1.1.27
5@ |,y 0 Y —

whose Green function is the free propagator:
[ 725 .2) (610w, = bt - ) (1129

Finally, the the effective action is also the generator of 1-particle irreducible (1PI) vertices,
i.e. the vertex operators which appear after factorizing from a connected correlation
function all possible exact propagators. This follows essentially from the identities which
can be obtained by taking derivatives of the inverse rule (??); for instance taking one
derivative with respect to the field, one obtains the identity:

5J(x1)(;3y(/x[;])]5j(x3) = /dDyldDydeyg
53T (@] S2W[J] W] W]
0 (y1)0P(y2)d®(ys) 0.7 (2)0.] (y) 6.J (x)6.J (y) 0T () (y)

(1.1.29)
which, setting sources and fields to zero, implies that the 3-point connected correlation
function can be expressed as:

<¢($1)¢($2)¢(I3)>c = /dDyldDy2dDy3
re (Y1, Y2, y3) (¢(y1)¢(951)>c <¢(y2)¢(952)>c <¢(?J3)¢(I3)>c

i.e. as 3-point 1PI vertex attached to three exact propagators; in perturbation theory
the vertex is a sum of 1PI diagrams, i.e. amputated diagrams without external lines

(1.1.30)
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which cannot be disconnected by cutting one of their internal lines. In general, the n-th
functional derivative of the effective action gives n-point 1PI vertex:

) )
T (2. ) = FCD‘ 1.1.31
(@1 mn) = 5505 5ot T e, (1.1.31)
which in perturbation theory is expressed as the local classical n-point vertex:
) )
SOy, .. my) = S ‘ 1.1.32
) = 55y oo o (1132

plus all the quantum loop corrections, generally non-local. A generic connected correlation
function can be written as a finite sum of tree diagrams constructed with exact propagators
and 1PI vertices.

1.1.2 Symmetries and Ward identities

Consider the scalar QFT presented in the previous subsection and a generic 1-parameter
Lie transformation of the field, i.e. a transformation dependent on a continuous parameter
which is smoothly connected to the identity and can be thus expressed in terms of an
infinitesimal variation:

ox) = V(@) = Fu(¢,00,7) = 6(x) + du0(z) + O(a?) (1.1.33)

where the parameter is now regarded as infinitesimal and the variation is of order O(«), i.e.
it can be expressed as 0,0 = aG(¢), with G the generator of the transformation. Assume
that at the classical level the theory is symmetric under such transformation:

S [¢'] = S[¢] (1.1.34)
or in terms of the infinitesimal variation:
8aS[d] =0 (1.1.35)

At the quantum level, the behavior of the theory under the transformation can be evaluated
by means of the path integral with sources (1.1.4). In particular, we can formally perform
a change of variables in the path integral, which clearly does not affect its value, from the
fields to the transformed fields; depending on the behavior of the path integral measure we
have two possibilities, the transformation is non-anomalous, i.e. the measure is invariant:

S
09

vice versa the transformation is anomalous, i.e. the measure is not invariant:

S
09

Dy — D¢<a>:Det[ ]D¢:D¢ (1.1.36)

Dy — qu(a):Det{ }w#m (1.1.37)
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In the first case we have that the symmetry is preserved also at the quantum level, in
particular at the level of correlation functions. Indeed, changing variable from the field to
the transformed field and then using the invariance of the action and the measure, the
path integral can be also written as:

Z[J] = /ng e Slel+[dPzT¢
_ / D) =S [ dPz T o) _ (1.1.38)

= /ng o Slol+[ dPx J ¢l

where in the last the transformed field is now regarded as function of the non-transformed
one. Comparing the first and last expression and taking arbitrary functionals derivatives
with respect to the source, it follows that generic correlation functions of transformed and
non-transformed fields are equal:

(¢ (1) ... 6 (an)) = (d(x1) ... plan)) (1.1.39)

Vice versa, if the transformation is anomalous we have that the symmetry is broken at the
quantum level:

(¢ (1) ... 6D (an)) # (d(a1) . plan)) (1.1.40)

This behavior holds also in presence of an arbitrary symmetry transformation, i.e. non-
necessarily a Lie transformation smoothly connected to the identity. Making now use of
the possibility of considering an infinitesimal transformation, we have, if the symmetry is
non-anomalous:

zzm<1+/wﬁjg¢+om%>::

J

= Z[J] + Z|J] </de J5a¢> + 0(a?)

J
from which it follows the Ward-Takahashi equation describing the infinitesimal symmetry
at the quantum level:

/ AP J(x) (5p6(x)), = 0 (1.1.41)

By taking arbitrary derivatives with respect to the sources and then setting them to zero,
the equation can be used to generate a series of identities between correlation functions
representing the constraints in which the symmetry is encoded at the quantum level;
in particular, by taking N functional derivatives 6/0.J(z1)...d/6J(xy) and setting the
sources to zero, one obtains the Ward-Takahashi identity:

N

(0(x1) .. 0ad(2n) ... Pxn))
0o (P(21) - O(2n) ... Pla)))
6o (D(z1) ... P(m) ... "™ (zN))

o
I

3
Il
—

(1.1.42)
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The third expression follows from the assumed invariance of the path integral measure
and can be seen as the infinitesimal form of (1.1.39).

If the symmetry is anomalous one must take into account the variation of the measure given
by the jacobian of the transformation; the functional derivative inside the determinant
can be rewritten, in explicit notation, as:

M — 5(1; _ y) + L

6¢(y) 5¢(y)

with the first term coming from the functional derivative d¢(z)/d¢(y). Using now the

functional extension of the matrix identity det (1 4+ €M) = 1 + etrM + O(e?), with € an

expansion parameter (it is the O(¢)-order approximation of the exact matrix identity
det eM = ™) the jacobian is rewritten, in explicit notation, as:

5\ (z)] 9 . o2
Det {—505(3/) ] =1+T LSob(y) (Gadd( ))] +0(a?) (1.1.44)

Taking into account the additional term appearing at order O(«), we have that the
non-anomalous Ward-Takahashi equation is substituted by:

(6ud()) (1.1.43)

/ P2 J(x) (5ad(x)), = — <Tr {%@ (5@@))} >J (1.1.45)

The value of the trace on the right hand side is known as anomaly and represents the fact
that the anomalous infinitesimal symmetry is broken at the quantum level.

1.2 Elements of Functional Renormalization
Group

In this section we briefly review the implementation of the FRG machinery in a QFT,
considering for simplicity a scalar theory, in order to anticipate the fundamental ideas at the
base of the method which in the following will be applied to the gravitational interaction.
In particular, we introduce the concepts of FRG regularization and Wetterich-Morris
equation. We suggest for instance [5] for a detailed review.

1.2.1 Regularization

The FRG is a particular methodology of implementing the fundamental idea at the base
of the wilsonian Renormalization Group framework [2]. This corresponds to tackling
the problem of solving the QFT not by trying to compute the path integral integrating
all the quantum fluctuations at once, but by integrating portions of fluctuations, which
typically results in an scale-dependent average theory in between the classical theory, i.e.
no fluctuation integrated, and the quantum theory, i.e. all fluctuations integrated, and
then studying the scale-dependence of such average theory.
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In the wilsonian approach the idea is essentially implemented by imposing a UV cut-off
kyy in the momentum of integrated field modes in momentum space in the path integral
and then performing a coarse-graining of modes, i.e. formally integrating the modes in
a momentum shell below the cut-off, which results in lowering the cut-off by a certain
scale factor x > 1, kJ;;, = kyy/x. The result can be interpreted as the path integral of a
wilsonian effective action which describes the original theory at an energy scale lowered by
the scale factor z; formally iterating the procedure and going in the continuum limit in
which the scale is changed by an infinitesimal amount, one obtains the scale dependent
theory which reproduces the complete one (still UV-regulated) in the limit in which all
modes are integrated.

In the FRG approach the coarse-graining idea is implemented not by formally integrating
in steps subsequent shells of modes, but by formally integrating one ”extendable” shell of
modes between a UV cut-off kyy and a floating IR cut off k, obtaining a scale dependent
theory which reproduces the complete one (still UV-regulated) when £ is lowered from
kyy to zero and all modes are integrated.

In order to make the construction precise, consider now the scalar QFT described
in section 1.1. The first step of the FRG method is the regularization procedure of the
path integral and the generating functionals introduced in subsection 1.1.1. Consider the
expansion of the field in momentum space:

o(z) = / (gﬂf’D P73 (p) (1.2.1)

i.e. in the basis of Fourier plane waves u,(z) = e’*, eigenfunctions of the laplacian operator

0= 0% ‘ ‘
—Oe?* = p?e'” (1.2.2)

The path integral (1.1.4) is rewritten in momentum space by changing variables from the
fields to the Fourier weights (which produces an irrelevant multiplicative constant in the
measure):

7 /Dées[@ (1.2.3)

In this form the contributions to the path integral are ordered by the value of momentum
p? of the Fourier weights, i.e. the eigenvalue of the negative laplacian of the corresponding
modes. The UV regularization is achieved with a sharp UV cut-off kyy on the momenta
of modes considered in the integration:

pi- ] ot (124)

0<p|<lkuv|

which in the following we leave implicit. The IR regularization is achieved with a smooth
and floating IR cut-off k£ implemented by deforming the action in the path integral with a
suitable quadratic regulator term:

ASw = 5 [ Pao(0)Ra (D) o)
(1.2.5)

Ne}
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k2 ¢

kLR (1) (p?)

R et

T
X

Figure 1: Qualitative functional form of a regulator R (p?) (red line) and its logarithmic

derivative kO R ) (p*) (purple line).

which has the effect of blocking the integration of modes which have momentum squared
less than the floating scale k?; this is achieved by choosing the functional form of the
regulator in momentum space to satisfy the properties:

;

1. R(k) (pQ) —
2. R(k) (pQ) —

3. R(k) (pz) —

4. R(k) (p2) —

\

>0

p2

2
P

k2
k?2

k2

— 0
— 00
(1.2.6)

2
— ki — 00

— 0

Indeed, in the path integral thanks to property 1. Fourier weights relative to modes with
eigenvalue p? < k? are suppressed, since their contributions receives an exponential damping
e~25® ~ 0; and thanks to property 2. and those relative to modes with eigenvalue p? > k2
are left untouched, since the exponential damping disappears in this regime e 2% ~ 1:

Zwlg / D= S-A8wlel _

— /'ng oS85 [dPx Ry (D) _

/D¢e S161-3 [ b SRy 2)0) _

10
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~ / H do(p) e 519 (1.2.7)

|kISIplISlkuv]

The role of the additional properties required will be discussed below. In order to guarantee
those properties one can consider a functional dependence for the regulators of the type:

R (p*) = k*Ro (Z—Z) (1.2.8)

where Ro(z) is a dimensionless and positive shape function which interpolates between
Ro(0) =1 and Ry(oc0) = 0:

-1 , z2— 0
Ro(z) =0 oo (1.2.9)

The typical behavior of a regulator and its derivative in k is depicted in figure 1. In
particular, given this functional dependence, the quadratic regulator term can be seen as a
momentum-dependent mass term, which goes from k? to zero increasing the momentum.
Adding the regulator term to the action we define the regulated action:

Swle] = S[e] + ASy)[¢] (1.2.10)

The quantum theory is described by the generating functionals introduced in subsection
1.1.1 constructed with the regulated action and with the implicit UV cut-off kg :

ZuwlJ) = / Dep e~ 58— Ssource (3] (1.2.11)

Wiy [J] = log Z[J] (1.2.12)

T (1y[®] = sup { / dPx J o — W(k)[J]}

; (1.2.13)
_ /dDa:J¢ — WylJ]
WaylJ] = sgp {/d v P - F(k)[q}]} (1.2.14)

= /deJCD — T p[®)]

Now all averages are k-dependent, as well as the relation between field and source in the
Legendre transform, J = Jg,) (®), ® = ® ¢y (J):

W [J]

O(x) = (o(x)), = 5] (1.2.15)

11
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oL (1) [®]

T@) = S5t (1.2.16)

The integro-differential equation for the regulated effective action is:

e L@l — /Dd) exp{ St [¢] +/dD i) k)[ ](gzﬁ d))} (1.2.17)

In the FRG framework the object which describes the scale-dependent average theory,
similarly to the wilsonian effective action in the wilsonian approach, is the effective average
action, whose formal definition, i.e. based on the above generating functionals, is:

Ly [®] = Ty [®] — AS (s [@] (1.2.18)

Thanks to the second couple of properties in (1.2.6), this object interpolates by construction
between the classical and the quantum theory, since we have the limits:

L (k—s0)[®] = T[®] (1.2.19)
I'_‘(’f%kUVHOO) [CD] = S[CD] +oee (1.2.20)

In particular, for £ — 0, the effective average action tends to the unregulated quantum
effective action since AS(,_,0) — 0 (property 4.):

Ties0)[®] = Lm0y [@] — AS(0)[@] = T[®] — 0

For k — kyy — o0, the effective average action tends approximately to the unregulated
classic action; this can be seen from the integro-differential equation (1.2.17) rewritten for
the effective average action:

e~ [ exp{_5[¢] ~ ASpld] + AS[o)

. /d%migm (- o)+ /dD 6rgk¢[ | o q,)}

(1.2.21)
where the difference of regulator terms plus the piece with the derivative gives precisely

the regulator term itself computed in the difference between the integrated and average
field ¢ — @:

OAS k)
—AS(k)[gb] —l—AS(k)[(D] + /dD 5—”
Therefore, since Rk—kyy—o0) — 00 (property 3.), one can recognize the func-
tional equivalent of the gaussian limit representation of a Dirac delta d(x — y) =

limpg o0 \/R/2m exp[—R/2(x — y)?], and we have approximately:

(9 — @) = —AS() ¢ — ] (1.2.22)

eASmlo—0]  Fokuvemeo sy ) (1.2.23)

12
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Therefore in the integro-differential equation, in the limit k — kyy — oo, we obtain as
dominant term the integrand computed in ¢ = ®, i.e. exp(—S[®]), from which it follows
(1.2.20). Determining the precise relation between the effective average action in the limit
k — kyy — oo and the classical action, i.e. determining the corrective terms in (1.2.20),
is known in FRG theory as reconstruction problem and will not be discussed in the thesis,
see for instance [5] for a general treatment.

1.2.2 Wetterich-Morris equation

The second step of the FRG method is deriving from the formal definition of effective
average action (1.2.18) a differential equation describing its flow as the FRG scale k
varies, so that the problem of solving the theory, i.e. computing the path integral and the
generating functionals, can be then translated into finding a solution of the equation. The
equation follows from computing the derivative in FRG time:

t=logk (1.2.24)

of the regulated effective action and then rewriting the result in terms of the effective
average action according to the formal definition. From the definitions of the regulated
effective action (1.2.13) and the path integral logarithm (1.2.14) we have the equalities:

O ) [0] = —0, W [J = — W)
o o Zwy[J] (1.2.25)

where it is understood that the time derivatives of source-dependent objects are computed
in J = Jy(®). In particular, the first equality comes from the properties of the Legendre
transform recalling that J = J)(®, K) according to (1.2.15):

8tf(k) = /dDJZW (815 k)|J(k) /d’%@ J,

In particular: .
O (1) [®] = (0:ASw[9]), (1.2.26)

Substituting the explicit expression of the regulator term (1.2.5) and introducing an
additional integration to separate it from the field on which it acts, we have:

Ol [®] = % / dPz (¢(2)0 Ry (—0) p(a)) , =
= %/dedDyé(:c — ’y)atR(k;) (_D(y)) <¢(I)¢(y)>J
~ T | 50R0 (-0) (90 0, (1.2.27)

In the last expression we introduced the compact notation for the functional trace and it
is understood that the regulator acts in the second of the two terms in the direct product.

13
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One can now write the 2-point correlation function (derivatives of the regulated path
integral) in terms of connected correlation functions (derivatives of the regulated path
integral logarithm) according to (1.1.16):

L 8Zwld] _ FWwlJ] W] oWw[J]
Foold157@0T () ~ 5@ ) T 6I@) 8I(y)

(1.2.28)

The product term simply gives a product of average fields (¢(x)) ; (¢(y)),; = P(z)P(y)
which traced give back the derivative of the regulator term (1.2.5) computed in the average
field O, AS[P]:

Tr Baﬂ%(k) (—D) b ® (D:| = 8tAS[¢] (1.2.29)

the first term can be written as inverse of the second derivative of the regulated effective
action according to (1.1.23):

PWll] [ PTwle] \
§J(x)5J(y) (5¢(m)5¢(y}) (1.2:30)

The result is the flow equation for the regulated effective action:

52T (o [@®
&er(k) [(D] ="Tr %@’R(k) (—D) (L{]

—1
JD5P > + 0 ASy 9] (1.2.31)

Finally, using the definition to write the regulated effective action as 'y = I'(x) + AS(),
and the relation:
OL[®] _ 8°Tw(@]
6O (z)0d(y)  0P(x)0%(y)

+ Ry (~Owy) 0z — ) (1.2.32)

one obtains the Wetterich-Morris equation for the effective average action [4][9]:

0°T (1) [ @]

1 -1
Ol ()[®] = T 5@72(@ (-0 (W + R (—D)) (1.2.33)

We make the following remarks:

1. The equation is derived from the formal definition of effective average action (1.2.18)
based on the generating functionals, which define the quantum theory. At this point it
possible to reverse the perspective and consider the Wetterich-Morris equation as the
fundamental object defining the quantum theory and the effective average action as its
solution: according to the limits (1.2.19), (1.2.20), given the classical theory described

by the classical action S, the solution of the equation describes a flow which leads to

the quantum theory described by the effective action I', i.e. ~ § o L) D In

particular, the classical action does not enter in the derivation of the equation and plays
only the role of formal initial condition of the flow.

14
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2. The equation formally inherits from the formal definition of effective average action
(1.2.18) an implicit dependence on the UV cut-off kv, however it can be safely removed
by letting kyy — oo: formally expressing the traced operator in momentum space and
the trace as a sum over momenta, the derivative of the regulator has, thanks to properties
(1.2.6), the qualitative behavior depicted in figure 1; therefore, the dominant contributions
to the sum come only from a narrow band of momenta centered around k and those from
the UV region are suppressed.

3. In the derivation no approximation is introduced and the Wetterich-Morris equation is
thus an exact functional differential equation with second order derivatives. In particular,
it has a 1-loop structure, since the right hand side is given by tracing the exact regulated
propagator (6°I'/6®®)~t = §2°W/6.J6J = (p¢) ;, with an insertion of the regulator. The
equation contains only second derivatives due to the quadratic nature of the regulator
(1.2.5), which makes appear inside (9,ASy, [¢]>J in (2.4.37) only 2-point correlation
functions.

4. The flow described by the equation can be visualized as a trajectory inside the theory
space, or space of actions, i.e. the abstract infinite-dimensional space spanned by all
possible operators compatible with the symmetries of the theory which in principle can
appear inside the action. By construction, the flow starts and ends in the two points
representing respectively the classical action (plus counter terms) and the quantum effective
action; the specific shape of the trajectory depends on the regulator used (figure 2).

Picking a basis of linear independent action functionals {I,[®]} in the theory space:
T = span {1,[®]} (1.2.34)

a generic action functional can be expanded as:
Al®] =) u',[P] (1.2.35)
a=1

where the so called generalized coupling constants {u®} can be seen as coordinates of the
action functional in theory space. The effective average action can be itself expressed, for
any fixed value of k, in the basis of functionals {I,[®]}:

Ly [®] = > u(k)L[®] (1.2.36)

The k-dependence is contained in the so called running coupling constants {u®(k)}.
Substituting the formal expression in the Wetterich-Morris equation, one obtains:

> Ot (k) L[] = Tr %&R(k) (—=0) (Z u“(k)(; qf([;:j + Ry (—D)) _
o=t (1.2.37)

=30 ({u(k)} k) L[0]
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Cikroc) = S+

A4

Figure 2: Pictorial representation of the FRG flow in theory space described by the Wetterich-
Morris equation for the effective average action Iy, which unfolds from the classic action S
(plus counter terms) to the quantum effective action I.

since also the right hand side must be expressible in terms of the basis functionals; the
functions b* ({ub(k’)} , k:) are called beta functions and have in general both an explicit
and an implicit k-dependence, respectively due to the presence of the regulator and the
dependence on the set of all running coupling constants. Projecting in the basis functionals,
one obtains the Wetterich-Morris equation in component form:

(k) =b* ({u’(k)} k) (1.2.38)

which is a coupled system of infinitely many ordinary differential equations for the running
coupling constants.

In order to tackle the problem of solving the system, approximation methods are required.
The common strategy is the method of truncation, i.e. projecting the Wetterich-Morris
equation in a subspace of the full theory space Tiune C T, by proposing a restrictive
ansatz for the solution:

T [®] = Z u' (k) 1;[®] (1.2.39)

Inserting in the Wetterich-Morris equation, the right hand side generates in general also
terms outside the subspace, which have no counter part in the left hand side:

N

Zatu%/f)zm] = Tr %aﬂz(k) (—0) (Z ui(k:)(; qf([;g + Rk (—D)) -

=1

16
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=> 0 ({W(k)} )L+ > b ({w(k)} k) L[] (1.2.40)
i=1 a,laETtrunc

therefore, in order to render the approximation consistent, one must assume that it is
legitimate to neglect the scale-dependence in the directions leaving from the subspace:

=0  Va: I, & Tiume (1.2.41)

and the system of differential equations for the running couplings becomes a closed system
of N equations:

O (k) = b ({w (k)} , k) (1.2.42)

which can be then solved with standard methods. The solution is an approximate non-
perturbative solution and therefore it can still give information beyond the realm of
perturbation theory.

1.3 Elements of (General Relativity

In this section we list the elementary notions of General Relativity, in its basic metric
formulation, to which we will refer in the following, assuming prior knowledge of the
language of differential geometry. In particular, we briefly review the foundations, the
lagrangian formulation and role of diffeomorphisms as gauge transformations. We suggest
for instance [10] for a detailed review.

1.3.1 Principles

General Relativity is the theory developed by Einstein to overcome the limitations of
Special Relativity, namely the extension of the relativity principle to inertial and global
observers - reference frames only, and the absence of a theory of gravity due to the
incompatibility with newtonian gravity. As a result the theory has a double role: it is
the theory of relativity which generalizes the relativity principle to all observes - reference
frames, in particular those which are arbitrary accelerated and local; and it is the classical
field theory describing gravitational interaction compatibly with the generalized relativity
principle. The first aspect of the theory is founded on the general relativity and equivalence
principles:

General relativity principle: The laws of physics have the same form in all
reference frames.

Equivalence principle (strong): For each event in spacetime there
always exists a local reference frame in which all gravitational effects vanish.

The general relativity principle is mathematically translated in the description of
physics in the language of differential geometry:

17
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1. Events in spacetime are identified with points in a 4-dimensional® differentiable manifold,
i.e. a 4-dimensional topological set M of points P which can be covered with charts
of arbitrary coordinates z* : M — R* interchangeable according to general coordinate
transformations, differentiable and invertible:

ot = 2t =2 (x)

D'k (1.3.1)

det ~ #0

The local structure of the manifold in a point P, i.e. the tangent space Tr. M, is isomorphic
to R4, TPM = R4.

2. A reference frame is identified with a set of vector fields e, which provide a basis
for vectors in the tangent spaces TpM of the manifold; the dual 1-forms fields e, i.e.
é'(e,) = 0¥, provide a basis for 1-forms in the cotangent spaces T5M. The choice of
a coordinate system x* induces a reference frame glven by the coordinate basis vectors
e, = 0, and the coordinate basis 1-forms e = dz". Reference frames and observers
are not in 1-1 correspondence. In particular, physical observers, i.e. finitely extended
measurement apparatus, are identified with local reference frames.

3. Laws of physics are written in terms of tensors and tensorial operations:
A=B (1.3.2)
and can be written in any reference frame:
A, (@) = BREn, (@) (1.3.3)
by using the corresponding basis to expand tensors in components:
A= Abrobm ey @ - ®e,, TR Qe (1.3.4)
The form of the law is covariant under an arbitrary change of coordinates:

o = 2t =a(x)

a v
e — 6/ = iey 1.3.5
K M awlu ( LO. )
ox'*
S N ~/p _ IJ
(& e 8@/

according to the transformation rule of tensor components:

oz’ dx'tm Gz OxPn
M1 m ! 1. im N __ a7...00m
A e (x) — A'Mm i (2') = Do D D ax”’nA 1 5. (x)

(1.3.6)

Tn this subsection, in order to review the physical foundations of General relativity, we consider D = 4
and the lorentzian signature (—, +, 4+, +) for the metric.

18
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4. The spacetime manifold must also have a riemannian metric structure (M, g), i.e. it
must be equipped with a metric tensor field g, :

9= gue" ®e (1.3.7)

i.e. a rank-(0,2) tensor defining a non-degenerate scalar product between vectors, i.e. a
measure of angles:
g(v,w) =v-w= guv'w” (1.3.8)

a measure of lengths, via the line element (in a coordinate basis):
ds® = g, datdx” (1.3.9)
and a measure of volumes, via the volume differential form (in a coordinate basis):
w=+/|g|ldz" Adi’ Adz’ Adet (1.3.10)

with the metric determinant g = det g,,. We recall the result that there is always a
reference frame for which the matrix of components of the metric tensor at a point P is in
canonical form, i.e. diagonalized with 4+1 on the diagonal, depending on its signature:

Guvlp = £0,0 (1.3.11)

5. The spacetime manifold is in general curved, i.e. characterized by an intrinsic curvature:
defined a notion of parallel transport for vectors, one has that vectors parallely transported
in a closed path return at the starting point rotated with respect to their original orientation.
In mathematical terms, this is represented by the non-commutativity of the covariant
derivative V,, defining the notion of parallel transport, i.e. a vector w is said to be
parallely transported along a curve with tangent vector v if V,w” = vV, w” = 0. The
non-commutativity of a covariant derivative, and thus the intrinsic curvature of a manifold,
is described by the Riemann tensor R 5, which is defined by the identity:

Vi, Voo = R, 07 = T%, V0® 1.3.12
% Buv wv
where T’\W is the torsion tensor:
XA A
7, =T, -1, (1.3.13)

with Ffw the affine connection associated the covariant derivative. The components of the
Riemann tensor are given by:

R%5, = 0T — 0L + T35, — T,I%5 (13.14)
They are characterized by the symmetry properties:

Ra,@/u/ = _Rﬁauy = _Ra/jyu (1315)
Ra,@uy = Ruuaﬁ (1316)
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and by the algebraic and derivative Bianchi identities:

R + Roywp + Rovpu =0 (1.3.17)
VaRaguw + VaRayw + VR =0 (1.3.18)

As a result of those constraints the Riemann tensor has, in D dimensions, D?(D? —1)/12
independent components. The contractions of the Riemann tensor are the Ricci tensor:

R, =R",, (1.3.19)

which is symmetric, and the Ricci scalar curvature:
R=g¢"R,, (1.3.20)

We recall that the affine connection transforms non-tensorially under a change of coordi-
nates as:

Oz’ Oz 92 _, (2) + oz 92xf
= —_— x - —

dxp Oz’ Ox'v~ P OxP Ox'mox™v
A difference of affine connections does instead transform tensorially, and in particular an
antisymmetrized affine connection, which in fact gives the torsion tensor. In the thesis we

will consider only the torsion-less metric connection, defined by the compatibility condition
of the covariant derivative with the metric:

D (@) — I, (1.3.21)

Vg =0 (1.3.22)
and given by the expression:
A g
F;u/ = 7 (a,ugup + al/gup - apQ;w) (1323)
We recall also the the action of the covariant derivative on a generic rank-(m,n) tensor:
V}\Am---umylmyn — 6}\Au1---umylmyn

M1 ApP---Um
+ Fp)\A V1...Un

_ 14 H1---Um
Fyl)\A p..

4+ .. 4 FZKIAMWPVIWVH

e TP AFsm
I, A

(1.3.24)

Un, Vi...p

and the generalization of (1.3.12) for the commutator of covariant derivatives on rank-(m, n)
tensor:

[VOH VB]AMI---Hmylmyn - - T/\uyv/\Aulmumul‘..un
+ RmpaﬁApmum +---+ RumpaﬂAmmpm..
— R? AM1bm R” AM1ebm

viaf p...Un o vnaf3 Vi...p

(1.3.25)

Vi...Un Un,

Finally, we recall the result that given a point P, it is always possible to find a so called
normal or gaussian reference frame in which the metric is in canonical form and the affine
connection, i.e. the first derivatives of the metric, vanish:

I lp=0 (1.3.26)

and the action of the covariant derivative tends to the ordinary derivative.
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The equivalence principle represents the requirement that in each event in spacetime it
is possible to find a local reference frame in which general laws of physics can be expressed
in the language of Special Relativity, namely in terms of tensors covariant under the
Lorentz group SO(1,3). It is mathematically translated in the requirement that the
signature of the metric for the spacetime manifold is lorentzian (—, +, +, +); indeed, in
this way we have that for each point P one can construct a normal frame in which the
metric is in canonical form and coincides with Minkowski metric:

Y|P = T (1.3.27)

and the affine connection vanish, so that one can replace covariant derivatives with ordinary
derivatives, which behave tensorially in Special relativity. Moreover, one has also a family of
normal frames in the point P with vanishing affine connection, those connected by changes
of reference frame preserve the canonical form of the metric, i.e. Lorentz transformations.
Those local reference frames correspond to free falling observers which do not experience
gravitational effects and describe physics according to Special Relativity, and are thus
considered inertial in General Relativity.

The equivalence principle also suggests the connection of gravity with the curvature
of spacetime, since the effects of both can be locally made to vanish by considering an
appropriate reference frame. This connection is the foundation of General Relativity as
theory for the gravitational interaction compatible with the general relativity principle.
The connection is quantitatively realized in the equations which connect the curvature of
the spacetime manifold to the sources of gravity, the Einstein field equations:

G = 8TG T, (1.3.28)

where G, is the Einstein tensor:
1
Guy - R“y - 5 Rgul/ (1329)

and T}, the stress-energy tensor of the matter distribution acting as source of gravity. The
equations form a system of ten second order and non-linear partial differential equations
in the components of the metric tensor field as unknown functions; they are not all
independent as a result of the Bianchi identity satisfied by the Einstein tensor:

V.G" =0 (1.3.30)
which imposes the continuity equation which a stress-energy tensor must satisfy:

vV, " =0 (1.3.31)

1.3.2 Lagrangian formulation in euclidean signature

Consider Einstein’s theory of gravity in a D-dimensional riemannian spacetime manifold
(M, g) equipped with a metric tensor with euclidean signature (+, ..., +), whose evolution
is governed by the Einstein field equations. With respect to the previous section we also
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Subsection 1.3.2 | Lagrangian formulation in euclidean signature

introduce the cosmological constant A, in presence of which the Einstein field equations
are written as:
G+ ANgy =87G T, (1.3.32)

In these conventions, the Einstein’s theory of gravity is rewritten in lagrangian formulation
in terms of the action:

Scrlg) = Senlg] + Sulg] (1.3.33)

where the first term is the Einstein-Hilbert action:

Seilg) = dPz\/g (=R + 2A) (1.3.34)

167G

the second the action term describing gravitational sources:

Sulgl = /d /9 Ly (1.3.35)

with L), a generic matter lagrangian. In natural units, ¢ =1 = h, and D dimensions we
have the mass dimensions [R] = 2, [A] = 2, [G] =2 — D, [Ly] = D. The coordinates
o* used to express the integrals are arbitrary; d”z./g is the invariant volume element
in D dimensions and euclidean signature, with the metric determinant g = det g,,,, > 0.
According to lagrangian mechanics, the classical evolution of the metric field is given by
the stationary configuration of the action, i.e. the one for which the first order variation
of the action under an arbitrary variation g,, — g, + dg,, is vanishing:

(55@3[9] =0 (1336)

or equivalently, the one satisfying the Euler-Lagrange equations of motion:

1 3Sgrlg] _
Vi g

Imposing such action principle we recover Einstein field equations, since the first order
variation of the action gives:

(1.3.37)

dSarlg] = 16 Tog | ©V9 (G + Mg — 87G T,) g™ (1.3.38)
and: | 6Seld] X
NG 5(;ng = 1o G+ Agu — 871G Tp) =0 (1.3.39)

The matter section comes from the first order variation of the matter action:

§Swlg] = % / dPx\/qT,, (1.3.40)

where the energy-momentum tensor is defined as:

2 6Sulg)

12 \/— 591“/ ( )
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The geometric sector follows from the first order variation of the Einstein-Hilbert action:

1
167G

0Spnlg] = / dP2\/g (G + Ngp) 69" (1.3.42)

which can be computed according to the variation rules:

1
0V = =599 09" (1.3.43)
1
6 (v99") =g (59‘“’ — §g“”gaﬁ5gaﬁ) (1.3.44)
6 (V9R) = 0 (v/99") Ry + /99" O Ry = \/9G 09" + /99" O Ry (1.3.45)

In particular, in the third one the term /gg"”d R, can be neglected since it gives a total
divergence:

gl“’éij = V)\X)\ (1346)

with:
X* = ghoT), — g*oTL, (1.3.47)

as a consequence of the variation rule of the Riemann tensor (note that the variation of
an affine connection 6T'),, is a tensor):

JR%5,, = VoI, — V,00%, (1.3.48)

which implies:
OR, = Vool — V0l (1.3.49)

Indeed, according to Gauss theorem, the integral of the total divergence gives a boundary

term:
/ dPr /g V) \ X = / dP~t/g(P=1) ny X* (1.3.50)
oM

with n) the normal to the boundary. Such term can be neglected, assuming that the
variation principle is formulated with the condition that the metric variation vanish on the
boundary d¢,.|om = 0, or for instance assuming that the spacetime is closed, i.e. compact
and without boundary. Considering more general variations and spacetimes, the term is
non-vanishing a constitutes the Brown-York-Gibbons-Hawking term [11][12] which must
be subtracted from the gravitational action in order to obtain from the action principle
the correct equations of motion, i.e. Einstein field equations.

We stress that in the following we will always consider the gravitational action in absence
of the Brown-York-Gibbons-Hawking term, assuming that boundary terms, originating for
instance from integration by parts, can be neglected.

1.3.3 Diffeomorphisms

Einstein’s theory of gravity, and more generally a theory compatible with the general
relativity principle, enjoys a gauge symmetry, i.e. the action is symmetric under a trans-
formation dependent on a set of local functions, related to general changes of coordinates.
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Subsection 1.3.3 | Diffeomorphisms

Specifically, the symmetry transformation is given by diffeomorphisms, i.e. changes of
coordinates regarded in the active sense as differentiable and invertible automorphisms
from the manifold in itself. In the thesis we will consider diffeomorphisms only from the
passive view point, as transformation induced by changes of coordinates.

