
ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF PHYSICS AND ASTRONOMY

SECOND CYCLE DEGREE IN SCIENCE OF CLIMATE

Academic Year 2024-2025

Seasonal predictability of compounded variable
renewable energy droughts in Europe using the

German Climate Forecast System

Supervisor:
Dr. Salvatore Pascale

Alma Mater Studiorum Università di Bologna

Co-supervisors:
Dr. Leonard Borchert, Dr. Marlene Klockmann

Universität Hamburg

Student:
Beatrice Ciancarella

Examination session October 2025



Abstract

Variable Renewable Energy (VRE) droughts — prolonged periods of low renewable energy

availability — pose a significant threat to the stability and resilience of Europe energy grid, as

renewable energy sources expand to meet climate targets. While the climatology and synoptic

drivers of these events are well-documented, their seasonal predictability remains largely unex-

plored. This thesis assesses the German Climate Forecast System (GCFS) version 2.2 predic-

tion skill for compounded wind and solar VRE droughts across Europe. We develop novel oper-

ational indices for solar, wind and compounded energy production, from surface solar radiation

and wind speed, weighted by national energy capacities. Validation of the compounded index

against documented events confirms its utility in identifying real-world energy shortfalls. This

research bridges a critical gap in VRE drought predictability, despite the current lack of model

bias correction and sensitivity tests on drought thresholds. Future work should resolve these

limitations and explore ensemble subsampling and advanced statistical methods that leverage

teleconnection patterns like the North Atlantic Oscillation (NAO) to enhance predictive skill. Our

analysis reveals that the GCFS’s skill in predicting the local frequency of VRE droughts is spa-

tially heterogeneous. Furthermore, the predictability of compounded droughts is not a direct

function of its individual components, revealing complex, non-additive dynamics. However, we

demonstrate that the model provides significant and reliable skill in forecasting the spatial extent

of droughts when aggregated over larger regions. Anomaly correlation coefficients (ACC) reach

0.59 for Central Europe and 0.65 for Southern Europe. This research confirms the potential of

operational seasonal forecasting models to provide actionable prediction skill on large-scale

VRE droughts, which is crucial for strategic energy planning, grid management and risk mitiga-

tion.
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Chapter 1

Introduction

Is it possible to predict, months in advance, periods when both wind and solar energy generation are
low across large regions of Europe? As global temperatures continue to rise and the transition to-
ward sustainable energy accelerates (IPCC 2023b), European countries are increasingly dependent
on renewable sources, such as wind and solar power. During periods of low resource availability, in
the absence of reliable energy storage, the system must rely on alternative sources. However, when
the energy system relies heavily on renewables, simultaneous scarcity of two or more resources
poses a risk of energy shortages. The term Variable Renewable Energy (VRE) shortage indicates
these prolonged periods of extremely low resource availability or energy supply of a single or multi-
ple VRE technologies (Kittel et al. 2024). Given the financial and societal impact of VRE shortages
and the expansion of VRE technologies in the energy production share, it is likely that the demand
of seasonal climate prediction services for the energy sector is going to increase (Bett et al. 2022).

This thesis addresses the anticipated future demand for improved predictions of coincident low
wind and solar generation events at seasonal time scales. It focuses on the European region with the
objective of assessing the seasonal predictability of such events by leveraging historical hindcasts
and reanalysis datasets.

1.1 The potential of seasonal forecasts

At the core of this investigation is the use of a seasonal forecasting system. These models provide
ensembles of predictions for the coming months, offering a potential window into future large-scale
energy availability.

Seasonal forecasts aim at predicting the average conditions of the climate system over periods
ranging from one month to a year ahead. Unlike weather forecasts, they are not primarily deter-
mined by the initial conditions of the system (initial value problem). Unlike longer multi-decadal
to centennial projections, they do not derive predictability primarily from forcing scenarios and do
not begin at the pre-industrial equilibrium state (forced boundary conditions problem). Seasonal
forecasts require both initial and boundary conditions, they rely on the predictability provided by
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Figure 1: Schematic depiction of (bottom) temporal ranges and (top) sources of predictability
for weather and climate prediction (Merryfield et al. 2020). The acronyms define: Madden Ju-
lian Oscillation (MJO), Sadden Stratospheric Warming (SSW), North Atlantic Oscillation (NAO),
Quasi-Biennial Oscillation (QBO), El Niño–Southern Oscillation (ENSO), Pacific Decadal Vari-
ability (PDV) and Atlantic Multidecadal Variability (AMV).

slower-varying components of the Earth system and by teleconnections (Yuan et al. 2018; Wang
et al. 2021). The initialisation of these boundary conditions (such as sea surface temperatures, sea
ice concentration and soil moisture) is crucial, as their evolution modulates atmospheric processes
on sub-seasonal to decadal timescales (Merryfield et al. 2020).

Seasonal forecast systems are typically based on complex coupled ocean-atmosphere-land gen-
eral circulation models (GCMs), as also used in climate projections. GCMs are initialised with the
best available estimate of the current state of the climate system, often derived from reanalysis
data, like ERA5 (Hersbach et al. 2017) and are then run forward in time. To account for the chaotic
nature of the atmosphere (Lorenz 1963; Charney 1966), an ensemble approach is used, where mul-
tiple simulations (ensemble members) are performed with slightly perturbed initial conditions. The
ensemble mean is then analysed to identify the predictable signal beyond the noise.

Despite their utility, seasonal forecasting models face several limitations, with fair but not
excellent skill scores (White et al. 2017). Their horizontal resolution, often around 100 Km, is
too coarse to explicitly resolve many mesoscale to local processes, which are instead represented
through parametrisations. This can lead to errors in simulating regional phenomena, such as oro-
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graphically influenced winds or local cloud cover (Merryfield et al. 2020), the latter being particu-
larly critical for accurately representing solar irradiance and thus solar energy droughts.

Several operational seasonal forecast systems exist, such as the ECMWF’s SEAS5 (Johnson
et al. 2019), the UK Met Office’s GloSea (MacLachlan et al. 2015) and the German Climate Fore-
cast System (GCFS) (Penabad 2025). In this study, we employ the GCFS, version 2.2, which is
a collaborative effort of German institutions and it is based on the high-resolution MPI-ESM-HR
model.

1.2 Research questions

This work addresses a clear gap in the literature: studies on the climatology and synoptic signatures
of VRE shortages exist (Kittel et al. 2024; Bett et al. 2013; Kaspar et al. 2019; Wiel et al. 2019a;
Wiel et al. 2019b; Jerez et al. 2013a; Jerez et al. 2013b; Jerez et al. 2015; Mockert et al. 2023),
but assessments of their seasonal predictability are limited (Lledó et al. 2022; Bett et al. 2022).
This thesis’ key research questions follow from the previous premises: Can the GCFS skilfully
predict the frequency of compounded VRE shortages at a seasonal lead time? To address this
seemingly straightforward question, several additional questions arise:

1. How does the predictability of compounded shortages relate to the predictability of its
individual wind and solar components?

2. What are the main dynamical, methodological and model-based challenges that limit
or improve this predictability?

By addressing these questions, this study provides a foundational framework for future research
aimed at improving the reliability of seasonal VRE shortages forecasts.

1.3 Variable Renewable Energy (VRE) shortages

A review of the current literature on VRE droughts is presented, with a focus on previous seasonal
predictability efforts. This is followed by a discussion on the complexities inherent in defining such
events, which informs our methodological choices.

1.3.1 Literature review

The climatology of VRE shortages has been extensively analysed and the same holds true for stud-
ies examining their future projections under climate change scenarios. Long term trends of wind
speed showed very little significant signals in Europe. Bett et al. 2013 analysed over 140 years of
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data from the Twentieth Century Reanalysis. The significance and magnitude of the trends were so
small that they questioned whether it was in any way relevant for wind energy applications (Bett et
al. 2013). On the same note, Jerez et al. 2015 found small decreases of PV power generation under
different representative concentration pathways (RCPs) scenarios, limited to Northern countries.
Nevertheless, theirs findings proved climate change unlikely threatens PV generation in Europe.
Lastly, Kaspar et al. 2019 found a decrease in the low extreme compounded shortage frequencies
both over Germany and Europe. Although their work consisted of a relative climatological com-
parison based on simplified assumptions, it represents one more piece of evidence that trends on
solar and wind VRE shortages related to climate change are rarely significant and, if anything, not
yet alarming for the energy sector.

Figure 2: Maps showing the correlation between the DJF NAO index and 10m wind speed (left)
and surface irradiance (right), based on ERA-Interim data for winters from 1979/1980 to 2015/2016
inclusive. Contour lines indicate the approximate threshold for statistical significance at the 5%
level over a 37-year period. From Bett et al. 2022

Works on the links between synoptic weather patterns and VRE shortages are also found in
literature (Wiel et al. 2019a; Wiel et al. 2019b; Bett et al. 2022; Lledó et al. 2022; Mockert et al.
2023; Jerez et al. 2013b). All agreed that the the North Atlantic Oscillation (NAO) has the strongest
influence on the intensity and frequency of VRE shortages. In Southern Europe, a positive NAO
index was correlated with irradiance, while showing variable wind speed (low and not-significant
correlation coefficients) (Lledó et al. 2022; Bett et al. 2022). In Northern and Central Europe
the negative NAO phase was linked with reduced wind speed due to the weaker pressure gradi-
ents and low solar irradiance due to higher cloud cover (Wiel et al. 2019a; Mockert et al. 2023).
Blocking regimes influenced more Northern and Central Europe, while they did not have relevant
impact in the Southern countries (Wiel et al. 2019a; Bett et al. 2022). The Scandinavian block-
ing highs were specifically linked with prolonged winter VRE shortages (Wiel et al. 2019a) and the
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Figure 3: Determination coefficient,R2, of the multi-linear regression model for wind (left column)
and solar (right column) capacity factors at country level in winter from Lledó et al. (Lledó et al.
2022).

East-Atlantic/Western-Russia (EA/WR) teleconnections were linked to solar shortages (Lledó et al.
2022). The NAO, especially in winter, along with the Scandinavian blocking pattern and the East
Atlantic/Western Russia (EA/WR) pattern, are three of the four principal modes of variability in Eu-
rope during the DJF (December–January–February) season. These large-scale circulation patterns
are known to exert a significant influence on the winter climate across the continent. Nonetheless,
local factors, such as topography, mountain ranges (i.e., the Alps) and coastal influences, including
land–sea breeze dynamics, play a crucial role in modulating the intensity of VRE shortages at re-
gional and local scales (Mockert et al. 2023).

Forecast skill for VRE shortages predictions up to a 10-day lead time have been studied,
whereas forecasts at longer timescales remain relatively rare. One notable exception is the work
by Lledó et al. 2022, who focused on seasonal predictions by employing a bridging method that
links VRE shortages with synoptic circulation pattern indices, including the NAO, EA/WR and
Scandinavian Blocking. A multi-linear regressor was tested on wind and solar capacities forecasts
at country level (Lledó et al. 2022). It represented up to 80% of the winter wind generation in
some Northern countries and a moderately good fraction of the winter solar generation in Southern
countries (Fig. 3) (Lledó et al. 2022). Another study by Bett et al. 2022 demonstrated that seasonal
forecasts are moderately skillful in predicting seasonal mean irradiance and wind speed, although
their skill tends to be spatially variable. Bett et al. 2022 claimed there is no need of introducing the
complex non-linearities of VRE generation potentials, but acknowledged the limits of coarser time
and spatial resolution and of not addressing the predictability of shortages frequency. They also
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employed a linear regression method using synoptic patterns as predictors.

1.3.2 VRE drought definition

Variable renewable energy shortages have been discussed in the literature under various terms. In
particular, the term Dunkelflaute (dark-and-dull) has gained popularity to describe compounded
solar and wind shortages. However, as Kittel et al. 2024 noted, there is currently no consensus in
the literature on a standard terminology for such shortage events. To contribute to the adoption of
a consistent terminology, this study follows the terminology proposed by Kittel et al. 2024. Here-
after a compounded VRE drought (or simply compounded drought) is defined as the simultaneous
occurrence of weak downward solar irradiance at the surface (RSDS) and weak wind speed (U )
intensities which lead to low solar and wind power production; individual droughts indicate either
solar or wind power shortages.

The operational definition of VRE droughts is as vast as the terminology because quantifying
these events is highly complicated. Kittel et al. 2024 offered a comprehensive overview also of these
definitions, on the different input data, methodological choices and parameter assumptions. De-
pending on the input data considered, they identified four types of VRE shortages: VRE droughts,
VRE anomalies, positive residual load events and electricity system stress events. VRE droughts
are periods of low resource availability affecting one or multiple VRE technologies, they are the
focus of investigation in this thesis. For the identification of VRE droughts, multiple methods were
described (Kittel et al. 2024):

• Constantly-Below-Threshold (CBT) selects consecutive time steps where VRE availability
is constantly below a threshold;

• Mean-Below-Threshold (MBT) selects time steps where the moving average of VRE avail-
ability is below a threshold, the averaging interval can be fixed or variable;

• Sequent Peak Algorithm (SPA) selects the maximum cumulative energy deficit of an event,
allowing for intermediate periods above the threshold.

