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Introduzione

Nel corso del diciannovesimo secolo un nuovo tipo di geometrie è iniziato

a emergere: le geometrie non-euclidee. Esse sono molto simili alla geometria

euclidea in quanto soddisfano tutti gli assiomi di Euclide, eccetto il quin-

to, ovvero il postulato delle rette parallele. Dunque se ci troviamo in una

geometria non-euclidea, due rette parallele distinte possono ”toccarsi”. Un

esempio è dato dalla geometria proiettiva, nella quale due rette parallele si

toccano sempre in un punto detto all’infinito. Il nostro occhio ad esempio

segue proprio questo modello, infatti se ci troviamo in mezzo a delle rotaie,

guardando in lontanza i binari, che sono paralleli, essi convergeranno in un

punto.

La geometria affine, proiettiva e iperbolica ne sono solo alcuni esempi. Cia-

scuna di esse può essere considerata come una teoria a sé, dotata dei propri

teoremi. È stata un’idea di Felix Klein quella di ordinare queste nuove teo-

rie sfruttando la nozione di gruppo principale di una geometria. Klein si è

accorto che ogni geometria può essere vista come una varietà connessa M

dotata di un gruppo di Lie G di trasformazioni che agisce transitivamente su

di essa, inoltre a seconda del gruppo che agisce, tutte o alcune delle strut-

ture matematiche studiate nell’ambito della specifica geometria rimangono

invariate sotto tali trasformazioni. Nel caso della geometria Euclidea, le pro-

prietà studiate e preservate sono angoli e lunghezze, e il gruppo è quello delle

isometrie; per la geometria proiettiva, le proprietà sono la concorrenza di

rette e la collinearità dei punti, e cos̀ı via.
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Geometria
Euclidea

Geometrie
di Klein

Geometria
di Riemann

Geometrie
di Cartan

Ogni freccia del diagramma precedente implica una generalizzazione del

concetto di ”geometria”. Proprio come la Geometria di Riemann può essere

considerata, localmente, come lo spazio euclideo, reso però ”irregolare” dal-

l’introduzione della curvatura di Riemann. Allo stesso modo una geometria

di Cartan può essere considerata, localmente, come una geometria di Klein,

resa ”irregolare” dall’introduzione della nozione di curvatura principale, la

quale generalizza in un certo senso quella di Riemann. Una geometria di

Cartan consiste nella studio di una connessione su un fibrato principale, ov-

vero una generalizzazione della forma di Maurer-Cartan di un gruppo di Lie.

Possiamo pensare ad essa come un analogo non-euclideo della geometria di

Riemann, e dunque lo studio delle geometrie di Klein ne è alle fondamenta.



Indice

Introduzione i

1 Geometria differenziale 1
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Capitolo 1

Geometria differenziale

In questo primo capitolo vedremo alcuni concetti che saranno utili per

capire e studiare l’oggetto principale della trattazione, ovvero le geometrie di

Klein

1.1 Varietà Differenziabili

Definizione 1. SiaM uno spazio topologico. Diciamo cheM è una varietà

topologica di dimensione n se M è T2, a base numerabile e localmente

euclideo, cioè ∀ p ∈ M, ∃ U ⊆ M aperto t.c p ∈ U ed ∃ φ : U → φ(U) ⊆ Rn

omeomorfismo.

Osservazione 1. Dato che M è localmente omeomorfa a un aperto di Rn,

allora è localmente connessa per archi, e dunque si ha che M è connessa se e

solo se è connessa per archi.

Definizione 2. Una tale coppia (U,φ) si chiama carta in p e φ−1 si chiama

parametrizzazione locale di M .

Se φ(p) = 0 diciamo che la carta è centrata in p.

Definizione 3. Sia U ⊆ Rn aperto e sia f : U → Rm.

Diciamo che f è differenziabile in x0 se ∃ T (x0) : Rn → Rm tale che

lim
h→0

f(x0 + h)− f(x0)− T (x0)h

||h|| = 0

1
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Se f è differenziabile per ogni x0 ∈ U allora diremo che f è differenziabile

(o liscia).

Definizione 4. Sia M una varietà topologica di dimensione n.

Chiamiamo atlante (liscio) su M una famiglia A = {(Ui, φi)} di carte tale

che

1.
⋃
i

Ui =M

2. ∀ (U,φ), (V, ψ) ∈ A la mappa

Φ = φ ◦ ψ−1|ψ(U∩V ) : ψ(U ∩ V ) ⊆ Rn → φ(U ∩ V ) ⊆ Rn

è liscia (i.e. C∞).

Definizione 5. Data una varietà topologica M , due atlanti A e A ′ sono

equivalenti se A ∪ A ′ è ancora un atlante per M .

Una struttura differenziabile (o liscia) su M è una classe di equivalenza

di atlanti.

Chiamiamo atlante massimale l’unione di tutti gli atlanti ad esso equiva-

lenti.

Definizione 6. Una varietà differenziabile (o liscia) è una varietà topo-

logica dotata di una struttura differenziabile.

Esempio 1. Rn è una varietà topologica di dimensione n e ha un atlante

liscio dato dalla sola carta {(Rn, id)}, dunque è una varietà differenziabile.

Esempio 2 (Spazi vettoriali). Sia V uno spazio vettoriale di dimensione n.

Ciascuna base {v1, ..., vn} di V induce un isomorfismo lineare tra basi

Φ : Rn → V , Φ(x1, ..., xn) = xivi, la cui inversa è una carta globale per

V . Dunque V è una varietà differenziabile con atlante {(Rn,Φ−1)} e tale

struttura prende il nome di struttura liscia standard.

Esempio 3. Consideriamo la varietà topologica Sn = {x ∈ Rn | ∥x∥ = 1}
Sia U = {x = (x1, ..., xn) | xn+1 > −1} ⊆ Sn. Allora U e ρ(U) sono aperti di
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Sn, dove ρ : Rn+1 → Rn+1 è una riflessione rispetto all’iperpiano di equazione

{x ∈ Rn+1 | xn+1 = 0}. Ora U ∪ ρ(U) = M , inoltre U (e anche ρ(U)) è

omeomorfo a Rn tramite la proiezione stereografica

φ : U → Rn, φ(x1, ..., xn+1) = 1
xn+1

(x1, ...xn), dunque Sn è una varietà

differenziabile.

Definizione 7. Sia M una varietà differenziabile di dimensione n.

Diciamo che f : M → Rm è differenziabile in p se per ogni (U,φ) carta

attorno p, si ha che f ◦ φ−1|φ(U) : φ(U) ⊆ Rn → Rm è differenziabile.

Definizione 8. Siano M,N varietà differenziabili di dimensione rispettiva-

mente m e n.

Diciamo che F :M → N è differenziabile in p se per ogni coppia di carte

(U,φ) attorno p e (V, ψ) attorno F (p) rispettivamente di M e N tali che

F (U) ⊆ V si ha che Φ = ψ ◦ F ◦ φ−1|φ(U) : φ(U) ⊆ Rm → ψ(V ) ⊆ Rn è

differenziabile.

La mappa Φ si chiama rappresentazione in coordinate di f

Definizione 9. Siano M , N varietà differenziabili, F :M → N .

Se F è liscia, bijettiva e con inversa liscia si dice diffeomorfismo.

Denotiamo con C∞(M,N) l’insieme di tutte le mappe differenziabili da

M a N e con C∞(M) l’insieme delle mappe differenziabili da M in R.
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1.2 Vettori e Spazio Tangente

Definizione 10. Sia M una varietà differenziabile e sia p ∈M .

Un vettore tangente in p (o derivazione in p) è una mappa v : C∞(M) →
R tale che:

(i) (Linearità) v(αf + βg) = αv(f) + βv(g) ∀ f, g ∈ C∞(M),∀ α, β ∈ R

(ii) (Leibniz ) v(fg) = v(f)g(p) + f(p)v(g) ∀ f, g ∈ C∞(M)

Denotiamo inoltre TpM = {v | v è un vettore tangente in p}, esso prende

il nome di spazio tangente in p.

Definizione 11. Sia M una varietà differenziabile e (U,φ) una sua carta.

Denotando le funzioni delle coordinate di φ come φ(p) = (x1(p), ..., xn(p)),

definiamo i vettori delle coordinate ∂
∂xi

∣∣
p
: C∞(M) → R per i = 1, ..., n

come
∂

∂xi

∣∣∣∣
p

(f) :=
∂

∂xi

∣∣∣∣
φ(p)

(f ◦ φ−1)

Osservazione 2. Per alleggerire la notazione, quando sarà chiaro a quali

coordinate si sta facendo riferimento, abbrevieremo ∂
∂xi

∣∣
p
con ∂i|p.

Osservazione 3. Nel corso della trattazione, talvolta, sfrutteremo la nota-

zione di Einstein per sommatorie, omettendo il simbolo
∑

per brevità.

Proposizione 1. Rn e TpRn sono isomorfi come spazi vettoriali

Dimostrazione. Consideriamo Rn
p , ovvero lo spazio vettoriale Rn traslato in

modo tale che l’origine sia in p (banalmente Rn è isomorfo a Rn
p ). Esso ha

come base {e1p, ..., enp}, indichiamo i suoi elementi con vp (in particolare si

ha vp =
n∑
i=1

vieip). Indichiamo inoltre con ṽp l’operatore derivata direzionale

in direzione vp, ovvero ṽp := ∂
∂vp

= vi ∂
∂xi

(è stata utilizzata la notazione di

Einstein).

Consideriamo ora la seguente mappa:

φ : Rn
p −→ TpRn

vp 7−→ ṽp
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Data f = xj, dove xj è la j-esima coordinata di Rn, si ha

ṽp(x
j) = vi

∂xj

∂xi
= vj

Supponiamo di avere ṽp = 0, allora vj = 0 ∀ j = 1, ..., n, dove vj sono le

componenti del vettore vp, quindi v = 0. Abbiamo dunque mostrato che

Ker(φ) = {0}.
Mostriamo ora che φ è suriettiva. Sia f : M → R una funzione differen-

ziabile. Utilizzando lo sviluppo di Taylor in p = (x10, ..., x
n
0 ) otteniamo

f(x) = f(p) +
n∑
i=1

∂f

∂xi
(p)(xi − xi0) +

n∑
i=1

gi(x)(x
i − xi0)

con gi(x) funzioni lisce tali che gi(x) −→ 0 per x −→ p. Sfruttando ora la

regola di Leibniz, fissato un generico Xp ∈ TpRn, otteniamo

Xp(f) = Xp(f)(p)+Xp(
∂f

∂xi
(p)(x−xi0))+Xp(gi(x)(x

i−xi0)) =
∂f

∂xi
(p)Xp((x

i−xi0))

Notiamo che Xp(f(p)) = 0 in quanto preso f = 1, per Leibniz si ha

Xp(f(p)) = Xp(f(p)
2) = Xp(f(p))

2 = 2Xp(f(p)). Inoltre dato che gi(p) =

(xi − xi) = 0 si ha Xp(
n∑
i=1

gi(x)(x
i − xi0)) = 0

Definendo ora vi := Xp(x
i), otteniamo che ogni Xp è immagine tramite

φ di un vettore della forma v =
n∑
i=1

vieip.

Definizione 12. Sia U ⊆ Rn.

Chiamiamo campo vettoriale una funzione f : U → Rn differenziabile.