Consider a change of coordinates:

o = 2" = (o) (x) (1.3.51)

where, for each value taken by the index, (¢~1)* is an invertible function with inverse ¢*.
We refer as diffeomorphism to the functional transformation induced by the change of
coordinates on generic tensors:

At (@) = A () = A (o = ) (1.3.52)
Explicitly the transformation rule for a rank-(m,n) tensor is:
. (8t _ o7 o(¢~ )
Afttim (@) = AT (@) —WW(%)) e ax—am@(@)'

B1 Bn
@) G @A (6()
(1.3.53)
We write compactly:
A = Dy(A) (1.3.54)

The set of diffeomorphisms for the various possible functions ¢* forms a group of transfor-
mations, Diff (M), with composition rule:

Dy(Dy()) = Dgoy(+) (1.3.55)

where o denotes the composition of functions (¢ o ¥)*(z) = ¢*(¢(x)). The identity e
corresponds to the trivial diffeomorphism associated to the trivial change of coordinates
with functions (¢~')#(x) = z#; the inverse of a diffeomorphism associated to a change
of coordinates is given by the one associated to the inverse change of coordinates with
functions. The composition rule follows trivially for scalars:

AP () = A(p(v(x))) =)A(¢ o () (1.3.56)

and for higher tank tensors from the derivative rule of the composition of functions, for
instance:

Aw)(w)u(x) _ g%(x)gf: (Y(2) A, (d(¥()))

= 2 o @A o)

(1.3.57)

oz
9

" Oan

¥ (1.3.58)
((poy)™) (¢ ov(x)Ay(d o t(x))
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where the notation indicates A®®) = (A(‘b))(w). The diffeomorphism group contains a
part non-connected to the identity, constituted by ”large” diffeomorphisms associated to
"large” changes of coordinates, and a part connected to the identity, Diff.(M), constituted
by diffeomorphisms associated to changes of coordinates which can be smoothly connected
to the identity, i.e. coordinate shifts along arbitrary smooth vector fields:
-1

at = M= (g (@) =2t — (@) (1.3.59)
which indeed reduce continuously to the identity by letting the components of the vector
field go to zero?. So, the set diffeomorphisms for the various possible vector fields &*:

()" ()™
N B U P P
a¢51 a¢ﬁn
e () G B @AM, (D))
(1.3.60)

form a local Lie group of transformations, Diff.(M), with local parameters given by the
components of the vector field. We write compactly:

A© = Di(4) (1.3.61)
The composition rule is the one inherited from the diffeomorphism group:
Dy (Dg(+)) = Dg. () (1.3.62)

where the notation is a shorthand for { o = ¢() o ¢(;). Due to the connectedness with
identity, one can consider the infinitesimal form of a diffeomorphism connected to the
identity, i.e. the order O(€) of the transformation rule (1.3.60)%:

Ammumm...un (37) — A(é),ul...,um %’) = Ammumm.-.un (%’) + (SEAMWHT”VL--VTL (LC) (1363)

u1...un(

It can be seen that the variation is given by the Lie derivative of the tensor along the
vector field:

G Ata-tim (z) = £§A#1-~Mmylmyn (7) (1.3.64)

We recall that the Lie derivative of a generic rank-(m,n) tensor is:

V]...Un

o m A ceobm,
"55‘4#1 a Vi..Un 6 a/\A'ul a Vi...Un
_ @ngIAP---Hm . apé'MmAltl---P
V1...Un
O LA g, 60 A,

(1.3.65)

V]...Un

nz 1.

and in spite of the presence of partial derivatives, it is a tensor. Indeed, introducing
any covariant derivative, the Lie derivative (which is an independent notion and does

2More formally, one considers as change of coordinates z# — a'* = z# — (), where € is a
continuous parameter. The identity is recovered in the limit ¢ — 0. Tensors transform under an
infinitesimal diffeomorphism by their Lie derivative at order O(e).

25



Subsection 1.3.3 | Diffeomorphisms

not require the presence of an affine connection on the manifold) can be rewritten in a
manifest covariant form by trading ordinary derivatives for covariant ones; in particular, if
the covariant derivative is associated to a torsion-free connection, the trading amounts to
simply substituting ordinary derivative with covariant ones:

£§A#1M#mul...un = gkvAA#lmumul...un
— V11 AP-Hm A . e

Vi...Un

+ mepA“l“'“m

(1.3.66)

Vi...Un

oV, P AR

p...Un Vi...p

Consider now Einstein’s theory of gravity described by the action (1.3.33). The theory
enjoys a gauge symmetry under diffeomorphisms of the metric as gauge transformations
with local functions ¢*, i.e. under the transformation:

Jo* 0¢P
Gulr) = o) = 50 () 9 ()gas(9(a) (1.3.67)
the action is invariant:
Scrlg] = Sarlg'”) (1.3.68)

The invariance follows simply from the possibility of formally changing variable in the
action from x* to 2’ which are precisely the new coordinates entering the change of
coordinates inducing the diffeomorphism, and then using the covariance of the measure
and the scalars in the integrand (the matter lagrangian is constructed with the metric and
matter fields, and globally must be a scalar):

2A
(¢ D | @) (z )+ (¢) _
Scrlg /d x4/ 9 < 167TG + L (:U))

/dD Vo) < 167rG+ = +£S‘§)(x/>) -
— /dD;g\/m (% +£M(a:)) = Scrly]

In fact, this gauge symmetry represents that the theory is compatible with the general
covariance principle. Clearly, the symmetry holds also for diffeomorphisms connected to
the identity and in particular at the infinitesimal level, under infinitesimal diffeomorphisms
of the metric as infinitesimal gauge transformations:

gw(@) = g(@) = gu () + Oegpu (x) (1.3.69)
where the variation is:

5§g;w - £§g;w = é)\akgl,w + 6M£Ag)w + anAgA;L

(1.3.70)
= Vug)\g)\u + vug)\g)\u
The variation of the action is vanishing:
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which follows from (1.3.68), but can be also verified by computing the variation (1.3.38)
with 0¢,, = 0¢g,., integrating by parts and using the Bianchi identity - continuity equation
satisfied by the Einstein tensor and the stress energy tensor:

A 1
SeSerlol = — [ 4”27 (u . ) Seg =

167G 2~
Guw+Agw 1 , 5
= e (g - ) (7 £ v -
_ D gyv#G;u/ + gﬂvVle . gyv“Tw/ + é’#vl/T/W o
- / 4"evy ( 167G 2 =0
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Part 2
FRG flows in Quantum Einstein
Gravity

The second part of the thesis is devoted to the definition and construction of a Quantum
Finstein Gravity theory and its symmetry properties, and to the presentation of the standard
implementation method of the Functional Renormalization Group.

The part is divided in four sections. In the first section we review the definition of a
QFEG theory, highlighting how the formal construction of the theory requires a gauge-fixing
procedure and how the application of the FRG framework requires the background field
method in order to have a properly-defined coarse-graining. In the second section we
present the implementation of the background field method and the quantization procedure
with gauge-fixing via the Faddeev-Popov method; we also present BRST symmetry and
its general properties, at the classical and quantum levels. In the third section we present
the standard gauge-fixing choice for the theory. In the fourth section we implement the
standard FRG regqularization procedure and we present the associated Wetterich-Morris
equation, discussing in particular its incompatibility with BRST symmetry and presenting
its component form within the Einstein-Hilbert truncation.

2.1 Premises

2.1.1 Quantum Einstein Gravity

A theory of Quantum Einstein Gravity (QEG), or metric quantum gravity, is in general a
quantum field theory for the gravitational interaction containing a quantum field whose
expectation value, for certain quantum states, is expected to have the properties of a
classical riemannian metric field, i.e. a symmetric rank-(0, 2) tensor field defining a non-
degenerate and positive-definite (working in euclidean signature) bilinear form, capable of
describing a gravitational field in a spacetime manifold, according to Einstein’s General
Relativity [5]. The theory is in general non-renormalizable at the perturbative level
and its renormalizability is intended to be studied at the non-perturbative level with
renormalization group techniques within the asymptotic safety paradigm. The quantum
field whose average should produce a classical metric field could be both an elementary
field, i.e. a quantum metric field g,,, or a composite object built of elementary fields (for
instance quantum tetrads, employing the tetrad formalism). In the thesis we consider the
first case. Within this choice, in the functional formalism, a QEG theory thus corresponds
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to a quantum field theory for a Grassmann-even and symmetric field g, described by a
path integral of the type:

Zone = /Dg el (2.1.1)
with the properties:

1. Gauge symmetry: S is a classical action for the gravitational interaction required to
be compatible with the principle of general relativity and thus enjoying a gauge symmetry
under diffeomorphisms associated to general coordinate transformations:

S [¢9] = Sg] (2.1.2)

This is required in order to reproduce in the classical regime a classical field theory of
gravity. In particular this could be also a more general theory than Einstein’s theory of
gravity; in fact, assuming the FRG perspective, the fundamental concepts defining the
quantum theory are the flow equation, where the classical action enters just as initial
condition, and the theory space, fixed by the symmetries of the theory.

We also notice that as a result of this requirement, the theory is a gauge theory and thus
affected in the quantization process by the standard problem of resolving the ambiguities
due to gauge redundancy. In particular, in the path integral formalism, this appears as the
fact that, according to the naive definition (2.1.1) of the path integral, for each integrated
configuration we are also redundantly integrating over the infinitely many associated gauge
equivalent configurations which contribute with equal weight.

L e (2.1.3)

resulting in a divergent, but non-physically-meaningful, contribution to the path integral:

ZQEG = /Dg 673[9] = 0 (214)

In order to properly quantize the theory and extract from the naive definition a well-defined
path integral is thus necessary to apply a gauge-fixing quantization method, restricting
the path integration over the configurations satisfying a gauge-fixing condition breaking
diffeomorphism symmetry. In the thesis we will adopt the Faddeev-Popov quantization
method in its standard formulation (in particular we will not discuss the Gribov problem).
In the rest of this introductory section all concepts are introduced referring for simplicity
to the naive path integral.

2. Field variable: the field variable integrated in the path integral is a generic symmetric
tensor, in particular non-necessarily a non-degenerate and positive-definite metric.

In the thesis we assume this requirement. It is justified by the fact that, according to
the definition, there should be ”classically appearing” states, specified by some boundary
conditions on the path integral, for which the average:

1
ZQEG

8o () = (g )), = /w Dy g () 5 (2.15)
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(correspondent in the operatorial formalism to some expectation value gy, (r) =
(Y]guw(x)]1)) is a classical metric. However, in general for other states the expecta-
tion value is not expected to have an interpretation as classical metric, being possibly not
smooth or degenerate or for instance identically vanishing.

In the literature both possibilities are actually considered: the integration is extended
over all symmetric tensor fields or over the subset of all metrics, non-degenerate and
positive-definite. The main difference in the corresponding theories is the measure: in the
first case the domain of integration is a linear space and a standard translationally-invariant

measure can be considered:
Dg=]] 1] dgu(z) (2.1.6)

T V2

in the second it is a non-trivial curved space and one has to construct the measure by
finding an atlas of coordinate charts parametrizing the metrics [13]. According to our
choice, in the thesis we will consider a standard translationally-invariant measure?.

3. Background independence: The theory is expected to be formulated in a background-
independent way, i.e. it should explain rather than presuppose the existence and the
properties of spacetime.

In particular, more concretely, assuming that the topological and differential structure
of the spacetime manifold as a set of events is given and fixed, no preferred riemannian
metric structure, i.e. no preferred metric tensor, should play a distinguished role in the
theory.

2.1.2 Coarse-graining in Quantum Einstein Gravity

The implementation of the FRG framework presented for the scalar theory in section
1.2 cannot be straightforwardly applied to a QEG theory; essentially, this is due to
the requirements, outlined in the previous subsection, regarding gauge symmetry and
background independence.

As seen for the scalar theory, in a non-gauge theory in flat spacetime the coarse-graining of
contributions from the various field configurations to the path integral is usually performed
by first going in momentum space, i.e. expanding fields in eigenfunctions u,(z) = e"** of
the negative laplacian —(J = 9? and rewriting the integration measure in terms of the
corresponding Fourier weights Hp dép), then declaring the weights to be IR or UV on
whether they correspond to low or high momentum eigenfunctions and finally by blocking
the integration of those with eigenvalue p? smaller than a floating scale k2. In a gauge
theory, as in this case, a properly-defined coarse-graining should be a gauge-invariant
notion, i.e. the distinction between ”coarse” and "fine” should be gauge-invariant; this is
possible considering in the place of the laplacian in flat space a gauge-covariant operator.
In this case the flat space laplacian should thus be substituted with a covariant laplacian

3Tn subsection 2.2.2 we will comment again on the path integral measure in relation to the implemen-
tation of the Faddeev-Popov method. In particular, the standard translationally-invariant measure (2.1.6)
turns out to be non-diffeomorphism-invariant and technically should be substituted with a diffeomorphism-
invariant one; practically, however, this will not be an issue as far as the matter of the thesis is concerned.
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constructed with a general metric. However, due to the requirement of background
independence, we cannot introduce any "reference” metric and following this route we are
forced to use the covariant laplacian constructed with the dynamical metric field itself:

O=g"V,V, (2.1.7)

which is not a viable option. Firstly, the operator would be not defined integrating over
symmetric tensors in the path integral, since those could be degenerate; moreover, we
could consider a straightforward, correctly gauge-invariant, generalization of the regulator
term (1.2.5) for the scalar theory:

1
ASalg] o< 5 /deU\@g“”R(k) (—0) g =0 (2.1.8)

with R (p?) a regulating function of the type depicted in figure 1, but the term is actually
identically zero due to the compatibility of the covariant derivative with the metric.

A natural solution to the problem of implementing a well-defined coarse graining in
QEG is furnished by the background field method. The method consists in splitting the
dynamical metric field g,, in the "sum” of: 1. a background metric field g, , regarded as
a non-dynamical quantity which remains a spectator in the quantization; it is required
to be a generic, i.e possibly non-flat, metric; 2. a metric fluctuation field £, considered
as new dynamical field variable of the theory to be quantized, i.e. integrated in the path
integral (or promoted to an operator in the operatorial formalism):

Zoralg) = / Dh e 1) (2.1.9)

The "sum” can be realized with different parametrizations, depending on whether we are
integrating over symmetric tensors or metric tensors. In the first case, one can use a linear
split:

G () = G () + hyw () (2.1.10)

where the metric fluctuation is an arbitrary symmetric tensor, in particular not required
to be a metric. In the second case, one has to find a parametrization in the curved space
of metrics in terms of the metric fluctuation as unconstrained variable; for instance, we
mention the exponential split, typically used in the literature [14]:

(%) = Gua(@) (") (@) (2.1.11)

As we will see more explicitly in section 2.2, when adopting the background field method the
QEG theory, describing a spacetime with a quantum metric (M, g), becomes formally equal
to an "ordinary” QFT for a symmetric matter field h,, in a classical curved background
with a given metric g,, (M, g) (as stated above, at the topological level the set of events
M can be assumed to be the same). The requirement of background independence is thus
translated in the requirement that the background metric has to be considered arbitrary,
so that the QEG theory can be thought as equivalent to the infinite set of QFTs for a
symmetric matter field in an arbitrary classical curved spacetime.
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Subsection 2.1.2 | Coarse-graining in Quantum Einstein Gravity

Adopting the background field method, we have now a natural notion of gauge-invariant
coarse-graining, one for each of the theories labeled by a given background metric. It is
the one provided by the background laplacian operator:

O0=g"V,V, (2.1.12)
and its spectrum of eigenfunctions and eigenvalues (a curved laplacian is a negative-definite
self-adjoint operator): )

—Ou,(z) = p*u,(z) (2.1.13)
which are implicitly parametrically dependent on the background metric; the eigenvalues p?
of the negative background laplacian can be interpreted as generalized momenta. Formally
expanding the fields in the eingenfunctions of the background laplacian, i.e. in generalized
momentum space (we may consider the spectrum to be discrete, for simplicity, assuming
that the spacetime is a compact space):

By (@) = 3 B (p)uy () (2.1.14)

we can thus order the modes and Fourier weights as in flat spacetime according to the
value of the generalized momentum:
0< p < - < pPo< <o
! !
Up, () Uy, () (2.1.15)
7 I

h(p1) a h(pn)

"IR” or "coarse” modes are those with a low generalized momentum, "UV” or ”fine”
modes those with a high generalized momentum. According to this ordering, we can
now implement the FRG machinery in the QEG theory, similarly to the scalar theory in
subsection 1.2.1, by regulating the path integral with a quadratic regulator term:

1 _
AS(wlh; 9] o 5 / dP2/GhagR*™ Ry (—0) Ry, (2.1.16)

where R a suitable structure tensor constructed with the background metric and
Ry(p?) is again a regulating function of the type depicted in figure 1, so that the
integration of weights which are IR with respect to a floating scale k? is suppressed:

Zqpc (9] = /Dh e Sgl=ASw)[hg] —

= /Dh e_S[h;g]_% dexﬁhaﬁﬁaBuyR(k)(_EI)h“V =

B _ 5 2.1.17
. /Diz o Slhgl—5 3, hap ()RR 1y (0% )y (p) ( )

~ / H dh(p) e~ 519

[kISIpISIkuv]
In subsection 2.3.1, after having properly quantized the theory via the Faddeev-Popov
method, we will give the precise details fo the standard regularization procedure considering
also the additional fields introduced in the quantization, i.e. the Faddeev-Popov ghosts.
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2.2 Background field method and
Faddeev-Popov quantization method

In light of the preliminary concepts introduced in the previous section, we now present
how to implement the two methods which are required in order to pass from a classical
field theory of gravity to a QEG theory usable as input for the FRG machinery: the
Faddeev-Popov quantization method, to obtain a well-defined gauge-fixed path integral,
and the background field method, to guarantee a formally well-defined coarse-graining. In
particular, in order to obtain a QEG theory already prepared for the implementation of the
FRG machinery, we will first present how a classical field theory of gravity is reinterpreted
after splitting the metric according to the background field method, remaining at the
classical level, and then how to quantize the theory via the Faddeev-Popov quantization
method, directly in combination with the background field method.

Although, as explained, we could consider a generic action compatible with the general
relativity principle, we consider from now on Einstein’s theory of gravity as classical field
theory of gravity, in order to make ideas more concrete (in particular in the presentation
of the background field method); specifically, we consider pure gravity in absence of
matter sources, so the pure Einstein-Hilbert theory described at the classical level by the
Einstein-Hilbert action.

2.2.1 Background field method

Consider as spacetime a riemannian metric manifold (M, g) with topological space M,
with dimension dimM = D, and metric tensor field g, and introduce a generic coordinate
system z# : M — RP with associated basis vectors e, and basis 1-forms é". Let the
classical dynamics of the metric tensor field be governed by the pure Einstein-Hilbert
theory, described by the Einstein-Hilbert action (1.3.34), which we rewrite as:

2
Senlg) = ;/d%\/ﬁ (—R+2A) (2.2.1)
introducing, for later convenience, the constant:
k= V321G (2.2.2)

which in natural units, ¢ = 1 = i, and D dimensions has mass dimension k] = (2 — D) /2,
since Newton’s constant has mass dimension 2 — D.

Background field method

According to the analysis in 2.1.2, we implement the background field method via the
linear split (2.1.10):

9 (®) = G () + Py (2) (2.2.3)

where g,, is a generic, i.e non-flat, background metric tensor field, regarded as a non-
dynamical quantity, and h,, is a symmetric metric fluctuation tensor field, considered
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as new dynamical field variable of the theory. Substituting the decomposition in the
Einstein-Hilbert action, we introduce the following notation to emphasize the role of the
metric fluctuation as elementary field variable and the one of the background metric as a
parametric field variable:

The content of the theory, i.e. the kinetic and interaction terms for the metric fluctuation,
can be explicitly obtained by expanding the action in a functional Taylor series in powers
of the metric fluctuation around the background metric:

Serlh; g] = Z Semalh; 9] (2.2.5)

where the Taylor term of n-th order can be formally expressed as:

0" SEulg]
21).-.0G 0, (Zn)

1

Sernlh; g = o /dD:vl...dDmnég (
: pivi

By (@1) oo (7)) (2.2.6)

9=9

In particular, the Taylor coefficient of n-th order is given by the n-th functional derivative
of the action computed in the background metric.

Before examining the first terms in the background expansion, we discuss how the
gauge symmetry of the theory is reinterpreted. We focus in particular on infinitesimal
diffeomorphisms (1.3.59), i.e. infinitesimal gauge transformations, since those are the ones
to consider in the Faddeev-Popov method. Due to the linearity of the Lie derivative, the
variation (1.3.70) is linear in the metric and performing a linear split of the type (2.2.3),
we can distribute the derivative on the background metric and the metric fluctuation:

5§(§MV + h/W) = ££(guu + huu) = ££g;w + fgh,w (2-2.7)

The individual variations of the background metric and the metric fluctuation can be
defined in multiple ways, as long as their sum is equal to the complete variation of the
metric; in particular, there are two meaningful ways of defining those variations, depending
on how the two Lie derivatives in (2.2.7) are split:

1. True gauge transformation: the total variation, i.e. the sum of the two Lie derivatives,
is entirely ascribed to the metric perturbation, the infinitesimal diffeomorphism is
rewritten as:

{huu(iﬂ) = WE(@) = hy(2) + Sehy (2) 228)
2.2.8
guw(x) — g;(fy)(x> = G () + ¢Gun ()
With variations:
5€h/w = ££(guv + huu)
= (5)\8)\9;11/ + aug/\g/\u + aug)\g)\u) + (gAaAhuV + 6u§>\h)\1/ + 8V§>\h)\u) (2 9 9)

= (vl—bé-)\g)\l/ + vl/f)\g)\,u) + (f/\v)\hm/ + vug)\h/\u + vuf/\h)\,u)
0eGu = 0
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In the first explicit expression for the variation of the metric fluctuation, we wrote
the two Lie derivatives in terms of ordinary derivatives, while in the second we used
the general property (1.3.66) to substitute the ordinary derivatives with covariant
derivatives compatible with the background metric, so that the Lie derivative of the
background metric contains in this form only two pieces.

This transformation is typically called "true” gauge transformation since it leaves
invariant the background metric, which is regarded as a non-dynamical object in the
background-expanded theory; indeed, it will be the one to be gauge fixed with the
Faddeev-Popov method in the next subsection. We notice that, in order to achieve this
result, the transformation is ”anomalous”, in the sense that we cannot think anymore
the transformation as induced by a change of coordinates of the type (1.3.59); in fact,
as seen in subsection 1.3.3, the corresponding functional variation of any tensor of
any rank should be given by its Lie derivative, while in this case we are defining the
variation of two tensors, the background metric and the metric fluctuation, to be
different from their Lie derivative (respectively equal to zero and to the Lie derivative
of another tensor, the full metric).

We indicate with [/)i?fe (M) the Lie group associated to diffeomorphisms connected to
the identity acting on the metric fields in the form of true gauge transformations, with
the composition rule:

{hw/ 7g/$1/} {h(fon 79#1/} (2210)
where we recall the shorthand notation introduced in subsection 1.3.3 {on = @) o ¢
. Background gauge transformation: both the background metric and the metric fluc-

tuation are varied according to the corresponding Lie derivative, the infinitesimal
diffeomorphism is rewritten as:

h(z) = W) = b (@) + Sehy(z)

B (2.2.11)
Guw(T) — g,(fu)( ) = G () + 0¢Gpu(2)
With variations:
Schyy = Lehy, = E0\hu + 0,6, + 0,60y,
- 5 V)\h,u,l/ + vu£ h)\z/ + vyf h)\,u
(2.2.12)

gﬁguv = LeGuw = gAa)\ng + a/ig)\g)\u + al/é)\g)\ﬂ
= VM€>\§>\V + vugAg)\u

Again, in the first explicit expression of the variations the Lie derivatives are written
in terms of ordinary derivatives and in the second in terms of covariant derivatives
compatible with the background metric.

Contrary to the true gauge transformation, this transformation is typically called ”back-
ground” gauge transformation since also the background metric transforms. Moreover,
in this case the transformation can be regarded as "non-anomalous” and interpreted
as the result induced by a change of coordinates of the type (1.3.59), since now the
functional variations of the background metric and metric fluctuation are correctly
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given by the corresponding Lie derivatives.

We indicate with Diff,(M) the Lie group associated to diffeomorphisms connected to
the identity acting on metric fields in the form of background gauge transformations,
with composition rule:

{h(e ON'S) (77)} {hl(fyon)jl(fyon)} (2.2.13)

According to the comment above, the action of this group is equal to the one of

Diff,(M).
Clearly, we have correctly:
55]7/#,/ + 5§g,uz/ — S&hw, + Sggm, = (5§gwj = "Efgl“’ (2214)

and:

so that the two transformatlons represent the same original gauge symmetry:

6eSpnlh; g) = 0¢Senlhigl = 6:Senlg) =0 (2.2.16)

Background expansion

The Taylor term (2.2.6) in the background expansion is equal to the n-th order variation of
the Einstein-Hilbert action under a variation g,, — g + 0, With g, = G, 0g, = hyw:

Sennlh; gl = i‘dnSEH[g] _ (2.2.17)
n: v = Guv, 0guv = hpuy
which can be practically computed by expressing the variation of the integrand ,/g(—R+2A)
in terms of the variations of /g and R, and then using their background expansions to
compute the term of n-th order. In appendix A we give the necessary expansions to find
the zeroth, first and second order term of the background expansion (2.2.5); in order to
write concisely the explicit expressions, we introduce two definitions:

1. All tensors constructed with the metric with a ”bar” on the symbol are defined as in
subsection 1.3.1, but constructed with the background metric instead:

A(g) = Alg = 7) (2.2.18)

In particular, g is the inverse background metric, g the background metric determinant,
I‘;}V the background metric connection:

g

o (augup + &/gup - apg;w) (2219)

oy
I, = 5

and Rawy, RW, R, G w the background curvature tensors, respectively, the background
Riemann tensor, the background Ricci tensor, the background Ricci scalar and the
background Einstein tensor:

Do T Do >\ Oc
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R, = R%,,, (2.2.21)
R=g"R,, (2.2.22)
_ _ 1 _
Guy = R,u,u - 5 Rg;w (2223)

finally, V,, is the covariant derivative associated to the background metric connection,
compatible with the background metric:

VG =0 (2.2.24)
and used to construct the associated background covariant laplacian operator:

O0=g"V,V, (2.2.25)

2. The indices of the metric fluctuation are defined to be raised and lowered with the
background metric instead of the full metric; in particular, the contractions between
the metric fluctuation and the inverse background metric and the trace of the metric
fluctuation are defined to be, respectively:

W, = g hy, (2.2.26)
R = gh g P hy, (2.2.27)
h=g"h,, (2.2.28)

Given these notations, the zeroth order term is equal to the Einstein-Hilbert action
computed in the background metric:

2 _
Semolhi gl = — / dPz/G (—R+ 2A) (2.2.29)
The first order term is instead found to be:
2 _
Senalhigl = — / dPx\/G (G + NGy )M (2.2.30)

In particular, the first order Taylor coefficient is given by the left hand side of the Einstein
equations computed in the background metric, according to (2.2.17) and the first order
variation (1.3.42), which gives the equations of motion of the theory, i.e. Einstein field
equations in the vacuum, in this case.

The second order term is given by the sum of three pieces:

Sen2(h; 9] = Ser2—kin[h: §) + SeH2—den [ §) + SeH2-int [P 7] (2.2.31)

which are found to be, respectively:

1 1 = 1 -
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Subsection 2.2.1 | Background field method

1 _ 1- \?
SEH,Q—deD[h; g] = ? /dex/E — (V“huy — = Vyh) ] (2233)

1 _
Sea-inlhi 9] = — / dP2\/G | = Ropp h® W

— Ry (W b)Y — hhH™) (2.2.34)

1, - 1
- o pv I
+5 (R —24) (h by = 5 h ﬂ

In the proper Taylor form (2.2.6), they can be compactly written as:

1 1 _ _
Sera_win[h; 9] = s / dPz\/g 3 hag (—K*P0) hyy (2.2.35)
_ 1 D = 1 NaB.uY  Tpoo
SEH,Q,deD[h;g] = ? d l‘\/§§ halgD pUV \V4 h/“, (2236)
= 1 D _ 1 ~aB,uv
SEH,2—mt[h§g] = ? d x\/§§ ha,BOQ hul/ (2-2-37)

Where the three structure tensors K@ D Y O3%1 are defined as:

Qo v 1 —ap =LBv —QV = “ap Zuv
JoBumw _ 5 (g™ + g™ " — g ") (2.2.38)
Daﬁ,uum _9 I_(“’B’Ap K", (2.2.39)

ngﬁ,uv _ aufv Ravﬂu)

(gaMRBV + gOCVRmi + gﬁﬂRaV + gﬁVRall _ 2ga/BRMV _ 2§NVROCB> (2240)
+ (R — 20) K%

R
1
5,

They are all constructed with the background metric only, therefore they can be moved
across any background covariant derivative and laplacian, since from the compatibility
condition (2.2.24), their covariant derivative is also vanishing. They are also appropriately
symmetrized so that Km0, D** ”pgvp?" and O are proper operators acting
in the space of rank-(0,2) symmetric tensors, namely symmetric under the exchanges
a < B, p v, {aB} « {uv}. K+ is obtained by rearranging the contractions in
Sem2-kin[h; g] and its completely symmetrized. DeBw ,o 15 obtained by recognizing that
the integrand of Sgma_q4ep|h; g is equal to —K"‘Bw?‘shaﬁgwf(“”pa?”hw and integrating
by parts the first covariant derivative, from which the change in sign; it is symmetric under
a8, p+vand {af} < {ur} +p < o.

Recombining the three pieces, the second order term can be thus compactly expressed as:
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1 1 o o
Spnalhi 9] = — / dP /G 5 hos (—KC“ﬂ’“VD + D VPV 4 035’“”) hu  (2.2.41)

The infinitely many higher order terms have the same structure, i.e. action monomials
containing an increasing number of metric perturbations multiplied by more and more
complicated tensorial operators constructed with the background metric and various
numbers of covariant derivatives, the square root of the background metric determinant
/g, which forms the overall integration measure d”z,/g, and the constant 1/x?%; to make
explicit this structure, we introduce the following compact notation for the generic Taylor
term of n-th order (2.2.6):

1 1 -
Spralhigl = = / dec\/ﬁm Onh" (2.2.42)

Using this notation and substituting the explicit expressions found for the first three terms
in the expansion (2.2.5), we can rewrite the full background-expanded Einstein-Hilbert
action as:

Spulh;g] = /d x\/_[ (=R +2A) +2(Guw + AGuw) Iy

= hag (—I_(QB”“’EI + DO‘B”“”’M?’)V’ + 0;"8"“’) Py (2.2.43)
f: S o]
n
n—3

In conclusion, substituting the background split in the Einstein-Hilbert action and per-
forming the background expansion, we are formally recasting the original theory as an
effective theory for the metric fluctuation as a symmetric tensor field in a background
spacetime equipped with the background metric (M, g) (the invariant volume element is
dPx/g and indices are raised and lowered by the background metric). The sum of the first
two derivative pieces Sgpa—kinlh; §] and Sgma_gen[h; g] of the second order term forms
the kinetic term of the theory, the second piece in particular will be the one to be modified
in the standard gauge-fixing procedure, presented in section 2.3, enforcing the de Donder
gauge-fixing condition; the sum of the first order term Sgp1[h; g, the third non-derivative
piece of the second order term Sggo_int[h; g and all the higher order terms Sgpy n>3[h; g|
constitutes a series of infinitely many n-point self-interactions of the metric fluctuation,
entering also with various derivatives, with parametric dependence on the background
metric (on top of the zeroth order term Sgpo[h; g] which is just a constant as far as the
metric fluctuation is considered).

DN | —

We conclude the subsection with a remark. From a QFT point of view, one can notice
that the metric fluctuation field is not canonically normalized due to the presence of the
factor 1/k2, which has a non-zero mass dimension, in front of the background-expanded
action and in particular in front of the kinetic term. Therefore, to have a canonically
normalized theory for the metric fluctuation we should operate the rescaling:

hyw — Kl (2.2.44)
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Subsection 2.2.2 | Faddeev-Popov quantization method

and the background-expanded Einstein-Hilbert action becomes:
_ D~ 2 _ 2, - _ .
Seulh;gl = | d°z\/g = (~R+2A) + p (G + Agu) B

1 _ _ o _

+ 5 haﬂ <_Kaﬁ,;w|:| + Daﬁyuvpavpva + Ogﬂ#u) hul/ (2.2.45)
e Hn—2 -

et

The constant x now appears as gravitational coupling constant in the various interaction
terms. In particular, the interaction term of n-th order has coupling x"~2 which in D = 4
dimensions has mass dimension 2 —n < 0. According to the perturbative renormalization
rules in terms of mass dimensionality of couplings and operators in the classical action, this
implies the well known fact that Einstein’s gravity is not perturbatively renormalizable,
since the number of counter terms needed to renormalize divergences increases with the
loop order and is thus infinite. The theory can still be used as an effective field theory to
describe processes below the Planck scale, truncating the expansion at a certain order [15].
Adopting the FRG perspective, in the following we do not operate the rescaling and we do
not introduce perturbative approximations, so that all terms in the expansion are formally
considered.

2.2.2 Faddeev-Popov quantization method

Consider the pure Einstein-Hilbert theory without introducing, for the moment, the
background field method. In order to extract a well-defined path integral from the naive,
divergent definition:

Zpy = /Dg e~9enldl — o0 (2.2.46)

we apply the Faddeev-Popov method to restrict the path integration over the configurations
satisfying a gauge-fixing condition breaking diffeomorphism symmetry.

The method can be applied similarly to the standard case of a non-abelian gauge theory,
namely the Yang-Mills theory [16]; however two observations are in order:

1. The method is typically applied to gauge theories with gauge group given by a local Lie
group, i.e a parametric group of transformations connected to the identity and admitting
an infinitesimal form. Therefore, in order to apply the method, we will consider the pure
Einstein-Hilbert theory as a gauge theory with gauge group given the component of the
diffeomorphisms group connected to the identity Diff.(M); this will be sufficient to obtain
as a final result a well defined path integral, since the gauge-fixing condition will break
the gauge symmetry under infinitesimal diffeomorphisms and therefore also the one under
general diffeomorphisms.