In this thesis, we choose the CBT method due to its simplicity and straightforward implementation.
Unlike the MBT and SPA methods, the CBT approach identifies two separate events when a brief
period of higher resource availability occurs between two longer drought periods. This results in
an underestimation of drought duration and overestimation of the event frequency. Nevertheless,
we preferred the CBT method because the fixed MBT method results are highly sensitive on the
chosen interval, the variable MBT is in general computationally expensive and the SPA might un-
derestimates less extreme long droughts. All methods require the definition of a threshold, a time
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window, or both; however, the CBT method only requires the selection of a threshold. Kittel et al.
2024 described the available threshold-selection methods:

• percentile-based threshold, a percentile of the availability distribution (followed in this the-
sis);

• absolute threshold, a fixed, arbitrary value;
• scaled threshold relative to the maximum aligns to a fraction of the peak availability (i.e.,

0.05×max(x));
• scaled threshold relative to the mean aligns to a fraction of the mean availability (i.e.,

0.1×x).
Kittel et al. 2024 recommended to avoid absolute thresholds that lead to biased results and warned
the percentile-based method does not account for variations in the total annual energy output of
different VRE technologies or systems. As we will explain in more detail in the methodology sec-
tion (Chapter 2), this study develops an index to serve as a measure of resource availability. No
assumption is made on the type of VRE technologies and, moreover, it is constructed in such a
way that it smooths out extremely different energy generation potentials among regions. Therefore,
the percentile-based method is preferred since it reflects the shape of the distribution and accounts
for variability across regions. Nonetheless, Kittel et al. 2024 pointed out all methods introduce a
sensitive choice of the percentile or the scaling fraction: too low captures true extremes but short
events, too high captures prolonged periods of below-average availability rather than true droughts.
The best practice is to follow a sensitivity test and develop the analysis on multiple percentile or
fraction choices.

Adding to the complexity of the VRE drought quantification, the energy availability depends
on VRE technologies which vary notably among VRE sources and infrastructures models (wind
turbines and photovoltaic (PV) panels in this case). An analysis on compounded droughts requires
the measures of the wind and solar VRE availabilities to be comparable, thus it is not possible to
simply work on the irradiance intensities and wind velocities. When the analysis focuses on a single
technology VRE drought, or if it is constrained at shorter time frames or smaller spatial domains,
the problem does not occur. Otherwise, when analysing a portfolio of VRE technologies Kittel et al.
2024 suggested to build a composite time series combining the availability factors of the different
VRE technologies. For example, an average of the technology-specific time series weighted on the
corresponding technology share of the given region can be computed. This practice, while being
very rigorous, is not feasible in this study, in fact, it requires the information on the technologies
share and installed capacities at each location and time of the analysed domain. This thesis works
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on historical datasets extending back to 1990 and aims at providing an assessment over all Europe,
it is clearly quite difficult to follow such an heterogeneous load of information. In summary, this
work tries to follow at best the directions illustrated by Kittel et al. 2024 in their recent and com-
prehensive work, when not possible, new solutions are designed and will be explained in Chapter 2.

1.4 Bridging the Gap: scope and thesis outline

We established the current knowledge on VRE shortages climatology and links with large-scale
climate patterns, but we identified a gap in assessing their predictability. Studies on the actual pre-
dictability of VRE droughts on seasonal timescales in particular in dynamical forecasting system
models remain unexplored. The need for such research is underscored by the critical importance of
renewables for Europe’s energy future.

The European Union, particularly under the framework of the European Green Deal, has set
an ambitious target of achieving 45% renewable energy in its overall energy mix by 2030 (Ciucci
2024). According to the European Statistical Office (Eurostat), renewable sources accounted for
the largest share of energy production in the EU in 2023, reaching 45% (Eurostat 2025). Of this,
wind power contributed 17.6%, while solar power accounted for 9.3%. In terms of final gross en-
ergy consumption, renewables represented 25% (see Fig. 4).

Figure 4: Share of energy production by source in 2023 in European Union, expressed in %.
Source: Eurostat (Eurostat 2025).

Europe is not alone in its efforts to transition towards a more sustainable, low-carbon, energy
system. Hassan et al. 2024 reviewed renewable energy growth trends over the past decade, across
several global regions. They found a widespread increase in renewable energy capacity and tech-
nologies, driven largely by their potential to reduce greenhouse gas emissions. Nevertheless, the
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benefits of the renewable energy transition extend beyond environmental impacts. These include
reductions in energy costs (IPCC 2023b), improved energy access in remote areas and, from a soci-
etal perspective, more inclusive development approaches that have contributed to the advancement
of human rights, gender equality and social justice (Hassan et al. 2024).

Despite the evident potential of renewable energy to address climate change issues and deliver
broader societal benefits, resistance persists among the general public and policy makers. Financial
feasibility, adverse environmental impacts and diminishing of land value are among the most com-
mon concerns (Susskind et al. 2022), but the biggest opposition is based on the non-sustainability
hypothesis, as called by Albert 2022. The non-sustainability hypothesis is the view that renew-
able energy sources cannot fully replace fossil fuels for the residential, commercial, industrial and
transportation energetic demands. VRE sources droughts are the physical phenomenon that gives
this hypothesis its credibility. Such low-generation events are one manifestation of the claimed
unreliability of renewables. Therefore, our ability to understand, predict and ultimately manage
these droughts is key to disproving the hypothesis. Most of Integrated Assessment Models provide
limited insight on VRE sources availability issue because their climate policy analysis on energy
transition are constrained only by available financial investments and energy demand, while assum-
ing an abundant and reliable supply of renewable energy resources (Capellán-Pérez et al. 2020).
This gap in modelling approaches may contribute to the scepticism surrounding the feasibility of a
fully renewable-based system.

In conclusion, given the increasingly significant financial and societal impacts of these events,
reliable seasonal forecasts of VRE drought frequency are highly valuable. Predictions can inform
strategic planning, optimize the use of backup generation and storage systems and help mitigate the
risks associated with prolonged energy shortfalls (Denholm et al. 2011). Since many energy sys-
tem models require detailed technological and infrastructural inputs, developing forecasting meth-
ods that do not depend on complex, site-specific energy models is advisable. We aim to address
this gap by assessing the capability of the GCFS version 2.2 to predict the winter frequency of
compounded (specifically, concurrent wind and solar) variable renewable energy droughts across
Europe on seasonal timescales. To this end, we develop novel operational indices for solar (SEP),
wind (WEP) and compounded (CEP) energy production. We leverage physical fields weighted by
national energy capacities metrics. These indices, defined in Chapter 2, are generally applicable,
independently of specific turbine or photovoltaic models. This methodology allows for a focus on
the meteorological drivers of droughts and it relies on information that can be easily provided by
dynamical forecasting system, while maintaining relevance to the energy sector.
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Thesis outline

The structure of this thesis is as follows: Chapter 2 details the data (ERA5 reanalysis, GCFS hind-
casts, Eurostat VRE capacities) and the methodology for defining VRE droughts, including the
wind speed extrapolation and the threshold-based selection of events. In Chapter 3, we present the
results, evaluating the GCFS’s skill in predicting the frequency of these droughts. The analysis re-
veals that while the overall skill for inter-annual variability is low, there are spatially heterogeneous
regions of significant predictability. In the discussion (Chapter 4), we provide a physical interpre-
tation of these results and the limitation of the analysis. We discuss the role of model biases, the
dynamics behind the events and the challenges posed by the complexity of compounded events.
Finally, Chapter 5 summarizes the analysis results and relative interpretation and outlines future
research directions.
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Chapter 2

Data and methodology

2.1 Data

Since the objective of this work is to establish the predictability of compounded solar and wind VRE
droughts, the seasonal forecasting model hindcasts and observations are compared. The seasonal
forecasting model we use is the German Climate Forecast System (GCFS) version 2.2 (Fröhlich
et al. 2021); as for the observations, an historical dataset is employed as reference, namely the fifth
generation ECMWF reanalysis dataset ERA5 (Hersbach et al. 2017). The time range (from 1990
to 2024) and spatial domain (Europe1) are selected for both datasets. Lastly, to give an estimate
of a potential energy production value also a dataset for the energy capacity at country level is
employed, provided by Eurostat statistics (Commission 2025). These datasets help defining three
operational indices as a measure of the energy production: solar energy production (SEP), wind
energy production (WEP) and the compounded solar and wind energy production (CEP). On these
variables a thresholding method is applied to define individual and compounded VRE extreme low
availability.

2.1.1 Reanalysis

The ECMWF atmospheric reanalysis data provided by the Copernicus Climate Change Service
(C3S) are widely employed to represent observed historical weather conditions since 1940s be-
cause of their reliability, especially at synoptic level and over the Northern hemisphere (Soci et al.
2024). Reanalysis in general has been largely adopted to simulate also observed wind and solar
power for its extensive coverage and availability (Li 2025). In addition, ERA5 is the dataset used
for the atmospheric initialisation of the forecast model of the GCFS, assuring a fair comparison
between the ERA5 and the hindcasts. By using the same initialization dataset (ERA5) for our eval-
uation, we ensure a consistent baseline. This avoids introducing biases or inconsistencies that could
arise from comparing the GCFS hindcasts to a different observational dataset.

1The region selected is [ 71.5◦N, 29◦N ] and [ 31.5◦W, 45◦E]
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ERA5 fields are at a horizontal resolution of approximately 31×31 Km; all fields in the ERA5
dataset are calculated on the finer original grid and then coarsened using bilinear weights to match
the model’s grid at lower resolution (approximately 100×100 Km). The dataset combines histor-
ical observations and models estimates using advanced data assimilations systems. The following
daily averaged fields are used in this thesis:

• surface solar radiation downwards (RSDS) [J/m2]: the intensity of shortwave radiation at the
Earth’s surface, including both direct and diffuse solar radiation, thus the portion of the solar
radiation neither back-reflected nor absorbed by clouds and aerosols. In sight of simulating
the solar power, the fields units are converted to [W/m2];

• 10 mu and v component of the wind (u10, v10) [m/s]: the eastward and westward wind speed
modules at 10 m above the surface;

• 100 m u and v component of the wind (u100, v100) [m/s]: the eastward and westward wind
speed modules at 100 m above the surface.

2.1.2 German Climate Forecasting System (GCFS)

The GCFS is a collaborative effort of the Universität Hamburg, the Max Planck Institute for Mete-
orology and the Deutscher Wetterdienst. The forecast system provides hindcasts for the historical
period 1990-2024 and it is based on the Max Planck Institute Earth system model (MPI-ESM-HR)
(Müller et al. 2018) at a horizontal resolution of about 100×100 Km. The model is initialised in
November of each year and run for 18 months. Each hindcast contains 30 ensemble members. This
provides 2 predictions for each extended winter: one short lead forecast, spanning from November
to March (first 5 months) and one long lead, spanning from October to March (months twelfth to
seventeenth). Additional information about the GCFS 2.2 can be found in Appendix A.1.

The following fields are used in this thesis.
• Surface solar radiation downwards (RSDS) [W/m2]: obtained from the subtraction of the

surface upward shortwave radiation field from the surface net shortwave radiation field.
• 10 mu and v component of the wind (u10, v10) [m/s]: the eastward and westward wind speed

modules at 10 m above the surface.
• 500 hPa geopotential height (Z500) [m]: used to derive the NAO index.

2.1.3 Energy capacities

The energy capacity is expressed in terms of annual Net Maximum Energy Capacity (NMEC), i.e.,
the total maximum electrical power that the full set of power plants in the country can produce un-
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der normal operating conditions, minus (net) the electrical power used by the plants themselves to
operate, expressed in megawatts. NMECs are reported individually for each year for each country
and broken down by renewable energy power source: wind, solar, hydrological. They represent

Figure 5: Most recent available data for nationwide a) solar and b) wind net maximum energy
capacity (NMEC)normalised by area (measured in number of grid points).

the annual national highest NMEC or the national NMEC dated on the 31st of December of each
year. The Eurostat dataset covers only certain European countries2. Data are collected by the Na-
tional Administrations competent for energy statistics and transmitted to Eurostat from the national
authorities3 (Commission 2025). The most recent record of energy capacity for each country4 is
chosen and considered as a constant for any time step although the analysis can be repeated with
time-dependent datasets or updated parameters. Accordingly all the resulting energy potentials are
computed assuming the latest net maximum energy capacities (NMEC) and normalised by the num-
ber of grid points in the country (henceforth indicated as EC∗). This field used in the subsequent
calculation is shown here in Fig. 5.

The climatological analysis and the hindcasts assessments take into account only the extended bo-
real winter months from November to March (NDJFM). This choice is justified in view of the
available studies on solar and wind power production seasonal climatology (Wiel et al. 2019a; Kas-

2Albania, Austria, Belgium, Bulgaria, Bosnia Herzegovina, Croatia, Czech Republic, Cyprus, Denmark, Estonia, Fin-
land, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Kosovo, Luxemburg, Latvia, Lithuania, Macedonia,
Moldova, Montenegro, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden,
Turkey, Ukraine and United Kingdom.

