ALMA MATER STUDIORUM — UNIVERSITA DI BOLOGNA
CESENA CAMPUS

Department of Computer Science and Engineering - DISI
Second-cycle Degree in Digital Transformation Management

Class: LM-91

Retail Inventory Management in the
Digital Era: A Web-Based Solution for
In-Store Retail Operations

Graduation thesis in
SOFTWARE ENGINEERING

Supervisor Candidate
Prof. Giovanni Ciatto Riccardo Leonelli

2nd Session
Academic Year 2024-2025

il

Abstract

This thesis presents the design, implementation, and evaluation of Stock Uniters, a
web-based stock management system developed for Poltronesofa. The project was
motivated by the limitations of the previous Excel-based workflow, which relied on
manual updates, suffered from delays in communication, and lacked accountability
and traceability.

The developed solution replaces fragmented spreadsheets with a centralized,
full-stack application. The system features a Vue.js Single Page Application fron-
tend and a FastAPI backend integrated with the company’s Oracle infrastructure.
Core functionalities include real-time stock registration, document scanning and
uploads, role-based dashboards, and secure authentication through JWT. By em-
bedding business rules directly into application logic, the system not only supports
daily operations but also enforces organizational consistency.

A pilot deployment in five stores demonstrated significant improvements in effi-
ciency and data reliability. Key performance indicators (KPIs), such as stock regis-
tration delay, document completeness, and inventory accuracy, showed measurable
progress compared to the Excel-based process. Moreover, the system contributed
to improved managerial visibility and enhanced accountability at the store level.

Beyond technical contributions, this work highlights the broader role of digital
tools in enabling organizational change. The project illustrates how the introduc-
tion of Stock Uniters served as a concrete step in Poltronesofa’s digital transfor-
mation, demonstrating that even focused solutions can yield meaningful benefits
in efficiency, traceability, and cultural alignment towards data-driven decision-
making.

1l

v

Acknowledgements

I would like to express my deepest gratitude to my family, whose constant support,
patience, and encouragement have given me the strength to face this journey. Their
example and trust have been a precious guide throughout both my academic and
personal path.

Thanks also go to my friends, who have stood by my side with understanding
and lightheartedness, offering support during challenging times and sharing with
me the satisfaction of every milestone achieved. Their presence has made these
years not only a path of study, but also a rich and unforgettable human experience.

Disclaimer on the Use of Generative Al

This thesis may include content that was generated or refined using generative
artificial intelligence (GenAl) tools such as ChatGPT by OpenAl. These tools
were used solely to assist with tasks such as language correction, summarization,
idea generation, or code suggestions. All outputs were critically reviewed and
edited by the author to ensure academic integrity and originality. The author
remains fully responsible for the content, analysis, and conclusions presented in
this work.

vi

Contents

[Abstractl

(1 _Introduction|

[2

Background|

3

2.2 What is a Web Application?|
[2.3 Company and Use Case Context|.
2.4 Problem Domainl
[2.5 Existing Solutions and Related Work{
[2.6 Technology Stack Overview|
2.6.1 Backend (FastAPI)
2.6.2 Frontend (Vuejs)|
2.6.3 User Documentation (PDF Guide)|

Analysis

[3.1 Functional Requirements|
B.1.1 Authentication and User Accessl
[3.1.2 Inbound Stock Registration|
[3.1.3 Stock Exit Registration|.
[3.1.4 Returns Management|.
[3.1.5 Inventory Adjustments|
[3.1.6 Movement History and Reporting|
[3.1.7 Brochure Management|

3.2 User Roles and Access Leveld

[3.3 Non-Functional Requirements|

3.4 Use Cases e
3.4.1 UCI — Record Inbound Stockl
[3.4.2 UC2 — Register Kit Exat|
[3.4.3 UC3 — Register Kit Return|.
(3.4.4 UC4 — Pertorm Inventory Adjustment|.

vii

iii

viii CONTENTS
[3.4.5 UCH — Request Brochures| 23

3.4.6 UC6 — Monitor Stock Movements 24

3.5 User Stories| 24
[3.5.1 Seller — Register Incoming Stockl. 24

[3.5.2 Seller — Register Kit Exit|. 25

3.5.3 Seller — Returna Kitl 25

[3.5.4 Store Manager — Adjust Inventory|. 25

[3.5.5 Store Manager — Request Brochures 25

[3.5.6 Area Manager — Monitor Movements| 26

4 Designl 27
[4.1 System Architecture|o 27
[4.1.1 Architectural Paradigm|. 28

@4.1.2 Frontend Layer (Vue.js)| 28

[4.1.3 Backend Layer (FastAPL)| 29

[4.1.4 Database Layer (Oracle)] 30

[4.1.5 Cross-Cutting Concerns| 30

[4.2 High-Level Architecture Diagram| 31
[4.2.1 Purpose of the Diagram| 32

[4.2.2 Frontend Layer| 33

[4.2.3 Backend Layer| 33

[4.2.4 Database Layer| 34

[4.3 Component Overview|. 35

[5 Implementation| 37
[>.1 Key Technologies Used| 37
[5.2 Backend Implementation (FastAPL)|. 39
[5.2.1 JW'T Authentication and Request Processingl 46

[5.3 Frontend Implementation (Vuejs)| 48
h.4 Authentication Flowl L. 49
6 Fvaluation| 51
[6.0.1 Application Pages Overview| 51

[6.1 Evaluation Setup| 58
[6.2 Automation and Improvements| 59
[6.3 Impact on Operations| 60
[6.4 Relevant KPI: Stock Registration Time] 61
(r__Conclusion and Future Workl 63
(7.1 Summary of Contributions| 63

CONTENTS

1X

CONTENTS

List of Figures

[3.1 Use Case Diagram of the Stock Uniters System| 21
(4.1 High-level architecture of the Stock Uniters plattorm| 32
[6.1 Login page of the application| 52
(6.2 Home page and navigation menul 53
[6.3 Ingresso Merce page| 54
[6.4 Uscita Merce page| 55
[6.5 Reso Merce pagel 56
[6.6 Magazzino page| 57
[6.7 Dashboard page| oo 58

X1

xii

LIST OF FIGURES

Chapter 1

Introduction

In recent years, digital transformation has become a central theme in the evolu-
tion of retail organizations. Companies increasingly recognize that competitive-
ness does not depend solely on the quality of products, but also on the efficiency,
transparency, and responsiveness of the processes that support daily operations.
Inventory management, in particular, represents a critical domain where digital
solutions can replace manual and fragmented practices, transforming them into
structured, real-time workflows that benefit both local staff and upper manage-
ment.

Poltronesofa, as a leading furniture retailer with a widespread store network,
faces the challenges typical of distributed organizations: heterogeneous operational
practices, delays in communication, and the risk of incomplete or inconsistent data.
Before this project, stock management in stores was handled mainly through Ex-
cel spreadsheets, manually updated and periodically shared with area managers.
While functional at a basic level, this approach was prone to errors, lacked trace-
ability, and delayed decision-making. Such inefficiencies demonstrated the need
for a digital tool capable of standardizing workflows, improving data reliability,
and providing immediate visibility across the network.

The thesis addresses this challenge through the design, implementation, and
evaluation of Stock Uniters, a web-based stock management application tailored
to the operational needs of Poltronesofa. The project is not limited to software
development in a narrow sense: it represents an active contribution to the com-
pany’s digital transformation, showing how technological choices can be aligned
with organizational goals. By embedding business rules (such as warranty valida-
tion, conditional acceptance of deliveries, and mandatory justifications for adjust-
ments) directly into the application logic, the system acts not only as a support
tool but also as an instrument of governance and cultural change.

From a technical perspective, the project demonstrates the use of a modern full-
stack architecture that combines a Vue.js Single Page Application for the frontend

2 CHAPTER 1. INTRODUCTION

with a Fast API backend and Oracle integration. The solution leverages role-based
authentication, document scanning, and responsive dashboards to support daily
operations while ensuring accountability and security. From an organizational
perspective, the system has enabled real-time stock registration, reduced reporting
delays, and improved transparency between store staff and area managers.

A central managerial motivation behind the project was the improvement of
specific Key Performance Indicators (KPIs) that directly reflect the efficiency and
reliability of stock management. In particular, the thesis focuses on reducing stock
registration delays, increasing document completeness, minimizing mismatches be-
tween physical and digital stock, and improving overall inventory accuracy. These
KPIs translate the company’s strategic goals—such as transparency, accountabil-
ity, and timely decision-making—into measurable outcomes, providing a concrete
benchmark for evaluating the impact of the digital solution.

The structure of the thesis reflects the evolution of the project itself: from the
analysis of requirements, through the design and implementation phases, to the
evaluation of its impact in a pilot deployment. The final discussion highlights both
the contributions achieved and the limitations encountered, pointing to possible
directions for future improvement.

In general, this work illustrates how a targeted digital solution, developed with
a clear understanding of business processes, can act as a catalyst for efficiency,
accountability, and data-driven management. At the same time, it underlines
the role of the developer not only as a programmer, but also as a participant in
organizational innovation and change.

Chapter 2

Background

In today’s retail landscape, efficient inventory management is essential for deliver-
ing consistent customer experiences, especially in organizations with a widespread
and distributed store network. As product offerings diversify and operational com-
plexity increases, the ability to monitor, control, and respond to stock movements
in real time has become a strategic priority [RDTO01]. This is particularly true for
companies like Poltronesofa, where customer service excellence and operational
consistency across multiple locations are key differentiators in a highly competi-
tive market.

This chapter provides the necessary context for understanding the motivation
and scope of the system developed in this thesis. It begins by introducing Poltrone-
sofa, a leading Italian furniture brand recognized for its handcrafted products and
expansive retail presence. The overview highlights the company’s emphasis on
in-store customer experience and the logistical challenges that arise from operat-
ing across multiple countries and store formats. Within this context, particular
attention is given to the internal handling of post-sales support materials, such
as maintenance kits, which—although secondary to the primary product offer-
ing—play a crucial role in supporting brand quality and service expectations.

The chapter then explores the role of web applications in enabling modern
business workflows. It explains how browser-based systems provide a practical and
scalable solution for managing operations across distributed environments, allow-
ing for real-time access to centralized data without requiring local installations or
complex hardware infrastructure. This is especially relevant for retail operations,
where store staff and managers must be able to interact with systems quickly and
intuitively while serving customers.

Following this technological overview, the chapter outlines the specific use
case that motivated the development of the solution presented in this thesis. It
identifies the limitations of existing manual and semi-digital methods used to man-
age stock, including spreadsheets, email exchanges, and verbal communication,

4 CHAPTER 2. BACKGROUND

and describes how these methods led to inefficiencies, inconsistencies, and a lack
of visibility. By analyzing the workflows and responsibilities of different user roles
within the organization, the chapter defines the operational pain points that the
proposed system aims to resolve.

To situate the project within a broader technological context, the chapter also
examines existing inventory management solutions and related digital tools.
It compares enterprise-grade platforms, lightweight apps, and mid-tier solutions,
evaluating their suitability for the specific needs of Poltronesofa’s store network.
This comparison illustrates the functional gap that the custom-developed platform
seeks to address, namely, the need for a tailored, scalable, and user-friendly solution
that aligns closely with real operational workflows.

Finally, the chapter presents an overview of the architecture and technolo-
gies used in the implementation of the system. It discusses the rationale behind
the selection of FastAPI and Vue.js, and explains how their modularity, perfor-
mance, and ease of integration support the platform’s goals. Particular emphasis
is placed on the system’s Progressive Web App (PWA) capabilities, its multi-role
access model, and its integration with existing infrastructure such as the Oracle
Database used by the company.

By the end of this chapter, the reader will have a comprehensive understand-
ing of the organizational, technological, and functional background that shaped
the development of the Stock Uniters platform. This foundation is essential for
appreciating the design decisions and implementation strategies described in the
chapters that follow.

2.1 About Poltronesofa

Poltronesofa is a leading Italian furniture company renowned for its expertise in
the design, production, and sale of handcrafted sofas and armchairs. Established in
1995 in Forli, the company has experienced steady and continuous growth over the
years, evolving from a national brand with local recognition into a prominent player
in the European furniture market. Today, Poltronesofa operates an extensive retail
network composed of hundreds of stores, not only throughout Italy but also in
countries such as France, Belgium, and Switzerland. This geographic expansion
reflects a business strategy centered on internationalization, brand consistency,
and strong logistical capabilities.

The company’s core identity is deeply rooted in traditional Italian craftsman-
ship. All products are designed and produced with attention to artisanal quality,
aiming to combine aesthetics with long-lasting comfort. Each sofa and armchair
can be customized to suit individual customer needs, with an extensive catalog of
upholstery materials, colors, finishes, and modular configurations. This high level

2.1. ABOUT POLTRONESOFA 5

of personalization allows Poltronesofa to serve a wide and diverse customer base,
while reinforcing its reputation for elegance, comfort, and durability.