2. As stated in subsection 2.1.1, we consider the path integral to be performed over
symmetric tensors. In principle, we can thus consider the standard translationally invariant
measure (2.1.6) as in (2.2.46). However, this turns out to be effectively correct only from
a practical point of view. The reason is that, strictly speaking, the standard path
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integral measure is not invariant under diffeomorphisms, since performing an infinitesimal
diffeomorphism as change of variables in the path integral:

© 5g'®)
Dg — Dg's = Det [V} Dg # Dy (2.2.47)

one finds that the jacobian is not equal to 1. In particular, the functional derivative inside
the determinant can be rewritten, in explicit notation, as:

859\ () 5

L = 5905 (2 — y) A ——— (6egu (T 2.2.48)

Saasty) 0T gy o) |
where the first term, coming from the functional derivative dg,, (x)/0gas(y) is the functional
identity of the theory, with the symmetric Kronecker symbol:

000 + 03007

aB _
O = 5

(2.2.49)
as identity in the (D(D + 1)/2)-dimensional space of symmetric tensors and the Dirac
delta 0(xz — y) as identity in the infinite-dimensional space of functions of a spacetime
argument. From the variation (1.3.70), written in terms of partial derivatives, the second
term is given by:

)
dg 5(y)(6ég””(x)):: (5($>A50wx5ﬁf + Oy ()85 +—8@9V§A(x)5§f> Sz —y) (2.2.50)

Using now the functional extension of the matrix identity det (1 + eM) = 1+ etrM + O(€?),
the jacobian can be thus rewritten, in explicit notation, as:

3y () [ ] 2
Det | —/——=| =1+T Oc G @) 2.2.51
et 5gaﬁ(y) + r 5gaﬂ(y> ( 59# ((L’)) + (g ) ( )
and the functional trace, given by:
0 _ D, . 4D v -
Tr {59045(3/) (5§gw(aj))] = /d xd”y 590 (0) ((5§gw,(:v))5gﬁ(5(x ) (2.2.52)

turns out to be non-zero due to the term §A8Agw, in the variation, which produces the
term:
o DD +1
T | 52 et | = 2 [ Pae(apontte il 20 (2259
6gaﬁ(y) 2

as first noticed in [17]. In conclusion, being the gauge-invariance of the measure one of the
necessary requirements in order to apply the Faddeev-Popov method, the path integral
(2.2.46) cannot be actually used as input of the procedure.
The problem of constructing a diffeomorphism-invariant measure Dpulg], which goes into
itself under a diffeomorphism as change of variables in the path integral:

Dulg) —  Dulg"?] = Dulg] (2.2.54)
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Subsection 2.2.2 | Faddeev-Popov quantization method

and in particular, as far as the Faddeev-Popov method is concerned:
Dulg) — Dpl[g®] = Dulg) (2.2.55)

has been considered in the literature since the last century, in particular in the early
works by Fradkin and Vilkovisky [18] and Fujikawa [19][20], which led to the two measures
mostly used since then, and it is still discussed today [21] [22]. We also mention that in
perturbative covariant computations in dimensional regularization §(0) singularities are
set to zero [21], therefore limiting to computations in this scenario, one is allowed to use
the Faddeev-Popov method and its final result substituting the diffeomorphism-invariant
measure with the original standard one, which, for the purpose of such computations,
can be regarded as diffeomorphism-invariant, since setting the §(0) to zero in the result
(2.2.53), the functional trace (2.2.52) is vanishing and so the functional jacobian (2.2.51)
is 1. As far as the thesis is concerned, in the following it will be sufficient to invoke
the possibility of constructing and formally consider a diffeomorphism-invariant measure,
without the necessity to specify an explicit expression.

Faddeev-Popov method

In light of those remarks, we redefine the naive path integral (2.2.46) substituting the
standard measure with a suitable a suitable diffeomorphism-invariant measure:

T = / Dyg] e~ SEnld] (2.2.56)

so that it can be now correctly used as input for the Faddeev-Popov method, considering
the pure Einstein-Hilbert theory as gauge theory with Diff.(M) as gauge group. Actually,
in order to obtain directly a QEG theory prepared for the application of FRG methods,
we also choose to apply immediately the linear background split (2.2.3):

Zpnlg) = /Du[h; gl e Seulhl (2.2.57)
with the diffeomorphism-invariant measure rewritten as:
Dulg =g+ h] = Dulh; g] (2.2.58)

which takes the place of the one coming from the standard translationally invariant
measure Dh. Considering the metric fluctuation as the dynamical and elementary field
to be quantized, the relevant gauge transformations are infinitesimal diffeomorphisms
rewritten as true gauge transformations, while the symmetry under background gauge
transformations is regarded as an additional symmetry of the theory, as explained at
the end of subsection 2.2.1. So, we apply the Faddeev-Popov method on the path
integral (2.2.57) considering the background-expanded pure Einstein-Hilbert theory as
gauge theory with [ﬁ‘e(M) as gauge group, in order to break gauge symmetry under true
gauge transformations:
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1. Faddeev-Popov trick and Gribov problem: Consider a generic gauge-fixing condition of
the type:

f(h;g) =0 (2.2.59)

where f(h;g) is a function of the metric fields breaking the symmetry under true gauge
transformations. In order to restrict the path integration over configurations satisfying this
condition and separate the non-physically-meaningful divergent contribution coming from
gauge redundancy, we rewrite the path integral (2.2.57) introducing a trivial multiplication
for 1 in the integrand, employing the identity:

1= [ Dre (s 9)) = [ D] dlf () et |5

(2.2.60)
;AWQ/QMMU@@@]

which follows from the defining property of the functional Dirac delta distribution. In the
second couple of equalities, the upper one is obtained by thinking the gauge transformed
metric fields as functions of the vector field regarded as new integration variable, and
Dwl¢] denotes the functional Haar invariant measure on the manifold given by the group
]ﬁe(./\/l), where each gauge transformation is individuated by the associated vector field
§". This measure is characterized by the property of being invariant if one sends the
generic integrated gauge transformation of Diff.(M) into its composition with another
fixed gauge transformation; so, if £* is the vector field associated to the integrated gauge
transformation and n* the one associated to another fixed gauge transformation, we have:

Dwlno&] =Dwl{on| =DwlE] Vn (2.2.61)

In the lower equality A[h;g] denotes the Faddeev-Popov determinant:

Alh; g] = Det M] (2.2.62)

U3

e=¢: f(h®;g)=0

obtained by enforcing on the functional jacobian the condition imposed by the functional
Dirac delta and bringing it outside from the integral, since it no longer depends on the
vector field. The symbol x on the equality denotes that this operation is possible only if
there exists only one specific vector field € for which the gauge-fixing condition is satisfied:

3¢ f(h®;g) ) (2.2.63)

i.e. there exists, for each given metric configuration {h; g}, only one metric configuration
{B =p8. 5= g@} between those equivalent to {h; g} which satisfies the gauge-fixing
condition and it is thus selected to be integrated in the final path integral. Moreover,
in order for the next steps to be valid, it is also necessary to assume that the Faddeev-
Popov determinant is different from zero, which happens when the operator given by the
functional derivative has zero as eigenvalue:

Alh;g] £ 0 (2.2.64)
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Both conditions are in general not satisfied and this possibility corresponds to the Gribov
problem [23]; in particular, the first possibility corresponds to the problem of Gribov
copies, i.e. the fact that in general the gauge fixing condition (2.2.59) does not select
a unique metric configuration inside each of the gauge orbits. Taking into account this
problem in the Faddeev-Popov method is historically a very complicated task; therefore,
we adopt the standard strategy of disregarding the problem, assuming that conditions
(2.2.63) and (2.2.64) are satisfied, but then using a gauge-fixing function which does not
necessarily respect them, taking advantage of the fact that the final result is nevertheless
a correctly gauge-fixed path integral.

Figure 3: Pictorial representation of the space of metric fields configurations. Configurations
connected by gauge transformations lie on a gauge orbit (blue lines) and are physically equivalent.
Assuming that the conditions preventing the Gribov problem are satisfied, the gauge-fizing condition
f(h;g) =0 (red line) selects one representative configuration for each gauge orbit.

Before proceeding with the method, we notice that the Faddeev-Popov determinant is
characterized by the fundamental property of being gauge-invariant:

A[n®:g] = Alh;g] V¢ (2.2.65)

Indeed, from (2.2.60) we have that:

1 —
NY / Dule]o[f (h*;3)] (2.2.66)

and, recalling the composition rule of gauge transformations (2.2.10) and the property of
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the Haar measure (2.2.61):

ratrone -5t

We can now substitute the identity (2.2.60) inside the path integral (2.2.57):

Zoulg / Dulh ( [h: g / Dule] 5[f (h©: g)]> o—Sprlha) _
= /DWK] (/Dﬂ[h; glAh; g6 [f (B9 9)] e‘SEH[’“g}) =

oo nsasne )

c (/Dw[§]> (/ Dulh; glAR; ] 6[f (h; )] esEH[h;g])

In step A we switched the two integrations, the one over metric configurations and the
one over gauge transformations; in step B we used the gauge-invariance of the measure,
the Faddeev-Popov determinant and the Einstein-Hilbert action to rewrite them in terms
of the metric fields gauge-transformed according to the gauge transformation integrated
in the external integral; in step C we renamed the integration variable in the integral
over metric configurations recognizing that the dependence on the gauge transformation is
actually fictitious, and therefore we separated the two integrals. The first, in particular,
counts the number of gauge transformations which can be applied on a given metric
configuration, or, in other words, the number of its gauge-equivalent configurations in its
gauge orbit Oy, gy:

O{hvg} = {{h;wvguu} : {hbyaguu} = {hfy),%u}} (2267)

so, the volume of a generic gauge orbit O:
volO = /Dw[ﬂ = 00 (2.2.68)

which is responsible of the divergence of the naive path integral. Being this volume
ultimately a constant, although infinite, it is irrelevant in the computation of correlation
functions; therefore, it can be simply removed to define the Faddeev-Popov gauge-fixed
path integral:

(2.2.69)

whose explicit form is:

— [ Dulhig) Al gl i e S (2.2.70)
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As desired, the path integral is now well defined, since the infinite contribution coming
from gauge redundancy is removed and indeed the integration is effectively performed,
thanks to the functional Dirac delta, only over the metric configurations satisfying the
gauge-fixing condition (one per gauge orbit, assuming that the conditions preventing the
Gribov problem are satisfied). We also notice that the Faddeev-Popov determinant can be

effectively rewritten as:
©. g
Alh; g] = Det {_{V(lgg 79)}

since the functional Dirac delta enforces f(h;g) = 0, therefore we have f (h(fzo); g) =

(2.2.71)

£€=0

f(h;g) =0— f = 0, again assuming that the conditions preventing the Gribov problem
are satisfied and this is the only solution of the gauge-fixing equation.

2. Gauge-fixing term: The functional Dirac delta enforcing the gauge-fixing condition can
be actually substituted by any functional of the gauge-fixing condition; indeed, shifting
the gauge-fixing function by an arbitrary function y independent of the metric fields, we
obtain the same gauge-fixed path integral, with in particular the same Faddeev-Popov
determinant (since it contains the derivative of the gauge-fixing function enters):

— [ Dulhig) Al gl i) — g S (2.2.72)

In this way we introduce a fictitious dependence on the function y on which we can
integrate, in order to smear the functional Dirac delta with a normalized functional
distribution, which we write for convenience in the form of an exponential:

B fDXe gf[X
bed =

= / DXDplh; gl Alh; oL (h: 3) — e~ Sl =Suld
= /D,u[h; gl Alh; g e~ SeH[P:g] =S5 (f(h;9)]
The net effect, apart from an irrelevant multiplicative constant (also possibly infinite)

coming from the normalization of the smearing distribution, is the possibility of substituting
the functional Dirac delta with an arbitrary functional of the gauge-fixing function:

5[f(h, g)] — e*ng[f(h@)} = engf[h;g] (2.2.73)

Or equivalently adding an arbitrary gauge-fixing term to the action containing the gauge-
fixing function. In the thesis we will consider exclusively gauge-fixing functions of the
type fu.(h;g), i.e. constructed to be a 1-form tensor field.

3. Ghost term: Also the Faddeev-Popov determinant can be rewritten in exponential form,
obtaining another term which can be formally added to the gauge-fixed action. First we
expand using the functional chain rule, in explicit notation, the functional derivative inside
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the Faddeev-Popov determinant:

0fu(h99)@)| - _ [ 6.u(h: 3) () Shey (2)
€=0

0€"(y) Ohap(z)  0€(y) | _
p_ 0fu(h;g)(x ) 9
= [0 e ey () + ks + O ))L:o:
[, )@ o _
-/ Shaslz) a€7(y) )
= [0 DD (5,0,.00) 4 0501000+ 1n(1002) 8~

In particular, we remark that, due to the evaluation in & = 0, only the first order form of
the true gauge variation of the metric fluctuation is necessary. Performing the z-integration,
the final result is given by a certain differential operator, depending on the gauge-fixing
function:

Gpul.9) = [ 7 “LEEDD (0,,5(2) 020 + s (0005) Lz =) (22:7)

The operator between parenthesis acting on the Dirac delta §(z — y) is essentially a Lie
derivative of the metric from which the vector field has been removed; indeed, when the
operator acts linearly on a vector field A*, this takes the place of the missing vector field
and the parenthesis gives again a Lie derivative of the metric*:

/dDyQﬁw(fE,y)A”(y) = /dDz%ongW(z) (2.2.75)

Introducing two Grassmann-odd fields, the ghost and antighost fields ¢* and ¢,, the

Faddeev-Popov determinant can be thus rewritten as the result of the following gaussian
path integral:

Al 3) = Det G )] = [ DeDeet I 40 5a/itos
(2.2.76)
= /DcDEeSgh[h’c’C;g]

The + sign in the gaussian exponent is chosen such that, for the specific choices of
gauge-fixing considered, the ghost kinetic term will have the correct sign®. Using the
property (2.2.75) considering the ghost field as vector field, the explicit expression for the
ghost action term is:

Sonlhse,5:g] = — / P 2/G oG G v ¢ =

_ 50fs(h;g _
_ _/de G Cal BM .£C(9#V+hlvw>
St

(2.2.77)

4The operator can be moved on the right hand side of the Dirac delta by noticing that 8, g.s5(2)d(z—y) =
d(z —y)0vgap(y), and integrating by parts within the y-integration (where there is no /g factor) to move
the ordinary derivatives: 0(.,0(z —y) = —0(y).0(z — ¥) bp 6(z = y)O0y)u-

*Namely — [ abP x1/gc,0c*. We recall however from the theory of Grassmannian-graded objects that
the integral is defined as a Berezin integral and would be defined for any sign used in the exponent.
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Subsection 2.2.2 | Faddeev-Popov quantization method

where we introduced the symbol « representing a multiplication with an implicit spacetime
integration.
The ghost and antighost fields are formally defined to be respectively a vector and a
1-form field; their variation rules under an infinitesimal gauge transformation are defined
accordingly:
(550“ = £§c“ = gAﬁAC“ — 8)\§MC>\
= OV, - Vg
(2.2.78)
6¢C, = L€, = EX0\C, + 0,87
= EV,6, + V.88,
and in the background field method the true and background gauge transformations can
be defined in the same way (since we do not apply the background split also to the ghost
and antighost fields):

(5gCM = ggc" = £§CM = SA((“),\C” — a)fMCA
= 5)\@)\611 - ?Aé‘“c)‘
) (2.2.79)
8¢, = 0¢Cy = L€, = £202C, + 0,70
= £A?AE# + ?Hf)\é)\

4. Final result: In conclusion, substituting in the Faddeev-Popov path integral (2.2.70) the
functional Dirac delta according to (2.2.73) and the Faddeev-Popov determinant according
to (2.2.76), the final result of the procedure is:

Zlg) = / Dulh; g|DcDe e 5159 (2.2.80)

with the gauge-fixed action:
Sh,c, e gl = Spulh; gl + Sgrlh; g] + Sgulh, ¢, & g] (2.2.81)

We remark that at this stage the gauge-fixing is still generic in two ways: firstly, the form
of the gauge-fixing term is arbitrary, secondly the gauge-fixing function is also arbitrary
(apart from the condition of breaking symmetry under true gauge transformations). So,
strictly speaking, the gauge-fixing will be complete only after choosing a specific form for
the gauge-fixing term and the gauge-fixing function.

We also remark the important fact that for each choice of those gauge-fixing details, the
gauge-fixed path integral is still formally equal to the naive path integral divided by the
volume of the gauge orbit:

Zs, .02 19] = ol =7Z5,12.0219] 5 VSgs1,852 Vi1, f2 (2.2.82)

representing the fact that the gauge-fixing procedure does not change physics. In fact,
quantum physical observables computed with the gauge-fixed path integral are expected
to be independent of the gauge-fixing details and to have the same value regardless of the
gauge-fixing used.
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5. Nakanishi-Lautrup field with noise: The gauge-fixed path integral resulting from the
Faddeev-Popov method can be rewritten by interpreting the gauge-fixing term as the
result of an additional path integration over a Nakanishi-Lautrup auxiliary field. This
way of rewriting the gauge-fixed theory allows to express BRST symmetry, reviewed in
the next subsection, in its off-shell form; moreover, it will be also useful to generalize the
standard form for the gauge-fixing term in order to switch to the non-standard one used
in the third part of the thesis. Consider a Nakanishi-Lautrup auxiliary field b,, defined
to be a 1-form field, and introduce an additional path integration in the Faddeev-Popov
gauge-fixed path integral (2.2.80):

2[5 = / Dulh; g DeDeDY ¢Sl (2.2.83)

The action is now defined as:
Slh,c,¢b; 9] = Spnlh; g] + Sgplh; b3 g] + Snilb; ] + Sgnlh, ¢, ¢ g] (2.2.84)

The so called off-shell gauge-fixing term is defined to be linear in the Nakanishi-Lautrup
field:

Seflh; by gl = / dPz/Gb.g" f.(h; g) (2.2.85)

The arbitrariness in the choice of a specific form for the gauge-fixing term is now moved
to the choice of an additional action term for the Nakanishi-Lautrup field, which is an
algebraic functional (being the Nakanishi-Lautrup field just an auxiliary field introduced
for convenience, a kinetic term is not required). The associated traditional, or on-shell,
gauge-fixing term is obtained by integrating over the Nakanishi-Lautrup field:

o—Sorlhia — /Dbe—ng[h;b;é]—SNL[b;!ﬂ (2.2.86)

which typically corresponds to formally substituting in the action the on-shell expression
for the Nakanishi-Lautrup field imposed by its equation of motion (which is an algebraic
condition due to the absence of derivative terms).

It is also interesting to formally think the action term for the Nakanishi-Lautrup field as
the result of another path integration over a second auxiliary field, a noise field n,, also
defined to be a 1-form field:

Z[g) = / Dpulh; §/DcDEDbDn ¢~ Shecbmidl (2.2.87)
The action is now defined as:
S[h, ¢, ¢ g;b,n] = Sgulh; gl + Sgrlh; b; g + Snoise[b, 15 G] + Sgnlh, ¢, & g (2.2.88)

The action term for the noise field is defined such that the action term for the Nakanishi-
Lautrup field is obtained by integrating over the noise field:

e_SNL[b@] — /Dn e_Snoise[byn@] (2289)

This additional operation will be also useful to generalize the standard form for the
gauge-fixing term and switch to the non-standard one used in the third part of the thesis.
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2.2.3 Multiplet notation

We now introduce a convenient notation to handle together the three dynamical fields
present in the gauge-fixed theory, i.e. metric fluctuation and ghosts, and write compactly
the generating functionals describing the associated quantum theory [6]. The formulas are
a generalization of the standard ones reviewed in subsection 1.1.1 for the scalar theory to
the case of multiple fields, possibly Grassmann-even and Grassmann-odd, and in presence
of a classical curved metric, in this case the background metric g, .

Consider the Faddeev-Popov gauge-fixed path integral (2.2.80) with a generic gauge-
fixed action (2.2.81) and introduce a source field for the metric fluctuation, the ghost and
the antighost; we group them in the following multiplets:

¢i = M (bJri

(b —c* €,) (2.2.90)

= i JE =" . ) (2.2.91)

t" is Grassmann-even, while 7, and n* are Grassmann-odd. The "adjunction” operation
is defined such that, as far as fields are concerned, Grassmann-even fields do not change sign
in the adjoint row vector while Grassmann-odd fields do; as far as sources are concerned,
both Grassmann-even and Grassmann-odd sources do not change sign.

We introduce also the following shorthand notation for left and right derivatives of
functionals taken with respect to multiplets and including also 1/4/g factors:

1 1 ) 0
A(TYS ) = . A 2.2.92
My My (T1 - \/71 /g () (5M+(a:1 M () ( )
%
1 5 0
AT e e , y 2.2.93
N1...Nn( 1 ) g(m) /5 xn 5N1($1 (In> ( )

where, conventionally, left and right derivatives are taken with respect to multiplets
and adjoint multiplets, respectively. We use a special notation for the second derivative
composed of one left and one right derivative:

<_
) ) )

Ainley) = ¢—¢—5M+ 14N

Adopting these notations, the quantum generating functionals and their properties are
written as:

(2.2.94)

1. Path integral: The path integral with sources, generator of correlation functions, is
written as:

Z[J;q] = /DM[¢] e~ S[:9]=Ssource|$:739] (2.2.95)
with the source term:

Ssourcekb; ‘]a g] = _/dD‘/L‘\/E ‘]j—qbl = - /de\/E (tuyhuu + ﬁucu + éﬂﬁu) (2296)
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Correlation functions of fields ¢’ are obtained by taking left derivatives with respect to
sources J;© of the path integral and appropriately multiplying by 1/4/7 factors to account
for the measure in the source term:

<¢(9)i1 (;(;1) . ¢( Zn l'n /D,u ) (15(0 2n< ) —S[¢;7]
(2.2.97)

Z Jn i (x1...2p) o
or without the normalization 1/Z for the unnormalized one (¢ (z;)... ¢(9)i”(xn)>u.
According to the definition of the adjoint multiplet, correlation functions of fields ¢ are
similarly obtained by taking right derivatives with respect to sources J;.

2. Path integral logarithm: The path integral logarithm, generator of connected correlation
function, is:

W1J;g] =log Z|J; g| (2.2.98)

Connected correlation functions of fields ¢* and ¢** are obtained with the same rules of
normal ones, for instance:

<¢(0)i1<x1) o ¢(9)z‘n (In)>c - W@Jm (x1...2) (2.2.99)

Normalized correlation functions can be expressed as sums of connected ones. In the
following we will need in particular the expression for the 2-point correlation function
(¢'¢™7) in terms of connected ones:

(¢'(2)0™ (y)) = (&' (@) (1)), + (¢'(x)), (&7 (1)), (2:2.100)
deriving from the relation between second derivatives:

1
-szggay)ztvfgcay)+tv§1xnv§%y) (2.2.101)

which follows immediately from the derivative rule of the logarithm:

ows s (175 \ 1 25 1 sz %
§JH ()0 T;(y)) 0T (x) \ Z0Ti(y)) ) Z 6T (2)dTi(y)) 226 (x) 0 T;(y))
and appropriately introducing 1/,/g factors.

3. Effective action: The effective action, generator of 1PI vertices, is given by the Legendre
transform:

P[®;g] = sup {/dD:Ex/EJ?‘Di — W1J; g]}
= / dPx/G JF o — W J; g]

In the second it is understood that the multiplet of sources is expressed as J = J(®) by
inverting the relations given by imposing the extremality condition of the argument of the

(2.2.102)
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Legendre transform:
, 1 oW|J;g
9= ($@), === Ji(m d

5

*i(x) = (6"(x)), = —— e g

DRI

which is given by the average fields in presence of sources. Similarly, we can express the
path integral logarithm via the inverse Legendre transform:

i) =swp{ [ i are —rios) )
= /de\@ Jro! —T[o; g]

where now in the second it is understood that the multiplet of fields is expressed as
® = ®(J) by inverting the relations:

(2.2.103)

(2.2.104)

Ji(x) = 1 oT[e; g
W= i o)
o (2.2.105)
() = 1 T6[;g]

Vi(x) 09(x)

In the following we will make explicit those dependencies when needed. The effective
action can be also defined as solution of the integro-differential equation:

e Tl®:g] — /DM[¢] exp{_sw;g] —|—/dD w (¢ o} )} (2.2.106)

which follows from equating the definition of the path integral logarithm (2.2.98) and its
expression given by the inverse Legendre transform (2.2.104), computed in J = J(®) given

by (2.2.105):
%
G I'oo;ql .
VI (®)a] /DH[¢] exp{—S[¢;g] +/de 6£bi7g]¢z}

o -
{H [ S50 %{gy%}

The second derivative of the effective action is the inverse operator of the second derivative
of the path integral logarithm:

W) (2,y) = Tolgr (2,y) (2.2.107)

k3

in the following sense:
050 (x — y)
((1>22¢j ('7 y) = ]ﬁ
VI (2.2.108)
r®

J
¢z¢k( ) °g W}i] ( y) ="

2
W}“)]k ('T7 .) .g F
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where the symbol «; represents an implicit spacetime integration with a factor /g in the
measure. The first inverse rule, for instance, from expressing a delta as derivative of the
multiplet of fields with respect to itself and then interpreting it as function of the multiplet
of sources ® = ®(J):

_ /dDZW(J)(:v)? R(®))F
dJk(2) 5q>j(y)

1 SW'S 1 ST

\/ 5J (5Jk \/ g 5¢k 5(])]

and appropriately introducing 1/4/g factors.

Sio(z —y) =

2.2.4 Off-shell BRST symmetry

Consider the Faddeev-Popov gauge-fixed action (2.2.81) and assume that an appropriate
gauge-fixing function is chosen; as a result of the gauge-fixing procedure, as desired, the
complete action loses the local symmetry under true gauge transformations:

6¢S[h,c,¢;g] #0 (2.2.109)

However, it is still characterized, for any specific gauge-fixing function chosen, by a
"residual” 1-parameter rigid symmetry with a grassmannian anticommuting number 6 as
parameter, the BRST symmetry (Becchi-Rouet-Stora-Tyutin) [24][25][26]:

d9S[h,c,¢;g] =0 (2.2.110)

Before presenting the explicit form of the BRST transformation rules for the fields in
the specific case of the pure Einstein-Hilbert theory, we mention that the presence of a
BRST symmetry, with its specific structure properties, is a fundamental feature of all
gauge theories gauge-fixed and quantized according to the Faddeev-Popov method.

In order to sketch the general form of those structure properties, we recall from the theory
of Grassmann-graded objects that a variation dy dependent on anticommuting parameter
0, such that 6% = 0, can be expressed in general in terms of a Slavnov variation s:

§9 = Os (2.2.111)

which must be a variation operator changing the Grassmann character of a graded object
from commuting to anticommuting and vice versa, so that conversely the variation dy does
not, thanks to the multiplication for 6. In the following we are going to use in particular
the two properties:

s(AB) = (sA)B + A(sB) (2.2.112)
s*(AB) = (s*A)B + A(s*B) (2.2.113)

The first has a + or — sign respectively if the first object is Grassmann-even or odd and
follows from the fact that in both cases we must have dp(AB) = (d9A)B + A(dpB); the

23



Subsection 2.2.4 | Off-shell BRST symmetry

second holds whichever is the Grassmann character of the two fields and follows from the
first by a direct computation.

Considering a generic gauge theory, the characteristic structure properties of BRST
symmetry are:

1. The number of ghosts and antighosts fields, ¢, and ¢,, introduced is equal to the number
of local functions, &,, featuring in the gauge transformation associated to the gauge
symmetry which has been gauge-fixed.

2. The BRST variations of the original dynamical field variables of the non-gauge-fixed
theory and the ghosts are not related to the gauge-fixing and are given by:

2.A The BRST variation of the dynamical field variables, ¢;, is equal to a gauge
variation where gauge functions are given by &, = fc,:

000 = O¢=pcPi

2.B The BRST variation of the ghosts fields is such that the second BRST Slavnov
variation of the dynamical fields is vanishing:

s =0
along with the one for their own BRST Slavnov variation:

s%c, =0

3. The BRST variations of the antighosts and the Nakanishi-Lautrup fields, if present,
are instead related to the gauge-fixing:

3.A Off-shell BRST symmetry: In presence of Nakanishi-Lautrup fields, b,, as many
as the ghosts and antighosts, the BRST variation rules are simply:

dpCq = 0b,
dpbe = 0

The correspondent second BRST Slavnov variations are trivially vanishing inde-
pendently of those of the dynamical fields and ghosts:

s?¢, = 0

$?b, = 0
The BRST Slavnov variation is nilpotent, i.e. the second variation of all elementary
fields is identically vanishing.

3.B On-shell BRST symmetry: In absence of Nakanishi-Lautrup fields, the transfor-
mation rule of the antighosts is typically given by the on-shell expression for the
Nakanishi-Lautrup fields:

0pCy = Hbal

on—shell
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It depends on the chosen form for the gauge-fixing term and possibly also on
the chosen gauge-fixing function; the second BRST Slavnov variation may be
vanishing only upon using the classical equations of motion of the theory:

— e.o.m.
s%¢, 7= 0

The BRST Slavnov variation is nilpotent, but possibly only upon using the classical
equations of motion of the theory.

Off-shell BRST symmetry at the classical level

Consider the generic gauge-fixed action in presence of a Nakanishi-Lautrup field (2.2.84).
The off-shell BRST transformations of the elementary fields and the Nakanishi-Lautrup
field are:

(ho(2) = B (@) = Ty (x) + Sohyu (2)
Gu(®) = h)(@) = Gu(@) + Segp(x)
Hx) —  OHa) = M) + dpc(x) (2.2.114)
Culz) — E,(f)(f”) = Cul(x) + d9Cu(x)
[ bu(@) = 0P (2) = bu(x) + ebu()
where the off-shell BRST variations are defined as:
(S6hy = 0L (G + Po)
= 9(6/\8)\57“,, + (?ucAgAu + &,CAQA#) +6 (cAﬁAhW + @LcAhAV + 8,,c>‘h,\u)
= Q(vﬂc’\ﬁxu + vyc’\g,\u) + 6 (&%hw + v#cAhAy + vyc’\hM)
OpGu = 0 (2.2.115)
Soc = 00\ = AVt
dpcy = 6b,
[ dbp= O
The correspondent off-shell BRST Slavnov variations are:
($hy = £o(Gu + hyu)
= (P0G + 904 Grw + 0,7 Goy) + (PO\hyy + 9uP by + 0, Ry,
= (vuckgxu + vyc’\g,\ﬂ) + (cAvAhMV + V,uctha, + vyc)‘h,\u)
S =0 (2.2.116)
sct = Aot = AV, e*
5¢, = by,
| sb,= 0

As as in the case of true and background gauge transformations, (2.2.9) and (2.2.12), we
wrote the Lie derivative both in terms of partial derivatives and covariant derivatives
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Subsection 2.2.4 | Off-shell BRST symmetry

compatible with the background; this can be done also for the BRST variation rule of
the ghost field, in fact, due to its anticommuting nature, the partial derivative can be
substituted with any covariant derivative V, associated to a symmetric connection I},
(as the metric connection which we are considering):

AV, et = Aot + Fﬁ)\ AP = Ao\t
~

sym. antisym.
Ap A>p

Inspecting the BRST variation rules, we can recognize the characteristic structure
properties of a BRST symmetry anticipated above, in particular:

1. The BRST variations of the metric fields, and in particular of the metric fluctuation,
are equal to true gauge variations with vector field given by &* = fct:

Oy, = d¢=pchyu (2.2.117)
59g#” - 55:90.6#!/

This can be easily seen by inspecting the BRST variations and taking the parameter 6,
which is just a number, through the various derivatives to multiply directly the ghosts.

2. The BRST Slavnov variation is nilpotent on elementary fields:

(2
s°hy, =

SQg;w =
Pt = (2.2.118)
SZEM =

2
570y,

o O O o O

\

Nilpotency on the ghost and the metric fluctuation is shown in appendix B.1. In the
case of the metric fluctuation it follows directly from the BRST variation rule of the
ghost, while in the case of the ghost it follows directly from its anticommuting nature;
in particular, as anticipated above, it appears that the BRST variation of the ghost is
precisely the one guaranteeing those conditions, since nilpotent on its own and, as seen
in appendix B.1, such that:

Shy =0 <= sc'=c'0h" (2.2.119)

Nilpotency on the background metric is clearly trivial. In the case of the antighost and
the Nakanishi-Lautrup field it follows independently of the others from their simple
BRST variation rules, in particular:

§°¢, = sb, =0 (2.2.120)

From the nilpotency of the variation on elementary fields it follows also that any polynomial
function of the fields has also a vanishing second BRST Slavnov variation:

s*F(h,c,cb;g) =0 (2.2.121)
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since from property (2.2.113) we have that if two objects have vanishing second Slavnov
variations s?A = s?B = 0, also the product does s*(AB) = 0, and similarly for an
arbitrary power (also if the function contains derivatives of the fields, since BRST Slavnov
variations simply go through). Therefore, the BRST Slavnov operator s is a nilpotent linear
operator acting in the space of elementary fields and their functions, where it thus defines
a cohomology structure. The kernel of s, ker(s), consisting of BRST-closed elements,
i.e. with zero BRST Slavnov variation sA = 0, contains the image of s, im(s) C ker(s),
consisting of BRST-exact elements, i.e. expressible as BRST Slavnov variation of others
sA = B. The space is partitioned in the union of im(s), i.e. BRST-exact elements,
ker(s) \ im(s), i.e. BRST-closed but not exact elements, and ker(s), i.e. non-BRST-closed
elements. BRST-closed elements can be grouped in equivalence classes, according to the
equivalence relation stating that two elements are equivalent if differing by a BRST-exact
term:

A~B : A-Be€im(s) (2.2.122)

and those form the cohomology group of s:

H(s) = Kers) [ =Rer) /o (2.2.123)

The invariance of the action (2.2.84) under a BRST variation is a manifest consequence
of those structure properties. From the property of coinciding with a true gauge variation
as far as the metric fields are concerned, we have immediately that the BRST variation of
the original, non-gauge-fixed Einstein-Hilbert action is zero:

SoSpm|h; g =0 (2.2.124)

From the invariance of the Nakanishi-Lautrup field and the background metric we have
also:
d9Snilhib;gl =0 (2.2.125)

Consider now the gauge-fixing term and the ghost term. Using the BRST Slavnov variation
of the antighost field, the first can be rewritten as:

Syrlh, b;g) = / dPr\/gb,g" f,(h;g) = / dPx\/q s¢,3" f.(h; ) (2.2.126)

The ghost term can be similarly rewritten by noticing that the BRST variation of the
generic gauge-fixing function can be expressed as:
0fu(h; g) 0fu(h; 9)

09.fu(h; g) = " Shas Ophas = QW * £e(Jap + hap) = 0G,c” (2.2.127)

In the last equality we recognized, recalling property (2.2.75), the action of the ghost
operator (2.2.74); the parameter # can be commuted with the functional derivative of
the gauge-fixing function since the latter is a Grassmann-even object, involving only the
metric fields. So, the associated Slavnov variation is:

of u(h§ g )

sfu(h;g) = “ohey Shap = “ohes £e(Jap + hap) = Guv « ¥ (2.2.128)
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And the ghost term can be thus rewritten as:

Snlh,c, ¢ 9] = — / AP 1/GCag™Gay e ' = — / dPr\/gGe,5" sf,(h;g) (2.2.129)

Summing the two terms we obtain:
Sorlh, b gl + Sgulh, c, e g = / d°x/G (569" £, (15 ) — u5" 51, (h; §)) =
=s / d"1\/32.5" f(h; 9)

where we notice the use of property (2.2.112) and the fact that the background metric, and
the related objects, namely its inverse and determinant, are BRST-invariant and therefore
transparent for the BRST variation. We recognize that the result is a BRST-exact term:

Sotlhs b; gl + Sgnlh, ¢, ¢ g] = s/dD:c\/Eéug””fl,(h; g9) = sSgrsrlh, ¢ g
and therefore manifestly BRST-invariant due to the nilpotency property:
S (Sgf[h; g] + Sgnlh, ¢, g]) =0 (2.2.130)
In conclusion, the complete action:
S[h,c,e,b;g] = Spulh; gl + Sni[b; gl + sSrsr[h., ¢ g] (2.2.131)
is also manifestly BRST-invariant:
d9S[h,c,¢b;g) =0 (2.2.132)

In particular we make the important remark that the gauge-fixing term and the ghost term,
which constitute the part of the action behaving non-trivially under a BRST transformation,
are not separately BRST-invariant, but their sum is BRST-exact, therefore their BRST
variations compensate and precisely eliminate each other. Crucially, this holds for any
specific choice of the gauge-fixing function. Due to the invariance of the Nakanishi-Lautrup
field and the background metric, the symmetry is clearly also present independently of the
specific Nakanishi-Lautrup term chosen. Therefore we can conclude that: the gauge-fized
action (2.2.84) enjoys a BRST symmetry under (2.2.115) regardless of the gauge-firing
details.