3Depending on the country the providers can be: national statistical institutes, ministries, energy agencies or professional
associations.

42019 for the United Kingdom, 2020 for Ukraine and 2023 for the others countries.
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par et al. 2019). As can be deduced from Fig. 6, over Europe wind and solar energy sources exhibit
seasonal complementarity: reduced wind generation in warmer months is offset by increased solar
generation (Kaspar et al. 2019; Kittel et al. 2025). Shortfalls still exists assuming that both sources
are not everywhere available and that the solar energy annual cycle is slightly more pronounced
due to the high daily variability of wind speed (Wiel et al. 2019a). The resulting extreme lows
occur in general between October and March (Wiel et al. 2019a), hence the focus on extended win-
ter. Because the hindcasts start in November, hereafter the period analysed is the period from the
November 1st to March 31st, simply referred as winter.

Figure 6: 2D histogram of (a) daily wind energy production, (b) daily solar energy production, (c)
daily total energy production (TWh/day). The continuous black line shows the mean annual cycle.
The threshold for 1-in-10 year high-impact events based on extreme low total energy production is
indicated with a horizontal dashed line in (c) (Wiel et al. 2019a).

2.2 Definition of VRE droughts

As introduced in chapter 1 an extensive and reliable dataset of energetic variables is yet to be gen-
erated for a spatial domain covering homogeneously multiple countries. Firstly, this type of data is
difficult to retrieve because of the heterogeneity of both infrastructures and spatial locations of the
power plants. Moreover, the energy production ideal yield of a country represent sensitive infor-
mation in specific circumstances and national authorities may not openly share the data. Secondly,
the calculation of energetic variables and the selection methods used to define the compounded
VRE drought events are quite challenging. The complex nature of these events entails a combi-
nation of attributes, foremost the temporal and spatial extents, which can significantly influence
the identification of such droughts (Kittel et al. 2025). Depending on the study, shortfalls in the
energy production were selected and then investigated only if they reached a spatial and temporal
extent, large or long enough to actually affect the energy availability; no standardized values for
these bounds exist to define the interesting occurrences. An agreement on a unique and official

14



definition is difficult to achieve also due to the different expertise interested in the investigation of
VRE drought events, from economists to engineers and meteorologists. Furthermore, the clima-
tological characteristics of the regions strongly influence the result. This study analyses weighted
physical fields (radiation and wind speed) which benefits the generality of the results, instead of
relying on specific energy power models and VRE technologies. But this choice also holds the
downside of having to deal with particular local conditions (Pierro et al. 2022), deriving from the
fields climatology. For example, for the chosen extended winter period, most of the northern lati-
tudes experience persistently low solar radiation at the surface. The method that is defined here uses
climatological weights. This ensures that the VRE generation indices reflect meaningful variations
in energy potential, by emphasizing relative rather than absolute changes.

2.2.1 Methodologies in literature

Figure 7: The mean frequency of the rarest ex-
treme generation events from 1980 to 2012, as
calculated using three different. Low generation
events (capacity factor below 2.2%) (Cannon et
al. 2015).

Figure 8: Solar power (Ppv) values per month
for the PV production calculation models in
the city of João Pessoa, PB, Brazil, between
the years 1961 and 2021 for 100 Axitec AC
260P/156-60S PV modules (Araújo et al. 2024).

Energy production models, spatial and time extent limits and extremes selection methods defining
VRE droughts in previous studies have been inconsistent (Kittel et al. 2024). Several studies worked
with the power potential, which is the idealized amount of produced power given a certain intensity
of the energy resource (in this case irradiance and wind speed) (Drücke et al. 2021; François et al.
2016). Computing both solar and wind power potential from irradiance and wind speed needs an
empirical power model whose parameters depend on the energetic infrastructure. Thus, a specific
or a synthetic photovoltaic (PV) panel model (Mavromatakis et al. 2010) and a turbine model must
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be chosen among the available installed technologies. The potential is then weighted by the energy
capacity for each area — the maximum output of electricity that a generator can produce under ideal
conditions. For example, PV power depends on the area of the domain covered with PV panels and
in fact this method should account for the exclusion zones — where infrastructure cannot be built
— and neglect them from the potentials computation. Clearly, such method could be implemented
at local scales, where detailed information of wind and solar electricity generation capacity and
exclusion zones can be found and accounted for. At larger scales, though, the only viable approach
is to make assumptions based on the most representative power models and average technologies
installed. Besides, the sensitivity of the results on all the previous assumptions remains unstudied.
There is a growing need of evidence on this matter, like the work of Cannon et al. 2015 on power
curves: extreme low events occurrence turned to be sensitive to the power curves (one real and
two synthetic curves were compared, Fig. 7) for the wind energy production. Also Araújo et al.
2024 studied PV power models: the discrepancy of PV power estimates found among different
models were relevant (Fig. 8). Note how the estimates particularly spread during autumn and winter
seasons, the focus period of this thesis investigation, even if the PV panel-dependable parameters
used were the same for all models.

The other option, apparently simpler, is to compute a power potential index directly from
the climatic variables (Gunderson et al. 2015). Therefore, we follow this option, leveraging the
wind speed at hub height (although this parameter still requires an assumption), Uhub and the total
downward solar irradiance at surface, RSW↓

surf (or RSDS).

2.2.2 Wind velocity extrapolation

The wind speed at which wind turbines operate is the field at hub height. The hub height can span
from 80 m up to 170 m depending on the turbine model, with taller turbines installed offshore.
Even though technologies are continuously advancing and higher turbines are being built allowing
greater rated powers (the amount of energy a facility is able to produce at best conditions), we as-
sume a fixed hub height Hhub = 100m, as for the majority of the works in literature (Cannon et al.
2015; Li et al. 2021).

As the GCFS model does not provide 100 m height wind speed, those values are extrapolated
from the 10 m height wind speed values. Nonetheless this treatment is functional also in case the
analysis should be repeated for different hub heights. For the extrapolation, previous studies have
primarily employed either the log-profile or the power law (Kubik et al. 2011). The log-profile re-
quired the accessibility to many environmental variables, even in the simplified neutral atmospheric
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stability-form (such as surface roughness, zero-plane displacement, shear velocity). Moreovere, for
Gualtieri 2019 was more reliable in the lower part of the planetary boundary layer (around 10-20
m) than at higher altitudes. The wind power law appeared to be the best available option (Peterson
et al. 1978) and the most common in literature (Drücke et al. 2021; François et al. 2016). The wind
power law can be applied using a fixed exponent (usually ∼ 1/7 at neutral stability conditions) or
a variable one. Despite many papers in the literature used the 1/7 fixed exponent (Gualtieri 2019),
the second performs better (see Fig. 9). Gualtieri 2019 pointed out that the variable exponent power

Figure 9: Vertical wind speed profiles from different adjustments to measurements during daylight
for winter: the blue dashed line represents the profile estimated from the variable wind shear ex-
ponent of the power-law equation (adopted in this thesis); the green dashed line corresponds the
profile estimated from the power-law considering α = 1/7; the red dashed line represents the pro-
file obtained using the log-law equation; the black solid markers represent the mean values from
the measurements and error bars (Lopez-Villalobos et al. 2022).

law is the best recommended method — even compared to the log-profile, in absence of comple-
mentary data, like air temperature and relative humidity (Lopez-Villalobos et al. 2022).

Taking all the above points into account, we opt for the power law profile method. The ref-
erence ERA5 dataset provides both (u10, v10) and (u100, v100) wind speed fields, hence we use the
historical reanalysis data for interpolating the exponent locally at each grid point (α(x, t)). The in-
terpolation is calculated along the time steps and then averaged over the focus period (winters from
1990/91 to 2023/24). After, we use the result in the analysis of both ERA5 and GCFS hindcasts for
extrapolating the wind field at hub height. The method is summarised in the following formula:

U100(t, x) =
√

u2
10(t, x) + v210(t, x)× 10α(x) ; (1)

where U100 represents the total wind speed module intensity at 100 m height, u10 and v10 respec-
tively the zonal and meridional components of the wind speed at 10 m height. The fields are
expressed as a function of space (x) (x indicating one grid point) or space and time (t). The ex-
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trapolated wind at 100 m is used for both ERA5 and GCFS analysis so, if any error is introduced
by the extrapolation, it affects equally the two results. The comparison between the original and
extrapolated ERA5 U100 highlights the bias introduced by the extrapolation. It is mostly positive
over Europe, between 0.0 and 0.4 m/s, with only few coastal regions and Mediterranean countries
underestimating the velocities (Fig. 10). The magnitude of the bias is not severe, thus, we consider

Figure 10: Mean error for the wind at 100 m height calculated as the difference between ERA5
original data and extrapolated with the power law.

the power law method accurate enough for the nature of our applications.

2.2.3 Operational definition

In this thesis, an index for the intensity of the compounded, solar and wind, energy production is
developed, without opting for wind power curves or PV models, but weighting the physical fields
by the country energy capacity. The raw physical fields are weighted assuming that countries pri-
oritise installing the infrastructure where the physical energy source is the most intense. With these
weights, irregular coverage of installations is approximately accounted for in absence of informa-
tion about the exclusion zones. The weight, which we call source potential (γ), is defined at each
grid point, x, as the ratio between the grid point climatological mean (RSW↓

surf (x) and U100(x)) and
the respective country, c ∋ x, climatological mean (RSW↓

surf (c) and U100(c)) for surface radiation and
100m height wind speed.

γs(x) =
RSW↓

surf (x)

RSW↓
surf (c)

, γw(x) =
U100(x)

U100(c)
; (2)
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where the subscript letters s and w refer respectively to solar and wind. The definition of the solar
(SEP∗) and wind (WEP∗) energy production follows:

SEP ∗(t, x) = RSW↓
surf (t, x)γs(x)EC∗

s(c) (3)

and
WEP ∗(t, x) = U100(t, x)γw(x)EC∗

w(c) ; (4)

where RSW↓
surf (t, x) and U100(t, x) are the surface radiation at day t and grid point x. Given the

definition of γ and EC∗, the product of these two terms, integrated over the country, returns the
original NMEC. The compound-sourced energy production (CEP) is calculated as the weighted
sum of the normalised solar and wind energy productions:

CEP (t, x) =
SEP ∗(t, x)

maxx∈c(SEP ∗(t, x))
ωs(c) +

WEP ∗(t, x)

maxx∈c(WEP ∗(t, x))
ωw(c) ; (5)

with ω{s,w}(c) =
NMEC{s,w}(c)

NMECs(c) + NMECw(c)
. (6)

The weight ω is there to not penalize countries that, usually for climatic reasons, install substan-
tially more solar than wind plants or vice versa. The energy production indices SEP, WEP and
CEP are computed from ERA5 dataset and GCFS hindcasts raw fields, together with the Euro-
stat dataset, following equations 3, 4 and 5. Hereafter, SEP and WEP refer to the normalised and
omega-weighted SEP∗ and WEP∗. Now, CEP can expressed straightforwardly as SEP + WEP

and analysing if the compounded results behave additively from the individual sources is simpler.
Once the wind and solar power is obtained, we define a threshold that defines the drought ex-

treme condition. As discussed in Chapter 1, one method is leveraging percentiles: we prefer this
method a over fixed absolute threshold, since it always selects the same amount of most extreme
events, it partly accounts for the difference among models and technologies (Cannon et al. 2015).
In this thesis the threshold is set as the 15th percentile of the distribution over the all grid points
and time steps. Any day whose CEP (t, x) falls under the threshold is defined as a drought day; for
the sake of this study droughts frequency is computed only for droughts with persistence between
1 day and 2 weeks. More than 14 consecutive drought days are simply justified by climatological
reasons. For example, the Scandinavian countries during the selected winter months experience
very low solar radiation during the day thus some areas where constantly under threshold for the
chosen definition.

The operational definition described has multiple benefits, the estimation of the individual so-
lar and wind energy production allows comparisons among countries and at the same time focuses
on the physical fields rather than on the specifics of the technologies used. The end results are

19



not actual real energy estimates like capacities or generation, but they represent a realistic measure
of the intensity. This method is developed from scratch since most of the studies chose to follow
some wind power curve and PV model; a direct comparison with other studies is therefore hindered.
Focusing on the compounded CEP variable, the field has a less immediate interpretation than the
individual SEP and WEP. Nevertheless, it respects the mix of installed wind and solar capacities,
preventing to evaluate the extreme based only on the natural intensity rather than on the energetic
magnitude associated to the natural source. Sorting out the droughts after tailoring the CEP to the
national capacities through the normalisation accounts for lack of information on demands. Lastly,
following Kittel et al. 2024 recommendation, the percentile method is applied directly to the metric
of the compounded production. The two VRE sources are not treated separately, but their energy
production is interwined and so are the weak extremes.

