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Introduzione

Nel corso del diciannovesimo secolo un nuovo tipo di geometrie e iniziato
a emergere: le geometrie non-euclidee. Esse sono molto simili alla geometria
euclidea in quanto soddisfano tutti gli assiomi di Euclide, eccetto il quin-
to, ovvero il postulato delle rette parallele. Dunque se ci troviamo in una
geometria non-euclidea, due rette parallele distinte possono "toccarsi”. Un
esempio ¢ dato dalla geometria proiettiva, nella quale due rette parallele si
toccano sempre in un punto detto all’infinito. Il nostro occhio ad esempio
segue proprio questo modello, infatti se ci troviamo in mezzo a delle rotaie,
guardando in lontanza i binari, che sono paralleli, essi convergeranno in un
punto.
La geometria affine, proiettiva e iperbolica ne sono solo alcuni esempi. Cia-
scuna di esse puo essere considerata come una teoria a sé, dotata dei propri
teoremi. E stata un’idea di Felix Klein quella di ordinare queste nuove teo-
rie sfruttando la nozione di gruppo principale di una geometria. Klein si e
accorto che ogni geometria puo essere vista come una varieta connessa M
dotata di un gruppo di Lie G di trasformazioni che agisce transitivamente su
di essa, inoltre a seconda del gruppo che agisce, tutte o alcune delle strut-
ture matematiche studiate nell’ambito della specifica geometria rimangono
invariate sotto tali trasformazioni. Nel caso della geometria Euclidea, le pro-
prieta studiate e preservate sono angoli e lunghezze, e il gruppo e quello delle
isometrie; per la geometria proiettiva, le proprieta sono la concorrenza di

rette e la collinearita dei punti, e cosi via.
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di Riemann —— di Cartan

Ogni freccia del diagramma precedente implica una generalizzazione del
concetto di “geometria”. Proprio come la Geometria di Riemann puo essere
considerata, localmente, come lo spazio euclideo, reso pero "irregolare” dal-
I'introduzione della curvatura di Riemann. Allo stesso modo una geometria
di Cartan puo essere considerata, localmente, come una geometria di Klein,
resa "irregolare” dall’introduzione della nozione di curvatura principale, la
quale generalizza in un certo senso quella di Riemann. Una geometria di
Cartan consiste nella studio di una connessione su un fibrato principale, ov-
vero una generalizzazione della forma di Maurer-Cartan di un gruppo di Lie.
Possiamo pensare ad essa come un analogo non-euclideo della geometria di

Riemann, e dunque lo studio delle geometrie di Klein ne e alle fondamenta.
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Capitolo 1

Geometria differenziale

In questo primo capitolo vedremo alcuni concetti che saranno utili per
capire e studiare 'oggetto principale della trattazione, ovvero le geometrie di
Klein

1.1 Varieta Differenziabili

Definizione 1. Sia M uno spazio topologico. Diciamo che M & una varieta
topologica di dimensione n se M e T2, a base numerabile e localmente
euclideo, cioe Vp € M, 3U C M apertot.cpeUed Fp: U — oU) CR"

omeomorfismo.

Osservazione 1. Dato che M e localmente omeomorfa a un aperto di R”,
allora e localmente connessa per archi, e dunque si ha che M e connessa se e

solo se e connessa per archi.

Definizione 2. Una tale coppia (U, ¢) si chiama carta in p e ¢! si chiama
parametrizzazione locale di M.

Se p(p) = 0 diciamo che la carta ¢ centrata in p.

Definizione 3. Sia U C R" aperto e sia f : U — R™.
Diciamo che f ¢ differenziabile in xq se 3 T'(zg) : R" — R™ tale che

lim f(zo+h) — f(xo) = T(zo)h

=0
h—0 || h]

1



1.1 Varieta Differenziabili

Se f e differenziabile per ogni xy € U allora diremo che f e differenziabile

(o liscia).

Definizione 4. Sia M una varieta topologica di dimensione n.
Chiamiamo atlante (liscio) su M una famiglia & = {(U;, ;) } di carte tale
che

1. U U =M
2. V(U,p), (V,9) € o la mappa
O = ot yway)  Y(UNV)CR" = p(UNV) CR"
e liscia (i.e. C™).

Definizione 5. Data una varieta topologica M, due atlanti &/ e &/’ sono
equivalenti se .« U &/’ & ancora un atlante per M.

Una struttura differenziabile (o liscia) su M ¢ una classe di equivalenza
di atlanti.

Chiamiamo atlante massimale I'unione di tutti gli atlanti ad esso equiva-

lenti.

Definizione 6. Una varieta differenziabile (o liscia) ¢ una varieta topo-

logica dotata di una struttura differenziabile.

Esempio 1. R” ¢ una varieta topologica di dimensione n e ha un atlante

liscio dato dalla sola carta {(R",id)}, dunque ¢ una varieta differenziabile.

Esempio 2 (Spazi vettoriali). Sia V' uno spazio vettoriale di dimensione n.
Ciascuna base {vy,...,v,} di V induce un isomorfismo lineare tra basi

¢ R - V, &(x,...,2") = 2'v;, la cui inversa ¢ una carta globale per
V. Dunque V ¢ una varieta differenziabile con atlante {(R",®~!)} e tale

struttura prende il nome di struttura liscia standard.

Esempio 3. Consideriamo la varieta topologica S™ = {x € R" | ||z] = 1}
SiaU = {x = (21, ...,2,) | Tpy1 > —1} C 5™ Allora U e p(U) sono aperti di



1.1 Varieta Differenziabili

S dove p : R"™! — R™*! & una riflessione rispetto all’iperpiano di equazione
{z € R | z,,; = 0}. Ora U U p(U) = M, inoltre U (e anche p(U)) &

omeomorfo a R™ tramite la proiezione stereografica

1
Tn+t1

¥ U — Rn? (10($17-'-7$n+1) =

(x1,...x,), dunque S™ & una varieta

differenziabile.

Definizione 7. Sia M una varieta differenziabile di dimensione n.
Diciamo che f : M — R™ & differenziabile in p se per ogni (U, ) carta
attorno p, si ha che fo ™| ) 1 p(U) CR" — R™ & differenziabile.

Definizione 8. Siano M, N varieta differenziabili di dimensione rispettiva-
mente m e n.

Diciamo che F': M — N e differenziabile in p se per ogni coppia di carte
(U, ) attorno p e (V,4) attorno F(p) rispettivamente di M e N tali che
F(U) C V si ha che & = 2/10F0g0_1|@(U) teU) CR™ = (V) CR™ e
differenziabile.

La mappa ® si chiama rappresentazione in coordinate di f

Definizione 9. Siano M, N varieta differenziabili, F': M — N.

Se F' ¢ liscia, bijettiva e con inversa liscia si dice diffeomorfismo.

Denotiamo con C*°(M, N) I'insieme di tutte le mappe differenziabili da
M a N e con C*(M) l'insieme delle mappe differenziabili da M in R.



1.2 Vettori e Spazio Tangente

1.2 Vettori e Spazio Tangente

Definizione 10. Sia M una varieta differenziabile e sia p € M.
Un vettore tangente in p (o derivazione in p) ¢ una mappav : C°(M) —
R tale che:

(i) (Linearita) v(af + Bg) = av(f) + Bv(g) ¥V f,g € C°(M),¥Y o, B € R

(ii) (Leibniz) v(fg) = v(f)g(p) + f(p)v(g) ¥ f,g € C=(M)

Denotiamo inoltre T,M = {v | v ¢ un vettore tangente in p}, esso prende

il nome di spazio tangente in p.

Definizione 11. Sia M una varieta differenziabile e (U, ¢) una sua carta.

Denotando le funzioni delle coordinate di ¢ come p(p) = (z!(p), ..., z"(p)),

definiamo i vettori delle coordinate a?ci b C®(M) - Rperi=1,..,n
come 5 5
J (=g (foy™)
Oz p Oz ©(p)

Osservazione 2. Per alleggerire la notazione, quando sara chiaro a quali

0
Oz’

coordinate si sta facendo riferimento, abbrevieremo , con 04| P

Osservazione 3. Nel corso della trattazione, talvolta, sfrutteremo la nota-

zione di Einstein per sommatorie, omettendo il simbolo > per brevita.
Proposizione 1. R" e T,R" sono isomorfi come spazi vettoriali

Dimostrazione. Consideriamo R, ovvero lo spazio vettoriale R" traslato in
modo tale che l'origine sia in p (banalmente R™ & isomorfo a R7). Esso ha
come base {e1p, ..., €y}, indichiamo i suoi elementi con v, (in particolare si
n
_ i o . N v ez
ha v, v'e;p). Indichiamo inoltre con v, I'operatore derivata direzionale
i=1

in direzione v, ovvero v, = a% = 8?31- (¢ stata utilizzata la notazione di
p

Einstein).

Consideriamo ora la seguente mappa:

o:R" — T,R"

p
Up 7 Up
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Data f = 27, dove 27 & la j-esima coordinata di R”, si ha

8:1:9
8x1

Supponiamo di avere 9, = 0, allora v/ = 0V j = 1,...,n, dove v/ sono le

(7)) = =’

componenti del vettore v,, quindi v = 0. Abbiamo dunque mostrato che
Ker(p) = {0}.
Mostriamo ora che ¢ ¢ suriettiva. Sia f : M — R una funzione differen-

ziabile. Utilizzando lo sviluppo di Taylor in p = (z}, ..., ) otteniamo

+Z@xl (z" — ) —Fz:gZ )(z' — xh)

con g;(x) funzioni lisce tali che g;(x) — 0 per x — p. Sfruttando ora la

regola di Leibniz, fissato un generico X, € T,R", otteniamo

X,(7) = X O 2 () —a) + X, ()0 ) = 5L 0) %, (0" —)

Notiamo che X,(f(p)) = 0 in quanto preso f = 1, per Leibniz si ha

Xp(F ) = Xp(F(0)) = Xo(f(p )) = 2X,(f(p))- Inoltre dato che gi(p) =
(2" —a') = 0si ha X,(3° gi(2) (2" — 2p)) = 0

=1
X,(z"), otteniamo che ogni X, ¢ immagine tramite
n

.2

Definendo ora v° :

¢ di un vettore della forma v =Y v'e;,. O
i=1

Definizione 12. Sia U C R"™.

Chiamiamo campo vettoriale una funzione f : U — R” differenziabile.