As we will see in subsection 2.3.2, this holds also for the on-shell version, although the
specific form of the variations may depend on the gauge-fixing function.

Off-shell BRST symmetry at the quantum level

We conclude the subsection by briefly discussing some aspects of BRST symmetry at the
quantum level which will be of interest in the following. Consider the Faddeev-Popov
gauge-fixed path integral in presence of a Nakanishi-Lautrup field (2.2.83) and introduce
source terms for the elementary fields; in multiplet notation:

216 = [ Dulolppesietai-TiPnisie (22133)
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As discussed for a scalar theory in subsection 1.1.2, a symmetry for the classical action
is preserved at the quantum level if non-anomalous, i.e. also the path integral measure
enjoys the symmetry. It can be seen that the diffeomorphism-invariant measure Dulh; g,
which we are formally employing, can indeed be constructed such that the total measure,
complete also of the ghosts and Nakanishi-Lautrup sector, is BRST-invariant [21]:

Dulh; g|DecDeDb —  Du[h?: 91D DD = Dufh; g|DeDeDb - (2.2.134)

In the following we will always assume that the formal path integral measure considered is
constructed in such a way and thus that BRST symmetry is non-anomalous. Therefore,
as seen in subsection 1.1.2 for a scalar theory with a non-anomalous symmetry, we have
that BRST symmetry also holds at the level of correlation functions and generates an
associated Ward-Takahashi equation. Indeed, changing variables from the fields to the
BRST transformed fields and then using the BRST-invariance of the action and the
measure, the path integral can be also written as:

Z[J; g] = /D,u[gb]Db 6_5[¢§b§§]+dew\/§Ji+¢i _
N / Dl Db®) =516 0 00T I AP G IO (2.2.135)

= /D,u[qﬁ]l)b e—S[¢;b;§]+dex\/§J;L¢(9)i

where in the last the BRST transformed fields are now regarded as functions of the non-
transformed ones. Comparing the first and last expression and taking arbitrary functionals
derivatives with respect to the sources, it follows that generic correlation functions of
BRST transformed and non-transformed fields are equal, i.e. BRST symmetry holds also
at the level of quantum correlation functions:

<¢(9)i1 (z1). .. ¢(9)iN(xN)> = <¢” (1) ... ¢”V(a:N)> (2.2.136)

Writing the BRST transformed fields in terms of BRST variations:
Z[J: g = /Du[gb]Db edea:\/ﬁJféeW 6—5[¢;b;§]+dex\/§Ji+¢i _

:Z[J;g]<1+/de\/§Ji+59¢i+---> =

J

= Z[J; 9]+ Z[J; g </dDw\/§Ji+6a¢>"> +

J

we obtain the condition:
< / dPx\/g JZ*59¢i> =0 (2.2.137)
J

which corresponds to the Ward-Takahashi equation associated to BRST symmetry, explic-
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itly:
0= /d%\/g Ji(600")
= / dPx\/G (1" (Sghyw) ; + T (Soc™) ; — 0" (6C,) ;) (2.2.138)
=0 [ AP (0 (sh), = 5+ (),

By taking arbitrary derivatives with respect to the sources and then setting them to zero,
the equation can be used to generate the series of identities between correlation functions
representing the constraints in which BRST symmetry is encoded at the quantum level; in
particular, by taking N functional derivatives 6/0.J; (x1).../6J; (zx) and setting the
sources to zero, one obtains the Ward-Takahashi identity:

0= (6" (1) ... 066" () ... 6™ ()
= (8 (¢" (1) ... 8" () .. '™ (an)))
=85 (¢ (1) . " (@n) ... " ()

The third expression follows from the assumed BRST-invariance of the path integral
measure and can be seen as the infinitesimal form of (2.2.136). From the second it follows
that the average of the BRST variation of a function of fields, i.e. a BRST-exact object, is
vanishing:

(2.2.139)

(0oF (R, c,c;b;9)) =0 (2.2.140)

Finally, we mention that BRST symmetry plays a key role in quantum gauge theories in
the identification of physical observables and physical states (in the operatorial formalism)
[27]. Here we limit to mention that, in the path integral formalism, a quantum physical
observable O is defined to be BRST-invariant, i.e. BRST-closed:

sO =0 (2.2.141)

Moreover, observables in the same cohomology class, i.e. differing for a BRST-exact term,
should be considered physically equivalent, since considering another observable O’ such
that:

0 =0+sX (2.2.142)

we have from (2.2.140), that their average, i.e. quantum expectation value, is the same:
(0") = (0) + (sX) = (0) (2.2.143)

So, observables should be identified with the cohomology classes of the BRST Slavnov
variation, clearly excluded the one of BRST-exact elements since equivalent to zero.
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2.3 Faddeev-Popov quantization with
standard gauge-fixing

In this section we discuss the gauge-fixed quantum theory obtained via the Faddeev-Popov
method by choosing the standard gauge-fixing term and gauge-fixing function typically
used in various practical applications, namely a gauge-fixing term quadratic in the gauge-
fixing function and the de Donder gauge-fixing function. This theory, in particular, is the
one used in the standard FRG construction for a QEG theory, presented in section 2.4.
After having introduced the gauge-fixing term, we discuss immediately the associated
on-shell BRST symmetry, to emphasize that it is present for any specific gauge-fixing
function chosen; at the end we present the gauge-fixing function considered and give the
complete gauge-fixed action.

2.3.1 Standard gauge-fixing term and generating functionals

Gauge-fixing term

Consider the Faddeev-Popov gauge-fixed action (2.2.81). The standard form typically
chosen for the gauge-fixing term in the Faddeev-Popov gauge-fixed action is a quadratic
term in the gauge-fixing function:

Serlh; g = —%/d%\/ﬁé fu(h; )3 f.(h; ) (2.3.1)

This type of gauge-fixing term is used in several practical applications, especially in
combination with the de Donder gauge-fixing function, analyzed in subsection 2.3.3.

« is a gauge-fixing parameter, i.e an arbitrary real number which parametrizes a class of
possible gauge-fixing choices within the form (2.3.1); according to the remark made in
subsection 2.2.2; since it is an ”"external” object introduced in the theory via the gauge-
fixing sector, it should appear only in objects related to the gauge-fixing and quantum
physical observables should instead not depend on it.

The main feature of this type of gauge-fixing term is that it is invariant under the
background gauge transformations (2.2.12). Indeed, as noticed in subsection 2.2.1 under
the definition, background gauge transformations can be interpreted as induced by a
change of coordinates; therefore, as long as the gauge-fixing function is constructed out
of the metric fields so that it is a proper tensor, namely a 1-form field, we have that it
transforms covariantly under a background gauge transformation:

O¢fu(h: g) = Lefu(h; g) (2.3.2)

And the integrand in the gauge-fixing term is a proper scalar, so that the former is an
action term written in proper covariant language; therefore, with a properly constructed
gauge-fixing function, while the gauge-fixing term breaks by construction invariance under
true gauge transformations, it is invariant under the background gauge transformations:

5eSyslhi 3] = 0 (2.3.3)
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Subsection 2.3.1 | Standard gauge-fizing term and generating functionals

Similarly, for the ghost term (2.2.77), taking the ghost and antighost to transform covari-
antly as a vector and a 1-form field as in (2.2.79):

0¢Sgnlh, c,Eg] =0 (2.3.4)

So, the standard gauge-fixed action (still with a generic, properly constructed, gauge-fixing
function):

Slhy e, gl = Spulh; gl + Sgrlh: 9] + Sgnlh, ¢, & g] (2.3.5)

with the standard gauge-fixing term (2.3.1), which we will consider in the remaining of
this part, is invariant under background gauge transformations:

6¢Slh, ¢, ¢l =0 (2.3.6)

According to the general discussion on BRST symmetry made in subsection 2.2.3, the
action will have also a rigid on-shell BRST symmetry, discussed in the next subsection.

If a Nakanishi-Lautrup field is introduced, the Nakanishi-Lautrup action term which
enforces off-shell the gauge-fixing term (2.3.1) is quadratic:

K/2Oé
Snelb; g] = /de\/E —bug"by (2.3.7)

Indeed, performing the resulting gaussian integration over the Nakanishi-Lautrup field we
obtain:

/Db ol Ve (Jﬁ?Tﬂbquby—ngny(h;g)) — ot /472G o Fu(hig)g" fu(hig) _ ,—Sgy[hsg]

As mentioned above, we obtain the same result by formally substituting in the action the
on-shell expression for the Nakanishi-Lautrup field imposed by its equations of motion:

1 48 e 2
= h c;b;g) = vgg"” v h, g bV — b on—shell — — 5 ha g
0 \/E(Sbu[ G G 79] \/Eg (f ( g)_l_ D) ) M| hell /§}2Oéfu( g)
(2.3.8)
Indeed:

(Suslhitig] + Swilbig) 2" = [ aP0yG - £, 9" £ (hig) = S,ylhig

Finally, if a noise field is introduced, the noise distribution necessary to obtain a quadratic
Nakanishi-Lautrup term is gaussian, i.e. also the noise term must be quadratic:

_ _ (1 o .
Snoise[by 13 G| = /de\/§ <%nug“ n, — ib,g" nl,> (2.3.9)
Indeed, performing the resulting gaussian integration over the noise field we obtain again:

= ) g = w207 v a
/Db edex\/g(—ﬁnug“ ny+ib, gt nu) — e—deac\/Z]Tb,Lg” by e—SNL[b;g}
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Additional sources and generating functionals

At the quantum level the theory is described by the generating functionals introduced in
subsection 2.2.3 computed with the gauge-fixed action (2.3.5). For later convenience, it
is useful to modify them by introducing additional sources for two non-elementary fields,
namely the BRST Slavnov variations of the metric fluctuation and the ghost. So, we define
an additional set of multiplets:

Y= (Sshclf‘y) ’17/)+iE(—Shw, sc“) (2.3.10)
k= () k= s

l, and k" are respectively Grassmann-even and Grassmann-odd. The total source term is
“w
now:

Ssource [¢a ']7 K7 g] = SsourcefJ[¢; J7 g] + Ssom“cefK[gﬁ; K7 g] (2312)

with:

Smmdmam_—/Wﬂﬁﬁw_—/fagaww+mw+mw (2.3.13)
&mxﬂ@&m:—/ﬁ%vmﬁwz—/ﬁ%vﬁw%mfuﬁw) (2.3.14)
The expressions introduced in subsection 2.2.3 are now dependent on the additional sources:
ZIJ: K g) = /Dﬂ[ﬁb] o= S16:9]=Ssource|$:: K9] (2.3.15)

WIJ; K;g] =log Z|J; K; g| (2.3.16)

[[®; K g] = sup {/dDw\/EJf‘bi - WI[J; K; g]}
J

(2.3.17)
:/fm@ﬁw—WMK@

WlJ; K; g ZSUP{/dex/EJJ@—F[q’;K;Q]}
(o]

(2.3.18)
— [daygiret - T Kig)

In particular, the Legendre transform connecting the path integral logarithm and the
effective action is still done with respect to the elementary fields and sources only, while
the additional sources remain spectators. The relation between fields and sources in the
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Subsection 2.3.1 | Standard gauge-fizing term and generating functionals

transformation becomes dependent on the additional sources J = J(®; K), ® = &(J; K):

— (#() 1 5W[JK§]
- JK /_:1: 5J+
. W5 . K:g (2.3.19)
OFi(r) = (HTi _ g
1 oI[®; K g]
Ji xTr) = -
= Vam o)
- (2.3.20)
+ 1 T'6[®;K;qg]
Ji'(x) = -
g(x) 6P (x)
The integro-differential equation for the effective action now reads:
e TORl — / Dylg] eXp{—S (6:9] — Ssource—rc[¢3 K ; g]
(2.3.21)

< _
—i—/deFé[;;iK;g] (¢i_¢i)}

Thanks to the additional sources we can now express correlation functions involving the
non-elementary fields as derivatives of the generating functionals; in particular, we can
express the average with sources of non-elementary fields as:

_ iy, =] OW[J;K;g) 1 oT[@; K g]
TG oK@ i) 0K @)
- ) - ) (2.3.22)
1 WO K;g 1 T6[P;K;qg]

U (z) = (T (x)),, = 9(x) OKi(z) Vi(z)  O0Ki(z)

The expressions in terms of the effective action follows from the fact that the first derivatives
with respect to the additional sources of the path integral logarithm and the effective
action are equal up to a minus sign:

W () = 10 ()

K;

W) = T () (2.3.23)

where, to match the functional dependence, it is understood that one has to use the
relations J = J(®; K), & = ®(J; K) after having taken the derivative. Those relations are
a consequence of the properties of the Legendre transform; the first relation, for instance,
follows from (2.3.17), recalling that J = J(®; K) according to (2.3.19):

(5J+ 3%
5K+ / 5K+
(5Ki (@)

o, @) ) s
J(d>;K) M 0J5 (y)
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In the following we will need also the relations between the matrices of second derivatives
of the path integral, the path integral logarithm and the effective action. In presence of
additional sources (2.2.101) immediately generalizes to:

% A (@) = Wiy (@, y) + W@(SEW@(@/) (2.3.24)

with M, N € {J;, K;}. Taking another derivative with respect to the additional sources in
(2.3.23), we obtain immediately the relation between K K blocks:

Witk (@) = =T« (2,y) (2.3.25)

Taking instead another right or left derivative with respect to the sources for elementary
fields in (2.3.23) and using again the properties of the Legendre transform, one finds the
relation between K J and JK blocks:

Wit (y) = =T gu(,) 25 Tols (59) (2.3.26)
W (@.9) = —Tolgl (2,) 2 Tolse () (2.3.27)
The first relation, for instance, follows from:
WS 5T 5 5

- [ SIS k()
SK; @077 (1) K (@) oo 3; ) 5K (2)00R(z) 377 (y)

o / gD or ¢ 1 oW §
OK; (2)69%(2) /g 2) 0J; ( F(2)0 Ji( +
after introducing appropriate 1/,/g factors and using identity (2.2.107):

W2, (e.9) = Tole) (2.9) (2.3.28)
which holds also in presence of additional sources and gives itself the relation between J.J
blocks of the two matrices of second derivatives.

We conclude the subsection by stressing the important fact that if the gauge-fixed
action is background gauge-invariant, the generating functionals inherit background gauge
symmetry as an explicit symmetry, in particular:

0WI[J; K3 , 6T [®; K g] =0 (2.3.29)
since the measure is diffeomorphism-invariant by assumption and also the source terms,

assuming that all sources transform covariantly according to their tensorial character in a
background gauge transformation.
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2.3.2 Standard on-shell BRST symmetry and Zinn-Justin
equation

On-shell BRST symmetry at the classical level

Consider the gauge-fixed action (2.3.5); the on-shell BRST variations of the elementary
fields are defined as:

(69}%’ = 9£C<§;w + hul/)
= 0(* G + 0, Gow + 0, G) + 0 (Orhy + 9 hiy + 0y hyy,)
= 9(@MC)‘§>\V + ?,,c)‘gw) + 6 (CA?AhW + @ucAhM + ?Vc’\hw)
800w = 0 (2.3.30)
dpctt = A O\t = 0Vt

_ 2 _
{ 59% = —Q%fu(h;g)

The correspondent on-shell BRST Slavnov variations are:
(shy, = £e(Guw + hyw)

= (P0G + 04 Grw + 0,7 Gay) + (PO\hyy + 0y by + 0, Ry,
= (vuckgku + vl,C)\g)\“) + (CkvAhuy + vuc)‘h)\l, + ?Vc’\hm)

ST = 0 (2.3.31)
sct = Aot = 0V, et
_ 2 .
\ SCy = _%fu(hvg)

In accordance with the general remarks on BRST symmetry made at the beginning of
subsection 2.2.3, the sector of the transformation unrelated to the gauge-fixing, i.e. metric
fields and ghost, is the same as in the off-shell transformation (2.2.115), while the one
related to the gauge-fixing, i.e. the antighost, is equal to that of the off-shell transformation
(2.2.115) upon substituting the on-shell form of the Nakanishi-Lautrup field (2.3.8) which
enforces the standard gauge-fixing term (2.3.1).

As anticipated, the BRST variation of the antighost depends explicitly on the gauge-
fixing function. Moreover, the nilpotency of the BRST Slavnov variation now holds only
upon using the classical equations of motion:

SQhW =
Szgm/ =
st

2_ e
§Cy

(2.3.32)

oS O O O

e
IS

since the second BRST Slavnov variation of the antighost is vanishing only using its
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equations of motion:
0=—=[hc,Ggl=—3§g"Gs,+¢" =  Guec"=0 (2.3.33)
indeed, from identity (2.2.128) we have:
26, = ———sfu(hi§) = ——=Gpu + & 20
50 = — o sfullig) = =G o "=

From (2.2.113) it follows that any polynomial function of the fields has also a vanishing
second BRST Slavnov variation, possibly after imposing the equations of motion of the
antighost, if present:
s*F[h,c,¢;b;g] "= 0 (2.3.34)
One can verify that the gauge-fixed action (2.3.5) is indeed invariant under the BRST
variations (2.3.30) by a direct computation. Indeed, the Einstein-Hilbert action is BRST-
invariant; the BRST Slavnov variation of the gauge-fixing term and the ghost term gives,
respectively:

sSiltial = [ Py (=g S0 £09) ) =
/ dPz\/G ( Fu(h; )3 s 1, (h; g)> / dPx\/g (scug" s f,(h; ))
and:
sSyrlh; g) = s/dDa:\/E (—¢.g"sfu(h;g)) =
_ / /G (—se,g™s (1 g)) = / /G (—s2,5"s 1, (1 9))

In particular, we notice the use of s?f,(h;g) = 0, which is actually valid also off-shell,
since the first variation of the gauge-fixing function, which contains only the metric fields,
introduces only ghosts and no antighost. The sum of the two variations is zero:

5 (Sgslh; gl + Sgnlh, ¢, & g)) = / dPz\/G (sc.g" s fo(h; §) — 56,5 s fo(h;G)) =0

Therefore:
09 (Sgrlhs g + Sgnlh, ¢, & g]) = 0 (2.3.35)

and in conclusion:

d9S[h,c,¢;9] =0 (2.3.36)

Similarly to the off-shell case, the standard gauge-fixing term and the ghost term are not
separately BRST-invariant, but their BRST variations compensate and precisely eliminate
each other and this holds for any specific choice of the gauge-fixing function. Therefore we
can again conclude that the gauge-fixed action (2.3.5) enjoys a BRST symmetry under
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Subsection 2.3.2 | Standard on-shell BRST symmetry and Zinn-Justin equation

(2.3.30) regardless of the gauge-fixing details; in this case however the BRST variations
depend explicitly on the gauge-fixing function.

On-shell BRST symmetry at the quantum level

We conclude the subsection by deriving the explicit form of the Ward-Takahashi equation
describing BRST symmetry at the quantum level for the standard gauge-fixed theory. With
respect to the result in subsection 2.2.3, we need to consider in principle the non-elementary
fields and the additional sources introduced in the quantization; so, (2.2.137) now gives:

< / dPx/G (J; 09" + Kjégw')> =0 (2.3.37)

JK

However, we have clearly dg1)° = 0 due to BRST nilpotency, since the non-elementary
fields are BRST Slavnov variations, therefore we have again:

0= / dPx\/G (809"
= / dP 2/ (1" (Sohyw) i + T (06" 11 — 1" (66C0) 11 ) (2.3.38)
=0 / 72/ (tw (8w ) yrc — T (S¢) yic + 11" <SEM>JK)

and substituting the explicit expression for the BRST Slavnov variation of the antighost
field in the last form of the equation, the Ward-Takahashi equation associated to BRST
symmetry in the standard gauge-fixed theory can be written as:

[ @2 (1 st = 5 = et i) ) =0 (2339)
As seen at the end of subsection 2.2.3, this equation can be used to generate identities
between correlation functions. Moreover, it can be recast as a functional equation for the
effective action, which in the literature takes then the name of Zinn-Justin equation [28].
Such equation is obtained expressing the Ward-Takahashi equation in the variables of
the effective action by evaluating the sources with the expressions given by the Legendre
transform, J = J(®, K), and writing them explicitly in terms of derivatives of the effective
action using (2.3.20), together with the averages of non-elementary fields, thanks to the
additional sources specifically introduced, using (2.3.22). Performed the substitutions, we
obtain:

1 oI o0 1 6L 6T 2 oI
2= [ d%e | N T v = 2.3.4
[ ] /d ’ (\/ﬁéhm, OkHv + \/E(scﬂ 51“ + K200 56# <fu(hag>>JK> 0 ( 3 O)

It can be seen that using the quantum equations of motion of the antighost (1/,/gdS/d¢,,) =
0 and defining:
I'[®; K g = T'[®; K g] — Sys[h; g] (2.3.41)

also the average of the gauge-fixing function can be rewritten in terms of the effective
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action, and the Zinn-Justin equation for the standard gauge-fixed theory can be expressed

as [5]%

/ / / /
1 ( oI’ or or (5F) _0 (2.3.42)

D

Bl == f e G5 + s a,
The equation is quadratic and linear in the derivatives of the effective action and represents
the constraint imposed by BRST symmetry on its functional form. If additional non-BRST-
invariant terms are added to the action, the Ward-Takahashi equation is modified with
additional terms (since on top of the BRST variation of the source term, it appears also
the one of the additional non-BRST-invariant terms) and one can rewrite it as in (2.3.39),
or equivalently rewrite the Zinn-Justin equation as in (2.3.42), but with a non-zero right
hand side, representing that BRST symmetry has been explicitly broken by the additional
terms and that it is recovered only in the limit in which the additional terms are removed
and the original equations satisfied.

2.3.3 Standard de Donder gauge-fixing function

We now give a specific form for the gauge-fixing function to consider in the standard gauge-
fixed theory obtained in subsection 2.3.1, namely the so called de Donder gauge-fixing
function:

_ 1_- _ _
Tulh:9) = V'hyy = 5V,h = K V" hag (2.3.43)

which enforces the so called background covariant de Donder gauge-fixing condition (one
can also consider generalizations of this condition where the 1/2 is substituted by an
arbitrary real parameter, known as generalized harmonic gauge conditions [5]). Clearly, it
correctly breaks the invariance under true gauge transformations (2.2.9) and is covariant
under the background gauge transformations (2.2.12). Substituting in (2.3.1), integrating
by parts and recognizing the structure tensor D***” »o (2.2.39) we obtain the de Donder
gauge-fixing term:

1 1 B v — OO
Soslhigl = — / d2\/G 5~ hasD GO via vl (2.3.44)

which corresponds precisely to the piece Sgpa—aeplh;g] in the quadratic term of the
background expansion of the Einstein-Hilbert action (2.2.31) deformed with the gauge-
fixing parameter. The functional derivative in the ghost term (2.2.77) gives:

= K" 5(2)V {0z —y) (2.3.45)

Notice the different conventions used, namely: = 1/v/327G instead of k = V327G n*¢, = —c,n"
as source term for the antighost instead of ¢,n*; and an additional factor 1/2 in the form of the
standard quadratic gauge-fixing term (2.3.1), which ultimately results in an additional factor v/2 inside
the gauge-fixing function when a specific form is specified .
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Subsection 2.3.3 | Standard de Donder gauge-fixing function

therefore the ghost term is given by”:
Synlh, ¢, 9] = —/dD:c Ge\g K N LG + ) (2.3.46)

The kinetic ghost term can be made explicit by noticing that using the definition of the
structure tensor K, (2.2.38) and writing the Lie derivative of the background metric as
LGy = VucGay + Vu,c*Gop, one has:
K" N LGy = V'V 1 Gop + [V V] o =
= Dcagap + Raﬁl’pcﬁgau
where we have used the rule (1.3.25) to commute the background covariant derivatives
(torsion-less). Therefore:

K" N LG = Gpo0¢7 + Ry’ (2.3.47)
and the de Donder ghost term can be rewritten as:
Sgh[ha C, E; g] = Sgh—kin [Cv E; g] + Sgh—int[ha C, 6; g] (2348)
with:
Syn—kinlc, & g] = / d"z\/g¢, (-0) (2.3.49)
Sunimtllts &) = / P25 [~005 (Rpo” + K™ 7 £.h)] (2.3.50)

We write also the complete de Donder gauge-fixed action, making also explicit the back-
ground expansion of the Einstein-Hilbert action and the Lie derivative in the hce-interaction
term:

Slh,c, & g] = Senlh; gl + Sgrlh; g] + Sgnlh, ¢, & g] =
_ dD \/: 1 1 A [_(O“Bv“”lj 1 1 Da,@,uu ?p?a OOC/BMV h
= TN/ g ? 5 af - + + a po + 2 Qv

+2 (=R +2A) + 2 (G + AGu) by + % Onh"}
n=3

+ ¢, (—0)c"

— &\g" [Rpoc” + K",V ("N rhyy + VuChry + Vi hyy) | } (2.3.51)
In particular we notice that thanks to the — sign introduced in the ghost operator (2.2.74)
in paragraph 2.2.2, the kinetic ghost term has the "right”® sign, as the one for the metric
fluctuation.

"The covariant derivative multiplying the Dirac delta in (2.3.45) is implicitly in the form acting on rank-
(0,2) tensors, and can be moved on the right hand side by noticing that I (2)d(z —y) = §(x — )}, (y),

ny uv
and integrating by parts in the y-integration in (2.2.77) (where there is no /g factor) to move the ordinary

derivatives as noted in 4: J4),6(z —y) = —0(y)(x — y) P 3(x — y)Ory)-
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2.4 Standard FRG flow

In this section we apply the essential concepts in FRG theory reviewed in section 1.2 to
the standard gauge-fixed theory in order to briefly present the standard construction of
an FRG flow in a QEG theory. In particular, we present the standard Wetterich-Morris
equation and discuss how the construction is background gauge-invariant but incompatible
with BRST symmetry, which is broken in the regularized theory.

2.4.1 Standard FRG regularization

Regularization

Consider the path integral (2.3.15) describing the quantum theory stemming from the
standard gauge-fixed action (2.3.51). According to the preliminary analysis made in
subsection 2.1.2 (taking now into account also the presence of ghosts), the contributions
from the various field configurations to the path integral can be naturally ordered in
the background field method by rewriting the integrated fields in generalized momentum
space, i.e. expanded in the basis of eigenfunctions w,(x) of the negative background
laplacian, and the integration measure in terms of the corresponding Fourier weights
I, du[ﬁw(p), &(p), ¢u(p)]-The integrated weights are now ordered by the value of their
generalized momentum, i.e. the eigenvalue p? of the corresponding eigenfunction of the
negative background laplacian, from IR modes, i.e. low p?, to UV modes, i.e. high p*.
As seen in subsection 2.1.2, the FRG coarse-graining can be now implemented similarly
to the scalar theory in subsection 1.2.1 by IR-regulating the path integral by manually
adding to the gauge-fixed action a regulator term suppressing the integration of IR modes
and leaving untouched UV ones with respect to a floating scale k?, for both the metric
fluctuation and the ghosts. The standard regulator has the form:

ASylh, ¢, ¢ g] = ASg i h: ) + ASgrwlc; G 7] (2.4.1)

with a quadratic regulator term for the metric fluctuation and one for the ghosts:

_ 1 = [ v —
ASgT(k) [h,g] = 2—52 /dD.fE\/EhaﬁRgf(f) (—D) hwj (242)

ASgh(k) [Cv C; g] = /de\/ECuRgh(k) (—lj) ! (243)

The regulators Rgﬁ%” (—lj), Rgnk) (—Ij) depend on the background metric; in particular,
we assume that the regulator for the metric fluctuation has a factorizable tensorial
structure, possibly k-dependent, contained in a generic structure tensor constructed with
the background metric:

Rty (—0) = Ryl Rorgry (-0) (2.4.4)

Similarly to the regulators for the scalar theory in subsection 1.2.1, the functional form of
the regulators R,k (—l:l), R (—l:l) in generalized momentum space, i.e. Rg.x) (p?),
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Subsection 2.4.1 | Standard FRG regularization

Rnky (p*), must satisfy properties (1.2.6) and show the qualitative behavior depicted in

figure 1:
( 2

p
1. Rgr/gh(kz)(p2) — >0 , ﬁ — 0
p2
2. Rgr/gh(kz) (p2) — 0 , ﬁ — 0
(2.4.5)
3. 'R,gr/gh(k)(p2) — o0 , ]{72 — k[ZJV — 0
\ 4. Rgr/gh(k)<p2) — 0 , ]{72 — 0

where kyy is some large UV scale. Thanks to the first two properties, the regulators
implement the desired coarse-graining: in the path integral, Fourier weights with eigenvalue
p? are suppressed if p? < k% (property 1.) and left untouched if p? > k? (property 2.).
The second two properties are required to set the limits of the flow of the effective average
action, as seen below. In order to guarantee those properties, we consider regulators with
the standard functional structure as in subsection 1.2.1:

2
Ryrjgn) () = k*Ro (%) (2.4.6)

with Ro(z) is a standard dimensionless and positive shape function which interpolates

between Ry(0) = 1 and Ry(c0) = 0:

-1 , =0
Ro(z) =0 o (2.4.7)

Adding the regulator term to the action we define the regulated action:
S lh,c,&g] = S[h, ¢, & g] + ASw[h, ¢, & g] (2.4.8)

At the quantum level, the regularized theory is described by the regularized generating
functionals constructed with the regulated action. Similarly to the case of the scalar theory
in subsection 1.2.1, in order to be properly defined, they are also implicitly regulated
with &gy as sharp UV cut-off on the values of the generalized momenta considered in the

measure, [[oip<ixyy | Al (p), &(p), ¢u(p)]. The regulated expressions correspondent to
those in subsection 2.3.1 are:

Z(k)[J;K;g] — /DM[¢] 6—5’<k)[¢;§]—Ssamce[¢;J;K;§] (2‘4_9)

Wil J; K g) = log Zw[J; K3 9] (2.4.10)

Fofi6ig] =sup { [ a7/ 000 = Wil 1
; (2.4.11)
- /d%@ JrOT = Wi [J: K
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Wl K;g) = SUp {/d%ﬁﬁ‘bi — T @ K;g]}

(2.4.12)
= /de\/ﬁ J;“d)i — Ly [®; K g

Now all averages are k-dependent, as well as fields and sources related in the Legendre
transform, J = J(k)((b, K), d = q)(k)(J, K)Z

1 Wl K;9)

g 6J; (z

glo) %() ) (2.4.13)
1 Wayo[J; K;g]

glx)  0Ji(x)

o'(z) = (¢'(2)) 5 =

®¥i(a) = (67(2)) 1 =

1 0T [®; K;g)

Ji(z) = .
VIV L i (2.4.14)
() = 1 Tyyo [?;K;g]
Z glz)  09'(x)
. . 1 5W(k)[J; K,g] 1 5f(k)[¢;K;g]
Vi(x) = (Y'(x = = —
= W = 5 ek @ oK
- < ~ $— 2415
V) K@) glz)  O0Ki(x)
The integro-differential equation for the regulated effective action is:
e_f(k) [®;K5g] /DM[¢] exp{ _S(k) [¢7 g] - Ssource(K) [¢7 Ka g]
R _ (2.4.16)
Ly 0 [ K59] 5
+ /dDI SPi (¢ - ¢ )

Effective average action

The formal definition, i.e. based on the above generating functionals, of the effective
average action describing the scale-dependent theory interpolating between the classical
and quantum regime is:

L) [®; K g) = Dy [@; K3 ] — AS (s [0 7] (2.4.17)

The second couple of required properties for the regulators in (2.4.5) allows to formally fix
the limits of its flow:

[ (s0) [®; K; g] = T[®; K5 g] (2.4.18)
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Subsection 2.4.1 | Standard FRG regularization

F(k—”ﬁUV—wO) [¢7 K7 g] = S[q)) g] + Ssource(K) [q), K, g] + . (2419)

In particular, for £ — 0, the effective average action tends to the unregulated quantum
effective action since AS(,_,0) — 0 (property 4.):

L o0y [ @3 K5 9] = L) (@3 K §] — AS(i0) [ @5 9] = T[®; K 9] — 0
For k — kyy — oo, the effective average action is expected to approximately tend to the
unregulated classic action (plus the source term for non-elementary fields, if those are not
set to zero), with corrective terms related to the reconstruction problem. Exactly as seen

for the scalar theory in subsection 1.2.1, this can be deduced from the integro-differential
equation (2.4.16) rewritten for the effective average action:

e_r(’ﬂ[d);K;Sﬂ = /DM[¢] exp{ - S[¢a g] - Ssource(K) [¢7 Kv g]

— ASwy[#; g] + AS ) [®; g]
%
ASw s [®:9] . (2.4.20)
+ [are 2t (g o)
v

+/deP(/’f) (S[;?;KQQ} (¢z_¢z)}

Indeed, due to the quadratic nature of the regulator terms, we have again that the three
terms in the second and third line of the equation combine to give precisely the regulator
term itself computed in the difference between the integrated and average fields ¢ — ®:

%
AS(k) 0 [Cb;g] (

S ¢ — &) = —ASu[d — ;9] (2.4.21)

—ASy[¢: 9] + ASuy [®: g] +/dDiU

Therefore, since R, /gh(k—kyyv—o0) — 00 (property 3.), one recognizes the functional
equivalent of the gaussian limit representation of a Dirac delta:

e ASmlo=a)  Fhuveee - sip hsle — cJéle — g (2.4.22)

and therefore in the integro-differential equation, in the limit k& — kyy — oo, we obtain as
dominant term the integrand computed in ¢ = @, i.e. exp(—S[P; g] — Ssource—x [P; K g]),
from which it follows (2.4.19).