2.3 Frequency, persistence and spatial extent of VRE droughts

In view of the concerns of the energy market or of the stakeholders around the occurrence of the
VRE droughts, the analysis and following predictability assessment focuses on the frequency of the
events. The frequency is computed as an aggregated count of the drought days over a certain period
(i.e., months or extended season); alternatively over a certain area (i.e., European macro-regions of
Northern, Central and Southern Europe5 or all of Europe6). When spatially aggregated, the drought
occurrence, referred to as ”extent”, is the count of grid points experiencing a drought, normalised
over the total number of grid points in the region. Thus, the final value represents a percentage of
the respective area under drought conditions.

To characterise the compounded VRE drought events their temporal persistence is also used
as a measure of their intensity or temporal evolution. At each grid point two time series are con-
structed, a drought persistence index and a drought ordinal day index. In the first, each day is
assigned a value corresponding to the number of consecutive drought days it belongs to; specifi-
cally, days without drought are coded as 0, while for each drought spell of length n, all days within
that spell are coded as n. For example, a grid point experiencing a 4-day drought would record the
following series: [..., 0, 4, 4, 4, 4, 0, ...]. This encoding captures the duration, providing a simple but
effective persistence measure. Furthermore, since longer events represent more severe shortfalls of
energy production, this index can also be interpreted as a measure of drought intensity. Secondly,
the ordinal day time series tracks the order of each day within a drought spell. In this encoding,

5Reproducing the Europe domain subdivision used in the IPCC 6th assessment report (IPCC 2023a)
6Europe indicates here the group of European countries in the Eurostat dataset that have been analysed.
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non-drought days are set to 0 and for each drought spell of length n, the respective n days are set
to [1, 2, ..., n]. For example, a grid point experiencing a 4-day drought would record the following
series: [..., 0, 1, 2, 3, 4, 0, ...]. This representation does not quantify the event intensity directly but
rather its temporal progression, allowing an analysis of how conditions evolve within a drought
episode.
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Chapter 3

VRE droughts predictability and index validation

Following the data analysis described in Chapter 2, in this chapter we present the results and pro-
vides interpretations for the main features obtained in the seasonal forecast analysis. The physical
interpretation and relevance of these results will be discussed in detail in the following chapter
(Chapter 4).

3.1 Evaluation of the GCFS

As an initial step toward evaluating the skill and limitations of the GCFS hindcasts, an analysis of
the raw meteorological fields used in this study is conducted. First, we assess the solar radiation and
surface wind fields; secondly, we evaluate the operational energy potential indices both individually
for wind and solar energy and as a combined (compounded) power index. While these fields do not
directly indicate skill in forecasting variable renewable energy (VRE) drought events, their analysis
is a necessary prerequisite for understanding the origins of predictive skill or lack thereof in the
model’s representation of VRE droughts.

3.1.1 Primary climatological fields

Figure 11: Root mean square error for a) shortwave downward radiation at surface, b) wind speed
at 10 m height and c) wind speed at 100 m height. The RMSE is computed only for the extended
winters (NDJFM) 1990/91 to 2023/24; we use the ensemble mean of the GCFS hindcasts for the
evaluation.
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Figure 12: Mean Error (biases) for a) shortwave downward radiation at surface, b) wind speed at
10m height and c) wind speed at 100 m height. The RMSE is computed only for the extended
winters (NDJFM) 1990/91 to 2023/24; we use the ensemble mean of the GCFS hindcasts for the
evaluation.

The root mean square errors (RMSE) for the shortwave downward radiation at surface field, the 10m
height wind field and the 100 m height extrapolated wind field are illustrated in Fig. 11. The RMSE
is calculated over the analysis period, spanning November to March for each year from 1990/91 to
2023/24. For solar radiation, the highest errors are observed over inland regions of Southern Eu-
rope, with notable peaks over Turkey, the Balkans and the Iberian Peninsula. In contrast, surface
wind fields exhibit larger deviations from ERA5 over oceanic areas — which lie outside the pri-
mary study region — while errors over land are generally lower. This may simply results by the
fact that surface wind are higher over sea. Wind at hub height shows elevated RMSE values across
much of the domain, with pronounced peaks over the Mediterranean islands and along the Norwe-
gian coastline. When examining RMSE computed on anomaly fields (see Fig. 27.B), the spatial
patterns closely resemble those seen in the RMSE of the full fields (Fig. 11). Overall, for all three
variables, the RMSE magnitudes and spatial distributions are nearly identical between the total and
anomaly fields. This consistency suggests that most of the model error arises from variability rather
than biases in the mean state.

To evaluate the nature of these errors, the bias is also computed (Fig. 12 and Fig. 28.B). The
mean error (ME) indicates that the model systematically underestimates solar radiation compared
to the ERA5 reference, particularly inland. It slightly overestimates 10-meter wind speed (U10),
particularly over coastal regions of Southern Europe and along the Norwegian coastline. The U100

bias (Fig. 11 c) is very similar to U10 bias (Fig. 11 b), but the values range in a larger interval,
[−10m/s; 10m/s]. Again, the results for the ME metric computed on the anomalies present very
similar maps, both for the sign pattern and intensities.

The result reveals a spatially widespread negative bias for the shortwave downward radiation
at surface and a positive bias for the wind speed at 10 m height in certain locations. The errors
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for the wind speed at surface anomalies are translated onto the U100 field, too. We find that the
extrapolation does not introduce new errors, but rather enhance the existing pattern for the wind
speed at surface level. The biases described in this section influence the energy production indices
defined in this thesis only to a limited extent, because the fields are weighted by terms accounting
for the respective climatological means.

3.1.2 Energy production metrics

Figure 13: Density curves for the all grid points and all days (not zero) values of the SEP (first
column), WEP (second column) and CEP (third column) indices. Values for a) all GCFS ensemble
members and b) ERA5. The red lines identify the 15th percentiles (computed on the ensemble
mean for GCFS) which identify the extremes.

The solar, wind and compounded energy production indices biases are analysed through the dis-
tribution (Fig. 13) and again the error metrics RMSE and ME (Fig. 29.B and Fig. 30.B). The
distributions present the SEP, WEP, CEP indices daily values from all ensemble members. The
densities are derived from all grid points and days (excluding zero values) across the study period.
The densities are expressed so that the integration of the curves returns 1. From the ensemble
mean distribution (Fig. 31.B), the values of the 15th percentile are extracted to define the indi-
vidual or compounded renewable energy droughts. For the solar and winter indices the curves in
ERA5 are regular, shaped like a gamma distribution: positively skewed towards the left, lower tail
and decreasing quite sharply towards the right tail. The model ensemble reproduce correctly the
positive skew and overall shape for the SEP index, but it is less dense in the left, lower tail and
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stretches towards higher values in the right, higher tail. The WEP density curve completely misses
the skewness. The range extends to higher values, like for the solar, despite they do not influence
the compounded drought definition which follows a thresholding method, it is still worth consider-
ing in sight of the physical interpretability of the following results. The SEP and WEP values range
between 0 and 1, thus the CEP index ranges in the [0;2] interval. While ERA5 compounded index
reaches 0.5 at maximum, the model values stretches over 1.0. This arises from the combined over-
estimation of both SEP and WEP individually. The combination of SEP and WEP also produces a
bimodal distribution of CEP, differently from ERA5 whose curve reaches a single maximum. An
overall strong positive bias is observed in the ME in Fig. 28.B, too. Although the ME calculated
on the anomalies (Fig. 29.B) is small enough to be negligible; the error in representing the lower
end of the distributions, especially for the wind index and thus also for the compounded, is relevant
in the treatment of the extremes. Nonetheless, the left tail is still under-represented in the model,
meaning neither the outliers reproduce those extremes.

3.2 VRE drought characterisation

Having evaluated the GCFS’s representation of raw climatological fields and energy production
metrics, the characterization of VRE drought events now follows. This analysis focuses on three
key aspects: the mix of solar and wind energy during droughts, the persistence of these events and
their spatial extent. Understanding these characteristics is essential for interpreting the model’s
prediction skill, which will be discussed in the following section.

3.2.1 Individual sources mix

The fraction of the CEP index derived from either SEP or WEP indices is illustrated in Fig. 14. The
maps depict which of the two components, SEP or WEP, dominates during compounded drought
events for each month. The plot depicted here shows the results from ERA5 dataset, but the pattern
from the GCFS ensemble mean are very similar (Fig. 32.B), thus the discussion will be unique.
A clear meridional gradient is observed, with Northern Europe (i.e., Scandinavia, Iceland and the
UK) predominantly relying on wind energy production (WEP), indicating a greater dependence on
wind energy during compounded drought events. In contrast, Southern Europe (i.e., Italy, Greece
and Turkey) tends to exhibit a mixed pattern, with a notable. shift towards solar energy production
(SEP). Central Europe and the Iberian Peninsula, on the other hand, exhibit a seasonal variation
in energy reliance. From November onwards, wind energy production (WEP) tends to dominate;
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Figure 14: Dominance of energy source during VRE drought events. Each subplot refers to a
lead time in [# months]. Dark blue (value = −1) indicates complete dominance of wind energy
potential (WEP), while bright yellow (value = 1) indicates complete dominance of solar energy
potential (SEP). Intermediate colours (i.e., grey) reflect mixed contributions from both sources.
Values are computed from the ERA5 dataset.

by February, energy conditions become more balanced between wind and solar sources; lastly, in
March, there is a marked shift towards a greater reliance on solar energy production (SEP). In
Slovakia, Hungary and Albania the solar fraction noticeably dominates during all the months. It is
worth noticing in these two countries the installed capacity for the wind energy is less then 0.1%
of the combined solar and wind capacity, hence the results in Fig. 14 are explained. The opposite
happens in Croatia and Kosovo, where the fraction is high for WEP for all 5 months, although in
these countries the percentage of installed technologies is less unbalanced.

3.2.2 Persistence of VRE droughts

We analyse the distribution of drought events persistence for the two datasets, GCFS (left) and
ERA5 (right) in Fig. 15. For each group of consecutive drought days (indicated as drought event),
one value equivalent to the number of days in the event is considered. The density is highest at low
persistence values, in both GCFS and ERA5, with a peak at 2 days length for the hindcasts and at
1 for the reanalysis. The densities rapidly decrease as persistence increases, indicating that most
drought events are short-lived. The tail extending to higher persistence values is long and mostly
unpopulated, suggesting that while rare, some drought events last above 5 days in both datasets.
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Figure 15: Density curves of the lengths in days of drought events in a) the GCFS model ensemble
mean and b) ERA5. Bin width corresponds to 1 day.

3.2.3 Spatial extent of VRE droughts

The spatial extent of drought days — defined as the normalised count of grid points experiencing a
VRE drought on a given day — is aggregated separately for Northern, Central and Southern Europe
and for Europe in total. The ACC values are reported in Tab. 1. Correlation is high (except for
the Northern Europe region) and always statistically significant. We find this result remarkable,
consequently we explore the extent metric more in detail.

EU NEU CEU SEU

0.55 0.15 0.59 0.65

Table 1: Anomaly correlation coefficients computed for the percentage of the region experiencing
drought conditions, based on daily values from November to March (1990–2024). Columns show
the coefficients for the entire domain (EU), Northern Europe (NEU), Central Europe (CEU) and
Southern Europe (SEU). All values are statistically significant (p-value <0.05).

we investigate the difference between individual and compounded drought extents, in order to un-
derstand if they are ascribable to large-scale rather than local-scale weather conditions. The scores
for ERA5 regional monthly mean extents in Fig. 16 show that the solar energy extreme lows are
on average more vast than the compounded energy droughts, which, in turn, are vaster than the
wind energy extreme lows for Northern Europe and all Europe. In the other regions, no event is
registered below the SEP 15th percentile, so the extent is not illustrated. Nevertheless, the extent
of the compound energy drought always overshoot the wind energy extreme lows extent, except in
Southern Europe.
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Figure 16: Average monthly drought extent among individual (SEP and WEP) and compounded
(CEP) extreme lows. The data is grouped by region: all Europe and Northern (NEU), Central
(CEU) and Southern (SEU) Europe. The x-axis representing the lead time. Calculated from ERA5

Then, we investigate the behaviour of the ensemble spread, instead of only adressing the en-
semble mean. The series of scatter plots in Fig. 17 presents a comparative analysis of the GCFS
ensemble distribution against ERA5 reanalysis data across the different regions and months. The
data points are averaged by month, ranging from 0 to 4 months lead times, each colour refer to a
specific month. For each ERA5 value the correspondent month-and-year values in the GCFS en-
semble are depicted. To represent the ensemble spread a box is used: the whiskers stretch from
the minimum to maximum values, the box contains the second and third quartiles values and a
dot coincides with the ensemble mean. Moreover, a least-square linear regression is computed to
provide a quantitative assessment of the correspondence in the plots. The regression metrics are
shown in the top right corner, detailed version in Tab. 3.B. For all Europe, data points are densely
clustered around the lower values of both axes, with a noticeable spread along the red dashed line
(slope ≃0.93), but shifted, of about 7%. For Northern Europe (Fig. 17 b), the scatter is more dis-
persed compared to other regions, with data points spreading up to 25%. The distribution shows a
significant overlap between different lead times suggesting low sub-seasonal variations, correctly
predicted by the model. Conversely, GCFS ensemble mean reduces the inter-annual variability,
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Figure 17: Scatter plots comparing GCFS ensemble distribution of monthly averaged drought
extent (normalised) for distinct regional grouping: (a) all EU, (b) Northern EU, (c) Central EU and
(d) Southern EU. The values are represented by boxes showing the ensemble minima and maxima
(whiskers), first and third quartile (box) and mean (dot). Boxes are colour coded by lead time (in
months). The red dashed line represent the 1:1 ideal correspondence. In the top right corner: slope
(a), intercept (b), coefficient of determination (R2).
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with the exception of the first hindcast month (0 month lead). Values, for Central Europe, range
only between 0% and 7% with occasional members stretching up to 10%. While this low variability
mostly coincides for the last two months in ERA5, the first lead month should range up to ∼15%
and ∼10% the second. Lastly, Southern Europe has similar characteristics of Central Europe, with
the same alignment along the red dashed line and inter-annual variability varying with the months.
The first three hindcasts months have greater inter-annual variability than the last two, both in the
GCFS and ERA5. It is worth noticing that R2 ≃0.8 for the three regions: all, Central and Southern
Europe; while it is very low for Northern Europe.