Corollario 1. {9;[,} formano una base per T,M

Dimostrazione. Consideriamo X campo vettoriale su un aperto U C R™. X
¢ una mappa che associa a ogni p € U un vettore di R". Dato che R" » T, R"
abbiamo che X(p) = X, Vpe U.

Inoltre dato X campo vettoriale, si ha che X(z) = a’(x)-% dove @’ sono

ox?
funzioni lisce. Concludiamo osservando che

A1) = X)) = a0) 5|

YV f € C(R")



1.3 Differenziale e Sottovarieta

Dato che i "wettori delle coordinate” formano una base per T,M, una
volta fissato un sistema di coordinate lisce, ovvero una carta di M, ogni

vettore tangente v € T, M puo essere scritto nella forma
v =" 0 »

dove le componenti v!, ..., 0"

sono ottenute applicando v alle funzioni delle
coordinate, ovvero v’ = v(z").

Su uno spazio vettoriale di dimensione finita V' con la sua struttura stan-
dard di varieta differenziabile, esiste una naturale identificazione di ogni spa-
zio tangente T,V con V stesso, ottenuta identificando un vettore v € V' con

la derivazione D,|, definita da

D, (f) = 5| fo+ 1)

1.3 Differenziale e Sottovarieta

Definizione 13. Sia F': M — N una mappa liscia, p € M.

Chiamiamo differenziale di F' in p (o pushforward) la mappa lineare

F*pZTpM — TF(p)N
v e F,)(f) =o(foF)

dove v € T,M e f: N — R ¢ una mappa liscia.

Una volta scelte delle coordinate locali (x*) per M e (y?) per N, troviamo
che la rappresentazione in coordinate del differenziale di F': M — N ¢ data

dalla matrice jacobiana della rappresentazione in coordinate di F'.

Proposizione 2. Sia F': M — N un diffeomorfismo tra varieta differenzia-
bilt di dimensione rispettivamente m e n.

Allora Fp, : Ty,M — TppyN € un isomorfismo di spazi vettoriali.

Dimostrazione. Sia X, € T,M tale che F,,(X,) = 0. Allora 0 = F,,(X,) =
X,(f o F) per ogni f € C*(M). Sfruttando la base {0i|p,...,0nl,} di



1.3 Differenziale e Sottovarieta

T,M,siha 0= X,(foF)=a0|,(foF)+ 4 andnl,(foF) con a; €
R. Abbiamo cosi ottenuto una combinazione lineare di elementi della base,
dunque necessariamente a; = 0 per ogni ¢ = 1,...,m. Quindi X, ¢ la
derivazione nulla. Abbiamo cosi mostrato che F,, ¢ iniettiva, e in particolare

m < n. Ripetendo gli stessi ragionamenti per F'~1, . si ha n < m. ]

*D)

Definizione 14. Siano M, N varieta differenziabili, F' : M — N differenzia-
bile.

Diciamo che F' ¢ un’immersione se il differenziale F,, : T,M —

Tr@)N e iniettivo per ogni p € M.

e Se dim(M) > dim(N) diciamo che F' & una sommersione se il diffe-

renziale Fy ), : T,M — Tp N ¢ suriettivo per ogni p € M.

e Diciamo che F' ¢ un diffeomorfismo locale se ¢ sia un’immersione,

sia una sommersione

e Diciamo che F' ¢ un embedding liscio se ¢ un’immersione inietti-
va che ¢ anche un embedding topologico (ovvero un omeomorfismo

sull'immagine, dotato della topologia di sottospazio).

Definizione 15. Sia M una varieta differenziabile, S C M.
Diciamo che S ¢ una sottovarieta differenziabile se S & una varieta

differenziabile e l'inclusione ¢ : S < M ¢ un embedding.
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1.4 Forme Differenziali

Definizione 16. Sia V spazio vettoriale di dimensione finita, k € N.

Diciamo che a : V x --- x V — R & una forma k-lineare (o multilineare)
—_———

k volte
suV in R se a(vy,...,v,) € lineare in ogni componente, ovvero se vale
/ /
Q(V1, oy Vi1, AU U, Uity -y Un) = A (U1, o )V, o gy Uy),
. : . : : ,
per ogni componente ¢, per ogni n-pla di vettori vy,...,v,, v;,v; € V e per
ogni A\, u € R.

Definizione 17. Sia « una forma k-lineare.
Diciamo che « ¢ alternante se dati vy, ..., v, linearmente dipendenti, allora
Oé("Ul, ce ,Uk) =0.

Indichiamo con A*(V) lo spazio vettoriale delle forme k-lineari alternanti.

Osservazione 4. Dato che char(R) # 2, una forma multilineare & alternante
se e solo se e antisimmetrica, cioe se lo scambio di due vettori ha come effetto

un cambiamento di segno
a(vr, .., U0, U) = —a(Vr, e Uy, Uy, )

Osservazione 5. A'(V) = V* dove V* denota il duale di V', ovvero lo spazio
dei funzionali lineari o : V' — R.
Poniamo A°(V) := R.

Definizione 18. Sia V uno spazio vettoriale di dimensione finita, a &
ANV), B € A3 (V).
Chiamiamo prodotto wedge la funzione
N AR(V) x A3(V) —  Ak+s(V)
(,8) = aAp

definita dalla forma (k + s)-lineare

1
(@AB) (V1 - Vkes) = 1y > sgn(0)Va1)s - - V(i) BUa(rs1)s - - - Va(hts))
e JES’n



1.4 Forme Differenziali

Esempio 4. a, 3 € AY(V) = V*, allora (a A B)(u,v) = a(u)3(v) — a(v)s(u).

Definizione 19. Siano V, W spazi vettoriali di dimensione finita, f : W — V
un’applicazione lineare, a € A¥(V).

Chiamiamo pullback di « la k-forma alternante su W definita da

(ffa)(wr, .. wr) = a(fwr), ..., flwr))
Proposizione 3. Siano a € A¥(V), 3 € A5(V). Valgono le sequenti
(i) (anticommutativita) o A B = (=18 A«
(11) (bilinearita) (o + Ay) A B = (A B) + Ay A B).
(iii) (associativitd) (a AB) Ay =a A (BA7)
() f*(aAB) = franfp

Prendiamo ora in considerazione il caso in cui V' = T,M dove M ¢ una

varietd differenziabile.

Definizione 20. Sia M una varieta differenziabile.

wiM - | ANT,M)

peEM
p — w(p) € A¥(T,M)
w si chiama k-forma su M.

Definiamo il prodotto di due forme su M puntualmente,

ovvero (w An)(p) = w(p) An(p).
Data F : N — M una mappa liscia tra varieta differenziabili, w una k-

forma su M, definiamo il pullback di w puntualmente, ovvero (F*w)(p) =
(Flp) @ (p)-

Osservazione 6. I, ¢ il differenziale di I in p ed ¢ lineare.

Proposizione 4. {(dz}* N--- Ndzh*)}y <<y, ¢ una base di A*(T,M).
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Osservazione 7. Se (0y,...,0,) ¢ la base di T,M, allora (d:c}o, o day) e

una base dello spazio duale Ty M = A'(T,M) ed & definita come da? (0)) = o]

dove 5% e la delta di Kronecker.

Dunque per ogni p € M possiamo scegliere una carta e descrivere local-
mente la k-forma, sfruttando la base locale di A*(T,M).

Piu esplicitamente, si ha w(p) = <Z< Wity o (D) - (dBE A -+ A ) dove
pu1 <+ <pg
Wy, - U — Rsono i coefficienti della combinazione lineare e si chiamano

funzioni componenti di w rispetto a U.

Definizione 21. Sia M una varieta differenziabile, p € M, w una k-forma
su M. Diciamo che w ¢ differenziabile se tutte le funzioni componenti sono
differenziabili in p.

Se w e differenziabile per ogni p € M allora si chiama forma differenziale
su M.

Chiamiamo Q*(M) lo spazio delle forme k-differenziali su M.

Esempio 5. M = R? allora T,M ~ R? e dunque possiamo identificare
0j = ej.
dxi () = 67 dunque si ha

1 0
0 = (O) , da) =(1,0), 0y = (1) , drh =(1,0)

Calcoliamo ora il prodotto wedge di dxylJ con dxf,

(da) A da)( (“”) , (“21>) =3 sgn(o)da)(as))da(ape)

12 22
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1.5 Gruppi di Lie

Definizione 22. Chiamiamo gruppo di Lie un gruppo algebrico G che sia

anche una varieta differenziabile e tale che le operazioni

m:GxG — G .G — G

(x,y) — z-y x — !

siano entrambe differenziabili.

Definizione 23. Sia un gruppo di Lie G. Sia H un sottogruppo di G.
Diciamo che H & un sottogruppo chiuso (aperto) di G se € chiuso (aperto)
rispetto alla topologia indotta da G.

Diciamo che H & un sottogruppo di Lie di GG se ¢ un gruppo di Lie ed ¢

una sottovarieta di G.

Proposizione 5. Sia G un gruppo di Lie. Se H é un sottogruppo chiuso di G,
allora esiste un’unica struttura differenziabile tale che H sia un sottogruppo
di Lie di G.

Esempio 6. Abbiamo gia visto che R™ & una varieta differenziabile con

atlante banale ed ¢ un gruppo con la consueta somma di vettori. Dunque ¢

un gruppo di Lie.

Esempio 7. S' = {z € C | |z| = 1} ¢ un gruppo di Lie (abeliano) con il
prodotto di C.

Esempio 8. Sia GL,(R) = {A € M,(R) | det(A) # 0} il gruppo lineare
generale reale. La funzione

det: M,(R) — R
A — det(A)

¢ continua, dunque det~*(0) & chiuso in M, (R). Abbiamo quindi che
GL,(R) = M,(R) \ det~'(0) & aperto in M,(R) = R" che & una variet
differenziabile di dimensione n?, pertanto GL,(R) ne eredita la struttura di

varieta differenziabile.
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Esempio 9. Il toro T? := S! x S* & un gruppo di Lie abeliano con prodotto il

prodotto di C su ciascuna componente, ovvero (g, go)-(h1, ha) = (g1h1, g2h2).

Definizione 24. Un omomorfismo di gruppi di Lie ¢ : H — G con H e
G gruppi di Lie € un omomorfismo di gruppi che ¢ anche differenziabile.

Un isomorfismo di gruppi di Lie ¢ un omomorfismo di gruppi di Lie
biettivo.

