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Abstract

This work investigates the use of large language models for conceptual design of
multidimensional data warehouses, comparing supply-driven and demand-driven
approaches. In the supply-driven approach, Dimensional Fact Model schemata is
generated from source relational schemas, whereas in the demand-driven approach,
schemata is generated from textual end-user requirements. Multiple LLMs are
evaluated, including GPT, LLaMA, Falcon and Mistral, using automated pipelines
for YAML-based schema extraction, metrics computation and visualization. Eval-
uation metrics include node- and edge-level precision, recall and F'l-score, as well
as custom error metrics reflecting domain-specific schema errors. Experiments
are run on CPU and GPU environments, with automated scripts ensuring repro-
ducibility and consistent execution across multiple runs. Results show that prompt
engineering significantly improves model performance: for supply-driven design,
average Fl-scores nearly double, while for demand-driven design, careful prompt
design increases scores by up to 20%. GPT-5 demonstrates slight improvements
over GPT-4, particularly in capturing relational dependencies. The study also
highlights practical limitations, including memory constraints with larger import
models, variability in execution times and the need for manual post-processing
rules. Future work includes expanding the exercise dataset, developing automated
alignment strategies, exploring interactive multi-turn schema design and experi-
menting with fine-tuning large import models to enhance both accuracy and ef-
ficiency. These results provide a systematic foundation for leveraging LLMs in
automated data warehouse conceptual design, balancing effectiveness and compu-
tational resources.

1ii



v



I wish to dedicate this work, and the entire journey, to all
those who have been by my side with patience and affection.



vi



Acknowledgements

I'm eager to express my sincere gratitude to all the professors I faced throughout
my studies. In particular, I thank my supervisor Dott. Prof. Enrico Gallinucci,
for his guidance and feedbacks, as well as availability and kindness, but also the
laboratory staff and teaching assistants who provided invaluable help in practical
sessions and research: your help has been fundamental.

I would like to thanks for all working experiences I had during these years, with
specific regard to teaching activities in primary schools, for all that have taught
and given to me.

I also want to thank my friends and colleagues I met during these years at
university. What a journey, a wonderful journey we had. Your support, encour-
agement, help and shared experiences have made this years so memorable and
enjoyable. Without you all this wouldn’t have been the same; I would like to re-
mark that even if this can be seen as an end to those wonderful days and nights
we lived together, we all should focus on how much effort we put in pushing ev-
ery moment up to the limits, without regrets by my side, hoping the same for
yours; but even if it looks like an end is put only for good things, the same hap-
pens for the bad ones too: every moment it was your turn to pay for the coffe
or everybody pretends to not have pennies, when you felt mocked by someone
who outperformed you in shortcut knowledge, but also when a bathroom door
decided to imprison you for hours generating gags. You're too many to list as
singles, Marajas, conspiracy theorists, Abruzzo’s citizens, board gamers and also
ones who made me doubt about bias accumulated during my life. I wish you all
the bests and a brightful future, and in case everything goes wrong, a Maraffa or
Cervellone player professional career will be a second-best option for sure.

An honorable mention goes to my longtime friends, who have seen a lot of
changes in me, but have nevertheless stood by my side with patience and affection.
I'm aware that those nights at the bar or clubs look so remote, but I remain grateful
for every laugh and moment we shared, and even more for the fact that you're still
here now. I truly hope that in the future we’ll be more in touch and continue
building new memories together.

vii



viii

Of course, I would love to thank my girlfriend for the support, the patience and
perseverance in detaching from work to remember the importance of truly living
and embracing experiences of all kinds, from extreme ice driving to silly falls on
skis. I'm really grateful for all experiences we did together and for the ones to
come.

Last, though certainly not least, my family, for believing in me and for your
unconditional support, which has been fundamental for finding the inner strength
to persevere even in the toughest moments and for convincing me to take the
leap six years ago looking for my life path, starting from university. The news
of becoming uncle became a source of inspiration, driving me to complete this
journey at my best.

As a new Doctor, and above all, as a person, a huge and heartfelt thank you!



Contents

[Abstractl
1__Introduction|
2 Background|
2.1 Data Warehousing| . . . . . ... ... .. ... ... ... . ...
211 Data Warehouse . . . . ... ... ... ...
2.1.2 Architectures . . . . . . . . ... oo
RIS ETI . . .o oo e e
2.1.4 Litecycle] . . . .. .. o
[2.2  Data Mart design approaches| . . . . . .. ... ... ... .....
[2.2.1 Supply-driven approach| . . . . . ... ...
[2.2.2  Demand-driven approach|. . . . . . . . ... ... ... ...
[2.3  Conceptual Models for Data Warehousingl . . . . . .. .. ... ..
2.3.1 Dimensional Fact Modell . . . . . . ... ... ... ... ..
(2.4 Artificial Intelligence] . . . . . . . . .o 0oL
2.4.1 raming| . . . . . ...
[2.5  Natural Language Processingl . . . . . ... ... ... ... ....
[2.5.1 Text representation| . . . . . . . . .. ... ...
2.5.2  Word embeddings|. . . . ... ... ... ...
[2.5.3  Sequence models| . . . . ...
|2|5i| l l:llg:!!‘lg:l - l}g:g:gz!ig:l i!l!:ll‘llg:g:l !]ls:l ................
2.0.5  Attentionl . . . . . . ... Lo
2.5.6  Transformers . . . .. ... .. ... ...
[2.6 Large Language Models| . . . ... .. ... ... ... ... ....
3__Problem Statement]
[4 System Architecture]
[4.1 Application Design| . . . . . . . ... ... Lo
4.1.1 Pipeline Overview|. . . . . . . . . ... ... ... ......

X

iii



4.1.3 Input|. . . . . ..o
[4.1.4  Output Structure| . . . . . . . .. ... ... ..
[4.1.5 Post-Processing| . . . . .. ... .. ... ....
[4.2  Aggregation and Visualization| . . . . . . . .. ... ..

[> Implementation|

[>.1.1  Supporting Technologies| . . . . . . . . ... ..
(5.2 Pipeline Implementation| . . . . . . . ... ... ... .
[>.2.1  Configuration Parsing| . ... ... ... ....
[5.2.2  Model Loading} . . ... ... ... .......

[5.2.3  Prompting and Execution Time Measurement|

[5.2.4  Output Parsing and Post-Processing] . . . . . .
[5.2.5 Comparison and Metrics Evaluation|. . . . . . .
[>.2.6  Results Storagel . . . . . ... ... ... ...
(5.3 Aggregation and Visualization| . . . . . . . ... .. ..
[5.3.1  Graph drawing| . . . . . ... ... ... ....
b4 GPUexecution . . ... ... ... ... L.
[5.5 Methodologies| . . . . . . . ... ... ...
b.h.1  Git Workflowl . . . . . .. ..
[5.5.2  Continuous Integration| . . . . . . ... .. ...

[6 Experimental evaluation|

[6.1  Experimental Setup(. . . . . . ... ... ... ... ..
[6.1.1 Tasks and Inputs| . . . . . ... ... ... ...

CONTENTS



List of Figures

[2.1 Data Warehousing overview| . . . . . . . ... ... .. ... .... 5
2.2 1-level architecturel . . . . . . . . ... oo 6
2.3 2-levels architecturel . . . . . . . ... oL 7
2.4 3-levels architecturel . . . . . . . ... ... oL 8
[2.5 ETL cleaning & transtormation example.| . . . . . . . . .. ... .. 10
2.6 DFM example.| . . .. ... ... ... 15
2.7 DFM example with advanced constructs.| . . . . . . .. . ... ... 17
2.8 DFM example with advanced construct.| . . . ... ... ... ... 17
2.9 DFM example for aggregation analysis.| . . . . . .. ... ... ... 18
[2.10 Examples of underfitting, optimal fitting and overfitting.| . . . . . . 20
[2.11 Workflow during training and validation phases.| . . . . . . . . . .. 21
[2.12 Workflow during test phase.| . . . . . .. . .. ... .. ... .... 22
[2.13 Terms projecting into a vector space based on semantics.| . . . . . . 24
[2.14 CBOW and Skip-gram architectures.| . . . . . .. . ... ... ... 25
2.15_Encoder—Decoder architecturel. . . . . . .. .. ..o 26
[2.16 Attention mechanism integrated within the encoder—decoder archi- [

tecturel . . . . . . 27
2.17 Transformer architecturel. . . . . . ... ..o 000 29
[4.1  UML class diagram of the application architecture.| . . . . . . . .. 37
[4.2  UML activity diagram of the application architecture.. . . . . . .. 39
[4.3  UML diagram of the Model class.| . . . . . . .. ... .. ... ... 40
(4.4 Comparison of output & ground truth. . . . . ... ... ... ... 50
[4.5 Graphs for representation.| . . . . . . .. ... 0L 51
[4.6  Graphs produced by Falcon model for aggregation.| . . . .. . ... 56
[4.7  Graphs produced by Falcon model tor aggregation.| . . . . ... .. 57
[4.8  Additional graphs aggregating execution times and accuracy metrics.| 59
[6.1 GPT4 supply-driven output graph — RQ2. . . . . .. .. ... ... 85
[6.2  GPT4 supply-driven output graph — RQ3-ALG.| . . . . .. ... .. 85
(6.3  GPT4 supply-driven output graph — RQ3-DEC.| . . . . . .. . . .. 86

X1



xii

LIST OF FIGURES

(6.4  GP'T4 supply-driven output graphs for each prompt version.| . . . . 86
6.5 GPT4 demand-driven output graph — RQ4.. . . . . . ... ... .. 86
6.6 GPT4 demand-driven output graph — RQ5.. . . . . .. .. ... .. 87
6.7 GPT4 demand-driven output graphs for each prompt version.| . . . 87
(6.8  Comparison of GPT-4 and GP'T-5 by prompt versions.| . . . . . .. 89
[6.9  Execution time comparison of imported models on CPU and GPU. |

Models are ordered by average F'1 score across nodes and edges.| . . 90




Listings

[4.1 Introductory block for all prompts.| . . . . . . ... ... ... ... 42
(4.2 RQ3-dec summarization.| . . . . . .. ..o 44
[4.3  RQ3-alg summarization.| . . . . . ... .. o000 45
4.4 RQ4 summarization.| . . . . . . ... ..o 47
[4.5 RQ5 summarization.| . . . . . ... ... 48
[4.6  Exercise example. . . . . . ... Lo 49
[4.7  Prompt example.| . . . . . . ... oo 49
[4.8  Exercise specific and common rules example,| . . . . ... ... ... 53
[>.1 Configurations for pipeline.|. . . . . . ... .. ... .. ... .... 63
[>.1 Example of pipeline execution overriding YAML parameters.| . . . . 64
[5.2  Excerpt of the unified Model class handling both imported and API- [

based models.) . . . . ... 65
[5.2  Credentials configuration for new models.|. . . . . . ... . ... .. 66
(b.3 Load import models.| . . . . . . . ... ... 00000 67
[>.4 Load api models.| . . . . . .. .. ... oL 67
[>.5  Generate function for import models.| . . . . . .. ..o 69
0.6 _Generate function for APis models) . . . . ... .. ... ... ... 69
[5.7  Prompt and execution time measurement example| . . . . . . . .. 71
(.3  Output obtained atter comparison.| . . . . . . ... ... ... ... 75
[>.4  DockerFile excerpt.| . . . . . . ..o 7
[6.1 Configurations for GP'T" experiments.| . . . . . . .. ... ... ... 84

xiil



xiv LISTINGS



Chapter 1

Introduction

The rapid growth of digital technologies has led to unprecedented availability of
data in almost every domain of science, engineering and business. Organizations
increasingly rely on these data not only to monitor ongoing processes, but also
to support strategic decisions, optimize operations and forecast future trends. To
transform raw data into actionable knowledge, structured approaches to data or-
ganization and analysis have become essential.

Within this context, data warehouses play a crucial role providing a unified,
consistent and historical view of organizational data. They serve as the founda-
tion for Business Intelligence systems, enabling reporting, analytics and advanced
decision support. The design of a data warehouse, however, is a complex pro-
cess that requires bridging the gap between business requirements and technical
implementation. At the core of this process lies conceptual modeling, which pro-
vides a high-level representation of the analytical needs of stakeholders and guides
subsequent logical and physical design steps.

Among the conceptual models proposed, the Dimensional Fact Model stands
out as an intuitive and expressive framework. By structuring data around facts,
measures, dimensions and hierarchies, the DFM facilitates communication between
designers and decision-makers while ensuring a solid foundation for multidimen-
sional analysis.

Despite its strengths, the design of conceptual models remains a demanding
activity, often requiring significant expertise and extensive interaction with do-
main experts. This raises the question of whether emerging Artificial Intelligence
technologies, and in particular Large Language Models, can assist in the model-
ing process. LLMs have demonstrated remarkable capabilities in understanding
natural language, reasoning over complex information and generating structured
outputs: properties that make them promising candidates for supporting both
supply-driven and demand-driven design approaches in data warehousing.

The aim of this thesis is to analyze the potential of Large Language Models
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to assist in the design of data marts, considering both supply-driven and demand-
driven methodologies.

Thesis Structure. The structure of this thesis is as follows. Chapter 2| provides
the theoretical foundations for this work. It introduces the core concepts of data
warehousing, including OLAP and OLTP systems, ETL processes and conceptual
models for data marts. It also presents the Dimensional Fact Model as a cen-
tral framework for conceptual modeling in Business Intelligence, detailing its basic
and advanced constructs. In addition, covers fundamental concepts in Artificial
Intelligence, with a focus on Natural Language Processing and reviews relevant ar-
chitectures and Large Language Models that will be analyzed for their potential in
supporting both supply-driven and demand-driven design approaches. Chapter
presents a detailed definition of the research problem, while Chapter [4] outlines
design of the proposed application, serving as the bridge between the theoretical
foundations introduced in the background chapter and the practical experimenta-
tion and analysis that follow. The subsequent chapters describe the methodology,
experiments, results and analysis of LLM capabilities in assisting DFM-based con-
ceptual modeling. Chapter [5| presents the implementation details of the proposed
system, including design of the evaluation pipeline, object-oriented abstraction for
model handling, post-processing framework, as well as aggregation and visualiza-
tion components. Chapter [6] reports the experimental setup, the prompts and
models tested and provides a comprehensive analysis of results obtained under
both supply-driven and demand-driven approaches, with detailed evaluation met-
rics and error analyses. Finally, Chapter [7] summarizes the key contributions of
this work, discusses its limitations and outlines future directions for research on
leveraging LLMs for conceptual modeling in data warehousing.



Chapter 2

Background

2.1 Data Warehousing

The concept of data warehousing emerged in the late 1980s as organizations in-
creasingly recognized the need to consolidate and analyze large amounts of data
generated by their heterogeneous information systems. Traditional operational
databases were designed primarily to support standard business activities, but
were not well suited for strategic decision-making processes that required the in-
tegration, cleaning and aggregation of data from multiple sources.