3.3 VRE droughts prediction skill

With a clear understanding of the spatial and temporal characteristics of VRE droughts, the GCFS’s
skill in predicting their frequency is now assessed. This section evaluates the anomaly correlation
coefficients (ACC) for drought occurrences at the grid point level. The prediction of drought extent
aggregated over larger regions is moderately reliable, as already mentioned in Section 3.2 (ACC
measures in Tab. 1). We also examine the contributions of individual solar and wind indices to
compounded drought predictability.

Due to the nature of the impact that VRE drought events have on the energy market and dis-

Figure 18: Correlation coefficients of anomalies for the monthly count of drought days are shown,
displaying only statistically significant positive correlations (p-value <0.05). Each subplot refers
to a lead time (in months). Maps illustrating the full correlation signal, including non-significant
and negative values, are provided in Fig. 33.B.
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tribution across Europe, the primary focus is on predicting the frequency of energy shortfalls, on a
monthly or seasonal timescale. Therefore, the Anomaly Correlation Coefficient (ACC) is calculated
for the monthly and wintertime frequency of VRE droughts to quantitatively assess the prediction
skill of VRE drought occurrences. The total ACC scores are found in Tab. 4.B; the values are not
significant (p-value >0.05) and in any case they never reach 0.1 or above. Instead, the maps in Fig.
18 show the significant (p-value <0.05) ACC along the time dimension only, grid point by grid
point. Notably, regions with significant positive correlations are primarily concentrated in central
and western Europe, with some variability in intensity and spatial extent as the lead time increases.
At shorter lead times (0 and 1 month), the signal appears occasionally more coherent and intense.
For example, in England, France and northern Italy, in November and northern France and northern
Germany, in December. At longer lead times, the spatial coverage is highly heterogeneous and the
correlation strength tends to diminish slightly. To explore the underlying reasons for the spatial in-
coherence observed in the ACC results for compounded energy drought occurrences, the same anal-
ysis is conducted separately for extreme low occurrences of the solar, wind and compounded energy
indices. The statistically significant ACC maps for the monthly and November-to-March counts of
days below the 15th percentile, without excluding droughts longer than 14 days are presented in
Fig. 19. Again, as expected, the skill is the highest when the model is initialised in November
and it gradually decreases with increasing lead time. The spatial patterns are heterogeneous, with
areas of significant skill varying from month to month and across indices. For what concerns the
solar energy extreme lows, the signal is not very informative, since the percentile threshold is never
met in most of Europe. Events are recorded exclusively in Scandinavia, where any positive corre-
lation may be influenced by the relatively lower inter-annual variability of the RSDS field during
the winter months compared to other regions (Parding et al. 2014; Dommenget 2022). The wind,
instead, shows widespread significant correlation, as does the compounded energy extremes, but
the two also do not appear related, with the significant signal turning up consistently in different re-
gions and with different intensity. For example, in December (1 month lead) pockets of significant
correlation for the wind energy extremes appear over southern France, north-east Spain, Italy and
western Germany, while for the compounded energy extremes they appear over northern France,
England and Sweden.

In conclusion, the region average ACC (Tab. 4.B) suggests no prediction skill, however the
maps indicate a few sparse location where the correlation is indeed relevant.
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Figure 19: ACC for the monthly count of days below the 15th percentile threshold are shown for
the SEP index (first column), WEP index (second column) and CEP index (third column). Only
statistically significant positive correlations (p-value <0.05) are displayed here. Maps showing the
total correlation coefficients, including non-significant and negative values, are found in Fig. 34.B.
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3.3.1 Individual drivers

To better assess the indices’ behaviour, we evaluate the contributions of the individual solar and
wind indices to the compounded VRE drought. For each SEP and WEP the monthly anomalies are
calculated exclusively for the days classified as compounded drought days7.

To compare the values between the GCFS ensemble mean and the ERA5 reference, those
anomalies are averaged monthly in order to obtain time series of the same length. The results are
shown in Fig. 20. Here, similarly to the maps already examined (Fig.s 18 and 19), the signal
of positive correlation is extremely scattered over Europe; even more, there are no clear clusters
of coherent coefficients values. The locations marked in Fig. 18 by the skill in monthly count of
drought days are repeated in Fig. 21 c, but masked to highlight the locations where the model shows
skill in predicting neither SEP or WEP monthly mean anomalies for the drought days (grid points
in Fig. 20 with no significant signal). It is evident that most of the relevant signal for the ACC of
the compounded drought frequency occurs in locations where, instead, the model does not score a
significant ACC in any of the two indices monthly mean anomalies for the drought days. Meaning
that the GCFS performs well in simulating the monthly frequency of the compounded VRE drought
days especially in regions where it does not perform well in simulating the variability during the
drought days of neither individual sources energy potential index.

3.4 Validation of the compounded VRE drought definition

To test the robustness and interpretability of the compounded energy potential index and the con-
sequent compounded VRE drought selection, the behaviour of the index, computed from ERA5
data, is compared against documented events reported in the literature. Although very few studies
provide concrete examples of solar and wind compounded drought events with spatio-temporal de-
tail, two cases are reported by Li et al. 2021, which we use here as benchmarks. The first occurred
in Belgium, between the 15th and 17th and between the 22nd and 25th of January 2017 (evolution
of the event in Fig. 37.B); the second in Germany, between the 16th and 26th of January 2017
(evolution of the event in Fig. 22). In both episodes, the index successfully detected the events
(Fig. 36.B and 38.B), reproducing a significant spatial footprint. For Belgium, the index succes-
fully identifies the two temporal windows that characterised the event. However, where the event
is extremely localised, the index is averaged over the entire Belgium, hence the index tends to be
smoothed. These findings underscore the critical role of spatial resolution in the case of localised

7Events of 1 day to 14 days duration.
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Figure 20: ACC of SEP and WEP monthly mean anomalies during drought days, computed be-
tween the GCFS ensemble mean and ERA5. Only the positive significant (p-value <0.05) signal is
reproduced. Maps showing the total correlation coefficients, including non-significant and negative
values, is found in Fig. 35.B.
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Figure 21: The highlighted locations are locations where ACC is positive and significant for the
monthly count of drought day as in Fig. 18. In red, locations where the model shows skill in
predicting: a) only SEP monthly mean anomalies for the drought days (in Fig. 20 a) b) only WEP
monthly mean anomalies for the drought days (in Fig. 20 b); c) neither index. In blue otherwise.
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Figure 22: Map of Germany from the 15th to the 26th of January 2017, showing the ordinal day
time series of the multiple-days drought event (for the definition of the index see Chapter 2).

extremes, the index can be significantly diluted when evaluated at coarser scales, such as the grid
resolution of the GCFS model.

A further indirect validation is provided by Kittel et al. 2025, whose climatological study,
based on model simulations, identified the winter of 1995/96 as the most critical period for the in-
terconnected European grid. Consistent with this, the Europe-wide mean of the compounded index
we use falls well below the drought threshold during that period, indicating a widespread reduc-
tion in renewable energy potential. However, this event cannot be analysed spatially within that
study due to the large domain considered, the extent anomalies are instead depicted in Fig. 23. The
study defined potential shortages without corroborating evidence from power system operations
and, consequently, no further investigation is conducted.
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Figure 23: On the left, CEP index anomalies average over all Europe. On the right, the extent
anomalies. The time frame is from the 1st of November 1995 to the 1st of March 1996.
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Chapter 4

Dynamics and challenges of VRE availability

After we presented the results in Chapter 3, now we discuss their physical interpretation with the
objective of assessing the GCFS 2.2 prediction skill of solar and wind compounded energy droughts
in Europe. Based on the analysis presented in Fig. 18, in some locations the seasonal hindcasts
can be reliable (i.e., Sweden and Finland for solar droughts, southern France and Spain for wind
droughts, northern France and Scandinavia for compounded droughts), depending on the lead times.
Interestingly, the skill does not appear to be clearly linked to neither solar nor wind indices, sug-
gesting a non-additive behaviour, despite the definition of CEP index. As illustrated, the model
exhibits limited skill in capturing the inter-annual variability of compounded VRE droughts, with
forecast accuracy varying significantly across the spatial domain. Nonetheless, the index success-
fully identifies documented compounded energy drought events, such as the compounded drought
in Belgium and Germany in January 2017. Although spatial resolution is critical for accurately
detecting local extremes, aggregation over macro-areas increases the prediction skill. The model
mostly fails to locate precisely the droughts at small-scales, but predicts large-scale conditions good
enough to successfully produce a reliable measure of the drought extent across larger regions. In
the following chapter we provide a more detailed discussion and interpretation of these findings.

4.1 Predictability of VRE droughts

The ACC are very low (≲0.2) and not statistically significant almost at all lead times for: individ-
ual solar and wind extremes, compounded extremes and compounded VRE droughts8 (Tab. 4.B).
While this result is concerning, an analysis of the Anomaly Correlation Coefficient (ACC) over
time reveals that certain localized regions exhibit forecast skill. This initial comparison between
the Tab. 4.B and Fig. 18 suggests that, although the overall predictive skill across Europe is low,
there are specific grid points where the monthly frequency of these events shows a statistically sig-
nificant positive correlation with the ERA5 reference. Almost for all type of events analysed in
this thesis (individual/compounded extremes, compounded droughts) we do not find clear regional

8Events of 1 day to 14 days duration, extremes count also drought events longer than 2 weeks.
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clusters among these points, which is one of the most puzzling aspects of the results. Occasional
coherent patterns appear, at shorter lead times, over France, Germany and UK.

Previous studies highlighted a link between compounded or even individual VRE droughts
with large-scale circulation patterns in Europe, like the principal modes of variability and blocking
regimes (Wiel et al. 2019a; Mockert et al. 2023). Therefore, assuming there is a relation between
the occurrence of VRE droughts and large-scale atmospheric patterns, we expect seasonal forecast-
ing models could perform moderately well. Global climate models knowingly perform better in
predicting large-scale circulation patterns rather than small-scale dynamics. In the GCFS model
— which features a horizontal resolution of approximately 100 Km — processes at scale lower
than the grid resolution are not explicitly resolved, but rather parametrized (Randall et al. n.d.).
Nevertheless, the results we present do not support this line of reasoning. A possible explanation
is that while compounded VRE droughts are often driven by synoptic circulation regimes, their
local manifestation depends on mesoscale processes (Wiel et al. 2019b), specifically cloud cover,
the orography and local winds (i.e., sea breeze, mountain and valley breezes). For example, a
Scandinavian blocking high may suppress both wind and solar energy across France (Wiel et al.
2019b), but local cloud cover or coastal wind effects could modulate the drought intensity quite
differently between Paris and Nantes. The GCFS model may capture the large-scale circulation
and its related radiation and wind speed anomalies, but it may fail to resolve the local intensities,
leading to scattered skill even if the large-scale atmospheric flow is properly predicted. The fact
that the individual SEP and WEP ACC scores are also spatially scattered in Fig. 20 suggests that
the compounded signal inherits this fragmentation. Another element contributing to this reasoning
comes from the compounded energy droughts persistences distribution in Fig. 15. We find that the
GCFS tends to underestimate the frequency of one-day drought events, while overestimating those
lasting two days. We believe that this discrepancy may be due to the fact that shorter events are
often driven by local, small-scale extreme conditions, whereas longer-lasting events are more likely
associated with large-scale atmospheric patterns. When local extreme conditions are not aligned
with tendencies driven by the large-scale dynamics, the model probably fails to capture the event,
which may explain the discrepancies between the GCFS and the ERA5 density curves in Fig. 15.

We investigate the causes of these occasional alignments by examining the individual indices
and the characteristics of the drought events. Following a bottom-up approach (Wiel et al. 2019a),
the aim is identifying potential common features among those scattered locations. However, we
do not reveal any striking characteristic connecting those locations. As shown in Fig. 21 c, the
majority of the points where the correlation is relevant does not have relevant correlation in the in-
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dividual energy sources. Consequently, it remains unclear whether these episodic alignments occur
randomly or are driven by underlying physical mechanisms.

