ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

Dipartimento di Informatica - Scienza e Ingegneria

Corso di Laurea in Ingegneria e Scienze-Informatiche

Sviluppo ed analisi di modelli generativi
di immagini basati su diffusione e
autoencoder variazionali

Relatore: Presentata da:
Damiana Lazzaro Kevin Shimaj

Sessione Unica
Anno Accademico 2024 /2025

Indice

Introduzione

1 L’AI Generativa
1.1 Panoramica ed evoluzione
1.2 Dai GAN ai DDPM

1.3 Legislazioni e limitazioni dell’Al generativa

2 Denoising Diffusion Probabilistic Models (DDPM)
2.1 Entropia e termodinamica
2.2 Processi forward ereverse L.
2.2.1 Forward: catena di Markov gaussiana
2.2.2 Reverse: modello generativo gaussiano
2.3 Derivazione della loss function
2.4 Training e Sampling nei DDPM
2.4.1 Procedura di Training
2.4.2 Procedura di Sampling
2.5 Architettura del modello nei DDPM
2.5.1 Architettura UNet
2.5.2 Time embedding e iniezione nella UNet
2.5.3 Codifica sinusoidale
2.6 Classifier-Free Guidance
2.6.1 Posteriori come campi esterni L.
2.6.2 Dal classifier guidance al classifier-free guidance
2.6.3 Formula di combinazione

2.6.4 Interpretazione e risultati

3 Variational Autoencoder (VAE)
3.1 Introduzione e principi generali

3.2 Formulazione probabilistica e reparameterization trick
3.3 Evidence Lower Bound (ELBO)

14
15
18
21
24
25
25
26
26
29
29
30
31
31
32
32

3.3.1 Derivazione matematica 35

3.3.2 Interpretazione pratica 37
3.4 Architettura del modello L. 38
3.5 Pseudocodice di training e sampling 40
3.6 Limiti, varianti e confronto con i DDPM 40
3.6.1 Limiti principali o 40
3.6.2 Varianti 41
3.6.3 Confrontoconi DDPM 41
Diffuse-VAE 43
4.1 Introduzione 43
4.2 Funzionamento generale L. 44
4.3 Formulazione 1 44
4.4 Implementazione nella tesi L. 45
4.5 Limiti e prospettive oL 45
Implementazione 47
5.1 DDPM e Diffuse-VAE 47
5.1.1 Architettura UNet 47
5.2 Noise scheduler 54
5.2.1 Linear Scheduler 54
5.2.2 Cosine Scheduler L. 54
5.2.3 Metodi forward ereverse 55
0.24 Trainingo 56
5.2.5 Sampling 58
5.3 VAE e 59
5.3.1 Encoder e decoder 59
5.3.2 Visualizzazione dello spazio latente 63
5.3.3 Sampling 63

Ottimizzazione degli iperparametri e addestramento dei modelli

generativi 66
6.1 Descrizione dei dataset utilizzati 66
6.1.1 MNIST 67
6.1.2 Fashion-MNIST 67
6.2 Panoramica di Optuna 68
6.2.1 Spazio di ricerca e campionamento 69

6.2.2 Pruning con MedianPruner 69

6.3

6.4

6.5

6.2.3 Miglior trial e risultati dell’ottimizzazione
Applicazione al Variational Autoencoder (VAE)
6.3.1 Configurazione di Optuna peril VAE
6.3.2 Risultati
Applicazione al Denoising Diffusion Probabilistic Model (DDPM) . .
6.4.1 Configurazione di Optuna per il DDPM
6.4.2 Risultati

Discussione e confronto

7 Valutazione quantitativa e qualitativa delle immagini generate

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

PSNR . .

Edge Similarity (Sobel-based)
Histogram Similarity (Chi-Squared)
LPIPS e
Risultati Finali o
Visualizzazione delle immagini generate
7.9.1 Immagini generate dal VAE
7.9.2 Evoluzione dello spazio latente del VAE
7.9.3 Immagini generate dal DiffuseVAE
7.9.4 Confronto fra dataset reale, VAE e DiffuseVAE

Conclusioni

Bibliografia

74
74
75
75
76
76
7
78
78
79
79
81
83
84

87

89

Alla mia famiglia, per il vostro amore incondizionato e per tutti i sacrifici che mi

hanno permesso di arrivare fin qui.

Introduzione

L’Intelligenza Artificiale Generativa si sta affermando come una delle tecnologie piu
rivoluzionarie degli ultimi anni, con un impatto crescente in ambiti quali automazione
dei processi, creazione di contenuti, sviluppo software e supporto decisionale.[1] In
particolare, nel 2024 una larga maggioranza di organizzazioni ha dichiarato di adottare
sistemi di Al in almeno una delle proprie funzioni aziendali, segnando un significativo
aumento rispetto all’anno precedente. Parallelamente, 1'utilizzo di strumenti di
AT generativa si e rapidamente diffuso in diverse aree di business, registrando una
crescita importante su base annua. Tra gli utenti, questi modelli generativi hanno
permesso di risparmiare mediamente una quantita apprezzabile di tempo nel totale
delle ore lavorative settimanali [1], [2], [3].

Aqggione Al e GenAl (2023-2024) e tempo medio settimanale risparmiato

. Al

. GenAl

B Tempo risparmiato
80 78.0%

60 [

Percentuale (%)

I e

20 L

2023 2024 Tempo

Figura 1: Adozione dell’Al e dell’Al generativa (2023 vs 2024), e tempo medio
settimanale risparmiato grazie alla GenAl.

In questo contesto, la presente tesi si propone di contribuire allo studio dei modelli
generativi e alla relativa implementazione. E stato innanzitutto realizzato un De-
noising Diffusion Probabilistic Model (DDPM), affiancato dalla progettazione di un
Variational Autoencoder (VAE), al fine di esplorare i punti di forza e i limiti di ciascun
approccio. Su questa base ¢ stata sviluppata un’architettura ibrida, denominata

Diffuse-VAFE, che combina la capacita dei VAE di apprendere spazi latenti compatti

con la potenza dei DDPM nel generare campioni ad alta fedelta. L’analisi delle

prestazioni e stata condotta sia in termini quantitativi, attraverso metriche standard

quali PSNR, SSIM e MSE, sia in termini qualitativi, mediante 'ispezione visiva dei

campioni generati. Questo duplice approccio ha permesso di valutare in maniera

bilanciata efficacia, limiti e potenzialita delle soluzioni proposte. Il lavoro e stato

sviluppato principalmente in Python utilizzando il framework PyTorch, scelto per la

flessibilita del modello a tensori con autograd, il supporto GPU, I'ecosistema ricco e

I'ampia diffusione nella comunita di ricerca [4].

La tesi ¢ cosi organizzata:

Il Capitolo 1 introduce il contesto dell’intelligenza artificiale generativa e
ne ripercorre I’evoluzione storica, evidenziando i principali approcci e le loro
caratteristiche.

Il Capitolo 2 ¢ dedicato ai modelli di diffusione,con una descrizione appro-
fondita dei principi teorici e dei meccanismi che ne permettono la generazione
progressiva.

I1 Capitolo 3 approfondisce i Variational Autoencoder (VAE), illustrandone
la formulazione probabilistica e le tecniche di addestramento.

Il Capitolo 4 presenta l’architettura ibrida DiffuseVAE, analizzando nel
dettaglio come il modello di diffusione (DDPM) venga condizionato dalla
ricostruzione generata dal VAE. Vengono, inoltre, esplorate le interazioni tra i
due modelli e il loro impatto sulla qualita finale delle immagini generate

Il Capitolo 5 descrive le scelte implementative effettuate e le tecniche di
ottimizzazione degli iperparametri utilizzate.

Il Capitolo 6 e dedicato all’analisi delle prestazioni, condotta attraverso

metriche quantitative e confronti qualitativi tra i modelli.

Capitolo 1

L’Al Generativa

In questo capitolo viene presentata I’evoluzione dei modelli generativi di immagini,
ripercorrendo le principali tappe che hanno condotto dalle prime architetture fino
agli approcci piu recenti [5], [6]. Oltre agli aspetti tecnici, viene inoltre offerta
una panoramica sul quadro legislativo attualmente in vigore, che definisce limiti e

responsabilita nell'impiego dell’Al generativa [7].

1.1 Panoramica ed evoluzione

Negli ultimi anni I'Intelligenza Artificiale Generativa ha compiuto progressi notevoli,
passando da semplici modelli statistici a sofisticate architetture neurali in grado
di generare immagini, audio e testo di qualita comparabile a quella prodotta da
esseri umani. Questo sviluppo ¢ stato guidato da una combinazione di fattori:
la disponibilita di grandi dataset, 'aumento della potenza computazionale e il
miglioramento degli algoritmi di apprendimento.

In ambito di image synthesis, i modelli generativi hanno seguito un percorso

evolutivo ben definito:

1. Generative Adversarial Networks (GAN), che hanno introdotto un ap-
proccio avversario capace di produrre immagini fotorealistiche, stabilendo per

anni lo stato dell’arte in termini di qualita percepita.

2. Modelli basati su verosimiglianza esplicita (es. Variational Autoenco-
ders e modelli autoregressivi), caratterizzati da una buona copertura della

distribuzione dei dati ma qualita visiva limitata.

3. Denoising Diffusion Probabilistic Models (DDPM), modelli basati

sulla stima della distribuzione di probabilita tramite un processo inverso di

rimozione del rumore, che uniscono stabilita di addestramento, copertura della

distribuzione e, con recenti miglioramenti, qualita visiva pari o superiore ai

GAN.

1.2 Dai GAN ai DDPM

Le Generative Adversarial Networks (GAN) hanno rappresentato una svolta
fondamentale nei modelli generativi, consentendo di ottenere immagini ad alta
risoluzione. La loro architettura si basa su due componenti principali che competono

in un processo di apprendimento avversariale:

« Generatore (G): prende in input un vettore di rumore casuale z ~ p,(z),
proveniente da una distribuzione nota (tipicamente gaussiana o uniforme), e lo
trasforma in un campione sintetico G(z) che mira a riprodurre le caratteristiche
statistiche dei dati reali.

o Discriminatore (D): riceve in ingresso sia campioni reali & ~ pgasa(z) che
campioni sintetici G(z), restituendo una probabilita che misura quanto I'input

sembri reale.

L’addestramento e formalizzato come un gioco minimazx:
minmax B, log D(z)] + E.y. log(1 ~ D(G(2))]

dove il Discriminatore cerca di massimizzare la capacita di distinguere tra dati reali e
generati, mentre il Generatore cerca di minimizzare la capacita del Discriminatore di
riconoscere i falsi, “ingannandolo” con campioni sempre piu realistici. Questo processo
iterativo porta entrambe le reti a migliorarsi reciprocamente, fino a raggiungere un
equilibrio in cui le immagini sintetiche diventano difficilmente distinguibili da quelle

reali.

Real examples

Judges which

Discriminator images are
real/fake

Fake images/noise

Fake generated
example

Figura 1.1: Schema generale di una GAN: il Generatore G trasforma un rumore
casuale z in un campione sintetico, mentre il Discriminatore D valuta la probabilita
che il campione sia reale.

Nonostante i numerosi successi ottenuti, le Generative Adversarial Networks (GAN)
presentano alcuni limiti intrinseci che ne condizionano I'impiego in scenari complessi.
L’addestramento, infatti, risulta spesso instabile a causa della natura avversaria del
processo, che puo causare divergenze o oscillazioni difficilmente controllabili. Un
ulteriore problema ricorrente ¢ il cosiddetto mode collapse, ovvero la tendenza del
generatore a produrre soltanto un insieme ristretto di campioni, con conseguente
riduzione della diversita. A cio si aggiunge una marcata sensibilita alla scelta
degli iperparametri, che rende 'ottimizzazione delicata e ne ostacola la scalabilita
verso domini particolarmente complessi o significativamente differenti da quello di

addestramento.

Per affrontare queste problematiche, si sono affermati i Denoising Diffusion
Probabilistic Models (DDPM), appartenenti alla famiglia dei modelli likelihood-
based. Diversamente dalle GAN, che apprendono a mappare direttamente un rumore
in un’immagine, i DDPM definiscono un processo generativo inverso di denoising
multi-step: partendo da un rumore gaussiano puro, rimuovono progressivamente
il rumore stimando a ogni passo la distribuzione condizionata pg(z;_1 | ;). Questi
aspetti verranno ripresi e approfonditi nel Capitolo 2, dove verranno illustrati in modo
piu dettagliato i principi di funzionamento dei modelli di diffusione e i meccanismi

che ne rendono possibile la fase generativa.

Rispetto alle GAN, i DDPM presentano vantaggi significativi:

e Addestramento stabile, poiché non dipendono dalla dinamica competitiva
che spesso compromette la convergenza dei modelli avversari.
o Maggiore copertura della distribuzione, riducendo sensibilmente il rischio

di mode collapse.

e Scalabilita a differenti risoluzioni e domini, riuscendo a preservare una buona

consistenza qualitativa nei campioni generati.

Inizialmente, i DDPM non raggiungevano la qualita visiva delle GAN su dataset
complessi. Tuttavia, miglioramenti architetturali come UNet potenziate, attenzione
multi-scala, blocchi di up/downsampling derivati da BigGAN, Adaptive Group
Normalization e tecniche di guidance basate su classificatori hanno consentito di
ottenere un controllo piu fine sul compromesso diversita/fedelta, superando le GAN

in metriche come il FID (Fréchet Inception Distance).

1.3 Legislazioni e limitazioni dell’AI generativa

L’Unione Europea ¢ attualmente la giurisdizione con il quadro regolatorio piu avanzato
in materia di intelligenza artificiale. Con I’adozione dell’AI Act, I'UE ha introdotto
una classificazione dei sistemi di Al basata sul livello di rischio (minimo, limitato,

alto, inaccettabile), imponendo obblighi proporzionati alla categoria.

» Es: social scoring, messaggi pubblicitari
ile rivolti ai bambini, condizionamento - Vietato

psicologico
» Es: credit scoring, selezione del Permesso, nel rispetto di
Elevat personale, chirurgia assistita, requisiti di 1A e
operazioni di polizia, infrastrutture valutazione di conformita
critiche preventiva
Permesso, nel rispetto di
Limitato « Es: chatbot - obblighi di trasparenza e

informazione

Minimo o nullo sistemi antispam ma con un codice di

» Es: videogiochi, I Permesso senza obblighi,
condotta suggerito

Figura 1.2: Classificazione dei sistemi di intelligenza artificiale secondo I’AT Act
europeo, con esempi per ciascun livello di rischio e relativi obblighi normativi.