I1 gruppo degli automorfismi Aut(G) ¢ il gruppo formato dagli isomorfismi

di gruppi di Lie.

Definizione 25. Sia GG un gruppo di Lie, M una varieta differenziabile e
0:G x M — M un’azione di G su M.
Diciamo che ¢ ¢ un’azione di gruppo di Lie (sinistra) su M se o ¢

differenziabile.

Osservazione 8. Analogamente definiamo un’azione destra di G su M,
0: M x G — M. Le definizioni date di seguito si estendono dunque al caso

di azioni destre, con le quali lavoreremo successivamente.

Definizione 26. Sia M una varieta differenziabile, G un gruppo di Lie e
G x M — M un’azione liscia.

L’azione e libera se
gr =z per qualche r € M = g =ce.
L’azione e propria se
V A, B C M compatti si ha che {g € G | gAN B # 0} & compatto in G.
L’azione e fedele se
Vge G, g#e, dx e M tale che gr # x
L’azione ¢ transitiva se
Vz,y€ M, 3g € G tale che gr =y
L’azione ¢ semplicemente transitiva se

Va,ye M, 3 g € G tale che gv =y
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Osservazione 9. Nel caso di spazi metrici, uno spazio topologico X ¢ com-
patto se e solo se € compatto per successioni, ovvero se per ogni successione
(Tp)nen In X esiste una sottosuccessione (xy, )nen convergente in X.

D’ora in poi sfrutteremo questo fatto in quanto un gruppo di Lie, essendo

una varieta finito dimensionale, e in particolare metrizzabile.



Capitolo 2

Fibrati

Definizione 27. Siano F' una varieta differenziabile e 7 : £ — B una mappa
liscia tra varieta differenziabili. Chiamiamo la quadrupla § = (E, B, F') un
fibrato differenziabile, se Vp € B, 3U C B aperto, 3 : 71 (U) - U x F

diffeomorfismo tale che il seguente diagramma commuti:

N U) = UxF
U
La coppia (U, ¢) si chiama trivializzazione (o carta) , B si chiama spazio

base, F si chiama spazio totale e F' si chiama fibra.

Esempio 10. Il nastro di Mobius ¢ un fibrato con spazio base S! e fibra
0, 1].

14
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2.1 G-Fibrati

Definizione 28. Sia ¢ = (E, B, 7, F') un fibrato liscio e sia G un gruppo di
Lie che agisce su F' per diffeomorfismi.

Chiamiamo G-atlante per ¢ una famiglia di carte & = {(U;, ¢;)} tale che:
1. U U =B
2. V(U,),(V,9) € & la mappa
P=poypy ' (UNV)xF—=({UNV)xF

¢ della forma ®(u, f) = (u,h(u)f) dove h : UNV — G ¢ una mappa
liscia. ® si chiama cambio di coordinate e h funzione di transi-

zione.

Definizione 29. Una G-Struttura di atlanti sul fibrato liscio ¢ ¢ una
classe di equivalenza di G-Atlanti su & (rispetto all’'unione). Un G-Fibrato

e un fibrato liscio ¢ dotato di una G-Struttura di atlanti.

Osservazione 10. Se supponiamo che G agisca fedelmente su F' non perdia-
mo di generalita, infatti se 'omomorfismo ¢ : G — Dif f(F) ha Ker(p) = H
possiamo sempre considerare il G-Fibrato come fosse un G//H-Fibrato. In

tal caso parleremo di G-Fibrato fedele.

Esempio 11 (Nastro di Mébius). II nastro di Mobius N ¢ un G-fibrato con
G=17)2.

Costruiamo un Z/2-atlante per il nastro di Mobius N = [0,1]2/ ~ dove
(@1,51) ~ (22,92) & ({w1, 22} = {0,1} ey1 + y2 = 1) oppure (21,41) =
(2, Y2)-

Definiamo A = {(U,¢), (V,¢)} dove U = {z € S* | Arg(z) € [-2,3]} e
V ={z€ S| Arg(z) € [+, —1]}, e gli omeomorfismi sono dati da

p: 71 (U) — Ux|0,1] v Y (V) — Vx[0,1]

e27ria:’ , ser <
(t,y) {( v) <

' x,y — e27rir’y
(GQWW, _y)7 se x > ( ) ( )

colut oolw
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Osservando la scrittura esplicita delle carte si puo notare che la funzione
di transizione ¢ della forma ®(z,t) = (z, h(2)t) dove
1 se Arg(z) € [E, 3T
hUNV =72, h(z) = 9(z) € 5.7
—1 se Arg(z) € [, 7]
Inoltre il nastro di Mobius e un G-fibrato "piatto”, ovvero un fibrato per

cul le funzioni di transizione h : U NV — G sono localmente costanti



2.2 Fibrati Principali

17

2.2 Fibrati Principali

Un particolare tipo di G-fibrati e quello in cui il gruppo G ”coincide” con
la fibra F', nel senso che per qualche (e dunque per ogni) fy € F, la mappa
G — F, g — gfy € un diffeomorfismo. Ne segue dunque che il G-fibrato e
fedele e che quindi le mappe di transizione h : U NV — G sono determinate
dal fibrato.

Definizione 30. Un G-fibrato principale ¢ un fibrato liscio ¢ = (P, B, 7, F)
con un’azione destra P x G — P che preserva la fibra e agisce in modo sem-

plicemente transitivo su ogni fibra, cioe Vz,y € F, 3! g € G tale che
xg =1y.

Osservazione 11. Un’azione e semplicemente transitiva se e solo se ¢ libera

e fedele.

Osservazione 12. Un G-fibrato principale ¢ in particolare un G-fibrato.

Non & vero il viceversa.

Esempio 12 (Fibrazione di Hopf). Vediamo ora un interessante esempio di
G-Fibrato principale: la fibrazione di Hopf S* — S3 — S2.

Consideriamo il gruppo di Lie S* e la sua azione (liscia) su

S3 = {(wo, w1) € C? | |wo|? + |w1]? = 1} data da A(wp,w1) = (Awp, Aw;) con
e St

Consideriamo inoltre S% = CP', dove CP' = Cy U,Cy, ¢ : C§ — C3, (z0) =
000 @1 (20) = 25+ e dove g e @) sono le carte affini di CP'. In altre parole,
stiamo vedendo CP* come unione delle due proiezioni stereografiche centrate
nel polo nord e nel polo sud, ”incollate” nell'intersezione dei loro domini (cioe

C*) tramite ¢.

C, 0 2 = 29 = ¢(20)

SQ 2
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Consideriamo la mappa 7 : S® — S? ¢ data da

wy/wy  se wy # 0
W(wo,wl) =

wg/w1 Se wh 7é 0
Notiamo che se (wg,w;) # (0,0) allora le due definizioni coincidono, infatti
da Cy U, Cy abbiamo 3¢ = ¢(3¢) = ¥1. Le trivializzazioni locali sono
ﬂfl(CO) ~ (Cyx St 71'71(@1) = (C;x St
(wo, w1) ¥ (w1 /wo, wo/|wol) (wo, wr) > (wo/wy, w:/[wi)

mentre il cambio di coordinate tra queste due carte ¢

P:Cix St — CrxS!
(2,A) — (1/z,22/[2])
Osserviamo che ® ¢ della forma (z,\) — (1/z,h(2)\), ma dato che siamo

in Cj, abbiamo che 1/z = ¢(1/2) = z e dunque la fibrazione di Hopf ¢ un
Sl-fibrato su S2. Inoltre ¢ un fibrato principale perché la fibra F' = S' = G.
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2.3 Fibrati Vettoriali e Sezioni

Definizione 31. Un fibrato vettoriale ¢ un caso particolare di G-Fibrato
in cui la fibra V' & uno spazio vettoriale di dimensione n e il gruppo G che

agisce sulla fibra & il gruppo generale lineare GL,, (V).

Osservazione 13. Dal momento che la fibra e uno spazio vettoriale di di-
mensione finita n, esiste un isomorfismo canonico (cambiamento di base) tra

V e R™. A seconda del caso ci riferiremo dunque alla fibra come R".

Definizione 32. Due fibrati & e & tali che By = By si dicono isomorfi se
d¢: E1 — E, diffeomorfismo tale che m = m5 0 ¢.

@ si chiama isomorfismo di fibrati o automorfismo di fibrati se £ = &,.

Definizione 33. Un isomorfismo di fibrati vettoriali ¢ un isomorfismo

di fibrati che e lineare sulle fibre

Proposizione 6. Sia M una varieta differenziabile e T M il suo fibrato tan-
gente. Allora TM con la mappa di proiezione m : TM — M é un fibrato

vettoriale.

Definizione 34. Sia ¢ = (E, B, m, F) un fibrato.
Una sezione (globale) di F ¢ una mappa continua (liscia se il fibrato ¢
liscio) o : B — E tale che 1o = idp.

Denotiamo con I'(E) lo spazio di tutte le sezioni globali di E.

Definizione 35. Sia { = (F, B, m, F) un fibrato.
Una sezione locale di £ su U C B ¢ una mappa continua (liscia) o : U — E

tale che mo = idp.

Osservazione 14. Se (U, ) ¢ una trivializzazione locale di E, allora una
sezione locale su U esiste sempre ed ¢ in corrispondenza biunivoca con le
mappe continue (o lisce) da U a F. In altre parole, definire una sezione su

U equivale a definire una funzione continua (o liscia) f : U — F, infatti

o:U — 7 (U)x2XUxF
r o= (x f(2))
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Osservazione 15. Una sezione ¢ su un fibrato 7 : E — B permette di

identificare lo spazio base B con o(B) sottospazio di E.

2.4 Fibrato Tangente

Definizione 36. Sia M una varieta differenziabile.

Chiamiamo TM = || T,M fibrato tangente di M
peEM

Scriveremo un elemento di questa unione disgiunta come una coppia or-
dinata (p,v) conp € M e v € T,M.
Il fibrato tangente ¢ dotato di una proiezione naturale 7 : T'M — M che man-
da ogni vettore in 7, M nel punto in cui il vettore ¢ tangente, cioe 7(p, v) = p.
Il fibrato tangente puo essere pensato semplicemente come un’unione disgiun-
ta di spazi vettoriali, ma in realta puo essere dotato di interessanti strutture

geometriche.

Proposizione 7. Data M varieta differenziabile di dimensione n, il fibrato
tangente T'M ha una naturale topologia e una struttura liscia che rende T M
una varieta differenziabile di dimensione 2n. Rispetto a questa struttura, la

proiezione w : T'M — M ¢ liscia.