What distinguishes Poltronesofa from many of its competitors is its distinctive
retail approach. Rather than focusing solely on online sales or self-service experi-
ences, the company emphasizes an in-store, high-touch customer journey. Every
store is staffed by trained sales consultants who guide customers through the se-
lection and configuration process, ensuring that the final product reflects both
aesthetic preferences and functional requirements. This model requires not only
excellent interpersonal skills from staff, but also efficient and reliable operational
support to manage quotations, orders, deliveries, and service follow-up.

Behind the scenes, this high level of customer service is enabled by tight coor-
dination across several critical business domains, particularly sales, logistics, and
customer service. These areas must interact seamlessly to support day-to-day op-
erations and respond quickly to customer requests or logistical changes. Given the
distributed nature of the retail network and the volume of daily transactions, the
ability to maintain consistency and efficiency becomes a strategic priority.

To address these needs, Poltronesofa has progressively integrated various in-
ternal digital tools into its workflows. These tools are used to facilitate communi-
cation between stores and headquarters, standardize internal procedures, manage
stock and order information, and ensure a common operational framework across
all retail locations. By digitizing and automating parts of its internal processes,
the company is able to monitor performance, reduce human error, and maintain a
high standard of service quality, regardless of the geographic location of a store.

The continued success of Poltronesofa demonstrates the effectiveness of this
approach, combining the tradition of Italian craftsmanship with modern organi-
zational practices and digital innovation. This balance has allowed the company
to strengthen its brand identity while remaining agile and responsive to changes
in market demand.

The company’s ongoing digital transformation is also supported by a dedi-
cated internal IT department, which plays a strategic role in the development,
integration, and maintenance of digital systems across the organization. This
team is responsible for ensuring system availability, data security, and the seam-
less operation of business-critical applications used daily by staff in stores and at
headquarters. In addition to infrastructure and software support, the department
also manages Business Intelligence (BI) tools that provide essential insights
for decision-making. Through centralized data collection and analysis, the BI sys-
tems enable managers to monitor KPIs, identify operational trends, and optimize
resource allocation. These capabilities are crucial for maintaining efficiency across
a distributed retail network and for aligning local activities with the company’s
broader strategic goals. The collaboration between I'T specialists, business stake-

6 CHAPTER 2. BACKGROUND

holders, and store personnel ensures that technological solutions are practical,
scalable, and closely aligned with real-world workflows.

2.2 What is a Web Application?

A web application is a software solution that operates within a web browser, offer-
ing a dynamic and interactive user experience without requiring traditional soft-
ware installation on the client device. Unlike desktop applications that must be
manually installed and maintained on individual machines, web applications run
on centralized servers and can be accessed through standard web protocols using a
URL. This architectural choice significantly reduces the complexity of deployment
and maintenance, particularly in large or distributed organizational contexts.

By leveraging the Internet and modern web technologies, web applications pro-
vide universal access across various platforms and devices. This includes desktops,
laptops, tablets, and smartphones, regardless of the underlying operating system.
Such cross-platform compatibility is especially beneficial in environments like re-
tail, where employees may use different types of hardware and need consistent
access to the same system. Moreover, updates to the application can be deployed
centrally on the server, ensuring that all users always interact with the latest
version without requiring manual intervention.

At a technical level, web applications adopt a client-server architecture [RR10].
The client-side (or frontend) handles the presentation layer and user interactions.
It is responsible for rendering the interface elements that users see and interact
with, such as forms, tables, buttons, and charts. The server-side (or backend),
on the other hand, manages the application’s core functionality. It handles tasks
such as business logic, data validation, communication with the database, and
interfacing with third-party services. The communication between client and server
typically occurs through HTTP requests, with data exchanged in standardized
formats such as JSON.

Modern frontend development often utilizes JavaScript-based frameworks such
as React, Angular, or Vue.js. These frameworks facilitate the development of
responsive, modular applications by introducing concepts like component-based
architecture, state management, and two-way data binding. Vue.js, in particular,
offers a lightweight yet powerful approach to building responsive applications. Its
ease of integration, low learning curve, and rich ecosystem make it especially suit-
able for medium-sized projects that require flexibility and speed of development.
For these reasons, Vue.js was selected for this project.

On the backend, frameworks like FastAPI, Django, or Express.js provide the
foundation for defining API routes, authenticating users, processing logic, and in-
teracting with databases. FastAPI, the backend framework used in this project,

2.3. COMPANY AND USE CASE CONTEXT 7

is known for its high performance and its ability to automatically generate doc-
umentation from type annotations. It leverages modern features of the Python
programming language, such as asynchronous support and strong typing, to sim-
plify development and improve reliability.

For the Stock Uniters application, the architectural roles of the frontend and
backend are clearly defined and tailored to meet the operational needs of the
company:

e The frontend is designed to be lightweight, intuitive, and fully respon-
sive. It allows employees to interact with the system using a variety of de-
vices—including desktop PCs, tablets, and mobile phones—which is essential
in a store environment where hardware configurations vary. The interface
prioritizes usability and speed, ensuring that tasks such as stock registration
and withdrawal can be completed quickly and with minimal training.

e The backend exposes RESTful endpoints secured by JWT-based authenti-
cation. This ensures that only authorized users can perform critical opera-
tions. The backend handles all stock-related activities, such as registering
new product entries, processing withdrawals for customer use, logging re-
turns, and enabling manual adjustments during inventory reconciliation. All
data is persistently stored in a relational database, which ensures consistency
and traceability of operations.

This clear separation of concerns ensures not only technical modularity but
also facilitates maintainability and scalability. Each layer of the application can
be developed, tested, and deployed independently, which streamlines development
and enables faster iteration cycles. Furthermore, this architecture supports con-
tinuous improvement, a critical requirement in a fast-paced retail context where
operational processes evolve regularly and systems must adapt accordingly.

2.3 Company and Use Case Context

The digital solution was conceived in response to specific challenges faced by store-
level staff across the Poltronesofa retail network. These challenges stemmed from
fragmented and often manual workflows used to manage Uniters kit stock. Prior
to the implementation of the new system, stores frequently relied on spreadsheets,
emails, and phone calls to track kit availability, request replenishments, or report
discrepancies—a process prone to errors, delays, and lack of transparency.

This decentralized and inconsistent approach made it difficult to obtain an
accurate view of stock movements at the local and regional levels. Store employees
had no standardized interface to verify current availability, document transactions,

8 CHAPTER 2. BACKGROUND

or view historical data. Replenishment procedures were often reactive rather than
planned, with stores initiating contact with central offices only when shortages
became urgent. Moreover, the lack of structured return handling and audit trails
reduced accountability and introduced a margin for error that was difficult to
quantify or correct.

The newly developed web application addresses these gaps by centralizing all
stock-related operations into a single, unified interface. The system is accessible
from any device with internet access and is designed to accommodate the diverse
operational environments of Poltronesofa stores, from high-traffic urban locations
to smaller regional branches. Through a role-based access system, different cate-
gories of users interact with the application according to their responsibilities and
information needs. Key user roles and their interactions with the system include:

Sales staff who are responsible for issuing kits to customers or returning unused
or defective kits. They require a fast, intuitive interface that minimizes time spent
on administrative tasks and ensures that stock movements are recorded accurately
and promptly.

Store managers who oversee stock levels and perform periodic inventory checks.
Their responsibilities include validating transactions, resolving discrepancies, and
maintaining alignment between physical inventory and the digital system.

Area managers who oversee multiple stores within a region. They rely on ag-
gregated data to evaluate store performance, identify anomalies in stock behavior,
and coordinate actions such as bulk replenishments or policy changes across their
assigned territories.

By unifying these roles under a shared system, the application enables real-time
tracking of stock movements, reduces reliance on manual processes, and facilitates
performance monitoring at various organizational levels. In doing so, it helps
close the gap between daily operational needs and strategic oversight. This digital
transformation not only enhances the efficiency of routine tasks but also supports
broader organizational objectives related to standardization, transparency, and
customer satisfaction.

2.4 Problem Domain

The domain addressed by this project centers on the internal distribution and
lifecycle management of Uniters kits, a logistical process that, although seemingly

2.4. PROBLEM DOMAIN 9

simple, involves multiple steps, stakeholders, and potential points of failure. The
problem is not one of scale alone, but of coordination, consistency, and clarity in
the way stock is handled at the store level and beyond.

The operational focus includes several interconnected areas:

Tracking incoming and outgoing kits When kits are delivered to the store or
issued to customers, the system records the transaction in real time. This ensures
accurate and up-to-date stock levels at all times, reducing the risk of stockouts or
redundant orders. Each movement is timestamped and linked to a specific user,
improving traceability and responsibility attribution.

Managing returns Kits may be returned for various reasons, including product
defects, incorrect shipments, or excess stock. This structured process reduces
ambiguity and facilitates future data analysis on return trends.

Inventory reconciliation Regular manual stock checks are supported by fea-
tures that enable users to correct discrepancies between physical and digital inven-
tories. Each correction is logged with timestamps and user credentials, creating
an auditable trail for future review. This is especially important for compliance
with internal standards and for resolving disputes or anomalies.

Dashboard visualization The application integrates interactive dashboards
that display key performance indicators (KPIs), such as stock availability per
store. These visualizations help managers at different levels make informed de-
cisions and respond quickly to operational issues. Data can be filtered by store,
time period, or transaction type to suit different analytical needs.

Downloadable user guide To enhance usability and reduce the need for exter-
nal training sessions, the system provides a downloadable PDF guide. This docu-
ment outlines the main workflows, role-specific instructions, and troubleshooting
tips. It is accessible directly from the application’s interface, ensuring that help
is always within reach, even in decentralized store environments with limited I'T
support.

PWA (Progressive Web App) support The application is designed with
PWA standards, allowing users to install it on their desktop or mobile home
screens as if it were a native app. This enhances accessibility and convenience,
particularly for sales staff who operate in fast-paced, customer-facing settings. Of-
fline capabilities and automatic updates further support usability across diverse
network conditions.

10 CHAPTER 2. BACKGROUND

Each of these areas is directly linked to operational efficiency. A delay in
recording a stock movement, for example, may result in shortages that affect cus-
tomer service. Similarly, unresolved discrepancies can lead to inaccurate reporting
and complicate supply planning. The system’s design therefore prioritizes clar-
ity, speed, and reliability. By aligning the digital tools with real-world workflows,
the application aims to reduce friction, enhance visibility, and ensure that each
stakeholder has the information they need, when they need it.

2.5 Existing Solutions and Related Work

A wide range of inventory management solutions exist, ranging from enterprise-
level ERP systems to lightweight, store-level tools. However, few align well with
the specific operational needs of Poltronesofa’s post-sales kit tracking. The com-
pany’s requirements are distinct in that they involve specialized workflows, mul-
tiple user roles across a distributed network, and the need for a lightweight yet
reliable interface suited to fast-paced retail environments.

Enterprise platforms such as SAP, Oracle NetSuite, or Microsoft Dy-
namics 365 provide powerful, integrated solutions that cover a broad spectrum
of business functions, including finance, procurement, human resources, and inven-
tory management [LL20]. These platforms are highly customizable and scalable,
making them suitable for large multinational corporations with complex opera-
tional requirements. However, their use often comes with considerable overhead.
Implementation can span several months, involving configuration, testing, data mi-
gration, and user training. These systems typically require dedicated IT teams for
ongoing support and updates. For a focused use case like the internal tracking of
Uniters kits—where agility, ease of use, and rapid deployment are essential—such
platforms are often too rigid, expensive, and resource-intensive.

On the opposite end of the spectrum, many stores resort to ad hoc tools such as
spreadsheets, shared documents, or simple inventory applications. These tools are
familiar, easy to implement, and require minimal onboarding. However, their in-
formality also introduces several limitations. Manual data entry increases the risk
of errors, while the lack of automation makes real-time synchronization between
stores and central management impractical. Moreover, data fragmentation often
arises when multiple, unsynchronized versions of the same spreadsheet circulate
among employees. This leads to inconsistencies, reduced visibility, and difficulties
in generating aggregated reports or conducting audits.

Some mid-tier inventory tools—such as Zoho Inventory, inFlow, or Sortly—offer
more robust features and mobile accessibility, addressing some of the shortcom-

2.6. TECHNOLOGY STACK OVERVIEW 11

ings of basic solutions. These platforms often include barcode scanning, user role
management, and basic reporting dashboards. However, they are still designed
with generic use cases in mind. Customizing them to fit Poltronesofa’s internal
processes, such as handling stock returns with classification, reconciling physical
inventory, and aggregating data across multiple stores, would likely require ex-
tensive configuration, which can increase complexity and reduce user adoption.
Additionally, integrating them with existing internal systems could require addi-
tional middleware or manual intervention.

The Stock Uniters platform was developed to fill this gap: offering a balance
between simplicity and structure. Unlike heavy ERP solutions, it does not require
external consultants or long deployment times. At the same time, it overcomes
the fragmentation and limitations of ad hoc tools by introducing a centralized,
web-based interface with real-time synchronization and standardized workflows.
The platform is specifically tailored to Poltronesofa’s operational environment,
supporting key roles such as sales staff, store managers, and area managers. It
allows for consistent stock registration, discrepancy resolution, and performance
monitoring, all within an interface designed to be intuitive and accessible—even
in stores with limited technical infrastructure.