LAl generativa, come i modelli di diffusione e i modelli linguistici di grandi
dimensioni (LLM), puo essere collocata in diverse fasce della piramide in funzione
dell’uso previsto. In situazioni a basso impatto, come nei chatbot generici o negli
strumenti creativi per la produzione di immagini, I’Al generativa puo essere consi-
derata a rischio limitato, purché vengano rispettati gli obblighi di trasparenza,
ad esempio indicare chiaramente che il contenuto e stato generato artificialmente.

In contesti piu delicati, come la generazione di contenuti per processi decisionali

automatizzati, diagnosi mediche assistite o sistemi di monitoraggio, I’Al generativa
puo essere considerata a rischio elevato, poiché potrebbe incidere su diritti fonda-
mentali o sulla sicurezza. Infine, se utilizzata per scopi vietati dall’Al Act, come nel
caso di social scoring, manipolazione psicologica di soggetti vulnerabili o produzione
di deepfake per scopi di disinformazione politica, I’Al generativa rientra nel rischio
inaccettabile.

L’AT Act stabilisce specifici obblighi per I'uso dell’Al generativa, tra cui la traspa-
renza, che richiede di dichiarare chiaramente quando un contenuto e stato generato
o manipolato da un sistema di Al Inoltre, ¢ necessario fornire documentazione sui
dati di addestramento, specificando i dataset utilizzati, con particolare attenzione
al contenuti protetti da copyright. Infine, ¢ fondamentale implementare misure per
la mitigazione dei rischi, al fine di prevenire la generazione di contenuti illeciti o
fuorvianti.

Sul piano della proprieta intellettuale, la Direttiva UE 2019/790 sul tezt and data
mining consente l'estrazione di dati per scopi di ricerca, ma permette ai titolari dei
diritti di escludere esplicitamente le loro opere. Questo pone limiti diretti all’uso di
dataset contenenti materiale protetto.

Infine, il Regolamento Generale sulla Protezione dei Dati (GDPR) si applica
quando i dataset di addestramento includono informazioni personali, imponendo
obblighi di anonimizzazione o pseudonimizzazione e di tutela della privacy. Questi
vincoli assumono un ruolo centrale nell’Al generativa, poiché i modelli di diffusione e
gli autoencoder variazionali richiedono grandi quantita di dati per I’addestramento.
L’impiego di dataset contenenti opere protette da copyright o informazioni personali
deve pertanto essere gestito con attenzione, garantendo la conformita alle normative
vigenti. In particolare, la trasparenza sulla provenienza dei dati e ’adozione di
tecniche di anonimizzazione rappresentano condizioni essenziali per lo sviluppo

responsabile di sistemi generativi.

Capitolo 2

Denoising Diffusion Probabilistic
Models (DDPM)

In questo capitolo vengono analizzati i Denoising Diffusion Probabilistic Models
(DDPM) [8], [9], [10], [11], una classe di modelli generativi basati su processi di
diffusione che hanno recentemente ottenuto risultati allo stato dell’arte. L’esposizione
parte dai principi fondamentali e dalle motivazioni teoriche che giustificano 'impiego
della diffusione come meccanismo di generazione, approfondendo in particolare il
legame tra entropia, termodinamica e dinamiche stocastiche. Successivamente viene
presentata la formulazione matematica dei processi forward e reverse, insieme alla
derivazione del bound alla log-likelihood e alla sua interpretazione. Un’attenzione
specifica e dedicata al ruolo dei cosiddetti variance scheduler, che influenzano in
maniera significativa la qualita dei campioni prodotti. Il capitolo discute inoltre
I’architettura di riferimento basata su reti U-Net arricchite con meccanismi di time-
embedding, fondamentali per modellare la dipendenza temporale dei passi di denoising.
Infine, viene introdotto il meccanismo di Classifier-Free Guidance, che consente di
controllare la generazione in maniera condizionata, ampliando le possibilita di utilizzo

pratico dei modelli di diffusione.

2.1 Entropia e termodinamica

I modelli di diffusione prendono ispirazione dalla non-equilibrium thermodynamics:
partendo da una distribuzione dei dati ¢(z(?)) caratterizzata da struttura elevata e
quindi bassa entropia si applica un processo di degradazione controllato, aggiungendo
rumore in piu passi fino a ottenere una distribuzione semplice 7 (forward process),

che rappresenta uno stato di alta entropia. Il modello generativo impara quindi

a tnvertire questo processo, rimuovendo gradualmente il rumore e ripristinando la

struttura originale (reverse process).

linear noise evolution

T A gl FAR
J:p-_.. ._{i-‘r'i%.ibfﬁ* ‘:;E i ;

n.-!,

S i
Bl .-;-"-‘:’“.* R SRR R D

Figura 2.1: Esempi qualitativi di bassa entropia (alta struttura) e alta entropia
(rumore casuale).

Forward process (aumento di entropia). Il forward process rappresenta la fase
in cui i dati originali vengono progressivamente “degradati” aggiungendo rumore
in piu passi, fino a perdere quasi completamente la loro struttura. Indichiamo con
Tr(- | - B¢) il kernel di transizione (cioe la regola probabilistica che descrive come
passare da uno stato 2= a uno stato 2(*)) al passo ¢, dove S, controlla la quantita
di rumore aggiunto in quel passo.

Matematicamente, la dinamica del forward si descrive come:
aa® |2 =T (a9 |20 8) wly) = [Tuly |y 8) m) . (2)

La prima delle equazioni (2.1) dice che la probabilita di ottenere x* dipende solo
dallo stato precedente (=" e dal rumore iniettato. La seconda delle equazioni (2.1)
descrive la distribuzione stazionaria 7: se il processo di rumore venisse iterato per un
numero infinito di passi, si convergerebbe a 7 (tipicamente una Gaussiana standard).
Nel caso continuo, se i dati sono prima normalizzati a varianza unitaria, I'entropial
non puo diminuire quando si aggiunge rumore gaussiano indipendente. Infatti, la
convoluzione di una distribuzione qualsiasi con una gaussiana produce una distribu-
zione piu “larga” e meno concentrata: le regioni di alta densita vengono smussate e
quelle di bassa densita si riempiono, incrementando 'incertezza complessiva. In altre
parole, il rumore agisce come un operatore di diffusione che disperde 'informazione,
spingendo la distribuzione verso uno stato di massima entropia (rumore puro).

La relazione

Ho(XW) > Hy(X"Y) (2.2)

significa che:
o H,(X®) & l'entropia dopo ¢ passi di diffusione;
o H,(X® D) & Pentropia dopo il passo precedente;

In questo contesto, ’entropia di Shannon di una variabile casuale continua X & H(X) =
— [p(z)log p(x) dz, e misura il “disordine” o I'incertezza della distribuzione.

o l'uguaglianza si verifica solo se 3; = 0, cioé non viene aggiunto rumore in quel
passo.
In altre parole, ogni passo del forward process non riduce mai 'incertezza della
distribuzione, e nella pratica la aumenta quasi sempre.
Intuitivamente:
e se (3; & piccolo, il rumore aggiunto € minimo e la crescita di entropia e lenta;
e se (3, & grande, la crescita di entropia e piu rapida e la struttura dei dati si

perde velocemente.

L s ‘
” | ‘ T ‘
2 e ; — s
g N ; 3 ’ - E
o L : ‘ 3
S — : -~ : : B 9
& ° ' e : g - e

; N B

X0 X1 X2 Xg Xi-1 X¢ XT-1 XT

Figura 2.2: Rappresentazione schematica del forward process: partendo dai dati com-
plessi Peomplex, il processo di diffusione applica piu passi di rumore fino a raggiungere

il prior pprior-

Reverse process (riduzione di entropia). Il reverse process ¢ la fase generativa
vera e propria: partendo da uno stato di rumore puro, il modello cerca di ricostruire
gradualmente la struttura dei dati originali, riducendo passo dopo passo l'incertezza
della distribuzione.

Formalmente, la probabilita di una traiettoria completa (@, ... (")) nel reverse

si scrive come:

P [20), paD) = .

=

p(I(O"'T)) — p(I(T))

t=1

o p(z™M) = 7 indica la distribuzione iniziale del reverse, che ¢ la stessa distribu-
zione di rumore raggiunta dal forward process dopo 1" passi;
o p(x®V | 2®)) &1l kernel inverso che descrive come passare dallo stato z() a

=1 ricostruendo parte del segnale perso;

quello z(
« il prodotto [~ , combina tutti i passi, partendo dal rumore e tornando ai dati.
Se i passi [; sono abbastanza piccoli, il reverse process ha la stessa forma

funzionale del forward: ad esempio, se il forward aggiunge rumore gaussiano, il

10

reverse sara anch’esso descritto da una distribuzione gaussiana, ma con media e

covarianza scelte in modo da togliere il rumore anziché aggiungerlo.

In pratica, il modello deve apprendere i parametri della distribuzione inversa
al passo t. La media f,(z",t) rappresenta il “punto centrale” attorno a cui &

=1 Intuitivamente, questa media indica quale sia la

distribuito il campione !
versione piu probabile del dato quando proviamo a rimuovere il rumore dal campione
corrente). D’altro canto, la covarianza fs(z),¢) misura 'incertezza associata
a questa ricostruzione. Se il rumore ¢ stato iniettato in modo lieve (cio¢ per valori
piccoli di 3;), la covarianza sara ridotta e il modello potra stimare (=" con alta
precisione. Al contrario, quando il campione ¢ molto degradato (per valori elevati di

t—1)

t), la covarianza aumenta, poiché diverse configurazioni di sono compatibili

con lo stesso x®.

Dal punto di vista geometrico, possiamo immaginare fu(az(t), t) come la “direzione
di denoising” che porta il campione verso lo spazio dei dati, mentre fs(z®,t) controlla
quanto il processo resti stocastico o, al contrario, deterministico. In altre parole,
la media dice “dove andare”, mentre la covarianza dice “quanto fidarsi” di quella

direzione.

/ellisse di covarianza fx

denoising

)

Figura 2.3: Media e covarianza nel reverse: la freccia indica la direzione di denoi-
sing verso la media f,(z(*),t); Dellisse (1-0) rappresenta l'incertezza modellata da

fz (l'(t), t)

Questi due parametri del kernel inverso vengono stimati da una rete neurale (tipi-
camente una UNet), addestrata in modo che la sequenza di passi inversi ricostruisca

fedelmente la distribuzione dei dati originali.

11

P complex

N
\

A
Jorad d

X0 X1 X2 X3 Xi-1 X Xr-1 XT

Figura 2.4: Rappresentazione schematica del reverse process: a partire dal prior ppior,
il modello ricostruisce gradualmente la distribuzione complessa dei dati peomplex-

0

Figura 2.5: Esempio di traiettorie nel forward (in blu) e nel reverse process (in verde)
nello spazio delle configurazioni.

Bound alla log-likelihood. L’obiettivo dell’addestramento ¢ massimizzare la
log-likelihood
L = log p(z?),

ossia il logaritmo della probabilita che il modello assegna a un campione reale 2,
L’impiego del logaritmo non é soltanto una convenzione, ma ha motivazioni pratiche:
consente di trasformare prodotti di probabilita condizionate in somme, rendendo
I'ottimizzazione piu trattabile, e al tempo stesso stabilizza i calcoli quando si lavora
con valori molto piccoli, tipici di distribuzioni ad alta dimensionalita. In termini

intuitivi, durante il training massimizzare la log-likelihood significa aumentare la

12

coerenza tra i campioni generati e i dati osservati: un modello che assegna alta
probabilita (quindi alta log-probabilita) a un’immagine reale avra maggiori capacita
di ricostruirla, e di conseguenza, nella fase di generazione, sara in grado di produrre
campioni che appartengono a distribuzioni simili a quelle del dataset. Nel caso
dei modelli di diffusione, L non puo essere calcolata in forma chiusa, ma possiamo

ottenere un lower bound (limite inferiore) K che puo essere massimizzato in pratica:

T
L> K ==Y o0 [KL(ga | 20,20) | pat=) |)]
t=2

+ Hy(XT | XO) — Hy(XWV | X) — H,(XT). (2.3)

Vediamo il significato di ogni termine:

o KL(-]-) ¢ la divergenza di Kullback-Leibler, che misura quanto due distribu-
zioni differiscono tra loro. Qui confronta:
— gz | 2® 20): distribuzione “vera” del passo inverso derivata dal
forward;
— p(zY | 2®): distribuzione inversa appresa dal modello.
Ogni termine di KL penalizza il modello quando il reverse appreso si discosta
dal reverse “ideale”.
o La sommatoria "7, calcola la penalita totale lungo tutti i passi, partendo dal
secondo fino all’ultimo.
o H (X | X©): entropia condizionata dopo T passi, misura l'incertezza
introdotta dal forward partendo dai dati reali.
o H,(XW | X©): entropia condizionata dopo il primo passo, che viene sottratta
per bilanciare la stima.
o H,(X™): entropia (non condizionata) dello stato iniziale del reverse process,

cioé del rumore puro .

I1 bound K diventa esatto (cioe K = L) nel caso ideale in cui il reverse process
appreso coincida perfettamente con quello “vero”. In questo scenario, ogni termine

di KL nella sommatoria si annulla:
KL(¢|lp)=0 = L=K.

Questo caso limite corrisponde a un processo quasi-statico, in cui la generazione e

perfettamente reversibile e non si perde informazione lungo i passi.

Seconda legge in forma discreta. Il punto chiave e che il forward process

q ¢ definito in modo esplicito: siamo noi a stabilire la sequenza di rumori {f;}

13

da applicare, e quindi conosciamo analiticamente le distribuzioni q(az(t) | 1) e
q(z® | 2(9). Questo non vale per il reverse process p, che deve invece essere appreso.
Proprio grazie al fatto che ¢ & noto, & possibile derivare dei bound sull’entropia

condizionata del reverse p, portando alla relazione:

Hy(XO| X0D) > H(XCD]X0) > H(XO| XCD)4H, (XD] XO)—H,(x 0] X0,

si interpreta cosi:

o H,(X® | XtD) & I'incertezza introdotta andando da t — 1 a ¢ nel forward;
o H, (XD | X®) & l'incertezza del reverse nel ricostruire ¢ — 1 conoscendo t;
o il termine H,(X® 1 | X©) — H (X® | X©) corregge il bound tenendo conto

di quanta informazione residua sul dato originale si perde trat — 1 e t.