Corollario 1. {∂i|p} formano una base per TpM

Dimostrazione. Consideriamo X campo vettoriale su un aperto U ⊆ Rn. X

è una mappa che associa a ogni p ∈ U un vettore di Rn. Dato che Rn ⋍ TpRn

abbiamo che X(p) = Xp ∀ p ∈ U .

Inoltre dato X campo vettoriale, si ha che X(x) = ai(x) ∂
∂xi

dove ai sono

funzioni lisce. Concludiamo osservando che

Xp(f) = X(p)(f) = ai(p)
∂f

∂xi

∣∣∣∣
p

, ∀ f ∈ C∞(Rn)
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Dato che i ”vettori delle coordinate” formano una base per TpM , una

volta fissato un sistema di coordinate lisce, ovvero una carta di M , ogni

vettore tangente v ∈ TpM può essere scritto nella forma

v = vi ∂i|p

dove le componenti v1, ..., vn sono ottenute applicando v alle funzioni delle

coordinate, ovvero vi = v(xi).

Su uno spazio vettoriale di dimensione finita V con la sua struttura stan-

dard di varietà differenziabile, esiste una naturale identificazione di ogni spa-

zio tangente TpV con V stesso, ottenuta identificando un vettore v ∈ V con

la derivazione Dv|p definita da

Dv|p (f) =
d

dt

∣∣∣∣
p

f(p+ tv)

1.3 Differenziale e Sottovarietà

Definizione 13. Sia F :M → N una mappa liscia, p ∈M .

Chiamiamo differenziale di F in p (o pushforward) la mappa lineare

F∗p : TpM → TF (p)N

v 7→ F∗p(v)(f) = v(f ◦ F )

dove v ∈ TpM e f : N → R è una mappa liscia.

Una volta scelte delle coordinate locali (xi) perM e (yj) per N , troviamo

che la rappresentazione in coordinate del differenziale di F :M → N è data

dalla matrice jacobiana della rappresentazione in coordinate di F .

Proposizione 2. Sia F :M → N un diffeomorfismo tra varietà differenzia-

bili di dimensione rispettivamente m e n.

Allora F ∗p : TpM → TF (p)N è un isomorfismo di spazi vettoriali.

Dimostrazione. Sia Xp ∈ TpM tale che F ∗p(Xp) = 0. Allora 0 = F ∗p(Xp) =

Xp(f ◦ F ) per ogni f ∈ C∞(M). Sfruttando la base {∂1|p, . . . , ∂m|p} di
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TpM , si ha 0 = Xp(f ◦ F ) = a1∂1|p(f ◦ F ) + · · · + am∂m|p(f ◦ F ) con ai ∈
R. Abbiamo cos̀ı ottenuto una combinazione lineare di elementi della base,

dunque necessariamente ai = 0 per ogni i = 1, . . . ,m. Quindi Xp è la

derivazione nulla. Abbiamo cos̀ı mostrato che F ∗p è iniettiva, e in particolare

m ≤ n. Ripetendo gli stessi ragionamenti per F−1
∗p, si ha n ≤ m.

Definizione 14. Siano M,N varietà differenziabili, F :M → N differenzia-

bile.

• Diciamo che F è un’immersione se il differenziale F∗p : TpM →
TF (p)N è iniettivo per ogni p ∈M .

• Se dim(M) ≥ dim(N) diciamo che F è una sommersione se il diffe-

renziale F∗p : TpM → TF (p)N è suriettivo per ogni p ∈M .

• Diciamo che F è un diffeomorfismo locale se è sia un’immersione,

sia una sommersione

• Diciamo che F è un embedding liscio se è un’immersione inietti-

va che è anche un embedding topologico (ovvero un omeomorfismo

sull’immagine, dotato della topologia di sottospazio).

Definizione 15. Sia M una varietà differenziabile, S ⊆M .

Diciamo che S è una sottovarietà differenziabile se S è una varietà

differenziabile e l’inclusione i : S ↪→M è un embedding.
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1.4 Forme Differenziali

Definizione 16. Sia V spazio vettoriale di dimensione finita, k ∈ N.
Diciamo che α : V × · · · × V︸ ︷︷ ︸

k volte

→ R è una forma k–lineare (o multilineare)

su V in R se α(v1, . . . , vn) è lineare in ogni componente, ovvero se vale

α(v1, . . . , vi−1, λvi+µv
′
i, vi+1, . . . , vn) = λα(v1, . . . , vn)+µα(v1, . . . , v

′
i, . . . , vn),

per ogni componente i, per ogni n-pla di vettori v1, . . . , vn, vi, v
′
i ∈ V e per

ogni λ, µ ∈ R.

Definizione 17. Sia α una forma k-lineare.

Diciamo che α è alternante se dati v1, . . . , vk linearmente dipendenti, allora

α(v1, . . . , vk) = 0.

Indichiamo con Ak(V ) lo spazio vettoriale delle forme k-lineari alternanti.

Osservazione 4. Dato che char(R) ̸= 2, una forma multilineare è alternante

se e solo se è antisimmetrica, cioè se lo scambio di due vettori ha come effetto

un cambiamento di segno

α(v1, . . . , vi, . . . , vj, . . . , vk) = −α(v1, . . . , vj, . . . , vi, . . . , vk)

Osservazione 5. A1(V ) = V ∗ dove V ∗ denota il duale di V , ovvero lo spazio

dei funzionali lineari α : V → R.
Poniamo A0(V ) := R.

Definizione 18. Sia V uno spazio vettoriale di dimensione finita, α ∈
Ak(V ), β ∈ As(V ).

Chiamiamo prodotto wedge la funzione

∧ : Ak(V )× As(V ) → Ak+s(V )

(α, β) 7→ α ∧ β

definita dalla forma (k + s)-lineare

(α∧β)(v1, . . . , vk+s) =
1

k!s!

∑
σ∈Sn

sgn(σ)α(vσ(1), . . . , vσ(k))β(vσ(k+1), . . . , vσ(k+s))



1.4 Forme Differenziali 9

Esempio 4. α, β ∈ A1(V ) = V ∗, allora (α∧β)(u, v) = α(u)β(v)−α(v)β(u).

Definizione 19. Siano V,W spazi vettoriali di dimensione finita, f : W → V

un’applicazione lineare, α ∈ Ak(V ).

Chiamiamo pullback di α la k-forma alternante su W definita da

(f ∗α)(ω1, . . . , ωk) = α(f(ω1), . . . , f(ωk))

Proposizione 3. Siano α ∈ Ak(V ), β ∈ As(V ). Valgono le seguenti

(i) (anticommutatività) α ∧ β = (−1)k+sβ ∧ α

(ii) (bilinearità) (α + λγ) ∧ β = (α ∧ β) + λ(γ ∧ β).

(iii) (associatività) (α ∧ β) ∧ γ = α ∧ (β ∧ γ)

(iv) f ∗(α ∧ β) = f ∗α ∧ f ∗β

Prendiamo ora in considerazione il caso in cui V = TpM dove M è una

varietà differenziabile.

Definizione 20. Sia M una varietà differenziabile.

ω : M → ⋃
p∈M

Ak(TpM)

p → ω(p) ∈ Ak(TpM)

ω si chiama k-forma su M .

Definiamo il prodotto di due forme su M puntualmente,

ovvero (ω ∧ η)(p) = ω(p) ∧ η(p).
Data F : N → M una mappa liscia tra varietà differenziabili, ω una k-

forma su M, definiamo il pullback di ω puntualmente, ovvero (F ∗ω)(p) =

(F ∗p)
∗ω(p).

Osservazione 6. F ∗p è il differenziale di F in p ed è lineare.

Proposizione 4. {(dxµ1p ∧ · · · ∧ dxµkp )}µ1<···<µk è una base di Ak(TpM).
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Osservazione 7. Se (∂1, . . . , ∂n) è la base di TpM , allora (dx1p, . . . , dx
n
p ) è

una base dello spazio duale T ∗
pM = A1(TpM) ed è definita come dxjp(∂k) = δjk

dove δjk è la delta di Kronecker.

Dunque per ogni p ∈ M possiamo scegliere una carta e descrivere local-

mente la k-forma, sfruttando la base locale di Ak(TpM).

Più esplicitamente, si ha ω(p) =
∑

µ1<···<µk
ωµ1,...,µk(p) · (dxµ1p ∧ · · · ∧ µk) dove

ωµ1,...,µk : U → R sono i coefficienti della combinazione lineare e si chiamano

funzioni componenti di ω rispetto a U .

Definizione 21. Sia M una varietà differenziabile, p ∈ M , ω una k-forma

suM . Diciamo che ω è differenziabile se tutte le funzioni componenti sono

differenziabili in p.

Se ω è differenziabile per ogni p ∈ M allora si chiama forma differenziale

su M .

Chiamiamo Ωk(M) lo spazio delle forme k-differenziali su M .

Esempio 5. M = R2, allora TpM ≃ R2 e dunque possiamo identificare

∂j = ej.

dxjp(∂k) = δjk dunque si ha

∂1 =

(
1

0

)
, dxp1 = (1, 0), ∂2 =

(
0

1

)
, dxp2 = (1, 0)

Calcoliamo ora il prodotto wedge di dx1p con dx
2
p

(dx1p ∧ dx2p)(
(
a11

a12

)
,

(
a21

a22

)
) =

∑
σ∈S2

sgn(σ)dx1p(aσ(1))dx
2
p(aσ(2))

=
∑
σ∈S2

sgn(σ)a(1,σ(1))a(2,σ(2))

=det(

(
a11 a12

a22 a12

)
)
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1.5 Gruppi di Lie

Definizione 22. Chiamiamo gruppo di Lie un gruppo algebrico G che sia

anche una varietà differenziabile e tale che le operazioni

m : G×G −→ G i : G −→ G

(x, y) 7−→ x · y x 7−→ x−1

siano entrambe differenziabili.

Definizione 23. Sia un gruppo di Lie G. Sia H un sottogruppo di G.

Diciamo che H è un sottogruppo chiuso (aperto) di G se è chiuso (aperto)

rispetto alla topologia indotta da G.

Diciamo che H è un sottogruppo di Lie di G se è un gruppo di Lie ed è

una sottovarietà di G.

Proposizione 5. Sia G un gruppo di Lie. Se H è un sottogruppo chiuso di G,

allora esiste un’unica struttura differenziabile tale che H sia un sottogruppo

di Lie di G.

Esempio 6. Abbiamo già visto che Rn è una varietà differenziabile con

atlante banale ed è un gruppo con la consueta somma di vettori. Dunque è

un gruppo di Lie.

Esempio 7. S1 = {z ∈ C | |z| = 1} è un gruppo di Lie (abeliano) con il

prodotto di C.

Esempio 8. Sia GLn(R) = {A ∈ Mn(R) | det(A) ̸= 0} il gruppo lineare

generale reale. La funzione

det : Mn(R) → R
A 7→ det(A)

è continua, dunque det−1(0) è chiuso in Mn(R). Abbiamo quindi che

GLn(R) = Mn(R) \ det−1(0) è aperto in Mn(R) ∼= Rn2
che è una varietà

differenziabile di dimensione n2, pertanto GLn(R) ne eredita la struttura di

varietà differenziabile.
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Esempio 9. Il toro T2 := S1×S1 è un gruppo di Lie abeliano con prodotto il

prodotto di C su ciascuna componente, ovvero (g1, g2)·(h1, h2) = (g1h1, g2h2).