By targeting the specific operational pain points identified through direct ob-
servation and stakeholder input, the solution positions itself not as a generic in-
ventory system, but as a domain-specific tool that aligns with real business needs.
Its development illustrates the value of custom applications in niche but critical
areas where neither off-the-shelf nor enterprise solutions offer the right fit.

2.6 Technology Stack Overview

The architecture of the Stock Uniters platform reflects modern best practices in
web development, with a clean separation between frontend and backend compo-
nents. This modular design supports maintainability, performance optimization,
and future scalability across a distributed retail network. The components were se-
lected with careful consideration of the company’s existing infrastructure, the skill
sets of internal teams, and the practical needs of end users operating in dynamic
store environments.

2.6.1 Backend (FastAPI)

The backend is built using FastAPI, a modern, asynchronous web framework
in Python known for its high performance, automatic generation of OpenAPI-
compliant documentation, and strong support for type validation [Ram22]. FastAPI
provides a structured and efficient way to define RESTful endpoints responsible

12 CHAPTER 2. BACKGROUND

for handling core operations such as registering new stock entries, recording with-
drawals, processing kit returns, and applying inventory corrections.

The backend communicates with an Oracle Database to ensure consistent
and persistent data storage. Data integrity and access control are central to the
backend’s architecture, with all operations protected by JWT-based authen-
tication. This token-based system allows for secure identification of users and
enables differentiated access depending on role (e.g., sales staff, store managers,
area managers). The backend also includes mechanisms for input validation, er-
ror handling, and structured logging, all essential for operational reliability and
auditability in a business-critical environment.

2.6.2 Frontend (Vue.js)

The frontend is developed using Vue.js, a progressive JavaScript framework that
supports reactive data binding and component-based Ul development [Vue23].
Its lightweight nature and gradual learning curve make it especially suitable for
retail applications that require responsive design and fast interactions. The user
interface is fully responsive and adapts to a variety of devices, including desktops,
tablets, and smartphones, to support staff operating in different roles and physical
contexts.

The interface includes intuitive dashboards, dynamic forms, and real-time feed-
back for user actions. It is designed around the needs of each role, presenting only
the relevant features and minimizing complexity. Features such as camera-based
barcode scanning are directly integrated into the interface, allowing for fast item
identification and stock registration without the need for external scanners. Data
visualization is achieved through interactive charts and summaries that provide
actionable insights at a glance.

Additionally, the Vue.js frontend is enhanced with Progressive Web App
(PWA) capabilities [Dev22]. This allows users to install the application directly
on their device’s home screen, whether mobile or desktop, and interact with it as
if it were a native app. Key benefits include:

e Offline mode: Enables continued functionality during network interruptions.

e Automatic updates: Ensures the latest version is always available without
user action.

e Faster loading: Service workers cache assets for improved performance.

o Accessibility: Facilitates daily use in store environments with varying net-
work conditions.

2.6. TECHNOLOGY STACK OVERVIEW 13

These features are particularly valuable for sales staff working in high-traffic
environments, where quick access and stability are critical.

2.6.3 User Documentation (PDF Guide)

In order to support decentralized teams and reduce reliance on formal training,
the application includes a downloadable PDF user guide. This document is
embedded within the platform and provides clear, role-specific instructions on
performing everyday operations. It covers workflows such as issuing and returning
kits, checking inventory, and resolving discrepancies. By being directly accessible
within the user interface, the guide ensures that help is always within reach, even
in locations with limited IT support.

The chosen technology stack ensures flexibility, security, and scalability. It sup-
ports real-time operations in dynamic retail environments, simplifies user onboard-
ing, and allows for incremental updates without disrupting service. Furthermore,
the clear separation between frontend and backend allows developers to iterate
quickly and deploy improvements independently, reinforcing the platform’s ability
to adapt to evolving business needs and standards across the Poltronesofa retail
network.

14

CHAPTER 2. BACKGROUND

Chapter 3

Analysis

This chapter presents a structured analysis of the requirements that guided the
development of the Stock Uniters web application. Following the identification of
specific operational challenges during the preliminary investigation phase, the goal
of this analysis is to translate those challenges into a well-defined set of technical
and functional specifications [Som16]. These specifications serve as the foundation
for the system’s architecture, user interface, and interaction flows described in
subsequent chapters.

The analysis is rooted in real business workflows observed across multiple
Poltronesofa retail stores. By engaging directly with end users including sellers,
store managers, and area managers, the project was able to capture a range of
needs, constraints, and expectations. These insights were translated into concrete
system requirements, ensuring that the resulting platform would align closely with
daily store operations and broader organizational goals. The chapter is organized
into several sections.

Functional Requirements These define the system’s core capabilities, such
as recording kit deliveries, issuing kits tied to Uniters warranty sales, registering
returns, adjusting inventory, and generating reports.

User Roles and Access Levels A clear role-based access model is essential
for both usability and data security. This section outlines the responsibilities and
permissions of sellers, store managers, and area managers within the system.

Non-Functional Requirements These capture the qualities the system must
exhibit to be usable and reliable in a retail context. Key concerns include respon-
siveness across devices, security, stability, and traceability.

15

16 CHAPTER 3. ANALYSIS

Use Cases A set of structured scenarios illustrating how users interact with the
system to accomplish operational goals. Each use case describes the flow of actions
for a specific function, from inbound stock registration to brochure requests.

User Stories Realistic narratives that encapsulate user needs in a concise for-
mat, helping to bridge the gap between business goals and technical implementa-
tion. These stories also serve as a reference for evaluating feature completeness.

By providing a comprehensive view of what the system must do and how it
will be used, this chapter ensures that all subsequent design and development work
remains grounded in actual operational requirements. It also facilitates early de-
tection of gaps, ambiguities, or mismatches between the software and its intended
context of use.

The result is a requirements model that not only supports efficient implementa-
tion but also promotes long-term adoption and scalability across the Poltronesofa
store network.

3.1 Functional Requirements

This section outlines the core functional requirements that the system must sat-
isfy in order to support operational needs across different user roles within the
Poltronesofa retail network. These functionalities were defined based on a detailed
analysis of existing workflows, with the aim of standardizing processes, improving
traceability [Bis02], and enabling real-time visibility into stock movements.

3.1.1 Authentication and User Access

Secure login with credentials The system must provide a secure login mecha-
nism that authenticates users based on unique credentials. This ensures that only
authorized personnel can access sensitive stock data and perform operations.

Role-based access (seller, store manager, area manager) Fach user must
be assigned a specific role that determines the features and data accessible within
the application. Sellers are limited to basic operations such as issuing kits, while
store managers and area managers have extended permissions for stock control,
reporting, and oversight [SCEY96].

3.1. FUNCTIONAL REQUIREMENTS 17

3.1.2 Inbound Stock Registration

Upload of delivery document images Users must be able to attach scanned
images or photographs of delivery notes to new stock entries, providing visual proof
of incoming shipments.

Declaration of received quantities Upon receiving a shipment, users must
declare the number of kits received. This information is recorded and cross-checked
with expected delivery quantities.

Conditional acceptance in case of anomalies If discrepancies are found
between the declared and expected quantities, such as missing or damaged items,
the system must allow conditional acceptance of the delivery and flag the record
for later resolution.

Physical count and confirmation The system must require a physical stock
count to confirm the actual number of items received. Once validated, the entry
is finalized and stock levels are updated accordingly.

3.1.3 Stock Exit Registration

Associate kits with specific orders with warranty FEach stock withdrawal
must be linked to a specific order that must include the Uniters warranty. This
association improves traceability and provides context for downstream reporting.

Confirm and finalize delivery Users must confirm each withdrawal before
it is finalized. Once confirmed, the system updates stock levels and records the
transaction with a timestamp and user ID.

3.1.4 Returns Management

Register return of kits The system must support the registration of returned
items. Users can document the return through a dedicated interface that captures
relevant metadata.

3.1.5 Inventory Adjustments

Manually correct stock levels Store managers must be able to manually up-
date stock quantities during reconciliation or in response to errors.

18 CHAPTER 3. ANALYSIS

Provide justification and ensure traceability Every manual correction must
include a written justification and be recorded with full traceability, including the
responsible user and timestamp.

3.1.6 Movement History and Reporting

Display historical records for all stock operations The system must main-
tain a complete audit trail of all stock movements, including entries, withdrawals,
returns, and adjustments.

Allow filtering by date and type Users must be able to filter transaction his-
tory based on time range, operation type, and store location to facilitate targeted
reviews.

Enable export to Excel For external analysis and reporting, the system must
support the export of filtered data sets to Excel-compatible formats.

3.1.7 Brochure Management

Allow store users to request brochures to include in kits Users must be
able to place internal requests for brochures directly through the application when
assembling complete kits.

Track available quantities in each store The system must track brochure
stock levels independently of kits, displaying current quantities per store in real
time.

Automatically trigger reorder requests when below threshold When
brochure quantities fall below a predefined minimum threshold, the system must
automatically notify relevant users or generate a reorder request to ensure contin-
ued availability.

3.2 User Roles and Access Levels

The system defines three primary user roles, each with distinct access levels and
operational responsibilities. Role-based access control (RBAC) ensures that users
can only interact with the parts of the system relevant to their position, thereby
improving security, accountability, and usability. The following roles have been
defined to reflect the real-world organizational structure within the Poltronesofa
retail network:

3.3. NON-FUNCTIONAL REQUIREMENTS 19

Seller This role is assigned to store-level staff responsible for day-to-day handling
of Uniters kits. Sellers are authorized to register the receipt of new kits delivered
to the store, record stock exits when kits are issued to customers, and process
returns. Sellers operate exclusively within their assigned store context and do not
have visibility into other stores or administrative functions. The interface available
to them is streamlined for speed and simplicity, reducing the learning curve and
supporting fast-paced customer interactions.

Store Manager / Vice Store managers (or their appointed vice managers)
have broader access and greater responsibility than sellers. In addition to all
seller permissions, they are authorized to perform inventory adjustments when
physical stock and system records do not match, enter justifications for manual
corrections (ensuring transparency and traceability), and complete and validate
monthly stock counts as part of the reconciliation process. Managers serve as the
first line of accountability for data accuracy and process compliance within their
store. They also have access to additional reporting tools and dashboards specific
to their store’s activity.

Area Manager This role is intended for regional supervisors who oversee multi-
ple stores. Area managers have read-only access to view historical movement data
for all stores in their territory, monitor stock levels, usage patterns, and discrepan-
cies through a centralized dashboard, and analyze trends and performance metrics
across stores to support regional decision-making. The interface for area managers
emphasizes data visibility and comparative analysis rather than operational input.
Their role is to supervise, evaluate, and support store-level operations without di-
rectly performing stock transactions.

This clearly defined role hierarchy ensures that each user interacts with the sys-
tem according to their responsibilities, minimizes the risk of unauthorized actions,
and promotes a secure and scalable multi-store environment.

3.3 Non-Functional Requirements

In addition to functional capabilities, the system must adhere to a set of non-
functional requirements that ensure usability, security, and operational reliability.
These characteristics are essential for successful adoption in a distributed retail
environment and directly influence user satisfaction and long-term maintainability.

20 CHAPTER 3. ANALYSIS

Responsiveness The user interface must be fully responsive, enabling seamless
operation across a range of devices, particularly tablets and desktop computers
[isol9]. Since store staff may use different hardware depending on local setup and
workflows, the application must adapt its layout and components to various screen
sizes without compromising functionality or clarity.

Ease of Use The system must be intuitive and require minimal training for
new users. Guided workflows, clear navigation, and contextual help features must
be incorporated to reduce onboarding time and ensure efficient daily use. This
is especially important in retail settings where staff turnover may be high and
training resources limited [Nie93].

Security All access to the system must be authenticated, with user identity
verified through secure login mechanisms. Role-based access control must pre-
vent unauthorized users from accessing or modifying sensitive data [Bis02]. Addi-
tionally, the system must enforce secure data transmission protocols and protect
against common web vulnerabilities.

Stability The platform must demonstrate high availability and consistent per-
formance during regular usage. Given that stock operations occur daily in multiple
stores, the system must reliably handle concurrent transactions, provide real-time
feedback, and recover gracefully from potential errors or network interruptions.

Traceability All user actions must be recorded with full auditability. This in-
cludes capturing the user 1D, timestamp, and type of action for each operation
affecting stock records. Such traceability supports accountability, facilitates error
resolution, and enables internal audits or historical reviews when discrepancies
occur.

3.4 Use Cases

This section describes the main use cases supported by the system. Each use case
represents a specific interaction between a user and the system, focused on achiev-
ing a concrete business goal. The use cases were derived from real operational
workflows observed in Poltronesofa stores and validated through discussions with
end users and stakeholders [Coc01].