Symmetries and theory space

Assuming that the regulators are constructed with a proper tensorial structure, the
regulator term (2.4.1) is invariant under background gauge transformations (2.2.12):

6eASy[h,c, ¢ 5] =0 (2.4.23)

Therefore, the background gauge-invariance of the unregulated theory is preserved for any
value of the FRG scale k, at the classical level in the regulated action:

0eSayh, ¢, 6 g =0 (2.4.24)
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and as an explicit symmetry at the quantum level in the regulated functionals:
SeWi [ K 9], 6T (@ K 9], 6T [®; K9] = 0 (2.4.25)

As far as BRST symmetry is concerned, instead, the quadratic regulator term (2.4.1)
is clearly not invariant under the BRST transformations (2.3.30):

0o ASuy[h,c, ¢ 9] #0 (2.4.26)
Therefore, the BRST invariance of the unregulated theory is spoiled:
5oSey[h, e, & 9] #0 (2.4.27)
and recovered only in the limit in which the regulators vanish:
00S(k0)[h, ¢, G g) = 64S[h, ¢, ¢ g) =0 (2.4.28)

At the quantum level this appears in the fact that the Ward-Takahashi equation (2.3.39)
is modified by the regulator term, which, being non-BRST-invariant, must be taken into
account inside (2.3.37) together with the source terms:

< / dPx\/G (I 600" + K[ 6600") — 86 AS 105 g]> =0 (2.4.29)
JK

Therefore (2.3.39) is substituted by the modified Ward-Takahashi equation, valid for any

value of the FRG scale k:

2
/de\/E (t/“’ <shW>JK — Ny (sc“>JK - = <fu(h 9)) JK> <(59AS [0; gDJK
(2.4.30)
and BRST symmetry is recovered only in the limit in which the regulators vanish and the
original identity is again satisfied.
Equivalently, from the point of view of the effective average action, it can be seen that the

modified Ward-Takahashi equation can be rewritten as a modified Zinn-Justin equation
which substitutes (2.3.42), valid for any value of the FRG scale k [5]°:

1 (8T 0T, 6T, 8Ty,
Zr "z W)~y 2.4.31
[ (k)} \/_ <6h;w + Sch 51# (k) ( )
where:
[l (@5 K5 g] = T [@; K 9) — S, f[hs 9] (2.4.32)

and Y is a functional trace, dependent on the regulators and derivatives of the effective
average action, characterized by:

Yoo -0 , k=0 (2.4.33)

so that again BRST symmetry is again recovered only in the limit in which the regulators
vanish and the effective average action satisfies the original Zinn-Justin equation:

Y Lo =Z[]=0 (2.4.34)
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Subsection 2.4.2 | Standard Wetterich-Morris equation

According to those symmetry properties, the theory space, i.e. the space spanned by
all operators which can appear inside the effective average action, is given by background
gauge-invariant operators, i.e. functionals with a proper scalar integrand, which also
satisfy the modified Zinn-Justin equation and thus belong to the k-dependent hypersurface
E(k) =3 — YE@ =0:

T:{A[¢;K;§] L SA[® Kl =0 | i(k)[A[CD;K;g]]:O} (2.4.35)

Inside the space of background gauge-invariant operators it is contained also the hypersur-
face of BRST-invariant operators, ¥ = 0, to which the unregulated effective action belongs.
The hypersurface Y = 0 tends X = 0 in the limit £ — 0.

2.4.2 Standard Wetterich-Morris equation

In this subsection we briefly present the standard Wetterich-Morris equation describing
the flow of the effective average action (2.4.17). The equation is derived by expressing the
derivative of the effective average action with respect to the FRG time ¢ = log k starting
from the formal definition (2.4.17) in terms of the regulated generating functionals.
Exactly as seen for the scalar theory in subsection 1.2.2; one starts by taking the time
derivative of the regulated effective action (2.4.11) to find its flow equation. Similarly, we
have the equalities:

6tZ(k) [J§ K; §]
Zy|J; K ] (2.4.36)
= (0,AS 1 [¢; 7]

3tf(k:)[¢§ K;g] = —atW(k)[JQ K;g] = —

) i

where it is understood that the time derivatives of source-dependent objects are computed
in J = Ju)(®, K). In particular, the first equality comes from the Legendre transform
(2.4.11) recalling that J = J,)(®, K) according to (2.4.13):

/dD W <atW(k 7 Tt /deﬁ J’LZ §J+

The others follows immediately by the definition of the regulated path integral. So:

0L 1y [®; K g = (9, AS sy [ (2.4.37)

15k

Substituting the explicit expression of the regulator (2.4.1), the right hand side is given
by:

0L 1[5 K3 ] = / d’z\/g { < 250 Ry (—0) hw> o P (GO R (-0) ) 5

(2.4.38)
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Introducing an additional integration in order to formally express the objects on which
the regulators act in a different spacetime variable, we can then collect the regulators:

L ) [®; K3 9] =

— [ aPad /508~

s OREZE (~0) (s (1) s+ 0400y (~Ohp) (o) 1)

1 « v — — — v
= Trg |:2_K28thrB(7/l:) (—D) <haﬁ X hMV>JK + (5ﬁathh(k) (—D) <CM X c >JK:|
(2.4.39)

where in the last expression Tr; denotes the functional trace with a factor /g in the
measure and it is understood that the regulators act on the second of the two terms in the
direct products. Finally, the flow equation for the regulated effective action is obtained by
expressing the 2-point correlation functions (derivatives of the regulated path integral)
in terms of connected correlation functions (derivatives of the regulated path integral
logarithm) using relation (2.3.24) :

~_k)Z(2) (z,y) = W@)MN(];’ y) + WBM(w)W(ZkT))N(y) (2.4.40)

The second piece gives a product of average fields (hag(2)) ;5 (P (¥)) ;5 = hap(2)hw (y)
and (¢, (x)) 5 (¢*(Y)) ;¢ = Cu(x)c*(y), which traced gives back precisely the derivative of
the regulator term (2.4.1) computed in the average fields 0;AS [®; g|:

1 af,uv = =\ B
Trg 2—1%28{]% B (—D) haﬁ ® huy + athh(k) (—D) CM ® CM — atAS(k) [¢7 g] (2441)

gr (k)

The first is related to the second derivatives of the regulated effective action according to
the relations (2.3.28), (2.3.25), (2.3.26),(2.3.27). In particular, since there is no correlation
function of non-elementary fields, we need only the first:

77(2) =(2)—-1
Wiaig, (@ 0) =T gies (€, 9) (2.4.42)

Appropriately antisymmetrizing the ghost sector and using identity (2.4.40) and (2.4.42),
one obtains the standard flow equation for the regulated effective action [5]%:

~ 1 1 af,uv —
Ol 1y [®; K 9] = —Trg{?&f?% (= D) e

2 gr(k) k)haa hyw

_F-

_ 2.4.43
— 680 Rgnary (—0) [ (B, — L (k)en cu] } ( )

+ 0, AS (1) [®; g

where it is understood that regulators act on the second implicit spacetime argument of
the inverted second derivatives of the regulated effective action.
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Subsection 2.4.2 | Standard Wetterich-Morris equation

Using the formal definition (2.4.17) to write the regulated effective action as Iy =
Ly + ASqy, and the relations®:

=(2) _ @ L Sasuw
Dlhosh (@9) = Ty (,y) + ?Rgr(,ff) (-0O@) 6(z — ) (2.4.44)

= ) _
ng))éu o (Ty) = ngﬁau o (T,y) L Rgnw) (_D(x)) éz —vy) (2.4.45)

one obtains the standard Wetterich-Morris equation for the effective average action:

= 1 1 ap,uv — 1 af,uv — -
0T [®; K3 3] = §Trg{?8t7€gf(’k“) (—-0) ( T s T S Rorth (—EI)>
50 Ryy (~0) [ M o+ Ry (-0)) | (24.46)

( (2)
(k)ep
-1
(2) =
- (F(k)c” S 0y Rgn(k) (_D)> ] }
In particular, we notice that the term 0;ASq,)[®; g] in (2.4.43) is precisely canceled. We
also notice that, being the regulator term (2.4.1) quadratic and composed of separated
terms for the metric fluctuation and the ghosts, its matrix of second derivatives AS ((ig Sics

is field-independent and block-diagonal, with the two blocks given by the regulators
appearing inside the round brackets. We make the following remarks:

1. The effective average action can be now defined as solution of the Wetterich-Morris
equation (2.4.46), in the place of the formal definition (2.4.17), and the latter as the
fundamental object defining the quantum theory, in the place of the generating functionals:
according to the limits (2.4.18), (2.4.19), given the classical theory described by the gauge-

fixed action S, the solution of the equation describes a trajectory in theory space which

leads to the quantum theory described by the effective action I', i.e. ~ S i Ly 'y ol

In particular, the classical action does not enter in the derivation of the equation, and we
can now lift the considered de Donder gauge-fixed Einstein-Hilbert action to any other
gravitational action with an appropriate gauge-fixing, formally serving as initial condition
of the flow.

8In the formula we dot not write the 1//g factor which should multiply the regulators, according

to the definition of the symbol ASVQI)N for the second derivative. In fact, adopting the compact notation
where second derivatives AS\?N and traces Try contain the appropriate /g factors, one can verify that
it is effectively correct to write and manipulate operators as in flat spacetime where the /g factors are

absent, as we will do in the following.
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Llhooc)y =S+

v

Figure 4: Pictorial representation of the FRG flow trajectory in theory space described by the
Wetterich-Morris equation for the effective average action I'(yy, which unfolds from the gauge-fized
action S (plus counter terms) to the quantum effective action I'. The flow is constrained on
a k-dependent hypersurface S =0 (not depicted) embedded in the space of background gauge-
invariant operators, but is forced out from the hypersurface of BRST-invariant operators ¥ = 0,
due to the BRST symmetry breaking caused by the reqularization procedure, with the exception
of the last point, i.e. the quantum effective action, where the regulators disappear and BRST
symmetry is recovered.

2. The implicit UV cut-off ki, deriving from the formal definition (2.4.17), can be safely
removed by letting ki — oco: formally expressing the traced operator in generalized
momentum space and the trace as a sum over generalized momenta, the derivatives of the
regulators have, thanks to properties (2.4.5), the qualitative behavior depicted in figure
1; therefore, the dominant contributions to the sum come only from a narrow band of
generalized momenta centered around k and those from the UV region are suppressed.

3. The Wetterich-Morris equation (2.4.46) is an exact functional differential equation with
two separated sectors, i.e. one for the metric fluctuation and one for the ghosts, both with
a 1-loop structure and second order derivatives, similarly to (1.2.33): both are given by the
loop formed by tracing the exact regulated propagator, i.e. f‘%;l o = W(%) 5= (BT e
with an insertion of the correspondent regulator. The equation contains only second
derivatives due to the quadratic nature of the regulator (2.4.1), which makes appear inside

(0, AS (195 §]>JK in (2.4.37) only 2-point correlation functions.

4. According to the symmetry properties of the regularized theory stemming from the
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Subsection 2.4.3 | Einstein-Hilbert truncation and beta functions

formal definition of the effective average action (2.4.17), the Wetterich-Morris equation
(2.4.46) is expected to generate only background gauge invariant terms satisfying the
constraint imposed by the modified Zinn-Justin equation, ¥ = 0, so that the trajectory is
constrained on the k-dependent hypersurface ¥, = 0 along the full flow from the UV to the
IR, co — k — 0. In particular, the equation is expected to generate non-BRST-invariant
terms which forces the flow outside from the hypersurface ¥ = 0, in which it arrives
only in the last point, where the hypersurface Y = 0 tends to ¥ = 0, and specifically in
correspondence of the effective action (figure 4).

2.4.3 Einstein-Hilbert truncation and beta functions

We conclude this second part of the thesis by giving a brief outline of the computation which
allows to write the Wetterich-Morris equation (2.4.43) in component form in the Einstein-
Hilbert truncation, in which the running couplings are the Newton’s and cosmological
constants [5]. Firstly, we rewrite the equation performing a first truncation which allows
to neglect the dependence on the additional sources, namely we fix the dependence of the
effective average action on the additional sources to be linear and given by the source term
(2.3.14) appearing in the path integral:

F(k) [¢7 K; g] = F(k) [(D) g] + Ssource—K[q); K7 g] (2447)

which we refer to as linear-K truncation. We rewrite the equation also removing the
antisymmetrization in the ghost sector and separating the two traces:

1 a v — 2 af,uv — -
L () [®; 9] = 2Trg[8t 6” ( D) <"52rgkz))haﬁhw+7€gr%) (_D)) ]

. (2.4.48)
— T, [&;aﬂzgh (-0) (r@)C o + Ry (— El)) }

Being the source term scale-independent, there is no term dependent on the additional

sources in the left hand side, therefore we can neglect their contribution also in the right

hand side, considering directly derivatives of I, [CD; g}. The Einstein-Hilbert truncation

is given by the following ansatz for the effective average action:

F(k)[h,c,é;g] =Tenm [g =h+g]+ gk [h gl + th[h ¢, G4l (2.4.49)

where the first two scale-dependent terms are given by the Einstein-Hilbert action and
the de Donder gauge-fixing term (2.3.44) with the Newton’s and cosmological constants
promoted to running couplings, while the third scale-independent term is given by the de
Donder ghost term (2.3.46):

I SEH[Q]‘G%G(M (2.4.50)
Tosiinlhi 9 = Soslhidllg (2.4.51)
Lgnlh,c,€; gl = Sgnlh, c, ¢ g (2.4.52)
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In particular, according to this ansatz, we are neglecting a possible evolution in the ghost
sector. Substituting the ansatz in the equation, we have then:

O Ceamlg=h+3g)+Tepmwmlh;g)) =

1 aBuv ([ 2 ) o (=)
= 5Ty |ORG (<) (5 (T + Torw )y, + Rty (-0)

2 aﬁhul/

1 = (2) 1 =)
— Trg [ 640 Rgnw (—0) (Sghc’:u o+ O Rgn(r) (—D)>
(2.4.53)

The Einstein-Hilbert truncation is a particular example of single-metric truncation [5], i.e.
the non-gauge-fixing-related sector of the ansatz, in this case the running Einstein-Hilbert
action, is taken to be a functional dependent only on the full metric g, = g + hpuw, ie.
only on the sum of the background metric and the metric fluctuation and not on the two
independently. Therefore, one can project the equation on the subspace of single-metric
functionals according to the projection rule:

Alh;gl  —  Alg] = Afh; g] (2.4.54)

h=0
g=9

which in the right hand side of the equation must be applied after having computed the
various derivatives:

Ol Ermlg) =

1 B (2)
= —Tr, athf(;’;) (—0) </€2 (FEH(k) + Fgf(k))haﬁhw

2

— Tl"g (Sfjathh(k) (—D) (S(Z)

ghc,c?

(2.4.55)

In particular, the de Donder gauge-fixing term is canceled in the left hand side of the
equation, which thus reads:

2
where the dimensionless running coupling Zy ) is defined as:

Zngy = G (2.4.57)

The objective is now find the contributions in the right hand side at order O(1) and
O(R), i.e. the terms proportional to [ d”z,/g and [ d”z,/g R, in order to project the
equation and read off the expressions for the derivatives 0;Zn k), O{(Zn@)Aw))- For this
purpose one can use an arbitrary family of metrics which is general enough to identify
the terms [ dPz./g and [ d” r,/g R and to distinguish them from the higher-order ones.
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According to [5], we consider a maximally symmetric space, whose curvature tensors are
characterized by the relations:

Raﬂ;w - ) (gaugﬁu - gal/gﬁu) R (2458)

DD —1

1
Ruy = = g R (2.4.59)

The right hand side receives a contribution from the metric fluctuation trace sector and
one from the ghosts trace sector:

RHS () (R) = RHS g1y (R) + RHS g () (R) (2.4.60)

As far as the metric fluctuation trace sector is considered, the second derivative
(F EH(k) + Fgf(k))r(f)ﬁh lh=0 receives a contribution only from the quadratic part of the
aptRY g=g

running Finstein-Hilbert action, given by (2.2.31) with running couplings, with the de
Donder term multiplied by (14 1/a) according to the de Donder gauge-fixing; in particular,

we choose the gauge-fixing parameter to be a = —1 to cancel the de Donder term:
o ZN@k _ 1 aB v L AaBw
Crmaole) + Tosmlhi 9] = =57 / A%0\/G Shas (~KP D+ 05 ) by (2461)

and the second functional derivative gives®:

(2)
hashu

K2 (FEH(k:) + Fgf(k)) = ZN (k) <_chﬂ,m/|:| + Ogﬁ’w> (2.4.62)

However, in order to easily perform the inversion and compute the traces, it is convenient
to partially diagonalize the quadratic operator by rewriting the metric fluctuation in terms
of its trace and traceless part:

1
4 D

One can see that in general the quadratic term is rewritten as:

hw = h hGpu (2.4.63)

p =

[FEH(k) [g] + Fgf(k) [h7 gH h2—term

ZN (k) 1 _ o

D-2 = D—4 5 (2.4.64)
D h< 0 - 204 + = R)h

e _ o e D—4 _ .
+ Ryh"’h* ) — Roguh®*h? + 5 hRWh‘“’}

9As noticed in 8, here and in the following we do not write the /9 factors working in compact notation.
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and in a maximally symmetric spacetime it becomes:

[FEH(k) l9] + ng(k)[h3 g]] h2—term

Z o — —_ _ o
K (2.4.65)

2 D(D—1)

D-2 [ - D—4 _
2 “hlO-2A - -
o5 h( 0-2A0) + R)h]

The trace in the right hand side of the flow equation can be now rewritten in a sum of a
trace over traceless symmetric metric fluctuations, i.e.traceless symmetric tensors, Tr,r
and one over the traces, i.e. scalars, Tr, g, respectively containing the operators:

(2) (D_4)(D+1> af,uv
&2 (Cprm) + Los )b [0 = ZN () (—D — 20y + DD 1) R) 6™
9=9
(2.4.66)
D -2 D -4
5 (D + Tasn) ‘h:o =—Inw 5 (—D — 20w+ —5— R) (2.4.67)
9=9

where in the first 657 is the identity in the space of traceless symmetric tensors. We
now specify the regulator; as anticipated in subsection 2.4.1 we consider the structure:

Rty (%) = Ry Ry (#°) (2.4.68)

with the regulating part given by a standard regulator:

2
p
Ry (P°) = K" Ro <ﬁ> (2.4.69)
We pick the tensorial prefactor to be:
~af Zuv D—9 ~aff muv
aB,uv af,uv grg grg

where in particular Pe%# = §obwv _ gebgmv /D and PSQ’B M = goBgh | D are respectively
the two projectors in the spaces of traceless symmetric tensors and traces. Thanks to this
choice the regulator is rewritten in terms of the traceless metric fluctuation and its trace
as:

ZN(k) D -2

ASpwhi gl = =5 / d%@{ﬁwnw(@ (—0) h — —p "Rt (—0) h} (2.4.71)

In particular, the two sectors have the same multiplicative prefactors as the second
derivatives in (2.4.66). Therefore, inside the traces Tr, 7 and Tr, g there appear respectively
the regulators ZN(k)Rgr(k:) (—D) (5%[3’“” and —(D - 2)/(2D)ZN(]€)RQT(]€) (—D) which sum
correctly with the second derivatives in (2.4.66). Finally, splitting also the derivative
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Subsection 2.4.3 | Einstein-Hilbert truncation and beta functions

atRZZ’:)” (—0) in the two sectors, the contribution of the metric fluctuation sector in the

right hand side of the flow equation is rewritten as:

1
RHSgr(k) (R) = TI‘gT |:QZN(k) at (ZN(k)Rgr(k) <_D)) . X
D—-4)(D+1 B
. (—D + 7zgr(lc) (_D) - 2A(k) + ( D(D>(— 1) ) R) 1
+ Tl"gs {T]\[(k)at (ZN(k‘)RgT(kJ) <_D>) .

D—4 \!

(2.4.72)
In the traces it is understood an identity in the corresponding space, giving the discrete
part of the trace, equal to number of independent components of the objects in the space,
trp (1) = o7y, = D(D +1)/2 — 1 for traceless symmetric tensors and simply trg(1) = 1
for scalars.

. . . . 2 .
As far as the ghosts trace sector is considered, the second derivative S;h)au o |h=0 receives
=9

h
g
a contribution only from the quadratic part of the de Donder ghost term:

Splhccgll. . = / Pay/Gc, (—05F — RE) e (2.4.73)

which in a maximally symmetric spacetime reads:

[Sgh[h7C7 C; g”éc—term = /de\/EEM (_Ij - %) c” (2474)
Therefore: A
;?L)Eu c’|h=0 - (_D N 5) 65 <2475)
g=g

As regulator we consider the one with the same shape function used for the metric

fluctuation: )

p
Rango (9°) = k" Ro (@) (2.4.76)
and the contribution of the ghosts sector in the right hand side of the flow equation is
rewritten as:

R\ !
RHSgn) (R) = —Trgy |:athh(k) (—0) (—l:l + Ry (—0O) — 5) ] (2.4.77)

where it is again understood an identity, in this case in the space of vectors, which gives
the discrete part of the trace trp(1) = df = D.

The final step to extract the beta functions consists in using the operatorial Taylor
formula for the inverse operator:

1+0) "= i(—l)"(’)” (2.4.78)

n=0
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to expand in powers of the Ricci scalar the arguments of the traces in the right hand side
of the flow equation:

RHS ) (R) = Tr, (Wi (—0)] + Tr, [Wo(—-O)R] + O(R?) (2.4.79)

and then evaluating the traces using heat kernel methods, which allow to compute traces
of generic functions of the covariant laplacian. In particular, up to order O(R), one has
the expansions [5]:

Try [W(-0)] = % {QD/Q[W] /d%\/g + éQD/Ql[W] /de\/ER} +O(R?)
(2.4.80)
Tr, [W(-O)R] = %QM[W] /dD:c\/Z;R + O(R?) (2.4.81)
where the -functionals are given by:
Qo[W] = W(0) (2.4.82)
W] = ! Ood 117 2.4.83
QuoolW] = s [ a2 WG (2.483)
In]
Qn<o[W] = (—d%) W(z) . (2.4.84)

where I'(n) is Euler’s gamma function. Finally, the derivatives 0, Zn k), O¢(Znx)Aw)) are
found by equating left and right hand side of the flow equation:

Iig /QQ

0(ZnwAw) =+ RESgra (R)loy + - RESgray (B)loq) (2.4.85)
li2 /<;2

OZnw) = — RHSg (R)lowr) — 5 RESguw (B)locr) (2.4.86)

We limit to present the result of the computation, which can be expressed for a generic
regulator shape Ro(x) in terms of the threshold functions:

PP (w) = b /000 dx 2" Ro(@) = 2Ry (@) (2.4.87)

" ) [+ Ro(w) + ul’
~ 1 o _ Ro(l')
PP (w)=—— [ dea™! 2.4.88
n(w) ['(n) /0 o [# 4+ Ro(z) + w]” ( )
In particular one has:
RHS, () (R)|oq) = (2.4.89)

1 . 2A F 2A
~ 4 (4m)DP2 kP {QD(D +1)®ph (— kgc)) — D(D + 1)nn®p (_%)}

2D
RHS g k) (R)lo) = _Wqu)lDﬂ(O) (2.4.90)
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and:
RHS 1) (R)|o(r) = (2.4.91)
K2 1 Do 1 2A 1 - 27
= Saam {0+ b (42) - b (1)
2A 1 - 2A
—6D(D - 1) |, (<52 - Juvdhs (-252) |}
oD . (1_, 1,
RS (Rlot) =~ sk (§0ba 20+ 505,00 2492

where 7y, the anomalous dimension of the running Newton’s constant, is defined as:
NN = —0¢10g Zy k) (2.4.93)

In particular the terms coming from the metric fluctuation trace sector of the right hand
side of the flow equation, which contains the running cosmological constant, give threshold
functions computed in —2A/k?, while the terms coming from the ghosts trace sector,
which does not contain the running cosmological constant, give the threshold functions
computed in zero. Finally, the derivatives 0, Znwuy, O(Zn)Aw)) in the Einstein-Hilbert
truncation are given by [5]°:

( 2 1

K
O ZnwyAw))

_ 28
"~ 16 (47)D/?

kP [QD(D +1)®p, (— T2 ) - D(D + 1)77N<i>}3/2 <—2l;€#>

~ 8D, ,(0)]

O =~ L po2Lpip i1y e o) _ L, 200
t N(k)—_ﬂw (D+1) D/2—1 \ T TRz —5771\/ D/2—1\ T TRz

2A 1 - IA
—6D(D - 1) [@%/2 <_k_(2k)> - 5771\@%)/2 (—%ﬂ

~ 4D, (0) - 2405,,0)}

\

(2.4.94)
For instance, using the Litim optimized regulator [29]:
R (%) = (k2 — p)O(K? — p?) (2.4.95)
for which:
R (x) = (1 —2)0(1 — ) (2.4.96)
R (x) = —0(1 —2) — (1 — 2)0(1 — z) (2.4.97)
where 0(x) is the Heaviside step function, one has:
1 1
PP (w) = (2.4.98)

T(n+ 1) (1 +w)?
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B 1 1

A P Y T (2.4.99)

The beta functions for the Newton’s and cosmological constant can be now derived
from (2.4.94) and are typically expressed in terms of their dimensionless expressions:

9w = k"G (2.4.100)
Ay = kA (2.4.101)

Taking the derivatives of these expressions and using the definition of the anomalous
dimension, one finds:

Qg = [D — 2+ nx (9, Aw)] 90w (2.4.102)

327
DAy = = [2= (909, Ao)] Ay + —5 K799 (Zn i Agwy) (2.4.103)

Where 0;(Zn()A)) can be substituted directly from (2.4.94) while the anomalous dimen-
sion can be expressed as Ny = N (g, Ax)) using the equation for 9,2y ), which can be
rewritten as:

v (k) = g Bi(Awy) + nn (k) g B2(Aw)) (2.4.104)
with:
1
Bi(A\g) = g(zm)l—D/? [D(D +1)®h s 1 (—2A) — 6D(D — 1)F, 5 (—2Ax))
—4D®} 5 4(0) — 2487, ,(0) (2.4.105)
1 _ - N
Ba(Aw)) = —6(47T)1 b [D(D +1)®p a1 (—2Ax)) — 6D(D — 1)@% 5 (—2Aa)
(2.4.106)

So, the anomalous dimension has no explicit k-dependence and is given by the expression:

g(k)BIO‘(k))
)\ =
77N(g(k)7 (k)) 1— g(k)BQO\(kQ

(2.4.107)

Substituting one finds the autonomous system of FRG equations for the dimensionless
running Newton’s and cosmological constants:

(2.4.108)

ey = Be(9ky, A\iy)
DAy = Br(9ky, Awy)
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Subsection 2.4.3 | Einstein-Hilbert truncation and beta functions

with the beta functions given by:
Be(9iiy: Awy) = [D =2+ 0n (9, Awy)] 9wy (2.4.109)

B9y, Aky) NGRS
—(47r)1 D/2 ()[QD(D+1)<I>}3/2 (—2X0))
— D(D + 1)nx (g, M) P2 (—2A@m))

~ 8D,,(0)]

'—ll_|

[\

(2.4.110)
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Part 3
BRST-invariant FRG flow in
Quantum Einstein Gravity

The third part of the thesis is devoted to the presentation of the main results of the work:
the development of a formalism to implement FRG methods in a QEG theory preserving
explicitly BRST symmetry and its use in the construction of a BRST-compatible Wetterich-
Morris equation.

The part is divided in three sections. In the first section we briefly present the idea at
the base of the formalism, discussing how the central problem of introducing quadratic
requlator terms in the gauge-fized action without breaking the explicit BRST symmetry
can be solved by combining the reqularization and gauge-fixing procedures in a single step.
In the second section we implement the idea thanks to a mnon-standard choice for the
gauge-fixing term and the gauge-fixing function which allows to introduce quadratic terms
in the gauge-fized action without breaking the explicit BRST symmetry. In the third section
we use the gauge-firing structure constructed in the second section as a template to requlate
the theory in an explicitly BRST-invariant manner and we derive the Wetterich-Morris
equation describing the FRG flow of the theory, proving its compatibility with the Zinn-
Justin equation representing the constraint imposed by BRST symmetry and presenting its
component form within the Einstein-Hilbert truncation.

3.1 Premises

3.1.1 Intuitive idea and outline

The reason for which the standard FRG flow for a QEG theory fails to explicitly preserve
BRST symmetry is that the standard quadratic regulator term is not BRST-invariant.
Therefore, conceptually, the central objective to achieve in order to construct a BRST-
invariant FRG flow is finding a way to introduce in the gauge-fixed action quadratic
regulator terms for the metric fluctuation and the ghosts without breaking the explicit
BRST symmetry.

The method which we are going to use to obtain this result is inspired from the one
introduced and developed in [6] to construct a BRST-invariant FRG flow for the Yang-
Mills theory. Our work will share the same backbone structure and will consist in a
generalization of the formalism to theories of gravity. The method is based on the
observation regarding BRST symmetry made in subsection 2.2.3: the gauge-fixed action
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Subsection 3.1.1 | Intuitive idea and outline

enjoys BRST symmetry independently of the specific choice for the gauge-fixing term and
the gauge-fixing function, since in any case the sum of the gauge-fixing term and the ghost
term is BRST-invariant. This suggests the key idea at the base of the method. As we
saw in subsection 2.4.1, the standard procedure consists in first gauge-fixing and then
regulating the action by manually adding a quadratic regulator term:

Seulh; g]
!
Slh, ¢, ¢ gl = Serlh; g] + Sglh; g + Sgnlh, ¢, & g (3.1.1)

5V(k) [ha c, C; g] = S[hv ¢, G g] + AS’(k) [h, ¢, G g]

In this way the explicit BRST symmetry is inevitably broken, since quadratic terms in the
metric fluctuation and ghosts cannot be, alone, BRST-invariant:

59A5(k) [h, ¢, G g] 75 0 e 595(@ [h, ¢, G g] # 0 (312)

Consider instead, intuitively, the possibility of gauge-fixing and regulating the theory
in a single step, by introducing the quadratic regulator terms directly as part of the
gauge-fixing sector, thanks to a suitable choice for the form of the gauge-fixing term and
the gauge-fixing function:

Seulh; g]
!
Swylh, c,¢ 9] = Seulh; gl + Sgpw[h; g + Senw[h ¢, ¢ g

(. S

"'—FAS(k)[h,C,E;g]—F"'

(3.1.3)

In this way we are effectively introducing the necessary regulator terms to construct an
FRG flow, but now without breaking the explicit BRST symmetry of the theory, since,
technically, we are only performing a particular gauge-fixing and therefore the sum of the
terms introduced is BRST-invariant by construction:

g (ng(k) [h; g] + Sgh(k‘) [h, ¢, C; g]) =0 — 605(k) [h, ¢, G g] =0 (3.1.4)

In particular, there will be introduced, automatically, also the additional non-standard
terms necessary to balance the BRST-symmetry-breaking of the standard quadratic
regulator terms and recover BRST symmetry.

As far as the practical implementation of this regulating-gauge-fixing procedure is
concerned, following [6], it is interesting to separate the process in two conceptual steps.
The quadratic regulator terms can be seen as quadratic mass terms where the mass
parameters have been substituted by regulators. Therefore, the procedure outlined above
is also a way to introduce in the gauge-fixed action quadratic mass terms for the metric
fluctuation and the ghosts as part of the gauge-fixing sector, and therefore without affecting
BRST symmetry, which is an interesting result on its own. In light of this observation, we
will articulate the process in the following way:
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Section 3.2 || Faddeev-Popov quantization with massive gauge-fixing

1. Massive gauge-fixing: Firstly, in section 3.2, we will make use of a non-standard gauge-
fixing to introduce in the action quadratic mass terms for the metric fluctuation and
the ghosts:

1 m2, _
Sty [159] = / d"z\/g Tg hogMPH D, (3.1.5)
Smgh[cv E; g] = /de\/gmf;hCucu (316)

as part of the gauge-fixing sector, and therefore without affecting BRST symmetry.
M5+ will be a generic structure tensor symmetric under the exchanges a <+ 3, ji

v,{af} < {ur}.

2. Promotion of mass parameters to regulators: Secondly, in section 3.3, we will use the
gauge-fixing structure constructed as a template to regulate the theory in an explicitly
BRST-invariant manner, by promoting the mass parameters to regulators:

mQ — Rgr(k) (—|j> (3.1.7)

gr
m2, = R (—0) (3.1.8)

At this point we will apply the standard FRG techniques to derive the Wetterich-Morris
equation describing the FRG flow of the BRST-symmetrically-regulated theory and
discuss its properties.

3.2 Faddeev-Popov quantization with
massive gauge-fixing

In this section we cover the first of the two steps outlined above, presenting how the desired
result can be achieved via a non-standard gauge-fixing, namely linear in the gauge-fixing
function (instead of quadratic, as the standard one) and a gauge-fixing function quadratic
in the metric fluctuation (instead of linear, as the standard one). We will repeat the same
steps of section 2.3 in order to highlight the differences with the standard gauge-fixing.

3.2.1 Linear gauge-fixing term

Consider the general result for the gauge-fixed action (2.2.81) resulting from the Faddeev-
Popov method. According to the strategy, we need to engineer a gauge-fixing term and a
gauge-fixing function such that the gauge-fixed action contains, among the various terms
introduced in the gauge-fixing sector, quadratic mass terms of the type (3.1.5) and (3.1.6).
We have two essential difficulties to overcome:

1. The mass term for the ghosts must be originated via the ghost term, whose dependence
on the gauge-fixing function, contrary to the gauge-fixing term, is not arbitrary,
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Subsection 3.2.1 | Linear gauge-fizing term

but necessarily linear in its functional derivative, as given by (2.2.77). A quadratic
antighost-ghost term can be thus obtained with a gauge-fixing function containing a
linear piece in the metric fluctuation and proportional to mzh; however, due to the Lie
derivative £.(gu +hyuw), the originated terms may not contain the correct contraction
cuct, due to the presence of derivatives and contractions with the background metric.
Consider for instance the de Donder gauge-fixing function (2.3.43) seen in subsection
2.3.3, a term with the correct contraction is indeed generated, i.e the kinetic term

for the ghosts —Euljc“, but it contains also derivatives acting on the ghost.