Dimostrazione. Iniziamo definendo le mappe che diventeranno le nostre carte
lisce. Data una carta liscia (U, ) per M, notiamo che 7= 1(U) C TM ¢
I'insieme di tutti i vettori tangenti a M in tuttii punti di U. Siano (z?, ..., 2")

le funzioni di coordinate di ¢, e definiamo una mappa
g:mH(U) = R™

ponendo

14 oxt

La sua immagine ¢ ¢(U) x R™, che ¢ un sottoinsieme aperto di R?". Inoltre

) = (:El(p), .., x"(p), v, ...,v”).

© € una biezione sulla sua immagine, poiché la sua inversa puo essere scritta
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esplicitamente come

. 0

©» (.751, oz vl ...,v") =’

07| prw)

Ora supponiamo di avere due carte lisce (U, ) e (V,1) per M, e siano

(7= HU), @), (== 1(V), %) le corrispondenti carte su TM. Gli insiemi

P Y U) N7 HV)) = p(UNV) x R

b U)NaY(V)) = (U NV) x R

sono aperti in R?", e la mappa di transizione

Do i p(UNV) xR 5 p(UNV) x R

puo essere scritta esplicitamente come

Yo ! (2, . 2™ 0t ") = (.%1(33), e (), %(m)vj, s %(z)zﬂ) :
ed essa ¢ chiaramente liscia.

Preso un ricoprimento numerabile {U;} di M tramite domini di coordi-
nate lisce, otteniamo un ricoprimento numerabile di T'M tramite domini di
coordinate {7~ *(U;)} tale che Vi, ; & una biezione tra U; e la sua immagine
©i(U;) Per verificare la condizione di Hausdorff (7'2), basta notare che due
punti nella stessa fibra di 7, essi appartengono alla stessa carta, mentre se
(p,v) e (q,w) giacciono in fibre differenti, esistono domini di coordinate di-
sgiunti U,V per M taliche p € U e ¢ € V, e allora 77 1(U) e 71 (V) sono
intorni di coordinate disgiunti che contengono rispettivamente (p,v) e (g, w).

Osserviamo infine che 7 ¢ liscia, in quanto rispetto alle carte (U, ) per

M e (=Y (U), ) per T M, la sua rappresentazione in coordinate &

m(x,v) = x.
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Definizione 37. Le coordinate (z¢,v) si chiamano coordinate naturali
sulTM.

Definizione 38. Siano M, N varieta differenziabili, F' : M — N una map-
pa liscia. Chiamiamo differenziale globale la mappa F, : TM — TN
che manda un vettore v € T,M in F,,(v) € Tpyp) N tale che il seguente

diagramma commuti
T™M 2 TN
[
M—LE- N
dove 7y, denota la proiezione canonica TM — M che manda un vettore
vel,Minpe M.

Osservazione 16. Talvolta chiameremo il differenziale globale di F,

la 7deriwvata di F'”

Proposizione 8. Siano M, N wvarieta differenziabili e F : M — N una
mappa liscia. Allora il differenziale globale F, : TM — TN é una mappa

liscia.

Dimostrazione. Dall’espressione locale per F,, in coordinate, segue che F,
p )

ha la seguente rappresentazione in coordinate naturali per T'M e T'N:
ort . oF™ .
F* l... " 1... ™) = Fl Fn . Z...—. ' .
(e 0t ) = (P ), G o e
Questa e liscia poiché F' lo e.

Proposizione 9. Sia M una varieta differenziabile.
Allora m: TM — M ¢ un fibrato vettoriale.



Capitolo 3

Campi Vettoriali e Algebre di
Lie

3.1 Campi Vettoriali

Intuitivamente, un campo vettoriale ¢ una funzione che associa a ogni
punto p di una varieta differenziabile un vettore di 7,M (una derivazione)
della varieta stessa in modo liscio. Ad esempio un campo vettoriale sul
piano cartesiano puo essere pensato come una collezione di frecce ciascuna

in biezione con un punto del piano.

Definizione 39. Data una varieta differenziabile M, chiamiamo campo
vettoriale liscio su M una mappa X : M — TM tale che m o X = idy,
dove 7 e la proiezione da T'M a M.

Denotiamo con X(M) linsieme dei campi vettoriali differenziabili su M

(formano uno spazio vettoriale).

Osservazione 17. D’ora in avanti, supporremo che ogni campo vettoriale sia

differenziabile, dunque per brevita spesso li chiameremo solo campi vettoriali.

Osservazione 18. Un campo vettoriale ¢ una sezione del fibrato tangente
di M.

23
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Supponiamo che M sia una varieta differenziabile di dimensione n. Se
X : M — TM & un campo vettoriale (anche solo continuo) e (U, (z")) ¢ una
qualsiasi carta di coordinate liscia per M, possiamo scrivere il valore di X in

un punto p € U in termini dei vettori di base delle coordinate:

0

i
ﬁatp

Xp :Xi(p)

Questo definisce n funzioni X* : U — R, chiamate le funzioni componenti

di X nella carta data, anch’esse differenziabili.

Osservazione 19. Siano f € C*°(M), X € X(M), definiamo fX : M —
TM come (fX), = f(p)X,. Inoltre fX + gY ¢ ancora un campo vettoriale.

Un’importante proprieta dei campi vettoriali ¢ che essi definiscono ope-
ratori sullo spazio delle funzioni a valori reali differenziabili.
Infatti data f : U C M — R, otteniamo una nuova funzione Xf : U — R
definita da (X f), = X, f

Definizione 40. Sia M una varieta differenziabile e D : C*°(M) — C*>°(M).

D si chiama derivazione se ¢ R-lineare e soddisfa
D(fg) = fDg+gDf, V¥ f.g € C*(M)

Proposizione 10. Sia M una varieta differenziabile.
D :C®(M)— C>®(M) é una derivazione se e solo se Df = X f per qualche
X € X(M), per ogni f € C*(M)

Dimostrazione. (<) Sia X un campo vettoriale, f € C*°(M). Per ogni

p € M scegliamo una carta (U, (z*)). Allora per ogni z € U scriviamo

of

=) =X g

X5) = (X0 5

Dato che le funzioni componenti X* sono differenziabili su U, segue che X f
e differenziabile su U, e dato che questo vale per ogni p € M, X f e dif-

ferenziabile su M. La mappa f — X f e la derivazione cercata, infatti e
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chiaramente lineare su R e dalla regola di Leibniz per i vettori tangenti si ha
X(fg) = fXg+gXf. Dunque ogni campo vettoriale induce una derivazione
(=) Sia D : C°(M) — C*(M) una derivazione. Definiamo X, f = (Df)(p).
La linearita di D garantisce che l’espressione dipenda linearmente da f, e
il fatto che D sia una derivazione assicura che sia soddisfatta la regola di
Leibniz per i vettori tangenti. Dunque X, : C*°(M) — R & un vettore tan-
gente. Questo definisce un campo vettoriale (a priori non differenziabile),
ma grazie all'ipotesi X f = D f differenziabile per ogni f € C*°(M) possiamo

concludere. W

Sfruttando questo risultato, talvolta identificheremo X(M) con le deri-
vazioni C*°(M), utilizzando la stessa notazione sia per i campi vettoriali
(pensati come mappe lisce da M a T'M), sia per le derivazioni (pensate come

mappe lineari da C*°(M) in se stesso).

Definizione 41. Sia F' : M — N una mappa differenziabile tra varieta
differenziabili. Siano X € X(M), Y € X(N).

Diciamo che X e Y sono F'-relativi se
F.,(Xp) =Yg, per ognip € M

Lemma 1. Sia F' : M — N una mappa differenziabile tra varieta differen-
ziabili, X € X(M), Y € X(N). Allora

X eY sono F-relativi <= X(foF)=(Yf)oF, VY f € C®N)
Dimostrazione. Per ogni p e M e f € C*(V), si hanno
X(foF)(p) = Xy(fo F) = Fu(X,)f, (VF)oF(p) = (V) (F () = Yegn/
[

Proposizione 11. Siano M, N wvarieta differenziabili, F' : M — N diffeo-
morfismo. Allora per ogni X € X(M), esiste un unico campo vettoriale Y su
N in F-relativo ad X.
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Dimostrazione. Dato che F' ¢ un diffeomorfismo e dal lemma X (f o F) =
(Yf)oF < F,,(X;,) =Yg, definiamo Y come

Yo = Fip1(Xr1(g)

Notiamo che Y : N — TN e differenziabile in quanto e dato dalla composi-

zione delle seguenti mappe
NS S v BTN
]

Definizione 42. Sia F' : M — N diffeomorfismo tra M e N varieta diffe-

renziabili. Definiamo il pushforward di X tramite F' come
(FiX)q = Fup-1(9(Xp-1(q)

Definizione 43. Siano X, Y campi vettoriali su M varieta differenziabile.
Chiamiamo bracket di Lie di X e Y 'operatore [X, Y] : C®(M) — C*(M),
(X, Y]f=XYf-YX[f.

Lemma 2. Siano X,Y campi vettoriali su M. Allora [X,Y] é ancora un

campo vettoriale su M.

Dimostrazione. Dalla Proposizione[L0] & sufficiente mostrare che [X, Y] & una

derivazione. Siano f,g € C*(M)

(X, Y](fg) = X(Y(fg)) — Y(X(f9))
=X(fYg+gYf)-Y(fXg+9X[)
— fXYg+YgXf+gXYf+Y[fXg
—[YXg—XgYf—gYX[-X[Yyg
= fXYg+gXY[f—fYXg—gVXf
= fIX,Y]g+g[X,Y]f
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Osservazione 20. Nella dimostrazione abbiamo utilizzato il fatto che il

prodotto puntuale tra funzioni lisce in C*°(M) ¢ commutativo.

Proposizione 12. Sia F' : M — N una mappa differenziabile tra varieta
differenziabili, X1, Xo € X(M) e Y1,Ys € X(N) tali che Y; é F-relativo a X;
peri=1,2.

Allora [Y1,Ys] € F-relativo a [ X7, Xs].

Dimostrazione. Per il Lemma [I], dato che X; e Y; sono F-relativi
XiXo(foF)=Xi((Yaf) o F) = (YiYaf) o F

Analogamente

XoXi(foF)=(YoYif)o F
Dunque
[XI,XQ](f @] F) = X1X2(f o F) — XQXl(f (0] F)

= MYaf)o F — (YaYif) o F
= (", Y2]f) o F

Corollario 2. Sia F : M — N diffeomorfismo, X,Y € X(M).
Allora F.[X,Y]| = [F.X, F.Y].