Figure [3.1]illustrates the overall structure of the system’s use cases and their re-
lationships with the primary user roles: sellers, store managers, and area managers.
The diagram provides a high-level visual summary of the system’s functionality,

3.4. USE CASES 21

making it easier to understand how different actors interact with specific features
of the platform.

selle Store Manage Are ger

er ‘ r\ ah;l‘;ﬁa

UC3: Register Kit Return) UC1: Record Inbound Stock) (_UC2: Register Kit Exit) { UC4: Perform Inventory Adjustment) (UC5: Request Brochures > (UC6: Monitor Stock Movements)

Figure 3.1: Use Case Diagram of the Stock Uniters System

3.4.1 UC1 — Record Inbound Stock
Actor Seller

Goal Register the arrival of new Uniters kits at the store location

Preconditions The user must be authenticated and associated with a store

Main Flow
1. The seller logs into the application using their credentials
2. Navigates to the "Inbound Stock” section from the main dashboard
3. Uploads an image or file of the delivery document (e.g., packing slip)
4. Enters the number of kits received, comparing with the document

5. Confirms the registration to finalize the operation

Postconditions The inbound stock movement is stored in the system, linked to
the user and timestamp, and becomes visible in the movement history

3.4.2 UC2 — Register Kit Exit
Actor Seller

Goal Confirm the issuance of a Uniters kit associated with a customer warranty
request

Preconditions The user must be logged into the system with an active session

22 CHAPTER 3. ANALYSIS

Main Flow
1. The seller selects the warranty associated with the customer
2. Confirms the issuance of the corresponding kit

3. The system automatically updates the inventory and logs the transaction

Postconditions The kit exit is recorded and associated with the order, enabling
traceability

3.4.3 UC3 — Register Kit Return
Actor Seller

Goal Register the return of a Uniters kit to the system and ensure traceability

Preconditions The user must be authenticated and associated with a store. A
valid kit exit must already exist for the order.

Main Flow
1. The user scans or enters the barcode of the returned kit

2. The system checks whether the returned item matches the original kit deliv-
ered for that order

3. If the match is correct, the return is recorded in the database

4. The action is timestamped and linked to the user

Postconditions The kit return is stored in the movement history, restoring the
item to inventory and enabling traceability

Notes This feature improves accountability and enables accurate stock reconcil-
iation during audits

3.4.4 UC4 — Perform Inventory Adjustment

Actor Store Manager

Goal Correct discrepancies identified between physical and system stock counts

3.4. USE CASES 23

Preconditions The user is authenticated with manager privileges

Main Flow
1. The store manager logs into the system
2. Navigates to the inventory adjustment module
3. Inputs the corrected quantity for a specific item and provides a justification

4. Confirms the adjustment to apply the change

Postconditions The stock level is updated, and the adjustment is logged with
timestamp, justification, and user identity for auditing purposes

3.4.5 UC5 — Request Brochures

Actor Store Manager

Goal Submit a request for additional brochures when local stock falls below the
predefined threshold

Preconditions The user must be authenticated and associated with a specific
store

Main Flow
1. The manager accesses the brochure request section from the main interface

2. Confirms the request using a predefined action (no manual quantity input
required)

3. The system registers the request and automatically notifies the relevant cen-
tral team responsible for dispatch

Postconditions A brochure request is recorded and linked to the requesting
store

Notes The quantity to be sent is managed centrally based on policy; stores
simply express the need through the system

24 CHAPTER 3. ANALYSIS

3.4.6 UC6 — Monitor Stock Movements
Actor Area Manager

Goal View and analyze historical stock movement data across multiple stores
within their assigned territory

Preconditions The area manager must be authenticated with read-only access
rights

Main Flow

1. The area manager logs into the system
2. Selects one or more stores to monitor

3. Applies filters by date, movement type (inbound, exit, return, adjustment),
or other relevant criteria

4. Optionally exports the filtered dataset to Excel for external analysis

Postconditions The selected data is retrieved and displayed in the dashboard;
exports are saved locally by the user if needed

3.5 User Stories

The following user stories describe realistic interactions with the system from the
perspective of its main user roles. Each story illustrates a specific operational need
and highlights how the platform supports daily activities within the Poltronesofa
retail network [Coh04]. These narratives were designed to reflect real workflows
and guide the definition of system features and user interface elements.

3.5.1 Seller — Register Incoming Stock

User Story As a seller, I want to upload a delivery document and record the
number of kits received, so that stock entries are immediately reflected in the sys-
tem.

Description This story captures the need for timely and accurate registration of
inbound stock at the store level. Sellers must be able to process incoming deliveries
quickly and ensure that the recorded quantities align with physical inventory, while
attaching visual proof of the shipment.

3.5. USER STORIES 25

3.5.2 Seller — Register Kit Exit

User Story As a seller, I want to link a kit to a specific sale with warranty and
mark it as delivered, so that the inventory is accurately updated.

Description This story reflects the core business rule that kits are only dis-
tributed to customers when they have purchased a Uniters warranty. The system
must enforce this constraint by requiring the selection of a verified warranty order
before allowing the stock exit to be recorded. This ensures consistency and full
traceability of all kit deliveries.

3.5.3 Seller — Return a Kit

User Story As a seller, I want to register a returned kit and explain the reason,
so that the system tracks all movements.

Description Returns may occur for various reasons, such as customer refusals,
incorrect issues, or product damage. This story emphasizes the importance that
the system maintains a complete and auditable stock history.

3.5.4 Store Manager — Adjust Inventory

User Story As a store manager, I want to correct stock quantities manually
when discrepancies are found, so that inventory reflects the real situation after
monthly checks.

Description Inventory reconciliation is a key responsibility of store managers.
This story highlights the need for authorized users to perform manual adjustments
when mismatches arise between physical counts and system data, while ensuring
that every change is logged and justified.

3.5.5 Store Manager — Request Brochures

User Story As a store manager, I want to request new brochures when the store
stock is low, so that every outgoing kit can be completed properly.

Description Since brochures are a required component of the Uniters kits, store
managers must be able to initiate replenishment requests as soon as stock runs
low. This story ensures that stores never lack the materials necessary to fulfill
their warranty-related obligations.

26 CHAPTER 3. ANALYSIS

3.5.6 Area Manager — Monitor Movements

User Story As an area manager, I want to see a full history of stock movements
across my stores, so that I can monitor operations and follow up when needed.

Description Area managers are responsible for supervising multiple stores within
a region. This story reflects their need for visibility into store-level activity, en-
abling them to detect anomalies, compare performance, and support local teams
based on data-driven insights.

Chapter 4

Design

The design phase translates the requirements identified in Chapter[3]into a concrete
technical blueprint for the Stock Uniters system. While the analysis stage focused
on what the system must achieve from a functional and non-functional perspective,
the design stage addresses how these objectives are realized through architectural
choices and component organization.

The chapter adopts a top-down approach: it begins with the overall system
architecture, showing the separation of responsibilities between frontend, back-
end, and database layers. It then introduces a high-level architecture diagram
that provides a visual representation of these components and their relationships.
Finally, the component overview describes the main building blocks of both
the frontend and the backend, highlighting their responsibilities and the design
rationale behind their organization.

By providing both structural and behavioral views of the system, this chap-
ter ensures that the implementation in the following sections can remain aligned
with the business goals of usability, traceability, and scalability. The resulting
design balances modularity and integration, allowing the platform to evolve while
maintaining consistency with the operational requirements of Poltronesofa stores.

4.1 System Architecture

The architecture of the Stock Uniters system was designed to ensure robustness,
scalability, and ease of use across the entire Poltronesofa retail network. Given
the distributed nature of the organization, with hundreds of stores operating un-
der heterogeneous conditions, the system needed to guarantee consistent access to
centralized data, provide a user-friendly interface, and maintain strong security
standards. To address these requirements, a modular client-server architec-
ture was adopted, separating responsibilities into three distinct layers: presenta-

27

28 CHAPTER 4. DESIGN

tion, business logic, and data management.

4.1.1 Architectural Paradigm

The Stock Uniters platform follows a three-tier architecture, a well-established
paradigm in enterprise system design that promotes separation of concerns and
long-term maintainability. This choice was made after considering alternative
approaches such as monolithic architectures and microservices:

Monolithic approach Initially considered for its simplicity and reduced initial
development effort, this approach was discarded due to its lack of flexibility. A
single codebase handling both frontend and backend logic would have made scaling
and independent updates more difficult.

Microservices architecture This alternative offers strong scalability and in-
dependence of services, but it also introduces significant operational overhead,
particularly in terms of deployment, monitoring, and inter-service communication.
Given the specific scope of Stock Uniters, the additional complexity was not jus-
tified.

Three-tier client-server model Selected as the most balanced option, this ar-
chitecture enables clear modularization, strong maintainability, and easier future
integration with external systems (such as ERP or BI platforms), without intro-
ducing unnecessary complexity.

This layered approach ensures that each part of the system can evolve indepen-
dently: the frontend can improve its usability without modifying backend logic, the
backend can extend its APIs without altering the database, and the database can
be optimized or migrated while preserving business logic and presentation layers.

4.1.2 Frontend Layer (Vue.js)

The frontend of Stock Uniters is a Single Page Application (SPA) built
using Vue.js. This framework was chosen for its balance between flexibility and
simplicity. Unlike traditional multi-page applications, a SPA loads the application
once and dynamically updates the user interface based on API calls, resulting in
faster interactions and an improved user experience.

From a design perspective, the frontend focuses on:

4.1. SYSTEM ARCHITECTURE 29

e Responsiveness: The system must operate seamlessly across desktops,
tablets, and mobile devices, reflecting the diverse hardware available in
stores.

e Role-based dashboards: The interface adapts to the user’s role (seller,
store manager, area manager), reducing cognitive load by showing only the
relevant features.

e Integrated features: File uploads (delivery notes, images), QR and bar-
code scanning through device cameras, and interactive dashboards that vi-
sualize KPIs in real time.

e PWA capabilities: Installation on devices, offline caching, and automatic
updates via service workers, ensuring uninterrupted operations even in areas
with unstable network connections.

The SPA model was selected over alternatives such as server-side rendering
(SSR), which—although faster for initial loads—would have complicated offline
support and PWA integration. Given that in-store usage prioritizes responsive-
ness and independence from constant connectivity, SPA was deemed the optimal
solution.

4.1.3 Backend Layer (FastAPI)

The backend provides the business logic and exposes functionality through a
RESTful API built with FastAPI. The framework was selected based on three
design considerations: high performance, modern asynchronous programming sup-
port, and automatic documentation generation through OpenAPI.

Key responsibilities of the backend include:

e Authentication and authorization: User login is handled via credentials,
with JW'T tokens providing secure session management and role-based access
enforcement.

¢ Business logic enforcement: The backend ensures that operational rules
are respected: each kit exit must be linked to an order with a warranty in-
cluded, deliveries with anomalies must be flagged for conditional acceptance,
and manual adjustments must always include a justification.

e Error handling and logging: Structured responses are returned for all
operations, while logs are stored for both debugging and audit purposes.

30 CHAPTER 4. DESIGN

e Data serialization and transport: Communication with the frontend
occurs over HTTPS using JSON, ensuring interoperability and lightweight
payloads.

The choice of Fast API over alternatives such as Django or Express.js was guided
by its speed, simplicity, and strong typing. While Django offers an extensive
ecosystem, it would have introduced unnecessary weight given the relatively limited
scope of the project. Express.js, though lightweight, lacks built-in support for
type validation and automatic documentation—both critical for a maintainable
enterprise-grade system.

4.1.4 Database Layer (Oracle)

The Oracle Database forms the persistent storage layer of Stock Uniters. Its
adoption aligns with Poltronesofa’s existing IT infrastructure, ensuring compat-
ibility with corporate standards of reliability and data governance. Oracle was
chosen over open-source alternatives such as PostgreSQL or MySQL primarily for
its enterprise-grade features, strong transaction management, and support by the
company’s internal I'T department. Data persistence is organized as follows.

User management Tables storing user identities, roles, and store affiliations.

Stock tracking Real-time quantities of Uniters kits and brochures, linked to
store IDs.

Transactions Full history of entries, exits, returns, and adjustments, each tied
to a user and timestamp.

Attachments Metadata and references to external files (e.g., delivery document
scans). The actual images are stored as PNG files in a dedicated virtual machine
(WSL), while the database keeps only the paths or identifiers for retrieval.

4.1.5 Cross-Cutting Concerns

Beyond the three primary layers, the architecture incorporates several design de-
cisions that address cross-cutting concerns:

e Security: End-to-end encryption (HTTPS), RBAC, audit logging, and database-

level permissions safeguard sensitive operational data.

e Scalability: The modular design allows horizontal scaling of the frontend
and backend services, and replication strategies for the database.

4.2. HIGH-LEVEL ARCHITECTURE DIAGRAM 31

e Maintainability: Modularization ensures that updates to the frontend,
backend, or database schema can be deployed independently with minimal
disruption.

e Resilience: Error handling strategies and monitoring ensure that transient
failures do not disrupt operations.

4.2 High-Level Architecture Diagram

Figure provides a high-level overview of the Stock Uniters platform. The dia-
gram highlights the separation of responsibilities between the frontend, backend,
and database layers, as well as the modular decomposition of backend services into
specialized components. This representation is intended to make explicit the major
design choices and architectural principles that guided the system’s development.