Il “divario” tra il lato sinistro e destro della disuguaglianza misura 1’irreversibilita del
processo: piu e grande, maggiore ¢ la quantita di informazione che ¢ andata persa e
non puo essere recuperata. Nel limite di passi infinitesimi (5; — 0) questo divario si

annulla e il processo diventa quasi-statico.

Scheduler j; e dissipazione. Lo scheduler definisce come i valori f; (quantita
di rumore aggiunto a ogni passo del forward) variano nel tempo. La scelta della

schedule influisce su:

« la dissipazione: quantita di “energia informativa” persa lungo il ciclo for-
ward-reverse;
2

« la precisione del bound K: passi piu piccoli e concentrati nelle fasi “critiche

riducono la divergenza KL tra forward e reverse, avvicinando K a L.

In sintesi: scheduler dolci (piccoli ;) rendono il processo piu vicino al quasi-statico
ma aumentano la lunghezza della catena di passi; scheduler aggressivi (grandi f3;)

riducono i il numero di passi ma aumentano la perdita di informazione.

2.2 Processi forward e reverse

In questa sezione formalizziamo i processi di forward (diffusione) e reverse (denoising)
nei DDPM, esplicitando le distribuzioni coinvolte, le espressioni in forma chiusa utili
in addestramento e campionamento, e la parametrizzazione pratica impiegata nel

modello.

14

2.2.1 Forward: catena di Markov gaussiana

Il forward process (o diffusion process) ¢ una catena di Markov che aggiunge
rumore gaussiano ai dati (¥ ~ ¢(z(?)) secondo una sequenza di varianze {3,}1 ;.
Ad ogni passo t, lo stato corrente 2 dipende unicamente dallo stato precedente

2= e da un rumore gaussiano N(0, I):

q(x(lzT) | $(0) H (t) ’ G) q(x(t) | x(zﬁ—l)) — _/\[<x(t); /1 — tx(tfl)v @I).

= (2.4)

~

Derivazione intuitiva. Scrivendo oy = 1 — ;, 'equazione (2.4) diventa:

Ty = \/a_txt_l + \/EN(O,I)

Se, ad esempio, ay = 0.5 e B; = 0.1, la distribuzione di z; € una combinazione di meta
del segnale precedente e di rumore gaussiano, con un progressivo “appiattimento”
verso una Gaussiana standard.

Caso estremo: se a; = 0 e 8, = 1, otteniamo immediatamente una distribuzione

normale standard indipendente dal dato iniziale x.

Distribuzione x;_; (bimodale) Dopo un passo: a;=0.5, Bt=0.1 Caso estremo: a; =0, Br=1
0.40
035
0.30

8 0.25

2

5 0.20

°
0.15
0.10
0.05 s e 1

-3 -2 -1 0 1 2 3 0.00 -4 -2 0

valore valore valore

Figura 2.6: Evoluzione della distribuzione nel forward process: (sinistra) distribuzione
strutturata iniziale x;_1; (centro) dopo un passo con oy = 0.5, 3; = 0.1; (destra) caso
estremo con oy = 0, B; = 1, che produce immediatamente una Gaussiana standard.

[terando la definizione per due passi:

It:@<MIt_2+ Bt1WOI> \/7/\/’0[

da cui:
Ty = Oét/ 043/21 Ti_o + /i W(0, 1) + \/EN(OJ)-

Proseguendo e scrivendo x;_ in funzione di x;_3, si ottiene:

Ty = (/1 2) T3+ -+ \/EN(O, I) + (termini di rumore pesati).

15

Generalizzando:
T-1 k—1
ze=a"zo+ Y | Bk [[vy | W(0,1),
k=0 Jj=0

dove i pesi dei termini di rumore dipendono dal prodotto delle a precedenti.

Per T sufficientemente grande, il termine o’z tende a 0 e resta solo la somma

dei rumori, la cui varianza totale tende a 1:

1-(1-p)" X

PTG =p) 1o

Quindi la “transition function” porta automaticamente a una distribuzione con media

0 e varianza 1 (Gaussiana standard).

Forma chiusa. Definendo a; = [T'_, as, si ottiene la forma chiusa:
q(zW | 2y = N(x(t); Va2, (1 - 6@1), (2.5)

cioe:

2 =@, 20+ VT=aje, ~N(0,) (2.6)

Scheduler della varianza. La varianza (; non e fissa: 'intuizione ¢ usare uno
variance scheduler, cioé una sequenza (31, [o, . .., O7 che controlla ’entita del rumore

aggiunto a ogni passo. Scheduler comuni sono:

« Lineare: f; cresce lincarmente da un valore iniziale (es. 51 = 0.0001) a un
valore finale (es. fr = 0.02).
o Cosine: crescita secondo una curva coseno per distribuire il rumore in modo

pit uniforme.

Come euristica, vale il principio: “Create chaos, but do it wisely”, ovvero aggiungere

rumore in modo graduale per rendere il processo piu facilmente invertibile.

16

SNR: 0,908

3 pre s e
Figura 2.7: Confronto visivo tra Linear Scheduler e Cosine Scheduler nell’aggiunta di
rumore a un’immagine MNIST (cifra 3) a diversi timestep . Si nota come il Cosine

Scheduler mantenga un SNR piu alto nelle prime fasi rispetto al Linear Scheduler,
preservando piu a lungo la struttura dell'immagine.

SNR: 39,608 SNR: 9,308 SNR: 3,808

SNR Comparison: Cosine vs Linear Scheduler

40 —@— Cosine Scheduler
Linear Scheduler

30 A

20 A

104

Signal-to-Noise Ratio (dB)

800 600 400 200 0
Timestep

Figura 2.8: Andamento del rapporto Segnale-Rumore (SNR) in dB per Cosine e
Linear Scheduler. 11 Cosine Scheduler degrada il segnale piu lentamente nelle prime
fasi, garantendo una transizione piu graduale verso il rumore puro.

17

Noise Schedule Comparison: a(t) curves

1.04 = Cosine a(t)

= | inear a(t)

0.8

0.6

0.4 1

0.2 1

0.0 1

1000 800 600 400 200 0
Timestep t

Figura 2.9: Confronto tra le curve di a(t) nei due scheduler. II Cosine Scheduler
distribuisce la riduzione di & in modo piu uniforme lungo la catena di Markov, mentre
il Linear Scheduler concentra la riduzione in pochi passi iniziali e finali.

Critical Timestep Comparison

cosine cosine cosine cosine cosine
t=100, SNR=15.1dB t=300, SNR=6.0dB t=500, SNR=1.8dB t=700, SNR=-0.8dB t=900, SNR=-2.6dB

linear
t=100, SNR=9.3dB

Figura 2.10: Confronto visivo agli istanti critici (¢ = 100, 300, 500, 700,900) per
Linear e Cosine Scheduler. Il Cosine mantiene dettagli visivi piu a lungo, risultando
in un processo di degradazione piu controllato.

2.2.2 Reverse: modello generativo gaussiano

Per brevita adottiamo la notazione z;, =). Dopo T passi di diffusione, il reverse pro-
cess € una catena di Markov che parte dal prior gaussiano e rimuove progressivamente

il rumore:
po(zor) = pler) [Ipe(zia |), plar) =N(0,1), (2.7)

t=1

18

dove, per ogni ¢, assumiamo transizioni gaussiane

po@i |) = Nwi1; po(a,t), Solwr, 1)), (2.8)

Perché non usiamo direttamente ¢(z;_; | ;)7 In linea di principio vorremmo
campionare dal vero reverse q(x; 1 | x;), ottenuto applicando Bayes a q(z; | z;_1).
Tuttavia:

q(zy | ze-1) q(z-1) _ q(y [2-1) [q(@e1 | 20) g(x0) dag

Q(l’t—l | $t) = C](xt) - f q(:)jtl ZUO) q(l‘o) deQ ’

e le marginali ¢(z;_1) e q(z;) richiedono integrazioni sulla (sconosciuta) distribuzione
dei dati g(zo). La via diretta ¢ dunque intrattabile; introduciamo quindi il modello

parametrico (2.8) da apprendere.

Posteriori del forward in forma chiusa. Nel forward gaussiano, con oy = 1 — 3,

e a; = [['_, as, valgono

g(xr | 20) = M, Vaywo, 1 —a)l), qlae | 1) = N Varzea, Bil).

Combinando il teorema di Bayes con la proprieta markoviana del processo di forward
si ottiene, per ogni t, il posteriore di forward (condizionato a xg), che & ancora una

distribuzione gaussiana:

g(zio1 | 20, w0) = N@iss fiulze, 30), Bl), (2.9)

con media e varianza note date da:

TR Vo (1 — oy ~ 1— oy
fui (4, 20) = VAL iﬁt To + a _at) T, B = 70@ - By (2.10)
1—0575 1—O[t 1—Oét

ELBO locale: riduzione a una MSE sulla media. II VLB (ELBO) su

— log pe(xo) si scompone in termini locali

2<t<T.

)

Liy = Eq(mt|xo)|:DKL(Q<xt1 | 24, 20) || po(2i-1 | xt))
Fissando la varianza del processo reverse Y (zs,t) = oI (uguale per py e ¢ al passo
t), la KL tra gaussiane coincide (a costanti additive) con una MSE tra le medie:

1

Li = WE[Hﬂt(xt’xo) — ug(:ct,t)Hz} + cost. (2.11)

19

Scelte pratiche per o? sono f; (rumore del forward), 3, (varianza del posteriore

(2.10)) oppure 0 (caso deterministico DDIM).

Dalla forma chiusa del forward alla e-prediction. Dalla forma chiusa del

forward si ottiene

T = Vo g+ V1 — e, e~ N(0,1),

da cui
1

NGH

Sostituendo 'espressione in (2.12) nella definizione della media fi(x;, zo) in (?7?), si

o =

(:pt — \/ﬁg) . (2.12)

ottiene:

fig(r, o) = \/la—t<xt _ \/%g) (2.13)

Tale forma suggerisce di parametrizzare la media del reverse in funzione del rumore

e predetto dalla rete:

B
V19—

N&(xt,t) = Ty —

ag(xt,t)> . (2.14)

il

Sostituendo (2.14) dentro (2.11), il termine locale diventa (a pesi noti)

L, IE{H& — 59(xt,t)H2] ,

ossia una denoising MSE su piu livelli di rumore.

Score matching: legame concettuale. Dalla distribuzione gaussiana del forward

T —\/6{_1‘0 €
Va log gz | o) = —ﬁ - T /ioar

Quindi predire ¢ equivale, a un fattore noto, a stimare lo score V, log q(z;). La rete

si ricava

gg apprende dunque un campo di forza di denoising coerente con lo score matching.

Regola di campionamento (reverse step). Fissata o7 €{f;, B, 0}, la regola di

campionamento del passo inverso e data da:

1
Ti—1 = MQ(SBt,t) + o2 = \/a_t<l't — %59(1},15)) + Ot2, ZNN(O,I),
(2.15)

20

con z = 0 per t = 1. In pratica, se si imposta o, = v/3;, come nel DDPM classico, la
varianza del processo inverso coincide con quella del forward al passo t. In questo
caso, la componente stocastica z ~ N (0, I') riproduce fedelmente il disturbo aggiunto
durante la diffusione, mantenendo cosi la coerenza statistica tra forward e reverse.
Questa scelta consente di ottenere campioni molto variabili partendo dalla stessa

condizione iniziale, ma introduce una componente di casualita nei risultati.

Nel caso in cui si imposti o; = \/E , il processo inverso si allinea meglio all’ideale
probabilistico previsto dal modello. Questo riduce la discrepanza statistica tra
forward e reverse, producendo risultati con minore rumore residuo e traiettorie di
denoising piu stabili.

Infine, fissando oy = 0, si ottiene il metodo deterministico usato nei DDIM(Denoising
Diffusion Implicit Models). In questo caso, la componente stocastica viene completa-
mente eliminata e il campionamento diventa deterministico: fissato il valore iniziale
xr e il seme casuale usato, si ottiene sempre lo stesso xg. Questo approccio permette
di ridurre il numero di passi necessari per il campionamento, mantenendo alta la

qualita visiva, ma a discapito della diversita nei campioni generati a parita di z.

Perché funziona nella pratica. Per valori piccoli di ¢, x; conserva informazione
rilevante su xy (varianza (1 — ay)I ridotta), fornendo un segnale di apprendimento
forte per la predizione di €. Per valori grandi di t , il segnale ¢ piu debole, ma la
coerenza accumulata nei passi precedenti e la struttura markoviana della catena

consentono traiettorie di denoising stabili fino a xy.

2.3 Derivazione della loss function

Partiamo dal modello di transizione inverso:

po@i |) = Nzi1s polae,t), Solwr, 1)), (2.16)

dove py ¢ la media predetta dalla rete neurale, mentre la varianza 3y viene spesso

fissata (tipicamente (3;I), cosi che la rete non debba predirla.