Definizione 24. Un omomorfismo di gruppi di Lie φ : H → G con H e

G gruppi di Lie è un omomorfismo di gruppi che è anche differenziabile.

Un isomorfismo di gruppi di Lie è un omomorfismo di gruppi di Lie

biettivo.

Il gruppo degli automorfismi Aut(G) è il gruppo formato dagli isomorfismi

di gruppi di Lie.

Definizione 25. Sia G un gruppo di Lie, M una varietà differenziabile e

σ : G×M →M un’azione di G su M .

Diciamo che σ è un’azione di gruppo di Lie (sinistra) su M se σ è

differenziabile.

Osservazione 8. Analogamente definiamo un’azione destra di G su M ,

σ : M ×G → M . Le definizioni date di seguito si estendono dunque al caso

di azioni destre, con le quali lavoreremo successivamente.

Definizione 26. Sia M una varietà differenziabile, G un gruppo di Lie e

G×M →M un’azione liscia.

L’azione è libera se

gx = x per qualche x ∈M =⇒ g = e.

L’azione è propria se

∀ A,B ⊆M compatti si ha che {g ∈ G | gA ∩B ̸= ∅} è compatto in G.

L’azione è fedele se

∀ g ∈ G, g ̸= e, ∃ x ∈M tale che gx ̸= x

L’azione è transitiva se

∀ x, y ∈M, ∃ g ∈ G tale che gx = y

L’azione è semplicemente transitiva se

∀ x, y ∈M, ∃! g ∈ G tale che gx = y
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Osservazione 9. Nel caso di spazi metrici, uno spazio topologico X è com-

patto se e solo se è compatto per successioni, ovvero se per ogni successione

(xn)n∈N in X esiste una sottosuccessione (xkn)n∈N convergente in X.

D’ora in poi sfrutteremo questo fatto in quanto un gruppo di Lie, essendo

una varietà finito dimensionale, è in particolare metrizzabile.



Capitolo 2

Fibrati

Definizione 27. Siano F una varietà differenziabile e π : E → B una mappa

liscia tra varietà differenziabili. Chiamiamo la quadrupla ξ = (E,B, π, F ) un

fibrato differenziabile, se ∀p ∈ B, ∃U ⊆ B aperto, ∃ φ : π−1(U) → U×F
diffeomorfismo tale che il seguente diagramma commuti:

π−1(U) U × F

U

φ

π
proj1

La coppia (U,φ) si chiama trivializzazione (o carta) , B si chiama spazio

base, E si chiama spazio totale e F si chiama fibra.

Esempio 10. Il nastro di Möbius è un fibrato con spazio base S1 e fibra

[0, 1].

∼=

π
p1

U

U × F

p

14
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2.1 G-Fibrati

Definizione 28. Sia ξ = (E,B, π, F ) un fibrato liscio e sia G un gruppo di

Lie che agisce su F per diffeomorfismi.

Chiamiamo G-atlante per ξ una famiglia di carte A = {(Ui, φi)} tale che:

1.
⋃
i

Ui = B

2. ∀ (U,φ), (V, ψ) ∈ A la mappa

Φ = φ ◦ ψ−1 : (U ∩ V )× F → (U ∩ V )× F

è della forma Φ(u, f) = (u, h(u)f) dove h : U ∩ V → G è una mappa

liscia. Φ si chiama cambio di coordinate e h funzione di transi-

zione.

Definizione 29. Una G-Struttura di atlanti sul fibrato liscio ξ è una

classe di equivalenza di G-Atlanti su ξ (rispetto all’unione). Un G-Fibrato

è un fibrato liscio ξ dotato di una G-Struttura di atlanti.

Osservazione 10. Se supponiamo che G agisca fedelmente su F non perdia-

mo di generalità, infatti se l’omomorfismo φ : G→ Diff(F ) ha Ker(φ) = H

possiamo sempre considerare il G-Fibrato come fosse un G/H-Fibrato. In

tal caso parleremo di G-Fibrato fedele.

Esempio 11 (Nastro di Möbius). Il nastro di Möbius N è un G-fibrato con

G = Z/2.
Costruiamo un Z/2-atlante per il nastro di Möbius N = [0, 1]2/ ∼ dove

(x1, y1) ∼ (x2, y2) ⇔ ({x1, x2} = {0, 1} e y1 + y2 = 1) oppure (x1, y1) =

(x2, y2).

Definiamo A = {(U,φ), (V, ψ)} dove U = {z ∈ S1 | Arg(z) ∈ [−3
4
, 3
4
]} e

V = {z ∈ S1 | Arg(z) ∈ [1
4
,−1

4
]}, e gli omeomorfismi sono dati da

φ : π−1(U) → U × [0, 1] ψ : π−1(V ) → V × [0, 1]

(x, y) 7→
{

(e2πix, y), se x ≤ 3
8

(e2πix,−y), se x ≥ 5
8

(x, y) 7→ (e2πix, y)
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φ

ψ

π p1

π−1(U ∩ V )
(U

∩
V
)×

[0,1]

e
π
4e

3
4
π

e−
3
4
π e−

π
4

U

V

Osservando la scrittura esplicita delle carte si può notare che la funzione

di transizione è della forma Φ(z, t) = (z, h(z)t) dove

h : U ∩ V → Z/2, h(z) =

{
1 se Arg(z) ∈ [π

4
, 3π

4
]

−1 se Arg(z) ∈ [5π
4
, 7π

4
]

Inoltre il nastro di Möbius è un G-fibrato ”piatto”, ovvero un fibrato per

cui le funzioni di transizione h : U ∩ V → G sono localmente costanti



2.2 Fibrati Principali 17

2.2 Fibrati Principali

Un particolare tipo di G-fibrati è quello in cui il gruppo G ”coincide” con

la fibra F , nel senso che per qualche (e dunque per ogni) f0 ∈ F , la mappa

G → F, g 7→ gf0 è un diffeomorfismo. Ne segue dunque che il G-fibrato è

fedele e che quindi le mappe di transizione h : U ∩ V → G sono determinate

dal fibrato.

Definizione 30. UnG-fibrato principale è un fibrato liscio ξ = (P,B, π, F )

con un’azione destra P ×G→ P che preserva la fibra e agisce in modo sem-

plicemente transitivo su ogni fibra, cioè ∀ x, y ∈ F, ∃! g ∈ G tale che

xg = y.

Osservazione 11. Un’azione è semplicemente transitiva se e solo se è libera

e fedele.

Osservazione 12. Un G-fibrato principale è in particolare un G-fibrato.

Non è vero il viceversa.

Esempio 12 (Fibrazione di Hopf). Vediamo ora un interessante esempio di

G-Fibrato principale: la fibrazione di Hopf S1 → S3 → S2.

Consideriamo il gruppo di Lie S1 e la sua azione (liscia) su

S3 = {(ω0, ω1) ∈ C2 | |ω0|2 + |ω1|2 = 1} data da λ(ω0, ω1) = (λω0, λω1) con

λ ∈ S1.

Consideriamo inoltre S2 ∼= CP1, dove CP1 = C0 ∪φC1, φ : C∗
0 → C∗

1, φ(z0) =

φ0 ◦φ−1
1 (z0) = z−1

0 e dove φ0 e φ1 sono le carte affini di CP1. In altre parole,

stiamo vedendo CP1 come unione delle due proiezioni stereografiche centrate

nel polo nord e nel polo sud, ”incollate” nell’intersezione dei loro domini (cioè

C∗) tramite φ.

z1 = z0 = φ(z0)

z00

0

φ
S2

C0

C1
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Consideriamo la mappa π : S3 → S2 è data da

π(ω0, ω1) =

ω1/ω0 se ω0 ̸= 0

ω0/ω1 se ω1 ̸= 0

Notiamo che se (w0, w1) ̸= (0, 0) allora le due definizioni coincidono, infatti

da C0 ∪φ C1 abbiamo w0

w1
= φ(w0

w1
) = w1

w0
. Le trivializzazioni locali sono

π−1(C0) ∼= C0 × S1 π−1(C1) ∼= C1 × S1

(w0, w1) 7−→ (w1/w0, w0/|w0|) (w0, w1) 7−→ (w0/w1, w1/|w1|)

mentre il cambio di coordinate tra queste due carte è

Φ: C∗
0 × S1 → C∗

1 × S1

(z, λ) 7−→ (1/z, λz/|z|)

Osserviamo che Φ è della forma (z, λ) → (1/z, h(z)λ), ma dato che siamo

in C∗
1, abbiamo che 1/z = φ(1/z) = z e dunque la fibrazione di Hopf è un

S1-fibrato su S2. Inoltre è un fibrato principale perché la fibra F = S1 = G.
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2.3 Fibrati Vettoriali e Sezioni

Definizione 31. Un fibrato vettoriale è un caso particolare di G-Fibrato

in cui la fibra V è uno spazio vettoriale di dimensione n e il gruppo G che

agisce sulla fibra è il gruppo generale lineare GLn(V ).

Osservazione 13. Dal momento che la fibra è uno spazio vettoriale di di-

mensione finita n, esiste un isomorfismo canonico (cambiamento di base) tra

V e Rn. A seconda del caso ci riferiremo dunque alla fibra come Rn.

Definizione 32. Due fibrati ξ1 e ξ2 tali che B1 = B2 si dicono isomorfi se

∃ φ : E1 → E2 diffeomorfismo tale che π1 = π2 ◦ φ.

φ si chiama isomorfismo di fibrati o automorfismo di fibrati se ξ1 = ξ2.

Definizione 33. Un isomorfismo di fibrati vettoriali è un isomorfismo

di fibrati che è lineare sulle fibre

Proposizione 6. Sia M una varietà differenziabile e TM il suo fibrato tan-

gente. Allora TM con la mappa di proiezione π : TM → M è un fibrato

vettoriale.

Definizione 34. Sia ξ = (E,B, π, F ) un fibrato.

Una sezione (globale) di E è una mappa continua (liscia se il fibrato è

liscio) σ : B → E tale che πσ = idB.

Denotiamo con Γ(E) lo spazio di tutte le sezioni globali di E.

Definizione 35. Sia ξ = (E,B, π, F ) un fibrato.

Una sezione locale di E su U ⊆ B è una mappa continua (liscia) σ : U → E

tale che πσ = idB.

Osservazione 14. Se (U,φ) è una trivializzazione locale di E, allora una

sezione locale su U esiste sempre ed è in corrispondenza biunivoca con le

mappe continue (o lisce) da U a F . In altre parole, definire una sezione su

U equivale a definire una funzione continua (o liscia) f : U → F , infatti

σ : U → π−1(U) ∼= U × F

x 7→ (x, f(x))
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Osservazione 15. Una sezione σ su un fibrato π : E → B permette di

identificare lo spazio base B con σ(B) sottospazio di E.

2.4 Fibrato Tangente

Definizione 36. Sia M una varietà differenziabile.

Chiamiamo TM =
⊔
p∈M

TpM fibrato tangente di M

Scriveremo un elemento di questa unione disgiunta come una coppia or-

dinata (p, v) con p ∈M e v ∈ TpM .

Il fibrato tangente è dotato di una proiezione naturale π : TM →M che man-

da ogni vettore in TpM nel punto in cui il vettore è tangente, cioè π(p, v) = p.

Il fibrato tangente può essere pensato semplicemente come un’unione disgiun-

ta di spazi vettoriali, ma in realtà può essere dotato di interessanti strutture

geometriche.