Data warehousing is the process of collecting, integrating, storing and manag-
ing large volumes of data from heterogeneous sources in a centralized repository,
the Data Warehouse, with the purpose of supporting reporting, analysis and
decision-making, using formats optimized for analytical queries.

Data warehouses play a central role in modern organizations by serving as the
foundation for Business Intelligence and advanced analytics: analytical tools
allow decision makers to explore the data, derive insights and support strategic
choices. Despite their advantages, the design and maintenance of data warehouses
remain complex tasks: designers must translate evolving business requirements
into formal structures while ensuring consistency and scalability.

Moreover, another difficulty lies in the semantic gap between stakeholders, who
express needs in natural language, and designers, who must formalize needs into
precise models. This gap often leads to iterative refinements, higher costs and risks
of misalignment between the implemented system and actual analytical needs.

2.1.1 Data Warehouse

A Data Warehouse is a collection of data designed to support the decision-making
process, characterized by the following properties:
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e Subject-oriented: it is organized around key subjects of the organiza-
tion, rather than applications. The main focus is on business processes
and decision-making needs, rather than being constrained by the operational
structure of transactional systems;

e Integrated and consistent: given the heterogeneous sources as input data,
integration phase involves reconciling differences in naming conventions, data
types and formats. Consistency ensures that the data is reliable, unambigu-
ous and conforms to defined rules, enabling accurate cross-source analyses;

e Time oriented: stores historical snapshots of data to enable trend analysis
and time-based comparisons so that analysts can observe changes, identify
patterns and make informed strategic decisions;

¢ Non-volatile: loaded data is read-only for analytical purposes, stable and
not altered by operational updates.

A remarkable difference in this field is between Online Transaction Pro-
cessing (OLTP) systems and Online Analytical Processing (OLAP) systems.
OLTP systems are designed to support database operations of organizations, such
as order management, banking transactions, or inventory updates. Their focus is
on reliability, speed and consistency for a large number of short and even concur-
rent transactions. OLAP systems, in contrast, are designed to support decision-
making and strategic analysis: OLAP data are primarily read-oriented and up-
dated only through controlled batch processes, which guarantees that analytical
queries are always executed on a stable and consistent dataset, unaffected by the
frequent changes that occur in operational databases. As a result, historical data
are preserved in an immutable form, enabling long-term trend analysis, compari-
son across different time periods and reproducibility of analytical results. While
OLTP ensures the smooth functioning of daily business processes, OLAP provides
the insights necessary to guide long-term planning and performance evaluation.

2.1.2 Architectures

The architecture of a data warehouse defines how data is acquired, stored and
accessed to support decision-making. A well-designed architecture must satisfy
several fundamental requirements to ensure effectiveness and long-term sustain-
ability:

e Separation: analytical and transactional processing must be kept as sepa-
rate as possible. This avoids conflicts between day-to-day operations and
analytical workloads, ensuring performance and reliability for both;
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Figure 2.1: Data Warehousing overview

Source: https://www.ibm.com/think/topics/data-warehouse

e Scalability: hardware and software infrastructures should be easily scalable
to handle the inevitable growth of data volumes and the increasing number
of users over time;

e Extensibility: system should support new applications, analytical tools and
emerging technologies without requiring a complete re-design;

e Security: access control mechanisms are crucial, given the strategic and often
sensitive nature of stored data;

e Manageability: administrative complexity should remain manageable. Main-
tenance, monitoring and tuning should not become excessive burdens for 1T
teams.

Figure [2.1] provides a high-level overview of the typical architecture. Data from
heterogeneous sources are first extracted, transformed and integrated through the
ETL process. This integrated data is then stored in the data warehouse, where it
is organized according to multidimensional models.

The architecture of a data warehouse can be organized into different levels,
depending on how data storage, processing and access layers are separated. Here
is an overview on the most common approaches.
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Figure 2.2: 1-level architecture.

1-Tier Architecture

In this configuration, the data warehouse resides directly on the database layer.
Analytical tools access the same system that stores the data. Advantages: Simplic-
ity, reduced latency and lower cost. Limitations: Lack of separation between data
storage and analysis workloads, which often results in performance bottlenecks,
especially handling both OLTP and OLAP operations.

2-Tier Architecture

Physical database layer separates from the analytical tools. The data warehouse
is stored in a dedicated database and client applications query the warehouse di-
rectly. Typically, data warehouse is splitted in data marts: specialized subset
designed to serve the analytical needs of a specific business unit, department, or
function within an organization. Unlike the enterprise data warehouse, which
integrates and consolidates information from across the entire organization, it’s
typically more focused on data relevant for a particular group of users. Advan-
tages: Clearer separation of concerns, better query performance compared to the 1-
tier model, high-quality information continuously available at the warehouse level.
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Limitations: Limited scalability, as the analytical layer and the warehouse are still
closely connected, which may create problems with large or complex workloads.

3-Tier Architecture

Introduces an intermediate layer, the Operational Data Store: database de-
signed to integrate data from multiple operational systems in near real-time, pro-
viding a consolidated and consistent view of transactional information. In contrast
with data warehouse, the ODS focuses on supporting day-to-day operations and
short-term decision-making by offering up-to-date and detailed data. ODS acts as
an intermediate layer between operational systems and data warehouse, enabling
data cleaning, reconciliation and transformation before the information is loaded
into the warehouse. Advantages: High scalability, flexibility and efficiency for ana-
lytical queries, improves data quality; well-suited to large enterprises. Limitations:
More complex to implement and manage, requiring advanced infrastructure and
administration.
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2.1.3 ETL

The ETL pipeline, which stands for Extract, Transform and Load, integrates data
from heterogeneous sources. Its role is to feed a single, detailed and high-quality
data source that populate the Data Warechouse. In the extraction phase, data are
collected from operational systems and external sources. During transformation,
data is cleaned, standardized and reconciled in order to resolve inconsistencies and
ensure integration. Finally, in the loading phase, transformed data is stored in the
warehouse, where it becomes available for analytical processing.

The ETL process thus serves as the bridge between transactional systems (OLTP)
and analytical environments (OLAP), ensuring that decision makers can rely on
complete, consistent and up-to-date information.

Extraction

In this phase, relevant data are extracted from the sources. 2 kind of extractions
may be identified.

e Static extraction is performed when the Data Warehouse must be popu-
lated for the first time and conceptually corresponds to a snapshot of the
operational data;

e Incremental extraction is used for periodic updates of the warehouse and
captures only the changes that have occurred in the sources since the last
extraction. This can be implemented by means of logs maintained by the
operational DBMS, time-stamps or source-driven approaches.

The choice of which data to extract depends primarily on their quality.

Transformation and Cleaning

The main goal of this phase is to improve the quality of source data, addressing
issues such as duplicated data, inconsistencies between logically related (or due to
mere typographical errors) values, missing data, improper use of a field, impossi-
ble or incorrect values After cleaning, data from the operational source format are
converted into the one required by the warehouse. The correspondence with the
source level is complicated by the presence of heterogeneous and distinct sources,
which requires a complex integration process, Reconciled data follow a pipeline of
conversion and normalization, operating on formats and units of measure to stan-
dardize the data, then matching, establishing correspondences between equivalent
fields across different sources and finally selection, reducing the number of fields
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name: Carlo

" . surname: Bianchi
Carlo Bianchi

P.zza Grande 12 == Normalization 9
50126 Bologna (1)

address: P.zza Grande 12
postcode: 50126

city: Bologna

nation: |

Standardization
name: Carlo name: Carlo
surname: Bianchi surname: Bianchi
address: Piazza Grande 12 Correction ; address: Piazza Grande 12
postcode: 50126 postcode: 40126

city: Bologna city: Bologna
nation: Italy nation: Italy

Figure 2.5: ETL cleaning & transformation example.

and records compared to the sources. The process of feeding the Data Warehouse
involves denormalization, in contrast with normalization previously enrolled, to
improve query performance and to align with multidimensional modeling. More-
over, aggregation is introduced, producing the appropriate summaries of the data.

Loading

The loading of data into the warehouse can be carried out in two ways:

e Refresh: the DW is completely rewritten, replacing all previous information.
Typically used during the initial population;

e Update: only changes occurred in the source data are added to the DW.
Commonly used for periodic updates of the DW.

2.1.4 Life cycle

A Data Warehouse is not a static system but evolves through a life cycle
that involves design, implementation, maintenance and continuous adaptation to
business needs. The life cycle includes:

Requirements analysis — identification of business goals, analytical needs and
data sources.

Conceptual and logical design — definition of multidimensional models (facts,
measures, dimensions, hierarchies).

Physical design and implementation — schema creation, ETL pipelines, storage
and indexing.
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Deployment and usage — the system is populated and accessed by BI tools and
end users.

Maintenance and evolution — periodic updates, performance tuning and adap-
tation to new business requirements.

A crucial aspect in the development phase is the choice of design methodology

Top-Down Approach

Proposed in [8], begins with an enterprise-wide data warehouse at a high level of
abstraction. Data marts, usually smaller, are derived later.
Strengths:

e Provides a unified and consistent data model across the organization, with
a global vision of the objectives;

e Facilitates integration and reconciliation of heterogeneous data sources;
e Better suited for long-term scalability.
Weaknesses:
e High costs and complexity at the beginning;
e Longer time to validate project, as benefits are visible only after significant
development, which reduces both interest and trust in the initiative.
Bottom-Up Approach

Popularized in [I0], builds the data warehouse incrementally, starting with in-
dependent data marts built for specific departments or analytical needs, later
integrated into a broader warehouse.

Strengths:

e Faster deployment and shorter time-to-value, resulting in fast feedbacks on
the usefulness of the system under development;

e Focused on specific business requirements from the start, simplifying analysis
and implementation;

e Lower initial cost.
Weaknesses:

e Risk of inconsistency across different data marts, due to partial view of the
overall business domain;
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e Integration into a unified warehouse can become complex later;

e May require re-engineering if organizational needs grow.

2.2 Data Mart design approaches

When designing a data mart, two main strategies can be considered: supply-driven
and demand-driven. Both approaches aim to determine which data to include and
how to structure them, but differ in design starting point.

2.2.1 Supply-driven approach

In data-driven approaches, data marts are designed starting from a detailed anal-
ysis of the operational sources. User requirements still play a role, but primarily
in guiding the designer to select the relevant portions of data for decision-making
and to structure them according to the multidimensional model.

Strengths:

e High-level conceptual schema for data marts can be algorithmically derived
from the reconciled data level, based on the structure of the sources;

e Design of the ETL process is greatly simplified, since each item of information
in the data mart is directly associated with one or more attributes of the
sources.

Weaknesses:

e User requirements are assigned only a secondary role in determining the
informational content for analysis;

e Designer receives limited support in identifying facts, dimensions and mea-
sures.

This approach is suitable in situations where in-depth knowledge of the sources
feeding the data mart is either available or can be obtained at reasonable cost and
time, when source schemas are well normalized and complexity is not excessive.
These conditions are typically satisfied when the chosen architecture includes a
reconciled data level, which ensures normalization and deep knowledge of the
sources. The same applies in cases where the source is a single, well-designed,
relatively small database. Design experience shows that, whenever applicable, the
data-driven approach is generally preferable to other methods, as it allows to
achieve a high-quality conceptual schema more efficiently.
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2.2.2 Demand-driven approach

In demand-driven approaches, the design starts with determining the informational
requirements of the data mart users. The challenge of mapping these requirements
to the available data sources is addressed only afterward, through the implemen-
tation of appropriate ETL procedures.

Strengths:

e User needs are placed at the forefront of the design process.
Weaknesses:

e Designers must exert considerable effort during the design of the data loading
process;

e Facts, measures and hierarchies are derived directly from user specifications,
and only afterward can be verified whether the requested information is
actually available in the operational databases;

e The user’s trust in both the designer and the usefulness of the data mart
may be compromised if expectations are not met.

Given that it is generally more difficult to pursue than the data-driven ap-
proach, it is often the only viable option when a detailed prior analysis of the
sources is not feasible (e.g. when data mart is fed by an ERP system), or when
sources consist of complex legacy systems, because of complex normalization.

2.3 Conceptual Models for Data Warehousing

A crucial step in the design of a data warehouse is the conceptual modeling phase,
where business requirements are abstracted into a schema that captures the essen-
tial facts and dimensions of analysis. Several approaches have been proposed in
the literature, each with a different balance between expressiveness, formality and
ease of communication. The choice of model often depends on the complexity of
the domain, the familiarity of stakeholders with modeling notations and the degree
of alignment required between business and technical perspectives.

Here is a concise overview of the most common conceptual models with com-

parison in Table

o Entity-Relationship extensions: traditional ER models have been adapted
for analytical contexts by introducing multidimensional extensions (e.g. facts,
dimensions, hierarchies). They provide formal rigor and are often familiar to
database designers, but may be less intuitive for non-technical stakeholders,
introduced in [19];
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e Dimensional Fact Model: graphical high-level model, detailed in [6], de-
signed specifically for multidimensional analysis, that represents information
in terms of facts, associated with measures and dimensions including hier-
archies that allow users to explore data at different levels of granularity.
Requires familiarity with specific notation.

Table 2.1: Comparison of conceptual modeling approaches in Data Warehousing.

Model Strengths Weaknesses
Entity—
Relationship ~ Well-known to database de-  Less intuitive for business
Extensions signers users
Formally rigorous Limited multidimensional
support
Dimensional
Fact Model Graphical and intuitive Requires specific notation
(DFM) Effective for communication  knowledge
Captures facts, measures,
hierarchies

2.3.1 Dimensional Fact Model

The Dimensional Fact Model (DFM) is a graphical conceptual model for data
marts, designed to support the conceptual design process, provide an environ-
ment in which formulate queries intuitively, as well as facilitate the dialogue
between designer and end user to refine requirement specifications, establish a sta-
ble platform as base for logical design but still independent from the choice and
deliver clear and unambiguous documentation after implementation. The concep-
tual representation generated by the DFM consists of a set of fact schemas. The
fundamental elements modeled within fact schemas are:

e [uct: concept of interest for the decision-making process. Models a set of
events that occur within the business (e.g. sales). The key characteristic is
its dynamic nature, meaning evolvution over time;

e Measure: numerical property of a fact, describing a quantitative aspect rel-
evant for analysis;

e Dimension: property with a finite domain associated with a fact, providing
a coordinate of analysis;
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Figure 2.6: DFM example.

e Hierarchy: directed tree whose nodes represent dimensional attributes and
whose edges model many-to-one associations between pairs of attributes;

o Dimensional attribute: refers both to dimensions and to other discrete-valued
attributes that describe them.

Events

A primary event is a specific occurrence of a fact, identified by a tuple consisting
of one value for each dimension. Each primary event is associated with a value
for every measure. A secondary event instead, is an aggregated occurrence of
a fact, obtained by grouping primary events according to a set of dimensional
attributes, so-called the group-by set. It represents a higher-level view of the data,
where each measure is summarized across the underlying primary events. Thus,
hierarchies define how primary events can be meaningfully aggregated and selected
for decision-making. The dimension at the root of a hierarchy determines the finest
level of aggregation granularity, while the other dimensional attributes correspond
to progressively coarser levels of granularity.