Loss function di partenza. IL’obiettivo teorico ¢ massimizzare la log-likelihood:

L = —logpy(x). (2.17)

21

Tuttavia, questa quantita e difficile da calcolare esattamente, poiché dipende da tutti

i passi t. Per questo motivo si introduce il Variational Lower Bound (VLB):

—logpe(zo) < —logpy(zo) + DKL(Q(%;T | 20) || po (@17 | 370))7 (2.18)

dove il termine di Kullback—Leibler misura la somiglianza tra la distribuzione di

forward g e quella generata dal modello nel reverse py.
Riformulazione. Usando la definizione di KL:
q
DKL(Q | p) =E, [log p] ; (2.19)

e applicando il teorema di Bayes per decomporre le probabilita condizionate, si

ottiene:
~log po(xo) < log 1121 70) (2.20)
po(Tor)
T T
q(zi1 | w4, 70) q(wy | wo)
= —logpg(2r) +)_log +3 log —— 0 (2.21)
258 ot o)+ 2 aloa T 20)
La seconda sommatoria puo essere semplificata:
T
3" log gz [20) _), a@r | 20)
= a1 | @o) q(z1 | o)
portando il bound nella forma:
T
q(z-1 | ¢, 20) q(@r | 20)
—logpg(xr) +) log + log . 2.22
oler) t:zz po(xi—1 |) q(z1 | o) ()

Riconoscendo nuovamente le definizioni di KL, si ottiene:

T

Lvie = DKL(C](xT | o) || pe(iET))+Z DKL(Q(I‘t—l | @1, 20) || po(i-1 | ﬁt))—logpo(ﬂﬁo |
t=2

(2.23)

Osservazioni pratiche. Dal punto di vista applicativo, il primo termine di KL
della Equation (2.23) risulta poco rilevante durante ’addestramento. Infatti, la
distribuzione g(x7 | x¢) non dipende da parametri da ottimizzare ed ¢ completamente
determinata dal processo di diffusione che abbiamo definito a priori; inoltre, il modello
pe(x7) coincide con un rumore gaussiano isotropo, cioé¢ una distribuzione normale in

cui la varianza ¢ la stessa in tutte le direzioni e non privilegia alcun asse dello spazio

22

1'1).

latente. In altre parole, non vi & alcun guadagno reale nell’ottimizzare questo termine.

Un discorso analogo vale per I'ultimo termine, — logpg(zg | 1), che si riferisce al

passo finale di ricostruzione diretta dal primo stato rumoroso. Nella pratica questo

contributo viene spesso trascurato o trattato separatamente, poiché il suo impatto

sull’ottimizzazione complessiva ¢ marginale e non influisce in maniera significativa

sulla capacita del modello di apprendere il processo di denoising lungo gli altri passi

della catena.

Espressioni di ¢ e py
Sappiamo che:

po(ioy | w0) = Mzio1; po(ae,t), Bi),
q(zi1 | w4, m0) = N(It—l; fis (¢, o), Bt1>,

dove:

fir(we, wo) = —a —a %
N
B = = By
].—Oét

Dalla definizione del forward:

xt:\/@t$0+ \/1—6[155,

ricaviamo:
1

Qy

(2~ VI=are).

g =

Sostituendo in ji; e semplificando:

ﬂt(l’t?-’ﬂo) = ! (xt - ﬁt€> .

Loss per passo

La KL gaussiana fra q e pg porta a:

1

bl = 27 17 (e, w0) — po s,)|

23

(2.26)

(2.27)

(2.28)

(2.29)

Parametrizzando la media del reverse in funzione del rumore predetto:

1o (e,) = \/107t (xt - \/15%% gg(xt,t)> | (2.30)

la loss diventa:)

b= —— e — eplzy, 1)) (2.31)

" 207 a (1 — ay)

Forma “simple” finale. Tralasciando costanti e pesi, la loss usata in pratica é:

Laimple = Bt zo.c “e — eo(Vamo + VI —are, t) HQ] , (2.32)

dove € ~ N(0,1I) e t & campionato uniformemente da {1,...,T}.

Regola di campionamento nel reverse e procedure operative. Una volta
addestrato il modello, la generazione avviene applicando ricorsivamente la regola di

aggiornamento:

Tiq = \/1&_]5 <xt — \/lﬁ%&t 59(@,75)) + 042, (2.33)

dove z ~N(0,I)set >1ez=0set =1 Quio; ¢ tipicamente scelto come +/[3;

per rispettare la varianza del processo inverso.

2.4 Training e Sampling nei DDPM

Il funzionamento dei DDPM puo essere sintetizzato in due procedure principali:

o Training, durante il quale la rete neurale impara a predire il rumore ¢ iniettato
nei dati a diversi livelli di rumore;
o Sampling, che consiste nel partire da rumore puro e applicare il processo

inverso per generare campioni realistici.

24

2.4.1 Procedura di Training

Algorithm 1 Training di un DDPM

1: repeat

2 xo ~ q(xp) > Campione reale dal dataset
3: t ~ Uniform({1,...,7}) > Scelta casuale del timestep
4 e~ N(0,1) > Rumore gaussiano standard
5 Aggiorna 6 minimizzando:

H&? — 59(\/64_tx0 +V1—aqe, t) H2

6: until convergenza

Durante ’addestramento:
1. Si campiona un’immagine reale xg.
2. Si sceglie un timestep ¢ casuale.
3. Si aggiunge rumore per ottenere x;.
4. La rete g4 predice il rumore €.

5. Si minimizza I’'MSE tra rumore vero e predetto.

2.4.2 Procedura di Sampling

Algorithm 2 Sampling da un DDPM
1. xp ~ N(O, I)
2: fort=1T,...,1do
3: if £t > 1 then

4 2z~ N(0,1)

5 else

6: z=0

7 end if

8: Ty = \/%7 (mt — \}%Eg(xt,t)) + 042
9: end for

10: return x,

Durante il sampling;:

1. Si parte da un rumore puro z.

25

2. Ad ogni passo, la rete predice il rumore in x;.

3. Si rimuove il rumore e si aggiunge rumore stocastico z (tranne all’ultimo passo).

4. Dopo T passi si ottiene x.

2.5 Architettura del modello nei DDPM

In questa sezione descriviamo in dettaglio la struttura della UNet utilizzata nei
modelli di diffusione e il meccanismo di time embedding, evidenziando come
quest’ultimo venga integrato all’interno dell’architettura per condizionare ogni passo

del processo di denoising.

2.5.1 Architettura UNet

La UNet nei modelli di diffusione & una rete convoluzionale encoder—decoder carat-
terizzata da skip connections tra i livelli di pari risoluzione. Questa architettura
permette di combinare il contesto globale, ottenuto riducendo progressivamente la
risoluzione delle feature map, con i dettagli locali, preservati e recuperati grazie ai

collegamenti diretti tra encoder e decoder.

L’encoder, che segue un percorso di downsampling, riduce la risoluzione spaziale
aumentando al contempo il numero di canali per estrarre caratteristiche sempre piu
astratte. Il bottleneck, ovvero il punto in cui la risoluzione € minima e il campo
recettivo massimo, ¢ spesso integrato con moduli di attenzione per catturare relazioni
a lungo raggio tra le feature. Infine, il decoder, che segue il percorso di upsam-
pling, ricostruisce la risoluzione originale combinando le informazioni provenienti

dall’encoder tramite i collegamenti di skip connection.

26

2
2

Input
image

N Output
map

-

[}

~
%
220x300 ¥ -

572x 572
570 x 570
568 x 568

®m) Conv 3x3, ReLU
=) Copy and crop
', Max pool 2x2
‘!‘ Up-Conv 2x2
= Conv 1x1

Figura 2.11: Architettura UNet classica con percorso encoder—decoder e connessioni
skip. La riduzione della risoluzione avviene nel percorso di codifica tramite operazioni
di downsampling, mentre il recupero della risoluzione originale ¢ effettuato nel
percorso di decodifica tramite upsampling.

Skip connections Le connessioni skip mettono in comunicazione i livelli dell’enco-
der e del decoder alla stessa risoluzione spaziale. Il loro scopo € preservare e trasferire
informazioni locali ad alta frequenza, che andrebbero altrimenti perse nei passaggi
di downsampling. In fase di ricostruzione, queste feature vengono concatenate alle
mappe del decoder, consentendo di combinare dettagli strutturali con rappresen-
tazioni semantiche piu astratte. Questo meccanismo € cruciale per la qualita delle
ricostruzioni nei modelli di diffusione, poiché permette di mantenere coerenza spaziale

e nitidezza anche dopo molti strati convoluzionali.

Downsampling block

Ogni blocco di downsampling ha il compito di ridurre progressivamente la risoluzione
spaziale delle feature map, aumentando al contempo la profondita e I'astrazione delle
rappresentazioni. Il processo inizia con una serie di convoluzioni 3 x 3 seguite da
funzioni di attivazione non lineari, come ReLLU o sue varianti, che permettono di
catturare pattern complessi nei dati.

Per garantire stabilita numerica e favorire la convergenza, le convoluzioni vengono

accompagnate da meccanismi di normalizzazione, tipicamente la Group Normalization.

27

La riduzione della dimensione spaziale ¢ realizzata tramite convoluzioni con stride pari
a 2 o, in alternativa, operazioni di pooling, consentendo di comprimere gradualmente
I'informazione e ampliare il campo recettivo della rete.

All’interno di questi blocchi sono spesso presenti anche residual connections, che
facilitano il flusso del gradiente durante I’addestramento e permettono di preservare
I'informazione utile evitando la degradazione delle feature. Infine, viene integrato il
contributo del time embedding, proiettato sui canali della feature map: in questo
modo, la rete incorpora in maniera esplicita la consapevolezza del passo temporale t,

condizionando le rappresentazioni intermedie al contesto del processo di denoising.

Upsampling block

Ogni blocco di upsampling ha l'obiettivo di ricostruire progressivamente la risoluzione
originale dell’input, integrando al tempo stesso i dettagli provenienti dall’encoder.
La prima operazione consiste nell’aumentare la risoluzione spaziale, tipicamente
tramite convoluzioni trasposte oppure con uno schema di interpolazione seguita da
convoluzione, cosi da recuperare gradualmente la dimensione originaria dei dati senza
compromettere la coerenza locale.

Successivamente, le feature map ottenute vengono arricchite concatenandole con
quelle corrispondenti del percorso di codifica attraverso le skip connections. Questo
passaggio e cruciale poiché consente al decoder di riutilizzare i dettagli locali che
sarebbero andati persi nella fase di compressione, evitando che la ricostruzione si
basi esclusivamente su rappresentazioni troppo astratte.

Le mappe combinate vengono quindi sottoposte ad un processo di affinamento,
che include convoluzioni 3 x 3, funzioni di attivazione non lineari e meccanismi di
normalizzazione. In questo modo, I'informazione globale e i dettagli locali vengono
integrati in maniera armonica, producendo rappresentazioni stabili e coerenti.

Infine, anche nei blocchi di upsampling viene iniettato il contributo del time

embedding.

Bottleneck e attenzione

Il bottleneck rappresenta il punto di minima risoluzione della rete, in cui le feature
map hanno una dimensione spaziale ridotta ma un numero elevato di canali. In questa
fase la rappresentazione ¢ altamente compressa e astratta, e il campo recettivo della
rete ¢ al massimo. Per arricchire ulteriormente I'informazione, ¢ comune introdurre

meccanismi di self-attention o di multi-head attention.

28

Questi moduli consentono di modellare in maniera esplicita le dipendenze a lungo
raggio tra regioni anche molto distanti dell'immagine, superando i limiti locali delle
convoluzioni. In tal modo la rete integra un contesto globale che si rivela cruciale
nella successiva fase di ricostruzione, permettendo al decoder di generare output piu

coerenti e consistenti dal punto di vista semantico.

2.5.2 Time embedding e iniezione nella UNet

Nei modelli di diffusione, il passo temporale ¢ indica il livello di rumore nell’input
xs. 11 time embedding fornisce alla rete un’informazione esplicita su questo livello,

permettendo di modulare il comportamento di ogni blocco.

2.5.3 Codifica sinusoidale

Il passo t viene codificato come:

. t t
TE(t)Qk = Ssln (W) 5 TE(t)2k+1 — COS (mo()ozk/d) s (234)

dove d indica la dimensione dell’embedding.

Proiezione e iniezione

L’informazione temporale, inizialmente rappresentata tramite un embedding sinusoi-
dale, viene trasformata attraverso uno o piu strati fully-connected, spesso intervallati
da funzioni di attivazione non lineari che ne arricchiscono la capacita rappresentativa.
La proiezione cosi ottenuta viene poi rimodellata e aggiunta, tramite una somma con
broadcast, ai canali delle feature map all’interno di ciascun residual block. In questo
modo il contributo del time embedding si integra direttamente con le rappresentazioni
intermedie della rete. L’iniezione dell’informazione temporale non e confinata a una
singola parte della rete, ma viene applicata in maniera coerente sia nei blocchi di
downsampling che in quelli di upsampling. Cio assicura che la consapevolezza del
passo temporale influenzi 'intero processo di denoising, guidando la rete a generare

aggiornamenti consistenti lungo tutta la catena di trasformazioni.

29

Res. block X + > Concatenate

Res. block

self-attention

Concatenate

Concatenate

a0 Concatenate

///////////////

time embedding

Figura 2.12: Architettura UNet adattata ai modelli di diffusione, con iniezione
del time embedding in ciascun blocco e moduli di self-attention inseriti nei livelli a
risoluzione intermedia e bassa.

Ruolo del time embedding

Il time embedding svolge un ruolo fondamentale nei modelli di diffusione. Nei primi
passi (valori bassi di t, con rumore ridotto), il time embedding guida la rete a
preservare i dettagli locali. Nei passi successivi (valori alti di t, con rumore piu
elevato), orienta la rete verso il recupero di strutture globali. Permette di usare un
unico modello per tutti i timestep, evitando di addestrare reti distinte per ciascun

valore di t.

Sintesi del flusso dati

Il flusso dati nel modello segue un percorso ben definito. L’input x; attraversa il
percorso dell’encoder, dove subisce una serie di convoluzioni e riduzioni di risoluzione.
Allo stesso tempo, il time embedding, calcolato a partire dal passo temporale ¢, viene
iniettato in ogni blocco della rete. Nel bottleneck, la rete utilizza moduli di attenzione
per integrare il contesto globale, catturando relazioni a lungo raggio tra le feature.
Nel decoder, le feature vengono upsampled e fuse con le corrispondenti informazioni
provenienti dall’encoder, per ricostruire 'immagine. Alla fine, la rete restituisce

eo(xy, 1), che rappresenta una stima del rumore presente nell’input x;.

2.6 Classifier-Free Guidance

Un aspetto fondamentale dei modelli di diffusione & la possibilita di introdurre un
meccanismo di guidance, ossia un sistema che orienti la generazione verso campioni

coerenti con un vincolo o una condizione esterna. Questo principio puo essere

30

interpretato matematicamente come l'introduzione di un campo esterno, in grado
di modificare la traiettoria media del reverse process senza alterarne l'incertezza

intrinseca [12].

2.6.1 Posteriori come campi esterni

Moltiplicare la distribuzione generativa p(z(?)) per una funzione r(z(?)) (ad esempio
una likelihood che codifica un vincolo o un’evidenza osservata) equivale a favorire i
campioni compatibili con . Dal punto di vista del reverse process, questo effetto si
traduce in una forza esterna che devia la dinamica di denoising verso regioni dello
spazio che rispettano il vincolo imposto.