Proposizione 7. Data M varietà differenziabile di dimensione n, il fibrato

tangente TM ha una naturale topologia e una struttura liscia che rende TM

una varietà differenziabile di dimensione 2n. Rispetto a questa struttura, la

proiezione π : TM →M è liscia.

Dimostrazione. Iniziamo definendo le mappe che diventeranno le nostre carte

lisce. Data una carta liscia (U,φ) per M , notiamo che π−1(U) ⊆ TM è

l’insieme di tutti i vettori tangenti aM in tutti i punti di U . Siano (x1, ..., xn)

le funzioni di coordinate di φ, e definiamo una mappa

φ̃ : π−1(U) → R2n

ponendo

φ̃

(
vi

∂

∂xi

∣∣∣∣
p

)
=
(
x1(p), ..., xn(p), v1, ..., vn

)
.

La sua immagine è φ(U)× Rn, che è un sottoinsieme aperto di R2n. Inoltre

φ̃ è una biezione sulla sua immagine, poiché la sua inversa può essere scritta
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esplicitamente come

φ̃−1
(
x1, ..., xn, v1, ..., vn

)
= vi

∂

∂xi

∣∣∣∣
φ−1(x)

.

Ora supponiamo di avere due carte lisce (U,φ) e (V, ψ) per M , e siano

(π−1(U), φ̃), (π−1(V ), ψ̃) le corrispondenti carte su TM . Gli insiemi

φ̃
(
π−1(U) ∩ π−1(V )

)
= φ(U ∩ V )× Rn

e

ψ̃
(
π−1(U) ∩ π−1(V )

)
= ψ(U ∩ V )× Rn

sono aperti in R2n, e la mappa di transizione

ψ̃ ◦ φ̃−1 : φ(U ∩ V )× Rn → ψ(U ∩ V )× Rn

può essere scritta esplicitamente come

ψ̃ ◦ φ̃−1
(
x1, ..., xn, v1, ..., vn

)
=

(
x̃1(x), ..., x̃n(x),

∂x̃1

∂xj
(x)vj, ...,

∂x̃n

∂xj
(x)vj

)
.

ed essa è chiaramente liscia.

Preso un ricoprimento numerabile {Ui} di M tramite domini di coordi-

nate lisce, otteniamo un ricoprimento numerabile di TM tramite domini di

coordinate {π−1(Ui)} tale che ∀i, φi è una biezione tra Ui e la sua immagine

φi(Ui) Per verificare la condizione di Hausdorff (T2), basta notare che due

punti nella stessa fibra di π, essi appartengono alla stessa carta, mentre se

(p, v) e (q, w) giacciono in fibre differenti, esistono domini di coordinate di-

sgiunti U, V per M tali che p ∈ U e q ∈ V , e allora π−1(U) e π−1(V ) sono

intorni di coordinate disgiunti che contengono rispettivamente (p, v) e (q, w).

Osserviamo infine che π è liscia, in quanto rispetto alle carte (U,φ) per

M e (π−1(U), φ̃) per TM , la sua rappresentazione in coordinate è

π(x, v) = x.
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Definizione 37. Le coordinate (xi, vi) si chiamano coordinate naturali

su TM .

Definizione 38. Siano M,N varietà differenziabili, F : M → N una map-

pa liscia. Chiamiamo differenziale globale la mappa F∗ : TM → TN

che manda un vettore v ∈ TpM in F∗p(v) ∈ TF (p)N tale che il seguente

diagramma commuti

TM TN

M N

F∗

πM πN

F

dove πM denota la proiezione canonica TM → M che manda un vettore

v ∈ TpM in p ∈M .

Osservazione 16. Talvolta chiameremo il differenziale globale di F ,

la ”derivata di F”

Proposizione 8. Siano M,N varietà differenziabili e F : M → N una

mappa liscia. Allora il differenziale globale F∗ : TM → TN è una mappa

liscia.

Dimostrazione. Dall’espressione locale per F∗p in coordinate, segue che F∗

ha la seguente rappresentazione in coordinate naturali per TM e TN :

F∗(x
1, . . . , xn, v1, . . . , vn) =

(
F 1(x), . . . , F n(x),

∂F 1

∂xi
(x)vi, . . . ,

∂F n

∂xi
(x)vi

)
.

Questa è liscia poiché F lo è.

Proposizione 9. Sia M una varietà differenziabile.

Allora π : TM →M è un fibrato vettoriale.



Capitolo 3

Campi Vettoriali e Algebre di

Lie

3.1 Campi Vettoriali

Intuitivamente, un campo vettoriale è una funzione che associa a ogni

punto p di una varietà differenziabile un vettore di TpM (una derivazione)

della varietà stessa in modo liscio. Ad esempio un campo vettoriale sul

piano cartesiano può essere pensato come una collezione di frecce ciascuna

in biezione con un punto del piano.

Definizione 39. Data una varietà differenziabile M , chiamiamo campo

vettoriale liscio su M una mappa X : M → TM tale che π ◦ X = idM

dove π è la proiezione da TM a M .

Denotiamo con X(M) l’insieme dei campi vettoriali differenziabili su M

(formano uno spazio vettoriale).

Osservazione 17. D’ora in avanti, supporremo che ogni campo vettoriale sia

differenziabile, dunque per brevità spesso li chiameremo solo campi vettoriali.

Osservazione 18. Un campo vettoriale è una sezione del fibrato tangente

di M .

23
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Supponiamo che M sia una varietà differenziabile di dimensione n. Se

X : M → TM è un campo vettoriale (anche solo continuo) e (U, (xi)) è una

qualsiasi carta di coordinate liscia per M , possiamo scrivere il valore di X in

un punto p ∈ U in termini dei vettori di base delle coordinate:

Xp = X i(p)
∂

∂xi

∣∣∣∣
p

Questo definisce n funzioni X i : U → R, chiamate le funzioni componenti

di X nella carta data, anch’esse differenziabili.

Osservazione 19. Siano f ∈ C∞(M), X ∈ X(M), definiamo fX : M →
TM come (fX)p = f(p)Xp. Inoltre fX + gY è ancora un campo vettoriale.

Un’importante proprietà dei campi vettoriali è che essi definiscono ope-

ratori sullo spazio delle funzioni a valori reali differenziabili.

Infatti data f : U ⊆ M → R, otteniamo una nuova funzione Xf : U → R
definita da (Xf)p = Xpf

Definizione 40. SiaM una varietà differenziabile e D : C∞(M) → C∞(M).

D si chiama derivazione se è R-lineare e soddisfa

D(fg) = fDg + gDf, ∀ f, g ∈ C∞(M)

Proposizione 10. Sia M una varietà differenziabile.

D : C∞(M) → C∞(M) è una derivazione se e solo se Df = Xf per qualche

X ∈ X(M), per ogni f ∈ C∞(M)

Dimostrazione. (⇐) Sia X un campo vettoriale, f ∈ C∞(M). Per ogni

p ∈M scegliamo una carta (U, (xi)). Allora per ogni x ∈ U scriviamo

Xf(x) =

(
X i(x)

∂

∂xi

∣∣∣∣
x

)
f = X i(x)

∂f

∂X i
(x)

Dato che le funzioni componenti X i sono differenziabili su U , segue che Xf

è differenziabile su U , e dato che questo vale per ogni p ∈ M , Xf è dif-

ferenziabile su M . La mappa f 7→ Xf è la derivazione cercata, infatti è
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chiaramente lineare su R e dalla regola di Leibniz per i vettori tangenti si ha

X(fg) = fXg+gXf . Dunque ogni campo vettoriale induce una derivazione

(⇒) Sia D : C∞(M) → C∞(M) una derivazione. Definiamo Xpf = (Df)(p).

La linearità di D garantisce che l’espressione dipenda linearmente da f , e

il fatto che D sia una derivazione assicura che sia soddisfatta la regola di

Leibniz per i vettori tangenti. Dunque Xp : C
∞(M) → R è un vettore tan-

gente. Questo definisce un campo vettoriale (a priori non differenziabile),

ma grazie all’ipotesi Xf = Df differenziabile per ogni f ∈ C∞(M) possiamo

concludere.

Sfruttando questo risultato, talvolta identificheremo X(M) con le deri-

vazioni C∞(M), utilizzando la stessa notazione sia per i campi vettoriali

(pensati come mappe lisce daM a TM), sia per le derivazioni (pensate come

mappe lineari da C∞(M) in se stesso).

Definizione 41. Sia F : M → N una mappa differenziabile tra varietà

differenziabili. Siano X ∈ X(M), Y ∈ X(N).

Diciamo che X e Y sono F -relativi se

F ∗p(Xp) = YF (p), per ogni p ∈M

Lemma 1. Sia F : M → N una mappa differenziabile tra varietà differen-

ziabili, X ∈ X(M), Y ∈ X(N). Allora

X e Y sono F -relativi ⇐⇒ X(f ◦ F ) = (Y f) ◦ F, ∀ f ∈ C∞(N)

Dimostrazione. Per ogni p ∈M e f ∈ C∞(V ), si hanno

X(f ◦F )(p) = Xp(f ◦F ) = F ∗p(Xp)f, (Y f) ◦F (p) = (Y f)(F (p)) = YF (p)f

Proposizione 11. Siano M,N varietà differenziabili, F : M → N diffeo-

morfismo. Allora per ogni X ∈ X(M), esiste un unico campo vettoriale Y su

N in F -relativo ad X.
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Dimostrazione. Dato che F è un diffeomorfismo e dal lemma X(f ◦ F ) =

(Y f) ◦ F ⇐⇒ F ∗p(Xp) = YF (p), definiamo Y come

Yq = F ∗F−1(q)(XF−1(q))

Notiamo che Y : N → TN è differenziabile in quanto è dato dalla composi-

zione delle seguenti mappe

N
F−1

−−→M
X−→ TM

F∗−→ TN

Definizione 42. Sia F : M → N diffeomorfismo tra M e N varietà diffe-

renziabili. Definiamo il pushforward di X tramite F come

(F∗X)q = F ∗F−1(q)(XF−1(q))

Definizione 43. Siano X, Y campi vettoriali su M varietà differenziabile.

Chiamiamo bracket di Lie di X e Y l’operatore [X, Y ] : C∞(M) → C∞(M),

[X, Y ]f = XY f − Y Xf .

Lemma 2. Siano X, Y campi vettoriali su M . Allora [X, Y ] è ancora un

campo vettoriale su M .

Dimostrazione. Dalla Proposizione 10, è sufficiente mostrare che [X, Y ] è una

derivazione. Siano f, g ∈ C∞(M)

[X, Y ](fg) = X(Y (fg))− Y (X(fg))

= X(fY g + gY f)− Y (fXg + gXf)

= fXY g + Y gXf + gXY f + Y fXg

− fY Xg −XgY f − gY Xf −XfY g

= fXY g + gXY f − fY Xg − gY Xf

= f [X, Y ]g + g[X, Y ]f
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Osservazione 20. Nella dimostrazione abbiamo utilizzato il fatto che il

prodotto puntuale tra funzioni lisce in C∞(M) è commutativo.

Proposizione 12. Sia F : M → N una mappa differenziabile tra varietà

differenziabili, X1, X2 ∈ X(M) e Y1, Y2 ∈ X(N) tali che Yi è F -relativo a Xi

per i = 1, 2.

Allora [Y1, Y2] è F -relativo a [X1, X2].