32 CHAPTER 4. DESIGN

w| Oracle |«
database

Backend Fastapi

Service = - Repository - = UserRaepository
i i
T

Router - - AythService -

i
LoginRouter =
'
Frontand Vueds
protected pages

Area
Manager

Layout L
Seller/Store Login template
MAnager rendered

Layout

Figure 4.1: High-level architecture of the Stock Uniters platform

4.2.1 Purpose of the Diagram

The primary objective of the diagram is to offer a simplified yet comprehensive
view of the system’s internal organization. By abstracting away low-level im-
plementation details, it allows both technical and non-technical stakeholders to
understand how the platform is structured, how responsibilities are distributed
among components, and how modularity is achieved.

This kind of representation is especially relevant in enterprise contexts, where
multiple actors with different backgrounds (IT staff, managers, developers, end
users) are involved in system evaluation. While developers may be concerned with
the internal consistency of APIs and database schemas, managers may focus on
maintainability and scalability. A high-level diagram provides a common language
for aligning these perspectives.

4.2. HIGH-LEVEL ARCHITECTURE DIAGRAM 33

4.2.2 Frontend Layer

The Frontend Vue.js block encapsulates all user-facing functionality. The dia-
gram distinguishes between two key elements:

e The Login template (public), representing the entry point of the appli-
cation, accessible to all users prior to authentication.

e The Protected pages, accessible only to authenticated users. These are
further specialized into:

— Seller/Store Manager Layout, providing features for stock handling,
returns, and adjustments.

— Area Manager Layout, presenting aggregated data and supervisory
dashboards.

This separation mirrors the logical division between public and private areas
of a web application, a best practice in secure system design. It also reflects the
system’s emphasis on role-based customization: each user role is provided with a
tailored interface that simplifies navigation and emphasizes only the most relevant
tasks.

4.2.3 Backend Layer

The backend, implemented with FastAPI, is organized into several distinct mod-
ules. Each module is represented in the diagram as an independent block, con-
nected by explicit dependencies:

Router Exposes RESTful endpoints to the frontend and directs requests to the
appropriate service layer. This design decouples request handling from business
logic, simplifying both maintenance and testing.

Service Encapsulates the application’s core business rules. By concentrating
operational logic here, the system enforces consistency across all interactions, re-
gardless of which frontend component initiates the request.

Repository Provides an abstraction layer for data persistence. Following the
repository pattern, it shields the service layer from direct database queries, ensur-
ing that business logic remains independent of the underlying persistence technol-

ogy.

34 CHAPTER 4. DESIGN

LoginRouter A specialized router responsible for authentication-related end-
points. Its clear isolation from other routers enhances security and simplifies the
enforcement of authentication flows.

AuthService Dedicated to authentication and authorization logic. It validates
user credentials, manages JSON Web Tokens (JWT), and enforces role-based ac-
cess control (RBAC).

UserRepository A specialized repository that handles all user-related queries,
including retrieval of roles and permissions. Its separation from the general-
purpose repository ensures clearer responsibility boundaries and facilitates au-
diting of user management operations.

This modularization reflects deliberate design choices aimed at enhancing ex-
tensibility. For example, new services or repositories can be introduced without
altering existing modules, provided they conform to the same interaction con-
tracts. Similarly, authentication mechanisms can be updated or replaced without
disrupting unrelated business logic.

4.2.4 Database Layer

At the top of the diagram, the Oracle Database serves as the persistent data
store. Its role is abstracted through repository interfaces, ensuring that back-
end services never interact with the database directly. This design provides two
significant advantages:

Technology independence Although Oracle is currently used due to corporate
standards, the abstraction layer would allow a future migration to a different
relational database with limited impact on business logic.

Consistency and traceability All operations are funneled through reposito-
ries, which enforce data integrity, log operations, and provide standardized access
methods.

The database is designed to manage operational entities (users, stock levels,
transactions) and supporting information (audit logs, attachments). Its central
position in the diagram reflects its role as the “single source of truth” for the
system.

4.3. COMPONENT OVERVIEW 35

4.3 Component Overview

The component overview describes how the Stock Uniters platform is decomposed
into concrete building blocks. While the architectural view illustrates the separa-
tion between frontend, backend, and database, this section focuses on the func-
tional organization of the system’s components.

Frontend Pages

The frontend is implemented as a Vue.js Single Page Application (SPA). Each
page corresponds to a distinct business workflow, providing a task-oriented user
experience that minimizes complexity and accelerates adoption.

Login Page Collects user credentials and initiates the authentication flow. Based
on the role returned by the backend, the user is redirected to the appropriate
workspace.

Home Page Serves as the navigation hub, offering shortcuts to the most fre-
quently used functions and a snapshot of current stock status.

Inbound Stock Supports the registration of new deliveries through document
uploads, barcode or QR scanning, and quantity entry. The page reduces manual
data entry, improving accuracy.

Outbound Stock Allows sellers to associate kit exits with validated warranty
sales. The page enforces organizational rules by requiring a verified order before
confirming withdrawal.

Returns Guides users in associating a return with the original sale.

Inventory Provides store managers with tools for manual adjustment and monthly
stock reconciliation. Justifications are mandatory, reinforcing accountability.

Dashboard Displays aggregated metrics and KPIs to managers and area man-
agers, enabling quick evaluation of operational performance.

36 CHAPTER 4. DESIGN

Backend Modules

The backend is structured into two primary modules, reflecting the dual nature of
the system: security enforcement and operational execution. This modularization
reduces coupling, improves maintainability, and ensures that core responsibilities
are clearly separated.

Authentication Module Responsible for login, token issuance, and role-based
access control. This module ensures that only authenticated users can access the
platform and that each request is executed within the correct scope (seller, store
manager, area manager). It is isolated from business logic so that authentication
policies can evolve independently.

Operational Module Encapsulates all business functionalities, including in-
bound and outbound stock registration, returns management, inventory adjust-
ments, brochure requests, and reporting. Within this module, sub-packages or-
ganize the logic by process domain, but they all share a common foundation of
transactional consistency and auditability. By consolidating operational responsi-
bilities in a single module, the system simplifies coordination across workflows and
maintains uniform enforcement of traceability rules.

Chapter 5

Implementation

5.1 Key Technologies Used

The implementation of the Stock Uniters platform was guided by the technological
choices introduced in Chapter [2] and driven by the functional and non-functional
requirements analyzed in Chapter [3] The selected technologies were chosen not
only for their technical capabilities but also for their suitability within the orga-
nizational context of Poltronesofa, where usability, reliability, and scalability are
critical.

FastAPI

Fast API was adopted as the backend framework for its combination of high perfor-
mance, modern Python support, and ease of integration. Its asynchronous nature
ensures that the system can handle concurrent requests efficiently, an essential
feature in a distributed retail environment where multiple stores interact with
the platform simultaneously. The automatic generation of OpenAPI documenta-
tion also simplifies testing and long-term maintainability. Importantly, FastAPI’s
strong typing and validation mechanisms directly support the system’s need for
accuracy and traceability, as required in functional requirements such as Inbound
Stock Registration and Inventory Adjustments.

Vue.js

The frontend of the application was developed using Vue.js, a progressive JavaScript
framework selected for its responsiveness, component-based structure, and rela-
tively low learning curve. Vue.js enables the creation of dynamic, role-specific
interfaces that reflect the access model defined in Chapter [3] By leveraging reac-
tive data binding, the frontend ensures that stock levels, movement history, and

37

38 CHAPTER 5. IMPLEMENTATION

dashboards are updated in real time, meeting non-functional requirements of re-
sponsiveness and ease of use. In addition, its support for Progressive Web App
(PWA) features guarantees stability even under fluctuating network conditions.

Oracle Database

Persistent storage of operational data is managed through an Oracle Database,
which was already part of Poltronesofa’s IT infrastructure. Integrating the appli-
cation with this system reduces overhead for deployment and ensures consistency
with existing Business Intelligence workflows. The relational model of Oracle sup-
ports the project’s need for structured data and strong referential integrity, which
is vital for maintaining audit trails of all stock movements.

JSON Web Tokens (JWT)

For authentication and access control, the system uses JWT-based mechanisms.
This approach allows secure, stateless sessions between the client and server, mini-
mizing overhead while ensuring that each request is tied to a verified user identity.
JWTs also encode role-specific information, directly enabling the role-based access
control (RBAC) model defined in Chapter 3| By doing so, they enforce functional
requirements such as differentiating seller, manager, and area manager permis-
sions.

Progressive Web App (PWA) Capabilities

PWA standards were incorporated into the frontend implementation to enhance
usability in diverse store environments. Features such as offline mode, home screen
installation, and automatic updates contribute to the system’s non-functional re-
quirements of stability and accessibility. In particular, offline availability ensures
that sales staff can continue performing core operations such as kit issuance even
when temporary connectivity issues occur.

Supplementary Tools and Libraries

Additional tools and libraries were integrated to support development and improve
user experience. These include:

e Axios, for efficient HT'TP communication between frontend and backend.

e Vuetify, a Vue.js Ul library, to ensure a consistent and professional interface
aligned with usability requirements.

5.2. BACKEND IMPLEMENTATION (FASTAPI) 39

e Pandas and SQLAIchemy, used during development for data handling
and ORM (Object Relational Mapping) tasks.

e Docker, employed for containerization to simplify deployment and ensure
consistency across environments.

Together, these technologies form a coherent stack that directly addresses
the operational needs identified during the analysis phase. The combination of
FastAPI, Vue.js, Oracle, and JW'T provides the foundation for secure, responsive,
and scalable stock management across Poltronesofa’s distributed retail network.

5.2 Backend Implementation (FastAPI)

The backend of the Stock Uniters platform was developed using the FastAPI frame-
work, as introduced in Chapter 2] Its design follows a modular architecture aimed
at separating concerns, ensuring maintainability, and facilitating future scalability.
The backend exposes a set of RESTful endpoints that handle the core business
logic of stock management, including inbound and outbound registrations, returns,
inventory adjustments, and reporting functionalities defined in Chapter [3]

Each endpoint is protected by JWT-based authentication, ensuring that only
authorized users can interact with the system, and role-based access control (RBAC)
is enforced at the service layer to guarantee that operations correspond to the
permissions of sellers, store managers, and area managers. The communication
between client and server occurs through JSON payloads.

To maintain code clarity and long-term sustainability, the backend was orga-
nized into distinct modules representing different application domains (authen-
tication, stock operations, and reporting). This separation not only simplifies
development but also allows each component to evolve independently. The follow-
ing subsections describe the most important backend components, starting with
the routing strategy and API versioning.

Routing and API Versioning

This section documents each HTTP endpoint exposed by the stock router. All
endpoints are protected by JWT and receive the authenticated user via the TokenData
dependency (get_current_user). Business logic is delegated to the Service ab-
straction through dependency injection (get_service), which encapsulates database
access, validation, and side effects (email notifications, file storage). Unless oth-
erwise stated, responses are JSON and errors are raised as HTTPException with
appropriate status codes.

40 CHAPTER 5. IMPLEMENTATION

Conventions

e Roles: Seller (S), Store Manager (M), Area Manager (A). Authorization is
enforced in the Service.

e Dates: Strings in dd/MM/YYYY format.
e Files: Uploaded via multipart/form-data.

e Status codes: 200 0K on success, 4xx/5XX on errors.

POST /stock/carica bolla (UC1 — Record Inbound Stock)

Purpose. Registers the draft of an inbound delivery (“bolla”) for Uniters kits
received from the supplier, attaching the delivery document and optional anomaly
photos.

Inputs (form).

e descr [optional]: textual notes or anomaly description.
e file [required]: delivery document (image/PDF).

e negozio [required|: store code (string).

nro_bolla [required]: delivery note identifier.

nro_pelle, nro_tessuto [required]: declared quantities by kit type.
e anomaly_photos [optional]: list of images documenting discrepancies.
Process. The router forwards to Service.carica bolla, which:

1. Validates absence of duplicate delivery number for the store.

2. Stores files to the configured path and persists a “bozza” row.

3. Inserts expected lines (pelle/tessuto) with declared quantities.

4. Optionally triggers an email notification with attachments when descr is
provided.

Response. 200 OK with {"message": "Dati inseriti correttamente"}.
Roles. S, M.
Error cases. Duplicate bolla (400), storage/DB error (500).

5.2. BACKEND IMPLEMENTATION (FASTAPI) 41

POST /stock/conferma bolla (UC1 — Physical Count Confirmation)

Purpose. Confirms the physical quantities counted in store and finalizes the
inbound movement.
Inputs (form).

e nro_bolla [required]

e nro_sparate_pelle, nro_sparate_tessuto [required]: effective counted quan-
tities.

Process. Delegated to Service.conferma bolla:

1. Compares effective vs declared quantities, flagging mismatches.
2. Sends discrepancy email when needed.

3. Inserts inventory movements (ING) into the historical log.

4. Closes the draft.

Response. 200 0K with confirmation message.
Roles. S, M.
Error cases. Missing draft, DB failure (500).