Dimostrazione. Basta applicare la proposizione precedente a Y; = F, X, con
I diffeomorfismo. O
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3.2 Algebre di Lie

Definizione 44. Una algebra di Lie e uno spazio vettoriale reale g di

dimensione finita con un prodotto interno
[]rgxg—g

tale che soddisfi:
1. (Bilinearita) [au + bv, w] = afu, w] + blv,w] Vu,v,w € g, Va,b € R
2. (Antisimmetria) [u,u] =0,Vu € g
3. (Identita di Jacobi) [[u,v],w] + [[v, w],u] + [[w,u],v] =0 Yu,v,w € g

Definizione 45. Una sottoalgebra di Lie di un’algebra di Lie g ¢ uno
spazio vettoriale h C g tale che V 2,y € b, [z,y] € b.
Un ideale di un’algebra di Lie g ¢ una sottoalgebra di Lie h C g tale che

Vregyeh,|z,y eb.

Osservazione 21. Siano a,b due sottospazi vettoriali di un’algebra di Lie

g. Poniamo

[Cl, b] = { E ai[ui,vi],ui ca,v € b,ai € R}
i
Allora possiamo riscrivere le definizioni sopra con una diversa notazione,

ovvero chiedendo che valga [h,h] C b per le sottoalgebre di Lie e [h,g] C b
per gli ideali.

Definizione 46. Un omomorfismo di algebre di Lie ¢ una mappa lineare
¢ : g1 — @2 che preserva il prodotto interno, cioe tale che [p(u), p(v)]g, =
o([u, vlg, ) per ogni u,v € g.

Un isomorfismo di algebre di Lie ¢ un omomorfismo di algebre di Lie

biettivo.
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3.3 Algebra di Lie di un Gruppo di Lie

Ad ogni gruppo di Lie G e associata un’algebra di Lie g che, nel nostro
caso, puo essere pensata come lo spazio dei vettori tangenti all’identita del

gruppo.
Sia G un gruppo di Lie, g € G. Consideriamo le seguenti applicazioni

L,:G — G R, G — G Ad(g): G — G
r — gx r — g r — grg !

L, e R, sono diffemorfismi (ma non omomorfismi di gruppi) e si chiamano
rispettivamente traslazione sinistra e traslazione destra.

Ad(g) invece ¢ un automorfismo di G e si chiama automorfismo interno
indotto da g. Osserviamo inoltre che Ad(g)(z) = L,(R; " (z)) = R; ' (L,(x))

9 g

Osservazione 22. Ricordiamo che se F' : M — N ¢ una mappa differen-
ziabile tra varieta differenziabili, il differenziale (pushforward) di F' in p ¢

un’applicazione lineare F'),_ : T, M — TpN.

Definizione 47. Sia X € X(G).
X si dice invariante a sinstra se L, X; = X, per ogni g,h € G, cio¢ se
L, X =X.

Proposizione 13. Se X eY sono due campi vettoriali inviarianti a sinistra,

allora anche i campi X+Y, AX con X € R e [ X, Y] sono invarianti a sinistra.

Dimostrazione. Dato che il differenziale L, ¢ un’applicazione lineare, si ha
facilmente che X + Y e AX sono invarianti a sinistra. Infine per quanto

visto in si ha che [X,Y] & un campo vettoriale e che L, [X,Y] =
[Lg, X, Ly, Y] = [X,Y]. O

Definizione 48. Sia GG gruppo di Lie. Allora, grazie alla precedente pro-
posizione, denotiamo con g l'insieme dei campi vettoriali su G invarianti a
sinistra, esso ha una struttura di algebra di Lie e si chiama algebra di Lie

del gruppo di Lie G.
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Teorema 1. Sia G un gruppo di Lie di dimensione n.

La sua algebra di Lie g € isomorfa come spazio vettoriale a T.G.
Dimostrazione. Consideriamo la mappa

g — T.(G)
X — X,

Essa ¢ chiaramente lineare. Se X, = 0, allora 0 = L, X, = X,. Inoltre, se

v € g, possiamo definire X, = L, v, in modo tale che
LowXg = LouLg v = Logv = Xgg

Dunque, X e invariante a sinistra con X, = v, e dunque la mappa e suriettiva.
]

In base al risultato precedente, possiamo introdurre su 7,G una struttura
di algebra di Lie definendo per ogni z,y € T.G, [z,y] = [X,Y]. dove XY
sono gli unici campi invarianti a sinistra tali che X, = z, Y, = y. In questo
modo T.G risulta essere isomorfo a g non solo come spazio vettoriale, ma
anche come algebra di Lie.

Di seguito alcuni esempi di gruppi di Lie e della loro algebra di Lie.

Esempio 13. Consideriamo il gruppo di Lie SL,(R) = {A € GL,(R) |
det(A) = 1} e cerchiamo di capire perché la sua algebra di Lie associa-
ta ¢ sl,(R) = {A € M,(R) | tr(A) = 0}. Consideriamo una definizione
equivalente dello spazio tangente in p € G di una varieta differenziabile,

ovvero

T,G={l17:(=e€) > G,7(0) = p}
dove y; ~ 75 & data (U, p) cartain p, si ha %((p o vl(t))‘tzo = %((p o 72(t))|t:0.
Sia

| (o) b0 (10
v:R— SL,(R), W(t)—(c(t) d(t)) tale che ~(0) (0 1)
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Sappiamo che det(y(t)) = a(t)d(t) — b(t)c(t) = 1, a(0) = d(0) = 1 e b(0) =

c(0) = 0. Derivando entrambi i membri della prima espressione otteniamo

0= %((a(t}d(t) —b(t)c(t))) = d'(0) 4+ d'(0) = tr(y/(0))

t=0
Abbiamo quindi che per definizione, 4/(0) € T.G, e per quanto appena fatto
7' (0) € sl,(R). Dunque T.G C sl,(R), e per motivi dimensionali T.G =
sl,(R).

Esempio 14 (Gruppo generale lineare positivo).
GL;(R) = {A € GL,(R) | det(A) > 0}, gly (R) = M, (R)
Esempio 15 (Gruppo ortogonale).

O,(R) ={A € GL,(R) | ATA=1T1}, 0,(R)={A€ M,(R)| AT = —A}

Proposizione 14.

(i) Dato ¢ : G1 — Gy omomorfismo di gruppi di Lie, il pushforward

all’identita v, : g1 — g2 € un omomorfismo di algebre di Lie
(i) Dati o : Gy — Gy e ¢ : Gy — G5 omomorfismi di gruppi di Lie, si ha
(0 P)re = Ve 0 Pse
(i) Sia id : G — G la mappa identita, allora id,, = id,

(iv) Se ¢ & un isomorfismo di gruppi di Lie, allora ¢, € un isomorfismo di

algebre di Lie.

Dimostrazione. (i) Siano uw,v € g;. Per possiamo associa-
re questi vettori in maniera univoca ai campi vettoriali inviarianti a
sinistra X,Y su G; (in modo tale che X, = u, Y, = v). Siano
u = pu(u),v" = p.(v) € go i quali sono associati ai campi vettoriali

invarianti a sinistra X’ e Y’ su GG5. Ora ¢ ¢ un omomorfismo, dunque

o Ly(h)=p(gh) = p(g)p(h) = Ly o ¢
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Derivando questa uguaglianza si ha ¢, 0 Ly, = Ly(g), © @+, in modo tale

che

Pu(Xg) = @u(Lg,u) = Ly, (pu(u)) = Ly(g), (v') = s/cv(g)

Dunque, per il Lemmal[l] X e X’ sono ¢-relativi. Analogamente anche
Y e Y’ sono ¢-relativi. Segue dunque dalla Proposizione (12| che [X, Y]

e [X', Y] sono p-relativi e dunque in particolare @, ([u, v]) = [p.u, p.v].
(ii) Segue dalla regola della catena.
(iii) Segue dalla definizione di derivata.

(iv) Da (ii) e (iii), se ¢ & I'inversa di ¢, allora I'inversa di ¢y, € 1,..

3.4 Parallelizabilita

Definizione 49. Sia M una varieta differenziabile.

Una k-upla ordinata (Xi,...,X;) di campi vettoriali definiti su qualche
aperto A C M si dice linearmente indipendente se per ogni p € A,
(Xilps .-, Xkl|p) € una k-upla linearmente indipendente in T, M.

Diciamo che una n-upla ordinata (F, ..., E,) di campi vettoriali su U C M
e un frame locale per M se e linearmente indipendente e genera il fibrato
tangente T'M.

Se U = M, diremo che (Ey,..., E,) ¢ un frame globale.

Definizione 50. Una varieta differenziabile M si dice parallelizzabile se

ammette un frame globale.

Osservazione 23. Nel nostro caso stiamo assumendo campi vettoriali diffe-

renziabili, dunque il frame globale si dice anche frame globale liscio.

Esempio 16. R", S', S3 S7 e il toro n-dimensionale T" sono esempi di

varieta parallelizzabili.
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Definizione 51. Data una varieta M e (X,...,X,) un frame globale (lo-
cale), diciamo che (X7, ..., X,,) & un frame globale (locale) invariante a

sinistra se X; ¢ invariante a sinistra per ogni i € {1,...,n}.
Proposizione 15. Ogni gruppo di Lie G ¢ parallelizzabile.

Dimostrazione. Sia G un gruppo di Lie e g la sua algebra di Lie. Allora
ogni base di g € un frame globale invariante a sinistra per G, e dunque G ¢

parallelizzabile. O

Il concetto di frame locale e frame globale si estende in maniera naturale

al fibrati vettoriali.

Definizione 52. Sia F — M un fibrato vettoriale, U C M aperto, (o1, ..., 0%)
una k-upla di sezioni di F su U si dice linearmente indipendente se
(61(p), - .., 0k(p)) forma una k-upla linearmente indipendente in E, per ogni
p € U. Diciamo che generano E se per ogni p € U, generano E,.

Un frame locale per E su U ¢ una k-upla ordinata di sezioni locali linear-
mente indipendenti su U che generano E (dunque (o1(p),...,o0k(p)) € una
base per la fibra E, per ogni p € U).

Se U = M, il frame si dice globale.