Advanced Constructs

While the basic building blocks of a Dimensional Fact Model provide a solid foun-
dation for conceptualizing a data mart, real-world applications often require more
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sophisticated constructs to capture complex relationships and nuances in the data
for a more expressive and flexible representation.

Descriptive attribute: provides additional information about a dimen-
sional attribute within a hierarchy, to which it is connected through a one-
to-one association. It is not used for aggregation, since its values are typically
continuous and results from a one-to-one relationship;

Some edges in the fact schema may be optional;

Shared hierarchy: shorthand used to denote that a portion of a hierarchy
is replicated multiple times within the schema;

Convergence: situation in which two dimensional attributes can be con-
nected by two or more distinct directed paths, provided that each of them
still represents a functional dependencys;

Cross-dimensional attribute: dimensional or descriptive attribute whose
value is determined by the combination of two or more dimensional at-
tributes, which may belong to distinct hierarchies;

Multiple edge: models a many-to-many association between two dimen-
sional attribute;

Incomplete hierarchy: hierarchy in which, for some instances, one or
more aggregation levels are missing (either because they are unknown or

undefined);

Recursive hierarchies: the parent-child relationships between levels are
consistent, but instances may have different lengths.

Aggregation and Additivity

Since hierarchies define how primary events can be aggregated into secondary
events, it becomes essential to specify how measures behave under such aggrega-
tion. This requires defining suitable operators that combine the values of measures
from primary events into new values associated with secondary events. From this
perspective, measures can be classified into categories:

Flow measure: refers to a period of time and is evaluated cumulatively at
its end (e.g. the number of products sold in a day);

Level measure: evaluated at specific points in time (e.g. the number of
products in stock).
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Figure 2.7: DFM example with advanced constructs.
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Kind o
Product
Inventory
Dateo Level Wa8house
Input quantity

Figure 2.9: DFM example for aggregation analysis.

e Unit measures: evaluated at specific points in time too, but expressed in
relative terms (e.g. the unit price of a product).

A measure is additive with respect to a dimension if its values can be aggregated
along the corresponding hierarchy using the sum operator. Otherwise, it is con-
sidered non-additive. A non-additive measure is non-aggregable if no aggregation
operator can be meaningfully applied to it.

Level Input quantity
Date AVG,MIN SUM
Product SUM SUM
Warehouse SUM SUM

Table 2.2: Analysis of operators for measures aggregation belonging to DFM in

Figure 2.9
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2.4 Artificial Intelligence

Artificial Intelligence is a broad field of computer science dedicated to creating
systems capable of performing tasks that typically require human intelligence, in-
cluding reasoning, learning from experience, problem solving and natural language
understanding. Although the term was first formally introduced in the mid-1950s,
AT has evolved through multiple paradigms, from symbolic approaches and rule-
based systems to machine learning, up to deep learning.

Today, Al technologies are embedded in a wide range of applications, includ-
ing autonomous systems, computer vision, speech recognition, natural language
processing and decision support systems. The common characteristic of these ap-
plications is their ability to process complex data and adapt their behavior based
on patterns and knowledge extracted from experience. The accuracy of this
knowledge depends both on the amount of information available and on the
quality of the data in modeling problems as precisely as possible.

A key component of modern Al is Machine Learning, which provides compu-
tational methods that allow systems to learn patterns from data without being
explicitly programmed for every task. Algorithms improve their performance as
they are exposed to more data, identifying correlations, making predictions and
discovering insights that would be difficult to encode manually. This ability to gen-
eralize from examples makes it a fundamental tool in applications ranging from
predictive analytics to recommendation systems and autonomous decision making.

2.4.1 Training

The discipline of Machine Learning focuses on extracting knowledge models from
datasets in order to generate accurate predictions. These models are composed
of parameters, whose number is proportional to the complexity of the problem
and the desired level of accuracy. Some parameters need to be adapted to the
problem, which is why a training phase is generally adopted, while others, called
hyperparameters, are defined by the programmer during the model’s creation.

Two primary paradigms are commonly distinguished: supervised and unsuper-
wised learning.

Supervised learning relies on labeled datasets, where each input is paired with
a corresponding output. The model learns a mapping between inputs and outputs,
with the goal of making accurate predictions on unseen data. Typical applications
include classification and regression.

Unsupervised learning, instead, operates on unlabeled data, seeking to uncover
hidden structures or patterns without predefined outcomes. Its main tasks include
clustering, which groups similar data points together and dimensionality reduction,
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Figure 2.10: Examples of underfitting, optimal fitting and overfitting.

Source: https://towardsdatascience.com

which simplifies data while preserving its essential characteristics.

Together, these paradigms provide the foundation for many Al applications,
ranging from predictive analytics to knowledge discovery.

To refine training process, it is common to split the dataset into three subsets:
the training set, which is used to compute and fine-tune the parameters; the
validation set, which estimates the model’s generalization ability; and the test
set, which allows a realistic evaluation of the model on unseen data. According
to the hold-out method, the validation set helps determine whether a model is
underperforming due to underfitting, poor accuracy on both the training and vali-
dation sets, or overfitting, where good results on the training set do not generalize
to the validation set.

Underfitting can be caused either by the use of models that are too simple to
capture the problem or by examples that do not correctly represent it. Overfitting,
instead, indicates poor generalization to new data, which may result from an ex-
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Figure 2.11: Workflow during training and validation phases.

cessively complex model that fits the training data too much or from an insufficient
amount of data for proper training.
To mitigate these issues, it is necessary to:

e Filter the data, ensuring that irrelevant features are removed;

e Normalize data features onto a uniform scale to make the training phase
more stable;

e Regularize parameters, constraining them to smaller values to simplify and
generalize the model;

e Tune hyperparameters using cross-validation techniques in order to optimize
the model’s structure;

e Add new data to dataset.

During training, the objective is to reduce errors on the training set while
maintaining the model’s ability to generalize effectively to unseen data.

After obtaining good results on both training and validation sets, a further
evaluation phase is performed using the test set, assessing model’s performance
and effectiveness.

In recent years, Artificial Intelligence has increasingly been integrated into the
fields of Data Warehousing and Business Intelligence extending decision-making
process by enabling systems to predict future trends and generate insights auto-
matically. Moreover, Machine Learning techniques are employed to enhance data
quality through anomaly detection, data cleaning and integration, but also to op-
timize query performance and uncover hidden patterns in large-scale datasets.

2.5 Natural Language Processing

Natural Language Processing is the discipline concerned with studying and de-
veloping methods for the processing of language, whether expressed in textual or
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Figure 2.12: Workflow during test phase.

spoken form. The complexity of natural language processing arises from the di-
versity of languages, each with its own grammar rules, vocabulary and sometimes
even distinct alphabets. A single language may also branch into dialects or lin-
guistic variations and, depending on the context, the same expression can take on
completely different meanings.

Additional layers of ambiguity are introduced by rhetorical figures such as irony
and sarcasm, as well as by abbreviations and elements that transcend the language
itself, such as emoticons.

The strong dependence on context in this problem makes the use of pre-
processing techniques crucial for improving processing accuracy.

Natural language text is a form of unstructured data: preliminary processing
is of crucial importance in order to normalize and contextualize the raw data.

For these purposes, various techniques have been developed:

e Tokenization: the division of a text into sentences and, subsequently, into
words. For an accurate execution, language-specific models and rules are
applied;

e Part of Speech tagging: the assignment, word by word, of the corresponding
grammatical category;

e (Casefolding: aims at eliminating ambiguities between uppercase and lower-
case letters by converting text into a common standard;

e Stopword removal: the elimination of words such as articles that do not
convey significant information; usually a predefined list is employed;
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e Lemmatization: the replacement of each word with its lemma, i.e. its base
form;

e Stemming: similar to lemmatization, it reduces each word to its morpho-
logical root. This generally requires a simpler algorithm, but can lead to
information loss;

o Word Sense Disambiguation: the procedure that assigns the correct meaning
to each word by identifying it within a specific context. Some algorithms, for
instance, select the definition that shares the largest number of surrounding
words;

o Named Entity Recognition: the identification of named entities referred to
in the text, such as places, job roles, numbers, or dates. These elements are
often highly relevant for contextualizing a given sentence.

2.5.1 Text representation

Another particularly important aspect concerns the representation of text, since
machine learning models are not able to process data in textual form directly.
Conversion is carried out through various techniques whose goal is to obtain a
compact and structured representation, including:

e Bag of Words (BoW) representation: a table is created with two columns,
one listing the terms generally standardized through stemming to reduce the
number of distinct words and the other recording their occurrences in the
text. This technique is particularly effective in sentiment analysis, where the
task is to classify text into categories. For instance, to classifying a review
as positive or negative, the method relies on counting positive and negative
words and assigning them weights;

e Vector Space Model: provides a representation of multiple documents fol-
lowing a Bag of Words metric based on the words of a shared dictionary. It
contributes significantly to topic identification across documents. When inte-
grated with term frequency—inverse document frequency (TF-IDF) schemes,
it allows the relevance of a term in a document to be quantified. The term
frequency corresponds to the number of occurrences in the text, while the
inverse document frequency corresponds to the number of documents in the
collection where the term appears. The latter acts inversely: the more doc-
uments a term appears in, the lower the weight assigned to it;

e n-gram representation: collects, at each iteration, sequences of words of
length n. These sequences can identify entities or expressions composed of
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multiple words, thereby enriching the Bag of Words structure previously de-
scribed. The sliding window architecture of variable length is also significant
as a probabilistic model for training in word generation tasks: given the
preceding n—1 words, the goal is to predict the next word.

2.5.2 Word embeddings

The family of techniques for representing text as numerical vectors while preserving
its semantics is referred to as word embeddings.

Load up the word vectors Start with man woman Then take king
‘ QUEEN [e.3, e.9] A A

KING fe.s, e.7] KING [e.s, e.7]

WOMAN (6.3, 0.4] WOMAN [6.3, 0.4]
MAN [a.5, 8.2] \MAN [8.5, 8.2]
- - -

And add man - woman queen is closest to resulting vector So king *+ man - woman = gueen!
‘ ? [e.3, 8.9] A QUEEN fe.3, 8.9] A QUEEN

MAN - WOMAN
KING [o.5, e.7] KING \KING

- > >

Figure 2.13: Terms projecting into a vector space based on semantics.

Source: https://multithreaded.stitchfix.com

These approaches are generally unsupervised, as the labels used to train the
model are extracted directly from the data under analysis. The conversion is
carried out through algorithms that project words into a vector space that retains
semantic relationships:

e One-Hot Encoding: converts each word into a vector with a single value of 1,
corresponding to its position in the analyzed document, and all other values
set to 0. This allows for the creation of a distinct vector for every word in the
document. However, it is poorly scalable with respect to document length,
as it leads to a dimensionality explosion as vocabulary size increases, and it
does not preserve semantic context;
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o Word2Vec [13]: one of the most widely used embedding algorithms, con-
sisting of two distinct training architectures. The Continuous Bag of Words
(CBOW) model predicts a target word from its surrounding context (the pre-
ceding and following words), while the Skip-gram model predicts the context
given a target word.

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT
w(t-2) w(t-2)
w(t-1) wit-1)

\sum /
— v w(t) —
w(t+1) 7( \ w(t+1)
w(t+2) w(t+2)
CBOW Skip-gram

Figure 2.14: CBOW and Skip-gram architectures.

Source: https://towardsdatascience.com/nlp-101-word2vec-skip-gram-and-cbow-93512ee24314

The larger the dataset processed during training, the more accurate the
resulting vector space will be, with words positioned according to a semantic
similarity metric.

Other notable algorithms in this domain include GloVe [15], which constructs
co-occurrence matrices between terms to derive accurate word representa-
tions, and Doc2Vec [I3], which extends this principle to represent entire
documents as numerical vectors, enabling similarity comparisons at the doc-
ument level.

2.5.3 Sequence models

Sequence models are designed to process data where order matters, such as text,
speech, or time series. Depending on how input and output sequences are handled,
these models can be categorized as follows:

e Sequence-to-Vector: converts an input sequence into a fixed-length vector.
Typical use cases include text classification or sentiment analysis, where the
goal is to summarize the entire sequence into a single representation;

e Vector-to-Sequence: generates a sequence from a fixed-length input vector.
This is common in generative tasks where a compact representation must be
expanded into a structured output;
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e Sequence-to-Sequence: transforms an input sequence into another sequence,
possibly of different length. This architecture is widely used in machine
translation, text summarization and speech-to-text applications. It often
combines encoder—decoder structures with attention mechanisms for better
handling of long-range dependencies.

These categories form the foundation of modern NLP architectures, including
RNNs, CNN-based sequence models and transformer-based models. Each type
offers trade-offs in terms of expressiveness, computational efficiency and ability to
handle long range contexts.

2.5.4 Encoder - Decoder architecture

A model of this structure is composed of two main components:

e Fncoder: a sequence-to-vector model that processes an input sequence and
retains only the final output as a summary of the entire sequence;

e Decoder: a wector-to-sequence model that takes this summarized vector as
input and generates an output sequence.

This sequence-to-sequence architecture takes an input sequence and produces
a corresponding output sequence, making it suitable for various NLP tasks, such
as machine translation, where the entire input sentence must be processed before
any output can be generated.

However, this structure has a key limitation: by compressing the entire input
into a single vector, the model’s memory becomes constrained, making it difficult
to accurately capture long range dependencies in longer sequences. This limitation
motivated the development of the attention mechanism, which allows the decoder
to selectively focus on relevant parts of the input at each generation step.
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(Encoder e e e el =5 - b | Decoder
:_________l __I - ; '_'_Ti__:f .______I _____ Ij‘IL"‘IF""T _________ !
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Figure 2.15: Encoder—Decoder architecture.

Source: https://towardsdatascience.com
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2.5.5 Attention

The attention mechanism was originally introduced as an enhancement to the
classical encoder—decoder structure, in order to overcome the limitations of the
model’s restricted memory and, consequently, its inability to handle long input
sequences effectively.

The key idea behind attention is to allow the model to focus selectively on
the most relevant parts of the input when generating each element of the output.
Instead of relying solely on the encoder’s final hidden state as a compressed rep-
resentation of the entire input sequence, attention transforms the encoder into a
sequence-to-sequence processor whose output is the full set of hidden states, each
carrying contextualized information about different input positions.

At each decoding step, the decoder computes a weighted sum of these encoder
outputs, where the weights indicate the relative importance of each input token
for the current prediction. These weights are dynamically generated by the at-
tention layer, which is trained jointly with the rest of the model. The training
process aligns the decoder’s output with the most relevant encoder states, effec-
tively teaching the model where to focus when generating the next word.

This mechanism, introduced in [2], represented a breakthrough in neural ma-
chine translation and sequence modeling in general, as it significantly improved
both accuracy and the ability to handle longer sequences.
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Figure 2.16: Attention mechanism integrated within the encoder—decoder archi-
tecture.