2. The mass term for the metric fluctuation must be originated via the gauge-fixing term
and, given its arbitrary dependence on the gauge-fixing function, it can be obtained
in various ways; however, due to the necessary linear piece in the gauge-fixing
function for the ghosts mass term, we could incur in the generation of unwanted
terms proportional to mixed products of mass parameters. Consider for instance
the standard gauge-fixing term (2.3.1), given the quadratic dependence on the
gauge-fixing function, a mass term for the metric fluctuation can be obtained with
a gauge-fixing function containing a linear piece in the metric fluctuation and
proportional to mg,, but, due to the also necessary linear piece for the ghosts mass
term, computing the square we obtain mixed terms mngzh.

Following [6], the first problem can be solved by considering a linear piece in the gauge-
fixing function of the type mgthh, where K is a suitable operator engineered to remove
unwanted derivatives of the ghost; we will give in subsection 3.2.3 the specific expression.
The second problem can be instead conveniently solved by considering a non-standard
gauge-fixing term linear in the gauge-fixing function, so that, accommodating separately in
the function the necessary contributions to obtain the two mass terms, we are safe from any
kind of mixing between the two when computing the gauge-fixing term; as a consequence
of this choice, the piece for the metric fluctuation mass term in the gauge-fixing function
must now be quadratic. Schematically, as far as the generation of the desired mass terms
is concerned, the gauge fixing structure which we would like to implement should have the
form:

f(h;g) ~ meh2 + mzthh +

!
S N/f(h;g) N/mf,rh“r--- (3.2.1)

0f(h;g
Sgh[h,c,c;g]rv/c% £c(g+h)~/m3hcc+---

The dots represent additional terms independent on the mass parameters which must be
also introduced to have appropriate gauge-fixing terms surviving in the limit in which
the mass parameters go to zero; otherwise, the regulated theory obtained by promoting
the mass parameters to regulators will have as classical starting point for the FRG flow,
i.e. the unregulated action, a non-gauge-fixed action. In subsection 3.2.3 we will see the
precise form of the gauge-fixing function and compute the various terms. In the rest of
this subsection we instead see how to formally introduce a linear gauge-fixing term.
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Gauge-fixing term

The key point in the construction of a linear gauge-fixing term, given that the gauge-fixing
function must have a free low index, is that we need to introduce an external field to
contract with the function: Sy¢[h;g] = [dPz\/g(...)"f.(h;g). Formally, this can can
achieved by considering the generic gauge-fixed action in presence of a Nakanishi-Lautrup
field and a noise field (2.2.88), where the gauge-fixing term (2.2.85) is by definition linear
in gauge-fixing function thanks to the Nakanishi-Lautrup field, and picking a Fourier noise
distribution, i.e. a noise term of the type:

Shoiselb,n; g = —1i / de\/ﬁ (b, —v,)g" (3.2.2)

where v, is an external 1-form field. In this way the noise integration gives the functional
Fourier integral representation of the functional Dirac delta:

e—SNL[bZQ} — /Dn e_SnoiSE[bm;!ﬂ — /Dn eidex\/E(b#_vu) — 5[b# — U,LL]

and the Nakanishi-Lautrup term is formally given by the expression:
e—SNL[bL‘?] — 5[[)“ _ U,u] (323)
The integration over the Nakanishi-Lautrup field sets as on-shell condition:

b,ulon—shell = Uy (324)

and the gauge-fixing term, given by:
e Soslhig]l — /Db e~ Sorlhibigl=Snrlbig] _ /Db b, — v e of[hibia) — o= [ dP2/Guug s fu (hig)
is linear in the gauge-fixing function:

Sgrlh;v; 9] :/de\/gv,uglwfy<h;U§§) (3.2.5)

In particular, we added the external field also between the arguments of the gauge-fixing
function since we will allow for it to have a parametric dependence on the former. The
ghost term acquires also a potential dependence on the external field:

5f5(h;v: g
Sanlh, ¢, v:9] = —/d% G, gor2lehivig)
5T

o £e(Guw + hyw) (3.2.6)
And the complete gauge-fixed action (still with a generic, properly constructed, gauge-fixing
function) is:

S[h,c, ¢ v; 9] = Spulh; gl + Sgrlh; v; g + Sgulh, ¢, & v; g (3.2.7)

Intuitively, the external field plays in this gauge-fixing a similar role to the one of the
parameter « in the standard gauge-fixing: it is an external object introduced in the
gauge-fixing sector, and thus expected to not affect physical observables quantities, which
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parametrizes a class of possible gauge-fixing choices, with the crucial difference of being a
field and not a simple real number. Moreover, due to the on-shell condition (3.2.4), the
external field can be also regarded as an ”on-shell Nakanishi-Lautrup field”, which has
been "promoted” from auxiliary field to a field appearing also in the action.

Similar to the standard gauge-fixing term, considering a gauge-fixing function con-
structed as a proper tensor and the external field to transform covariantly as a 1-form
field under background gauge transformations (2.2.12):

ev, = Lev, (3.2.8)

The gauge-fixing term and the ghost term are background gauge-invariant, and thus the
complete gauge-fixed action: B
d¢Slh,c,¢;v;9] =0 (3.2.9)

Additional sources and generating functionals

At the quantum level the theory is described by the generating functionals introduced
in subsection 2.2.3 computed with the gauge-fixed action (3.2.7). In particular, the
dependence of the latter on the external field will be inherited by all functionals. With
respect to standard gauge-fixed theory in subsection 2.3.1, we also introduce for later
convenience further two additional sources for the non-elementary fields:

H,, = Z_ggaﬁaﬁshw (3.2.10)
Vo o8-
Q= 29 Begh,u, (3.2.11)

which are respectively Grassmann-even and odd; in particular, we notice that the corre-
sponding BRST Slavnov variations are given by:

sH,, = shy, (3.2.12)

s = hyy — Hy (3.2.13)

which imply in particular that the metric fluctuation and the field H,, belong to the same
BRST cohomology class, i.e. their difference is a BRST exact term. So, the multiples of
non-elementary fields and correspondent sources are now redefined as:

shy,
i sch
(4 H,,
Q
kv
l 17 v 17
o K=k 1, m™ ) (3.2.15)
nt

V= (=shy & Hu —Qu) (3.2.14)

K;

m* and n*” are respectively Grassmann-even and Grassmann-odd. The total source term,
now dependent on the external field is:

Ssource[®; I3 K3 03§l = Ssource—s |05 5G] + Ssource—rc [ K505 g (3.2.16)
with:
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Ssource—s0; J; 9] = — / dPx\/gJ ¢ = — / dPx\/G (t" by + uct + ") (3.2.17)

Ssource—x [0 K;v; 9] = — / dPr\/g Kyt = — / dPz\/G (k" shy, + 1sct (3.2.18)
+ m* H,,y + 1, )

Given those redefinitions, the generating functionals read as subsection 2.3.1 with the
extra dependence on the external field. We write explicitly the main formulas for an easier
reference:

ZIJ: K;v; g = /Du[gb] e S1bvig]=Ssource[$;J;: K039 (3.2.19)
W|J; K;v;g] =log Z|J; K;v; g| (3.2.20)

[[®; K;v; g] = sup {/dDw\/Equ’i - Wl[J; K;v;g]}
J (3.2.21)
:/de\/ﬁij—W[J;K;v;g]

WI[J; K;v; g] ZSUP{/de\/EJf‘V—F[¢;K;v;§]}
® (3.2.22)

= /de\/EJ;FCDi —TI'[®; K;v; 9]

The relations between fields and sources in the Legendre transform and the average
non-elementary fields are:
1 oW[J; K;v; 9]

di(z) = (¢'(2)),, = 9@ 0Ji ()

o (3.2.23)
¢+i($) = <¢+i(ZL’)>JK - 91@) il 6(5;([;)’ i
Jiw) = 1 or[®; K;v; g
W= 0e()
- (3.2.24)
P = 1 T6[®K;v;g]
1 gla)  0%i(z)
o 1 oW Kyug) 1 oT[®; K;v; 9]
Vi(z) = (¥'(2)), = 9(z) 0K (z) o g(x) 0K (2)
W) — (ot 1 W%[J; K;vigl 1 F%[CD;K;U;Q] e
(z) = <1/} ($>>JK - 3(2) SK;(x) T g(x) dKi()
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The integro-differential equation for the effective action is:

6—F[¢;K§U§§] — /D,u[gb] exp{ —S[¢, Q] - Ssource—K[gb; Kiw; g]

o (3.2.26)
_'_/deF(;[q)vavag] ((bz_q)z)}

ol

We recall also the relations between the matrices of second derivatives of the path
integral, the path integral logarithm and the effective action

%Zﬁ?zv(w, 9) = W) + W @wd ) (3.2.27)
W) (2,y) = Dol (2,7) (3.2.28)

Wik (z,y) = =T . (z,y) (3.2.29)

Wi, (,y) = —T g (@) o5 Tl (1) (3.2.30)
Wik, (2,9) = =gl (@) 25 Tolye (1) (3.2.31)

Finally, as in the standard case, if the gauge-fixed action is background gauge-invariant,
the generating functionals inherit background gauge symmetry as an explicit symmetry, in
particular:

S WIJ; K;0;9] , 0T [®; K03 g] = 0 (3.2.32)

3.2.2 On-shell BRST symmetry and Zinn-Justin equation

On-shell BRST symmetry at the classical level

In this subsection we present the on-shell version of BRST variations and their properties
for the linear gauge-fixed theory. Consider the gauge-fixed action (3.2.7); the on-shell
BRST variations of the elementary fields and the external field are defined as:

0ol = 0L (G + i)
= 0(0’\8,\%,, + auc)‘f]m/ + 8,,CA§>\M) +6 (cAé?)\hW + 0uc’\h>\,, + 8Vc’\h,\u)
= G(qu’\gm + ?,,cAgM) + 6 (c’\v)\hw, + vucAhM + vycAh,\#)
0Gu = 0 (3.2.33)
Soc = 00\t = 0Vt
doC, = O,
[ v, = O
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Section 3.2 || Faddeev-Popov quantization with massive gauge-fixing

The correspondent on-shell BRST Slavnov variations are:

(8hy = £(Guw + )
= (P0G + 04 Grw + 0,7 Goy) + (PONhy + 0y iy, + D, Ry,
= (?uc’\g,\u + ?VcAgM) + (c’\v,\hw + v#c)‘h,\,, + ?ycAhAH)

S = 0 (3.2.34)
sct = Aot = AV
SCy = Uy

| SUu = 0

In accordance with the general remarks on BRST symmetry made at the beginning of
subsection 2.2.3, the sector of the transformation unrelated to the gauge-fixing, i.e. metric
fields and ghost, is the same as in the off-shell transformation (2.2.115), while the one
related to the gauge-fixing, i.e. antighost and external field, is equal to that of the off-shell
transformation (2.2.115) upon substituting the on-shell form of the Nakanishi-Lautrup
field (3.2.4) which enforces the linear gauge-fixing term (3.2.5).

Due to the peculiarity of the chosen action for the Nakanishi-Lautrup field and the
resulting simple on-shell condition, we notice in particular that the appearance of the
variations is essentially equal to the off-shell version, with the role of the Nakanishi-Lautrup
field taken by the external field; moreover, the BRST variation of the antighost does not
depend on the gauge-fixing function, contrary to the case of the on-shell BRST variations
for the standard gauge-fixing term (2.3.30). As a result, the structure properties of on-shell
BRST symmetry typically related to the gauge-fixing choice are in this case essentially
equal to the off-shell version, with the external field as ”on-shell” Nakanishi-Lautrup field.
Indeed, the BRST Slavnov variations are nilpotent without needing to use the classical
equations of motion:

(SQhW 0

525#,, =0

s’ = 0 (3.2.35)
32@ = 0

\ 32'11“ =0

In particular, the equations of motion of the antighost are not required to have the
nilpotency of the correspondent second BRST Slavnov variation since:

s%¢, = sv, =0 (3.2.36)

From (2.2.113) it follows that any polynomial function of the elementary fields and the
external field has also a vanishing second BRST Slavnov variation:

s*F(h,c,v;3) =0 (3.2.37)

As in the off-shell case, the action can be written in an explicitly BRST-invariant form.
Indeed, the Einstein-Hilbert action is BRST-invariant; the gauge-fixing term and the ghost
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term can be rewritten respectively as:

Syslh,vigl = /de\/ﬁ%g“”fu(h; v g) = /de\/ﬁ s¢ug" fu(h; v; 9) (3.2.38)
and:
Synlh, ¢, G v;g] = — / dP2\/G0GGay e = — / dPx\/Ge, g sf,(hiv g)  (3.2.39)
The sum is a BRST-exact term:
Soflhsv; gl + Sgnlh, ¢, ¢, v; g = s/dDw\/ﬁéuﬁ“”fy(h; v; g) = sSprsr|h, ¢ v; g]
so, manifestly BRST-invariant:
S (Sgf[h;v; gl + Sgnlh, ¢, ¢ v;g]) =0 (3.2.40)

Finally, the gauge-fixed action can be then rewritten in the explicitly BRST-invariant
form:

S[h, ¢, C, b; g] = SEH[h, g] + SSBRST[ha C;V; g] (3241)

and:
d9S[h, c,c;v;9) =0 (3.2.42)

As in the general off-shell version of the symmetry, the linear gauge-fixing term and the
ghost term are not separately BRST-invariant, but their sum is BRST-exact, therefore
their BRST variations compensate and precisely eliminate each other, and this holds for
any specific choice of the gauge-fixing function. Therefore we can again conclude that
the gauge-fixed action (3.2.7) enjoys a BRST symmetry under (3.2.33) regardless of the
gauge-fixing details; therefore, we can indeed proceed as explained in subsection 3.1.1
to introduce in the gauge-fixed action mass terms (and then regulator terms) without
breaking the explicit BRST symmetry, thanks to a suitable choice of the gauge-fixing
function.

On-shell BRST symmetry at the quantum level

We conclude the subsection by deriving the explicit form of the Ward-Takahashi equation
and the Zinn-Justin equation describing BRST symmetry at the quantum level for the
linear gauge-fixed theory, as done for the standard gauge-fixed theory in subsection 2.3.2.
In the derivation of the Ward-Takahashi equation the only difference is that now we need to
take care of the additional source terms for the non-elementary fields (3.2.10) and (3.2.11)
that we chose to introduce, since those have non-vanishing BRST Slavnov variations; so,
(2.3.37) now gives:

< / dPx/G (J; 09" + Kjégw)> =0 (3.2.43)

JK
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with dg2p! # 0; in particular, we have:
0= [ APy (35 ad') e+ K (0o )
= /dD&L’\/ﬁ <t’w (Oohu) i + T (o) e — 1 (00Cu) y5c +
o (SoH,) e 1 <5GQW>JK> (3.2.44)
=0 / dPx+\/g (t“” ($hyw) i = T () yic + 1" (SCu) ypc +

+mM (sHy) 5o — ' (SQW)JK)

and substituting the BRST Slavnov variation of the antighost and those of the two new
non-elementary fields, (3.2.12) and (3.2.13), in the last form of the equation, the Ward-
Takahashi equation associated to BRST symmetry in the linear gauge-fixed theory can be
written as:

/de\/E (tW <Sth>JK — T <SCM>JK + nfu,t+

(3.2.45)
+m™ (shyw) yie — 1" (hyw) i + 0" <HW>JK> =0

where we have used that (v,);, = v, (1), = v, since the external field is a constant
with respect to the integrated fields in the path integral.

As in subsection 2.3.2, the associated Zinn-Justin equation is obtained expressing the
equation in the variables of the effective action by evaluating the sources with the ex-
pressions given by the Legendre transform, J = J(®, K), and writing them explicitly
in terms of derivatives of the effective action using (3.2.24), together with the averages
of non-elementary fields using (3.2.25). The Zinn-Justin equation associated to BRST
symmetry in the linear gauge-fixed theory is:

1 oI or 1 o' oI or
Y= Dol m—rer— - ——— —
[ ] /d x( \/Eéhuy (Sk/’“/ \/Edcu (51“ +UIL 66 M—i_

1 6T 1 oo
19 5):0

nZ

— nMho

Vg ok e TG S
(3.2.46)

As (2.3.42), it is quadratic and linear in the derivatives of the effective action. In this case
the third term does not depend on the gauge-fixing function, substituted by the external
field as a consequence of the particular form of the on-shell BRST variations for the linear
gauge-fixed theory; the additional three terms are just due to the source terms for the
non-elementary fields (3.2.10) and (3.2.11) that we chose to introduce in the quantization.

3.2.3 Quadratic massive gauge-fixing function

We now present the precise form of the gauge-fixing function sketched in (3.2.1) and we
give the full expression of the gauge-fixed action. According to the discussion in subsection
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Subsection 3.2.3 | Quadratic massive gauge-fizing function

3.2.1, the gauge-fixing function must contain a quadratic and a linear term, therefore the
most general structure is:

A;0;9) = hag » Q0 ey + L, ey, (3.2.47)

where the two operators for the quadratic and linear term are respectively dependent
on three and two spacetime points, Q/\aﬁ"”' = Q/\O‘B’W(x, y,z) and L, = L, (z,y); as
usual « represent in compact notation an understood integration, so that the gauge-fixing
function is dependent on a single spacetime point. Substituting the ansatz for the gauge-
fixing function in the gauge-fixing and the ghost term, we obtain respectively the general
expressions:

Syrlhiv; g] = /dDﬂfx/Evpg”"fa(h; v;g) =
(3.2.48)
- /de\/EUpgpa (haﬁ ¢ Qaaﬁ’w * h/w + L1 e huu)

and:

51, (h;vig
Sulhes et = — [ ooy
Oy

_ —/dD$\/§Cpgp0 (haﬂ . Qaa@lw + Qauu,aﬁ . ha,B + ﬁUMV) . £C(gMV + hMV)

¢ DEC(g/w + hm,) =

(3.2.49)

Taking inspiration from [6], we consider specific operators Q)\aﬁ # and £, which are
capable of introducing the desired mass terms and also reproducing the standard terms of
the de Donder gauge-fixing; in this way the regulated theory obtained by promoting the
mass parameters to regulators will have as classical starting point for the FRG flow, i.e.
the unregulated action, a properly gauge-fixed action similar to the standard one (there
will be additional terms dependent on the external field). Such operators are:

QM (x,y,2) = 0(x — y)d(y — 2) Q>
=0(z —y)d(y — z)- (3.2.50)
1 v (Z) 1 oo, v — =0 o v
e (2D VLT i ) )
£ (@) = (3(z = y) = m2/g) O (9,2) ) K, )V, (3.:251)

where: 1. « is an arbitrary parameter as in the standard gauge-fixing term; 2. K", )

and Daﬁ’“”pa are the structure tensors (2.2.38) and (2.2.39) defined in subsection 2.2.1
and appearing in the quadratic term of the Einstein-Hilbert action; 3. the square of the
external field is defined as:

v? = g™, (3.2.52)
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4. M*Pmv ig a generic structure tensor, symmetric under the exchanges o <+ 3, <>
v,{af} < {uv}, which gives the structure of the mass term for the metric fluctuation;
we will not need to write an explicit expression, since our focus is not the construction
of a mass term meaningful per se, but rather finalized to be promoted to a generic FRG
regulator with a generic tensorial structure!®. 5. o' formally indicates the Green function
of the background laplacian, defined by the condition:

A0 (e y) = %

d(z —vy) (3.2.53)

which in particular implies:

[ /01808 @) A) = Al) (3.2.54)
/ "y /30 By, 2)B) Aly) = Alz) (3.2.55)

The first follows directly from the defining property, while the second from integrating
by parts the two covariant derivatives of the background laplacian and then applying the
defining property.

According to this choice, Q )\O‘ﬁ " is a local operator since proportional to two Dirac deltas
and therefore, intuitively, different from zero only for x = y = z; £, contains instead a
local piece proportlonal to a Dirac delta as well as a non-local one proportional to the
Green function O™, which is in general different from zero also for # # y. So, substituting
the operators Q,*” ‘“’ and £," in the general ansatz, the resulting gauge-fixing function:

1 (%Y
K2 202

(R = m2 /GO K7, VD)

Ia(h;v;g) = <Oz ha Daﬂ’wj vpvohm/ + mirhocﬂMaﬁjuyhuu>

(3.2.56)

contains a quadratic term made of two local pieces and a linear term made of a local
piece and a non-local one containing a spacetime integration, which we wrote in compact
notation. Consider the quadratic term; the two pieces are engineered to originate, inside
the gauge-fixing term, respectively the de Donder gauge-fixing term (2.3.44) found in
subsection 2.3.3 and the desired mass term for the metric fluctuation. Indeed, substituting
the explicit expression for the gauge-fixing function, the gauge-fixing term (3.2.5) is:

Sgslh; v gl = /deU\/ﬁvpg"” (Pas Qo™ hyu + Lo + hy) =

/ dPx\/g [——h 5D NP Dy,

10Moreover, constructing a meaningful mass term for the metric fluctuation, i.e constructing a theory
for a massive spin-2 graviton propagating in a background spacetime, possibly curved, is historically a
non-trivial problem, in particular due to the task of making propagate only the correct number of degrees
of freedom. The correspondent research line is known as massive gravity, see for instance the early work
[30] and the recent review [31].
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Subsection 3.2.3 | Quadratic massive gauge-fizing function

1 m? _
T af,uv
+ = 29 hagM*PH* b,
+ A (1 — 27 afl) KM NNy, ] (3.2.57)

The first two terms are respectively the de Donder gauge-fixing term and the mass term
for the metric fluctuation; in particular, the multiplication for v, /v? in the quadratic term
of the gauge-fixing function is introduced precisely to cancel the one by v, in the linear
gauge-fixing term. The gauge-fixing term receives also a third non-local contribution,
dependent on the ghost mass parameter and the external field, given by the product of
the latter with the linear term of the gauge-fixing function. So, the gauge-fixing term can
be written as:

Sutlh50:.3) = Syp—aepll: 31+ Sy [1:.3) + Sso i 03] (3.2.59)
with:
B 1 I | ~aBur  Speo
ng_dep[h;g] = ; d 33\/5 %ha,BD pGV \V4 hMV (3259)
.= 1 D — 1 mg"" o, uv
ng_mgr [h,g] = ? d ZE\/EE 9 haﬁM h/“, (3260)
Syf—vlh;v;g] = /de\/ﬁv)\g’\p (1 — mgh\/ﬁEIfl) « KM Nhy,, (3.2.61)

Consider now the linear term of the gauge-fixing function; the two pieces are engineered
to originate, inside the ghost term, respectively the de Donder ghost term (2.3.46) found
in subsection 2.3.3 and the desired mass term for the ghosts. Indeed, substituting the
explicit expression for the gauge-fixing function, the ghost term (3.2.6) is:

Sgh[ha C, é; v; g] =

_ _/de gépgpa (haganB’W + quu,aﬁhaﬁ 4 EU’“" ) £C(§uv + h/w) =

foes|

1UA_)\T_ 1 oS, uy A vwid viAvwid Vi Ze =
— Eﬁg Cr lﬁD K o (VpV hyw + hy, VPV ) + m;]\/[“ Bha,3:| £e(Guw + h#,,)}
N (1 —m2,\/g |i|’1> « KM N7 £ (G + hyuw)

(3.2.62)

The first piece obtained by distributing the product in the second term is the standard de
Donder ghost term, sum of the kinetic ghost term and the de Donder interaction term as
shown in subsection 2.3.3 using identity (2.3.47); the second is the sum of a mass term for
the ghosts and a non-local modification of the de Donder interaction term dependent on
the ghost mass parameter. Indeed, using again identity (2.3.47), we have:
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Sgh—mghxdeD [hv c, G, g] =

B /de\/ﬁmzhéng”\/ﬁlj KW Vg£c(guu + hm,) =

/ Pay/G { [mBex] + [m2ea Va0 (R + K, V7 L) | | =
= Ogh—mgp [C, E; g] + Sgh—mgh—mt[hv ¢, E; g]
(3.2.63)
where we have used property (3.2.55) of the green function O to write:

m2,6g™ g0+ g, 0" = m2,6(2)5( / dPy\/3(y) O (4, 2)G,r (y) Dy ¢ (y) =
= m2,ex(2)7 (2)Gpr (2)c" (2) =
m2,ex(z)cM(x)

In particular, the non-local operator —./g o'.K “”paﬁ" is the explicit form of the
operator K mentioned at the beginning of subsection 3.2.1; it allows to obtain the mass
term for the ghosts with the correct contraction of ghost and antighost and without
derivatives and contractions with the background metric: the correct contraction of ghost
and antighost is obtained thanks to the derivative structure K ", ,V° as in the de Donder
kinetic ghost term, —cADc)‘ the background covariant 1ap1ac1an is removed thanks to the
Green function \/E 0O .. Finally, the ghost term receives also a second local contribution,
dependent on the metric ﬂuctuation mass parameter and the external field, coming from the
quadratic term of the gauge-fixing function; in particular, in (3.2.62), we used the symmetry
properties of the structure tensors D*** o and Mo pamely D*PH = DM O‘B , and
Mebwv = NrreB o group together the terms coming from h,sQ, % ww and Q O‘ﬁha 8;
expanding the Lie derivatives, one obtains an hhcc-interaction term dependent on the
metric fluctuation mass parameter and several higher-derivative hhcc-interaction terms.
So, the ghost term can be written as:

Sgh[h7 ¢, Ea v; g] = Sgh—kin [07 Eu g] + Sgh—mgh [Ca E) g]
+ Sgh—deD—mt[ha ¢, E; g] + Sgh—mgh—mt [ha C, E; g] + Sgh—v [h7 C, E; v; g]

(3.2.64)
with:
Sgh—kinlC, C; g = /de\/E ¢, (—0) ¢ (3.2.65)
Sgh—my |, C g = /dD:c\/Emf]hEuc“ (3.2.66)
Sondenrsmlhs €, 5] = / 1 [-ng" (R + K7 97 £1)]  (3.2.67)

Soh—mgn—int[h ¢, & G| = / dPr/Gm2,eg GO« (R + K™, V7 £.h,,)  (3.2.68)
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Sgh—v [h7 ¢, E; v; g] =

— 1 Ux _ 1 - - = _
= [ d°z\/3 {———g)‘T [—D”‘B’“” o (VI hyy + by NPV
/ K v 20 o | e ) (3.2.69)

+ mETMMV,aﬁhaﬁ} fc(guy + huy)}

For completeness, we write also the complete action with all the terms together and the
Lie derivatives written explicitly:

S[h, c, ¢ v; gl = Serlh; ) + Syrlh; v; gl + Sgulh, ¢, & v; g] =

= /de\/E{

111 _ _ 1\ _ o - B
— {_ haﬁ (_Kaﬁ,,LWD + (1 + _> Daﬁ,uupavpva + Ogﬂ,uu + szMaB,AW> hw/
(8]

k2|2
_ _ - 1
2(=R+2A) +2 (G + Aguw) b z;n— ]
+ EM(—EI + mzh)c"
g (1= m2 /g0 ") « K,V h,
N (1 —m2,/G0" ) e [Rpoe” + K" V7 (7 by + VuChey + Vo hry)]

1 U 1 aBB.uy = oo = OO \ [ V50
a ?FgAC 4[2 D (vpv T + Dy VPN) A+ g, MM Bho‘ﬁ].

' (vuchTV + quT?]m + CTvTh;w + v,U,CThTV + vVCTh/TM)
(3.2.70)

To summarize, using the linear gauge-fixing term constructed in subsection 3.2.1 in
combination with the gauge-fixing function presented in this subsection: 1. we obtain
the desired mass terms for the metric fluctuation and ghosts and we also recover the
standard de Donder gauge-fixing and ghost terms; in particular thanks to the quadratic
part of the gauge-fixing function we obtain, inside the gauge-fixing term, the de Donder
gauge fixing term and the mass term for the metric fluctuation, while thanks to the linear
part we obtain, inside the ghost term, the de Donder ghost term and the mass term
for the ghosts; 2. in addition, respectively from the linear and quadratic part of the
gauge-fixing function inside the gauge-fixing and ghost term, we obtain additional hcc- and
hhcc-interaction terms dependent on the mass parameters and the external field; the sum
off all the terms introduced in the gauge-fixing sector is BRST-invariant by construction
under the transformations presented in subsection 3.2.2; 3. the price to pay to perform
such construction is represented by the non-local and higher-derivatives pieces contained
in the additional interaction terms.
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3.3 BRST-invariant FRG flow

In this section we cover the second of the two steps outlined at the end of subsection 3.1.1,
using the gauge-fixing structure constructed in the previous section as a template to regulate
the theory in an explicit BRST-invariant manner by promoting the mass parameters to
regulators. Obtained the regularized theory, we follow the standard procedure to derive
the Wetterich-Morris equation describing the FRG flow of the theory and we prove its
compatibility with the constraint imposed by BRST symmetry, i.e the Zinn-Justin equation;
finally we present the equation in component form within the Einstein-Hilbert truncation
and a particular regularization scheme, and we compare the result with the one for the
standard theory.

3.3.1 BRST-invariant FRG regularization

Regularization

According to the strategy described in subsection 3.1.1, we now regularize the theory
directly via the gauge-fixing procedure by considering the gauge-fixing structure introduced
in the previous section and promote the mass parameters to regulators. In particular,
taking inspiration from [6], we choose to perform the promotion according to the following
substitution rules:

mg, MOP RS (—0) (3.3.1)
m2, — =g (-0)0 (3.3.2)

where Rg‘ﬁ’,’:)” (—lfl) and 7gp(x) (—Ifl) are two operators with functional dependence still to

be specified, at this stage. The gauge-fixed theory described by (3.2.70) is reinterpreted as
a regulated-gauge-fixed theory:

Sth ¢, & v, gl = Serlh; g1 + Sgplh; v; gl + Sgnlh, ¢, & v; 9]
! (3.3.3)
Sty ¢, & v; ] = Spalh; g1+ Sor[h; v; G] + Senwy [h, ¢, & v; ]
= Solh, ¢, G v; g + ASuyh, ¢, G v; g
with the unregulated action Sy[¢;v; | and the regulator term ASy[¢;v; g]. According to

the promotion rules (3.3.1) and (3.3.2) the gauge-fixing function (3.2.47) is promoted to a
regulating-gauge-fixing function:

Foon(h:v39) = hap Qs ™" b + L 3" By (3.3.4)

0

where the regulating-gauge-fixing operators Q /\aﬂ M and L 1 " are given by:

Q(k))\aﬁwu(g;’ Y, z) = 5(3@ _ y)g(y _ Z) Q(k))\ab’,w

=d(z —y)d(y — 2)- (3.3.5)
L oa(2) (1 20pw N By [ =
. EQUQ(Z) <ED g PU(Z)VE;)V(Z) + ’R’gr(:) (_D(z))
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Subsection 3.3.1 | BRST-invariant FRG regularization

E(k)AW(fEa y) =0(x — y)ﬁ(k))\lw
=0z —y) (1 + 71wy (-B)) K, @)V,

In particular, expressing the regulator for the ghosts in the (non-restrictive) form (3.3. 2)

(3.3.6)

i.e. with a factorized background laplacian, allows to ehmmate the Green function |:|
since from the defining property (3.2.53) we have mgh\/_El — —Tgneey (—0) I:I\/_I:I
—Tgh(k) ( I:l) . So, the explicit expression for the regulating-gauge-fixing function is:

_ 1 (%) 1 NaB, Uy oo aB,uv —
fooa(hsv; g) = 25,2 (a hap D™ VPN hy, + has Ry (—0) huu)

+ (Kﬂypaﬁahlﬂ/ + Tgh(k) (_Ij) ijpa?gh/ﬂ/)

(3.3.7)

In particular, the regulating-gauge-fixing operators and thus the regulating-gauge-fixing
itself are divided in a regulator-independent sector and a regulator-dependent sector
(corresponding in the massive gauge-fixing in section 3.2 to the mass-independent sector
and the mass-dependent sector):

af,pv af,uv af,uv
Q(k)A "= QO)\ o + Q'R(k))\ g (338)
E(k),\W =Ly, + ﬁn(k)AW (3.3.9)
Foorn(h;v;9) = foa(h;v:9) + froa(h; v; 9) (3.3.10)

Clearly, due to the linear dependence on the gauge-fixing function of both the gauge-fixing
term (thanks to our particular choice of gauge-fixing) and the ghost term (in general),
the terms entering So[¢; v; g| and ASq,[¢;v; g are originated in the gauge-fixing sector by
the corresponding parts of the gauge-fixing function, i.e. the regulator-independent one
and the regulator-dependent one, without mixing. In particular, for the gauge-fixing term
(3.2.5) we have:

Sty [h;v; g] = Sgrolh; v g) + ASgrm[h;v; gl (3.3.11)

where the two contributions to Sy[¢; v; g] and AS(y)[¢;v; g are respectively given by:

Sgrolh; v g) = /dDZE\/Evug“”fou(h;v;g) (3.3.12)

ASg sy ;v g) = /de\/ﬁvug“”fn(k)y(h;v;g) (3.3.13)
Similarly, for the ghost term (3.2.6) we have:

Sgh(k) [h, C, 6; V; g] = Sghp[h, C, é; (% g] + ASgh(k) [h, C, é; v; g] (3314)

" This choice is essentially for writing convenience, since the terms appearing in the gauge-fixing sector
are in this way apparently local; in fact, as we will see later, the ghost regulator 7,1, (—I:I) will be
required to depend on the background laplacian according to an inverse relation in order to generate a

proper FRG regulator term for the ghosts satisfying the standard properties.
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where the two contributions to Sy[¢; v; g] and AS(y)[¢;v; g are respectively given by:

0 fog(h;v; g _
Sgholh, ¢, G v g] = — / d’x gcagaﬁw o £e(Guv + hyw) (3.3.15)
ny

_ s fris(h;v;9)

ASgnlh, ¢, G v; 9] = — / dPx\/G g o o £o(G + ) (3.3.16)
ny

We can now compute the explicit expression for the various terms. As far as the unregulated
action Sp[¢;v; g] is concerned, the contribution from the gauge-fixing term:

Sgfolh;v; gl = /dDw\/Evpgpa (hab’QOaaB’Wh;w + EOO—Wh/W) -
11 _ ==
— D = ap,uv o
_/d I\/a (?%hoﬁD H pUVpV huy (3317)
g R Th,, )

contains the standard de Donder gauge-fixing term and a residual linear term dependent
on the external field:

Syfoll:v; g) = Syp—den([h; ] + Sgp—vlh;v; ] (3.3.18)
l.e.:
) [ T L
ng—deD[h;g] = —? d 17\/5 %haﬂD WV V h;w (3319)
Syf—vlh;v;g] = /de\/ﬁv,\g)‘pK“”pGV”hW (3.3.20)

The contribution from the ghost term:
Sgh70[h7 ¢, E; U3 g] -
=~ [ 00560 (hasQ0 ™ + QP has + L0, ) £l + ) =

_ Toyx o 1T Zagw N R B
= [ @55 | = 5B e D (T by T) Lol )

_ E}\gApRMVpU@UJCC(guV + h/“/) :|
(3.3.21)

contains the standard de Donder ghost term, sum of the kinetic ghost term and the de
Donder interaction term, and a residual higher-derivative hhcc-interaction term dependent
on the external field:

Sgh,O[h7 C, E; v; g] = Sghfkin [Ca E; g] + SghfdeDfmt[ha C, E; g] + Sghfv[hy C, E; v; g] (3322)

1.e.:
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Sgh—kinlC, C; g] = /de\/E ¢, (—-0) ¢ (3.3.23)

SghfdeDfint[h‘a C, é; g] = /dDm\/E [_EAg/\p (RpTCT + Ruypavgogch,uzx)] (3324>

Sgh—v[hv ¢, E,U,g] -
1 1 - - R
/ dPz\/G 2”; g5 D (VY by 4 1y VOV7) LG+ )
(3.3.25)

Summing the two contributions to the Einstein-Hilbert action, the unregulated action is:
Solh, ¢, ¢ v;g) = Serlh; g] + Syrolh;v; g] + Sgnolh, ¢, ¢ v; g (3.3.26)

Clearly, since it is the result of the gauge-fixing without the contribution of the
masses - regulators, it coincides with a massive gauge-fixed Einstein-Hilbert action (3.2.70)
where mass parameters have been set to zero. Essentially, it is the standard de Donder
gauge-fixed action with the additional terms dependent on the external field, and we will
thus refer to it as modified de Donder gauge-fixed action.