Nel caso di transizioni gaussiane, la struttura della distribuzione rimane semplice.
La covarianza fsx (2, t) resta invariata, il che implica che il livello di incertezza
del passo inverso non subisce modifiche. Al contrario, la media f,(z"),t) viene
traslata di una quantita proporzionale al gradiente V log T(x(o)), che agisce come una
forza orientante, guidando la ricostruzione verso una versione piu precisa dell’input
originale.

Formalmente:
P | 20) ~ N2 £, 0) + fola®,0) Vogr, f(e®,1)).

Questa interpretazione fornisce una cornice unificata per comprendere tecniche
come il denoising (dove r penalizza configurazioni rumorose), l'inpainting (dove r
vincola solo le regioni osservate) e il guidance condizionato, in cui r rappresenta la

coerenza con una condizione esterna (es. testo o etichetta di classe).

2.6.2 Dal classifier guidance al classifier-free guidance

Un primo approccio al guidance consiste nell’aggiungere al modello di diffusione
un classificatore esterno, capace di fornire un gradiente Vlogp(c | =) che spinga
le traiettorie verso campioni compatibili con la classe desiderata. Questo metodo
incrementa la qualita visiva ma richiede 'addestramento di un modello separato e
presenta limiti di stabilita.

Il classifier-free guidance (CFQG) supera queste difficolta evitando completa-
mente il classificatore. L’idea & di addestrare un’unica rete neurale sia in modalita
condizionata che non condizionata: durante il training, con probabilita punconq Si Ti-
muove il condizionamento (impostando ¢ = (}), cosi che il modello apprenda entrambe

le situazioni.

31

2.6.3 Formula di combinazione

In fase di campionamento, il modello produce due predizioni distinte. La prima,
ea(2, ¢), rappresenta lo score condizionato da una certa informazione ¢ (ad esempio,
una classe o un prompt testuale). La seconda, 4(z),), € lo score non condizionato,
che riflette la dinamica "pura" del processo di diffusione senza alcun vincolo esterno.

Lo score guidato si ottiene combinando linearmente i due contributi:
Eo(zx,¢) = (14+w)eg(zn,) — wep(zy),

dove w > 0 € un iperparametro di controllo.

Dal punto di vista intuitivo, per w = 0 si ottiene semplicemente il modello
condizionato standard. Aumentando w, la differenza tra lo score condizionato
e quello non condizionato viene amplificata, spingendo il modello con maggiore
decisione verso campioni che siano coerenti con la condizione c¢. Valori molto alti di
w portano a immagini che sono visivamente molto fedeli al prompt o alla condizione,
ma a scapito della diversita, poiché i campioni tendono a diventare simili fra loro.

In sintesi, il parametro w introduce un trade-off controllabile tra diversita e fedelta
condizionata: valori bassi privilegiano una copertura piu ampia della distribuzione dei
dati, mentre valori elevati enfatizzano la coerenza con il condizionamento a scapito

della varieta.

2.6.4 Interpretazione e risultati

I1 CFG puo essere interpretato come un’applicazione pratica del concetto di campo
esterno: la componente non condizionata agisce come termine “repulsivo”, mentre
la componente condizionata spinge il campione verso la distribuzione desiderata.
L’effetto complessivo € un bilanciamento tra fedelta e diversita. In particolare, valori
bassi di w privilegiano la diversita, mentre valori alti di w favoriscono la fedelta
percettiva. Questa semplice procedura ha reso il CFG una componente essenziale
nei moderni modelli di diffusione condizionati, consentendo di ottenere risultati di

alta qualita senza necessita di classificatori esterni.

32

Capitolo 3

Variational Autoencoder (VAE)

3.1 Introduzione e principi generali

I Variational Autoencoder (VAE) rappresentano una classe di modelli generativi
basati sull’inferenza variazionale. L’idea di fondo ¢ estendere la struttura classica
degli autoencoder introducendo una formulazione probabilistica, cosi da permettere
non solo la ricostruzione dei dati in ingresso, ma anche la generazione di nuovi

campioni da una distribuzione latente appresa.

A differenza di un autoencoder standard, in cui ’encoder mappa il dato osservato
in un codice latente deterministico, nel VAE ’encoder definisce una distribuzione ap-
prossimata gs(z|z) nello spazio latente. L’obiettivo ¢ avvicinare questa distribuzione
posteriori al vero py(z|x), generalmente intrattabile, tramite il principio dell’evidence
lower bound (ELBO). Il decoder, a sua volta, genera campioni nello spazio osservabile

tramite la distribuzione pg(z|2).

Il vantaggio principale di questa formulazione ¢ che lo spazio latente non funge
piu da semplice contenitore compressivo, ma acquisisce una struttura probabilistica
capace di riflettere i fattori generativi sottostanti ai dati. In tale prospettiva, i
VAE consentono di campionare nuovi dati realistici a partire da variabili latenti
z ~ p(z) e, al contempo, di apprendere rappresentazioni latenti interpretabili che,
in alcune varianti, risultano anche disentangled, ossia sensibili a singoli fattori di
variazione indipendenti. Inoltre, I’addestramento si mantiene stabile e scalabile grazie
all'impiego del reparameterization trick e di obiettivi basati sulla likelihood, rendendo

i VAE modelli versatili e solidi per la generazione e I'analisi dei dati [13], [14].

33

3.2 Formulazione probabilistica e reparameteriza-

tion trick

Il Variational Autoencoder ¢ un modello generativo che assume 1'esistenza di variabili
latenti non osservabili z, dalle quali i dati osservati x vengono generati secondo una
distribuzione condizionata py(x|z). La formulazione probabilistica completa ¢ data
da:

po(z, 2) = pa(z|2) p(2), (3.1)

dove p(z) ¢ la distribuzione prior sullo spazio latente, tipicamente scelta come N(0, I)

per ragioni di semplicita e regolarizzazione.

L’obiettivo e stimare la distribuzione marginale dei dati:

po(z) = /pg(:z:\z)p(z) dz, (3.2)

ma questa integrazione risulta in generale intrattabile, soprattutto a causa dell’alta
dimensionalita dello spazio latente. Per ovviare a questo problema, si introduce
una distribuzione variazionale q,(z|z) che approssima il vero posteriore py(z|z).
L’addestramento del VAE consiste dunque nel massimizzare la log-likelihood dei dati
tramite il bound variazionale (Evidence Lower Bound, ELBO), che verra approfondito

nella sezione successiva.

Sampling e difficolta di backpropagation

Generare nuovi campioni dal modello prevede di estrarre prima un vettore latente
z ~ ¢y(z]7) e quindi passare a un dato = ~ pg(x|z). Tuttavia, se z viene campionato
in modo stocastico, il gradiente della loss rispetto ai parametri ¢ dell’encoder non
puo essere calcolato in maniera diretta, impedendo ’applicazione standard della

backpropagation.

Reparameterization trick

Per risolvere questa problematica, si utilizza il reparameterization trick. L’idea e
di esprimere il campione latente z come trasformazione deterministica di una variabile

aleatoria ¢ indipendente:

2= pg(x) + 04(x) O, e~N(0,1), (3.3)

34

dove piy(z) € o4(z) sono le uscite dell’encoder e ® indica il prodotto elemento per
elemento. In questo modo, la stocasticita viene confinata in ¢, che non dipende
dai parametri del modello, mentre la mappatura ps(x), o,(z) resta differenziabile
rispetto a ¢.

Questo trucco consente di applicare la backpropagation attraverso il campiona-
mento, rendendo I'addestramento del VAE stabile ed efficiente. Inoltre, la parame-
trizzazione gaussiana dello spazio latente consente al modello di generare campioni

continui e di interpolare agevolmente tra punti diversi nello spazio latente.

Reconstructed
Input «-------ooocoooeo e Ideally they are identical. ~ ---------------------- - .
, input
X X
Probabilistic Encoder
g (2[x)
Mean Sampled
I latent vector
Probabilistic
X - - . . Decoder xl
po(x|z)

o
Std. dev
. An compressed low dimensional
Z=p+o0e representation of the input.
e~N(0,I)

Figura 3.1: Schema del Variational Autoencoder (VAE). L’encoder probabilistico
¢s(2|x) mappa l'input = in una distribuzione gaussiana parametrizzata da media y e
deviazione standard o. Il reparameterization trick permette di campionare il vettore
latente 2 = u+ 0 @ e con € ~ N (0,), garantendo la differenziabilita del processo. Il
decoder py(x|z) ricostruisce I'input 2/, che idealmente approssima 'input originale x.

3.3 Evidence Lower Bound (ELBO)

3.3.1 Derivazione matematica

L’obiettivo di un VAE ¢ massimizzare la log-likelihood dei dati osservati x rispetto

ai parametri 6 del modello generativo:

log po() = log [pa(a | 2)p(2) dz. (3.4)

Tuttavia, l'integrale sullo spazio latente z ¢ in generale intrattabile, poiché lo spazio
puo avere dimensionalita elevata e la funzione integranda non ¢ nota in forma chiusa.
Per superare questo problema si introduce una distribuzione variazionale g4(z |),

che approssima il vero posteriore py(z |). Questa scelta permette di riscrivere la

35

log-likelihood come:

pola | 2p(z)

log po(w) = log [as(z | 2) o " (3.5)
. po(z | 2)p(2)
= log Eq¢(z|m)[Q¢(Z ‘ x)] . (3.6)

Applicando la disuguaglianza di Jensen, che per una funzione convessa f e

una variabile aleatoria X vale:

H(EX]) < E[f(X)].

E considerando che il logaritmo ¢ concavo (quindi la disuguaglianza si inverte),si
ottiene:
log E[X] > E[log X].

Applicando questo principio all’espressione precedente si ricava un limite inferiore

(lower bound) della log-likelihood:

po(z | 2)19(2)] ‘ (3.7)

logpg(x) 2 E z|lz [log
40 (2|z) q¢(z | :E)

Separando i termini si arriva alla forma canonica della Evidence Lower Bound
(ELBO):

log pp(x) > By, efa) | log po(x | 2)] — Dxcu(a0(2 | 2) | p(2)) (3.8)
= EELBO(Qa gb; I) (39)

La ELBO massimizza contemporaneamente due obiettivi:
e Accuratezza di ricostruzione
Eqy (o4 | l0g pa(x | 7))

che misura quanto bene il decoder py(z | 2) riesce a ricostruire i dati.

« Regolarizzazione del latente

—DKL(%(Z |) Hp(Z)),

che penalizza le deviazioni tra il posteriore approssimato e il prior scelto p(z)

(tipicamente N(0, I)).

36

Figura 3.2: Effetto dei due termini della ELBO. A sinistra, con sola ricostruzione,
lo spazio latente collassa in regioni disordinate e non regolarizzate. Al centro, con
solo termine di regolarizzazione KL, i punti si dispongono secondo il prior ma
senza struttura utile. A destra, la combinazione dei due termini produce uno spazio
latente organizzato, in cui le classi sono separabili e coerenti con il prior.

3.3.2 Interpretazione pratica

Dal punto di vista operativo, la ELBO puo essere interpretata come il risultato di un
compromesso tra due esigenze contrastanti. Da un lato, il termine di ricostruzione
assicura che 'autoencoder probabilistico mantenga I'informazione rilevante: dato
un campione z, il decoder deve essere in grado di riprodurlo fedelmente a partire
dalla corrispondente variabile latente z. Dall’altro, il termine di regolarizzazione,
rappresentato dalla divergenza di Kullback—Leibler, forza la distribuzione latente
¢s(z |) ad avvicinarsi al prior N'(0,). Questa spinta regolarizzante garantisce che
lo spazio latente sia continuo, ben organizzato e adatto al campionamento di nuovi

dati plausibili.

Se il termine di ricostruzione prevale eccessivamente, il modello rischia di adattarsi
troppo ai dati di addestramento, arrivando a memorizzarli e producendo cosi uno
spazio latente poco strutturato e irregolare. Al contrario, se domina il termine di re-
golarizzazione, lo spazio latente risulta ben organizzato e regolare, ma le ricostruzioni
perdono fedelta e dettaglio rispetto ai dati originali. Solo bilanciando correttamente
queste due componenti si ottiene un modello capace, al tempo stesso, di ricostruire

con buona qualita e di generare campioni nuovi e coerenti.

La ELBO rappresenta dunque non soltanto il criterio di addestramento del
VAE, ma anche il principio che gli consente di unire capacita ricostruttiva e potere

generativo in un unico quadro probabilistico.

37

3.4 Architettura del modello

Un Variational Autoencoder (VAE) ¢ costituito da due componenti principali:

 un encoder probabilistico ¢,(z|x), che mappa un input x in una distribuzione
latente gaussiana parametrizzata da media p(z) e varianza o} (x);
« un decoder generativo py(z|z), che a partire da un campione z dallo spazio

latente ricostruisce i dati nello spazio osservabile.

L’insieme encoder—decoder realizza una compressione e successiva ricostruzione dei

dati, dove lo spazio latente ha una struttura probabilistica regolarizzata dal prior

p(2).

Encoder

L’encoder riduce progressivamente la dimensionalita dell’input tramite una sequenza
di trasformazioni convoluzionali. Tipicamente, blocchi di convoluzioni sono arricchiti
con normalizzazioni (ad esempio Group Normalization) e funzioni di attivazione non
lineari (SiLU, ReLU o GELU). Per migliorare la stabilita dell’addestramento e la
capacita di rappresentazione, si utilizzano spesso blocchi residuali, che aiutano a
mantenere il flusso del gradiente nelle reti profonde. A risoluzioni intermedie possono
essere inseriti meccanismi di attenzione, utili a cogliere dipendenze a lungo raggio e
relazioni globali tra le feature estratte. Inoltre, lo schema prevede un downsampling
gerarchico, realizzato tramite convoluzioni con stride o operazioni di pooling, che
riducono progressivamente la risoluzione spaziale mentre aumentano la profondita
delle feature.

Alla fine della catena di trasformazioni, I’encoder produce due mappe distinte,

w(z) e loga?(z), che definiscono i parametri della distribuzione latente gaussiana

9o (2]).