Source: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition
2.5.6 Transformers

The Transformer architecture, proposed in [20], marked a major advance in the
state of the art for many Natural Language Processing tasks. Unlike previous
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models, Transformers completely discard recurrent and convolutional layers, en-
abling faster and more parallelizable training, since input tokens no longer need
to be processed sequentially.

At the core of the Transformer lies the attention mechanism, implemented within
a deep encoder—decoder structure composed of multiple stacked layers. Each en-
coder layer consists of a Multi-Head Attention mechanism, allowing the model to
capture multiple types of relationships and interactions between words in parallel,
followed by a feed-forward neural network that processes and passes the output to
the next layer.

To compute multi-head attention, each input embedding is projected into three dis-
tinct matrices: Query (Q), Key (K) and Value (V). These projections are learned
during training. Attention scores are calculated by taking the dot product of a
query vector with all key vectors, normalizing the result and then applying the
scores to a weighted combination of the value vectors. This procedure enables the
model to decide which words to emphasize when processing a given token.
Moreover, since the Transformer does not have recurrence or convolution to en-
code word order, it introduces positional embeddings that are added to the input
embeddings. These embeddings inject information about the relative positions of
tokens, allowing the model to preserve sequence structure.

During decoding, the encoder’s final outputs are transformed into sets of keys and
values that are passed to the decoder’s attention layers. The decoder, in turn,
applies masked attention to its own past outputs (to prevent looking ahead) and
combines this with encoder—decoder attention to produce predictions. Finally, the
output of the last decoder layer is passed through a linear projection into a high-
dimensional vector, called the logits vector, from which a probability distribution
is computed over the model’s vocabulary to select the next output token.

This architecture has since become the foundation of modern LLMs, powering
state of art models in translation, text generation, dialogue systems and beyond.
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Figure 2.17: Transformer architecture.

Source: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition

2.6 Large Language Models

In recent years, Large Language Models have emerged as one of the most significant
advances in Artificial Intelligence and Natural Language Processing. LLMs are
built on the transformer architecture, which enables them to capture long-range
dependencies in text and modelling contextual relationships more effectively than
previous approaches such as recurrent neural networks or simple word embeddings.
Their distinguishing feature is the massive scale of training, involving billions of
parameters and vast amounts of textual data collected from diverse sources.

Unlike traditional NLP systems, often designed for a single specific task, LLMs
adopt a general-purpose approach: through pretraining on large corpora and sub-
sequent fine-tuning or prompting, they can adapt to a wide variety of applications
without requiring task-specific architectures.

Prominent applications of LLMs include text generation, question answering,
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machine translation, summarization and dialogue systems. Lately, they are in-
creasingly being integrated into domains such as software development and busi-
ness intelligence for automated reporting and analytics.

The versatility of LLMs demonstrates their potential not only as tools for
processing natural language but also as general reasoning engines that can assist
in knowledge discovery and decision-making across a wide range of organizational
and industrial contexts.

Main LLMs strengths:

e Advanced Language Understanding: LLMs can generate coherent, contextu-
ally appropriate text and perform tasks requiring nuanced comprehension;

e General-Purpose Functionality: Many LLMs can be adapted to multiple
tasks through pretraining and fine-tuning or prompting, reducing the need
for task-specific architectures;

e Automation of Complex Tasks: They can handle large-scale content creation,
data analysis and knowledge extraction efficiently;

e Scalability: LLMs can process large volumes of data, supporting applications
that require extensive textual reasoning.

Main LLMs weaknesses:

e Computationally Intensive: Training and deploying LLMs demands signifi-
cant computational resources and energy;

e Bias and Fairness Concerns: LLM outputs can reflect biases present in the
training data, leading to potentially unfair or undesirable results;

e No True Understanding: while LLMs generate meaningful text, they do not
possess genuine comprehension or reasoning in a human sense;

e Data Dependency: Their accuracy and generalization heavily rely on the
quality and diversity of training data.

LLMs can be integrated into applications in two primary ways: via local im-
port or through external APIs.

When imported locally, typically from open source frameworks such as Hugging
Facd'] the model weights and architecture are downloaded and executed directly
on the user’s hardware. In this setup, inference can be run on either CPU or GPU,
depending on the available resources. GPUs offer significant acceleration for large-
scale models, while CPUs may be sufficient for smaller ones or environments where

'HuggingFace source: https://huggingface.co/
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GPU hardware is not available. Local imports provide full control over the model,
enabling fine-tuning, customization, and offline operation. However, they require
substantial computational resources and careful environment configuration.

By contrast, commercial providers such as OpenAl, make their models accessi-
ble via API endpoints. Computation occurs on remote servers, with users interact-
ing through requests and receiving model outputs as responses. APIs provide ease
of integration, scalability and access to cutting edge proprietary models, without
the need for local infrastructure. The drawbacks include latency, per-request costs
and data privacy concerns, since inputs are transmitted externally.

The decision between local import and API access depends on application
requirements: APIs are often preferable for quick integration and state of the art
performance, while local imports are better suited when customization, privacy,
or hardware control is a priority.

Several LLMs, an overview is detailed in [22], have become prominent in recent
years, each with distinct characteristics:

e GPT (OpenAl): exceptional in natural language understanding and genera-
tion, with multimodal capabilities and strong contextual reasoning. Draw-
backs include high computational costs and occasional factual inaccuracies.
A broader discussion of its capabilities can be found in the literature [7];

e Claude (Anthropic): designed for safety and alignment, capable of follow-
ing complex instructions. May be less creative than other models and task
performance can vary;

e LLaMA (Meta): open-source, customizable and computationally efficient.
Limited multimodal functionality and generally lower performance on some
tasks compared to proprietary models;

e Gemini (Google DeepMind): advanced reasoning and problem-solving, well-
integrated with Google’s ecosystem. Access may be limited, and privacy
considerations are important.
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Chapter 3

Problem Statement

The primary goal of this work is to explore methods for automating or supporting
the conceptual modeling of data marts using the Dimensional Fact Model. Con-
ceptual modeling is a critical step in the design of data warehouses, as it translates
high-level business requirements into structured representations. This process is
often time-consuming, requires extensive domain expertise and involves continu-
ous interaction between designers and end users to resolve ambiguities and align
understanding.

To address these challenges, this thesis investigates the potential of Large Lan-
guage Models to assist in conceptual modeling. Specifically, the analysis focuses
on prompting the LLMs with domain information in two different approaches.

Some experiments leveraging LLMs for conceptual design have already been
reported in the literature [4, II]. These studies suggest that, although LLMs
can effectively support designers by rapidly generating draft solutions, substan-
tial human involvement remains necessary to validate and refine the outcomes
[21]. Furthermore, [24] describe an experiment with GPT showing that, while the
integration of LLMs into human-driven conceptual design does not substantially
affect output quality, it considerably shortens completion time by streamlining the
process and reducing the number of required design steps.

In supply-driven approach [17], input consists of the logical schema of a
database, representing the structure of operational sources, an example is the
following:

CREATE TABLE SUPPLIERS (
SupplierName VARCHAR(50) PRIMARY KEY,
SupplierCity VARCHAR(50),
SupplierAddress VARCHAR(100)

)

33



34 CHAPTER 3. PROBLEM STATEMENT

CREATE TABLE SUPPLIES (

Brand VARCHAR(50) PRIMARY KEY,

SupplierName VARCHAR(50),

FOREIGN KEY (SupplierName) REFERENCES SUPPLIERS (SupplierName)
)

CREATE TABLE COMPUTER (

CodComputer INT PRIMARY KEY,

Brand VARCHAR(50),

Model VARCHAR(50),

FOREIGN KEY (Brand) REFERENCES SUPPLIES(Brand)
)

CREATE TABLE SOFTWARE (

CodSoftw INT PRIMARY KEY,
SoftwareDescription VARCHAR(100),
Type VARCHAR(50)

);

CREATE TABLE INSTALLATIONS (

CodComputer INT,

CodSoftw INT,

InstallationDate DATE,

PRIMARY KEY (CodComputer, CodSoftw),

FOREIGN KEY (CodComputer) REFERENCES COMPUTER(CodComputer),
FOREIGN KEY (CodSoftw) REFERENCES SOFTWARE(CodSoftw)

);

In demand-driven approach [9], input consists of a textual formalization of
business requirements, describing the desired analysis from the user perspective,
an example related to the previous one is given:

Decision-makers are interested in analyzing the softwares installed on
computers in a laboratory on a daily basis. Each computer has a model
and a brand, each brand is supplied by a supplier who lives in a city
at a given address. A software has a description and a type.
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In both approaches, LLMs are tasked with generating a DFM schema, which
is then compared to a ground truth model. The evaluation of the generated
schemas is performed using standard metrics such as precision, recall and F1-
score. In addition, custom error metrics are considered to capture domain-specific
mismatches or inconsistencies that may not be fully reflected by general measures,
providing a more nuanced assessment of schema quality.

The process is fully automated across different models, allowing a systematic
comparison of their performance. In addition to accuracy metrics, processing
time is collected to assess the efficiency of each model in producing complete
and correct DFM schemas. Moreover, for each input model, execution times are
recorded for both CPU and GPU executions. This approach allows a more
precise and meaningful comparison of computational efficiency across different
models and hardware configurations.

In addition to defining the general task, this work also explores the role
of prompt formulation in both supply-driven and demand-driven approaches,
given that literature also includes promising analyses on the impact of few-shot
learning and prompting strategies in enhancing LLM performances [12]. Different
prompt variants are tested to assess their impact on the quality of the gener-
ated Dimensional Fact Model schemas. Prompt design is inspired by guidelines
from recent scientific literature, an overview in [1], and aligned with the chat-based
templates of the imported models, particularly leveraging the instruction-following
class to ensure consistency with the models’ expected input format.
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Chapter 4

System Architecture

4.1 Application Design

The system has been designed as a modular pipeline, starting from configuration
files and culminating in the generation of evaluation metrics and visual graphs.
The design is illustrated in Figure which highlights the key modules and their

Interactions.

Pipeline UML Overview

Configuration Model\
© Config

Post-process
O parameters © P

o apifimport o rules
o cpufgpu [only if import]

© Model

o chat
e generate(input): output
o cleanHistory(): void

rovides provides
Pipeline),
Aggregator)
@ Pipeline
- © Aggregator
m parsing()
m prompting() = aggregateCSVs()
m postProcessing() a plotGraphs()
m metrics() | D PIDSEICEE
m saveCsSV()

produces aggregates |produces
N S
«artifact: «artifact:
Ccsv Graphs

Figure 4.1: UML class diagram of the application architecture.
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It is worth noting that Pipeline and Aggregator are not implemented as per-
sistent modules in the codebase, but rather as Python scripts. The UML diagram
emulates their macro steps in order to capture their role in the workflow: the
Pipeline script executes parsing, prompting, post-processing and metrics compu-
tation, while the Aggregator script consolidates CSV outputs and produces visual
graphs. Thus, the diagram should be interpreted as a conceptual representation
of responsibilities, rather than a one-to-one mapping to software classes.

4.1.1 Pipeline Overview

The process begins with configuration files, which define the experimental setup,
such as model to use, input exercise and output parameters. The pipeline consists
of the following stages:

1. Configuration Parsing: system parses the configuration file, extracting pa-
rameters for model selection and prompt type;

2. Model Loading: if an imported LLM is required, the application loads it into
memory, preparing either CPU or GPU execution according to the configu-
ration, else APIs endpoints are loaded;

3. Prompting and Execution Time Collection: selected model is prompted with
either supply-driven or demand-driven inputs, consisting of an example of
a problem solved step-by-step and problem to solve formulation, collecting
execution times for both CPU and GPU runs;

4. Output Parsing and Post-Processing: model outputs are transformed into a
structured YAML schema, then refined by applying custom post-processing
rules to correct common modeling errors;

5. Ground Truth Processing: reference schema undergoes the same post-processing,
ensuring correct comparability with model outputs;

6. Comparison and Metrics Evaluation: models’ output is compared to the
ground truth, computing standard metrics and custom error categories;

7. Result Storage: evaluation results are stored as CSV files, which include
metrics, custom errors, run configurations and execution times;

8. Aggregation and Visualization: separate script aggregates all CSV outputs
and generates graphs to highlight differences among models and configura-
tions.
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The main workflow of the application is illustrated in Figure [£.2] which shows

the flow of data through the system.
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Figure 4.2: UML activity diagram of the application architecture.
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4.1.2 Model Abstraction

To ensure a flexible and unified handling of both imported and API-based Large
Language Models, an object-oriented abstraction was implemented in Python. The
central component is a Model class, which provides a consistent interface for gen-
eration tasks regardless of the underlying source of the model.

The Model object is responsible for encapsulating the following elements:

e Model and Tokenizer: for imported models only, the Hugging Face transformers
library is used to load both the model and its tokenizer from the local envi-
ronment or directly from the Hugging Face Hub;

e Generation Function: a uniform generate () method is defined to perform

inference. This function transparently supports both imported models, on
CPU or GPU, and API-based models, invoked through REST endpoints;

e Chat History: the object maintains the conversational history to support
multi-turn prompting and consistency across requests;

e Configuration Handling: model instances are initialized from configura-
tion files that specify the model type (import or API), its parameters and
any runtime options.

This design enables the pipeline to treat all models uniformly, while internally
abstracting the differences between imported and API-based usage. Whereas an
API-based model is wrapped by the same Model object, but internally relies on
HTTP requests to the APIs. From the perspective of the pipeline, both are invoked
through the same generate() interface, making the execution fully interchange-
able.

Model detail

Model\
@ Model
o chat
e generate(input): output
s cleanHistory(): void
(© mportModel (© APIModel
« Uses Transformers Iﬁ o model " . U REST API
* Hugging Face Hub  —== _ tokenizer EEly T - QSEESHA] mainl ;
+ Runs on CPU/GPU o 5 o endpoint Lis y
o loadFromHuggingFace! - :
o generate(input): output M

Figure 4.3: UML diagram of the Model class.
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4.1.3 Input

The entry point of the system is the prompt, which defines how models are queried
under both supply-driven and demand-driven approaches. A model-specific vari-
ant (e.g. the GPT block) replicates the same logical content but may reorder or
adapt wording to match a particular model’s recommendation style (role ordering
or phrasing). Internally, the pipeline can load either the generic ‘base‘ few-shot
prompt or the model-specific prompt defined in the configuration.

Role-based prompting

Prompts in the pipeline are consistently expressed as lists of key— > wvalues struc-
tures, each with a role and a content. This design aligns with the role-based
chat paradigm supported by modern LLMs. The main roles are:

e system: establishes the context and global constraints under which the
model must operate. Typical use: define the persona, enforce the required
output format and restrict the style;

e user: expresses the actual task to be solved. This includes both the high-
level problem specification and detailed constraints. In few-shot settings,
user messages may also introduce worked examples of tasks;

e assistant: provides illustrative completions in the case of few-shot prompt-
ing. These messages act as demonstrations of the expected reasoning steps
or final outputs. In zero-shot settings, this role is usually omitted, and the
model is expected to generate the output directly after the last user message.