As far as the regulator term AS()[¢;v; g is concerned, the contribution from the gauge-
fixing term:

ASgsaylh;vig] = /de gv,G” (haﬁQR(k)oaﬁywh/w + ER(k)aWhuu> =
/ d”z\/g ( hasRorty (=00) by (3.3.27)
Fosg s (-0) K, T, )

contains a quadratic regulator term for the metric fluctuation and an additional linear in
the metric fluctuation also dependent on the external field:

ASgriy[h;v; g) = ASgp_ i [ g] + ASgp—oi [ v; g (3.3.28)

ile.: .
Ang—hh(k) [h,g] 9 5.9 /dDJI\/_hagRgf(léw (—D) hl“’ (3329)
ASgr oy [h;v; 9] = / dPx\/Gurg ¥ rgny (—0) K™,V by, (3.3.30)

The contribution from the ghost term:
ASgh(k) [h’7 ¢, C;v; g] =

— / dP2/G ¢,5"” <ha6 Qr k)aaﬁ’w + Qn(k)awaﬁhaﬂ + ‘CR(k)le) Le(Guw + ) =

1 [ v — v, — —
_ / PG {_ L % 7z, (haﬁngf,g; (-0) + R™e7 (-0) hag) £e(G + Py
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— e\grgnay (—0) K",V £e(Guw + hyw) (3.3.31)

contains a regulator-dependent version of the standard de Donder ghost term and a mixed
hhce regulator term also dependent in the external field. Similarly to how was done to
reveal the mass term for the ghosts in the massive gauge-fixing, we rewrite the former
using identity (2.3.47), in this case grouping the two quadratic pieces antighost-ghost:

ASgh_TgthED(k) [h, ¢, G g] =
/d $\/§cAg prgh(/C ( D) KW vg£6(guv+hw) =

/ 4"uv/7{ [~ (-0) Q8+ RY) ¢ (3.3.32)
+ [—EAg)\pT’gh(k) (—lj) [_(“l’pg?"i’chw}} =
= ASgn—ce(k) €, G 9] + ASgh—nee [, ¢, € g

We thus recognize a quadratic regulator term for the ghosts, in which also the piece with
the Ricci tensor is considered, and an additional mixed hce regulator term corresponding to
a regulator-dependent version of the de Donder hcc-interaction term. Regarding the mixed
hhee regulator term, we notice that the two terms hQBRZf(’:)” (—0) and R, :(2‘53 (—0) hag,

coming from the contractions h,g QR(k)UO‘B M and QR(k)U“ vof has, are not equal due to the

operatorial nature of the regulator and its different position (contrary to the corresponding
terms mf]TM @B.u in the massive gauge-fixing). So, the contribution from the ghost term
to the total regulator term is given by:

ASghilh, ¢, € v; gl = ASgn—ze €, € g) + ASgh—hezi) [P, ¢, € G) + ASgh—wiiy [1, €, €03 g]

(3.3.33)

with:
ASgh—zeiy[c, G g] = /d 2\/G ¢y [—renay (—0) (AL + R*))] ¢ (3.3.34)
ASgh_hcé(k) [h, ¢, G g] = — / dDLU\/EE)\gApTgh(k) (—E) K‘ul/povo.fchm, (3335)

ASgh U(k [h C, E'U'g] =

AT = af,uv = v,af3 = q
/dD‘T\/_ 290 29/\ Cr <h’ Rgr(s ( D) + ,R’Zr(k) (_D) haﬁ) £C(gl“/ + h‘/“’)
(3.3.36)
Summing the two contributions the total regulator term is:

ASylh, ¢, 6 v; g] = ASgpi[h; v g] + ASgnwlh, ¢, ¢ v; g (3.3.37)

As the standard regulator term (2.4.1), it contains the two desired quadratic regulator terms
for the metric fluctuation and ghosts, but in addition also non-quadratic terms, namely a
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Subsection 3.3.1 | BRST-invariant FRG regularization

linear term in the metric fluctuation and two mixed hcé and hhcé terms. In particular,
the quadratic terms should be responsible of implementing a correct FRG coarse-graining
and therefore they should contain regulators with functional form Ry (p?), Rynw) (p®)
satisfying the properties (2.4.5):

( 2
p
1. Rgr/gh(k)(p2) — >0 , E — 0
2 P’
2. Rgr/gh(k)(p ) — 0 ) = — 00
< (3.3.38)
3. Rgygwy(’) — oo kK = kjy = o
4. 'Rgr/gh(k)(pz) — 0 , K2 — 0

\

where kg is some large UV scale. The quadratic regulator term for the metric fluctuation
has the same form of the standard one and the operator Rgf(’,i‘)” (—0), introduced with
the substitution rule (3.3.1), is already the corresponding regulator; as we will see in the
following, it will be sufficient to consider the standard form:

af,uv =\ _ pab,uv
Rovey (—=0) = Ry Rrry (—0) (3.3.39)
Instead, the quadratic regulator term for the ghosts, differently from the standard one,
has a dependence on the Ricci tensor and the corresponding regulator is related to the
operator g, (—0) introduced with the substitution rule (3.3.2) by:

R v (-0) = —ran (-0) (O + R",) (3.3.40)

For now we leave the functional form of the operator g, () (—Ij) unspecified, assuming that
it is such that the properties (3.3.38) are satisfied; later we will give a specific expression
useful to simplify computations.

Finally, the regulated-gauge-fixed action is:

Swy[h, €, G v; g) = Solh, ¢, G v; g] + ASey [h, ¢, & v; g (3.3.41)

At the quantum level, the regularized theory is described by the regularized generating
functionals constructed with the regulated-gauge-fixed action. As in the standard case in
subsection 2.4.1, they are also implicitly regulated with kyy as sharp UV cut-off on the val-
ues of the generalized momenta considered in the measure, HQ <ipl<koy| W@, Sy ).
The regulated expressions correspondent to those in subsection 3.2.1 are:

Zw[J; K;0;9) = / D[] e~ 5w [$:03]= Ssource 93K vi] (3.3.42)

WilJ; K v; §] = log Zy|J; K v; 4] (3.3.43)
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L ®; /05 9] = sup {/deﬁ\/E Jr o — Wi J; K; v;g]}
p (3.3.44)
- /de\/ﬁ TN — Wi [J: K v; 9]

Wi lJ; K v; 9] = sup {/d%\@ J 0" — T [0; K; v;g]}
; (3.3.45)

= /de\@qu’i — T [®; K03 9]

Now all averages are k-dependent, as well as fields and sources related in the Legendre
transform, J = Ju (¢, K), ® = &,y (J, K):

i) = (& (x 1 dWlJ; K g]
" <¢ | )>JK o) 5Ji+(x) (3.3.46)
1 Wy [J; K04 -

g(x) 6.Ji(x)

() = (¢"(2)) e =

1 0T [®; K;v; 9]

Ji xTr) = -
L - (3.3.47)
JH(x) L Ty 0 [® K503 ]
z g(z)  0®()
4 - 1 SWyylJ; K;v; g] 1 00w [0 K;0; 9]
Vi(z) = (V' (x = - _
W= W = T k) TORTSIE
. B . o ) (3.3.48)
V() = (pi(a)) = 1 Wwdl/iKuvg 1 Twd[®Kvg]
T Ve 0Ki(x) 5@ OKi(x)
The integro-differential equation for the regulated effective action is:
e Twl®tnal — / Dylé] eXp{—§<k) [0 9] — Ssource—r 3 K; 03 0]
5o _ (3.3.49)
Ly 0 [®; K v; . )
+/de (k) [6q7)l 71),9] (¢1_¢z)}

Effective average action

The formal definition, i.e. based on the above generating functionals, of the effective
average action describing the scale-dependent theory interpolating between the classical
and quantum regime is:

Ly [@; K05 9] = Ty [®; K 05 9] — ASqy[®;v; g (3.3.50)
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Subsection 3.3.1 | BRST-invariant FRG regularization

As in the standard case, the second couple of required properties for the regulators in
(3.3.38) allows to formally fix the limits of its flow:

L (1m0 (@5 K 05 §] = To[®; K5 03 g] (3.3.51)
F(k_”fUV_WO) [q)’ K’ v; g] = So[q), v, g] + Ssource—K[cb; K; U, Q] + - (3352)

In particular, for £ — 0, the effective average action tends to the unregulated quantum
effective action, i.e. the effective action for the modified de Donder gauge-fixed theory,
since AS(x—0) — 0 (property 4.):

L0y [ @ K503 g] = o) [ K 05 9] — AS (im0 [@; 03 g] = Do[®; K v59] — 0

For k — kyy — oo, the effective average action is expected to approximately tend to the
unregulated classic action, i.e. the modified de Donder gauge-fixed action (plus the source
term for non-elementary fields, if those are not set to zero), with corrective terms related
to the reconstruction problem. In principle, this follows similarly to the standard case
from the integro-differential equation (3.3.49) rewritten for the effective average action:

efr(k)[q);K;v;g] = /D/L[(b] exp{ - S() {(b, §] - SsourcefK[(b; K7 v; g]

— ASy ;v g| + AS() [®; v; g]

<_
ASw Tlogl (3359
v [ =R (o )

ol

5

r o, K;v;q| , . .
+/dD$ ®) [5¢i %8 (¢2_¢l)}

Since due to the limit Ryr/gh(k—skyy—o0) — 00 (property 3.) we expect a divergent
contribution in the exponent:

%
AS(y 0 [®;v; ]

> (6 — ) (3.3.54)

—ASwy[0;v; g + AS ) [P; v; g] + /dj%

However, due to the non-quadratic mixed pieces now contained in the regulator term
(3.3.37), we do not have the simple expression (2.4.21) featuring the regulator term
computed in the difference ¢ — ®. Therefore, the limit should be treated more precisely
via a saddle-point approximation, in order to properly set the reconstruction problem; see
for instance [6] for the analogous treatment in the Yang-Mills theory.

Symmetries and theory space

Similarly to the standard case, assuming that the regulators are constructed with a proper
tensorial structure, the regulated-gauge-fixed action is background gauge-invariant:

d¢Swylh,c,cv;9] =0 (3.3.55)
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and at the quantum level, the regulated functionals are explicitly background gauge-
invariant:

0eWi [ J5 K5 0;9) , 0D 1) [®; K 05.G) , 0T (1) [@; K 059) = 0 (3.3.56)

Contrary to the standard case, BRST symmetry is now always manifestly preserved by
construction, since as in the general case with a generic gauge-fixing function (3.2.40), we
have:

S (Sgsue[h; v gl + Sgnylhs ¢, G v;g]) =0 (3.3.57)

and therefore:

89Sey [y c, & v;g) =0 (3.3.58)
Moreover, expressing the terms entering So[¢; v; g] and AS(y)[¢;v; g] as in (3.3.12)-(3.3.16)
and summing them accordingly, we can recognize the same explicit BRST-invariant
structure of the total action, just with the complete gauge-fixing function substituted
respectively by its regulator independent and its regulator-dependent parts; consequently,
we have also:

09 (Sog7[h; 3 g + Sognlhs e, G v;g]) =0 (3.3.59)
b0 (ASy sl v; gl + ASgrayh, ¢, G v;g]) =0 (3.3.60)
and therefore, individually:
d9Solh, ¢, ¢ v;g] =0 (3.3.61)
09ASy[h,c,cv;9] =0 (3.3.62)

At the quantum level, this appears in the fact that the regulated effective action satisfies
by construction exactly the same Zinn-Justin equation of the unregulated theory (3.2.46)
for any value of the FRG scale k. Indeed, having performed technically just a particular
gauge-fixing without introducing by hand the regulators, the Ward-Takahashi equation
(3.2.45) is by definition unchanged:

/dDZE\/§ (tW <ShMV>JK = Ny <SCM>JK + v+

+mM (shy) e = 1" (b)) g + 10" (Hy) y5c ) = 0

(3.3.63)

apart from the fact that averages are now obtained from the regulated functionals, and
thus k-dependent. Therefore, substituting sources and averages according to the regulated
expressions (3.3.47) and (3.3.48), we also arrive at the same Zinn-Justin equation for the
regulated effective action:

~ 1 60 k) 5f(k) 1 5f(k) 5f(k) 5f(k)

S Dol = [ dPa| ——= 2t _
T / x( V7 0h 0km /g ook oL, U Toe

w L 0w w1 0w )
VG Okm H N

(3.3.64)
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and it is satisfied by construction for any value of the FRG scale k:
5 [f(k)] —0 , Vk (3.3.65)

We do not derive an explicit form for the equivalent constraint satisfied for any value of
the FRG scale k by the effective average action, since in the following we will mainly focus
for technical convenience on the regulated effective action. We implicitly indicate it also
as 2 [F(k)] = 0.

According to those symmetry properties, the theory space is now given by background
gauge-invariant operators lying on the fixed hypersurface of BRST-invariance operators
> =0:

T = {Al0:K;g) : GeA®:Kigl =0 , SAGK:g] =0}  (3.3.66)

3.3.2 BRST-compatible Wetterich-Morris equation

In this subsection we present the Wetterich-Morris equation describing the flow of the
effective average action between in the BRST-symmetrically-regulated theory. Actually,
due to the higher algebraic complexity with respect to the standard case, we will focus on
the flow of the regulated effective action, which is the only one for which we derive an
explicit flow equation.

As in the standard case we have the following equalities between the derivatives with
respect to the FRG time t = log k of the regulated generating functionals:

atZ(k)[J§ Kwv; g]
ZwylJ; K;v; g (3.3.67)

with time derivatives of source-dependent objects computed in J = J)(®, K); in particu-
lar:

0L 1y [®; K v;9) = —0, W [J; K03 ] =

O (1) [®; K 0; 9] = (D AS (1[0 v: 91) e (3.3.68)

In order to compute the average in the right hand side, we rewrite from the previous sub-
section the explicit result for the regulator term; for convenience, in the ghost contribution
(3.3.31) we keep together the two pieces coming from the regulator-dependent version of
the de Donder ghost term and we separate the two pieces in the term dependent on the
external field, renaming indices in the second such that both pieces contain the regulator
for the metric fluctuation with the same index structure:

S k) [¢;v; 9] = /de\/_ [ aﬁRZfl/:)y (_lj) Py
+ U)\g pT’gh(k) (—lj) Kuypgvghwj
- Ekg)\prgh(k) <_|j) KW ?Ufc(guv + hyw)

1 -
— _U_)‘g)\TéTh BR(MB MV( D) £C(§/W + h,“,)

K2 2 gr(k)
1 Ux —= af,uv =
— 55,29 CrLe(Gap + hap) Ry (=0) by | (3.3.69)
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In the last piece we also commuted the Lie derivative, Grassmann-odd, with the regulator
and the metric fluctuation, Grassmann-even, to bring it on the left side of the regulator.
It follows that:

. 1 _

0L [ ®; K 03 9] = /d%@ {2—52 <ha53t73§f’/i§” (-0) h/w>JK

+ <UA§)\patrgh(k) (_lj) K™ avghm/>ﬂ<

— (@Y 0rgnry (—0) K",V Lo(Guw + hyw) )

1 oz v — —

b <U/\g>\TET 050 gf,i‘) (—0) £:(g + h“V)>JK

g 470 £ B ORGZ (<D )|
(3.3.70)

We again introduce an additional integration in order to formally express the objects on
which the regulators act in a different spacetime variable, and then collect the regulators:

0T o [®; K505 9] =

_ /d%d”y\/ﬁé(as —y) {

2%3{]{2‘?’“’( 0, )((haﬁ(w)huu(y»ﬂ(

—(ex(@) £e(Guw + h/w)(y))JK) ]

(3.3.71)

With respect to the standard case, due to the non-standard non-quadratic regulator terms
introduced in the regulating-gauge-fixing procedure, we have the crucial difference that
not all averages are 2-point correlation functions of elementary fields. Taking inspiration
from [6], we choose to recover a situation where only 2-point correlation functions, possibly
of non-elementary fields, are present; in this way, we will obtain a Wetterich-Morris
equation containing the inverse matrix of second derivatives of the regulated effective
action, similarly to the standard case, and additional derivatives at most of the second
order.

We achieve this result by making use of the additional sources for non-elementary field
combinations introduced in the quantization. Indeed, we recognize that the two combina-
tions evaluated in x in the second and third term of the first round bracket correspond
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precisely to the non-elementary fields H,, and €, (3.2.10) and (3.2.11), introduced in
the previous subsection, while the Lie derivatives correspond by definition to the BRST
Slavnov variation of the metric fluctuation; therefore:

T (o [®; K; 05 9] =

- / P 2Py /500 5(x — y) [

S ORI (~0) (as () )) ¢ = ()t () 15 — (Has() ) 1)

+ g/\p(y)atrgh(k) (_D(y)) Kuypa(y)v((yy) (U/\(x) <h;w(y)>JK - <E>\(x)5h;w(y)>ﬂ<> }

1 le% v —
= Tr; {2—1%261?739?:) ( D) <<ha5 ® th>JK — {Qap ® Sh/w>JK — (Hap ® hw/)JK)

+ g)\patrgh(k) (_D) Rul/pava (U)\ ® <h‘/“/>JK - <5)\ ® Shul/>JK> ‘|
(3.3.72)

with the regulators acting on the second of the two terms in the direct products. Now all
averages correspond to 2-point correlation functions (apart from (h,,) ;. = h,, which is
an average field). Proceeding now as in the standard case, we use (3.2.27):
e 7 (2) T D)

%Z(k)MN(x ) = Wignn (2,9) + W (@) Wiy (y) (3.3.73)
In this case, since also correlation functions of non-elementary fields are involved, we need
all the relations (3.2.28)-(3.2.31) to rewrite the first term in terms of derivatives of the
regulated effective action:

W(%)Mj(ﬂ%y) Fﬁi%%](w,y) (3.3.74)
W(f))Kin (z,y) = —T%K.K.(%y) (3.3.75)
I/T/((/fQ))Kz'Jj(‘T’y): fgz))f( or(T,7) * Féz))cpw(ay) (3.3.76)
Wi, (:9) = —T () oton (#.) 25 Tporre, (+9) (3.3.77)

As shown in appendix C.1, according to those relations the four 2-point correlation
functions appearing in (3.3.72) give:

(hap (@) (1)) 110 = Tl (2:9) + R (2)hy (1) (3.3.78)
(s )5 ) 1c = T2 s 29) = B s @D () (3:3.79)

(Has (@) yic = T2 (@) g Tl () = T (@huy)  (33.80)

(@5l @) e = ~TET e o0@:) % T (49) + @D () (338
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The term v (2) (huw(Y)) ;5 = va(x)huw(y) in (3.3.72) and the product of average fields
(has(2)) 75¢ (P (¥)) ;5 = Dag(z)hu(y) in (3.3.78) once traced gives back the derivative of
the gauge fixing contribution to the regulator term (3.3.27) computed in the average fields
DSy [h; v; gl:

TI'g 8t72a5 iy ( D) ag@hu,,—i—gkp@t'r’gh(k) (—lj) R"“’pav"w\@hw = 8tAS gf(k) [h v, g]
(3.3.82)

Substituting the results in (3.3.72), one obtains the BRST-compatible flow equation for
the regulated effective action:

gr(k) (k)haﬂhuu (k)ymeB o (/f)@hw (k)nB kv

1 apur (= [ DE- =(2) =(2)— =(2)
520 R (-0) (r +T I -Tr

L5 NN
F(k.)ma@ ® hy + F( kynes & P(k b )

T v oo [ pE-1 =(2) =
+9g patrgh(k)( D) K“ oV <P (K)o * F(k) pig — 2O T k)kw)]

+ 0:ASy sy [h; v; g]

(3.3.83)

where it is understood that regulators act on the second implicit spacetime argument of
the various objects inside the round brackets. Differently from the standard flow equation
(2.4.43), only the derivative of the gauge-fixing piece 0,ASysx)h;v; g appears, not the
derivative of the full regulator term 9;ASq [®;v; g].

Using the formal definition (3.3.50) to write the regulated effective action as I'(y =
[y + AS(), one obtains the BRST-compatible Wetterich-Morris equation for the effective
average action, implicitly given by:

T ) [®; K03 9] = 0, 1y [®; K303 9] — 0, AS(i) [®; v; 9] (3.3.84)

Contrary to the standard Wetterich-Morris equation (2.4.46), we have a left over term
—0:ASgh ) [®; v; g], due to absence in (3.3.83) of the derivative of the full regulator term
O AS (1) [P; v; g]. Moreover, rewriting the pieces coming from (3.3.83) in the right hand side
in terms of derlvatlves of the effective average action, in this case we do not obtain simply
terms of the form (FE eies T R(—0)) 7Y in particular, the first and second derivatives of the

regulated effective actlon with respect to the external sources can be immediately translated

in those of the effective average action, since FEZ K = I‘Q) fg)) = Fg K instead; the
inverse matrix of second derivatives generate terms (FE ))qmw + AS(k oies) > Where the

matrix of second derivatives of the regulator term AS’ is now field-dependent and

k
@
(k)i
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non-block-diagonal, due to the non-quadratic and mixed hcc and hhcc terms. We do not
give the explicit form of the equation, focusing instead on the flow equation (3.3.83). We
make the following remarks:

1. Similarly to the standard construction, the regulated effective average action can be
now defined as solution of the flow equation (3.3.83), in the place of the formal definition
(3.3.50), and the latter as the fundamental object defining the quantum theory, in the place
of the generating functionals, along with an initial condition. In particular, in this case we
can consider as classic gauge-fixed action serving as initial condition any other gravitational
action than the Einstein-Hilbert one, but not with an arbitrary gauge-fixing, since due to
the regulating-gauge-fixing procedure, the unregulated action is always gauge-fixed with
the modified de Donder gauge-fixing, by construction.

2. As in the standard construction, the implicit UV cut-off kyy, deriving from the formal
definition (3.3.50), can be safely removed by letting kyy — oo thanks to the presence of
the derivatives of the regulators in the trace.

3. Similarly to the standard flow equation (2.4.43), the flow equation (3.3.83) is an exact
functional differential equation with two sectors, featuring respectively the two regulators.
However, in this case in each sector there are both functional derivatives of the regulated
effective action with respect to the metric fluctuation and the ghosts, and also with respect
to the additional sources. Thanks to the introduction of the latter, the equation contains as
(2.4.43) at most second derivatives. In particular, derivatives with respect to the additional
sources appear only as first and second order derivatives, derivatives with respect to the
fields appear in the inverse matrices of second derivatives of the regulated effective action,
similarly to (2.4.43), although in this case also non-diagonal element are present. As far
as the structure is concerned there are three kinds of terms:

® ]-loop terms given by the trace of the operators:

ng%haﬁhw ) ng;maﬁdﬂ 9 ng))cbilhw ’ ng;c;@ g FE?)MW

multiplied by the correspondent regulator. The first is equal to that in (2.4.43), i.e. a
loop of the exact metric fluctuation propagator with a regulator insertion. The second
and third are each one a sum of three loops formed by exact propagators of both
the metric fluctuation and ghosts with the insertion of a regulator and an additional
operator. We present the explicit form in the linear- K truncation in subsection 3.3.4.

® Traces of the operators with a direct product:

) W i .o

I (wymes @ Py F(k)nD‘B ® P(k g A® P(k v

multiplied by the correspondent regulator. Those assume a simple form adopting the
linear- K truncation.

® Trace of a second order derivative of the regulated effective action with respect to
the additional sources.

(2)
L (kynesp

multiplied by the correspondent regulator.
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4. According to the symmetry properties of the regularized theory stemming from the
formal definition of the effective average action (3.3.50), the Wetterich-Morris equation
(3.3.84) is expected to generate only background gauge invariant terms satisfying the
constraint imposed by the Zinn-Justin equation, > = 0, so that the trajectory is constrained
on the fixed hypersurface of BRST-invariant operators along the full flow from the UV
to the IR, co — k — 0, contrary to the one satisfying the standard Wetterich-Morris
equation (figure 5).

In particular, we expect that the flow equation (3.3.83) is BRST-compatible, i.e. compatible
with the constraint imposed by the Zinn-Justin equation (3.3.64). This means that the
evolution in FRG time described by the flow equation must preserve the value of the
constraint, so that if the trajectory solution of the equation satisfies the constraint at
some FRG scale kg, then it does so for any other value of the FRG scale k:

Ylkpl =0 = X[lw]=0 Vk

This property represents the BRST-invariance of the regularized theory assuming the flow
equation as fundamental concept, in the place of the formal definition in terms of the
regulated generating functionals. It is proved in the next subsection.

v

Figure 5: Pictorial representation of the FRG flow trajectory in theory space described by the
BRST-compatible Wetterich-Morris equation for the effective average action T'(yy, which unfolds
from the modified de Donder gauge-fized action Sy (plus counter terms) to the quantum effective
action I'y. The flow is constrained on the hypersurface of BRST-invariant operators ¥ = 0
embedded in the space of background gauge-invariant operators.
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Subsection 3.3.3 | BRST-compatibility proof

3.3.3 BRST-compatibility proof

In this subsection we prove the BRST-compatibility property of the flow equation (3.3.83).
As anticipated in the previous subsection, this corresponds to proving that if the trajectory
solution of the equation satisfies the constraint imposed by BRST symmetry, i.e. the
Zinn-Justin equation (3.3.64), at some FRG scale kg, then it satisfies the constraint also
for any other value of the FRG scale k:

STyl =0 = X[kl=0 Vk (3.3.85)

In order to prove this property, it is convenient to focus on the regulated path integral
and the associated flow equation, instead of considering directly the regulated effective
action and the flow equation (3.3.83). The proof goes as follows:

1. BRST symmetry constraint generator: Consider initially the formal definition of the
regulated path integral in terms of the functional integral (3.3.42). The constraint imposed
on the quantum theory by BRST symmetry is represented by the Ward-Takahashi equation
(3.3.63), which can be written in terms of derivatives of the regulated effective action,
i.e. the Zinn-Justin equation (3.3.64). The identity can be written also in terms of
derivatives of the regulated path integral; in particular, rewriting first the identity in terms
of unnormalized averages, i.e. multiplying both on the left and the right by the regulated
path integral:

/dDZU\/§ <tuu <Sth>JK,u — () e T 77%;12(116)+

+m"” <3huV>JK,u —nt <hW>JK,u + <HHV>JK,u> =0
(3.3.86)
and writing the unnormalized averages as derivatives of the regulated path integral with
respect to the corresponding sources, we obtain:

e 07 6Z _ -

Skrv 51, (33.87)
YA 0 Z YA o
g MV g —
+m —5k!“’ n —&W +n —5m/“’ 0

In particular, contrary to the case of the Zinn-Justin equation (3.3.64), now the sources
appearing in the expression are not rewritten as derivatives, since they are already the
natural variables of the regulated path integral; therefore, while the left hand side of the
Zinn-Justin equation (3.3.64) is non-linear in the regulated effective action, in this case
the expression which is constrained to be zero by BRST symmetry is given by a linear
functional operator, containing up to first order derivatives in the sources, acting on the
regulated path integral:

~ o )
= - D g _ 7 onH
H[Z(k)] /d xT (t Iy nuélu + \/577 Uy

5 5 5
uv % uv
T S " g T 5mw>

(3.3.88)

N

0[5 K;v; 9]
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The operator is the generator of the BRST symmetry constraint S:

[Zw)) = SZ) (3.3.89)

[1]

which can be expressed as:
S = / dP2r/5(@) S(z) (3.3.90)

where S(x) is the non-integrated form of the generator:

! o (x 0 —-n xL g(x)n"(z)v,(z
S(0) = s (#0) sy ) VI 0

pv 0 v g 02 0

(3.3.91)

Finally, we notice also that, since the left member of the identity (3.3.86) is just the one
which leads to the Zinn-Justin equation (3.3.64) multiplied by the regulated path integral,
we have the formal relation:

ElZw) = Zw =L w) (3.3.92)

2. FRG flow generator: Consider again the formal definition of the regulated path integral
in terms of the functional integral (3.3.42), and the associated flow equation. According
to the relation (3.3.67) between derivatives of the various generating functionals, the flow
equation is formally given by:

0 Z [T; K03 g = = (ASu 6503 91) (3.3.93)
The unnormalized average on the right hand side can be expressed, in explicit notation,

by considering equation (3.3.72) and substituting normalized correlation functions with
unnormalized ones:

O Z[J; K;v; 9] =
— [ dPady 50} oa - y){

1 o v —
SR (~00) (= (s @) (1)) 1,0 + (s ()3P0 () 10

o (Ho (2 () .
+ gAp(y)atrgh(k) (_lj(y)) K#Vpo(y)v?y) (_UA(x) <hlw(y)>JK,u + <E>\(ZL‘)ShW(y)>JK7u) }

(3.3.94)
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Subsection 3.3.3 | BRST-compatibility proof

Rewriting the unnormalized correlation functions of the various fields as derivatives of the
regulated path integral with respect to the corresponding sources (recalling in particular
that for the antighost there is a minus coming from the definition of the correspondent
source term), the flow equation for the regulated path integral can be thus expressed in
the form:

O Zuw|J; K05 9] =

/dedDy\/g(x) d(z —

1
V() v/3(y)
1 B _ ) (52@) 0 5Z(k) Y (52(16)
5,2 IRy (-0O¢)) ( SteB(z) tm (y) + Sn () ok (y) + dmeP(x) ot (y)

_ _ _ 52 k 0 62 k
+ 7 W)0rgnary (—Ow) K" 00 (y)VE,) (_ ” g(x)v*(x)étw((;) o) s (?)J)) ]

(3.3.95)

where it is understood that all derivatives are left derivatives acting on the regulated path
integral on the right, in the order in which their are written (which is relevant in particular
for the second couple in the first bracket and the third couple in the second bracket,
which are taken with respect to Grassmann-odd sources and are therefore anticommuting).
Similarly to the previous point, while the right hand side of the flow equation (3.3.83) is
non-linear in the regulated effective action, in this case the right hand side of the flow
equation is given by a linear functional operator, containing up to second order derivatives
in the sources, acting on the regulated path integral:

O Z|J; K05 ) =

/ Pady\/g(x) o — ) \/g(x)1 7W) {

1 af,uv — 5 6 6 (5 (5 5
— e _
220 Rty (-How) ( 5198 () tr () | onB(x) Sk (y) | omaP(x) (W(y))

+ 5 W) (~Biw) K0 ()Y, (‘ ! (“”A(@awf(y) ) 5nf<x> 5k~f<y>) } |

- ZuylJ; K03 7]

(3.3.96)
The operator is the generator of the FRG flow F for the regulated path integral:

O Zuy = F Zy (3.3.97)

which can be expressed as:

F =Try [F(z,y)] (3.3.98)
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where F(z,y) is the non-integrated version of the operator:

Flx,y) =
;{

9(z)\/3(y)

1 o [ 5 5 0 J J 0
2—52&:739?(,6) (_D(y)) <_5ta5(x) 5#“/(@}) + 5naﬁ(x) 6kﬂ”(y> + 5ma5(1‘) 525!“’(y))

+ 97 W)0rgna) (~Ow) K0 (1) V) (_ ” g(x)w(g;)wf@) - 5?75(%) 516“(5(1/)”

(3.3.99)

Similarly to the case of the regulated effective action, at this point the regulated path
integral can be defined as solution of this flow equation.

3. Compatibility: Obtained the two generators F and S, it is immediate to prove that the
compatibility condition (3.3.85) is equivalent to the commutativity of the two:

[F, 8] =0 (3.3.100)

where the commutator is explicitly given by:

[F,S] = /dedDydDz\/g(a:)é(:z: — YV g(z) [Flz,y),S(2)] (3.3.101)

Indeed, consider the regulated path integral defined as solution of the correspondent flow
equation; given a point Z; on the trajectory, at some given FRG time ¢, the immediately
following point Z(;44r), at an infinitesimal distance in FRG time dt, can be expressed as:

Z(t—i—dt) = Z(t) + dth(t) (3.3.102)

If we now apply the generator of the BRST symmetry constraint, assuming the commuta-
tion rule (3.3.100), we obtain:

‘SZ(t—l—dt) = 82(,5) + dtS.FZ(t) = SZ(t) + dt]:SZ(t) (3.3.103)

In particular, we can deduce the implication:

SZwy=ZZw]=0 = SZgra = ElZt+an] =0 (3.3.104)

From (3.3.92), the implication is equivalent to:

Elpl=0 = Z[Cupa] =0 (3.3.105)

which, by iteration, can be extended to the case of points at an arbitrary finite distance
along the FRG trajectory, finally implying the compatibility condition (3.3.85). In appendix
C.2 we prove that the commutation rule (3.3.100) is indeed verified; in particular, the
result follows from a precise cancellation of the additional terms arising from commuting
the various functional derivatives inside the two generators.
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Subsection 3.3.4 | Einstein-Hilbert truncation and beta functions

3.3.4 Einstein-Hilbert truncation and beta functions

We conclude the thesis by applying the standard Einstein-Hilbert truncation scheme
to the flow equation (3.3.83) in order to find the beta functions for the gravitational
and cosmological constants predicted by the theory and compare the results with those
stemming from the standard Wetterich-Morris equation (2.4.46), presented in subsection
2.4.3.