POST /stock/conferma bolla mancante (UC1 — Inbound Without Supplier
Draft)

Purpose. Same as above, used when the supplier bolla is missing (manual inbound
confirmation).

Inputs. nro bolla, nro sparate pelle, nro sparate_tessuto.

Process. Service.conferma bolla mancante records ING movements di-
rectly.

Roles. S, M.

GET /stock/get_all barcode

Purpose. Returns the list of supported barcodes for kits and accessories (reference
data for UI and validation).

Inputs. None.

Process. Service.get_all barcode fetches catalog values.

Roles. S, M, A (read-only).

42 CHAPTER 5. IMPLEMENTATION

POST /stock/carica spedizione corriere (UC1 — Inbound via Courier,
no Uniters bolla)

Purpose. Creates a draft inbound based on a courier shipment (nro_sped_corr)
instead of a Uniters bolla.
Inputs (form). descr, file, negozio, nro_sped_corr, optional anomaly_photos.
Process. Service.carica spedizione corriere persists draft and attach-
ments; optional email on anomalies.

Roles. S, M.

POST /stock/uscita kit (UC2 — Register Kit Exit)

Purpose. Registers the issuance of a kit (exit) tied to a specific order with Uniters
warranty.

Inputs (form). nro_ord (order id), barcode (kit type).

Process. Service.uscita kit:

1. Verifies the order is not already fulfilled.
2. Checks stock availability of the kit and brochure (B111111).

3. Inserts two USC movements: brochure and kit; may auto-trigger brochure
reorder if threshold breached.

4. Clears any “consegna posticipata” flag for the order.

Response. 200 0K with confirmation.
Roles. S, M.

Errors. No stock available (400), DB failure (500).

GET /stock/get_bozze bolle

Purpose. Lists existing inbound drafts for the current user’s store.
Inputs. negozio (ignored in handler; store taken from token for safety).
Process. Service.get_bozze bolle.

Roles. S, M.

GET /stock/get_ordini mancanti (UC2 — Orders Waiting for Kit)

Purpose. Lists orders pending kit issuance for a given store.

Inputs. negozio (store code).

Process. Service.get ordini mancanti derives kit type from line descrip-
tion (pelle/tessuto) and maps CONSEGNA_POST to boolean.

Roles. S, M.

5.2. BACKEND IMPLEMENTATION (FASTAPI) 43

GET /stock/get_ordini mancanti_by_ user

Purpose. Same as above, filtered by the logged-in user (useful for per-operator
assignment/queues).

Inputs. negozio.

Process. Service.get_ordini mancanti_by_user.

Roles. S, M.

GET /stock/get_ordini usciti

Purpose. Returns orders where kits have already been issued (audit/visibility).
Inputs. negozio.
Process. Service.get_ordini usciti.

Roles. S, M, A (read-only).

POST /stock/reso kit (UC3 — Register Kit Return)

Purpose. Records a returned kit and restores inventory if it matches the original
exit.

Inputs (form). nro_ord, barcode.

Process. Service.reso kit verifies the returned barcode matches the kit
previously issued for the order, then inserts a RES movement.

Roles. S, M.

Errors. Mismatched kit (400), DB failure (500).

GET /stock/get magazzino (Store Inventory Snapshot)

Purpose. Returns current quantities for the authenticated user’s store.
Inputs. None.
Process. Service.get magazzino.

Roles. S, M.

POST /stock/rettifica magazzino (UC4 — Inventory Adjustment)

Purpose. Allows a manager to perform a manual adjustment (positive or nega-
tive) with optional justification.

Inputs (form). cod_art, qta_to move (signed int), descrizione [optional].

Process. Service.rettifica magazzino inserts a RET movement and logs
justification for traceability.

Roles. M.

Errors. Validation/DB failure (500).

44 CHAPTER 5. IMPLEMENTATION

GET /stock/get_info_bolla

Purpose. Retrieves detailed rows of a specific inbound bolla for the user’s store.
Inputs. nro_bolla.
Process. Service.get_info_bolla.
Roles. S, M.

GET /stock/delete_bozza

Purpose. Deletes a draft bolla (test + lines) for the user’s store if present.
Inputs. nro_bolla.
Process. Service.delete bozza, returning 200 on success or 400 if not
present.
Roles. M (or S if policy allows).

GET /stock/get_bolla_image

Purpose. Returns the stored image/PDF path for a given document and store.
Inputs. rif _doc, cod_negozio.
Process. Service.get_bolla image_path; router wraps the result in FileResponse.
Roles. S, M.

GET /stock/get_storico (UC6 — Movement History)

Purpose. Returns historical movements and summarized totals for the authenti-
cated store in a given date range.

Inputs. from data, to_data.

Process. Service.get_storico converts dates, fetches movements (ING/USC/RET/RES),
computes totals and on-date stock levels, merges postponed deliveries.

Roles. S, M; A typically uses multi-store variants.

GET /stock/get neg area manager (Multi-Store Summary)

Purpose. Returns per-store aggregates (movements, postponed counts, current
stock) for the area overseen by the authenticated user.

Inputs. from data, to_data.

Process. Service.get neg area manager, with internal filtering based on
username/role.

Roles. A (read-only).

5.2. BACKEND IMPLEMENTATION (FASTAPI) 45

GET /stock/get_storico_by_neg

Purpose. Retrieves movements and totals for a specific store and period (useful
to area managers and HQ users).
Inputs. from data, to_data, negozio.

Process. Service.get_storico_by_neg.
Roles. A, M (with scope).

GET /stock/get_excel rettifiche (Export)

Purpose. Generates an Excel report of adjustments over a time window, tailored
to the user’s language/territory.

Inputs. from data, to_data.

Process. Service.get_excel rettifiche returns a path; router streams it
via FileResponse.

Roles. M, A.

GET /stock/get_excel_area negozi (Export)

Purpose. Produces an Excel summary of stores under the area manager, with
per-store aggregates.

Inputs. from_ data, to_data.

Process. Service.get_excel_area negozi.

Roles. A.

GET /stock/get_excel movimenti neg (Export)

Purpose. Exports a flattened dataset of movements per store and period (row
per movement).

Inputs. from_data, to_data.

Process. Service.get_excel movimenti neg.

Roles. A.

GET /stock/get_consegne _posticipate_by neg

Purpose. Returns counts of postponed deliveries per kit type for a given store
(for dashboards and alerts).

Inputs. cod negozio.

Process. Service.get_consegne posticipate_by neg.

Roles. M, A.

46 CHAPTER 5. IMPLEMENTATION

GET /stock/get_excel giacenza negozi before (Export)

Purpose. Exports “start-of-period” stock levels by store, merged with postponed
metrics.

Inputs. from_data, to_data.

Process. Service.get_excel _giacenza negozi_ before.

Roles. A.

GET /stock/set_consegna post (Flag Postponed Delivery)

Purpose. Sets or clears the consegna posticipata flag for an order and kit type.
Inputs. consegna post (bool), ord (order id), kit_type (P/T).
Process. Service.set_consegna post inserts or deletes the flag row.

Roles. S, M.

GET /stock/reorderBrochures (Brochure Reorder)

Purpose. Requests brochure replenishment for the current store, optionally forced
by the caller.

Inputs. forced [default: true].

Process. Service.reorder brochures reads current stock and sends an
email to the central team with store code and quantities.

Roles. M.

Response. 200 0K with generic confirmation message.

GET /stock/checkReorderBrochures (Reorder Eligibility)

Purpose. Returns whether the store is currently eligible for an automatic brochure
reorder (policy-driven threshold).

Inputs. None.

Process. Service.check reorder brochures executes a policy query and
returns a boolean.

Roles. M.

5.2.1 JWT Authentication and Request Processing

This subsection details the implementation of authentication and request handling
based on JSON Web Tokens (JWT). The goal is to provide a stateless, lightweight
mechanism that satisfies the requirements defined in Chapter [3| for secure access
(RBAC), traceability, and low operational overhead in a distributed retail context.

5.2. BACKEND IMPLEMENTATION (FASTAPI) 47

Credential Handling and Token Issuance

Authentication relies on two core functions: one for hashing user passwords at rest
and another for minting short-lived access tokens after successful login. Sensitive
values such as the JW'T signing key and the password “pepper” are externalized
as environment variables, injected at runtime. This ensures secrets are never com-
mitted into the source code and can be rotated without code modifications.

Password hashing (get_password hash). The function derives a fixed-length
digest using RIPEMD-160 over the UTF-8 bytes of the password concatenated with a
pepper string provided by the environment variable PASSWORD_PEPPER. The result-
ing hex digest is truncated to 32 characters. In production deployments, stronger
password hashing functions such as Argon2id or bcrypt should be preferred,
ideally through a vetted library like passlib, in combination with unique per-user
salts and a secret pepper.

Access token creation (create_access_token). After successful authentica-
tion, an access token is created. The function copies the provided claims (data),
adds an expiry claim (default 30 minutes from the current time), and signs the
JWT with the symmetric key provided via SECRET_KEY_JWT. The signing algo-
rithm defaults to HS256 but can be adjusted by setting the environment variable
ALGORITHM_JWT. Tokens embed only the minimal identity and authorization con-
text required (username, negozio), reducing exposure if a token is intercepted.

Operational note. Access tokens are deliberately short-lived (30 minutes by
default) to limit the blast radius in case of compromise. If longer sessions are
required, a refresh-token mechanism can be adopted: a long-lived, httpOnly cookie
refresh token combined with a short-lived access token for API interactions.

Token-Based Request Authentication

Every protected endpoint depends on get_current_user. FastAPI’'s HTTPBearer ()
dependency extracts the Authorization: Bearer <JWT> header and provides
the raw token to the function.

Decoding and validation. The function:
1. Verifies the token signature using the secret key loaded from the environment.

2. Validates the expiry claim automatically via the JW'T library.

48 CHAPTER 5. IMPLEMENTATION

3. Extracts application-specific claims (username, negozio) used for down-
stream business logic.

If validation fails, a 401 Unauthorized is returned with a WWW-Authenticate:
Bearer header, consistent with RFC 6750.

RBAC integration. This function ensures authentication, while authorization
is enforced within the Service layer. This separation ensures routers remain
lightweight and business rules remain centralized.

5.3 Frontend Implementation (Vue.js)

The frontend of the Stock Uniters application was developed as a Vue 3 Single
Page Application (SPA). Its design emphasizes responsiveness, modularity, and
role-based adaptation. Thanks to the use of Vite as build tool, the system benefits
from fast hot-reload during development and optimized bundling in production.

Frameworks and Ul Libraries

The interface combines multiple libraries to achieve both usability and maintain-
ability:

e Bootstrap 5 and Bootstrap Icons for layout, grid system, and consistent
styling.

e PrimeVue for advanced Ul components (tables, dialogs, pickers).

e Font Awesome for iconography, integrated through the vue-fontawesome
wrapper.

e SweetAlert2 and vue3-toastify to provide immediate user feedback, con-
firmation dialogs, and toast notifications.

Routing and Navigation

Vue Router manages client-side routing. Each route corresponds to a functional
area (inbound stock, outbound kits, returns, inventory, dashboards). Unauthorized
access attempts are intercepted and redirected to the login view.

5.4. AUTHENTICATION FLOW 49

State Management

Application state is centralized using Pinia. Core state includes:
e authenticated user data and role,
e current store context,

e cached stock levels and dashboards.

Reactive data updates allow real-time synchronization with backend responses.

Forms and Validation

Form handling is reinforced through Vee-Validate, which provides declarative
input validation rules. This ensures accuracy in operations such as delivery decla-
rations, returns, and manual adjustments.

Internationalization

The system supports multilingual interfaces via vue-i18n, allowing Poltronesofa
to deploy the application in diverse regions without duplicating code.

Camera Integration

For document capture and kit traceability, the frontend integrates:

e Native file upload components for attaching delivery notes or anomaly pic-
tures.

Progressive Web App (PWA)
The system is distributed as a Progressive Web App, leveraging;:

e vite-plugin-pwa and register-service-worker for offline caching and
automatic updates.

e Installability on desktops and mobile devices, enabling a native-like user
experience.

5.4 Authentication Flow

Authentication in Stock Uniters follows a JWT-based stateless model. The
frontend exchanges user credentials with the backend during login, and receives a
signed JSON Web Token (JWT) that encodes identity and role information.

50 CHAPTER 5. IMPLEMENTATION

Login and Token Acquisition

1. The user accesses the login page and submits their credentials.

2. The backend verifies the credentials and, if valid, issues a JWT signed with
a server-side secret.

3. The frontend stores the JWT securely (localStorage or sessionStorage).

Token Usage

e On each API request, the frontend attaches the token in the header:
Authorization: Bearer <jwt_token>

e The backend validates the token’s signature and expiration before processing
the request.

o [f validation fails, the backend responds with 401 Unauthorized, prompting

re-authentication.

Access Control

e Role-based checks are performed based on claims inside the JWT (seller,
store manager, area manager).

e The frontend uses the same role information to enable or disable navigation
routes and Ul features.

e Unauthorized requests are blocked early by both the frontend (route guards)
and the backend (middleware).