Dimostrazione. Per il Lemma 1, dato che Xi e Yi sono F -relativi

X1X2(f ◦ F ) = X1((Y2f) ◦ F ) = (Y1Y2f) ◦ F

Analogamente

X2X1(f ◦ F ) = (Y2Y1f) ◦ F

Dunque

[X1, X2](f ◦ F ) = X1X2(f ◦ F )−X2X1(f ◦ F )
= (Y1Y2f) ◦ F − (Y2Y1f) ◦ F
= ([Y1, Y2]f) ◦ F

Corollario 2. Sia F :M → N diffeomorfismo, X, Y ∈ X(M).

Allora F∗[X, Y ] = [F∗X,F∗Y ].

Dimostrazione. Basta applicare la proposizione precedente a Yi = F∗Xi con

F diffeomorfismo.
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3.2 Algebre di Lie

Definizione 44. Una algebra di Lie è uno spazio vettoriale reale g di

dimensione finita con un prodotto interno

[· , ·] : g× g → g

tale che soddisfi:

1. (Bilinearità) [au+ bv, w] = a[u,w] + b[v, w] ∀ u, v, w ∈ g, ∀ a, b ∈ R
2. (Antisimmetria) [u, u] = 0, ∀ u ∈ g

3. (Identità di Jacobi) [[u, v], w] + [[v, w], u] + [[w, u], v] = 0 ∀ u, v, w ∈ g

Definizione 45. Una sottoalgebra di Lie di un’algebra di Lie g è uno

spazio vettoriale h ⊆ g tale che ∀ x, y ∈ h, [x, y] ∈ h.

Un ideale di un’algebra di Lie g è una sottoalgebra di Lie h ⊆ g tale che

∀ x ∈ g, y ∈ h, [x, y] ∈ h.

Osservazione 21. Siano a, b due sottospazi vettoriali di un’algebra di Lie

g. Poniamo

[a, b] =

{∑
i

ai[ui, vi], ui ∈ a, vi ∈ b, ai ∈ R
}

Allora possiamo riscrivere le definizioni sopra con una diversa notazione,

ovvero chiedendo che valga [h, h] ⊆ h per le sottoalgebre di Lie e [h, g] ⊆ h

per gli ideali.

Definizione 46. Un omomorfismo di algebre di Lie è una mappa lineare

φ : g1 → g2 che preserva il prodotto interno, cioè tale che [φ(u), φ(v)]g2 =

φ([u, v]g1) per ogni u, v ∈ g.

Un isomorfismo di algebre di Lie è un omomorfismo di algebre di Lie

biettivo.
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3.3 Algebra di Lie di un Gruppo di Lie

Ad ogni gruppo di Lie G è associata un’algebra di Lie g che, nel nostro

caso, può essere pensata come lo spazio dei vettori tangenti all’identità del

gruppo.

Sia G un gruppo di Lie, g ∈ G. Consideriamo le seguenti applicazioni

Lg : G −→ G Rg : G −→ G Ad(g) : G −→ G

x 7−→ gx x 7−→ xg x 7−→ gxg−1

Lg e Rg sono diffemorfismi (ma non omomorfismi di gruppi) e si chiamano

rispettivamente traslazione sinistra e traslazione destra.

Ad(g) invece è un automorfismo di G e si chiama automorfismo interno

indotto da g. Osserviamo inoltre che Ad(g)(x) = Lg(R
−1
g (x)) = R−1

g (Lg(x))

Osservazione 22. Ricordiamo che se F : M → N è una mappa differen-

ziabile tra varietà differenziabili, il differenziale (pushforward) di F in p è

un’applicazione lineare F p∗ : TpM → TF (p)N .

Definizione 47. Sia X ∈ X(G).

X si dice invariante a sinstra se Lg∗Xh = Xgh per ogni g, h ∈ G, cioè se

Lg∗X = X.

Proposizione 13. Se X e Y sono due campi vettoriali inviarianti a sinistra,

allora anche i campi X+Y , λX con λ ∈ R e [X, Y ] sono invarianti a sinistra.

Dimostrazione. Dato che il differenziale Lg∗ è un’applicazione lineare, si ha

facilmente che X + Y e λX sono invarianti a sinistra. Infine per quanto

visto in sezione 3.1, si ha che [X, Y ] è un campo vettoriale e che Lg∗[X, Y ] =

[Lg∗X,Lg∗Y ] = [X, Y ].

Definizione 48. Sia G gruppo di Lie. Allora, grazie alla precedente pro-

posizione, denotiamo con g l’insieme dei campi vettoriali su G invarianti a

sinistra, esso ha una struttura di algebra di Lie e si chiama algebra di Lie

del gruppo di Lie G.
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Teorema 1. Sia G un gruppo di Lie di dimensione n.

La sua algebra di Lie g è isomorfa come spazio vettoriale a TeG.

Dimostrazione. Consideriamo la mappa

g −→ Te(G)

X 7−→ Xe

Essa è chiaramente lineare. Se Xe = 0, allora 0 = Lg∗Xe = Xg. Inoltre, se

v ∈ g, possiamo definire Xg = Lg∗v, in modo tale che

La∗Xg = La∗Lg∗v = Lag∗v = Xag

Dunque, X è invariante a sinistra conXe = v, e dunque la mappa è suriettiva.

In base al risultato precedente, possiamo introdurre su TeG una struttura

di algebra di Lie definendo per ogni x, y ∈ TeG, [x, y] = [X, Y ]e dove X, Y

sono gli unici campi invarianti a sinistra tali che Xe = x, Ye = y. In questo

modo TeG risulta essere isomorfo a g non solo come spazio vettoriale, ma

anche come algebra di Lie.

Di seguito alcuni esempi di gruppi di Lie e della loro algebra di Lie.

Esempio 13. Consideriamo il gruppo di Lie SLn(R) = {A ∈ GLn(R) |
det(A) = 1} e cerchiamo di capire perché la sua algebra di Lie associa-

ta è sln(R) = {A ∈ Mn(R) | tr(A) = 0}. Consideriamo una definizione

equivalente dello spazio tangente in p ∈ G di una varietà differenziabile,

ovvero

TpG = {[γ] | γ : (−ϵ, ϵ) → G, γ(0) = p}

dove γ1 ∼ γ2 ⇔ data (U,φ) carta in p, si ha d
dt
(φ ◦ γ1(t))

∣∣
t=0

= d
dt
(φ ◦ γ2(t))

∣∣
t=0

.

Sia

γ : R → SLn(R), γ(t) =

(
a(t) b(t)

c(t) d(t)

)
tale che γ(0) = e =

(
1 0

0 1

)
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Sappiamo che det(γ(t)) = a(t)d(t) − b(t)c(t) = 1, a(0) = d(0) = 1 e b(0) =

c(0) = 0. Derivando entrambi i membri della prima espressione otteniamo

0 =
d

dt
((a(t)d(t)− b(t)c(t)))

∣∣∣∣
t=0

= a′(0) + d′(0) = tr(γ′(0))

Abbiamo quindi che per definizione, γ′(0) ∈ TeG, e per quanto appena fatto

γ′(0) ∈ sln(R). Dunque TeG ⊆ sln(R), e per motivi dimensionali TeG =

sln(R).

Esempio 14 (Gruppo generale lineare positivo).

GL+
n (R) = {A ∈ GLn(R) | det(A) > 0}, gl+n (R) =Mn(R)

Esempio 15 (Gruppo ortogonale).

On(R) = {A ∈ GLn(R) | ATA = I}, on(R) = {A ∈Mn(R) | AT = −A}

Proposizione 14.

(i) Dato φ : G1 → G2 omomorfismo di gruppi di Lie, il pushforward

all’identità φ∗e : g1 → g2 è un omomorfismo di algebre di Lie

(ii) Dati φ : G1 → G2 e ψ : G2 → G3 omomorfismi di gruppi di Lie, si ha

(ψ ◦ φ)∗e = ψ∗e ◦ φ∗e

(iii) Sia id : G→ G la mappa identità, allora id∗e = idg

(iv) Se φ è un isomorfismo di gruppi di Lie, allora φ∗ è un isomorfismo di

algebre di Lie.

Dimostrazione. (i) Siano u, v ∈ g1. Per Teorema 1 possiamo associa-

re questi vettori in maniera univoca ai campi vettoriali inviarianti a

sinistra X, Y su G1 (in modo tale che Xe = u, Ye = v). Siano

u′ = φ∗(u), v
′ = φ∗(v) ∈ g2 i quali sono associati ai campi vettoriali

invarianti a sinistra X ′ e Y ′ su G2. Ora φ è un omomorfismo, dunque

φ ◦ Lg(h) = φ(gh) = φ(g)φ(h) = Lφ(g) ◦ φ
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Derivando questa uguaglianza si ha φ∗ ◦Lg∗ = Lφ(g)∗ ◦φ∗, in modo tale

che

φ∗(Xg) = φ∗(Lg∗u) = Lφ(g)∗(φ∗(u)) = Lφ(g)∗(u
′) = X ′

φ(g)

Dunque, per il Lemma 1, X e X ′ sono φ-relativi. Analogamente anche

Y e Y ′ sono φ-relativi. Segue dunque dalla Proposizione 12 che [X, Y ]

e [X ′, Y ′] sono φ-relativi e dunque in particolare φ∗([u, v]) = [φ∗u, φ∗v].

(ii) Segue dalla regola della catena.

(iii) Segue dalla definizione di derivata.

(iv) Da (ii) e (iii), se ψ è l’inversa di φ, allora l’inversa di φ∗e è ψ∗e.

3.4 Parallelizabilità

Definizione 49. Sia M una varietà differenziabile.

Una k-upla ordinata (X1, . . . , Xk) di campi vettoriali definiti su qualche

aperto A ⊆ M si dice linearmente indipendente se per ogni p ∈ A,

(X1|p, . . . , Xk|p) è una k-upla linearmente indipendente in TpM .

Diciamo che una n-upla ordinata (E1, . . . , En) di campi vettoriali su U ⊆M

è un frame locale per M se è linearmente indipendente e genera il fibrato

tangente TM .

Se U =M , diremo che (E1, . . . , En) è un frame globale.

Definizione 50. Una varietà differenziabile M si dice parallelizzabile se

ammette un frame globale.

Osservazione 23. Nel nostro caso stiamo assumendo campi vettoriali diffe-

renziabili, dunque il frame globale si dice anche frame globale liscio.

Esempio 16. Rn, S1, S3, S7 e il toro n-dimensionale Tn sono esempi di

varietà parallelizzabili.
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Definizione 51. Data una varietà M e (X1, . . . , Xn) un frame globale (lo-

cale), diciamo che (X1, . . . , Xn) è un frame globale (locale) invariante a

sinistra se Xi è invariante a sinistra per ogni i ∈ {1, . . . , n}.

Proposizione 15. Ogni gruppo di Lie G è parallelizzabile.

Dimostrazione. Sia G un gruppo di Lie e g la sua algebra di Lie. Allora

ogni base di g è un frame globale invariante a sinistra per G, e dunque G è

parallelizzabile.

Il concetto di frame locale e frame globale si estende in maniera naturale

ai fibrati vettoriali.

Definizione 52. Sia E →M un fibrato vettoriale, U ⊆M aperto, (σ1, . . . , σk)

una k-upla di sezioni di E su U si dice linearmente indipendente se

(σ1(p), . . . , σk(p)) forma una k-upla linearmente indipendente in Ep per ogni

p ∈ U . Diciamo che generano E se per ogni p ∈ U , generano Ep.