I frame locali e globali definiti precedentemente sono ora dei frame per il

fibrato tangente, ma i due concetti coincidono.

Proposizione 16. Un fibrato vettoriale liscio ammette trivializzazione glo-

bale se e solo se ammette un frame globale liscio.

Corollario 3. (Parallelismo assoluto) Sia G un gruppo di Lie, allora il

fibrato tangente ammette una trivializzazione locale, cioe TG = G X g.
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3.5 Forma di Maurer-Cartan

Definizione 53. Sia G un gruppo di Lie, g = T.G la sua algebra di Lie.
Chiamiamo forma di Maurer-Cartan invariante a sinistra la 1-forma su

G avaloriin g, wg : TG — g definita da wg(v) = Ly-1 (v) per v € T,G

Il termine invariante a sinistra ¢ dovuto al fatto che wg € invariante sotto
traslazioni a sinistra. Infatti, dal momento che v € T,G == Ly, (v) € T},,G,

si ha
(Ln"we)(v) = we(Lnw(v)) = Lingy—1 (Lns(v)) = Lg—1,(v) = wa(v)

Esempio 17. La forma di Maurer-Cartan di R e dz.

Infatti g = T.G =R, L,(y) =z +y e L., = idg. Ora w,(y) = L..(y) = v,
v € T, R si scrive come v'd,, dunque presa 1'1-forma dz definita da dz(9,) = 1
si ha dz(v) = dz(v'0,) = v'dz(d,) = v! e quindi w, = dx.

Esempio 18. G = S! C C, dunque TG = {(¢¥ ire?®) | r,0 € R} e in
particolare T,G = {(1,r7) | r € R}. Calcoliamo la forma di Maurer-Cartan

w(ew, irew) = Le*ie*(ewvireie) = (1,ir)

Definizione 54. Sia G' un gruppo di Lie con algebra di Lie g.

Chiamiamo rappresentazione aggiunta la mappa

ad: G — Gl(g)
g = ad(g) = Ad(g)«.

Per ogni g € GG, chiamiamo ad(g) € Gl(g) azione aggiunta di g su g.
Proposizione 17.

(1) ad(g) € un isomorfismo di algebre di Lie, e la mappa Ad : G — Gl(g)

e un omomorfismo di gruppi di Lie.
(i1) Riwg = ad(g")wg

Dimostrazione. (i) Segue dalla Proposizione
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(ii) Sia v € Ty(G), si ha dunque che Ry, (v) € TynG.

Rywa = wa(Ry,(v) = Ligny-1, Ry, (v) = Lg-1, L1, Ry, (v)
= Ly Ry Lp-1,(v) = ad(g~ " we(v)

Osservazione 24. Rjwg ¢ il pullback della forma di Maurer-Cartan



Capitolo 4
Geometrie di Klein

La generalizzazione attuata da Klein del concetto di geometria ci permette
di spostare I’enfasi dalla varieta M al gruppo di trasformazioni G.

Fissato un punto x € M, esiste una mappa

G — M
g = gr

Dalla transitivita dell’azione segue che questa mappa e suriettiva. Osservia-
mo che 77(z) = {g € G | gr = x} = H, ¢ un sottogruppo chiuso di G e
prende il nome di stabilizzatore di x.

Inoltre, m(g) = n(h) <= gr=hx < h7lgr =2 < h7'ge H,.

Da cio segue che 7 induce una biezione 7 : G/H, — M, gH, — gzx.

Dunque riassumendo, anziche identificare una geometria con punto base
come una coppia (M, x) dotata del suo gruppo principale, possiamo equi-
valentemente parlare della coppia (G, H), dove H = H, & lo stabilizzatore
dell’azione di G, che e in particolare un sottogruppo chiuso di G.

Cerchiamo ora di dare maggiore rigore e chiarezza ai ragionamenti di cui
sopra.

Definizione 55. Sia GG un gruppo di Lie, X una varieta differenziabile. Se

G agisce su X e x € X, chiamiamo

-) l'insieme Gz = {gz | g € G} C X orbita di .

36
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-) linsieme Stab(z) = {g € G | gv = z} C G stabilizzatore di z.

Definizione 56. Sia X una varieta differenziabile e G un gruppo che agi-
sce per diffeomorfismi su X in modo transitivo, allora X si chiama spazio

omogeneo.

Teorema 2 (Teorema orbita-stabilizzatore per azioni di gruppi di Lie). Sia
G un gruppo di Lie che agisce su X wvarieta differenziabile.
Allora per ogni x € X, Stab(x) € un sottogruppo chiuso e la mappa naturale

G/Stab(x) — X é un’immersione iniettiva la cui immagine é l'orbita Gx.

Corollario 4. Se G agisce in modo transitivo su X, allora X = G/Stab(x)

per ogni x € X, cioe X € uno spazio omogeneo.

Osservazione 25. Dato H sottogruppo chiuso di G, il quoziente G/H ¢ a
priori un quoziente topologico (non algebrico) in quanto H non & necessaria-

mente normale.

4.1 Esempi di Geometrie di Klein

Prima di dare una definizione rigorosa di Geometria di Klein, vediamo-
ne alcune nel concreto. Il procedimento sopra descritto infatti permette di
trovare numerosi esempi di geometrie di Klein. A priori non vale il vicever-
sa, cioe non e vero in generale che ogni geometria di Klein si realizza come
quoziente di un gruppo di Lie per lo stabilizzatore di un punto, rispetto a

un’azione di G su una varieta connessa M.

Esempio 19 (Sfera). Siano M = S" ={z ¢ R" | ||z| =1} e
G=0(Mn+1)={Ae€GL,1(R) | ATA = AAT = I} il gruppo ortogonale di
dimensione n + 1. Consideriamo l'azione di G' su M data da A — A - x con
x = (0,...,0,1) polo nord della sfera n-dimensionale.

L’azione e transitiva, infatti dati x,y € S™, essi hanno in particolare stessa

norma, dunque esiste sempre A € O(n + 1) tale che Az = y.
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Ora lo stabilizzatore del polo nord & dato da

W_l(x):{AGO(n—I—l)|A-x:x}:{<1§ (1)>

Ae O(n)} = O(n)

Dato che O(n + 1) ¢ il gruppo delle isometrie della sfera n-dimensionale, che
O(n) ¢ lo stabilizzatore di = e che I'azione ¢ transitiva, per il Corollario
O(n+1)/0O(n) = S™.

Prendendo ad esempio n = 2, lo stabilizzatore del gruppo nel polo nord
x = (0,0,1) & proprio dato dalle rotazioni della sfera attorno all’asse z che

sono descritte da O(2).

—

7

Figura 4.1: S? che ruota attorno a un asse di rotazione

Osservazione 26. SO(n + 1)/SO(n) ¢ in biezione con la sfera unitaria

orientata, che ha curvatura costante uguale a 1.

Questo e un esempio del fatto che e possibile ottenere una varieta con-
nessa M come quoziente di gruppi di Lie diversi, e a seconda del gruppo G
considerato, vengono preservate determinate strutture sulla varieta in que-
stione. Ecco perché quando daremo la definizione di geometria di Klein,
non ci focalizzeremo sullo spazio della geometria, ovvero la varieta M, bensi
sulla coppia (G, H) che caratterizza la geometria rispetto alle strutture ma-
tematiche preservate dall’azione di G su G/H (in questo caso preserviamo

l'orientazione).
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Esempio 20 (CP'). Riprendiamo 1'Esempio [12]
Il gruppo di Lie SU(2) = {A € My(C) | A”A = AA" = [ det(A) = 1} ¢

diffeomorfo a S?, infatti possiamo vederlo pill esplicitamente come

{< " of) lZ’WGC’V'QHwIQ:l}gSi”
—W Z

Inoltre SU(2) agisce su S? in modo transitivo e lo stabilizzatore di un punto
e S'=U1)={aeC|la|=1}.

Dunque, si ha SU(2)/U(1) = S3/S' = S?, che come abbiamo gia visto ¢ un
Sl-fibrato principale. Ancora una volta lo spazio quoziente & S?, ma con una
struttura differente dagli esempi precedenti, infatti in questo caso abbiamo

la sfera di Riemann.

Esempio 21 (Piano Euclideo). M = R? e il gruppo di simmetrie di Lie &

e (0 ) o (25 28) ()

che agisce su M come

1 0 T
(v R(Q)) -z = R(0)r + v, dove x = (@)

Un semplice calcolo mostra che lo stabilizzatore dell’origine (0,0) € R? &
dato dal sottogruppo delle rotazioni

H = SOMR) = {( R?m) m}

Dunque abbiamo trovato Fucy(R)/SO»(R) = R
Infatti, Fucy(R) = SOy(R) x R? (prodotto semidiretto).

Esempio 22 (Piano Affine). M = R? come nell’esempio precedente, e il

gruppo e il gruppo affine 2-dimensionale dato da

G = Aff(R) = { (1 Z) e GLI(R)

AeGLf(R),v e RQ}
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0
L’azione su M e data dalla formula -x = Ax + v, dove z,v sono
v

vettori colonna. Ancora, e facile verificare che lo stabilizzatore dell’origine e

10 N
HZ{(O A) € GL3 (R)

e Affy = H x R? (prodotto semidiretto).

Ae GL;(R)} ~ GL(R)

Esempio 23 (Piano Iperbolico). Siano M = H = {z € C | J(2) > 0} e
G = SLy(R) = {A € M5(R) | det(A) = 1} il gruppo delle trasformazioni di

Mobius che agisce su M come

(a b) az+b
B
c d cz+d

Preso come punto base z =1¢ € M, il suo stabilizzatore ¢

SOy (R) = {A € My(R) | det(A) =1, AAT =TI}

dunque H = SLy(R)/SO2(R).

Le trasformazioni di M&bius preservano la metrica di Poincaré (iperbolica)
in quanto esse sono isometrie di questa metrica, dunque preservano distanze
e angoli iperbolici. Inoltre dato che per definizione di SLy(R) si richiede che

det(A) = 1, esse preservano anche I'orientazione.

Esempio 24 (Spazio proiettivo). Sia RP" := (R™*!\ {0})/R* lo spazio
proiettivo reale. L’azione di R* su R*™ & chiaramente liscia, e si restringe
a un’azione libera su R"™ \ {0}. Dunque come vedremo successivamente, la
proiezione al quoziente 7 : R"*1\ {0} — RP" & un R*-fibrato principale.