Ordering constraints
The canonical sequence is:
1. one or more system messages;

2. one user message stating the task;

3. optionally, alternating pairs of assistant and user messages for few-shot
demonstrations;

4. a final user message, after which the model is expected to generate its com-
pletion.

While most frameworks allow some flexibility, deviating from this order can lead
to unstable or incoherent outputs. The pipeline therefore enforces this structure
to ensure reproducibility across experiments.
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Standardized structure

Each prompt follows a standardized structure:

e an introductory block, common to all prompts, which specifies the ex-
pected output format in YAML and provides high-level instructions to the
model, detailed in [4.1}

e a task-specific block, which encodes the particular research question or
design objective.

- role: system
content: |
You are a data warehouse designer.
- role: user
content: |
Carry out supply-driven conceptual design of a multidimensional cube using
< the DFM (Dimensional Fact Model), starting from the following source
— schema (for supply-driven) / requirements (for demand-driven).

Listing 4.1: Introductory block for all prompts.

Supply-driven prompts

The goal of this prompt is to carry out a supply-driven conceptual design task by
deriving the fact and candidate measures of a multidimensional cube starting from
a source relational schema. Three variants have been defined, each aligned with a
specific research question:

e RQ2: this prompt is formulated as a zero-shot instruction, with no ex-
plicit examples included. The decision to explore a zero-shot setting is to
test the model’s ability to generalize from detailed task descriptions alone.
In particular, (i) the expected output is a highly structured YAML format,
so providing few-shot examples could bias the generation towards incorrect
or overly specific schemas; and (ii) the prompt already specifies in detail
the structure and constraints of the output, effectively encoding much of the
guidance that examples would otherwise provide;

e RQ3-dec: this prompt is few-shot, including one or more example schemas
together with their intermediate FD lists and the resulting DFM YAML. This
is motivated by two practical reasons:
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— Procedural complexity: the model must apply a deterministic se-
quence of graph operations, such as FD extraction, transitive collapse
and root selection, that is hard to convey only by natural-language con-
straints. Worked examples expose the intended algorithmic behavior
and the expected output shape;

— Format & algorithm coupling: Examples demonstrate not only the
output format but the transformation steps that produce that format;
they therefore reduce ambiguity about how to treat composite keys,
foreign keys and composite dependencies.

To mitigate the drawback about examples that may biasing the model to-
ward specific patterns, examples are chosen to cover different structural cases;
moreover, the prompt point out the expected YAML structure. A summa-

rization is provided in [4.2}

e RQ3-alg: this prompt is few-shot too, with the objective to infer dependen-
cies and construct the DFM hierarchy by explicitly following an algorith-
mic procedure. This variant prescribes a step-by-step graph construction
method that the model must apply to a given relational schema to produce
the final DFM YAML.

Key points about RQ3-alg:

— Algorithmic specification: the prompt defines a deterministic se-
quence of operations the model must perform: identify the fact candi-
date, initialize the root node, expand nodes via foreign-key links, op-
tionally add domain-informed FDs, rename the root to the fact name
and select numerical attributes as measures. This explicit specification
reduces ambiguity about how to navigate foreign-key chains and how
to treat composite attributes;

— Worked examples included: the prompt contains full worked ex-
amples, from input schema to final YAML, to demonstrate both the
transformation steps and the exact output shape. Examples are neces-
sary here because the task requires the model to emulate a multi-step
algorithmic process rather than produce a single mapping from input
to output.

To mitigate the drawback about examples that may biasing the model to-
ward specific patterns, examples are chosen to cover different structural cases;
moreover, the prompt point out the expected YAML structure. A summa-
rization is provided in [4.3]
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- role: user
content: |

Data-driven conceptual design of a multidimensional cube starting from a
— source relational schema S should be carried out via the following

— steps.

1. Find all the functional dependencies

2. Foreign keys substitution ...

3. Find the roots picking the one that allows reaching the greatest number
— of attributes by navigation FDs in the

correct direction, and draw the corresponding tree ...

The output I expect is a DFM schema in YAML formatted as follows:

(1) "fact" including a "name", listing the name of the root;

(2) all measures (i.e., all numerical attributes directly connected to the
< root) are listed inside a "measures" tag, each as empty item containing
— a "name" tag;

(3) all functional dependencies between attributes in a hierarchy are

< listed inside a "dependencies" tag:

each as an item containing a "from" tag, listing finer attribute(s), a "to"
— tag, listing coarser attribute, and optionally a "role" tag;

(4) the "dependencies" list also includes an item from the fact to each

< measure;

(6) if a dependency is from and/or to a combination of attributes, they

— should be comma-separated;

(6) all attributes and measure names must be prefixed by the name of the
— table they belong to.

- role: assistant
content: |

Let this relational schema be given:
CREATE TABLE ...

After step 1, the list of FDs is the following:
- PURCHASE.storeld,PURCHASE.artId,PURCHASE.date->PURCHASE.storeld

After step 2, the list of FDs is changed as follows:

- PURCHASE.storeld,PURCHASE.artId,PURCHASE.date->PURCHASE.storeld and
— PURCHASE.storeId->STORES.storeld

are replaced with

— PURCHASE.storeld,PURCHASE.artId,PURCHASE.date->STORES.storeld

After step 3, the YAML expression of the DFM schema is obtained as follows:
fact:
name: PURCHASE
measures:
- name: PURCHASE.quantity
dependencies:
- from: TYPES.typeld
to: TYPES.typeName

- role: user
content: |

Here is another example;

Listing 4.2: RQ3-dec summarization.



A

4.1. APPLICATION DESIGN 45

- role: user
content: |

The first step is to create a directed

acyclic graph G where each node corresponds to a (simple or composite)
— attribute of D and each arc

corresponds to a functional dependency (FD). You can do this via the
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— following steps:

. Find a fact R ...

N = O

— mnot a foreign key.

RENAME THE FACT:
CHOOSE MEASURES:

g W

The output I expect is a DFM schema in YAML formatted as follows

Let this relational schema be given:

CREATE TABLE ...
0. The fact here is

1. INITIALIZE: G is initialized with node ...

. EXPAND PURCHASE:
.1 EXPAND STORES:
.1.1 EXPAND REGIONS:
.2 EXPAND ARTICLES:
.2.1 EXPAND TYPES:
3. REARRANGE G:

4. RENAME THE FACT:
5. CHOOSE MEASURES:

NNNDNDDN

INITIALIZE: Add to G the primary key of R, R.K, as a node.
EXPAND R: Add to G an arc from R.K to each other attribute of R that is

REARRANGE G: In some cases, some additional FDs may be inferred ...

The YAML expression of the DFM schema obtained in the end is the following:

fact:
name: PURCHASE
measures:

- name: PURCHASE.quantity
dependencies:
- from: TYPES.typeld

to: TYPES.typeName

Here is another example ...

Listing 4.3: RQ3-alg summarization.
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Demand-driven prompts

The goal of these prompts is to support a demand-driven conceptual design task,
where the construction of the multidimensional schema starts from a set of an-
alytical requirements. The main challenge is the higher degree of ambiguity in
requirements compared to schema-driven design: requirements may leave implicit
which entities are facts, which quantities should be treated as measures, and how
attributes should be organized in hierarchies Two variants have been defined, each
aligned with a specific research question:

e RQ4: this prompt is formulated as a zero-shot instruction. It specifies
a strict YAML format and enforces the use of role-based dependencies to
ensure consistent hierarchy construction. The model is constrained by a
clear specification of output format, which acts as a structural guide.

The resulting YAML captures:

— the fact identified from the analytical goal,

— a list of measures inferred from the quantitative aspects of the require-
ments,

— the dependencies encoding many-to-one associations among attributes
as well as the connections from the fact to each measure and dimension.

The whole prompt is stated in

e RQ5: this prompt is few-shot, and emphasizes semantic disambiguation
and the explicit encoding of modeling choices that are commonly required in
real-world requirements.

Key aspects of RQ5:

— Refinement-focused task: the prompt instructs the model how to
treat repeated concepts by merging them into a single node and anno-
tating incoming arcs with role labels, how to treat identifiers, creating
only the identifier node rather than separating entity node, and how to
represent many-to-one relationships and shared hierarchies;

— Worked examples included: provides multiple demand-driven exam-
ples from requirements to final YAML to enhance disambiguation and
supply modelling conventions that are subtle and context-dependent.
Examples highlight how to: assign roles to duplicate concepts, choose
which attributes are measures, create shared sub-hierarchies and ex-
press composite or role-bearing dependencies.

A summarization is provided in [4.5
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- role:

user

content: |
Carry out demand-driven conceptual
design of a multidimensional cube using the DFM (Dimensional Fact Model),

— starting from the following

requirements.

The output I expect is a DFM schema in YAML formatted as follows:

(1) the fact is a "fact" tag including a "name" tag;

(2) all measures are listed inside a "measures" tag, each is an empty item
— containing a "name" tag;

(3) all many-to-one associations between attributes in a hierarchy are
< listed inside a "dependencies"

tag: each is an empty item containing a "from" tag, listing the finer
— attribute, a "to" tag, listing

the coarser attribute, and optionally a "role" tag;

(4) the "dependencies" list also includes an item from the fact to each
«» dimension, and one from

the fact to each measure.

Return only the YAML without any further information/explanation.

Listing 4.4: RQ4 summarization.
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- role: user
content: |

Your task is to create the conceptual schema for a multidimensional cube in
— a

demand-driven fashion, i.e., starting from the end-user requirements, using
— the DFM.

To this end, keep in mind that a DFM is a connected graph where the fact is
— a

node in which no arcs enter. The fact is

The arcs within a hierarchy are

When you have the same concept used twice

When the requirements specify that a concept is identified by an attribute

—

The output I expect is a DFM schema in YAML formatted as follows:
(1) the fact is a "fact" tag ...

(2) all measures are

(3) all many-to-one relationships

(4) the "dependencies" list

Let these requirements be given:
Decision-makers are interested in analyzing, in terms of quantity and cost

o
A warehouse has a unique name, an address ... Articles are identified by a
< code

Here, SHIPMENT is the fact,
Article code, warehouse, and day are dimensions

The YAML expression of the DFM schema obtained is the following:

fact:
name: SHIPMENT
measures:

- name: quantity

dependencies:

- from: articleCode
to: articleName

Here is a second example; requirements
Please apply this process to the following source schema, and create the

— YAML representation of the resulting DFM schema.
You must only output the YAML file

Listing 4.5: RQ5 summarization.
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4.1.4 Output Structure

The output generated by the system is always expressed in YAML format, a full
demand-driven example is supplyed below, exercise text in [4.6] prompt in [4.7]
output obtained from GPT-4 in Figure and ground truth for comparison in

Figure [£.4D]

text: |
Decision-makers are interested in analyzing the softwares installed on
— computers in a laboratory
on a daily basis. Each computer has a model and a brand, each brand is
— supplied by a supplier who
lives in a city at a given address. A software has a description and a type.

Listing 4.6: Exercise example.

- role: system
content: |
You are a data warehouse designer that outputs YAML-formatted data. Please
— generate a YAML response for the following input.
- role: user
content: |
Carry out demand-driven conceptual
design of a multidimensional cube using the DFM (Dimensional Fact Model),
— starting from the following
requirements.
The output I expect is a DFM schema in YAML formatted as follows:
(1) the fact is a "fact" tag including a "name" tag;
(2) all measures are listed inside a "measures" tag, each is an empty item
— containing a "name" tag;
(3) all many-to-one associations between attributes in a hierarchy are
— listed inside a "dependencies"
tag: each is an empty item containing a "from" tag, listing the finer
— attribute, a "to" tag, listing
the coarser attribute, and optionally a "role" tag;
(4) the "dependencies" list also includes an item from the fact to each
— dimension, and one from
the fact to each measure.

Return only the YAML without any further information/explanation.

Listing 4.7: Prompt example.
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fact:
name: SoftwareInstallation

measures:

- name: installationCount

dependencies:

- from: SoftwareInstallation
to: Computer

- from: SoftwareInstallation
to: Software

- from: SoftwareInstallation
to: installationCount

- from: Computer

to: Model
- from: Model
to: Brand

- from: Brand
to: Supplier

- from: Supplier
to: City

- from: City
to: Address

- from: Software
to: Description

- from: Description
to: Type

(a) Output example.
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fact:

name: INSTALLATION
measures:
dependencies:
- from: INSTALLATION

to: Date

from: INSTALLATION
to: Computer

from: INSTALLATION
to: Software

from: Computer

to: Model
from: Computer
to: Brand

from: Brand

to: Supplier
from: Supplier
to: City

from: Supplier
to: Address
from: Software
to: Description
from: Software
to: Type

(b) Ground truth of the example.

Figure 4.4: Comparison of output & ground truth.

In this structure, the fact represents the central phenomenon under analysis,
while measures list the quantitative values to be observed. The dependencies
block encodes the relationships between attributes. Conceptually, every name can
be interpreted as a node of a directed graph, and each from — to pair defines
an edge. This graph-based interpretation highlights how facts, measures and di-
mensions are interconnected, ensuring that the resulting schema can be easily
visualized as a network of relationships, as highlighted in Figure [4.5]
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4.1.5 Post-Processing

Both model-generated outputs and ground truth schemas undergo a post-processing

phase before comparison. This step ensures that variations in terminology, naming

conventions, or minor structural differences do not bias the evaluation metrics.
The post-processing operations are based on two types of rules:

e Equivalence rules, which map different node labels to a single canonical
representation;

e Ignore rules, which identify attributes or nodes that should be excluded
from the evaluation, either because they are non-essential for the exercise or
because they represent redundant details.

Rules are structured in two layers:
e Common rules, applied across all exercises;

e Exercise-specific rules, tailored for each individual task, to account for
domain-specific variations and vocabulary.

This strategy guarantees that the evaluation focuses on the conceptual cor-
rectness of the schema rather than superficial naming differences, thus enabling a
fairer and more accurate measurement of model performance.

It’s worth mentioning that these rules differ for demand and supply approaches,
as shown in [4.8
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common :
demand:
equals:
- Date:
- day
ignore:
- count
- month
- year
supply:
equals: []
ignore: []

excercise-number:
demand:
equals:
- INSTALLATION:
- INSTALLATIONS
- SoftwarelInstallations
- SoftwareInstallation
- model:
- computerModel
- brand:
- computerBrand
- supplier:
- brandSupplier
- city:
- supplierCity
- address:
- supplierAddress
- description:
- softwareDescription
- type:
- softwareType
ignore: []
supply:
equals: []
ignore: []

Listing 4.8: Exercise specific and common rules example.
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Each rule follows a simple interpretation logic:

e equals: specifies sets of node names that must be considered equivalent.
For instance, in the example above, INSTALLATION, INSTALLATIONS and
SoftwareInstallation(s) all map to the same conceptual node that is
INSTALLATION. During comparison, these variations are treated as a single
element;

e ignore: lists node names that must be excluded from the evaluation. These
are often auxiliary or redundant attributes (e.g. count, month, year) which
would otherwise affect accuracy metrics without adding meaningful informa-
tion;

e common rules: applied to all exercises under the same approach (supply-
driven or demand-driven). They ensure consistency across tasks and reflect
domain-specific simplifications;

e exercise-specific rules: tailored to a single exercise and override or extend
the common rules. This makes it possible to normalize variations that are
unique to a given dataset or requirement specification.