Un frame locale per E su U è una k-upla ordinata di sezioni locali linear-

mente indipendenti su U che generano E (dunque (σ1(p), . . . , σk(p)) è una

base per la fibra Ep per ogni p ∈ U).

Se U =M , il frame si dice globale.

I frame locali e globali definiti precedentemente sono ora dei frame per il

fibrato tangente, ma i due concetti coincidono.

Proposizione 16. Un fibrato vettoriale liscio ammette trivializzazione glo-

bale se e solo se ammette un frame globale liscio.

Corollario 3. (Parallelismo assoluto) Sia G un gruppo di Lie, allora il

fibrato tangente ammette una trivializzazione locale, cioè TG ∼= G× g.
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3.5 Forma di Maurer-Cartan

Definizione 53. Sia G un gruppo di Lie, g ∼= TeG la sua algebra di Lie.

Chiamiamo forma di Maurer-Cartan invariante a sinistra la 1-forma su

G a valori in g, ωG : TG→ g definita da ωG(v) = Lg−1∗(v) per v ∈ TgG

Il termine invariante a sinistra è dovuto al fatto che ωG è invariante sotto

traslazioni a sinistra. Infatti, dal momento che v ∈ TgG =⇒ Lh∗(v) ∈ ThgG,

si ha

(Lh
∗ωG)(v) = ωG(Lh∗(v)) = L(hg)−1(Lh∗(v)) = Lg−1∗(v) = ωG(v)

Esempio 17. La forma di Maurer-Cartan di R è dx.

Infatti g = TeG = R, Lx(y) = x + y e Lx∗ = idR. Ora wx(y) = Lx∗(y) = y,

v ∈ TxR si scrive come v1∂x, dunque presa l’1-forma dx definita da dx(∂x) = 1

si ha dx(v) = dx(v1∂x) = v1dx(∂x) = v1 e quindi ωx = dx.

Esempio 18. G = S1 ⊆ C, dunque TG = {(eiθ, ireiθ) | r, θ ∈ R} e in

particolare TeG = {(1, ri) | r ∈ R}. Calcoliamo la forma di Maurer-Cartan

ω(eiθ, ireiθ) = Le−iθ∗(e
iθ, ireiθ) = (1, ir)

Definizione 54. Sia G un gruppo di Lie con algebra di Lie g.

Chiamiamo rappresentazione aggiunta la mappa

ad : G → Gl(g)

g 7→ ad(g) = Ad(g)∗e

Per ogni g ∈ G, chiamiamo ad(g) ∈ Gl(g) azione aggiunta di g su g.

Proposizione 17.

(i) ad(g) è un isomorfismo di algebre di Lie, e la mappa Ad : G → Gl(g)

è un omomorfismo di gruppi di Lie.

(ii) R∗
gωG = ad(g−1)ωG

Dimostrazione. (i) Segue dalla Proposizione 14
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(ii) Sia v ∈ Th(G), si ha dunque che Rh∗(v) ∈ TghG.

R∗
gωG = ωG(Rg∗(v)) = L(gh)−1∗Rg∗(v) = Lg−1∗Lh−1∗Rg∗(v)

= Lg−1∗Rg∗Lh−1∗(v) = ad(g−1)ωG(v)

Osservazione 24. R∗
hωG è il pullback della forma di Maurer-Cartan



Capitolo 4

Geometrie di Klein

La generalizzazione attuata da Klein del concetto di geometria ci permette

di spostare l’enfasi dalla varietà M al gruppo di trasformazioni G.

Fissato un punto x ∈M , esiste una mappa

π : G → M

g 7→ gx

Dalla transitività dell’azione segue che questa mappa è suriettiva. Osservia-

mo che π−1(x) = {g ∈ G | gx = x} =: Hx è un sottogruppo chiuso di G e

prende il nome di stabilizzatore di x.

Inoltre, π(g) = π(h) ⇐⇒ gx = hx ⇐⇒ h−1gx = x ⇐⇒ h−1g ∈ Hx.

Da ciò segue che π induce una biezione π̄ : G/Hx →M , gHx 7→ gx.

Dunque riassumendo, anzichè identificare una geometria con punto base

come una coppia (M,x) dotata del suo gruppo principale, possiamo equi-

valentemente parlare della coppia (G,H), dove H = Hx è lo stabilizzatore

dell’azione di G, che è in particolare un sottogruppo chiuso di G.

Cerchiamo ora di dare maggiore rigore e chiarezza ai ragionamenti di cui

sopra.

Definizione 55. Sia G un gruppo di Lie, X una varietà differenziabile. Se

G agisce su X e x ∈ X, chiamiamo

·) l’insieme Gx = {gx | g ∈ G} ⊆ X orbita di x.

36
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·) l’insieme Stab(x) = {g ∈ G | gx = x} ⊆ G stabilizzatore di x.

Definizione 56. Sia X una varietà differenziabile e G un gruppo che agi-

sce per diffeomorfismi su X in modo transitivo, allora X si chiama spazio

omogeneo.

Teorema 2 (Teorema orbita-stabilizzatore per azioni di gruppi di Lie). Sia

G un gruppo di Lie che agisce su X varietà differenziabile.

Allora per ogni x ∈ X, Stab(x) è un sottogruppo chiuso e la mappa naturale

G/Stab(x) → X è un’immersione iniettiva la cui immagine è l’orbita Gx.

Corollario 4. Se G agisce in modo transitivo su X, allora X ∼= G/Stab(x)

per ogni x ∈ X, cioè X è uno spazio omogeneo.

Osservazione 25. Dato H sottogruppo chiuso di G, il quoziente G/H è a

priori un quoziente topologico (non algebrico) in quanto H non è necessaria-

mente normale.

4.1 Esempi di Geometrie di Klein

Prima di dare una definizione rigorosa di Geometria di Klein, vediamo-

ne alcune nel concreto. Il procedimento sopra descritto infatti permette di

trovare numerosi esempi di geometrie di Klein. A priori non vale il vicever-

sa, cioè non è vero in generale che ogni geometria di Klein si realizza come

quoziente di un gruppo di Lie per lo stabilizzatore di un punto, rispetto a

un’azione di G su una varietà connessa M .

Esempio 19 (Sfera). Siano M = Sn = {x ∈ Rn | ∥x∥ = 1} e

G = O(n+1) = {A ∈ GLn+1(R) | ATA = AAT = I} il gruppo ortogonale di

dimensione n + 1. Consideriamo l’azione di G su M data da A 7→ A · x con

x = (0, ..., 0, 1) polo nord della sfera n-dimensionale.

L’azione è transitiva, infatti dati x, y ∈ Sn, essi hanno in particolare stessa

norma, dunque esiste sempre A ∈ O(n+ 1) tale che Ax = y.
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Ora lo stabilizzatore del polo nord è dato da

π−1(x) = {A ∈ O(n+ 1) | A · x = x} =

{(
A 0

0 1

) ∣∣∣∣∣ A ∈ O(n)

}
∼= O(n)

Dato che O(n+1) è il gruppo delle isometrie della sfera n-dimensionale, che

O(n) è lo stabilizzatore di x e che l’azione è transitiva, per il Corollario 4

O(n+ 1)/O(n) ∼= Sn.

Prendendo ad esempio n = 2, lo stabilizzatore del gruppo nel polo nord

x = (0, 0, 1) è proprio dato dalle rotazioni della sfera attorno all’asse z che

sono descritte da O(2).

O

Figura 4.1: S2 che ruota attorno a un asse di rotazione

Osservazione 26. SO(n + 1)/SO(n) è in biezione con la sfera unitaria

orientata, che ha curvatura costante uguale a 1.

Questo è un esempio del fatto che è possibile ottenere una varietà con-

nessa M come quoziente di gruppi di Lie diversi, e a seconda del gruppo G

considerato, vengono preservate determinate strutture sulla varietà in que-

stione. Ecco perché quando daremo la definizione di geometria di Klein,

non ci focalizzeremo sullo spazio della geometria, ovvero la varietà M , bens̀ı

sulla coppia (G,H) che caratterizza la geometria rispetto alle strutture ma-

tematiche preservate dall’azione di G su G/H (in questo caso preserviamo

l’orientazione).
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Esempio 20 (CP1). Riprendiamo l’Esempio 12.

Il gruppo di Lie SU(2) = {A ∈ M2(C) | AHA = AAH = I, det(A) = 1} è

diffeomorfo a S3, infatti possiamo vederlo più esplicitamente come{(
z ω

−ω̄ z̄

)
| z, ω ∈ C, |z|2 + |ω|2 = 1

}
∼= S3

Inoltre SU(2) agisce su S2 in modo transitivo e lo stabilizzatore di un punto

è S1 = U(1) = {a ∈ C | |a| = 1}.
Dunque, si ha SU(2)/U(1) = S3/S1 = S2, che come abbiamo già visto è un

S1-fibrato principale. Ancora una volta lo spazio quoziente è S2, ma con una

struttura differente dagli esempi precedenti, infatti in questo caso abbiamo

la sfera di Riemann.

Esempio 21 (Piano Euclideo). M = R2 e il gruppo di simmetrie di Lie è

G = Euc2(R) =

{(
1 0

v R(θ)

) ∣∣∣∣∣ R(θ) =
(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
, v =

(
v1

v2

)}

che agisce su M come(
1 0

v R(θ)

)
· x = R(θ)x+ v, dove x =

(
x1

x2

)

Un semplice calcolo mostra che lo stabilizzatore dell’origine (0, 0) ∈ R2 è

dato dal sottogruppo delle rotazioni

H = SO2(R) =

{(
1 0

0 R(θ)

) ∣∣∣∣∣ θ ∈ R

}
Dunque abbiamo trovato Euc2(R)/SO2(R) ∼= R2.

Infatti, Euc2(R) ∼= SO2(R)⋊R2 (prodotto semidiretto).

Esempio 22 (Piano Affine). M = R2, come nell’esempio precedente, e il

gruppo è il gruppo affine 2-dimensionale dato da

G = Aff+
2 (R) =

{(
1 0

v A

)
∈ GL+

3 (R)

∣∣∣∣∣ A ∈ GL+
2 (R), v ∈ R2

}
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L’azione su M è data dalla formula

(
1 0

v A

)
· x = Ax + v, dove x, v sono

vettori colonna. Ancora, è facile verificare che lo stabilizzatore dell’origine è

H =

{(
1 0

0 A

)
∈ GL+

3 (R)

∣∣∣∣∣ A ∈ GL+
2 (R)

}
∼= GL+

2 (R)

e Aff+
2
∼= H ⋊R2 (prodotto semidiretto).

Esempio 23 (Piano Iperbolico). Siano M = H = {z ∈ C | ℑ(z) > 0} e

G = SL2(R) = {A ∈ M2(R) | det(A) = 1} il gruppo delle trasformazioni di

Möbius che agisce su M come(
a b

c d

)
· z = az + b

cz + d

Preso come punto base z = i ∈M , il suo stabilizzatore è

SO2(R) = {A ∈M2(R) | det(A) = 1, AAT = I}

dunque H ∼= SL2(R)/SO2(R).
Le trasformazioni di Möbius preservano la metrica di Poincaré (iperbolica)

in quanto esse sono isometrie di questa metrica, dunque preservano distanze

e angoli iperbolici. Inoltre dato che per definizione di SL2(R) si richiede che
det(A) = 1, esse preservano anche l’orientazione.