Decoder

Il decoder opera in direzione opposta: a partire dal campione latente z, proietta
I'informazione verso lo spazio dei dati originali. La ricostruzione segue uno schema
gerarchico di upsampling, in cui la risoluzione viene gradualmente aumentata
tramite interpolazioni seguite da convoluzioni, oppure mediante convoluzioni trasposte
con stride. Analogamente all’encoder, i blocchi di ricostruzione possono includere
residual blocks, che stabilizzano il processo di generazione, e moduli di attenzione, che
migliorano la coerenza semantica dell’immagine prodotta. Inoltre, I'uso di tecniche

come la normalizzazione e il dropout regolarizza ’apprendimento. Il decoder termina

38

con una convoluzione finale che restituisce un output nello spazio dei dati originali,

ad esempio un’immagine con lo stesso numero di canali dell’input.

Schema complessivo

L’architettura complessiva del VAE realizza dunque una mappatura x — (u(z), o%(z)) —

z +— I, dove:

z=p(x)+o(z) O, e~ N(0,1). (3.10)

Il reparameterization trick garantisce la differenziabilita del passaggio stocastico, con-

sentendo di addestrare congiuntamente encoder e decoder tramite backpropagation.

Prior distribution: pe(z)

z-space
L
Encoder: qq(z|x) Decoder: pe(x|z)
A
x-space

Dataset: D

Figura 3.3: Schema concettuale di un VAE: I'encoder gy4(z|x) proietta i dati nello
spazio latente regolarizzato dal prior p(z), mentre il decoder py(x|z) ricostruisce
I'input.

Dal punto di vista architetturale, ’adozione di blocchi residuali e meccanismi
di attenzione si ¢ affermato come pratica consolidata per migliorare sia la stabilita
dell’ottimizzazione sia la qualita dei campioni generati. Queste soluzioni aiutano a
bilanciare efficacemente la capacita rappresentativa del modello con la sua scalabilita,
rendendo i VAE componenti fondamentali all’interno di modelli generativi piu

complessi, come ad esempio i modelli di diffusione condizionati su spazi latenti.

39

3.5 Pseudocodice di training e sampling

Per completezza, si riportano di seguito gli pseudocodici che descrivono in forma
operativa le due fasi fondamentali di un Variational Autoencoder (VAE). I
primo algoritmo illustra il procedimento di training, basato sulla minimizzazione
della ELBO mediante il reparameterization trick. Il secondo algoritmo mostra invece
la procedura di sampling, attraverso la quale & possibile generare nuovi dati a partire

dal prior latente e dal decoder.

Algorithm 3 Training di un VAE

1: repeat

2 x ~ q(z) > Campione reale dal dataset
3 Ottieni parametri latenti: pg(x), o4(x)

4: Campiona ¢ ~ N(0,1)

5 Reparameterization: z <— pg(x) + o4(x) @ €

6 Ricostruzione: & ~ py(z|z)

7 Calcola la loss ELBO:

L(2:0,0) = By, o [log po(2[2)] — Dxr(gs(2]7) || p(2))

8: Aggiorna i parametri 0, ¢ tramite backpropagation

9: until convergenza

Algorithm 4 Sampling da un VAE
1: Campiona z ~ p(z) = N(0,1)

2: Genera & ~ py(z|2)

3: return £ come nuovo campione generato

3.6 Limiti, varianti e confronto con i DDPM

3.6.1 Limiti principali

Nonostante la solidita della loro formulazione matematica, i VAE presentano alcune
limitazioni nella pratica. Tra queste, le ricostruzioni tendono a risultare sfocate,
soprattutto con immagini complesse, a causa dell’assunzione di una distribuzione
gaussiana semplice nello spazio latente. Inoltre, in certi casi si verifica il posterior
collapse, ovvero il decoder tende a ignorare la variabile latente z, trasformando di

fatto il modello in un autoencoder deterministico. Infine, I'uso di un prior semplice e

40

isotropico, come la distribuzione normale standard N(0,I), puo limitare la capacita

del modello di rappresentare strutture latenti pit complesse e articolate.

3.6.2 Varianti

Per superare i limiti dei VAE classici sono state sviluppate diverse varianti, ognuna
pensata per risolvere specifici problemi. Tra queste, la f-VAE modifica la funzione
obiettivo introducendo un fattore 5 che moltiplica il termine della divergenza di
Kullback-Leibler. Quando 5 ¢ maggiore di 1, la regolarizzazione sullo spazio latente
diventa piu severa, spingendo la distribuzione latente ad aderire meglio al prior e
favorendo una separazione piu netta dei fattori latenti, ovvero una disentanglement
che rende le variabili piu interpretabili e indipendenti. Va pero considerato che questo
miglioramento a livello di disentanglement porta spesso a ricostruzioni meno precise,

meno fedeli ai dati originali.

Un altro approccio ¢ rappresentato dal VQ-VAE (Vector Quantized VAE),
che sostituisce lo spazio latente continuo con uno discreto, ottenuto tramite una
tecnica di quantizzazione vettoriale. In questo modo, i codici latenti sono mappati
su un dizionario finito di embedding discreti. Questa strategia risolve il problema
della sovra-regolarizzazione gaussiana, migliora la nitidezza delle immagini generate
e permette di combinare la compressione con modelli sequenziali potenti, come i

Transformer o i modelli di diffusione applicati allo spazio latente discreto.

Infine, le varianti gerarchiche come Hi-VAE estendono il modello introducendo
piu livelli latenti disposti in modo gerarchico. Ogni livello cattura diversi fattori
di variazione: quelli piu alti modellano aspetti globali e semantici, come la forma
complessiva di un oggetto, mentre i livelli piu bassi si occupano dei dettagli locali.
Questa struttura gerarchica consente di aumentare la capacita espressiva del modello

e di rappresentare distribuzioni latenti piu complesse e multimodali.

3.6.3 Confronto con i DDPM

I modelli di diffusione (Denoising Diffusion Probabilistic Models, DDPM) hanno
recentemente superato i VAE in termini di qualita visiva, grazie alla capacita di
modellare distribuzioni complesse senza assumere forme parametriche semplici per lo

spazio latente.

41

FNMNYANNVLGEQ o
AR dcvv N>t go

ANV oY N =0
— =N N Ly
ANy & D F o
—_ TNV H Y O
~0P v T2
—~ - ENaN

G 9
7 M
v O
G 9
S
/] 6
78
G/
2 |
35

(a) Campioni generati con un VAE: ri- (b) Campioni generati con un DDPM: le
costruzioni tendono ad essere sfocate e immagini risultano piu nitide e fedeli alla
meno realistiche. distribuzione dei dati.

Figura 3.4: Confronto qualitativo tra campioni generati da un VAE e da un DDPM.

I VAE restano comunque competitivi in scenari in cui efficienza e compattezza
della rappresentazione sono cruciali, mentre i DDPM eccellono nella generazione di
immagini ad alta fedelta, al costo di una maggiore complessita computazionale e

tempi di campionamento piu lunghi.

42

Capitolo 4

Diffuse-VAE

In questo capitolo viene presentato il DiffuseVAE, un modello ibrido che combina le
proprieta dei VAE e dei DDPM. Dopo aver introdotto le motivazioni che sorreggono la
sua definizione, ne verra descritto il funzionamento generale e le principali formulazioni
proposte in letteratura, con particolare attenzione alla Formulation 1, che costituisce
il nucleo dell'implementazione sviluppata in questa tesi. Verranno quindi illustrate
le scelte progettuali adottate, i vantaggi e le criticita del modello, per concludere con

una discussione dei limiti emersi e delle possibili estensioni future [15].

4.1 Introduzione

I Variational Autoencoder (VAE) e i Denoising Diffusion Probabilistic Models (DD-
PM) presentano punti di forza complementari: i primi offrono uno spazio latente
compatto e interpretabile, mentre i secondi garantiscono una qualita di campiona-
mento superiore. Tuttavia, i VAE tendono a produrre ricostruzioni poco nitide,
mentre i DDPM richiedono un numero elevato di passi di campionamento e non
dispongono di una rappresentazione latente esplicita.

Il DiffuseVAE nasce con l'obiettivo di combinare i vantaggi di entrambi: utiliz-
zare il VAE come meccanismo di codifica—decodifica che fornisce una ricostruzione
preliminare e uno spazio latente strutturato, delegando al DDPM il compito di affina-
re progressivamente i dettagli e migliorare la qualita visiva dei campioni generati. In
questo modo, il modello integra interpretabilita e compattezza con realismo e fedelta,
risultando particolarmente adatto come architettura generativa modulare e scalabile.

L’idea alla base di DiffuseVAE ¢ quella di combinare i due approcci in una

pipeline a due stadi:

1. uno stadio VAE che produce una ricostruzione preliminare dell’input;

43

2.

uno stadio DDPM che agisce come refiner, migliorando la qualita del campione

generato.

In questo modo, si ottiene un modello in grado di mantenere la struttura latente dei
VAE e, al contempo, la qualita visiva dei DDPM.

4.2

Funzionamento generale

Il funzionamento di DiffuseVAE puo essere riassunto in due fasi principali:

Stage 1 — VAE: dato un input xj, 'encoder produce i parametri della
distribuzione latente, u(z) e o(x), da cui si campiona un vettore z. Il decoder
genera quindi una ricostruzione £y = pp(z | 2). Questa ricostruzione funge da
bozza iniziale.

Stage 2 — DDPM: il modello di diffusione viene addestrato a partire da
rumore puro xp e procede attraverso il reverse process p(x;_1 | x4, £o). Qui, il
condizionamento avviene direttamente sulla ricostruzione del VAE, che guida

il denoising verso campioni piu realistici.

Iv 1\1') ‘-TUD
ﬁ e °
& |

|y o

Stage-1 VAE Training Stage-2 DDPM Training

Figura 4.1: Schema del DiffuseVAE: nello Stage 1 il VAE produce una ricostruzione
preliminare Z(; nello Stage 2 il DDPM utilizza tale ricostruzione come condiziona-
mento per affinare la generazione.

4.3 Formulazione 1

Nel paper originale vengono discusse diverse possibili formulazioni. Nella mia tesi ¢

stata implementata la Formulation 1, caratterizzata da due assunzioni principali:

1.

Forward process indipendente: le transizioni del processo forward non
dipendono dal codice latente z né dalla ricostruzione gy, bensi solo dall’input
originale:

Q(ILT ’ 27%) ~ Q($1;T | $0)‘

44

2. Reverse process condizionato: le transizioni inverse dipendono unicamente
dalla ricostruzione del VAE:

p(QUO:T \ 2) ~ p(CCo:T \ »’ffo)-

In questo modo, il ruolo del VAE ¢ quello di fornire una ricostruzione preliminare
Zo che il DDPM utilizza come condizionamento durante tutte le fasi del reverse
process. L’interpretazione intuitiva e che il VAE fornisce una bozza a bassa fedelta,
mentre il DDPM agisce come un raffinatore progressivo, correggendo i dettagli e

portando il campione verso una distribuzione ad alta qualita visiva.

4.4 Implementazione nella tesi

Nella mia implementazione ho seguito la Formulation 1, integrando un VAE
addestrato separatamente con un modello DDPM condizionato sulla sua ricostruzione.
In particolare:

« il VAE e stato addestrato in modo classico, producendo ricostruzioni Zy;

e il DDPM riceve in input lo stato rumoroso x; concatenato alla ricostruzione
To, cosl da imparare a predire la componente rumorosa e guidare il denoising
verso I'immagine pulita.

Questa scelta consente una chiara separazione tra la fase di rappresentazione
latente (affidata al VAE) e la fase di raffinamento ad alta qualita (affidata al DDPM),
ottenendo un modello pit modulare e scalabile rispetto ai VAE o DDPM puri. Un
ulteriore vantaggio di questa combinazione riguarda i costi computazionali: poiché
il VAE condensa 'informazione in uno spazio latente strutturato e produce gia una
ricostruzione coerente, il DDPM non deve apprendere da zero la distribuzione globale
dei dati, ma si concentra unicamente sul raffinamento dei dettagli locali. Questo
comporta un addestramento piu efficiente e una pipeline piu semplice da scalare a

dataset complessi.

4.5 Limiti e prospettive

Sebbene il DiffuseVAE rappresenti un passo significativo nella combinazione tra VAE
e DDPM, non e privo di alcune criticita. La qualita complessiva del modello dipende
fortemente dal VAE: se quest’ultimo produce ricostruzioni poco fedeli, il DDPM ¢ in
grado soltanto di attenuare parzialmente I'imprecisione, con un conseguente limite

sulla qualita finale dei campioni generati. Inoltre, il condizionamento imposto dal

45

VAE introduce un compromesso tra fedelta e diversita: da un lato la generazione
risulta piu stabile e coerente, dall’altro la varieta dei campioni tende a ridursi,
poiché il modello rimane vincolato alla bozza iniziale. A questo si aggiunge il costo
addestrativo piu elevato, dovuto alla natura a due stadi della pipeline, che richiede
prima il pre-addestramento del VAE e successivamente quello del DDPM. Infine,
la scalabilita a domini pitt complessi, come dati ad alta risoluzione o multimodali,
potrebbe richiedere architetture piu sofisticate, ad esempio varianti gerarchiche di
VAE o meccanismi di condizionamento avanzati.

Nonostante tali limitazioni, il DiffuseVAE si configura come un framework mo-
dulare e flessibile, che offre ampi margini di estensione. Tra le prospettive future
piu promettenti vi ¢ 'impiego di VAE piu espressivi, come i VQ-VAE o i 5-VAE, in
grado di fornire uno spazio latente meglio strutturato e piu ricco di informazione.
Un’altra direzione interessante e l'integrazione con tecniche di guidance condizionata,
ad esempio mediante testo o etichette di classe, cosi da ottenere generazioni pitt con-
trollabili e aderenti a vincoli esterni. Parallelamente, un obiettivo cruciale riguarda
la riduzione dei tempi di campionamento, perseguibile attraverso reverse process
accorciati, che permetterebbero di rendere la fase generativa molto piu rapida ed
efficiente.

In conclusione, il DiffuseVAE rappresenta un compromesso efficace tra efficienza
e qualita visiva, ponendosi come una base solida su cui costruire sviluppi futuri. La
sua natura modulare lo rende particolarmente adatto a essere adattato, potenziato e

ottimizzato in funzione delle esigenze applicative.