By interpreting the rules in this way, both the model output and the ground truth
are aligned onto a shared semantic representation, ensuring that metrics are not
biased by irrelevant discrepancies.

4.2 Aggregation and Visualization

After the computation of metrics for each run, results are collected into CSV files,
one for each model-approach—prompt and a given label (if not given, a timestamp
is provided) configuration. To provide a comprehensive overview, these results are
then aggregated and analyzed through a set of six types of graphs, each of which
highlights a different perspective on model performance.

e Boxplot of F1-score for edges by exercise number. This visualization
illustrates the distribution of Fl-scores for edge prediction across all runs of
a given exercise. It highlights median performance as well as the variability,
enabling a quick comparison between exercises.

An example in Figure [].6d}

¢ Boxplot of Fl-score for nodes by exercise number. Similar to the
edge-based boxplot, but focusing on node prediction. This helps in iden-
tifying whether node modeling is generally more stable or prone to errors
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compared to edge modeling.

An ezample in Figure [].00;

e Line graph of average F1l-score for nodes and edges by exercise
number. This aggregated graph displays how average F1 evolves across
exercises.

An example in Figure [].64;

e Bar graph of average precision and recall for nodes by exercise
number. Precision and recall offer complementary insights: high precision
indicates few false positives, while high recall shows coverage of relevant
nodes. This graph makes it possible to see trade-offs between the two.

An example in Figure [].7d

e Bar graph of average precision and recall for edges by exercise num-
ber. Like the node-focused bar graph, but for edge relationships. Differences
here often reveal whether LLMs capture structural relationships consistently
or only partially.

An example in Figure [].70;

e Scatter plot of average F1 (nodes and edges) vs. average execution
time. This graph captures the trade-off between predictive performance and
computational efficiency.

An example in Figure[{.7d

Together, these graphs provide both a fine-grained and aggregated perspective, en-
abling a robust comparison between supply-driven and demand-driven approaches,
across prompts and models.
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Figure 4.6: Graphs produced by Falcon model for aggregation.
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Beyond the core set of six graphs previously described, dedicated scripts were
developed to produce additional visualizations that provide further insights into
model behavior and performance trade-offs.

¢ Global F1 vs. Execution Time. A scatter plot that merges all results of
a single exercise by considering the average F1-score for nodes and edges on
the y-axis and the average execution time on the z-axis. This visualization
highlights the balance between predictive accuracy and computational effi-
ciency across models.

An example in Figure [{.8d;

¢ Execution Time Boxplot by Model. A boxplot in which execution times
are reported on the y-axis, while the z-axis lists all imported models sorted
according to their overall average F'1-score, aggregated over nodes and edges.
Results are further split between CPU and GPU execution, allowing for a
clear comparison of hardware impact on performance.

An exzample in Figure

e GPT-4 vs. GPT-5 Comparison. A comparative plot dedicated to GPT-4
and GPT-5, reporting the average F1-score on the y-axis and execution time
on the z-axis. The graph is split by different prompts, thereby reflecting the
variations across supply-driven and demand-driven approaches. This enables
a direct assessment of the impact of prompting strategies on performance and
efficiency.

An example in Figure[{.8d
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These additional visualizations complement the primary set of graphs by offer-
ing both a broader overview of the trade-off between accuracy and execution time
and a focused comparison on the most advanced models.



Chapter 5

Implementation

This chapter presents the implementation of the system outlined in the previous
sections, translating the conceptual pipeline into a fully functional prototype. Par-
ticular attention is devoted to design principles such as modularity, reusability
and the single responsibility principle, which collectively ensure a maintain-
able and extensible architecture. The configurability of the system is enabled by
the principle of separating configuration from code: this allows parameters such
as API keys, configurations and runtime options to be modified without altering
the source code, improving maintainability, portability and security.

5.1 Environment and Tools

The system was developed using modern programming languages and widely adopted
libraries, enhancing flexibility and reproducibility.

e Programming Languages: Python 3.12, JavaScript, Bash;

e Core Libraries: Hugging Face transformers and PyTorch for model han-
dling and inference; requests for API-based interaction; yaml for configu-
ration parsing; pandas and matplotlib for data aggregation, analysis and
visualization;

e Data Formats: configuration, exercises, prompts and outputs stored in
YAML, evaluation metrics and aggregated results maintained in CSV, graph
visualization through PDF;

e Dependency Management: Poetry for package management, dependency
resolution and to publish to PyPi.
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5.1.1 Supporting Technologies

To ensure reliability, reproducibility and ease of deployment, the following sup-
porting technologies were integrated:

e GitHub for version control and Continuous Integration;
e Docker for virtualization and environment encapsulation;

e Portainer as a container management interface to monitor and manage
Docker deployments;

e Windows Remote Desktop for secure access to on-premise university labora-
tory machines;

e Trello to organize and track work during the project, creating boards and
cards for tasks and monitoring progress;

e HuggingFace as a model hub and repository for importing pre-trained LLMs;

e Node. js as a runtime environment to support release automation workflows.

5.2 Pipeline Implementation

The pipeline follows the architecture described in Figure [4.1] Tt is implemented as
a Python script that executes the following steps.

5.2.1 Configuration Parsing

The entry point of the pipeline is the configuration parser, responsible for load-
ing and validating the parameters required for execution. Configuration files are
written in YAML format, as this ensures human readability while supporting nested
structures such as rules, model parameters and experiment metadata.

Parsing is implemented through the PyYAML library. The parser loads the spec-
ified file, checks for required fields and applies default values where necessary.
Configuration objects are then passed forward to subsequent stages of the pipeline.

A complete example of the configuration file is reported in [5.1] illustrating all
the parameters required for the pipeline, including model specifications, prompting
options, rules for post-processing and output settings.
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use: 'api' # import or api
debug_prints: false

model_import:
name: 'falcon'
temperature: 0.2
max_new_tokens: 4000
do_sample: true
top_p: 0.9
device: 'cpu'

model_api:
name: 'gpt'
label: 'gptdo' # [gpt3-5, gpt4ol
deployment: 'gpt-4o' # Deployment name for azure distribution [test-gpt-35,
— test-gpt—4o]
api_version: '2024-04-Ol-preview' # Used with GPT only up to mow
—  [2024-02-15-preview, 2024-04-01-preview]
max_tokens:
n_responses: 1
temperature: 0.1

stop:

top_p: 0.9

top_k: 5
output:

dir_label: 'test'

exercise:
name: ['exercise-1']
version: 'sql'
prompt_version: 'rq3-alg-base'
number: ['1'] # If not stated, obtatined as last digit in ex. nmame config

Listing 5.1: Configurations for pipeline.
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Configuration Parsing through Command Line Arguments

In addition to YAML files, the pipeline supports configuration overrides via com-
mand line arguments. This feature makes it possible to automate large-scale
experimental runs without manually editing configuration files. Command line
options are parsed using Python’s argparse library and, when provided, they
take precedence over the corresponding values defined in the YAML configuration.
This mechanism ensures both reproducibility, with explicit configuration files, and
flexibility by enabling batch executions with parameter variations.

An example of execution overriding model and prompt directly from the com-

mand line is shown in [5.1]

Listing 5.1: Example of pipeline execution overriding YAML parameters.

python pipeline.py \
--n_runs 1 \
--exercises 'l 2 3 4 5 6 7 8 9' \
--p_version rqg3-dec \
--exercise_version sql \
--model 1llama-3.1-8B-inst-hf \
--model_loading import \
--model_label lama3.1-8 \
--dir_label test \
--device gpu

Sensitive credentials concern

Several configurations involve sensitive credentials, such as API keys for remote
model access. To address this securely, the following strategy was adopted:

e A template file (e.g. config-example.yaml) is provided in the repository,
documenting the expected structure of configuration files;

e The actual expected configuration file (e.g. config.yaml) is excluded from
version control through .gitignore, preventing accidental exposure of cre-
dentials;

e Users cloning the repository are instructed to copy the template and fill in
their own credentials locally.

This approach ensures both security and reproducibility: the pipeline runs
with the required credentials while avoiding any leakage of sensitive information
in public repositories.
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5.2.2 Model Loading

The entry point for model usage within the pipeline is the Model class, detailed in
Listing [5.2| which encapsulates both initialization and generation, providing a uni-
form interface to heterogeneous LLMs. This abstraction ensures that, regardless
of whether a model is imported locally through Hugging Face or accessed remotely
via APIs, the pipeline interacts with it in the same way.

Listing 5.2: Excerpt of the unified Model class handling both imported and API-
based models.

g
class Model:

# Initialize chat, load model and generation
function, device is for cpu or gpu
def __init__(self, name, config, key, device,
debug_print):
self.chat = []
if use_import:
self .model, self.tokenizer =
load_model_and_tokenizer (name, key,
device)
self .generate =
load_generate_import_function(name, self.
model, self.tokenizer, config,
debug_print, device)
elif use_api:
self .model = load_model_api (name, key)
self .generate = load_generate_api_function(
name, self.model, config, debug_print)
def batch(self, prompt):
try:
m_output = self.generate(self.chat)
except Exception as e:
print (f 'Model batch error [{e}]"')
# Add prompt in chat
self .chat.append(get_chat_entry('assistant',
m_output, self.name))
return m_output
# Refresh chat
def refresh_session(self):

self.chat = []
\. J
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Initialization and Loading

At instantiation, the Model object interprets the configuration and selects the
appropriate loading strategy, supplying credentials if required as exposed in 5.2
but it’s worth mentioning that all HuggingFace’s models are grouped under hf key
as my-new-model-name for simplicity.

e Imported models: The class loads both model and tokenizer through Hug-
ging Face’s transformers or a preferred hub as in Listing [5.3}

e API models: The class establishes a connection to the specified endpoint,
reading authentication and endpoint details from the YAML configuration
as in Listing

my-new-model-name:
key:
api: my-api-key
import: my-import-key

Listing 5.2: Credentials configuration for new models.
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Listing 5.3: Load import models.

S

def load_model_and_tokenizer (model_name, key, device):

match model_name:
# Add model name here and precise model name in
hub
case 'my-model':
m_name = 'my-model-name''
case _
raise Exception('Model not found')

model_already_downloaded,
tokenizer_already_downloaded =

# Torch type optimized for CPU or GPU usage

torch_type_to_use = torch.floatl6 if torch.cuda.
is_available () and device == 'gpu' else torch.
float32

if model_already_downloaded:
# Load the model and tokenizer from the saved
directory
model , tokenizer = load(model_directory,
torch_dtype=torch_type_to_use)

else:
# Download and load the model and tokenizer from
Hub
model , tokenizer = load(m_name, torch_dtype=

torch_type_to_use, token=key)
# Save the model and tokenizer
model .save_pretrained(model_directory) ;
tokenizer.save_pretrained(model_directory) ;
# Move to GPU only if available and device is set
for GPU
if cuda_is_available() and device == 'gpu':
model.to('cuda')

return model, tokenizer

Listing 5.4: Load api models.
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def load_model_api (name, key):
match name:
case 'gpt':
openai.api_key = key
return openai
case 'gemini':

flash')
case

(S

genai.configure (api_key=key)
return genai.GenerativeModel ('gemini-1.5-

raise Exception('Model not found')

/)

This modular design makes the system extensible: to integrate a new model,

it is sufficient to specify its name and provide the import function for model and

tokenizer or API client.

Batch Execution and Generation

Generation requests are handled through the batch() method of the Model class
to abstracts the differences between imported and API-based models. Prompts
are appended to the conversational history and submitted to the model-specific
generate() function. As stated before, this design makes the generation logic
fully modular and extensible: the pipeline can switch between imported and
API-based models without changing downstream processing; integrating a new

model only requires supplying:

e Imported models: a function that, given a model and a tokenizer, return

a function to batch a chat, returning a string as in Listing [5.5}

e API models: a function that, given a model, return a function to batch a

chat, returning a string as in Listing [5.6]
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Listing 5.5: Generate function for import models.

69

def new_model_generating_function_from_model(
model_to_use) -> Callable[[List([str]], str]:

def new_model_generating_function(chat):

output_generated = model_to_use.batch(chat) #
Substitute specific generating function here

return output_generated
return my_new_model_generating_function

match name:
case 'my-new-model -name':
model_to_use = load(model, tokenizer)
return my_new_model_generating_function(
model_to_use)

Listing 5.6: Generate function for APis models.

p
def load_generate_api_function(name, model, config,

debug_print) -> Callable[[List[str]], strl:
def my-new-model-generating-function(chat):

output_generated = model.batch(chat) #
Substitute specific generating function here

return output_generated
match name:

case 'my-new-model -name':
return my-new-model-generating-function

\S

By using this unified approach, the pipeline maintains a consistent execution
logic, ensuring that all models, regardless of their type, can be invoked seamlessly

within the same workflow.
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5.2.3 Prompting and Execution Time Measurement

Prompting is implemented ensuring consistency across models while remaining
extensible. Each prompt is represented as a 1ist of dictionaries, where every entry
specifies a role (e.g. system, user, assistant) and its corresponding content.
This role-based format guarantees compatibility with both imported and API-
based models, as it mirrors the structure required by most modern chat interfaces.

For extensibility, the system allows either the use of a base prompt, shared
across all models, or a model-specific prompt, defined in the configuration files.
This design makes it possible to adopt default templates for general experiments
while still accommodating provider-specific or fine-tuned prompt structures when
needed.

Execution times are recorded for each generation request. Measurement is
handled uniformly in the pipeline by marking the wall-clock time at the start and
end of the request:

e for imported models, times are measured separately for CPU and GPU exe-
cutions;

e for API models, times correspond to the full round-trip of the HTTP request.
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Listing 5.7: Prompt and execution time measurement example.

# Load prompts for specific model and exercise
def load_prompts (prompt_version, model_name, exercise):

# If model specific prompt is not found, the base
one 1is loaded
prompts = load_prompt (prompt_version, model_name)

# Last prompt is the exercise text
prompts.add(load_text_exercise (exercise))

return prompts

prompts = load_prompts (prompt_version, model_name,
exercise)
model .refresh_session ()

# Time measurement

start_time = time.time ()
model_output = model.batch(prompts)
end_time = time.time ()

elapsed = end_time - start_time
\. J

All execution times are then stored alongside outputs and evaluation metrics
in CSV format.

5.2.4 Output Parsing and Post-Processing

Model outputs are first collected and, whenever possible, parsed into YAML struc-
tures to enforce a standardized representation across experiments. If parsing fails,
raw strings are preserved to avoid loss of information.