Esempio 24 (Spazio proiettivo). Sia RPn := (Rn+1 \ {0})/R∗ lo spazio

proiettivo reale. L’azione di R∗ su R⋉+⊮ è chiaramente liscia, e si restringe

a un’azione libera su Rn+1 \ {0}. Dunque come vedremo successivamente, la

proiezione al quoziente π : Rn+1 \ {0} → RPn è un R∗-fibrato principale.

L’azione naturale del gruppo delle trasformazioni di Möbius SL(n+1,R) su
Rn+1 si restringe a un’azione su Rn+1\{0}, e dato che l’azione è lineare, induce
un’azione su RPn, che è ovviamente transitiva. I risultanti diffeomorfismi di

RPn sono esattamente le trasformazioni proiettive. Lo stabilizzatore della

retta passante per il primo vettore della base standard di Rn+1 è dato da

P :=

{(
det(A)−1 v

0 A

)∣∣∣∣∣A ∈ GLn(R), v ∈ Rn \ {0}
}
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P è un esempio di sottogruppo parabolico del gruppo di Lie SL(n+1,R). P ha

due componenti connesse, caratterizzate dal segno del determinante di A. Se

consideriamo P0, componente connessa di P contenente l’identità, otteniamo

un diverso spazio omogeneo corrispondente, infatti RPn ∼= SL(n + 1,R)/P ,
mentre Sn ∼= SL(n+ 1,R).
Per vedere la struttura geometrica di RPn invariante rispetto all’azione di

SL(n + 1,R), osserviamo che ogni trasformazione proiettiva mappa rette

proiettive in rette proiettive. Infatti, le rette proiettive sono esattamente

le immagini tramite π dell’intersezione di piani passanti per l’origine con

Rn+1 \ {0}. Da questa descrizione segue che l’azione di SL(n+ 1,R) su RPn

mappa rette proiettive in rette proiettive. Il teorema fondamentale della

geometria proiettiva afferma che ogni biezione di RPn mappa rette proiettive

in rette proiettive. Dunque, la struttura geometrica appropriata è data dalla

famiglia di tutte le rette proiettive di RPn.
Sulla sfera Sn, uno può similmente ottenere la famiglia di geodetiche della

metrica sferica su Sn, e i diffeomorfismi di Sn che mappano geodetiche in

geodetiche sono esattamente le azioni degli elementi di SL(n+ 1,R).

4.2 Caratterizzazione di Fibrati Principali

Cerchiamo ora di capire perché una geometria, nel senso di Klein, può

essere vista come una varietà differenziabile e mostriamo che la mappa G→
G/H è un fibrato principale con gruppo H.

Proposizione 18. Sia G un gruppo di Lie e H un suo sottogruppo chiuso.

Allora l’azione G×H → H, (g, h) 7→ g · h è libera e propria.

Dimostrazione. L’azione è banalmente libera, infatti se gh = g allora molti-

plicando per g−1 si ottiene h = e.

Siano ora A, B ⊆ G compatti e consideriamo K = {h ∈ H | hA ∩ B ̸= ∅}.
Mostriamo che K è compatto per successioni.

Sia {hn} una successione a valori in K. Allora esistono {an} e {bn} succes-

sioni rispettivamente in A e in B tali che aihi = bi per ogni i.
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Dato che A è compatto esiste una sottosuccessione {anj
}j∈J che converge

ad a ∈ A, e a meno di restringerci ulteriormente a L ⊆ J esiste {bnl
}l∈L

che converge a b ∈ B. Dunque abbiamo {hl = (al)
−1bl}l∈L converge a

a−1b ∈ K

Proposizione 19. Sia ξ = (P,B, π, F ) un H-fibrato principale destro

Allora l’azione P ×H → H è libera e propria

Dimostrazione. Il fatto che il fibrato sia localmente un prodotto U ×H, con

l’azione canonica destra diH, mostra che l’azione è libera. Dalla proposizione

precedente si ha che per ogni successione {hj} in K = {h ∈ H | Ah∩B ̸= ∅},
esistono successioni {aj} in A e {bj} in B convergenti rispettivamente ad a

e b, e tali che ajhj = bj per ogni j. Ora dato che per definizione di fibrato

principale, l’azione destra di H preserva la fibra, si ha π(aj) = π(ajhj) =

π(bj) per ogni j, e dunque dato che π continua, π(a) = π(b). Ora, sempre per

definizione di fibrato principale, su ogni fibra π−1(x) il gruppo agisce in modo

semplicemente transitivo, dunque a = hb per qualche h ∈ H. Dimostriamo

ora che hj −→ h.

Per farlo, notiamo che preso j̄ sufficientemente grande si ha ∀ j > j̄, hj ∈ U ,

dove U è una carta del fibrato.

Questo ci permette di restringerci al caso del fibrato banale P = M × H.

Proiettando lungo H tramite ρ si ottiene ρ(aj)hj = ρ(ajhj) = ρ(bj). Dunque

{hj = ρ(aj)
−1ρ(bj)} converge a ρ(a)−1ρ(b). Abbiamo cos̀ı mostrato che ogni

successione in K ammette sottosuccessione convergente in K, cioè che K è

compatto.

Concludiamo enunciando un risultato fondamentale che mostra come que-

ste proprietà caratterizzino un fibrato principale su una varietà differenzia-

bile. La dimostrazione, essendo particolarmente tecnica, è stata omessa con

l’intento di snellire la trattazione.
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Teorema 3. Sia P una varietà differenziabile, H un gruppo di Lie,

µ : P ×H → P una azione destra, liscia, libera e propria. Allora

(i) P/H con la topologia quoziente è una varietà topologica (con dim(P/H) =

dim(P )− dim(H)).

(ii) P/H ammette un’unica struttura differenziabile per cui la proiezione

π : P → P/H è una sommersione.

(iii) ξ = (P, π, P/H,H) è un H-fibrato principale liscio destro.

Corollario 5. Sia G un gruppo di Lie, H ⊆ G sottogruppo chiuso.

Allora la mappa π : G→ G/H è un H-fibrato principale destro.

Dimostrazione. Dalla Proposizione 18 abbiamo che l’azione destra di H su

G è libera e propria e per il Teorema 3 abbiamo la tesi.

È importante che l’azione sia propria. Infatti, se per esempio nel caso di

un’azione destra G×H → G di un sottogruppo H ⊆ G, il sottogruppo non è

chiuso, allora l’azione non è propria e il quoziente G/H non è necessariamente

una varietà.

Esempio 25. Consideriamo il toro G = R2/Z2 e un sottogruppo ”irrazio-

nale” di G. Per capire meglio, passiamo al rivestimento universale G1 = R2

con corrispondente reticolo Z2 = {(a, b) ∈ R2 | a, b ∈ Z} visto come nucleo

della mappa di proiezione π : R2 → R2/Z2. Sia H1 = {(t, t
√
2) | t ∈ R)}.

In G1, il sottogruppo H1 è una linea retta, e dunque è chiuso (rispetto alla

topologia euclidea). Tuttavia, dal momento che
√
2 è un numero irrazionale,

H = π(H1) è denso in G, e in particolare non è chiuso.

H1 R2

π

R2/Z2

H
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Sia f : G/H → R una funzione continua, e sia f̃ = f ◦ π.

G R

G/H

f̃

π
f

Ora f̃(H) = f([h]) = x ∈ R, dunque f̃ è costante su un denso di G,

e dunque è costante su tutto il dominio. Inoltre dalla commutatività del

diagramma, si ha che f è costante. Non esistono dunque funzioni continue

non costanti G/H → R, in particolare non è possibile costruire delle carte e

dunque G/H non è una varietà.

4.3 Geometrie di Klein

Definizione 57. Siano X, Y due insieme non vuoti e G un gruppo che agisce

su di essi. Una mappa f : X → Y si dice equivariante se f(g · x) = g · f(x)

Proposizione 20. Sia G un gruppo di Lie e H ⊆ G un suo sottogruppo

chiuso.

Allora esiste un unico sottogruppo massimale normale K di G contenuto in

H. Inoltre, K è un sottogruppo di Lie chiuso di H, l’azione sinistra di G su

G/H induce un’azione sinistra di G/K su G/H, ed esiste un diffeomorfismo

φ : (G/K)/(H/K) → G/H tale che φ è equivariante rispetto all’azione

canonica sinistra di G/K.

(G/K)/(H/K) G/H

(G/K)/(H/K) G/H

φ

G/K↷ G/K↷

φ

Dimostrazione. Sia K il gruppo generato da tutti i sottogruppi normali di

G contenuti in H. Allora K è chiaramente un sottogruppo normale di G

contenuto in H ed è, inoltre, l’unico sottogruppo normale massimale di G

contenuto in H. Dato che la chiusura di K è ancora un sottogruppo normale

di G contenuto in H, K è esso stesso chiuso.
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Ora K è un gruppo di Lie in quanto sottogruppo chiuso di un gruppo

di Lie. Infine, dal Teorema 3, la proiezione canonica π : G/K → G/H è

un fibrato principale con fibra H/K. Dunque π induce un diffeomorfismo

(G/K)/(H/K) → G/H che commuta con l’azione canonica sinistra G/K.

Siamo ora pronti per dare una definizione formale di Geometria di Klein.

Definizione 58. Una geometria di Klein è una coppia (G,H), dove G è

un gruppo di Lie e H ⊆ G un sottogruppo chiuso tale che G/H è connesso.

G si chiama gruppo principale della geometria. Il nucleo di una geometria

di Klein (G,H) è il più grande sottogruppo K di H normale in G.

Una geometria di Klein (G,H) si dice fedele se K = {e}, mentre si dice

localmente fedele se K è discreto.

Una geometria di Klein si dice geometricamente orientata se G è con-

nesso. Lo spazio delle classi laterali connesse G/H si chiama spazio della

geometria di Klein oppure con un abuso di notazione, semplicemente geo-

metria di Klein. Una geometria di Klein si dice primitiva se la componente

contenente l’identità He ⊆ H è massimale tra i sottogruppi propri, chiusi e

connessi di G.

Osservazione 27. Lo spazio della geometria di Klein G/H è in particolare

uno spazio omogeneo.

Se (G,H) è una geometria di Klein con nucleo K, allora dato un sotto-

gruppo chiuso N ⊆ K normale in G, dalla Proposizione 20 si ha che la coppia

(G/N,H/N) è anch’essa una geometria di Klein con spazio (G/N,H/N) ∼=
G/H. Ovviamente, queste geometrie non sono fedeli, a meno che N = K.

Questo fatto ci porta alla seguente definizione.

Definizione 59. Sia (G,H) una geometria di Klein con nucleo K.

Chiamiamo geometria di Klein fedele associata a (G,H) la geometria

di Klein (G/K,H/K).
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Osservazione 28. Dalla Proposizione 20 sembra che se si è interessati allo

spazio G/H sia sufficiente considerare il caso fedele. Perché allora non chia-

miamo geometrie di Klein solo quelle fedeli? Una prima risposta è data dal

fatto che facendo ciò, elimineremmo il fenomeno di spin. Il secondo punto è

che geometrie non fedeli esistono, ed è dunque utile avere un linguaggio per

poterne parlare.