Session Lifecycle

e Tokens have a short expiration time to reduce risk exposure.
e When the token expires, the user must log in again.

e This stateless approach simplifies scaling: no session state is stored on the
server.

Chapter 6

Evaluation

The Fwvaluation chapter assesses the outcomes of the Stock Uniters project, both
from an operational perspective and within the broader framework of Poltrone-
sofa’s digital transformation strategy.

Unlike previous chapters, which focused on technical design and implemen-
tation details, this section highlights how the introduction of the application re-
shaped existing processes, created measurable improvements, and generated or-
ganizational impact. The evaluation is therefore not limited to verifying func-
tional correctness, but extends to analyzing how technology adoption has influ-
enced workflows, roles, and decision-making practices.

A central aspect of this chapter is my direct involvement not only as a de-
veloper, but also as an active participant in strategic choices. By contributing
to the definition of evaluation criteria, key performance indicators, and pilot test
parameters, I acted as a bridge between the technical implementation and the
organizational goals of the company.

6.0.1 Application Pages Overview

This section presents the main user interfaces of the Stock Uniters application.
These pages represent the daily entry points for store staff and managers, and
their design strongly influenced the usability and effectiveness of the system.

o1

52 CHAPTER 6. EVALUATION

Stock Uniters

Username

Password

Figure 6.1: Login page of the application

The login page provides secure access through username and password. Once
authenticated, users are redirected to their dedicated workspace, with functionality
adapted to their role (seller, store manager, or area manager). This ensures that
each user sees only the features relevant to their responsibilities.

53

c3

(5] \ Stock Uniters

ol Home
@ Ingresso Merce
M Uscita Merce

& Reso Merce

& Magazzino T
Dashboard | |
Uscita Merce

Ingresso Merce

[x] Bozze 0

(AN
1nol
Reso Merce Magazzino

M GUIDA

Figure 6.2: Home page and navigation menu

The home page serves as the central navigation hub. From here, users can
quickly access the core modules: Ingresso Merce, Uscita Merce, Reso Merce, Mag-
azzino, and Dashboard. Its simplicity reduces complexity and shortens the time
required to carry out daily operations. This menu is also available in the side bar.

54 CHAPTER 6. EVALUATION

= & Ingresso Merce e

Mancanza bolla Uniters?

Numero Bolla Uniters 424324234
Pezzi Kit Pelle (8017673110488) 5
Pezzi Kit Tessuto (PF04459) 2222
Accettazione con fiserva.
Deserizione anomalia
Foto anomalis [scegiifite | Nessun file selezionato

Invia

Figure 6.3: Ingresso Merce page

The Ingresso Merce page is dedicated to registering incoming stock. Users
record the delivery note, quantities, and attach photographs in case of anoma-
lies. This workflow enforces accountability by requiring conditional acceptance if
discrepancies are found.

95

= & Uscita Merce &
Lista Ordini C3 Search
2025-C3-454 2025/03/20 2025-C3-450 2025/03/19 2025-C3-452 2025/03/19
ROSS! VALENTINA ROSSI VALENTINA ROSSI VALENTINA
Tipo Kit T Tipo Kit T Tipo Kit T
Finanziamento aperto Bonifico aperto
(O Cconsegna posticipata manuale () Consegna posticipata manuale (O Consegna posticipata manuale
2025-C3-441 2025/03/16 2025-C3-438 2025/03/16 2025-C3-440 2025/03/16
ROSSI VALENTINA DISALVO CINZIA ROSSI VALENTINA
Tipo Kit T Tipo Kit P TipoKit T
Consegna posticipata manuale Consegna posticipata manuale Consegna posticipata manuale
2025-C3-428 2025/03/15 2025-C3-433 2025/03/15
MASCAGNI KATIA ROSSI VALENTINA
Tipo Kit T Tipo Kit T
Bonifico aperto
Consegna posticipata manuale Consegna posticipata manuale

Figure 6.4: Uscita Merce page

The Uscita Merce page allows sellers to link outgoing kits to customer orders
covered by warranty. It ensures that only validated orders can be fulfilled, thereby
improving traceability and guaranteeing consistency between physical and digital
records.

56 CHAPTER 6. EVALUATION

E] &, Reso Merce &
Lista Ordini Search

2023-C3-1217 2023-C3-1224 2023-C3-1336
2023-C3-1344 2023-C3-1360 2023-C3-1345
2023-C3-1394 2023-C3-1390 2023-C3-1254
2023-C3-1381 2023-C3-1498 2023-C3-1450
2023-C3-1470 2023-C3-1421 2023-C3-1463
2023-C3-1497 2023-C3-1504 2023-C3-1564
2023-C3-1581 2023-C3-1548 2023-C3-1633
2023-C3-1606 2023-C3-1680 2023-C3-1660
2023-C3-1700 2023-C3-1739 2023-C3-1712
2023-C3-1747 2023-C3-1751 2024-C3-11

Figure 6.5: Reso Merce page

The Reso Merce page is used to record kit returns. By associating each return
with the original order, the system guarantees full traceability of movements and
simplifies subsequent reconciliation.

= N Magazzino

Tipo articolo

Kit Pelle
Kit Tessuto

Brochure

Motivazione rettifica *

Codice articolo

8017673110488

PF04459

B111111

o7

[c2

Riordina stock di brochure

Giacenza Qta rilevata

64

155

Figure 6.6: Magazzino page

The Magazzino page provides an overview of the current stock, including both
kits and brochures. It enables managers to perform adjustments during monthly in-
ventory checks. Every correction requires a justification, reinforcing transparency

and governance.

58 CHAPTER 6. EVALUATION

= & Dashoboard &

ING = Ingresso Merce
Data Inizio 18/02/2025 USC = Uscita Merce
RET = Rettifica Merce

Data Fine Periodo 20/03/2025
€OD NEGOZIO GIACENZA ATTUALE TOT(PELLETESSUTO) CONSEGNE POSTICIPATE(PELLE TESSUTO) _ ENTRATE NEL PERIODO TOT(PELLETESSUTO) __ USCITE NEL PERIODO TOT(PELLE.TESSUTO) __RESI NEL PERIODO TOT(PELLETESSUTO)
TOTALE NEGOZIO 219 (64, 155) 33 (5, 28) [58 (4, 54) o

Ricerca globale

TIPO RIF_DOC DATA ARTICOLO NRO_PZ_MOV UTENTE

usc 2025-C3-448 2025-03-18T18:59:44 8017673110488 -1 cecina.valentina
usc 2025-C3-448 2025-03-18T18:59:44 B1111M -1 cecina.valentina
usc 2025-C3-447 2025-03-18T18:59:35 B111111 -1 cecina.valentina
usc 2025-C3-447 2025-03-18T18:59:35 PFO4459 -1 cecina.valentina
usc 2025-C3-410 2025-03-17T19:16:52 B111111 -1 cecina.valentina
usc 2025-C3-410 2025-03-17T19:16:52 PFO4459 -1 cecina.valentina
usc 2025-C3-431 2025-03-17T19:16:18 PF04459 -1 cecina.valentina
usc 2025-C3-431 2025-03-17T19:16:18 BN -1 cecina.valentina
usc 2025-C3-442 2025-03-17T19:15:04 B1111M -1 cecina.valentina
usc 2025-C3-442 2025-03-17T19:15:04 PFO4459 -1 cecina.valentina

Figure 6.7: Dashboard page

The Dashboard aggregates indicators such as stock entries, exits, returns, and
postponed deliveries. This visualization supports managers and area supervisors
in monitoring operations and making data-driven decisions in real time.

6.1 Evaluation Setup

Before the introduction of the Stock Uniters application, inventory management
processes in Poltronesofa stores were handled manually using Excel spreadsheets.
Store staff were responsible for updating stock quantities in local Excel files,
which were then periodically shared with Area Managers. These managers had to
manually monitor updates, consolidate data, and ensure reporting accuracy across
all their assigned stores.
This system was prone to several inefficiencies:

e Delays in communication and consolidation of data.

6.2. AUTOMATION AND IMPROVEMENTS 59

e Inconsistent or missing entries due to human error.
e Difficulty in tracing who made a change and when.

In addition to these technical shortcomings, the Excel-based workflow rep-
resented a broader organizational challenge: it perpetuated a fragmented, non-
standardized approach to information sharing, which was increasingly misaligned
with the company’s ambition to modernize its digital infrastructure. From this per-
spective, the evaluation of the new system was not limited to verifying functional
correctness, but was framed as part of a wider process of digital transformation.

To test and evaluate the effectiveness of the new application, a pilot phase
was carried out in five strategically selected stores. These stores were chosen to
represent different geographical areas and operational contexts, ensuring that the
results of the trial would be meaningful and generalizable. Both store staff and
Area Managers were instructed to use the app during their day-to-day operations,
replacing the traditional Excel-based process.

My involvement in this phase went beyond the technical role of software im-
plementation. I actively contributed to defining the evaluation criteria together
with managers, establishing metrics not only for efficiency (speed of data entry,
reduction in errors) but also for adoption and usability (ease of training, user
satisfaction, and perceived improvement in accountability). This participatory
approach positioned me as an enabler of organizational change, bridging the gap
between the IT department and operational staff, and ensuring that the pilot could
serve as a concrete step in the company’s overall digitalization roadmap.

6.2 Automation and Improvements

The introduction of the Stock Uniters application brought several immediate ben-
efits that were perceived not only at a technical level but also at an organizational
one.

Real-time data entry Stock movements were recorded directly by store em-
ployees through the app, ensuring that information was immediately available at
the company level without the need for subsequent consolidation.

Elimination of Excel dependency The complete removal of local spread-
sheets significantly reduced the risk of fragmented or outdated information. This
also marked a cultural shift, replacing a historically manual process with a stan-
dardized, centralized system.

60 CHAPTER 6. EVALUATION

Immediate dashboard access Area Managers could monitor stock status and
movements across all stores from a single interface. This enabled data-driven
decision making, reducing the time spent on manual checks and freeing managers
to focus on higher-value activities.

User accountability FEach action within the app was tied to an authenticated
user, with timestamps and mandatory justification fields for every adjustment.
This not only improved traceability but also fostered a sense of responsibility
among employees, aligning operational behavior with corporate governance prin-
ciples.

Beyond these measurable improvements, the project also served as a catalyst for
broader organizational change. By participating directly in the design of workflows
and the prioritization of features, I contributed to ensuring that automation did
not merely replicate existing practices but actively improved them. Decisions such
as enforcing role-based dashboards, mandating justifications for adjustments, and
providing managers with integrated dashboards were not purely technical: they
reflected a conscious effort to embed accountability, transparency, and efficiency
into the company’s daily operations.

In this sense, the application functioned as both a technological tool and a
vehicle for digital transformation, reshaping how information was captured,
validated, and shared across the Poltronesofa retail network.

6.3 Impact on Operations

During the pilot in the five stores, the following operational improvements were
observed:

Stock entries and exits were processed more quickly and accurately
The direct input of data into the application minimized transcription errors and
removed delays caused by manual updates.

Inventory reconciliation was simpler and faster Managers could rely on
automatically generated records with complete traceability, significantly reducing
the effort required to perform monthly checks.

Area Managers reduced the time spent requesting or aggregating data
manually Dashboards and exports provided consolidated visibility across all as-
signed stores, eliminating the need for repeated communication with store staff.

6.4. RELEVANT KPI: STOCK REGISTRATION TIME 61

Store managers also reported that the system improved internal control and
reduced ambiguity during monthly stock checks. The ability to verify who carried
out each action, and when, added a new layer of transparency that strengthened
accountability and trust within local teams.

From an organizational perspective, these operational changes highlight how
the adoption of the Stock Uniters application went beyond simple efficiency gains.
By participating directly in the definition of validation rules, data flows, and re-
porting mechanisms, I helped shape a solution that integrated seamlessly into daily
retail operations while also reinforcing corporate governance practices.

In this way, the project not only delivered measurable time savings but also
fostered a cultural shift towards data-driven and standardized operations, a
key milestone in Poltronesofa’s broader digital transformation journey.

6.4 Relevant KPI: Stock Registration Time

One particularly relevant Key Performance Indicator (KPI) for evaluating the
efficiency of the new system is the stock registration time, defined as the average
delay between the physical reception of goods in-store and their digital registration
into the system. This KPI was selected because it directly reflects one of the most
critical pain points of the previous process: the gap between operational reality
and the availability of updated information for decision-making.

In the Excel-based workflow, this delay could span several hours or even days,
depending on staff availability and whether the spreadsheet was correctly updated
and forwarded to Area Managers. This meant that managers often operated with
incomplete or outdated data, reducing their ability to intervene promptly in case of
stock shortages, discrepancies, or anomalies. Moreover, the absence of a standard-
ized procedure increased variability between stores, making it difficult to compare
performance or enforce consistent practices.

Thanks to the new application, the registration workflow was streamlined and
partially automated:

e The stock registration process begins as soon as the goods are received,
removing the possibility of postponing the update.

e Store staff use tablets or smartphones to photograph the delivery document
and record quantities immediately, ensuring that both quantitative and doc-
umentary evidence are captured at the same time.