Linear-K truncation

Before specifying the full truncation scheme, we show how the flow equation (3.3.83)
appears operating, as a preliminary step, a linear-K truncation, projecting it on the
subspace of operators with a linear dependence on the additional sources given by the
source term appearing in the path integral (3.2.18):

Loy [®; K05 9] = Ty [P5 03 9] + Ssource—r [®; K503 g (3.3.106)

In particular, according to the ansatz, the first derivative of the regulated effective action
is simply given by the vector of non-elementary fields, while the second is clearly vanishing:

fgm (z) = =V'(z) | fgm(:v) = -Vt (z) (3.3.107)
F%KK (z,y) =0 (3.3.108)

Adopting the truncation in the flow equation (3.3.83), we can thus set:

fgmaﬁ @hu = —Hap @ Ny = —%ﬁ’”@fc (Gap + hap) @ hy (3.3.109)
- ad v
anw ® ngw = —Qup ® shy, = —U—gg%haa ® £e(Guw + ) (3.3.110)
G ofl ¢ By =\ @ £e (G + I 3.3.111
Cx & (k) kv Ch ® s ny Cx & c (g/'”’ + /“’) ( +J. )
=(2) _
L ynosim =0 (3.3.112)

Given the first three equalities, one can recognize that the three terms given by tracing
the direct products now reconstruct precisely the derivative of the ghost piece (3.3.31) of
the regulator term computed in the average fields 0;ASynay[h, ¢, S v; g]:

Try (k) (k)

! S (70 SO

afB,uv (1 (1 )
2K2 athr(]l:) (_D) <F moB X h,ul/ + r noB X F(k)k“” )
(3.3.113)

— g”’@trgh(k) <—|j) Kijpgﬁg (EA %9 f‘(fllc‘%kw) = atASgh(k)[h, C,C;v; g]

Therefore, the flow equation for the regulated effective action within the linear- K truncation
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can be expressed as:

(9t1:‘(k) [dJ; v; g} = Tr;

1 -~ ~ ~
B, (2)-1 (2 (2)-1
2_/€28th7"(;; (-0) (F(k) hashur T L (kymasoi *3 F<k)¢"hw>

_ = —— ~1 2 3.3.114
+ gApatrgh(k) (_D) K“ Y < Jerdi 7 nggww )] ( )
+ O AS (1) [®; 05 g
In particular we notice that the flow equation is now structurally similar to the standard
one (2.4.43), in the sense that only loop terms are present and also the derivative of the

full regulator term 9, AS(y)[®;v; g] appears. Making the sum and the integration explicit,
the two product terms are given by:

s [ N (2 2)—1
FEk))maB(bl( ) 9 ng%qﬂhﬂu( - dDZ g(z> (F(kima,@hpc (x7 Z)FE %hpcrh/,tu (Z7y)
2 ~
+ng§maﬂcp($ Z)FE ))( cp)hw(%y)
m(2) =(2)—1
+ F(k’)maﬁ( Cp) (xa Z)F(k)(_:phuy (Z, y))

(3.3.115)

=(2)-1 (2 - =(2)-1 (2
ng))(;)\cbi (z,°) + nggqﬂkm/('a y) = /dDz\/ 9(2) <nggéxhaa (z, Z)ngihagk“” (2,9)

(3.3.116)

Within the linear- K truncation, according to (3.3.109), the operators acting on the various
components of the inverse matrix of second derivatives of the regulated effective action
are:

_Z_ggvéééXpo B(@)

. _ d(z — 2)
P @2 = | —Bg9esYas(9) = (3.3.117)
SRON VY
gl
X (V) )
3 ] sy
FEZ))d)ik“V (Z7y) = Yauu(V) — (33118)
. 9(2)

()
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with:

Xaﬁ/u/<x? y) = XOCIB,LW(?(@)(S(:B - y)

5
= Sy P 2)) = (3.3.119)

- (5;}5&% + 898V, + 5;“5%&)( RN
Ya,uzx(xa y) = Ya,uu(v(:c)>6<x - y)
0
e (y) i -
— ((gay + hozl/)vu + (gau + hau)Vy + vah)\u) (x) 5(£C — y)

(shuw(2)) = (3.3.120)

Integrating by parts within the z-integrations'?, we can move those operators on the
matrix elements of the inverse matrix of second derivatives of the regulated effective action
and the explicit form of the equation in the linear-K truncation is, in compact notation:

atf(k) [¢;U§§} =
— Tr. La R OB (—lfl) fw(2)*1
T 9 9i2 t r(k) (k)haghpy
Uy _ns— TS o=\ o A\ 1(2)-1
— U—;g“* Cs (5250 Vi +055Vac" + 05, Ve ) F(k)hpghw

Vo s /) - _ = = =(2)-1
+ v—;/gwcé ((gpa + hpa)Vis + (Gps + hps)Va + vphocﬁ) ng;cphw

Ux _ _ =(2)—1
- ﬁg)\pfc(gaﬁ + hocﬁ)FEk)) ]

Ccohpuw

+ g0 gy (-8) K,V [<6z‘5c% + 8V + 8V ) T,

+ ((gow + hau)vu + (gau + hoz,u)?lf + vah)\#) f‘%;ca ] }
+ O AS (1) [P; 03 9]

(3.3.121)

where it is understood that the field-dependent differential operators in the round brackets
in the metric fluctuation trace sector act on the first spacetime argument of the following
operators and those in the ghosts trace sector on the second.

At this point, similarly to the case of the standard equation, since on the left hand side
we do not have anymore terms depending on the additional sources, we can neglect their
contribution also on the right hand side, considering directly derivatives of f(k) [CD; v; g}.

12Gimilarly to computation sketched in 7.

126



Section 3.3 || BRST-invariant FRG flow

Finstein-Hilbert truncation

Taking inspiration from the Einstein-Hilbert truncation for the standard equation, the
proper Einstein-Hilbert truncation for the BRST-symmetrically-regulated theory is given
by:

Tiylh, ¢, &v; 9] = Teamwlg = h + 3] + Tarom b v; gl + Tanop [h, ¢, & v; 7]

s (3.3.122)
+ AS(lh, ¢, ¢ v; g]

where the various terms are obtained by promoting the Newton’s and cosmological constants
to running couplings in the modified de Donder gauge-fixed action (3.3.26) (with in addition
the regulator term, since we are considering the regulated effective action in the place of
the effective average action):

Perwly] = Senly] ‘Gﬁ% (3.3.123)

Loro0e [h;v; ] = Sgrolhiv; §]’ - (3.3.124)

= ng,O—deD[h;g]’ + ng,O—U[h;U;g] (33125)

Lgnog[h, e, ¢ vsg] = Sgh,o[h,c,é;v;é]‘G%G = (3.3.126)
(k)

= Sgh0—den[h, ¢, S ] + Sgno—o[h, ¢, ¢ v; g (3.3.127)

G— G(k)

Therefore, inserting the ansatz in the equation, we have in the left hand side a contribution
from the Einstein-Hilbert part, the standard de Donder gauge-fixing part and the hhcc-
interaction term dependent on the external field of the modified de Donder ghost term;
in particular the latter corresponds to a ghosts-dependent running term. However, we
are interested in deriving the beta functions for the Newton’s and cosmological constants,
which can be extracted from the first two alone, without needing to consider the latter.
Therefore we can disregard the third term in the left hand side along with all the terms in
the right hand side which produce ghost-dependent operators. The result is effectively
analogous to the Einstein-Hilbert truncation for the standard equation, i.e. a single-metric
truncation with running Einstein-Hilbert action and de Donder gauge-fixing term and the
scale-independent de Donder ghost term:

O (FEH(k) g =h+g] +Tgro-dgen [ g]) =

1

o af,uv — 2 (2) 2 (2) !
— §Trg {(%Rgr(,ff) (—D) <m (FEH(k) + Fgf,O—deD(k))haﬁhu + K AS(k)haﬁhW) }

_ N\ By S~ e _ e 2 2 -1
+ Try {gApatrgh(k) (_D) K" ooV (gw'vu + gaqu) (Sggh),ofdeDEA co T AS((kgéA ca) ]

v

(3.3.128)

In particular, we notice that the metric fluctuation trace sector has got the same structure
of the standard one, while the one relative to ghosts has got a different structure as a result
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Subsection 3.3.4 | Einstein-Hilbert truncation and beta functions

of the construction. At this point we can perform the single metric truncation according
to (2.4.54):

Ol erwylg) =
= Iy laremm oy (w2 (r r 2
= 5 Ty |0 R (=0) | #° (Tenoy + Toro-aenm)n .. [n—o
9g=g 1
2 A <2
+ K AS(k)ha@hW h:O) ]
g=g
vV o 2
+ Try | ¢ 0irgnry (—0) K10 V7 (9o Vi + G Vo) (S;h),o—deDcA < lho
g=g

(2)
+AS

C)Cc¥

(3.3.129)
The differential operator acting on the inverse operator in the ghosts trace sector gives:
9K NV (gar Vi + 9op Vi) = 6,0 + [V, V] (3.3.130)

The two derivatives of the regulator give instead!®:

(2) _ af,uv
g=g
2 S _
ASGYcalyo = —rono (-0) (@5 + RY,) (3.3.132)
g=g

Therefore the final simplified form of the flow equation in the Einstein-Hilbert truncation
is:

afB,uv 2 (2)
IRy (—=0) (’i (Ceaw) + Loro-den))y .

+ Tr,

O gn(r) (—0) ((%D + [VA, Va]) (S;?L),O—deDc)\ co

(3.3.133)

At this point, within the truncation and assumptions made, we have lost completely the

13At this point we suppress the /9 factors in the expressions working in compact notation, as noticed
in 9; in particular we will write 0™ ' =07'0 = 1.
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dependence of the external field, which consequently will not appear in the final form of
the equation in component form. The left hand side of the equation is given as in the
standard case by:

2
LHS 1) (R) = 0T suwlg] = / dPu\/g [~ RO Zngy + 200 ZnAwy)]  (3.3.134)

with the dimensionless running constant Zy ) = G/G ). The right hand side is given by
the two trace sectors:

RHS () (R) = RHS,) (R) + RHS (1) (R) (3.3.135)

and can be evaluated in a maximally symmetric spacetime characterized by (2.4.58). In
particular, the trace sector of metric fluctuation is exactly equal as in the standard case
and adopting the same regularization scheme, namely:

RO (0°) = Romty Rariiy (0°) (3.3.136)
with:
2
Rty (*) = k*Rao ( k2> (3.3.137)
RO = Zi [(5(15 w97 §’“’) D=2 gaﬁé’“’] (3.3.138)
gr(k) D 9 D

yields exactly the result presented in subsection 2.4.3. Therefore, we need only to evaluate
the ghosts trace sector. As in the standard case the second derivative receives a contribution
only from the quadratic part of the de Donder ghost term:

Syro—denlh & gl . = / Pay/Gc, (—058 — RE) e (3.3.139)

which in a maximally symmetric spacetime reads:

. __ - R
[Sgh,OfdeD[ha = C;g]]éc—term = /dD.Z'\/EC'u (_ - B) ct (33140)

and:

&)
Sgh,O—deD C)Cc™

(—D - %) 5" (3.3.141)

So, the ghosts trace sector of the right hand side of the flow equation is:

RHS 1) (R) = —Tryv | Oirgnay (—0) O ((1 + Tonery (—0)) <|:| + %) > _1] -

(3.3.142)

R —1
— —Tl“gv 8trgh(k) (—D) O <|:| + 5) (1 + Tgh(k) (—D))

-1
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where it is understood an identity in the space of vectors giving the discrete part of the
trace trr(11) = 0% = D; we notice also that the various operators inside the trace are all
functions of the laplacian and can be thus arbitrarily commuted between themselves.
We now specify the regulator; in particular, we exploit the freedom allowed in the
FRG framework to simplify the inverse operator (O + R/D)™!, choosing a regulator
Toney (—0O) o< (O + R/D), i.e. characterized by the following form:

R (p?) R
2\ _ (k) \P 2
ron) (P) = =1 <—p 0 5) (3.3.143)
where R ) (p?) is a standard regulator with the same shape function used for the regulator

for the metric fluctuation: )

2 2 p
Ry () = K°Ro (E) (3.3.144)
The factor p* is required to have the correct dimensionality, since g (p*) must be
adimensional. According to (3.3.40) (in a maximally symmetric spacetime), this choice
corresponds to a regulator

R p2 R 2
Raniiy (P°) = % (—p2 - 5) (3.3.145)

which inherits the shape, and thus the required properties (3.3.38), of a standard regulator,
just "smeared” with by the factor (R/D1/p* — 1). Adopting this regularization scheme,
the trace in the right hand side is rewritten as:

RHS, ) (R) = Tryy {&R(k) (-oya! {1 Ry (-0)O? <EI + _)] - } _

= Tr,y {&R(k) (-0)O {DQ ~Rw (D) (D ! Bﬂ _1 } -

-1

= ngV{atR(k) (-0)0(0° - R (-0)0)
: [1 — (0" = Ry (-0)0) " Ry (0 %} — }

(3.3.146)
Using now the operatorial Taylor expansion (1+ O)~! = >"> (—1)"O" we identify the
O(1) and O(R) terms:
RHS 0(R) = = Trgv |0R (~0) (-0 + Rey (-0)) |

— Trgv [@R(m (-O) Ry (-0) (-O) " (-0 + Ry (-0)) % +O(R?)

(3.3.147)
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Writing the regulator and its derivative in terms of the shape function:

R (—0O) = 2k° [RO ( ]?2) + E R ( 1?2)] (3.3.148)

with R (x) = dRy(z)/dx, the result can be written as:

2

RHSgh(k)(R) = —2TI'gv[W1 (—D)] D2

—Tr,v[Wy (—0) R] + O(R?) (3.3.149)

where the two functions are:

2\ _ 2R (2
Wi(z) = Ro (52) k"’RZO (&) (3.3.150)
7z +Ro ()
Z z) 2z _ Rz
WQ(Z) — RO (kQ)Z (7?’20 k2) k2 - 7220 (kQ)) (33151)
iz (& + Ro (7))
The corresponding @Q-functionals (2.4.82) are:
Qn>o[Wh] = K@}, (0) (3.3.152)
Qn>o[W2] = E*"6} (3.3.153)

with the standard threshold function ®?(w) (2.4.87) for p = 2 computed in w = 0, and

the coefficients:
o[ Re@) (Ro ) — Ry (1))
02 = /0 d &t Re @] (3.3.154)

According to the heat kernel expansions (2.4.80) and (2.4.81) we have:

2D
RHSgn ) (R) = P 573k Ppa(0) / d"z\/g
oD o, (1. 1, ; ) (3.3.155)
ORE 6¢D/2—1(0) + 5@[)/2 d”z\/g R+ O(R")
and:
2D 5.
RHS gk (R)]oq) = _Wk ®p/2(0) (3.3.156)

2D o (1 1

In particular, the O(1) contribution is equal to the standard one (2.4.90), while the O(R)
one differs from (2.4.92) according to the substitution of the threshold function ®?(w)
(2.4.87) for p = 2 computed in w = 0 with the coefficient @D/2

02,00 — O}, (3.3.158)
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In conclusion, equating left and right hand side of the flow equation:

I€2 s /{ s
0(Znwhw) =+ RHS; (1 (R)loq) + T RHS3 (R)]oq (3.3.159)
KJZ li
hZNk) = D) RHSZ%)(RHO(R) — 3 RHS 1) (R)|o(r) (3.3.160)

we recover the standard expression for the derivative 0;(Znu)Awk)) and an expression with
the standard functional form, but corrected according to the substitution (3.3.158), for
the derivative 0;Zn:

( K2 1 9A oA
O Znwhw) = 15 myon kP [2D(D +1)®h ( ,;;)) D(D + D) dl ( ;Jz’”)
. 8Dc1>}3/2(0)]
'%2 1 — 2A 1 ~ 2A
20 1 - 20
—6D(D 1) {q)D/? < k:(Zk)> - 577N(I’%)/2 (‘%)}

(3.3.161)
Therefore, also the anomalous dimension has the standard form in terms of the dimension-
less Newton’s and cosmological constant:

9y Bi(Aw))

3.3.162
1- g(k)BQ(/\(k)) ( )

N (9> Ay) =
up to the substitution (3.3.158) in the function By (A)):

1 _
Bi(A\g) = g(Aﬂr)l b2 [D(D +1)®h s 1 (—2Aw) — 6D(D — 1)F, )5 (—2Ax))

—4D®} 5 4 (0) — 2467, (3.3.163)
1 - N
By(Aw)) = —6(47T)1_D/2 [D(D +1)®p a1 (—2Ap)) — 6D(D — 1)@ 5 (—2Aa)
(3.3.164)

and consequently we also have formally equal system of FRG equations for the dimensionless
running Newton’s and cosmological constants:

{ atg(k Bg(g k)a )

= Br(9(k)» A\k)) (3.3.165)

with the beta functions differing implicitly due to the change in the anomalous dimension:
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Ba(9t): M) = [D = 2+ 1w (g, A\wy)] 9k (3.3.166)
B9y, Awy) = = [2 = v (9 Awy) | Ay
1

—(47r)1 D/2g [2D(D+1)c1>D/2( 220
— D(D + )i (909, Aw) @by (=20
~ 8D},,(0)]

[\

(3.3.167)

For instance using Litim optimized regulator (2.4.95), the coefficients ©2 are given by
(with n > 1):

2 _ _— lxx"_ll - ! = 1
0=t Jy @ = D ~ G T

(3.3.168)

Therefore, the correction in the equations with respect to the standard case, given by
(2.4.98), is minor:

1 oo 1
r(s+1) N CERINCES)

and moreover exactly equal in D = 4 dimensions, when the extra prefactor is 1. We conclude
that within the Einstein-Hilbert truncation and the regularization scheme employed for
the ghosts, the BRST-compatible Wetterich-Morris equation reproduces (almost) the same
results for the beta functions of the couplings of the standard equation. In particular,
employing the Litim optimized regulator, we have in D = 4 dimensions precisely the same
beta functions, and therefore the same fixed points of the FRG flow [5].

®% 15(0) = (3.3.169)
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Conclusion

Conclusion

The main result of the thesis is the generalization to quantum theories of gravity of the
formalism introduced in [6] to implement an FRG framework in a manifestly BRST-
invariant manner in a quantum non-abelian gauge theory. This was achieved by combining
the regularization and gauge-fixing procedures in a single step, and in particular by
employing a non-standard gauge-fixing choice capable of introducing in the gauge-fixed
action quadratic mass terms for the metric fluctuation and the ghosts, which, promoting
the mass parameters to FRG regulators with suitable properties, allowed to regularize
the theory preserving explicitly BRST symmetry, and thus to obtain a Wetterich-Morris
equation compatible with the constraint imposed by BRST symmetry, i.e. the Zinn-
Justin equation, satisfied by the effective average action for all values of the FRG scale.
Specifically, the gauge-fixing required the introduction of a linear gauge-fixing term and
a quadratic gauge-fixing function, contrary to the typical standard choices involving a
quadratic gauge-fixing term and a linear gauge-fixing function; in turn, this required the
introduction of an external field and resulted in the emergence in the gauge-fixed action
of non-standard interaction terms dependent on it. Using this gauge-fixing structure to
perform an FRG regularization, this produced an unregulated action equipped with a
standard gauge-fixing plus additional terms dependent on the external field, as well as a
regulator term containing the standard quadratic regulators for the metric fluctuation and
the ghosts plus additional non-quadratic mixed terms. Due to the presence of the latter,
it was necessary to introduce additional sources, in order to write the Wetterich-Morris
equation, which as a consequence resulted to be more complicated than the standard one;
nevertheless, it was shown that within the Einstein-Hilbert truncation and with a suitable
regularization scheme, the equation in component form has the same structure of the
standard one.

This work may lead to several possible future developments. In particular, at the practical
level, an immediate further study could be an analysis of the dependence of the theory on
the regularization scheme, in particular in the ghost sector, which shows a non-standard
behavior; moreover, it could be of interest also considering more general truncation schemes,
possibly non-linear in the additional sources. At a more formal level, another research
line could concern the study of the FRG flow of quantum gravitational observables, i.e
BRST-invariant functionals of the fields, by means of an analogous BRST-compatible
equation, and their physical interpretation.
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Appendix

A Background field method

A.1 Background expansion of curvature tensors

Under the linear background split:
G () = Gy () + o () (A1)
we have the following background expansions:

® [nverse metric: the expansion follows from the matrix Taylor expansion formula for

(1 + M)t = 3% (—1)"M™;

[ +g 'h) - g—lry _

[ )& h)"e ] = (A.2)

= S g = g B R+ O

3
o

® Square root metric determinant: the expansion follows from the matrix identity
det eM = "™ and the matrix Taylor expansion formula for log(ll + M) =

Zle(—l)"/nMni

V9 = VGgy/det(1 +g—h) =

G exp {%tr [log(1 + g 'h)] } _

1 n

g exp {—tr [ (g~ 'h) ] = (A.3)
2 n=1

g exp li =7 1+1h—1h h*‘”+1h2+0(h3)
2 &~ 27 4" 8
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Appendiz A.1 | Background expansion of curvature tensors

Metric connection: the expansion follows from the definition Fi‘w =
9 /2 (0,u9up + OuGup — 0p9,) after trading the partial derivative for background
covariant derivatives:

« no a 2
Lo =T + 005 +0(h) (A.4)
o _ 97 ¢ - _
6FMV = 7 (V}th/,ﬁ + Vyhuﬁ - Vﬁh’ﬂl’)

Riemann tensor: the expansion follows from the definition R 5, = 051", — 0,15 +
FgMI“jjy —I') 'S5 after recognizing the background covariant derivatives of 6T'5,:

Roc _ Ra

By upv

+6R®,,, + O(h?) (A.5)

upv

5Ra“ﬁy == vlgériy - vyériﬁ
1 _ o o _ _
= 5 (=VsVhu = Vo Vuh®s + V.V s + VaVuh, + Vs, V07,

Ricci tensor: the expansion follows from the definition R, = R,

Ry = Ry, + 0R,, + O(h?) (A.6)

ORy = 0R®,, = ~ (~Ohy, — V,V,h+ VaV,he, + VaV,h%)

| —

Ricci scalar: the expansion follows from the definition R = ¢g"" R,

R=R+ R+ O(h?) (A7)

6R = g" R, + R,,09" = —0Oh + V,V,h*" — R, h"

Einstein tensor: the expansion follows from the definition G, = R, — %R v

G = G + G, + O(h?) (A.8)

5Gy = OR, — % (0RG + R3g) =

(=D — Vo + Vo Vb, + VaVoh, + Gu0h — 5, V0V 5h)

N | —
H

+ —g#,,Ragho‘ — —Rhw,

[\]
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A.2 Second order background expansion of the Einstein-Hilbert
action

The Taylor terms in the background expansion of the Einstein-Hilbert action can be
computed according to (2.2.17):

1
Seunlh; g = EdnSEH 9] (A.9)

Juv = Guv, 69;41/ = huu

To find the zeroth, first and second order term are sufficient the variations introduced in
subsection (1.3.2):

1
V9 = —5V9909" (A.10)
1
8 (v99"™) =9 (59’“‘” — 59“”%559“5 ) (A.11)

d(v9R) =6 (V99") Ry + /99" 6 R, = V9G0g"” + \/§V>\X>‘ (A.12)
We have:

® Zeroth order term: the zeroth order term is given by the Einstein-Hilbert action com-
puted in the background metric:

Semolh; g] = Senlg = g] = : /dDﬂf\/E (=R +24) (A.13)

K2

® [irst order term: assuming that the boundary term originating from ,/gg"”0R,, van-
ishes, the first variation of the Einstein-Hilbert action is:

2
0Spulg) = = [ d°x [0 (VGR) +209/g) =
2 v
= [ A2 [-0(V9g") Ry + 200 /9] = (A.14)
=2 [ @205 (G + Ag) 89
T K2 /9 (G Guv) 09
From appendix A.1 we have:
6g" = —h¥ (A.15)
It follows that:
2 _
Sewuilh; g] = 6Senly] i == de\/E(GW + AGu ) (A.16)
Guv =Guv, 0guw = hyuw K

® Second order term: starting from the expression of the first variation, the second varia-
tion of the Einstein-Hilbert action is:
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6°Senlg) = %/dl}x [_5<5 (V99") Ruw) + 2A52\/§] -

2
== [d° [_52 (vV99"") Ruw — 0 (\/99") 6 Ry + 2A52\/§]

K2

(A.17)

In particular, if the boundary term originating from ,/gg"”d6 R, vanishes, the second
variation of the Ricci tensor does not contribute to the second variation of the Einstein-
Hilbert action. From appendix A.1 we have:

1 _ o o _
6R,u,1/ - § (_Dh,uy - vyvyh + Vavuhal, + Vavyha#) (Alg)
1 1 1
5(52\/5 =g — 3 gfﬂ) (A.19)
6 (v99") =3 (—h“” + hg“”) (A.20)

1 1 1 1
39 (Var) =3 (W~ e s b~ L) (a2

One finds:

Guv = Guvs 0guv = hpuw
L [ arwvz| =L (weain, — Loy

1 _
+@W—#¢ﬁvaufﬂ——mﬁ (A.22)

1
Semalh; gl = 5525EH 9]

— 2R, (Wh; - th)
L,
2

Lo (- 10|

The term in the second line can be rewritten using the rule (1.3.25) to commute the
background covariant derivatives (torsion-less) acting on h?, (being h a scalar, we have
VoV,h =V,V,h) and integrating by parts:

(A.23)
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Finally, one finds:

v =Guv, 0guv =huw

1
Semalh; g) = 5525EH 9]

_ % d%@{—% (h“”I:IhW - %hl:lh)
_ 1 2
_ <Vﬂhw, —3 Vl,h) (A.24)
— Reouph®?h
— Ry (W hyY — hhH)

1 - 1
Z (R —2A g —Zh?

B BRST symmetry

B.1 Nilpotency of BRST Slavnov variations of the metric and
the ghost

The nilpotency of the BRST Slavnov variation of the ghost follows from its anticommuting
nature as Grassmann-odd field:

s’ = s(c’0,c") =
= O\, M — c”@l,(c)‘ﬁ,\c“) =
= A D, ct — D, O — e 9,0, =0

antisym. sym.
vVera vero

(B.1)

In order to prove the nilpotency of the BRST Slavnov variation of the metric fluctuation
it is convenient to rewrite the variation in terms of the full metric:

shy, = £c(Guw + hyw) = SG (B.2)
and to express the Lie derivative in terms of ordinary derivatives:
LG = 0w + 0, Go + 00 Gap (B.3)
The second BRST Slavnov variation gives:
$*h = 8 (LeGu) =
= 5 (" Onluy + 0" Jow + 0uC”gay) =

(B.4)
= 5¢%0a Gy + 0u(5¢”) gav + 0, (5¢%) gy — ¥ 0a(5Gu0) — 0uC®SGar — 0uC*SGay
N " N J/ Ny

A B C

We leave the first three terms untouched and rewrite the second three as:
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—caaa(sgw) = - Caaa(cﬁaﬂgw/ + aucﬁgﬁv + aucﬁgﬁu) =
= — co‘@acﬁaggm, — P O0a 089 — caaoﬁucﬁgﬁ,,
—_——— N Y—

A antisym.  sym. B (B . 5)
a+ B a3
— 0, 0ngsy — 000, gs, — 0, 00gs,

-~

[ ] C A

—0,C"SGar = — 8”0“(05859% + Gacﬁgg,, + 8,,0595(1) =
=— 8,@“06659&,, - auco‘@acﬁgﬁ,, - @Lca&,cﬁgﬁa (B.6)

-~ -~

u B ®

—0,C"8Goy = — 8Vc°‘(0585gw + 8acﬁggu + Gucﬁgga) =

= — \é),,cacﬁagga;i — \8,,00‘8&(35‘%}j - ?l,co‘(?“c[”ggCj (B.7)
A ¢ .

The couples of terms marked with the same geometric symbol cancel after anticommuting,
in one of the two, the ghost and the ghost derivative and renaming indices (m, A) or the
two ghost derivatives and using the symmetry of the metric (o). The terms marked with a
letter can be combined with the corresponding ones above:

§%hy, = [s¢* — P05 0agu + [0u(5¢*) — 0,(°05c™)|gow + [0, (™) — O

A B

(Cﬁaﬂca)]ga;j =

<

Q4

=0
(B.8)

and, for each letter, the corresponding sum is vanishing due to the form of the BRST
Slavnov variation of the ghost:

SPhy =0 & sc=c"0,c" (B.9)

C BRST-invariant FRG flow

C.1 BRST-compatible Wetterich-Morris equation
Using relations (3.3.73)-(3.3.77):

I e (2 = = (1
%Z((k))MN(lV y) = Wihn(@,y) + W(%SM(CU)W(QN(@/) (C.1)
77(2 ~(2)—1
W((k))JiJj (‘Ta y) = ng;qﬂqﬁ (l’, y) (CQ)
~ 2 _
W((k))Kin (z,y) = _ng))Kin (z,9) (C.3)
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(2
W, k) K;J.

( iJj

()
Wik,

(C.4)

(
(
(z.y) = ~T{ (C5)

and taking into account the Grassmann character of the various sources, the 2-point
correlation functions appearing in (3.3.72):

O 1y [®; K;v; 9] =
= [ @ty /550 ) [

ol ) (@) 15— Q@) ) 15— Hap)(0) 1)

(-0

af,uv
gr(k)

+ 7 (1) Orgnry (—0Oy) K*

can be expressed as:

1 1 5 6Zu

(o ) 1 = 5 \/_\/_6150‘5 0) 3t (y)

1 6

5

Jir

2
- W((k))taﬁtw (z,y) +

221
= L hash, (7

1 )

(k)tes

+Y) + hag(z)h

Z(k) ot (y)

(W) =
o (Y)

52

<Qa5(x)8huu(y)>JK

1 1

o

) 6k (y)

5.5

Zy /3(x)\/a(y) 0 (x)

L 2
= T ) =

2
= — W s (,) —

) 0

(k)naﬁkuu ('ZC7 y)

=

i

(k)nob

ok (y)
(C.7)

0 @D () =

()P

(ke (9)
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1 ) 5Z(k
H h - _ _
(Has ) e = 5 - ¢_ Nt
e
o 1 1) Z 1) B
Z \/_ Valy) omeP (@) "ot (y)
o) (C.8)
= —Z0) o (Ty) =
Z(k) (k)moBt
= W(k maBtur (1’7 y) + W((kl)maﬁ (I)W(E]?))tuv (y) =
f‘gk;maﬁqﬂ (x ) .g fgi))q:ilh,uu<.7 y) - f‘gi)mﬁ“’ ($)hNV<y)
. 1 -5 07
cr(x)shy,, —
P Y ot it
<_
1 1 ) 7 1) B
Zuo 3(x)/3(y) o (@)~ ok (y)
1 ~e (C.9)
- ~_Z v :C’ =
Z(k) (k)r]/\kﬂ ( y)
= W((k?))nkk‘/“/ ($7 y) + W((’]:?n/\ ('r)W(il?tpy (y) -

2)—1 ~(2 — ~(1
O () T (1) + @D (1)

C.2 BRST-compatibility proof

The commutator of the two operators (3.3.90) and (3.3.98):

.S = / dP2dPydP /5@ (x — )V/G ) [F (@), S(2)] (C.10)

follows from the one of the non-integrated operators:

S() = = (1) gy ~ ) VA Dl

9(2)

p J p 0 m 0
S Sy T Py T V%mwuﬂ

(C.11)
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Flz,y) =
_ ;[
9(x)v/g(y)
o = 5 5 5 5 ) J
2—/120&% (—Ow) (_5ta,8( )&W( ) S0 () ok (y )+ omes (x) 5#‘"(@/))
—Ap — [ a 5 5
+ 5 (1) drgny (—O) K ( gz (WV )_57)A(33)5/f“”(y))}
(C.12)

By linearity, we can evaluate the commutator by computing the commutators of the
various terms inside F(z,y) with S(z), individually:

9(y)
_ 5 5

320 (D) ({—W( >5t~v<y> St )]

7.8 = [P sP=ta ) YA

i {57%“(;( 5’““” ] (C.13)
* [5ma55( 5#“’ D |
+ 3 (1) gnir) (—Oy) K (y>({ V()o@ 5#”( )’ S(Z)]

! Panfm S (Z)D }

In particular, the various functional derivatives inside F(z,y) pass through S(z) according
to the derivative product rule and their Grassmann character, generating an additional
term if the corresponding source is present:

) ) )
5t,uu( ) (Z> = 5[6/“’(7;) 5(2 - CC) + S(Z> (515“”(1‘) (C.14)
° g (C.15)

5”“5(33)S(Z> B (_&faﬂ(z) + (Smaﬂ(z)> 0(z —x) = 3(2)5na5(x) (C.16)

(Smaﬁ( ) (Z) = 5kaﬁ(z)5(z $> + S( )5ma5( ) (Cl7)
0 - )
S (2) = VA )3 — 1) — S ©18)
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In the metric fluctuation sector of F(z,y), we have thus the relations:

) ) 1) ) )
O = i (et S ) =
A
=~ 5 () ol () ¢ T Y)
) ) )
_ <5ka—ﬁ(z>5<z —2)+ ()5 (x)) o) (C.19)
) )
=~ ) ) G )
) ) ) )
= 5 ok ()0 Y T Shen ey st () Y
) ) ) )
S @) 5o () ) = e () O )
0 ) 0 )
= (-5 * ) 3 )~ SOV s o =
) )
=) e 0) k()
1) 1) ) )
) ok ()" T T G () st ()" ) (©.20)
) ) ) ) )
s )~ (e 0 S ) -
0 5
= omen () s (2) Y
+ (¢) 5tuf(y) = (C.21)
) )
=) S 2 5 y)
) ) ) )
et @) s (2) ¢ Y Srerie s () O )
while in the ghosts sector of F(x,y):
— ) — ) 1)
V@) 5 S() = = V(@) (W5<z ) +S(2) w,,(y)) -
— VA @S g — V) g0 )
(C.22)
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) ) ) )
‘Mwwéwww5“><s<w <%ww>

g(z)va(2)d(z — ) 8(2)5775( )> 5k;“(i( ) = (C.23)

)
:—8(2)577 " )5]{;;»1/ + Vg(z)ua(z 5]{:”” () d(z —x)

We have then the commutation rules:

) ) ) 5 5 5
Lﬁwwwﬁwww“”]:‘ﬁwmwwwaaz_?_§wwaaw@f“‘”

A B

) ) B 5 5 5
{5710‘6(:@ okt (y)’ S(z)] - +§taﬁ(z) Sk (y) 0(z = mz - §ma5(z) Sk (y) 6(z — x)

~~ -~

A c
(C.25)
) ) ) ) 5 s
e S = s e 9 e )
) ’ (C.26)
[_ g(a:)w(:c)mf@),g(z) = —V5@ua(a) kw Sk (2) (2 —y) (C.27)
0 5 ]
{_517/\(90) 5!@“”@)’8(2)_ ——i-\/ 6k/“’ ) (z—xz (C.28)

Inserting the results in the total commutator, the terms marked with the same letter cancel
against each other, possibly after integrating the Dirac deltas, and the total commutator
is vanishing:

[F,S] = /dedDydDz\/g Yo(x —y)\/g(2) [Flx,y),S(2)] =0 (C.29)

In particular, we have an independent cancellation in the metric fluctuation and ghosts
sector.
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