A dedicated post-processing stage then applies configurable rules as reported in
Section [£.1.5 To ensure standardization in evaluation, the same post-processing
rules are applied both to generated outputs and to ground-truth references. Fi-
nally, processed outputs are stored in CSV and YAML formats together with execu-
tion metadata, enabling reproducible analysis and external inspection.

5.2.5 Comparison and Metrics Evaluation

Once outputs and ground-truth references have been post-processed, they are com-
pared to compute both standard and task-specific metrics. The evaluation con-
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siders both nodes (i.e. the set of fact, measures and dimension attributes) and
edges (i.e. the directed “from — to” dependencies), thus capturing correctness at
multiple levels of the generated schema.

For each level, the following notions are applied:

e True Positives (TP): nodes or edges that appear in both the model output
and the ground truth;

e False Positives (FP): nodes or edges generated by the model but absent
in the ground truth;

e False Negatives (FN): nodes or edges that appear in the ground truth but
are missing from the model output.

From these quantities, the standard metrics are derived:
scion: TP

e Precision: TP1FP

tually correct;

measuring how many of the generated elements are ac-

¢ Recall: TPZ% measuring how many of the ground-truth elements have

been correctly recovered;

e Fl-score: 2. Drecisionliccall i the harmonic mean of precision and recall
Precision+ Recall ’

balancing completeness and correctness. It’s commonly used for graph com-
parison [18].

All metrics are computed separately for nodes and edges, providing a fine-
grained view of model performance. In addition, custom error metrics are
defined through domain-specific rules to capture discrepancies not fully explained
by standard precision/recall-based measures.

Custom Errors

In addition to standard evaluation, the system defines a set of custom errors tai-
lored to the domain of conceptual multidimensional modeling. These errors cap-
ture discrepancies that may not be adequately reflected by generic metrics but are
crucial for assessing schema correctness. The custom error categories are:

e Attributes:
— shared_extra: attributes that appear in both fact and dimension hier-
archies in the output but not in the ground truth;

— shared missing: attributes that should appear in both contexts ac-
cording to the ground truth but are missing in the output;
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— shared with fact _root_extra: attributes incorrectly connected to the
fact root as well as to dimensions;

— shared with fact root missing: expected attributes connected to the
fact root are absent.
e Dependencies:
— extra: dependency edges that exist in the output but not in the ground
truth;

— missing: dependency edges that are present in the ground truth but
absent in the output;

— reversed: dependency edges whose direction has been inverted com-
pared to the ground truth.
e Fact:

— false_fact: cases where an incorrect fact node has been introduced;
— incorrect: a boolean flag signaling whether the chosen fact does not
match the expected one.

e Measures:

— extra: additional measures incorrectly introduced by the model;

— missing: ground-truth measures that are absent in the model output.
e Miscellaneous:

— extra disconnected components: disconnected subgraphs produced
in the output, indicating structural errors in schema connectivity;

— extra_tags: presence of invalid or unexpected YAML tags in the out-
put.

By explicitly tracking these error categories, the evaluation provides a finer di-
agnostic of model behavior, highlighting not only whether the generated schema is
correct, but also in which specific aspects it deviates from the intended conceptual
model.

Finally, results are aggregated across runs and exported in CSV format, ensuring
comparability across models, prompt configurations and execution environments.
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MetricsCalculator

The MetricsCalculator class provides the foundation for computing standard
evaluation metrics. It preprocesses ground-truth and generated outputs into nor-
malized representations of facts, measures and dependencies. From these struc-
tures, it extracts true positives, false positives and false negatives at the node and
edge level. The class also computes precision, recall and F1.

ErrorDetector

While the MetricsCalculator covers standard metrics, the ErrorDetector class
is responsible for applying domain-specific validation. It builds on the indexes
computed by the MetricsCalculator, detecting issues detailed in Section [5.2.5]

This two-level structure decouples generic metric computation from domain-
specific validation, ensuring that the evaluation framework is both reusable and
extensible.
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Output obtained

errors:
- attributes:
shared_extra: 0O
shared_missing: O
shared_with_fact_root_extra: 0O
shared_with_fact_root_missing: 0
dependencies:
extra: O
missing: 1
reversed: O
fact:
false_fact: O
incorrect: false
measures:
extra: 1
missing: O
miscellaneous:
extra_disconnected_components: 0
extra_tags: false
20 metrics:
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e e e e R e =
© N O kR W N = O

21 - edges:

22 f1: 0.9474

23 fn: 1

24 fp: 0

25 precision: 1.0
26 recall: 0.9

27 tp: 9

28 nodes:

29 f1: 0.9091

30 fn: 1

31 fp: 1

32 precision: 0.9091
33 recall: 0.9091
34 tp: 10

Listing 5.3: Output obtained after comparison.

5.2.6 Results Storage

The evaluation pipeline records all computed metrics and custom errors into struc-
tured CSV files. Each row corresponds to a single experiment run and includes
identifiers such as the model name, configuration parameters, prompt variant and
execution environment and time. Storing results in CSV format makes them di-
rectly usable for post-hoc analysis. Metrics can be aggregated across multiple runs,
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grouped by experimental factors, or visualized through plots and dashboards to
identify performance trends.

5.3 Aggregation and Visualization

A dedicated aggregation script further processes the CSV files by applying filters
(e.g., selecting specific models, exercises, or prompt variants) and consolidating
results into unified datasets. These aggregated datasets are then used to generate
the visualizations introduced in Section [£.2]

5.3.1 Graph drawing

To support debugging and qualitative inspection of the results, a dedicated JavaScript
implementation was developed for graph visualization. This script takes as input
both the model-generated output and the corresponding ground-truth schema, and
produces side-by-side visual representations of their graphs. Each schema is ren-
dered as a directed graph where nodes represent facts, measures, or attributes,
while edges correspond to dependencies.

The script additionally highlights discrepancies between the two graphs, such
as:

e True positives: nodes and edges correctly generated by the model;
e False positives: extra nodes or edges present only in the generated output;

e False negatives: nodes or edges missing from the generated output but
present in the ground truth.

By visually overlaying these elements, the script provides an intuitive under-
standing of how metrics like precision, recall and F1 are reflected in practice. This
visualization complements the numerical evaluation by enabling a more immediate
identification of systematic errors (e.g., recurring missing dependencies or role mis-
assignments), thereby streamlining the debugging process. An example of visual
output is supplied in Figure

5.4 GPU execution

Running experiments on GPU required the use of the university’s computing in-
frastructure, managed through Portainer. Access to the GPU nodes was provided
by containerized environments, meaning that the project had to be fully docker-
ized. A dedicated Dockerfile was prepared to ensure reproducibility, installing
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all required dependencies (Python, PyTorch with CUDA support, Hugging Face

transformers and auxiliary libraries). This setup allowed the pipeline to be exe-

cuted seamlessly on GPU nodes without manual configuration of the environment.
An excerpt of the Dockerfile is reported in [5.4]

# Docker image to enable cuda execution

FROM nvidia/cuda:12.2.2-cudnn8-runtime-ubuntu22.04

# Install system dependencies and python deadsnakes PPA
RUN apt-get update && apt-get install -y ...

# Install Poetry

RUN curl -sSL https://install.python-poetry.org | python3 - ...
# Set working directory

WORKDIR /app

# Copy project files (first pyproject to leverage caching)
COPY pyproject.toml poetry.lock* ./

# Install deps

RUN poetry install --no-root

# Copy rest of the project

COPY . .

Listing 5.4: DockerFile excerpt.

To streamline execution, automated scripts has been provided to run the pro-
gram within Portainer, minimizing manual setup effort. For reproducibility and
convenience, the same routines were also exposed as Poetry tasks, allowing ex-
periments to be launched either directly from the development environment or
through the containerized infrastructure with a single command.

5.5 Methodologies

This section outlines the methodological choices that guided the development
process. The focus was on ensuring automation and reliability: a clear Git
workflow supported structured contributions, continuous integration pipelines au-
tomated validation and release, while systematic testing ensured robustness and
compliance with requirements. Together, these practices provided a disciplined
framework for managing both code quality and experimental reproducibility.

5.5.1 Git Workflow

The project adopted a lightweight Git workflow based on conventional com-
mits. Each feature or fix was developed in a dedicated branch, which was merged
into the develop branch once completed. When a full functionality or fix was
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achieved, a pull request was opened to merge into master, ensuring code stability
and traceability.

5.5.2 Continuous Integration

A CI/CD pipeline was implemented using GitHub Actions. It included stages for
secret detection, semantic version computation, dependency installation, testing
and conditional release with semantic-release, triggered on pushes and pull re-
quests. This setup ensured that every change was validated, versioned and released
in a controlled workflow.

5.5.3 Test

Testing played a central role in validating both functionality and business require-
ments. Tests were designed to detect errors early and to guarantee that new
changes would not break previously implemented features. Core components un-
der test included:

e Custom error detection functionalities;

e Metrics evaluation logic;

e Post-processing and rule-based equivalence checks;
e YAML parsing and schema validation.

This systematic testing provided confidence in the robustness and reliability of the
implementation.
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Experimental evaluation

This chapter presents the experimental setup and results obtained from evaluating
the proposed system. The goal of the experiments is to assess the ability of Large
Language Models to generate Dimensional Fact Model schemas under both supply-
driven and demand-driven design approaches. Performances are analyzed with
respect to standard metrics, custom error tracking as well as comparing execution
efficiency across CPU, GPU and API-based runs.

6.1 Experimental Setup

6.1.1 Tasks and Inputs

The set of test cases covers a diverse range of domains, each characterized by
different levels of structural and semantic complexity. Table reports their main
features. The first column indicates the number of tokens in the corresponding
natural language requirements, providing a measure of textual complexity. The
remaining columns capture schema-related challenges:

¢ Hidden functional dependencies: dependencies not explicitly represented
in the schema but implied by the semantics of the domain. Their detection
is crucial for generating correct dimension hierarchies and relationships, yet
LLMs may fail to infer them without explicit cues;

e Composite foreign keys: when foreign keys are composed of multiple
attributes, they introduce additional complexity in recognizing relationships.
This often leads to confusion in schema generation, as models must correctly
group attributes and avoid misinterpreting them as separate links;

e Ambiguity in fact identification: some schemas allow multiple candidate
facts. Selecting the wrong fact table results in incomplete or misleading
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dimensional schemata. This challenge tests the model’s ability to reason
about granularity and domain semantics beyond syntactic structure;

e Shared hierarchies: dimensions may share attributes or hierarchical paths
(e.g. “date” used in different contexts, for both shipment and delivery).
Models must reconcile these overlaps without creating redundancy, which
requires deeper semantic alignment;

e Cycles: cyclic relationships in the source schema create difficulties in ex-
tracting a tree-like DFM structure. Identifying and resolving cycles into
meaningful hierarchies or facts is particularly challenging, even for expert
designers, and pushes the limits of automated schema generation.

Such variability ensures that the evaluation spans both simpler schemas and
more intricate scenarios, enabling a deeper analysis of the robustness and
generalization capacity of the tested models.

For each exercise, both supply-driven and demand-driven design approaches
were systematically tested; within each approach, multiple prompt variants were
explored, described in Section [£.1.3] This allowed the comparison of robustness
of different prompting strategies across heterogeneous exercises and modeling set-
tings.

Table 6.1: Test cases used for the experiment.

Id Domain # Tables/Attr. # Tokens Hidden FDs Composite FKs Fact ambiguity Shared Hier. Cycles
C1 Sw installations 5/14 49 N N N N N
C2  Purchases 5/19 54 Y N N N
C3  Card purchases 5/34 94 Y N N Y N
C4  Car races 7/33 65 N Y N N N
C5  Crossfit 7/30 71 Y Y Y N N
C6  Staff recruitment 6/21 81 N N N Y Y
C7 Car rentals 8/35 106 Y Y Y Y N
C8 Train trips 9/38 130 Y Y Y Y N
C9 Flights 10/50 179 Y Y Y Y N

6.1.2 Models Tested

The following models were considered for evaluation, imported ones are accessed
via Hugging Face, tested on CPU and GPU:

e LLaMA variants Imported: 1lama-3.1-8B-inst, 1lama-3.2-1B-inst
and
llama-3.2-3B-inst;

e Mistral Imported: mistral-7B-inst-v0.3;
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e Falcon Imported: falcon-3-10B-inst;
e API-based models: GPT-4 and GPT-5.

The choice of models followed an incremental strategy: larger and more recent
versions (e.g. LLaMA 3.1-8B, LLaMA 3.2-3B) were tested alongside smaller,
resource-constrained versions (e.g. LLaMA 3.2-1B). This allowed the comparison
of efficiency and accuracy trade-offs across scales, balancing computational cost
with model quality. Other architectures, including non-instruction-tuned variants,
were explored but discarded as they either failed to produce parsable outputs or
exceeded memory constraints.

6.1.3 Execution Environment

All experiments involving imported models were executed on the following hard-
ware:

e CPU execution: Intel(R) Xeon(R) w5-3425 @ 3.19 GHz, equipped with
128 GB RAM;

e GPU execution: NVIDIA RTX 6000 Ada Generation, with 48 GB VRAM.

6.1.4 Metrics

The following metrics are evaluated:
e Precision, Recall, F1-score for nodes and edges
e Custom error types, identified through post-processing rules

e Execution time, recorded separately for CPU, GPU and API models

6.1.5 FEvaluation Procedure

All experiments were automated to ensure reproducibility and consistency. Each
model-prompt configuration was executed ten times, in order to account for the
inherent non-determinism of LLM outputs. Results from repeated runs were then
aggregated, exported in CSV format and further analyzed through the visualization
procedures described in the previous sections.
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6.2 Results

6.2.1 Per-Prompt Analysis

The per-prompt analysis has been initially conducted using the GPT-4 model
only. This choice allowed to focus on understanding the relative effectiveness of
different prompt formulations in both supply-driven and demand-driven settings.
The insights gained from this analysis guided the selection of the most promising
prompts, which were later adopted and tested across other models in order to
perform a broader evaluation in terms of both effectiveness and efficiency.

Ground truth definition

For supply-driven design, the ground truth was generated by applying the FD-
chasing algorithm proposed in [5] to the source schema; the fact was then se-
lected as the source table maximizing coverage of attributes in the DFM schema.
Since the FD-chasing algorithm is deterministic and, within these test cases, no
ties occur in fact selection, exactly one ground truth is determined for each case.
For demand-driven design, the ground truth was created manually by a
domain expert, starting from the requirements.

Name-matching and count measures

A central issue in metric computation is the matching of schema element names. In
supply-driven design, exact matching is enforced as RELATION.Attribute, while
in demand-driven design the model may use semantically correct but lexically dif-
ferent names. To address this, for each test case a list of equivalent names has
been made (e.g. CreditCardType and CardType). Another issue is the presence
of count measures: in principle, these should only appear when fact granularity is
coarser than the source database, yet inferring granularity from textual require-
ments is non-trivial even for human designers. Therefore, all count measures were
removed from demand-driven ground truths, and any such measures generated by
the models were ignored in evaluation.