L’azione naturale del gruppo delle trasformazioni di Mébius SL(n + 1,R) su
R si restringe a un’azione su R"™\{0}, e dato che I'azione ¢ lineare, induce
un’azione su RP", che ¢ ovviamente transitiva. I risultanti diffeomorfismi di
RP" sono esattamente le trasformazioni proiettive. Lo stabilizzatore della

retta passante per il primo vettore della base standard di R"*! ¢ dato da

P { (alet(A)_1 v)
0 A

A€ GL,(R),v € R\ {0}}
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P & un esempio di sottogruppo parabolico del gruppo di Lie SL(n+1,R). P ha
due componenti connesse, caratterizzate dal segno del determinante di A. Se
consideriamo Fy,, componente connessa di P contenente l'identita, otteniamo
un diverso spazio omogeneo corrispondente, infatti RP" = SL(n + 1,R)/P,
mentre S" = SL(n + 1,R).

Per vedere la struttura geometrica di RP" invariante rispetto all’azione di
SL(n 4+ 1,R), osserviamo che ogni trasformazione proiettiva mappa rette
proiettive in rette proiettive. Infatti, le rette proiettive sono esattamente
le immagini tramite 7w dell’intersezione di piani passanti per l'origine con
R™1\ {0}. Da questa descrizione segue che I’azione di SL(n + 1, R) su RP"
mappa rette proiettive in rette proiettive. Il teorema fondamentale della
geometria proiettiva afferma che ogni biezione di RP" mappa rette proiettive
in rette proiettive. Dunque, la struttura geometrica appropriata ¢ data dalla
famiglia di tutte le rette proiettive di RP".

Sulla sfera S™, uno puo similmente ottenere la famiglia di geodetiche della
metrica sferica su S”, e i diffeomorfismi di S™ che mappano geodetiche in

geodetiche sono esattamente le azioni degli elementi di SL(n + 1,R).

4.2 Caratterizzazione di Fibrati Principali

Cerchiamo ora di capire perché una geometria, nel senso di Klein, puo
essere vista come una varieta differenziabile e mostriamo che la mappa G —

G/H ¢ un fibrato principale con gruppo H.

Proposizione 18. Sia G un gruppo di Lie e H un suo sottogruppo chiuso.

Allora Uazione G x H — H, (g,h) — g - h ¢ libera e propria.

Dimostrazione. L’azione ¢ banalmente libera, infatti se gh = ¢ allora molti-
plicando per ¢! si ottiene h = e.

Siano ora A, B C G compatti e consideriamo K = {h € H | hAN B # 0}.
Mostriamo che K & compatto per successioni.

Sia {h,} una successione a valori in K. Allora esistono {a,} e {b,} succes-

sioni rispettivamente in A e in B tali che a;h; = b; per ogni 1.
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Dato che A ¢ compatto esiste una sottosuccessione {an,};es che converge
ad a € A, e a meno di restringerci ulteriormente a L C J esiste {by, }icr
che converge a b € B. Dunque abbiamo {h; = (a;) 'b};c;, converge a
albe K O

Proposizione 19. Sia £ = (P, B, w, F') un H-fibrato principale destro

Allora l'azione P x H — H ¢ libera e propria

Dimostrazione. 11 fatto che il fibrato sia localmente un prodotto U x H, con
I’azione canonica destra di H, mostra che ’azione e libera. Dalla proposizione
precedente si ha che per ogni successione {h;} in K = {h € H | AhNB # 0},
esistono successioni {a;} in A e {b;} in B convergenti rispettivamente ad a
e b, e tali che ajh; = b; per ogni j. Ora dato che per definizione di fibrato
principale, I'azione destra di H preserva la fibra, si ha m(a;) = w(a;h;) =
7(b;j) per ogni j, e dunque dato che m continua, 7(a) = w(b). Ora, sempre per
definizione di fibrato principale, su ogni fibra 7~1(z) il gruppo agisce in modo
semplicemente transitivo, dunque a = hb per qualche h € H. Dimostriamo
ora che hj — h.

Per farlo, notiamo che preso j sufficientemente grande si haV j > j, h; € U,
dove U e una carta del fibrato.

Questo ci permette di restringerci al caso del fibrato banale P = M x H.
Proiettando lungo H tramite p si ottiene p(a;)h; = p(a;h;) = p(b;). Dunque
{h; = p(a;)~p(b;)} converge a p(a)~p(b). Abbiamo cosi mostrato che ogni
successione in K ammette sottosuccessione convergente in K, cioe che K ¢

compatto. O]

Concludiamo enunciando un risultato fondamentale che mostra come que-
ste proprieta caratterizzino un fibrato principale su una varieta differenzia-
bile. La dimostrazione, essendo particolarmente tecnica, ¢ stata omessa con

l'intento di snellire la trattazione.
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Teorema 3. Sia P una varieta differenziabile, H un gruppo di Lie,

i Px H— P una azione destra, liscia, libera e propria. Allora

(i) P/H con la topologia quoziente é una varieta topologica (con dim(P/H) =

dim(P) — dim(H)).

(i1) P/H ammette un’unica struttura differenziabile per cui la proiezione

7w : P — P/H é una sommersione.
(i1i) &€ = (P,m, P/H, H) ¢ un H-fibrato principale liscio destro.

Corollario 5. Sia G un gruppo di Lie, H C G sottogruppo chiuso.
Allora la mappa 7 : G — G/H ¢ un H-fibrato principale destro.

Dimostrazione. Dalla Proposizione (18 abbiamo che 1’azione destra di H su

G ¢ libera e propria e per il abbiamo la tesi. O

E importante che I’azione sia propria. Infatti, se per esempio nel caso di
un’azione destra G x H — G di un sottogruppo H C G, il sottogruppo non e
chiuso, allora I’azione non & propria e il quoziente G/ H non & necessariamente

una varieta.

Esempio 25. Consideriamo il toro G = R?/Z? e un sottogruppo ”irrazio-
nale” di G. Per capire meglio, passiamo al rivestimento universale G; = R?
con corrispondente reticolo Z? = {(a,b) € R? | a,b € Z} visto come nucleo
della mappa di proiezione 7 : R? — R?/Z2. Sia H; = {(t,tv/2) | t € R)}.

In G4, il sottogruppo H; € una linea retta, e dunque e chiuso (rispetto alla
topologia euclidea). Tuttavia, dal momento che v/2 & un numero irrazionale,

H = w(H,) ¢ denso in G, e in particolare non ¢ chiuso.

Hl 2 R? RQ/ZQ
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Sia f : G/H — R una funzione continua, e sia f = f o .

G—>]R

| A

G/H

Ora f(H) = f([h]) = « € R, dunque f & costante su un denso di G,
e dunque e costante su tutto il dominio. Inoltre dalla commutativita del
diagramma, si ha che f & costante. Non esistono dunque funzioni continue
non costanti G/H — R, in particolare non e possibile costruire delle carte e

dunque G/H non ¢ una varieta.

4.3 Geometrie di Klein

Definizione 57. Siano X, Y due insieme non vuoti e G un gruppo che agisce

su di essi. Una mappa f : X — Y si dice equivariante se f(g-x) = g- f(x)

Proposizione 20. Sia G un gruppo di Lie e H C G un suo sottogruppo
chiuso.

Allora esiste un unico sottogruppo massimale normale K di G contenuto in
H. Inoltre, K ¢é un sottogruppo di Lie chiuso di H, l’azione sinistra di G su
G/H induce un’azione sinistra di G/K su G/H, ed esiste un diffeomorfismo
v : (G/K)/(H/K) — G/H tale che ¢ ¢ equivariante rispetto all’azione

canonica sinistra di G/ K.

(G/K)/(H]K) —— G/H

lG/Km lG/Km

(G/K)/(H/K) —— G/H

Dimostrazione. Sia K il gruppo generato da tutti i sottogruppi normali di
G contenuti in H. Allora K e chiaramente un sottogruppo normale di G
contenuto in H ed e, inoltre, I'unico sottogruppo normale massimale di G
contenuto in H. Dato che la chiusura di K e ancora un sottogruppo normale

di G contenuto in H, K e esso stesso chiuso.
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Ora K e un gruppo di Lie in quanto sottogruppo chiuso di un gruppo

di Lie. Infine, dal [Teorema 3| la proiezione canonica 7 : G/K — G/H ¢
un fibrato principale con fibra H/K. Dunque 7 induce un diffeomorfismo
(G/K)/(H/K) — G/H che commuta con ’azione canonica sinistra G/K.
O

Siamo ora pronti per dare una definizione formale di Geometria di Klein.

Definizione 58. Una geometria di Klein ¢ una coppia (G, H), dove G ¢
un gruppo di Lie e H C G un sottogruppo chiuso tale che G/H ¢ connesso.
G si chiama gruppo principale della geometria. Il nucleo di una geometria
di Klein (G, H) ¢ il piu grande sottogruppo K di H normale in G.

Una geometria di Klein (G, H) si dice fedele se K = {e}, mentre si dice
localmente fedele se K ¢ discreto.

Una geometria di Klein si dice geometricamente orientata se G ¢ con-
nesso. Lo spazio delle classi laterali connesse GG/H si chiama spazio della
geometria di Klein oppure con un abuso di notazione, semplicemente geo-
metria di Klein. Una geometria di Klein si dice primitiva se la componente
contenente l'identita H. C H ¢ massimale tra i sottogruppi propri, chiusi e

connessi di G.

Osservazione 27. Lo spazio della geometria di Klein G/H & in particolare

uno spazio omogeneo.

Se (G, H) & una geometria di Klein con nucleo K, allora dato un sotto-
gruppo chiuso N C K normale in G, dalla Proposizione [20]si ha che la coppia
(G/N,H/N) ¢ anch’essa una geometria di Klein con spazio (G/N, H/N) =
G/H. Ovviamente, queste geometrie non sono fedeli, a meno che N = K.

Questo fatto ci porta alla seguente definizione.

Definizione 59. Sia (G, H) una geometria di Klein con nucleo K.

Chiamiamo geometria di Klein fedele associata a (G, H) la geometria
di Klein (G/K,H/K).
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Osservazione 28. Dalla Proposizione [20] sembra che se si ¢ interessati allo
spazio G/ H sia sufficiente considerare il caso fedele. Perché allora non chia-
miamo geometrie di Klein solo quelle fedeli? Una prima risposta ¢ data dal
fatto che facendo cio, elimineremmo il fenomeno di spin. Il secondo punto e
che geometrie non fedeli esistono, ed ¢ dunque utile avere un linguaggio per

poterne parlare.