Definizione 60. Date due geometrie di Klein (G1, H1) e (G2, H2), esse si

dicono geometricamente isomorfe se esiste un isomorfismo di gruppi di

Lie φ : G1 → G2 tale che φ(H1) = H2.

Osservazione 29. In particolare, (G,H) e (G, gHg−1) sono geometricamen-

te isomorfe tramite φ automorfismo interno, che agisce tramite la coniuga-

zione per un elemento g.

Lemma 3. Sia G un gruppo di Lie, allora la componente dell’identità

Ge = {g ∈ G | ∃ γ : [0, 1] → Ge, γ(0) = g, γ(1) = e} è un sottogruppo di G.

Dimostrazione. Siano g, h ∈ Ge, γ : [0, 1] → Ge e η : [0, 1] → Ge tali che

γ(0) = g, γ(1) = e, η(0) = h, η(1) = e. Sia ξ : [0, 1] → Ge, ξ(t) = γ(t)η(t),

allora ξ(0) = gh e ξ(1) = e, dunque Ge è chiuso rispetto al prodotto.

Sia γ̄(t) = γ(t)g−1, allora γ̄(0) = gg−1 = e, γ̄(1) = g−1, quindi g−1 ∈ Ge.

Proposizione 21. Sia (G,H) una geometria di Klein e sia Ge la componente

dell’identità di G. Sia H0 = H ∩Ge. Allora

(i) G = Ge ·H = {gh ∈ G | g ∈ Ge, h ∈ H}

(ii) G/H = Ge/H0

Dimostrazione. (i) Chiaramente Ge · H ⊆ G. Sia g ∈ G, dato che G/H

è connesso, esiste un cammino γ : [0, 1] → G/H tale che γ(0) = gH e

γ(1) = eH. Dato che la proiezione al quoziente G → G/H è un fibrato,

possiamo sollevare γ a γ̃ : [0, 1] → G tale che π(γ̃(t)) = γ(t), γ̃(0) = g e

γ̃(1) = h ∈ H (perché π(γ̃(1)) ∈ eH). Sia ora η : [0, 1] → G, definito da

η(t) = γ̃(t)h−1, allora η(0) = gh−1 e η(1) = e, dunque gh−1 ∈ Ge. Abbiamo
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cos̀ı trovato g = (gh−1)h e quindi G ⊆ Ge ·H.

(ii) Consideriamo il seguente diagramma commutativo

Ge G

Ge/H0 G/H

i

π|H0
π

j

Allora la mappa j : Ge/H0 → G/H è un’inclusione liscia. Inoltre da (i) si ha

che j ◦ π|H0 è suriettiva, dunque in particolare j è suriettiva.

Siano g1, g2 ∈ Ge, allora per il Lemma 3, g−1
2 g1 ∈ Ge, inoltre

j(g1) = j(g2) ⇔ g1 ∈ g2H ⇔ g−1
2 g1 ∈ H

In conclusione j è un diffeomorfismo.



4.4 Geometrie di Klein Locali 48

4.4 Geometrie di Klein Locali

Vediamo ora una generalizzazione della nozione di Geometria di Klein

Definizione 61. Sia G un gruppo di Lie, H un suo sottogruppo chiuso e Γ ⊆
G un sottogruppo discreto tale che Γ agisce fedelmente per motiplicazione a

sinistra come gruppo delle trasformazioni di rivestimento sullo spazio G/H

e il quoziente (G/H)/Γ è connesso.

Allora la tripla (Γ, G,H) si chiama geometria di Klein locale.

Come nel caso delle geometrie di Klein, le geometrie di Klein locali hanno

un fibrato principale associato.

Lemma 4. Siano Γ e H gruppi di Lie che agiscono con azioni proprie, libere

e commutative rispettivamente a sinistra e a destra su X varietà differenzia-

bile. Allora

X/Γ×H → X/Γ è propria ⇐⇒ Γ×X/H → X/H è propria

Dimostrazione. Per simmetria è sufficiente mostrare ⇒.

Step 1. L’azione

(Γ×H)×X → X

((g, h), x) 7→ gxh−1

è propria.

Siano A,B ⊆ X compatti e C = {(g, h) ∈ Γ×H | gAh ∩B ̸= ∅}.
Sia (gn, hn) ∈ Γ×H una successione in C, A′ e B′ immagini rispettivamente

di A e B in X/Γ. Dato che per ipotesi l’azione di H su X/Γ è propria, si ha

che C ′ = {h ∈ H | A′h∩B′ ̸= ∅}, ovvero l’immagine dell’azione di C in X/Γ,

è compatto. Dunque la successione di prima (hn) ammette sottosuccessione

convergente ad h ∈ C ′.

Dato che (gn, hn) ∈ C, possiamo trovare due successioni (an),(bn) rispettiva-

mente in A e in B tali che gnanhn = bn per ogni n ∈ N. Inoltre essendo A

e B compatti in X, ammettono sottosuccessioni convergenti rispettivamente
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ad a ∈ A e b ∈ B. Restringiamoci ora alle sottosuccessioni, mantenendo con

un abuso di notazione, gli stessi indici.

Sia ora K ⊆ X un intorno compatto di ah tale che ∃ n̄ tale che ∀ n > n̄,

anhn ∈ K. Dato che Γ×X → X è propria, l’insieme

C ′′ = {g ∈ Γ | gK ∩ {b} ≠ ∅} = {g ∈ Γ | g−1b ∈ K}

è compatto. Ora lim
n→∞

g−1
n b = lim

n→∞
g−1
n bn = lim

n→∞
anhn = ah ∈ K. Dunque

definitivamente g−1
n b ∈ K e quindi gn ∈ C ′′. Abbiamo cos̀ı che anche (gn)

ammette una sottosuccessione convergente a g ∈ Γ e quindi la successione

da cui eravamo partiti (gn, hn) ∈ C ammette sottosuccessione convergente a

gh ∈ C.

Step 2. L’azione Γ×X/H → X/H è propria. Siano A,B ∈ X/H compatti.

Vogliamo mostrare che {g ∈ Γ | gA ∩ B ̸= ∅}. A =
n⋃
i=1

Ai e B =
m⋃
j=1

Aj, con

Ai e Bj compatti. È sufficiente mostrare che {g ∈ Γ | gAi∩Bj ̸= ∅} per ogni

i, j. Possiamo quindi assumere che A e B siano insieme più ”piccoli” (cioè

relativi a qualche ricoprimento aperto di X/H). Ora per il Teorema 3, la

mappa X → X/H è un H-fibrato principale, dunque esiste un ricoprimento

aperto di X/H tale che su ogni aperto del ricoprimento, il fibrato X → X/H

è banale. Assumiamo A e B relativi a tale ricoprimento.

Applicando una sezione locale ad A e B, possiamo ottenere A′ e B′ compatti

inX con immagini A e B inX/H. Dunque {(g, h) ∈ Γ×H | gA′h−1∩B′ ̸= ∅}
è compatto, e quindi l’immagine di questo insieme tramite la proiezione ca-

nonica Γ×H → Γ è anch’essa compatta, ma questa immagine è chiaramente

{g ∈ Γ | gA ∩B ̸= ∅}.

Teorema 4. Sia (Γ, G,H) una geometria di Klein locale.

Allora la mappa G/Γ → (G/Γ)/H è un fibrato H-principale.

Dimostrazione. Dal momento che Γ e H sono sottogruppi chiusi di G, per la

Proposizione 18, le loro azioni per moltiplicazione rispettivamente a sinistra e

destra sono proprie. Inoltre per lo stesso motivo , l’azione Γ×(G/H) → G/H,
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data dalle definizione di geometria di Klein locale, è libera e propria. Ora per

il Lemma 4, si ha che anche l’azione (G/Γ) × H → G/Γ è libera e propria.

Il risultato dunque segue dal Teorema 3.

Osservazione 30. Notiamo che se (Γ, G,H) è una geometria di Klein locale,

allora la forma di Maurer-Cartan ωG : TG → g, siccome è invariante a

sinistra, induce una forma ωG/Γ : T (G/Γ) → g

4.5 Fibrato Tangente di una Geometria di

Klein

Per ogni geometria di Klein (G,H), come abbiamo visto in 3.3 abbiamo

una corrispondente coppia di algebre di Lie (g, h). Se (G,H) è fedele (cioè il

nucleo è banale), allora h è irriducibile, cioè non contiene ideali non banali

di g.

Definizione 62. Una geometria di Klein infinitesimale (o coppia di

Klein) è una coppia di algebre di Lie (g, h) dove h è una sottoalgebra di g.

Il nucleo k di (g, h) è il più grande ideale di g contenuto in h.

Se k = {0}, diciamo che (g, h) è fedele.

Osservazione 31. A priori, g/h non è un’algebra di Lie, perché h non è in

generale un ideale.

Consideriamo un H-fibrato principale π : G → G/H e una carta (U,φ)

del fibrato. Abbiamo dunque il diffeomorfismo φ : U × H → π−1(U) ⊆ G.

Questo induce sui fibrati tangenti un diagramma commutativo

T (π−1(U)) T (U ×H) TU × TH

TU

φ∗

π∗ πU∗

∼=

p1

dove T (U ×H) ∼= TU × TH tramite il diffeomorfismo πU ∗ × πH∗.
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Dal diagramma precedente, considerando una singola fibra dei fibrati tan-

genti, si ha che TgG ∼= Tg(gH) ⊕ Tπ(g)U , inoltre dato che U è un aperto di

G/H, si ha Tπ(g)U = Tπ(g)(G/H). Dunque TgG/Tg(gH) ∼= Tπ(g)(G/H). In-

fine tramite la forma di Maurer-Cartan, Tg(gH) ∼= h e TgG ∼= g. Dunque

esiste un’unica φg tale che il seguente diagramma commuti

Tg(gH) h

Tg(G) g

Tπ(g)(G/H) g/h

ωH

i∗

ωG

π∗

φg

dove con abuso di notazione chiamiamo ωH la mappa ottenuta dalla com-

posizione Tg(gH)
L(gh)−1∗−−−−−→ Th(hH) = Th(H)

ωH−−→ h con gh ∈ gH.

Dato che πRh(g) = π(gh) = π(g), e che per 17, R∗
hωH = ad(h−1)ωH , ab-

biamo che φgh = ad(h−1)φg, infatti dati v ∈ Tπ(g)G/H e X ∈ TgG tale che

πg∗(X) = v si ha

φg(v) = [ωH(X)] ∈ g/h e φgh(v) = [ωH(Rh∗X)] ∈ g/h

φgh(v) = [ωH(Rh∗X)] = [ad(h−1)ωH(X)] = ad(h−1)[ωH(X)] = ad(h−1)φg

Dunque l’identificazione tra Tπ(g)(G/H) e g/h è univocamente determinata

a meno dell’azione aggiunta di H su g/h.

Definizione 63. Chiamiamo G-spazio sinistro (destro) uno spazio topologi-

co X dotato di un’azione sinistra (destra) di un gruppo topologico G su di

esso (i gruppi di Lie sono in particolare gruppi topologici).

Dato X G-spazio sinistro, Y G-spazio destro, si definisce il prodotto bi-

lanciato tra X e Y come X ×G Y = (X × Y )/G con azione destra di G su

X × Y data da (x, y) · g = (g−1x, yg) dove si è trasformata l’azione sinistra

di G su X in un’azione destra, ponendo per ogni x ∈ X, xg = g−1x.

Teorema 5. T (G/H) ∼= G×H g/h come fibrati vettoriali.
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