Results with basic prompts

With the first basic rq2 prompt for supply-driven approach, the average F1-scores
of nodes and arcs is &~ 0.41, denoting a poor performance. The most frequent
errors include:

e Missing FDs;

e Reverse FDs as arcs generated in the wrong direction;
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e Wrong fact selection;
e Missing measures;

e YAML syntax errors as invalid tags or indentation.

Improved supply-driven prompts

An improved version of the basic prompt has been investigated provided in two
formulations: an algorithmic and a declarative variant. The average F1-scores of
nodes and arcs for the algorithmic version is = 0.81 and ~ 0.78 for the declara-
tive one. Performances with these prompts can be classified as good. Residual
errors mostly concern missing arcs, leading to fragmentation and missed shared
hierarchies. Fact selection is generally correct, except for some runs of C5 and
systematically in C7.

Demand-driven prompts

With the base prompt rq4, average F1-scores of nodes and arcs is ~ 0.75, leading
to an average classification. Common errors include:

¢ Reverse or missing FDs;
e Wrongly identified dimensions;

e Non-recognition of shared hierarchies (e.g. shipment date vs. delivery
date).

Improved demand-driven prompts

When improved to rq5, performance becomes excellent, with average F1-scores
of ~ 0.91, considered as excellent performances. Beyond error reduction, the
model occasionally introduces useful additional concepts not explicitly present in
requirements (e.g. session in C5). Remaining issues concern shared hierarchies
and unique identifiers.

Overall, these findings confirm that careful prompt engineering signifi-
cantly boosts accuracy in both supply-driven and demand-driven de-
sign, shifting performance from poor/average to good/excellent.

6.2.2 LLM Effectiveness evaluation

To evaluate the effectiveness of large language models in conceptual design tasks,
a dedicated set of experiments was performed using GPT-4.
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Technological Setup

The GPT-4 experiments were executed through the OpenAl API, accessed via the
Azure distribution. The configuration parameters used are reported in [6.1]

model_api:
name: 'gpt'
label: 'gpt4'

deployment: 'gpt-4o'

api_version: '2024-04-0l1-preview'
max_tokens:

n_responses: 1

temperature: 0.1

stop:

top_p: 0.9

Listing 6.1: Configurations for GPT experiments.

Results Graphs

Graphs are organized per prompt type, for each case both nodes and edges
metrics are shown.

e Supply-driven prompts: RQ2, RQ3-dec, RQ3-alg;

¢ Demand-driven prompts: RQ4, RQ5.

Both the followings Figure [6.4] and Figure present, for each prompt, the
average F1 and time across all test cases.
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Figure 6.1: GPT4 supply-driven output graph — RQ2.
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Figure 6.2: GPT4 supply-driven output graph — RQ3-ALG.

85



86

Average F1-score

CHAPTER 6. EXPERIMENTAL EVALUATION

F1l-score vs. Elapsed Time [gpt4]
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Figure 6.3: GPT4 supply-driven output graph — RQ3-DEC.

Figure 6.4: GPT4 supply-driven output graphs for each prompt version.
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Figure 6.5: GPT4 demand-driven output graph — RQ4.
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Fl-score vs. Elapsed Time [gpt4]
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Figure 6.6: GPT4 demand-driven output graph — RQ5.

Figure 6.7: GPT4 demand-driven output graphs for each prompt version.

Results Overview

Effectiveness was assessed across the full set of exercises C1-C9, considering all

prompts. Results show a clear progression depending on the prompt design, with
a summary in Table [6.2}

e RQ2 basic supply-driven: average F1 of ~ 0.41, rated as poor, with
frequent errors in FD recognition, fact selection and YAML syntax;

¢ RQ3 improved supply-driven: with declarative and algorithmic variants,
average F1 improved up to ~ 0.81, rated as good. Errors were reduced to
mainly missing arcs and non-recognized shared hierarchies;

¢ RQ4 basic demand-driven: average F1 of ~ 0.75, rated as average, with
issues in FD directionality, wrong dimensions and missed shared hierarchies;

¢ RQ5 improved demand-driven: average F1 of ~ 0.91, rated as excellent.
Errors were minimal, mainly related to shared hierarchies, while in some
cases GPT-4 introduced useful additional concepts beyond the ground truth.
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Table 6.2: Average F1 scores of nodes and arcs for the different RQs.

Approach RQ Fl-nodes F1l-arcs Fl-avg
RQ2 0.57 0.24 0.41

Supply-driven  RQ3-alg 0.90 0.72 0.81
RQ3-dec 0.88 0.67 0.78
RQ4 0.86 0.64 0.75

Demand-driven

RQ5 0.96 0.85 0.91

Discussion

Overall, GPT-4 demonstrated a strong capability in conceptual design tasks, pro-
vided that prompt engineering is carefully applied. The results highlight that:

1. Basic prompts (RQ2, RQ4) yield only partial correctness, with high variabil-
ity across exercises;

2. Improved prompts (RQ3, RQ5) significantly enhance both precision and re-
call, consistently producing near-complete schemata;

3. Prompt engineering can thus be considered the main driver of effec-
tiveness, with GPT-4 adapting well to both supply-driven and demand-
driven designs.

Results with GPT-5

At the time of the initial experiments, GPT-5 was not yet publicly available.
Following its release, we replicated the same set of tests conducted with GPT-4 to
evaluate potential improvements in effectiveness.

Overall, GPT-5 achieved slightly better performance across both supply-driven
and demand-driven prompts. The improvements are most evident in edge-level
metrics, while node-level performance remains largely comparable to GPT-4. This
indicates that the newer model version is more effective at capturing relational
dependencies, while preserving the same reliability in identifying schema elements.
A detailed comparison is reported in Figure [6.8, where average F1 scores and
execution times across all exercises are aggregated by prompt type. In particular,
GPT-5 exhibits a little lower execution times and slightly better effectiveness across

all prompts, with the only exception being RQ4, where its performance marginally
lags behind GPT-4.
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Average F1 vs Average Time by Model and Prompt Version
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Figure 6.8: Comparison of GPT-4 and GPT-5 by prompt versions.

6.2.3 LLM Efficiency evaluation

To evaluate the efficiency of locally imported LLMs, tests has been conducted on
both CPU and GPU execution environments. Each model was evaluated on all
exercises, reporting execution time and average F1 score as mean of nodes and
edges. The boxplot in Figure shows execution time on the Y-axis and models
on the X-axis, sorted by average F1, thus highlighting the trade-off between speed
and accuracy for CPU and GPU runs. A boxplot was chosen because, especially
in CPU execution, times exhibit strong variability across runs: this representation
effectively captures both central tendency and dispersion.

The experiments reported correspond to 10 runs for each prompt, restricted to the
most promising ones rq3-dec and rq5, thereby mixing supply and demand-driven
approaches. Among the tested models, Falcon3 achieved the highest average F1
score across nodes and edges.

From an efficiency perspective, GPU execution provides a remarkable speed-up
compared to CPU and, more importantly, much greater stability across runs. CPU
boxplots are considerably longer, with outliers producing both unusually high and
unusually low times relative to the average, while GPU times are consistently
compact. Interestingly, execution times do not differ substantially across models
on the same hardware, suggesting that resource utilization is relatively uniform
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once the environment is fixed.

Comparing these results with the overall effectiveness analysis, imported models
such as Falcon3 demonstrate competitive trade-offs, but GPT-based models
remain by far the most accurate, consistently achieving higher F'1 scores. Efficiency
gains from GPU usage are thus shared across models, but the gap in effectiveness
clearly favors GPT, making it the strongest option when accuracy is the primary
concern.

Execution Times by Model and Device (sorted by avg F1)
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Figure 6.9: Execution time comparison of imported models on CPU and GPU.
Models are ordered by average F1 score across nodes and edges.

6.3 Discussion

The experimental results provide several insights into the relative performance of
models, execution settings and evaluation procedures.

Suitability of Models for Supply-Driven vs Demand-Driven
Design

The experiments highlight clear differences between approaches. Imported models
(e.g. Falcon3, LLaMA variants, Mistral) show reasonable performance in demand-
driven tasks, particularly when prompts are carefully engineered, but struggle with
supply-driven design due to their limited ability to detect functional dependencies
and consistently choose the correct fact. Conversely, GPT-based models (GPT-4
and GPT-5) demonstrate stronger adaptability to both approaches, with GPT-5
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showing a slight improvement over GPT-4 in capturing relational dependencies
at the edge level. Prompt engineering proves decisive: basic prompts yield poor
accuracy in supply-driven design, while improved prompts (rq3-dec, rq5) allow
GPT models to reach good to excellent results.

Impact of Execution Environment

Execution environment plays a major role in efficiency but not in accuracy. Im-
ported models executed locally benefit significantly from GPU acceleration, which
reduces execution time by up to an order of magnitude and stabilizes variance
across runs. CPU runs are much slower and highly variable, with frequent out-
liers. However, execution times across different imported models remain compara-
ble once hardware is fixed. On the other hand, API-based models abstract away
hardware concerns, with latency dominated by API call and network response.
Despite this, their effectiveness in schema generation far exceeds that of imported
models, making them the most reliable choice when accuracy is prioritized over
execution time.

Role of Post-Processing Rules

Hand-crafted post-processing rules play a crucial role in aligning LLM outputs
with the expected ground truths. In particular, they resolve name-matching is-
sues in demand-driven design, normalize measure treatment and enforce YAML
syntax validity. Without such rules, metrics would underestimate model perfor-
mance, especially for demand-driven outputs where naming variability is natural.
Nonetheless, this reliance on manual alignment reduces portability and generaliz-
ability to other domains.

Limitations in LLM Schema Generation

The experiments confirm both strengths and weaknesses of LLMs in concep-
tual schema design. GPT-based models achieve high accuracy with appropri-
ate prompting, but still exhibit residual errors such as missing arcs, misidentified
dimensions, or overlooked hierarchies. Imported models, while more efficient un-
der GPU acceleration, are limited in memory capacity and produce lower-quality
outputs, especially for complex exercises. Finally, all models operate under a
single-turn assumption, whereas real-world schema design is inherently iterative
and interactive.
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Unparsable Responses from Imported Models

Despite the structured prompt design and the post-processing pipeline, imported
models occasionally produced unparsable outputs, mainly due to invalid YAML
syntax or incomplete generations. While these cases were infrequent, they highlight
an additional limitation of locally run models compared to GPT-4 and GPT-5,
which consistently returned syntactically valid responses. Such failures required
discarding runs or applying manual corrections, slightly reducing the robustness of
the evaluation. To mitigate this problem, coding algorithmic parts of the task into
the pipeline and introducing training integrated with process-based supervision
may be effective, as explored in [14] 23].



Chapter 7

Conclusions

This thesis has investigated the application of Large Language Models to the gen-
eration of Dimensional Fact Model schemas. The study focused on both method-
ological and experimental aspects, with the aim of evaluating the effectiveness
and efficiency of different LLMs under supply-driven and demand-driven design
paradigms.

The main contributions can be summarized as follows:

e Pipeline Design and Implementation: a modular evaluation pipeline
was developed, integrating model configuration, generation, post-processing
and automated metric computation. This ensured repeatability, extensibility
and facilitated large-scale experimentation;

e Model Abstraction: a unified Model class in Python was introduced to
seamlessly handle both imported Hugging Face models and API-based mod-
els, enabling consistent experimentation across CPU, GPU and API execu-
tion environments;

e Evaluation Framework: a standardized set of post-processing rules was
proposed, together with domain-specific error metrics, allowing fair and fine-
grained comparison between model outputs and reference ground truths;

e Visualization: results were aggregated and reported through comprehen-
sive plots (F1 and execution time trade-offs), providing intuitive insights into
model behavior and comparative trends.

Overall, this work demonstrates the potential of LLMs as assistants in conceptual
schema design, while also stressing the importance of prompt engineering, post-
processing and systematic evaluation. The contributions provide a foundation for
reproducible experimentation, model comparison and methodological reflection,
paving the way for further research and more advanced applications in the field.
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Overall, this work demonstrates the potential of LLMs as assistants in concep-
tual schema design, highlighting the importance of prompt engineering, post-
processing, and systematic evaluation. These contributions not only establish a
foundation for reproducible experimentation and rigorous model comparison, but
have also been leveraged in [I6], paving the way for further research and more
advanced applications in the field.

7.1 Discussion of Findings

The experimental evaluation provides several key insights:

¢ Relative performance of models: API-based models such as GPT-4 and
GPT-5 consistently outperform imported open-source models in both preci-
sion and recall, particularly under the demand-driven approach. Imported
models can still deliver reasonable accuracy but remain less robust on com-
plex exercises;

e Impact of execution environment: Execution times vary significantly
across CPU, GPU and API runs. GPU-based inference enables competitive
local execution with stable runtimes, while CPU runs show strong variability.
API calls deliver superior accuracy, making them a solid choice for scenarios
requiring both high accuracy and reasonable speed;

e Role of post-processing: Post-processing rules are critical for aligning raw
model outputs with evaluation expectations. They mitigate frequent errors
such as inconsistent naming, redundant attributes or structural omissions
and directly influence reported metrics;

e Trade-offs between efficiency and accuracy: Lightweight imported
models highlight the tension between computational cost and performance.
While they can run efficiently on commodity hardware, they fall short of
API-based models in handling complex schema generation tasks.

These findings underline the importance of prompt engineering and post-processing
in improving results, while also clarifying the practical boundaries of current LLMs:
high-performing API models set the accuracy benchmark, but their use comes
with potential downsides such as vendor lock-in, data privacy concerns and on-
going usage costs, motivating further exploration of optimized or fine-tuned local
alternatives.
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7.2 Limitations

Despite the contributions, some limitations emerged during the study:

The evaluation is constrained to a finite set of exercises, which may limit
generalizability to other domains or schema complexities;

Post-processing rules are hand-crafted and context-dependent, po-
tentially reducing portability and requiring adaptation when applied to dif-
ferent datasets or requirements;

The system assumes a single-turn evaluation for most runs, while real-
world schema design often involves iterative refinement and feedback cycles;

The usage of larger imported LLMs was limited by memory constraints,
preventing testing of some high-capacity models that might have offered
different performance trade-offs.

7.3 Future Work

Several directions can extend this research:

Expanded Dataset: applying the pipeline to a larger and more diverse set
of exercises to improve robustness of conclusions and evaluate performance
on more complex schemas;

Automated Post-Processing: developing machine learning or heuristic-
based alignment strategies to replace manually defined rules, improving
portability and reducing manual effort;

Interactive Evaluation: extending the pipeline to simulate multi-turn
schema design sessions, closer to real-world design practices;

Larger LLMs and Training Frameworks: investigating high-capacity
import models that were previously limited by memory, potentially providing
fine-tuning or instruction-tuning pipelines to adapt these models to the
DFM task, as well as injecting knowledge about multidimensional modeling
into LLMs is another promising direction, as suggested by recent comparative
studies on automated domain modeling [3];

Broader API Coverage: extending experiments to other API-accessible
models beyond GPT, enabling a comparative analysis across different archi-
tectures and vendor distributions.
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