Definizione 60. Date due geometrie di Klein (Gy, Hy) e (Ge, Hs), esse si
dicono geometricamente isomorfe se esiste un isomorfismo di gruppi di
Lie ¢ : G; — G+ tale che ¢(H;) = Ho.

Osservazione 29. In particolare, (G, H) e (G, gHg™') sono geometricamen-
te isomorfe tramite ¢ automorfismo interno, che agisce tramite la coniuga-

zione per un elemento g.

Lemma 3. Sia G un gruppo di Lie, allora la componente dell’identita
Ge={9g€G|Iv:[0,1] = Ge, 7(0) = g,7(1) = e} € un sottogruppo di G.

Dimostrazione. Siano g,h € G, v : [0,1] — G. e n : [0,1] — G, tali che
7(0) =g, 7(1) = e, n(0) = h, n(1) =e. Sia £ [0,1] = Ge, £(t) =~(¢)n(t),
allora £(0) = gh e £(1) = e, dunque G, ¢ chiuso rispetto al prodotto.

Sia ¥(t) = v(t)g~!, allora (0) = gg ' = ¢, ¥(1) = g7, quindi g7 € G,. O

Proposizione 21. Sia (G, H) una geometria di Klein e sia G, la componente
dell’identita di G. Sia Hy = H N G.. Allora

(i) G=G.-H={gheG|ge G he H}
(ii) G/H = G./Hq

Dimostrazione. (i) Chiaramente G, - H C G. Sia g € G, dato che G/H
¢ connesso, esiste un cammino 7 : [0,1] — G/H tale che v(0) = gH e
v(1) = eH. Dato che la proiezione al quoziente G — G/H ¢ un fibrato,
possiamo sollevare v a 7 : [0,1] — G tale che w(%(t)) = ~(t), (0) = g e
¥(1) = h € H (perché n(§(1)) € eH). Sia ora n : [0,1] — G, definito da
n(t) = 5(t)h!, allora n(0) = gh™' e n(1) = e, dunque gh™' € G.. Abbiamo
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cosl trovato g = (gh™)h e quindi G C G, - H.

(11) Consideriamo il seguente diagramma commutativo

G, — @G

b |

G./Hy —— G/H

Allora la mappa j : G./Hy — G/H ¢ un’inclusione liscia. Inoltre da (i) si ha
che j o |y, € suriettiva, dunque in particolare j e suriettiva.

Siano gq, g2 € G., allora per il Lemma , g5 g1 € G., inoltre

i(g1) =j(g2) © g1 € goH < g5'q1 € H

In conclusione j € un diffeomorfismo. ]
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4.4 Geometrie di Klein Locali

Vediamo ora una generalizzazione della nozione di Geometria di Klein

Definizione 61. Sia G un gruppo di Lie, H un suo sottogruppo chiuso e I' C
G un sottogruppo discreto tale che I' agisce fedelmente per motiplicazione a
sinistra come gruppo delle trasformazioni di rivestimento sullo spazio G/H
e il quoziente (G/H)/I' ¢ connesso.

Allora la tripla (T, G, H) si chiama geometria di Klein locale.

Come nel caso delle geometrie di Klein, le geometrie di Klein locali hanno

un fibrato principale associato.

Lemma 4. Siano I e H gruppi di Lie che agiscono con azioni proprie, libere

e commutative rispettivamente a sinistra e a destra su X varieta differenzia-

bile. Allora
X/T'x H— X/I' ¢ propria <= ' x X/H — X/H ¢é propria

Dimostrazione. Per simmetria ¢ sufficiente mostrare =.

Step 1. L’azione
IxH)xX — X

((g,h),2) = gzh™
€ propria.

Siano A, B C X compattie C = {(g9,h) €' x H | gAhN B # 0}.

Sia (gn, hn) € T' x H una successione in C, A" e B’ immagini rispettivamente
di A e Bin X/T'. Dato che per ipotesi I'azione di H su X/I' & propria, si ha
che C"={h e H| AhNB’ # ()}, ovvero 'immagine dell’azione di C in X/T,
¢ compatto. Dunque la successione di prima (h,) ammette sottosuccessione
convergente ad h € C".

Dato che (gy, h,) € C, possiamo trovare due successioni (ay,),(b,) rispettiva-
mente in A e in B tali che g,a,h, = b, per ogni n € N. Inoltre essendo A

e B compatti in X, ammettono sottosuccessioni convergenti rispettivamente
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ad a € A e b€ B. Restringiamoci ora alle sottosuccessioni, mantenendo con
un abuso di notazione, gli stessi indici.

Sia ora K C X un intorno compatto di ah tale che 3 n tale che V n > n,
aph, € K. Dato che I' x X — X e propria, l'insieme

C"={geT|gkn{b}#0}={geT|g'be K}

e compatto. Ora lim gnlb = lim g, b, = lim a,h, = ah € K. Dunque
n—o00 n—00 n—0o0

definitivamente ¢, '0 € K e quindi g, € C”. Abbiamo cosi che anche (g,)

ammette una sottosuccessione convergente a g € I' e quindi la successione

da cui eravamo partiti (g,, h,) € C' ammette sottosuccessione convergente a

gh e C.

Step 2. L’azione I' x X/H — X/H ¢ propria. Siano A Be X/H compatti.
Vogliamo mostrare che {g € ' | gAN B # (0}. A= U A;e B= U A;, con

A; e B; compatti. E sufficiente mostrare che {g € T | gA NDB; # @} per ogni
i,7. Possiamo quindi assumere che A e B siano insieme piu ”piccoli” (cioe
relativi a qualche ricoprimento aperto di X/H). Ora per il [Teorema 3| la
mappa X — X/H & un H-fibrato principale, dunque esiste un ricoprimento
aperto di X/H tale che su ogni aperto del ricoprimento, il fibrato X — X/H
¢ banale. Assumiamo A e B relativi a tale ricoprimento.

Applicando una sezione locale ad A e B, possiamo ottenere A’ e B’ compatti
in X con immagini A e B in X/H. Dunque {(g9,h) € TxH | gA'h"*NB’ # 0}
¢ compatto, e quindi I'immagine di questo insieme tramite la proiezione ca-

nonica I' x H — I' e anch’essa compatta, ma questa immagine ¢ chiaramente

{geT | gANn B #0}. O

Teorema 4. Sia (I', G, H) una geometria di Klein locale.
Allora la mappa G/T" — (G/T")/H ¢ un fibrato H-principale.

Dimostrazione. Dal momento che I' e H sono sottogruppi chiusi di G, per la
Proposizione [I§] le loro azioni per moltiplicazione rispettivamente a sinistra e

destra sono proprie. Inoltre per lo stesso motivo , 'azione I'x (G/H) — G/H,
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data dalle definizione di geometria di Klein locale, & libera e propria. Ora per
il Lemma [ si ha che anche I'azione (G/T') x H — G/T ¢ libera e propria.
Il risultato dunque segue dal [Teorema 3| O

Osservazione 30. Notiamo che se (I', G, H) € una geometria di Klein locale,
allora la forma di Maurer-Cartan wg : TG — g, siccome e invariante a

sinistra, induce una forma we/r : T(G/T') — g

4.5 Fibrato Tangente di una Geometria di

Klein

Per ogni geometria di Klein (G, H), come abbiamo visto in abbiamo
una corrispondente coppia di algebre di Lie (g,h). Se (G, H) & fedele (cioe il
nucleo ¢ banale), allora h & irriducibile, cioe non contiene ideali non banali

di g.

Definizione 62. Una geometria di Klein infinitesimale (o coppia di
Klein) ¢ una coppia di algebre di Lie (g, ) dove b & una sottoalgebra di g.
Il nucleo t di (g, h) ¢ il piu grande ideale di g contenuto in b.

Se ¢ = {0}, diciamo che (g,h) ¢ fedele.

Osservazione 31. A priori, g/h non e un’algebra di Lie, perché h non ¢ in

generale un ideale.

Consideriamo un H-fibrato principale 7 : G — G/H e una carta (U, )
del fibrato. Abbiamo dunque il diffeomorfismo ¢ : U x H — 7~ }(U) C G.

Questo induce sui fibrati tangenti un diagramma commutativo

T(x ' (U)) «Z— T(U x H) —— TU x TH
\ lmj/

dove T(U x H) 2 TU x TH tramite il diffeomorfismo 7y, X mg,.
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Dal diagramma precedente, considerando una singola fibra dei fibrati tan-
genti, si ha che T,G = T, (gH) ® Ty)U, inoltre dato che U ¢ un aperto di
G/H, si ha Ty U = Ty (G/H). Dunque T,G/Ty(gH) = Ty (G/H). In-
fine tramite la forma di Maurer-Cartan, T,(¢H) = h e T,G = g. Dunque

esiste un’unica ¢, tale che il seguente diagramma commuti

[~ !

Tro)(G/H) —"= g/t

Ty(gH) — b
g

dove con abuso di notazione chiamiamo wy la mappa ottenuta dalla com-
posizione T, (gH) L(qh;l) Tyw(hH) = Ty (H) % b con gh € gH.
Dato che mRy(g9) = w(gh) = w(g), e che per 17, Rjwy = ad(h™wy, ab-
biamo che ¢g, = ad(h™')p,, infatti dati v € Try)G/H ¢ X € T,G tale che

7y, (X) =wvsiha

pg(v) = [wu(X)] € g/h e @on(v) = [wn(RnX)] € g/b
Pon(v) = [war (Rn. X)) = [ad(hwn(X)] = ad(h™)wr(X)] = ad(h™") ¢,

Dunque l'identificazione tra T4 (G/H) e g/b ¢ univocamente determinata

a meno dell’azione aggiunta di H su g/b.

Definizione 63. Chiamiamo G-spazio sinistro (destro) uno spazio topologi-
co X dotato di un’azione sinistra (destra) di un gruppo topologico G su di
esso (i gruppi di Lie sono in particolare gruppi topologici).

Dato X G-spazio sinistro, Y G-spazio destro, si definisce il prodotto bi-
lanciato tra X e Y come X XgY = (X X Y)/G con azione destra di G su
X x Y data da (z,y) - g = (97 x,yg) dove si ¢ trasformata l’azione sinistra

di G su X in un’azione destra, ponendo per ogni x € X, xg = ¢ 'x.

Teorema 5. T(G/H) = G xy g/h come fibrati vettoriali.
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