62 CHAPTER 6. EVALUATION

e Data is saved and made available to managers in real time, allowing for
immediate visibility across the retail network without waiting for manual
consolidation.

The introduction of this workflow produced tangible improvements. As shown
in Table[6.1] the average delay in registration dropped from 3.2 days to 0.8 days,
a reduction that not only accelerates operational reporting but also minimizes the
risk of discrepancies between physical and digital stock. Similarly, the document
completeness rate increased significantly, reflecting how the app encouraged staff
to attach delivery notes systematically. The reduction in mismatch incidence
confirms that faster and more structured registration leads to fewer inconsisten-
cies, while the overall inventory accuracy rose to 92%, demonstrating that the
information used by managers is now more reliable.

KPI Before (Excel) | After (App)
Stock registration delay 3.2 days 0.8 days
Document completeness rate 68% 96%
Mismatch incidence 22% 7%
Inventory accuracy 79% 92%

Table 6.1: Example KPI comparison before and after introducing the system

Beyond the numerical results, this KPI illustrates how the application con-
tributed to creating a more disciplined and transparent workflow. By integrating
photo capture, mandatory data entry, and immediate synchronization, the system
eliminated delays that were previously accepted as unavoidable. As a result, Area
Managers gained earlier access to accurate data, enabling them to focus on analysis
and decision-making rather than chasing updates.

This demonstrates how the Stock Uniters application was not only a techno-
logical upgrade, but also an enabler of process standardization, aligning store-level
activities with the company’s strategic goal of real-time visibility across its retail
network.

Chapter 7

Conclusion and Future Work

This final chapter reflects on the results achieved throughout the thesis, positioning
the Stock Uniters application within the broader context of Poltronesofa’s digital
transformation. It summarizes the main contributions of the project, highlights
the limitations encountered during the pilot phase, and outlines possible directions
for future development. The intention is not only to close the technical narrative
of design and implementation, but also to emphasize the role of this work as an
enabler of organizational change, where digital tools support greater efficiency,
accountability, and data-driven decision-making across the retail network.

7.1 Summary of Contributions

This thesis presented the design and implementation of a web-based stock man-
agement system tailored to the operational needs of Poltronesofa, addressing inef-
ficiencies of the previous Excel-based workflow and aligning daily operations with
the company’s digital transformation strategy.

The developed solution delivered multiple contributions, both operational and
technological:

Simplification and standardization of workflows Inventory management
at the store level was unified into a single platform, reducing variability between
locations and ensuring consistent practices.

Traceability and accountability Every stock movement (entry, exit, return,
adjustment) is logged with user credentials, timestamps, and justification fields,
creating a transparent and auditable process.

63

64 CHAPTER 7. CONCLUSION AND FUTURE WORK

Managerial visibility Dashboards and reporting tools provide store managers
and area managers with real-time access to stock levels and historical movements,
enabling faster and better-informed decisions.

Integration of supporting features Document scanning, image uploads, and
inventory corrections are embedded in the workflow, reducing manual steps and
ensuring data completeness.

From a technical standpoint, the system demonstrates the successful applica-
tion of a modern, full-stack architecture:

Backend FastAPI provides a performant, type-safe, and maintainable frame-
work, integrated with Oracle to ensure compatibility with enterprise infrastruc-
ture.

Frontend Vue.js enables the development of a responsive, mobile-friendly Single
Page Application, ensuring usability across devices and in varied store contexts.

Security JWT-based authentication and role-based access control safeguard sen-
sitive data and enforce user accountability.

Beyond these tangible results, the project also represents a contribution in
terms of organizational change. By embedding operational rules into the applica-
tion logic (e.g., warranty association with kit exits, mandatory justifications for
adjustments), the system became not only a technical tool but also a mechanism
for enforcing corporate governance principles.

My active involvement went beyond programming: I participated in the defini-
tion of requirements, evaluation criteria, and pilot testing, acting as a link between
the I'T department and store operations. This role highlights one of the central
contributions of the thesis: demonstrating how a technical solution can serve as a
catalyst for process innovation and cultural change, supporting Poltronesofa
in its transition towards data-driven decision making and digital standardization.

7.2 Limitations

While the pilot deployment has shown positive results, a few limitations were iden-
tified that are important to acknowledge both from a technical and organizational

7.3. FUTURE WORK 65

perspective. Recognizing these limitations is a fundamental step in ensuring that
the system can evolve in alignment with the broader goals of Poltronesofa’s digital
transformation journey.

Connectivity dependency Upload operations can be delayed in stores with
unstable Wi-Fi. Although this issue did not prevent the overall success of the
pilot, it occasionally caused frustration among employees who expected immedi-
ate confirmation of their actions. This limitation emphasizes how technological
innovation must be supported by adequate infrastructure: without stable connec-
tivity, even the most advanced digital tools risk being perceived as unreliable. It
also highlights the strategic need to coordinate IT solutions with investments in
store-level infrastructure, ensuring that digital adoption is not hindered by uneven
technical readiness.

User learning curve Some users initially confused “conditional acceptance”
with “forced closure.” This limitation underlines a recurring challenge in digital
transformation projects: introducing new systems often requires redefining not
only tools but also mental models and organizational vocabulary. Even a well-
designed interface cannot fully prevent misunderstandings if the underlying pro-
cesses are unfamiliar to staff. The lesson learned is that training, user support,
and continuous feedback loops are essential components of adoption. Technology
alone is not sufficient; it must be accompanied by a cultural change that helps
employees internalize new ways of working.

No offline mode The system currently does not support offline operations or
synchronization. While acceptable in the pilot phase, this limitation could become
a barrier to large-scale deployment, especially in areas where connectivity is weak
or inconsistent. Offline support is particularly relevant for mobile use cases, such
as when employees register stock movements directly from the warehouse floor.
The absence of this functionality limits the robustness of the solution and can
undermine trust in the tool if users perceive it as dependent on external conditions
beyond their control.

7.3 Future Work

To further improve the system and consolidate its role within Poltronesofa’s digital
ecosystem, the following developments are recommended. These enhancements do
not only address technical limitations, but also aim to reinforce adoption, scala-
bility, and long-term sustainability.

66 CHAPTER 7. CONCLUSION AND FUTURE WORK

Offline-first capabilities An offline-first approach would allow store staff to
continue operating even in the absence of a stable internet connection, with local
data storage and automatic synchronization once connectivity is restored. This
functionality would mitigate one of the main limitations identified during the pilot,
ensuring reliability and uninterrupted operations. From a strategic point of view,
it would also strengthen user trust in the system, making digital workflows resilient
to external conditions.

Improved onboarding and training While the application is designed to be
intuitive, initial confusion with certain terms and processes revealed the impor-
tance of guided onboarding. Future iterations could integrate interactive tooltips,
contextual in-app guides, and clearer terminology. These improvements would
lower the learning curve, standardize knowledge across stores, and reduce the de-
pendence on external training sessions. Effective onboarding is not only a usability
enhancement but also a key factor in ensuring that the digital transformation be-
comes embedded in daily practice.

Expanded reporting Current dashboards provide essential visibility, but future
versions could include time-based trends, error heatmaps, and automatic anomaly
detection. Such features would elevate the application from an operational tool
to a decision-support system, enabling managers to anticipate issues rather than
simply react to them. This evolution would align with the broader goal of fostering
a culture of data-driven management across the company.

Scalability testing As the pilot demonstrated the system’s potential, preparing
for large-scale deployment across all Poltronesofa stores becomes a priority. Stress
testing and scalability validation are required to guarantee performance under
higher transaction volumes and concurrent users. Beyond technical robustness,
this step represents a strategic milestone: scaling the solution means extending the
benefits of efficiency, traceability, and standardization to the entire retail network.

Integration with other systems Connecting the application with existing
ERP platforms or sales tools (e.g., FIP) would further increase its value. Integra-
tion would reduce data duplication, align stock management with sales processes,
and allow end-to-end traceability from product delivery to final sale. This step
would consolidate the application’s role as part of a broader digital ecosystem,
strengthening its contribution to the company’s digital transformation roadmap.

Taken together, these developments illustrate that the Stock Uniters system is
not a finished product but an evolving platform. Each improvement contributes

7.3. FUTURE WORK 67

not only to resolving technical constraints but also to embedding digital practices
more deeply into organizational culture.

Final Remarks

The Stock Uniters system demonstrates the value of targeted digital transforma-
tion in retail operations. It shows how even relatively simple tools—when tailored
and well-integrated—can yield measurable efficiency, traceability, and user satis-
faction benefits.

From a technical perspective, the project confirmed that modern frameworks
such as FastAPI and Vue.js can be successfully combined with enterprise infras-
tructure like Oracle to deliver agile yet robust solutions. From an organizational
perspective, it highlighted how embedding operational rules directly into the ap-
plication enforces consistency, accountability, and transparency across stores.

A key takeaway from this experience is that digital transformation is not
only about deploying new technologies, but about rethinking processes, roles, and
decision-making practices. Through my active participation in both the techni-
cal development and the strategic design of workflows, this thesis exemplifies how
the figure of the developer can also act as an agent of change, bridging technical
expertise with organizational objectives.

Ultimately, the system represents more than a software solution: it is a con-
crete step towards a culture of data-driven decision-making within Poltronesofa.
By transforming a previously fragmented and manual workflow into a standard-
ized, traceable, and real-time process, the project laid the foundations for further
innovations and paved the way for the company’s ongoing digital evolution.

68

CHAPTER 7. CONCLUSION AND FUTURE WORK

Bibliography

[Bis02]
[Coc01]
[Coh04]

[Dev22]

[iso19]

[LL20]

[Nie93]

Matt Bishop. Computer Security: Art and Science. Addison-Wesley, 2002.
Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley, 2001.

Mike Cohn. User Stories Applied: For Agile Software Development.
Addison-Wesley, 2004.

Mozilla Developers. Progressive web apps (pwas), 2022. https://
developer.mozilla.org/en-US/docs/Web/Progressive_web_apps.

ISO 9241-210:2019 ergonomics of human-system interaction — human-
centred design for interactive systems, 2019. International Organization
for Standardization, https://www.iso.org/standard/77520.html.

Kenneth C. Laudon and Jane P. Laudon. Management Information Sys-
tems: Managing the Digital Firm. Pearson, 16 edition, 2020.

Jakob Nielsen. Usability Engineering. Academic Press, 1993.

[Ram22] Sebastian Ramirez. Fastapi documentation, 2022. https://fastapi.

tiangolo.com.

[RDTO01] Ananth Raman, Nicole DeHoratius, and Zeynep Ton. Execution: The

[RR10]

missing link in retail operations. 2001.

Leon Rosen and Roger Resnick. Web Application Architecture: Principles,
Protocols and Practices. Wiley, 2010.

[SCFY96] Ravi Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E.

[Som16]
[Vue23]

Youman. Role-based access control models. 1996.
lan Sommerville. Software Engineering. Pearson, 10 edition, 2016.

Vue.js Team. Vue.js documentation, 2023. https://vuejs.org.

69

https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://www.iso.org/standard/77520.html
https://fastapi.tiangolo.com
https://fastapi.tiangolo.com
https://vuejs.org

	Abstract
	Introduction
	Background
	About Poltronesofà
	What is a Web Application?
	Company and Use Case Context
	Problem Domain
	Existing Solutions and Related Work
	Technology Stack Overview
	Backend (FastAPI)
	Frontend (Vue.js)
	User Documentation (PDF Guide)

	Analysis
	Functional Requirements
	Authentication and User Access
	Inbound Stock Registration
	Stock Exit Registration
	Returns Management
	Inventory Adjustments
	Movement History and Reporting
	Brochure Management

	User Roles and Access Levels
	Non-Functional Requirements
	Use Cases
	UC1 – Record Inbound Stock
	UC2 – Register Kit Exit
	UC3 – Register Kit Return
	UC4 – Perform Inventory Adjustment
	UC5 – Request Brochures
	UC6 – Monitor Stock Movements

	User Stories
	Seller – Register Incoming Stock
	Seller – Register Kit Exit
	Seller – Return a Kit
	Store Manager – Adjust Inventory
	Store Manager – Request Brochures
	Area Manager – Monitor Movements

	Design
	System Architecture
	Architectural Paradigm
	Frontend Layer (Vue.js)
	Backend Layer (FastAPI)
	Database Layer (Oracle)
	Cross-Cutting Concerns

	High-Level Architecture Diagram
	Purpose of the Diagram
	Frontend Layer
	Backend Layer
	Database Layer

	Component Overview

	Implementation
	Key Technologies Used
	Backend Implementation (FastAPI)
	JWT Authentication and Request Processing

	Frontend Implementation (Vue.js)
	Authentication Flow

	Evaluation
	Application Pages Overview
	Evaluation Setup
	Automation and Improvements
	Impact on Operations
	Relevant KPI: Stock Registration Time

	Conclusion and Future Work
	Summary of Contributions
	Limitations
	Future Work