4.1.1 Assessing the predictability of compounded and individual energy sources

Following the adoption of a bottom-up approach, we shift the analysis to a more granular level to
decouple anomalies in solar and wind indices (Fig. 20) and to investigate their individual extremes
(Fig. 19). We find that individual solar and wind extreme lows are not spatially correlated; on
the other hand, certain regions are predominantly influenced by either the wind or the solar index
(Fig. 14). Moreover, dynamical drivers of wind and radiation anomalies may act inversely on the
two variables, meaning that a specific weather pattern may be positively correlated to the radiation
anomalies, but causing negative wind anomalies. These types of relationships also vary signifi-
cantly over a large area like Europe (Lledó et al. 2022). For example, in our analysis, in northern
France — where VRE sources are relatively well balanced — the NAO index correlates positively
with SEP anomalies and negatively with WEP anomalies. Therefore, during a strong positive NAO
phase, it is likely that France will experience high positive solar energy potential anomalies and neg-
ative wind energy potential anomalies. Only in the regions where the wind anomalies are strong
enough, or the cloud cover damps the intense radiation, or both, it is possible that a compounded
drought will be recorded. The model must predict the large-scale atmospherical pattern (positive
NAO), which would help correctly identifying the sign of the anomalies, but also the intensity must
be correctly predicted to correctly represent the intersection of the sources and thus the compounded
energy drought. As previously mentioned, the intensity is highly influenced by small-unresolved
dynamics.

4.1.2 Role of model biases

First, the errors in the raw radiation (Fig. 11 and 28.B) suggest that the model tends to underestimate
RSDS. In the MPI-ESM-HR model (used in the GCFS), the cloud water-to-rainwater conversion rate
was reduced compared to the lower resolution MPI-ESM (Müller et al. 2018). The reason for that
was successfully improving the variance of the Niño 3.4 index in the model. The conversion rate is
the parameter representing the rate at which cloud water is converted to rainwater through collision
and coalescence processes. A lower conversion rate results in more water being retained within the
cloud, which dissipates more slowly or not at all, leading to increased cloud cover, liquid water path
and water vapour path (Mauritsen et al. 2012) (Fig. 25). This primarily impacts tropical convec-
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Figure 24: Correlations between the NAO index and ensemble mean anomalies of: a) surface
shortwave radiation (RSDS), b) wind at 10m height (U10), c) SEP and d) WEP. Grey crosses indicate
the non-significant coefficients. Only December to February (DJF) mean anomalies are used here.
We provide more details of the computation in Appendix C.

tion systems, since in winter time extratropical and sub-polar regions experience fewer convective
clouds. They are instead dominated by stratus clouds, related to weather fronts (Wilcox et al. 2007).
Anyway, we believe this parameter increases the persistence of clouds, especially convective sys-
tems (more frequent at lower latitudes where the strongest bias is located). This would explain
the negative bias in shortwave downward radiation at surface found in this study, since RSDS is
anti-correlated to the cloud cover and specifically to the cloud water content (Dutton et al. 2006;
Stephens et al. 2010).

The distribution of SEP values (Fig. 13) differs notably, exhibiting a longer right tail compared
to ERA5 values. Given the underestimation of the radiation field, we would expect the SEP index
to also be underestimated, with a higher frequency of lower values. We attribute the difference to
the operational definition of the index (Eq. 3), specifically the normalisation of SEP. To make an
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Figure 25: Overview of the influence of the conversion rate tuning parameter on various globally
averaged model properties. In order: cloud cover (on the left), liquid water path (in the centre) and
water vapour path (on the right) as function of the conversion rate. More details in Mauritsen et al.,
2012, Fig. 3 (Mauritsen et al. 2012).

effective comparison, we scale the terms discussed here with respect to the correspondent ERA5
variables. Where the bias is unevenly spread, the RSDS ME scales as a factor of −10−1, thus also
SEP∗ does, while the SEP∗ country maxima scales, on average, as a factor of 1. Thus the ratio is
greater for the GCFS; in other words, country maximum SEP∗ is underestimated more than grid-
point SEP∗.

Considering the biases in the wind speed fields, orography may play a crucial role. The MPI-
ESM-HR model did not apply a correction for orographic wave drag, as the winds were already
adjusted in the Northern Hemisphere (Müller et al. 2018). Although Fig. 11 still shows slightly
greater errors over mountainous regions such as the Alps and western Norway. In addition, the
greatest deviations are registered near coastlines and especially over Mediterranean islands (i.e.,
Cyprus, Corsica, Greek islands). Because it is coarse, the model horizontal grid may not even con-
sider as land the smaller islands, thus the high errors. As mentioned, the magnitude of the errors
for U100 is almost double the errors for U10. Nevertheless, both positive mean errors scale up to an
average factor (over land) of the order of 10 times less the ERA5 U10 and U100, since the wind speed
at 100 m height is higher than closer to the surface. The WEP index distributions (Fig. 13) show an
increment in the range of the values, which is in agreement with the detected bias, differently from
the SEP case. The ensemble averaging is the cause of the major differences in shape with respect to
ERA5, as highlighted by the difference with the distribution of Fig. 31.B. Conversely, we find that
the model underestimates very low extreme values counts for both SEP and WEP. We believe those
values represent short-lived droughts, spatially localised, like the 1-day events underestimated in
the persistence distribution (Fig. 15).
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Overall, for the WEP, and especially for the SEP cases, the final skill is determined by the
alignment of local biases. Wherever these biases influence the multiple terms contributing to the
index calculation in a way that balances out, those locations may exhibit skill. The spatial hetero-
geneity suggests that this alignment occurs not in regional clusters, but rather in a more random
distribution.

4.1.3 VRE droughts extent and ensemble spread

Based on the preceding discussion, it is evident that accurately predicting VRE droughts depends
on the reliable forecasting of a wide range of atmospheric conditions across multiple spatial and
temporal scales. Alternatively, it depends on the coincidental cancellation of errors arising from
the inaccurate prediction of several contributing variables. For example, highly underestimating
SEP and moderately overestimating WEP would lead to correctly forecasting a drought even if the
real-world case is mainly driven by weak WEP. Analysis of the extent and ensemble spread of solar,
wind and compounded drought (Fig. 16) highlight the importance of highly localised conditions
for extreme lows. The ACC scores with respect to the compounded energy drought extents are high
and significant, showing that the model performance improves when evaluating metrics aggregated
over larger regions. Thus we give particular attention to the ensemble spread of these variables
(Fig. 17).

All the previous analysis focus on just the ensemble mean, but extreme events (like VRE
droughts) are often driven by outliers in the ensemble distribution (Vavrus et al. 2015). In fact, the
ensemble mean often smooths out extremes and also inter-annual variability. Recalling the link to
NAO phases, Fröhlich et al. 2021 found a significant NAO prediction skill up to 0.4 for the GCFS
2.0, although raging between 0.1 and 0.62 among members. Looking at the ensemble spread is
crucial, although in our case often not even the outliers predict the ERA5 drought extents (Fig.s 13
adn 17). The R2 metrics (on the ensemble means-ERA5 linear regressions) are moderately high
in the scatter plots shown in Fig. 17 for all Europe, Southern and Central Europe. High R2 means
some relation with the ERA5 values is detected in the linear regression, whilst for Northern Europe,
where R2 ≃0.3, we suppose non-linear discrepancies between ERA5 and model. Nevertheless, it
is only in the scatter plot for Northern Europe, that the model ensemble consistently overspread
the 1:1 correspondence line, with partially degrading scores at longer lead times. The observation
that only the all-Europe extents exhibit a slope close to 1 reflects the influence of the thresholding
method used. Specifically, droughts are defined using the 15th percentile calculated over the entire
domain. This approach was called balancing effect by Kittel et al. 2025, which differs from apply-
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ing thresholds at the country level (called portfolio effect) or at individual grid points. The model
ensemble overestimates the monthly mean extents only for the Northern Europe region, while it
underestimates the extents in both of the other regions. Hence, we believe the model exaggerates
the compounded extremes in very specific regions. As a consequence the threshold selects those
extremes which result to be much more frequent in those specific regions, while in ERA5 the ex-
tremes are more homogeneously spread across Europe. We locate those regions in Scandinavia
where, very likely because of the SEP (see Fig. 34.B), the model overestimates the extent of the
droughts (Fig. 17 b), while it underestimates the extent of the droughts elsewhere (Fig. 17 c and
d). Only over the all domain, within which the threshold is picked, the extent of the droughts is
correctly simulated, aside from a clear bias.

An analysis focused on specific ensemble members could have helped in this case just over the
region of Northern Europe. It is to be pointed out that working with ensemble means also lowers the
inter-annual variability. Although in our case, as depicted in Fig. 17 for all, Central and Southern
Europe, when the ensemble mean deviates consistently from ERA5 values, the majority of times,
not even one member correctly predicts the extent. The only exception is seen for the months of
February and especially March, notably during which the ERA5 data shows very little inter-annual
variability (around 5% at maximum).

In conclusion, the model’s performance improves when evaluating aggregated metrics over
larger regions, as evidenced by high and significant ACC for compounded droughts. The skill
highlighted here is not affected by the ensemble-mean smoothing-effect, in fact, even outliers often
fail to predict the observed drought extents in ERA5. However, the NAO prediction skill in the
GCFS ensemble ranges among members, with few scoring up to ∼0.7. A more targeted analy-
sis of individual ensemble members (i.e., ensemble subsampling) could provide further insights,
improving NAO correlation. At the contrary, members-selection-methods would unlikely improve
the drought extent inter-annual variability. This result is aligned with Bett et al. 2022, where they
suggested the number of extreme events per season was unlikely linearly related to a climate driver.

In summary, the results obtained in this thesis can be explained by limitations in both the model
and the study’s methodology. They interact to account for the differences observed between the
GCFS and ERA5 raw variables, the distribution of indices, and, ultimately, drought frequency and
extent.

Starting with the first, a seasonal forecasting model like the GCFS provides daily quantities
by aggregating hourly data. Solar energy production generally follows the same curve as radiation
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intensity, showing a relatively regular increase in the morning and decrease later in the day. While
wind energy features much greater daily variability. This is due not only to the inherent variabil-
ity of wind itself but also to technical factors such as wind turbine cut-in and cut-off speeds (Wiel
et al. 2019a). Studies are available on this subject (Lopez-Villalobos et al. 2022), but for the pur-
poses of this investigation and considering the reliability of seasonal forecasts on such detailed time
sampling, dealing with daily values is reasonable. Of course, a more detailed and rigorous daily
analysis could be performed when analysing VRE droughts prediction skill of weather forecasts,
focusing on shorter time ranges, but this goes beyond the scope of this thesis.

In addition to temporal resolution, spatial resolution is a key factor influencing the model’s
performance. Resolution was found critical for climate extreme detection (Brunner et al. 2025).
Firstly, it influences the orography representation and thus the local, small-scale atmospherical cir-
culations, like, for example, wind breezes. The GCFS model already implements a wind adjustment
which was revealed to be beneficial in decreasing the surface wind velocities bias with respect to
the MPI-ESM-LR model (Müller et al. 2018). On the contrary, higher spatial resolution did not
show relevant improvements in the NAO predictability skill (Müller et al. 2018). As discussed,
compounded VRE droughts were often found to be linked with large-scale circulation modes and
blocking regimes (Wiel et al. 2019a; Wiel et al. 2019b; Jerez et al. 2013b; Lledó et al. 2022; Drücke
et al. 2021; Mockert et al. 2023). The NAO is the most relevant of these patterns, showing a strong
correlation with both wind speed and solar radiation. However, its predictive skill varies signifi-
cantly among ensemble members, (Fröhlich et al. 2021). To make a comparison, the SEAS5 model
(ECMWF’s fifth generation seasonal forecast system), with a much higher grid point resolution
of 36 Km, scores similarly between 0.12 and 0.67 for the NAO index correlation (Johnson et al.
2019). Instead, Scaife et al. 2014 found that NAO prediction skill rises slowly with the ensemble
size in seasonal forecasting models. Specifically, around 50 members were considered ideal to
capture the majority of the variability. In our case, the GCFS hindcasts run an ensemble size of
only 30 members, while forecasts run with indeed 50 members. Despite some members had proven
to reach high correlation coefficients (>0.5), the lower the ensemble size the lower the number of
members with high skill. The ensemble mean smooth out those reliable results with less performa-
tive members and the final, averaged skill is worsened. Apart from NAO, also other regimes like
the Scandinavian blocking and the East-Atlantic/Western Russia were related to the occurrence of
compounded energy droughts (Wiel et al. 2019a; Mockert et al. 2023). Fröhlich et al. 2021 found a
slight improvement from previous versions of the GCFS in the predictability of European blocking
regimes for northern and western events, but not for south-eastern and central events. Differently
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from the NAO variability, European blocking regimes predictability benefits from higher resolution
(∼40 Km) (Jung et al. 2012).