46

Capitolo 5
Implementazione

In questo capitolo vengono presentati i dettagli implementativi delle architetture e
dei modelli discussi nei capitoli precedenti. L’obiettivo non ¢ fornire un’esposizione
esaustiva del codice, ma mettere in evidenza le componenti essenziali come la struttura
della UNet, i meccanismi di scheduling del rumore, i metodi di training e sampling,

mostrando gli elementi chiave che collegano la teoria alla pratica.

5.1 DDPM e Diffuse-VAE

5.1.1 Architettura UNet

Timestep embedding. Il passo temporale ¢ viene codificato tramite un embedding
sinusoidale (Listing 5.1), che combina funzioni seno e coseno a frequenze diverse,
in modo simile al positional encoding dei Transformer. Il risultato e un vettore
denso di dimensione fissa che fornisce una rappresentazione continua e periodica del
tempo. Per aumentarne 'espressivita e adattarlo ai canali della rete, I'embedding
viene ulteriormente elaborato da un multilayer perceptron (self.t_proj), composto
da due trasformazioni lineari intervallate da un’attivazione SiLU. La funzione di

attivazione SiLU (Sigmoid Linear Unit) ¢ definita come

T

dove o(z) & la funzione sigmoid standard. Questa scelta introduce non linearita e
modulazione proporzionale all’input, migliorando la capacita della rete di modellare
relazioni complesse. In questo modo, '’embedding temporale puo essere iniettato nei
blocchi della U-Net, permettendo alla rete di modulare dinamicamente il processo di

denoising in funzione del timestep.

47

def timestep_embedding(timesteps: torch.Tensor, dim: int, max_period:
int = 10000):
assert dim % 2 ==
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(0, half,
device=timesteps.device, dtype=timesteps.dtype) / half)
args = timesteps[:, None] * freqs[None, :]
return torch.cat([torch.cos(args), torch.sin(args)], dim=-1) #
[B, dim]

self.t_proj = nn.Sequential(
nn.Linear(self.t_emb _dim, self.t_emb _dim), nn.SiLU(Q),

nn.Linear(self.t_emb_dim, self.t_emb_dim)

Listing 5.1: Embedding temporale sinusoidale e proiezione MLP

Downsampling: residual + time injection 4 attention. I blocchi di downsam-
pling hanno il compito di ridurre progressivamente la risoluzione spaziale delle feature
map, aumentando al tempo stesso la profondita del tensore e quindi la capacita
rappresentativa della rete. Ogni blocco ¢ costituito da due percorsi principali: il
primo ¢ un residual path, che applica convoluzioni 3 x 3 seguite da normalizzazione
e attivazioni non lineari (SiLU); a questo viene aggiunto un collegamento residuo
che preserva l'informazione di partenza e facilita la propagazione del gradiente. Il
secondo contributo deriva dal time embedding, che viene proiettato in un vettore
della stessa dimensionalita dei canali e iniettato additivamente nelle feature map.
In questo modo, la rappresentazione rimane esplicitamente condizionata al passo
temporale t del processo di diffusione.

Infine, all’interno di ciascun blocco viene integrato un modulo di multi-head at-
tention, applicato sulle feature spazialmente appiattite: questa operazione consente
di modellare dipendenze a lungo raggio tra diverse regioni dell'immagine, arricchendo
la rappresentazione con un contesto globale che andrebbe altrimenti perso con sole
convoluzioni locali. Dopo queste trasformazioni, una convoluzione con stride 2 (o
un’operazione equivalente di pooling) effettua la riduzione di risoluzione vera e
propria, comprimendo l'informazione spaziale e permettendo alla rete di ampliare
progressivamente il proprio campo recettivo.

Il risultato € un blocco che non solo riduce dimensionalita e complessita spaziale,
ma che integra dettagli locali, consapevolezza temporale e relazioni globali, fornendo

feature profonde e strutturate utili per la fase di ricostruzione.

48

class DownBlock(nn.Module):
def __init__(self, in_channels, out_channels, t_emb_dim,

down_sample=True, num_heads=4, num_layers=1):

self.resnet_conv_first = nn.Sequential(
nn.GroupNorm(8, in_channels),
nn.SiLU(Q),
nn.Conv2d(in_channels, out_channels, kernel_size=3,
padding=1)
)
self.t_emb_layer = nn.Linear(t_emb_dim, out_channels)
self.attention = nn.MultiheadAttention(out_channels,
num_heads, batch_first=True)
self.down_sample_conv = nn.Conv2d(out_channels, out_channels,
4, 2, 1)

def forward(self, x, t_emb):

out = self.resnet_conv_first(x)

out = out + self.t_emb_layer(t_emb)[:, :, None, None]l #
iniezione temporale

b, ¢, h, w = out.shape

attn_in = out.view(b, c, h*w).transpose(l, 2)

out_attn, _ = self.attention(attn_in, attn_in, attn_in)

out = out + out_attn.transpose(l, 2).view(b, ¢, h, w)

out = self.down_sample_conv(out) # riduzione risoluzione

return out

Listing 5.2: Downsampling block con residual connections, time injection e attenzione

Mid-block con attenzione multi-head. Il mid-block, situato nel collo di bottiglia
dell’architettura UNet, rappresenta il punto in cui le feature map hanno minima
risoluzione spaziale ma profondita massima. In questa fase la rete dispone di un
campo recettivo molto ampio, condizione ideale per integrare meccanismi in grado
di catturare relazioni a lungo raggio tra regioni spazialmente distanti.

Il blocco alterna sequenze di convoluzioni residue e moduli di multi-head self-
attention. I percorsi residui, costituiti da convoluzioni 3 x 3 seguite da attivazioni
non lineari e normalizzazione, mantengono stabile il flusso dell’informazione e del

gradiente, preservando i dettagli locali appresi nelle fasi precedenti. L’iniezione del

49

time embedding, aggiunta ai canali delle feature, assicura che la rappresentazione
rimanga coerente con lo specifico passo temporale t del processo di diffusione.

In parallelo, i moduli di self-attention trasformano le feature map in sequenze di
token e apprendono dipendenze contestuali globali, permettendo alla rete di correlare
strutture visive anche molto distanti tra loro. Questa alternanza tra convoluzioni
residue (per i dettagli locali) e attenzione (per il contesto globale) rende il mid-
block un componente cruciale per combinare informazioni multi-scala e migliorare la

capacita generativa della rete.

class MidBlock(nn.Module):
def forward(self, x, t_emb):
out = x
Primo percorso restduo

res = out

out = self.resnet _conv_first[0] (out)

out = out + self.t_emb_layers[0] (t_emb)[:, :, None, Nonel
out = self.resnet_conv_second[0] (out)

out = out + self.residual_input_conv[0] (res)

Alternanza attenzione + residut
for i in range(self.num_layers):
Self-attention multi-head
b, ¢, h, w = out.shape
tokens = out.view(b, c, h*w).transpose(l, 2)
attn, _ = self.attentions[i] (tokens, tokens, tokens)

out = out + attn.transpose(l, 2).view(b, c, h, w)

Percorso restduo con intezione temporale

res = out

out = self.resnet_conv_first[i+1] (out)

out = out + self.t_emb_layers[i+1](t_emb)[:, :, None,
None]

out = self.resnet_conv_second[i+1] (out)

out = out + self.residual_input_conv[i+1] (res)

return out

Listing 5.3: MidBlock: alternanza tra residui e attenzione multi-head

Upsampling e skip connections. La fase di ricostruzione dell’'UNet avviene

attraverso i blocchi di upsampling, che hanno il compito di riportare progressivamente

20

le feature map alla risoluzione originaria. Il processo inizia con un’operazione di
upsampling, realizzata tramite convoluzioni trasposte o interpolazioni seguite da

convoluzioni, che espandono la risoluzione spaziale preservando coerenza locale.

Un aspetto fondamentale ¢ la presenza delle skip connections: le feature
map prodotte dall’encoder, corrispondenti allo stesso livello di risoluzione, vengono
concatenate con quelle del decoder. Questo meccanismo consente di reintegrare i
dettagli locali persi nella fase di compressione, evitando che la ricostruzione si basi

esclusivamente su rappresentazioni troppo astratte.

Dopo la fusione con le feature provenienti dall’encoder, le mappe risultanti
attraversano percorsi residui costituiti da convoluzioni 3 x 3, arricchite dall’iniezione
del time embedding. In questo modo la rete mantiene consapevolezza del passo

temporale ¢ durante tutto il processo di generazione.

Infine, anche nei blocchi di upsampling ¢ integrato un meccanismo di self-
attention, che consente di modellare relazioni a lungo raggio e garantisce coerenza
globale nella ricostruzione. La combinazione di upsampling, skip connections, residui
e attenzione rende questa fase essenziale per bilanciare dettagli locali e struttura

complessiva.

class UpBlock(nn.Module):
def forward(self, x, out_down, t_emb):
Upsampling tramite conv trasposta
x = self.up_sample_conv(x)
Fustione con feature simmetriche dall’encoder
X

= torch.cat([x, out_down], dim=1)

out = x
for i in range(self.num_layers):
Percorso restiduo con iniezione del time embedding
res = out
out = self.resnet_conv_first[i] (out)
out = out + self.t_emb_layers[i] (t_emb)[:, :, None, Nonel
out = self.resnet_conv_second[i] (out)

out = out + self.residual_input_conv[i] (res)

Self-attention per catturare relaziont globalt

b, ¢, h, w = out.shape

tokens = out.view(b, c, h*w).transpose(l, 2)

attn, _ = self.attentions[i] (tokens, tokens, tokens)

out = out + attn.transpose(l, 2).view(b, c, h, w)

51

return out

Listing 5.4: UpBlock: upsampling, fusione con skip e attenzione

Condizionamento “Formulation-1”. Nella pipeline Diffuse-VAE, la ricostruzione
preliminare o generata dal VAE non viene utilizzata unicamente come informazione
iniziale, ma viene integrata a piu livelli della UNet. Questo approccio, noto come
Formulation-1, permette al modello di sfruttare la bozza del VAE in maniera
gerarchica, guidando il processo di denoising in modo piu stabile ed efficace.

Il condizionamento avviene in tre punti distinti:

o all'ingresso della rete, dove x; e Ty vengono concatenati e proiettati nello spazio
dei canali originali tramite una convoluzione 1 x 1 (fuse_in);

o lungo il percorso di downsampling, dove le feature intermedie vengono arricchite
aggiungendo la ricostruzione ridimensionata, fusa nuovamente con convoluzioni
1 x 1 (fuse_down);

o nelle skip connections durante 'upsampling, in cui la ricostruzione viene
combinata con le feature provenienti dall’encoder per preservare i dettagli locali
(fuse_skip).

Questo schema multi-scala garantisce che I'informazione del VAE permei 'intera
architettura, fornendo un condizionamento coerente sia sui dettagli locali che sulla
struttura globale. In altre parole, Z, funge da vincolo strutturale che accompagna il
denoising ad ogni livello, evitando che il DDPM generi campioni incoerenti o troppo

lontani dalla ricostruzione iniziale.

self.fuse_in = nn.Conv2d(self.im_channels * 2, self.im_channels,

kernel _size=1)

self.fuse_down = nn.ModuleList ([
nn.Conv2d(ch + self.im_channels, ch, kernel_size=1)

for ch in self.down_skip_channels

D

self.fuse_skip = nn.ModuleList ([
nn.Conv2d(ch + self.im_channels, ch, kernel_size=1)
for ch in reversed(self.down_skip_channels)

D

Listing 5.5: Layer di fusione per il condizionamento multi-scala

52

Outline del forward. Infine, uno schema semplificato mostra come il condiziona-

mento viene applicato lungo il percorso.

def forward(self, x, t, cond=None):
Embedding temporale
t_emb = self.t_proj(timestep_embedding(t, self.t_emb_dim))

Fusione iniztale
if cond is not None:

cond = F.interpolate(cond, size=x.shape[-2:],
mode="bilinear", align_corners=False)

x = self.fuse_in(torch.cat([x, cond], dim=1))

out = self.conv_in(x)

Encoder con condizionamento
skips = []
for i, down in enumerate(self.downs):
if cond is not None:
cond_r = F.interpolate(cond, size=out.shape[-2:],
mode="bilinear", align_corners=False)
out = self.fuse down[i] (torch.cat([out, cond r], dim=1))
skips.append (out)

out = down(out, t_emb)

Bottleneck
for mid in self.mids:

out = mid(out, t_emb)

Decoder con skip condizionat?
for i, up in enumerate(self.ups):
skip = skips.popQ)
if cond is not None:
cond_r = F.interpolate(cond, size=skip.shape[-2:],
mode="bilinear", align_corners=False)
skip = self.fuse_skipl[i] (torch.cat([skip, cond_r], dim=1))
out = up(out, skip, t_emb)

Output finale

return self.conv_out(nn.SiLU() (self.norm_out (out)))

Listing 5.6: Outline del forward con condizionamento multiscala

93

5.2 Noise scheduler

Il noise scheduler definisce la quantita di rumore iniettata ad ogni passo del processo
di diffusione. La scelta della schedulazione influenza sia la stabilita dell’addestramento
sia la qualita dei campioni generati, poiché controlla come la distribuzione dei dati
viene progressivamente corrotta (forward process) e ricostruita (reverse process). Di
seguito riportiamo due strategie comunemente adottate: lo scheduler lineare e lo

scheduler coseno.