The discrepancy between ensemble mean outputs and individual members. The ensemble av-
eraging is a disadvantage also for the already weak inter-annual variability reproduced by some of
the members, see Fig. 17. Given that few members are expected to show good correlation with the
NAO index (Fröhlich et al. 2021; Scaife et al. 2014), the model flaws in forecasting larger inter-
annual variability may be a result of the skill for the NAO index, rounded down in the ensemble
mean. The winter NAO, when correctly predicted, showed low signal-to-noise ratio of the pre-
dictable signal, making it valuable for predictions of regional winter extremes (Scaife et al. 2014;
Chiacchio et al. 2010; Zubiate et al. 2017). Despite the downsides linked to the ensemble mean and
the evidence that revealed ensemble outliers to be crucial for extreme events detection (Vavrus et al.
2015); we show that the ensemble members in the first and fourth quartiles not always score close
to the ERA5 reference (Fig. 17). Therefore, conducting an analysis on selected ensemble members
could help identify common features that contribute to the skill in predicting compounded VRE
droughts. However, such an analysis would still be affected by biases and non-linear discrepancies
when compared to the ERA5 dataset.

A lack of bias correction is an apparent limitation to this study. The initial errors translate non-
linearly to the indices and thus to the drought detection, which is moderately evident in the RSDS
and subsequent SEP errors. The high ACC values for macro-regional extents, Tab. 1, highlight a
strong potential, at least for aggregated variables, in detecting the anomalous extent of compounded
VRE droughts. Thus, we believe that the biases do not significantly affect variability at larger spa-
tial scales, but may influence the accuracy of small-scale localization. Therefore, we recommend
that future studies implement a bias correction step before proceeding with the analysis.

A notable limitation of this study is the lack of a sensitivity test for the chosen 15th percentile
threshold. While the percentile-based approach ensures a consistent definition of extreme events
across regions and time periods, the arbitrary selection of the 15th percentile may influence the
detected drought frequencies and spatial patterns. Previous work by Cannon (Cannon et al. 2015)
demonstrated that wind energy extremes are highly sensitive to threshold selection, with skill vary-
ing non-linearly across regions. Given the added complexity of compounded solar-wind droughts,
such sensitivity is likely amplified in our study. A systematic assessment of how different thresholds
affect the frequency, extent and predictability of VRE droughts would strengthen the robustness of
the results. This analysis is left for future research but we recognise it as a critical step to ensure
the findings are not an artifact of the threshold choice.
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Also related to the threshold, another limitation concern the selection method: the percentile
of the all domain distribution. We suppose the GCFS selected 15% compounded extremes are
denser in Northern Europe. We attribute this to model biases that lead to discontinuous GCFS-
ERA5 differences in the droughts spatial distribution. Fig. 17 suggests that, when aggregating over
all Europe, the peculiarities due to biases, noise and resulting percentile selection (which are likely
spatially patchy) balance each other out, showing an encouraging results in the ACC scores (Tab.
1) and scatter plot with respect to ERA5 (Fig. 17). An alternative threshold selection method il-
lustrated by Kittel et al. 2025 (portfolio effect), not explored in this study, may hold the benefits of
cancelling out peaks of regional extremes that compromise the all droughts detection in the second
case. Nevertheless, we find biases and non-linear departures from ERA5 are to be ascribed to mean
state discrepancies and local specificities. In fact, day by day extent anomalies over large areas
show moderately high skill (Tab. 1).

Despite the described limitations in the indices definitions and following droughts selection,
we acknowledge that the index validated two cases cited in literature (i.e., Belgium and Germany,
January 2017). This confirms that the definition based on compounded solar and wind energy po-
tential can capture real low-production situations. One of the greatest advantages of the index we
introduced is the combination of the two sources; the compounded index incorporated the individual
sources energy potential allowing the definition of a unique threshold to define the compounded
energy drought. Conversely, in literature, often two thresholds were used to identify individual
sources energy droughts and then their coexistence analysed, a method not recommended in Kittel
et al. 2025.
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Chapter 5

Conclusions

In this thesis we have assessed the seasonal predictability of compounded variable renewable en-
ergy (VRE) droughts in Europe using the German Climate Forecast System (GCFS) version 2.2.
The transition to renewable energy sources, specifically solar and wind, makes predicting periods
of VRE availability critical. Reliable seasonal forecasts of VRE droughts, given their financial
and societal impacts (Denholm et al. 2011), are pivotal to ensure grid stability and inform energy
policy. Our findings reveal a complex picture: while predicting local drought occurrence remains
challenging, the GCFS demonstrates significant and valuable skill in forecasting the large-scale
spatial extent of these events.

5.1 Summary of methodology and key findings

To bridge a gap in the literature, we develop novel, generalizable indices for solar (SEP), wind
(WEP) and compounded (CEP) energy production (Chapter 2). Unlike approaches reliant on spe-
cific turbines or PV models, these indices weight surface solar radiation and wind speed (all in-
formation that can be easily provided by forecasting systems) by national energy capacities. VRE
droughts are defined using a threshold-based approach, with the 15th percentile of the CEP dis-
tribution identifying extreme lows in energy production. Our method is applicable across diverse
regions and energy systems. This offers a scalable framework for seasonal forecasting that is both
meteorologically grounded and relevant to the energy sector.

The core finding (Chapter 3) is the GCFS significant prediction skill for the spatial extent of
droughts when aggregated over macro-regions. The model achieves high and statistically signif-
icant ACC values for daily drought extents in Central Europe (0.59) and Southern Europe (0.65)
(Tab. 1). We find limited skill in predicting the inter-annual variability of VRE drought frequency.
ACC for local monthly occurrences are generally spatially heterogeneous (Fig. 18). Few regions —
such as Scandinavia for solar droughts, southern France or Spain for wind droughts and northern
France and Germany for compounded droughts — show significant positive correlations clusters
(Fig. 19). This spatial heterogeneity aligns with findings from Bett et al. 2022, who observed
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spatially scattered skill in seasonal forecasts of seasonal-mean wind speed and solar irradiance in
Europe.

Interestingly, we found that the predictability of compounded droughts is not a simple func-
tion of the predictability of its individual solar or wind components (Fig. 21). This non-additive
behaviour suggests that compounded droughts arise from complex, non-linear interactions between
large-scale meteorological drivers (i.e., NAO and blocking regimes) and small-scale wind breezes
and overcast conditions (driven by orography and coastal effects) (Wiel et al. 2019a; Mockert et al.
2023). Furthermore, we ascribe this complexity to the challenging role of major teleconnection
patterns, primarily the NAO (Wiel et al. 2019a; Lledó et al. 2022). The influence of the NAO on
compounded VRE availability is not straightforward; its correlation varies significantly in sign and
intensity across European regions and between solar and wind resources (Fig. 24). This explains
why the predictability of a compounded drought does not clearly align with that of its individual
parts, which often exhibit complementary behaviours (Kaspar et al. 2019). For the GCFS to cor-
rectly predict a drought, it requires a precise alignment between a accurately forecasted large-scale
circulation pattern and the resulting local weather conditions. The spatially scattered nature of the
model’s skill suggests that this alignment is not tied to consistent regional sources of predictability
but occurs rather randomly.

5.2 Contribution to the seasonal predictability of VRE droughts

A primary contribution of this work is the development and validation of the compounded energy
production index. This index provides a measure of energy system stress by integrating both solar
and wind potential into a single metric. Its validation against documented drought events in Bel-
gium and Germany in January 2017 confirms its ability to capture real-world VRE low-production
situations (Sec. 3.4).

The spatial heterogeneity in prediction skill is itself an important finding. It reflects the inher-
ent complexity of compounded VRE droughts, which are influenced by a combination of large-scale
circulation patterns and local mesoscale processes. The GCFS, with its ∼100 Km horizontal res-
olution, is able to simulate the large-scale dynamics (Fröhlich et al. 2021) that create widespread
drought conditions, as evidenced by the high skill in extent forecasting. However, it does not re-
solve the finer-scale processes that determine the precise location and intensity of droughts, leading
to the scattered grid-point skill. Nevertheless, a key implication of our research is the demonstrated
feasibility of using seasonal forecasting systems, like the GCFS, for predicting VRE drought extents
at coarser scales. This skill, while limited locally, is precisely what is needed to satisfy the require-
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ments of strategic energy planning and large-scale grid management, especially for coordinating
resources across interconnected national systems.

5.3 Limitations and future research outlook

This study is sensitive to certain methodological choices, which also point toward potential avenues
for future research and improvements. The use of a fixed 15th percentile threshold, while statisti-
cally consistent, may influence the detected drought spatial patterns. Future work should include a
sensitivity analysis across different thresholds (i.e., 10th, 20th percentiles). They should also imple-
ment a bias-correction step to mitigate model systematic errors, which likely contribute to regional
imbalances in drought extent estimation (Northern Europe Fig. 17).

The established link between VRE availability and large-scale teleconnection patterns, cou-
pled with the model’s variable skill in predicting them (Fröhlich et al. 2021 assessed GCFS NAO
prediction skill ∼0.40), suggests several strategies to enhance forecasts. Firstly, statistical or ma-
chine learning models could leverage bridging methods to enhance forecast skill. Tools more ad-
vanced than linear or multi-linear regressors could use teleconnection indices as predictors and
better capture non-linear interactions (Bett et al. 2022; Lledó et al. 2022). Secondly, rather than
relying on the ensemble mean, which smooths out extremes, selecting members that best repre-
sent key teleconnection patterns could extract more skillful predictions from the existing ensemble.
This method, referred to as ensemble subsampling (Dobrynin et al. 2018; Dobrynin et al. 2022),
was employed in literature, specifically for climate extreme detection (Paolini et al. 2025), so it
represents a promising application in this case, too. Thirdly, employing high-resolution models,
such as Regional Climate Models (RCMs), can better resolve mesoscale processes (Müller et al.
2018). RCMs could test the hypothesis that while large-scale patterns modulate the occurrence of
drought-prone conditions, mesoscale processes control their local intensity and precise manifesta-
tion.

In conclusion, we demonstrated that while the direct prediction of local VRE drought frequency
using the GCFS remains a challenge, the model shows promising and operationally valuable skill
in forecasting the large-scale spatial extent of compounded droughts. This capability to provide
advance warning of widespread Dunkelflaute (dark-and-dull) conditions is crucial for energy sys-
tem operators, enabling optimized deployment of backup generation and storage. By leveraging
generalized meteorological metrics, we have provided a foundational and scalable framework for
the seasonal forecasting of compounded VRE droughts. We advised future improvements should
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consider bias correction, threshold sensitivity test, bridging methods, ensemble subsampling and
higher-resolution modelling. As Europe’s energy transition accelerates, such predictions will be
indispensable for building a resilient and reliable renewable-powered grid.
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Appendix A

Data and methodology

In this appendix, we provide detailed technical specifications and supplementary analyses to sup-
port the data and methodology described in Chapter 2. The focus is on two key aspects: the GCFS
configuration and VRE droughts persistence bound.

German Climate Forecast System (GCFS) 2.2: Appendix A.1 outlines the model configura-
tion, including its coupled components, resolution, initialization and boundary conditions. These
details are essential for understanding the GCFS’s capabilities and limitations in simulating the
meteorological fields used to derive the solar (SEP), wind (WEP) and compounded (CEP) energy
production indices.

VRE Droughts persistence bound: Appendix A.2 addresses the treatment of extremely long
drought events (lasting over 14 days). These events, while rare, are excluded from the main analysis
to focus on short-to-medium duration droughts (1–14 days), which are more operationally relevant
for energy system planning.

Together, these sections provide the technical foundation for the data processing and method-
ological choices that underpin our results.

A.1 German Climate Forecast System 2.2

Tab. 2.A summarizes the key technical specifications of the German Climate Forecast System
(GCFS) version 2.2, including its coupled model components, resolution, initialization data and
boundary conditions. The GCFS is based on the MPI-ESM-HR model and provides hindcasts we
employ for the historical period 1990–2024. The system’s configuration influences its ability to
resolve large-scale climate patterns while parametrizing smaller-scale processes. These details are
critical for interpreting the model’s performance in predicting variable renewable energy (VRE)
droughts, particularly in regions where local dynamics (i.e., orography or coastal effects) play a
significant role.

52



Model Coupled model: ECHAM 6.3.05 (atmosphere), JSBACH
3.20p1 (land), MPIOM 1.6.3 (ocean)

Coupling frequency 1 hour

Horizontal resolution and grid T127 (∼100 Km) on regular Gaussian grid

Atmosphere hindcast initialisation ERA5

Ocean hindcast initialisation Ensemble Kalman Filter, adapted to MPIOM for 3D Tem-
perature and Salinity using EN4 data

Sea-ice hindcast initialisation Ensemble Kalman Filter using OSISAF

Land hindcast initialisation Indirect via atmosphere initialisation

Hindcast ensemble size 30

Hindcast set Static

Boundary conditions Ozone, vulcanic aerosol and greenhouse gases forcings are
provided by CMIP6.

Tropospheric aerosols by MACv2.

Table 2.A: GCFS specifics (Penabad 2025).

A.2 VRE droughts persistence bound

The spatial distribution of compounded VRE droughts lasting longer than 14 days, Figure 26.A,
which were excluded from the main analysis. Such prolonged events are rare and often climato-
logically justified (i.e., persistent low solar radiation in Scandinavia during winter). Masking these
events ensures the study focuses on short-to-medium duration droughts (1–14 days), which are more
relevant for operational energy system planning. The map highlights regions where long-lasting
droughts occur.
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Figure 26.A: Count of the compounded VRE droughts with extremely long persistence (over 14
days long) which are masked out in our analysis of droughts occurrences. ERA5 (left) and GCFS
ensemble mean (right).
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Appendix B

Results

This Appendix complements Chapter 3 by presenting additional results and diagnostics that deepen
the understanding of the GCFS’s performance in predicting VRE droughts. The appendix is orga-
nized into four sections.

Primary Field Biases (B.1): this section examines the error metrics (RMSE and ME) for the
primary meteorological fields—surface shortwave radiation and wind speed at 10 m and 100 m

heights. We distinguish between errors in the raw fields and their anomalies, revealing whether dis-
crepancies arise from systematic biases or inter-annual variability. These diagnostics are critical
for interpreting the model’s skill in simulating the physical drivers of VRE droughts.

Droughts Characterisation (B.2): the spatial and temporal characteristics of VRE droughts,
including the dominance of solar versus wind energy during drought events, are further explored.
The maps and figures illustrate how the GCFS reproduces or deviates from observed patterns in the
ERA5 reanalysis.

VRE Drought Predictability (B.3): detailed spatial maps and tables of ACC for the frequency
of VRE droughts and individual solar and wind extremes are provided. These results highlight the
spatial heterogeneity of the model’s skill, with pockets of significant predictability among broader
areas of low correlation. We underscore the challenges of forecasting compounded events, which
depend on complex interactions between solar and wind drivers as explained in Chapter 4.

Validation (B.4): the last section validates the CEP index against documented drought events
in Belgium and Germany (January 2017). Linear regression diagnostics and spatial maps demon-
strate the index’s ability to detect these events, albeit with some smoothing of local extremes. This
validation reinforces the robustness of the index for regional-scale applications while acknowledg-
ing limitations in resolving fine-scale variability.

Overall, Appendix B provides comprehensive supporting evidence for the findings discussed
in Chapter 3, offering deeper insights into the model’s strengths, weaknesses and the physical dy-
namics underlying VRE drought predictability.

55



B.1 Primary field biases

Maps in Fig.s 27.B to 30.B display the error metrics of: surface shortwave downward radiation, 10
m wind speed and 100 m wind speed, calculated over extended winters (NDJFM) from 1990/91
to 2023/24. Comparing the total signal RMSE in Fig. 11 and the anomalies RMSE in Fig. 27.B,
for example, reveals whether errors arise from mean state biases or inter-annual variability. The
spatial patterns are nearly identical, indicating that most model errors stem from variability rather
than systematic offsets. Notably, wind speed errors are amplified at 100 m due to extrapolation,
but no new biases are introduced. The model underestimates solar radiation (negative bias in Fig.

Figure 27.B: Root mean square error for the field anomalies of a) the shortwave downward radiation
at surface, b) the wind speed at 10 m height and c) the wind speed at 100 m height. The RMSE
is computed only for the extended winters (NDJFM) 1990/91 to 2023/24; the GCFS model data is
averaged on the ensemble.

Figure 28.B: Mean error for a) the shortwave downward radiation at surface anomalies, b) the
wind speed at 10 m height anomalies and c) the wind speed at 100 m height anomalies. The ME
is computed only for the extended winters (NDJFM) 1990/91 to 2023/24; the GCFS model data is
averaged on the ensemble.

28.B) across most of Europe, likely due to overestimated cloud cover, while overestimating wind
speeds, particularly along coastal and mountainous regions.
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The ME for anomalies (rather than raw fields) isolates biases in the model’s inter-annual vari-
ability. The patterns closely resemble those in Fig. 27.B, confirming that errors in anomalies are
consistent with errors in the mean state. These biases propagate into the energy production indices
(SEP, WEP, CEP) but are mitigated or enhanced by the climatological weighting in the index defi-
nitions. The comparison between ensemble mean and ERA5 distribution of all days, all grid points,
indices is instead illustrated by Fig. 31.B. These biases suggest that the GCFS struggles to capture
both the magnitude and temporal evolution of key meteorological drivers for VRE droughts and
that translates into VRE indices, too.

Figure 29.B: Root mean square error for energy production indices (above) and their anomalies
(below). The RMSE is computed only for the extended winters (NDJFM) 1990/91 to 2023/24; the
GCFS model data is averaged on the ensemble.

B.2 VRE droughts characterisation

Fig. 32.B mirrors Fig. 14 but uses the GCFS ensemble mean to show which energy source (solar
or wind) dominates during compounded droughts. The meridional gradient—wind dominance in
the north, solar in the south—is reproduced, though the model’s biases (i.e., overestimated WEP
in Scandinavia) may exaggerate certain patterns. The similarity to ERA5 (Fig. 16) validates the
model’s ability to capture broad spatial trends, if not exact magnitudes. Tab. 3.B quantifies the
relationship between ERA5 reanalysis and GCFS ensemble mean for drought extent across Europe.
The high R2 values (∼0.8) for all Europe, Central and Southern Europe indicate strong agreement
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Figure 30.B: Mean error for energy production indices (above) and their anomalies (below). The
RMSE is computed only for the extended winters (NDJFM) 1990/91 to 2023/24; the GCFS model
data is averaged on the ensemble.

EU NEU CEU SEU

p-value 2.36e-62 6.57e-14 8.95e-64 1.71e-63

Standard error 0.035 0.028 0.006 0.010

Table 3.B: Linear regression diagnostics between ERA5 reanalysis (x) and the GCM ensemble
mean (y) across: all Europe (EU), Northern (NEU), Central (CEU) and Southern (SEU) Europe,
on the columns. Include the p-value, statistical significance, (first row) and standard error of the
slope (second row).

at aggregated scales. The slope and intercept metrics reveal systematic biases, such as the model’s
tendency to overestimate drought extent in the north. The p-values confirm the robustness of these
results.

B.3 VRE droughts prediction skill

Tab. 4.B provides ACC scores for the monthly and winter (NDJFM) counts of compounded VRE
droughts and solar, wind and compounded extremes. CEP extremes differ from compounded
drought because of the duration filter applied in the definition of drought: events longer than 2
weeks are not considered in the drought count, but they are in the extremes count. The lack of
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Figure 31.B: Density curves for the all grid points and all days (not zero) values of the SEP (first
column), WEP (second column) and CEP (third column) indices. Values for a) GCFS ensemble
mean and b) ERA5.

statistically significant values (p-value >0.05) underscores the model’s limited skill in predicting
inter-annual variability at the grid scale. However, the occasional significant correlation (under-
lined) hint at localized predictability, explored further in the spatial maps (Fig.s 34.B, 33.B). The
following maps show the full ACC signal (including non-significant and negative values) for com-
pounded VRE drought frequencies (Fig. 33.B). While most of Europe exhibits low or insignificant
correlations, pockets of positive skill are found. The spatial heterogeneity reflects the model’s strug-
gle to resolve local-scale processes. Similarly, Fig. 34.B extends the analysis to individual solar
(SEP), wind (WEP) and compounded (CEP) extremes. The scattered significant correlations sug-
gest that prediction skill is not uniformly tied to either solar or wind drivers but depends on complex
interactions between the two. The lack of coherent regional clusters emphasizes the challenge of
forecasting compounded events.
Lastly, adding to Fig. 20, we illustrate the full signal of the ACC maps for the SEP and WEP
monthly mean anomalies during drought days.
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Figure 32.B: Dark blue (value of 1) indicates a complete dominance of wind energy potential
(WEP), while bright yellow (value of 1) signifies a complete dominance of solar energy potential
(SEP). Intermediate colours (i.e., grey) represent varying degrees of contribution from both sources.
Each subplot refers to a different lead time (in months). Values computed from the GCFS ensemble
mean.

0 month
lead

1 month
lead

2 month
lead

3 month
lead

4 month
lead

wintry
count

comp.
drought 0.038 0.027 -0.012 0.018 0.010 0.057

SEP 0.053 0.085 0.009 0.228 0.049 0.142

WEP -0.026 -0.013 -0.028 0.133 0.019 0.063

CEP 0.047 -0.002 -0.012 0.128 0.065 0.107

Table 4.B: Anomalies correlation coefficients computed along all dimensions (time, longitude,
latitude) for the monthly count and total NDJFM count of compounded energy drought days (first
row) and of days in which the index falls below the 15th percentile threshold (second to fourth row).
The coefficients that score a p-value <0.05 are underlined.
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Figure 33.B: ACC for the monthly count of drought days. Each subplot refers to a lead time (in
months). Computed on the GCFS ensemble mean and ERA5 (NDJFM 1990/91-2023/24).
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Figure 34.B: Anomalies correlation coefficients for the monthly count of days below the 15th per-
centile threshold for the a) SEP index, b) WEP index and c) CEP index. Computed on the GCFS
ensemble mean and ERA5 (NDJFM 1990/91-2023/24).
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Figure 35.B: ACC of a) SEP and b) WEP monthly mean anomalies during drought days between
GCFS ensemble mean and ERA5.
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B.4 Validation of VRE droughts metrics

CEP index anomalies and persistence for Belgium (January 2017) validates the compounded index
against the documented drought event (Li et al. 2020). The index successfully detects the event,
though spatial averaging dilutes the signal. The persistence map confirms the temporal evolution
of the drought, aligning fairly well with reported dates (15th-17th and 22nd-25th) (Li et al. 2020).
In addition, the maps (Fig. 37.B) tracks the progression of the event, using the ordinal day index
(Section 2.3). The GCFS captures the event’s spatial footprint, though with reduced intensity com-
pared to ERA5. This highlights the model’s utility for large-scale detection but limited resolution
for local extremes. For the second case study in Germany, January 2017, the drought reportedly
reduced German VRE share to 10% of the total energy mix (Walker 2017). In this case, the signal is
clearer and the CEP index for is validated for the German drought event (Fig. 38.B). The anomalies
and persistence align with observed data, though the model smooths out peak intensities. The case
study demonstrates the index’s robustness for regional-scale applications.

Figure 36.B: On the left, CEP index anomalies average over Belgium. On the right, the persistence
index defined in Section 2.3 also averaged over Belgium. The time frame is from the 14th to the
25th of January 2017.
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Figure 37.B: Map of Belgium from the 14th to the 25th of January 2017, showing the he ordinal
day time series of the multiple-days drought event (for the definition see Section 2.3).

Figure 38.B: On the left, CEP index anomalies average over Germany. On the right, the persistence
index defined in Section 2.3 also averaged over Germany. The time frame is from the 15th to the
26th of January 2017.
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Appendix C

GCFS large-scale circulation patterns

We identified the leading modes of winter (December–February, DJF) climate variability over Eu-
rope by performing an Empirical Orthogonal Function (EOF) decomposition on seasonal mean
anomalies of the 500 hPa geopotential height field. The first four EOF patterns, shown in Fig.
39.C, correspond to the major large-scale circulation patterns influencing European climate, with
EOF1 representing the North Atlantic Oscillation (NAO). The associated indices for each mode
were computed as the Principal Components (PCs), which are the projections of the geopotential
height field onto the orthogonal EOF bases. This analysis was applied to the model ensemble mean
over the 1990–2024 historical period. To quantify the relationship between these circulation modes

Figure 39.C: The first four EOFs of DJF 500 hPa geopotential height anomalies, representing the
dominant modes of atmospheric variability over Europe. EOF1 corresponds to the NAO pattern.

and key energy variables, we computed the Pearson correlation coefficient between each PC and the
DJF anomalies of surface solar radiation (RSDS), 10 m wind speed (U10) and the solar (SEP) and
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wind (WEP) energy production indices. The results for the NAO (PC1) are discussed in the main
text (Fig. 24). We further assessed the direct link to VRE droughts by correlating each PC with
the DJF count of compounded drought events (Fig. 40.C). The most robust significant correlations
were found over Scandinavia. Other regions exhibited more sporadic significant signals: positive
correlations in Scotland and parts of Eastern Europe for PC1 (NAO), negative in central France for
PC2, negative in southern England for PC3 and positive in the Balkans for PC4. A comparison with

Figure 40.C: Correlations between the PC indices 1 to 4 and ensemble mean DJF count of com-
pounded droughts. Grey crosses indicate the non-significant coefficients.

existing studies (Lledó et al. 2022; Bett et al. 2022) reveals notable differences in these correlation
patterns (Fig. 2). Such metrics are highly sensitive to the calculation methodology, data source
and analysed period. Consequently, the results presented here, based on the ensemble mean of
the GCFS, are not intended as a comprehensive review but rather to provide an initial insight into
the links between large-scale circulation and VRE variables within the specific GCFS forecasting
system.
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