5.2.1 Linear Scheduler

Lo scheduler lineare introduce una progressione uniforme dei valori di rumore. I 3;
crescono linearmente dal valore iniziale Sgiart fino a Benq, garantendo una corruzione
graduale e stabile. Questo approccio e semplice ed efficace, ma puo risultare meno
ottimale nei passi iniziali o finali, dove la distribuzione del rumore influenza in

maniera critica la dinamica del modello.

class LinearNoiseScheduler:
def __init__(self, num_timesteps, beta_start, beta_end):
self .num_timesteps = num_timesteps
self .betas = torch.linspace(beta_start, beta_end,
num_timesteps)
self.alphas = 1.0 - self.betas
self.alpha_bars = torch.cumprod(self.alphas, dim=0)

def add _noise(self, x, noise, t):
alpha_bar = self.alpha_bars[t.cpu()].to(x.device)
return alpha_bar.sqrt() .view(-1,1,1,1) * x + \
(1 - alpha_bar).sqrt().view(-1,1,1,1) * noise

Listing 5.7: Linear scheduler

5.2.2 Cosine Scheduler

Lo scheduler coseno propone invece una schedulazione non lineare, in cui i valori oy
seguono una curva a coseno. Questo schema, introdotto per ridurre la perdita di
informazione nei primi passi, preserva meglio la struttura dei dati e tende a produrre

campioni di qualita superiore. La definizione é:

normalizzata affinché ag = 1.

class CosineNoiseScheduler:
def __init__(self, num_timesteps, s=0.008):
self .num_timesteps = num_timesteps
self.alpha_bars = self._compute_alpha_bars(num_timesteps, s)
self.alphas = self.alpha_bars[1:] / self.alpha_bars[:-1]
self.betas = 1.0 - self.alphas

def _compute_alpha_bars(self, T, s):
steps = torch.arange(0, T+1)
f = torch.cos(((steps / T + s) / (1+s)) * math.pi / 2) *x*x 2
return f / f£[0]

Listing 5.8: Cosine scheduler

In sintesi, mentre lo scheduler lineare offre un controllo uniforme sulla diffusione,
quello coseno gestisce in maniera piu sofisticata la distribuzione della corruzione,

migliorando la qualita della generazione soprattutto nelle prime fasi del processo.

5.2.3 Metodi forward e reverse

Forward process (DiffuseVAE). Durante la fase di addestramento il modello
apprende a ricostruire il rumore iniettato nei dati. Dato un batch di immagini
normalizzate x € [0,1], si estrae un passo temporale ¢ e un rumore gaussiano
e ~ N(0,I). Lo noise scheduler combina i due, generando la versione rumorosa
r; = v/asxr + /1 — ase. La ricostruzione preliminare #; ottenuta dal VAE viene
utilizzata come condizionamento aggiuntivo per la U-Net, che in questo contesto non
ricostruisce direttamente I'immagine, ma impara a predire il rumore € responsabile
della corruzione di x. In questo modo, il training forza la rete a modellare la
distribuzione del rumore in funzione sia del passo temporale ¢ sia della bozza Z,
garantendo un legame stretto tra il processo di diffusione e lo spazio latente del VAE.

x = x.to(device) # [0,1]

with torch.no_grad():

x_hat, _, _ = vae(x) # condizionamento immagine

x_hat = x_hat.clamp(0, 1)

(o0]
I

x.size(0)

torch.randint (0, scheduler.num_timesteps, (B,),
device=device) .long()

eps = torch.randn_like(x)

95

x_t = scheduler.add_noise(x, eps, t) #z_t =q(zt | z, t)

eps_pred = unet(x_t, t, cond=x_hat) # predizione rumore

loss = mse(eps_pred, eps) # obiettivo standard DDPM

Listing 5.9: Forward: add_ noise e loss su rumore con condizionamento VAE

Reverse process (sampling guidato). Durante la generazione si parte da xp ~
N(0, I) e si applica iterativamente il processo inverso per t = T—1 — 0. Ad ogni passo
la U-Net predice il rumore eg(xy,t, %), che viene utilizzato dallo noise scheduler per
stimare lo stato precedente z; ;. La transizione puo essere deterministica (schema
DDIM) oppure includere una componente stocastica, producendo cosi campioni

diversi a partire dalla stessa condizione iniziale.

Q@torch.no_grad()
def sample_grid(unet, vae, scheduler, x, device, cond_from_gt=True):
unet.eval(); vae.eval()

x_hat = vae(x)[0].clamp(0,1) if cond_from_gt else None

def step_back(sched, x_t, eps_pred, t):

try: return sched.sample_prev_timestep(x_t, eps_pred, t,
eta=0.0)

except TypeError:

return sched.sample_prev_timestep(x_t, eps_pred, t)

X_t = torch.randn_like(x, device=device)
for t_step in reversed(range(scheduler.num_timesteps)):

t = torch.full((x_t.size(0),), t_step, device=device,
dtype=torch.long)

eps_pred = unet(x_t, t, cond=x_hat)

x_t, _ = step_back(scheduler, x_t, eps_pred, t)

return x_t.clamp(0, 1)

Listing 5.10: Sampling: loop reverse con condizionamento da VAE

5.2.4 Training

Passo di training (loss su rumore). Dato un campione reale x € [0, 1], durante

I’'addestramento si sceglie casualmente un passo temporale ¢ e si genera rumore

o6

gaussiano € ~ N(0,I). Lo noise scheduler combina questi elementi costruendo

xt:\/&_tx+\/1—&t€,

che rappresenta la versione rumorosa di x al passo t.

La U-Net riceve in input z;, insieme all’informazione temporale ¢ e (nel caso di
DiffuseVAE) alla ricostruzione Z del VAE, e ha il compito di predire il rumore £.
L’obiettivo del training consiste nel minimizzare la differenza tra il rumore predetto

e quello reale attraverso una loss di tipo MSE, ossia
Lopps = Ea ey [||E(2,, 30) — £]].

In questo modo la rete impara a invertire progressivamente il processo di diffusione,
acquisendo la capacita di rimuovere il rumore passo dopo passo fino a ricostruire un

campione pulito.

model.train(); optimizer.zero_grad(set_to_none=True)

imgs = imgs.to(device) # [0,1]

t = torch.randint(0, scheduler.num_timesteps, (imgs.size(0),),
device=device) .long()

eps = torch.randn_like(imgs)

x_t = scheduler.add_noise(imgs, eps, t) # xz_t = sqrt(ab_t) * ¢ +

sqrt(1-ab_t) * eps

eps_pred = model(x_t, t) # U-Net predice il rumore

loss = F.mse_loss(eps_pred, eps)

loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) #
opzionale

optimizer.step()

Listing 5.11: Passo di training DDPM (loss su rumore)

Validazione (stessa loss, no grad).
model.eval()

with torch.no_grad():
val_losses = []
for imgs, _ in val_loader:

imgs = imgs.to(device)

o7

t = torch.randint (0, scheduler.num_timesteps,

(imgs.size(0),), device=device).long()

eps = torch.randn_like(imgs)

x_t scheduler.add_noise(imgs, eps, t)
eps_pred = model(x_t, t)
val_losses.append(F.mse_loss(eps_pred, eps).item())

avg_val = sum(val_losses)/len(val_losses)

Listing 5.12: Loop di validazione

5.2.5 Sampling

Denoising loop (DDPM/DDIM). Il processo di campionamento parte da
xp ~ N(0,1), cio¢ un rumore gaussiano puro. Si procede iterativamente dal passo
T fino a 0: ad ogni iterazione la U-Net predice il rumore eq(zy,t, Zo), € lo scheduler
calcola lo stato precedente x;_;. Il passo di reverse, in forma compatta, ¢ descritto

da:

1 N
Ti—1 = ﬁ <3?t - \/15%5%59(%7157@"0)) + o2, 2 NN(OJ),

dove oy controlla ’eventuale rumore aggiuntivo in fase di generazione.

Se si imposta n = 0, il termine stocastico o,z scompare e si ottiene una dinamica
deterministica (DDIM), in cui una stessa condizione iniziale produce sempre lo stesso
campione. Con n > 0, invece, si mantiene una componente stocastica che aumenta
la diversita dei campioni, come nel caso classico dei DDPM. In questo modo, il loop
di denoising rappresenta il cuore della generazione: partendo da rumore casuale e
guidati dal condizionamento Z, si ricostruiscono progressivamente immagini coerenti

e di alta qualita.

model.eval()
X = torch.randn(num_samples, C, H, W, device=device) #z T
T

scheduler.num_timesteps

with torch.no_grad():

for t_step in reversed(range(T)):

t = torch.full((x.size(0),), t_step, device=device,
dtype=torch.long)

eps_pred = model(x, t)

try:

x, _ = scheduler.sample_prev_timestep(x, eps_pred, t,

eta=0.0) # (z_{t-1}, z0_pred)

o8

except TypeError:

x, _ = scheduler.sample_prev_timestep(x, eps_pred, t)

denormalizzazione per salvataggio
x = torch.clamp(x, 0, 1)

save_image(x, "samples.png", nrow=int(math.sqrt(num_samples)))

Listing 5.13: Loop di sampling

5.3 VAE

5.3.1 Encoder e decoder

Blocchi residui. 1 ResidualBlock rappresentano una parte fondamentale sia nel-
I’encoder che nel decoder. Ogni blocco applica due convoluzioni 3 x 3 intervallate
da normalizzazione GroupNorm e attivazione SiL U, garantendo stabilita numerica e
capacita di modellare relazioni non lineari. La skip connection somma direttamente
I'input all’output del blocco, facilitando il flusso del gradiente ed evitando il degrado
delle feature. Quando il numero di canali cambia, lo shortcut usa una convoluzione
1x1 (0 3x3) per adattare le dimensioni, mantenendo coerenza tra le rappresentazioni.
In questo modo, i blocchi residui combinano apprendimento profondo e preservazione

delle informazioni.

class ResidualBlock(nn.Module):
def __init__(self, in_ch, out_ch=None, dropout=0.0, groups=8,
use_conv_shortcut=False):
super) .__init__Q)

out_ch = out_ch or in_ch

self .norml = nn.GroupNorm(min(groups, in_ch), in_ch)

self.convl = nn.Conv2d(in_ch, out_ch, 3, padding=1)

self.norm2 = nn.GroupNorm(min(groups, out_ch), out_ch)
self.dropout = nn.Dropout(dropout)
self.conv2 = nn.Conv2d(out_ch, out_ch, 3, padding=1)
self.shortcut = (
nn.Identity() if in_ch == out_ch
else nn.Conv2d(in_ch, out_ch, 1 if not use_conv_shortcut
else 3, padding=0 if not use_conv_shortcut else 1)

)

def forward(self, x):

29

h = self.convl(F.silu(self.norml(x)))
h = self.conv2(self.dropout(F.silu(self.norm2(h))))

return h + self.shortcut(x)

Listing 5.14: ResidualBlock con GroupNorm e SiLU

Self-Attention. 1 blocchi di self-attention consentono di catturare dipendenze
a lungo raggio tra regioni diverse dell'immagine, andando oltre il limitato campo
recettivo delle convoluzioni locali. L’input viene normalizzato e trasformato in insiemi
di query, key e value, sui quali si applica il meccanismo di attenzione scalato per
ottenere una combinazione pesata delle feature spaziali. Questo consente alla rete
di integrare informazioni globali e contestuali in ogni rappresentazione intermedia.
La proiezione finale dei valori ¢ inizializzata a zero per garantire stabilita durante
le prime fasi di addestramento, evitando che I’attenzione perturbi eccessivamente

l'ottimizzazione iniziale.

class AttentionBlock(nn.Module):
def __init__(self, ch, groups=8):
super() .__init__Q)
self.norm = nn.GroupNorm(min(groups, ch), ch)
self.q = nn.Conv2d(ch, ch, 1); self.k = nn.Conv2d(ch, ch, 1);
self.v = nn.Conv2d(ch, ch, 1)
self.proj_out = nn.Conv2d(ch, ch, 1)
nn.init.zeros_(self.proj_out.weight);

nn.init.zeros_(self.proj_out.bias)

def forward(self, x):

b, ¢, h, w = x.shape

h = self.norm(x)

q = self.q(h_) .reshape(b, c, h*w).permute(0, 2, 1) # [B,
HW, C]

k = self.k(h_).reshape(b, c, h*w) # [B, C,
HW]

v = self.v(h_).reshape(b, c, h*w).permute(0, 2, 1) # [B,
HW, C]

attn = F.softmax(torch.bmm(q, k) / math.sqrt(c), dim=-1)

out = torch.bmm(attn, v).permute(0, 2, 1).reshape(b, c, h, w)

return x + self.proj_out(out)

Listing 5.15: Self-attention 2D con proiezione zero-init

60

Encoder: compressione a j,logo?. L’encoder ha il compito di comprimere
I'immagine nello spazio latente. Dopo una convoluzione iniziale, la rappresentazione
attraversa una sequenza di blocchi residui e, se previsto, moduli di self-attention
che arricchiscono le feature con dipendenze globali. Ad ogni livello viene eseguito un
downsampling con fattore 2, cosi da ridurre progressivamente la risoluzione e ampliare
il campo recettivo. Nel collo di bottiglia, la rete stima i parametri della distribuzione
gaussiana fattoriale g4(z |) = N (1, 0%I), dalla quale verra campionato il vettore
latente z. Per garantire stabilita numerica, i valori di log o vengono vincolati a un

intervallo predefinito, evitando esplosioni o degenerazioni durante I'addestramento.

class Encoder (nn.Module):

def __init__(...):

self.conv_in = nn.Conv2d(in_channels, base_channels, 3,
padding=1)

self.down_blocks = nn.ModuleList([...]) #
ResidualBlock (+Attention)+Downsample ripetutt

self.mid_blockl = ResidualBlock(in_ch, in_ch); self.mid_attn
= AttentionBlock(in_ch)

self.mid_block2 = ResidualBlock(in_ch, in_ch)

self .norm_out = nn.GroupNorm(min(group_norm_groups, in_ch),

in_ch)

self.conv_out nn.Conv2d(in_ch, latent_channels * 2, 3,

padding=1)

def forward(self, x):
h = self.conv_in(x)
for block in self.down blocks: h = block(h)
h = self.mid block2(self.mid_attn(self.mid_blocki(h)))
h = self.conv_out(F.silu(self.norm out(h)))

mu, logvar = h.chunk(2, dim=1)
logvar = torch.clamp(logvar, min=-30.0, max=20.0)

return mu, logvar

Listing 5.16: Head/tail dell’encoder: conv-in, path, split in (mu, logvar)

Decoder: ricostruzione da z. Il decoder ha il compito di trasformare il vettore
latente in un’immagine nello spazio dei dati. Dopo una proiezione iniziale, le
feature attraversano una serie di blocchi residui che ne raffinano la rappresentazione,

intervallati da stadi di upsampling che raddoppiano progressivamente la risoluzione

61

spaziale. In analogia all’encoder, possono essere inseriti moduli di self-attention per
catturare coerenze globali anche in fase di generazione. Al termine del percorso, un
livello di normalizzazione seguito da un o-head con attivazione sigmoide produce
I'output ricostruito, assicurando che i valori siano compresi nell’intervallo [0, 1] e

dunque interpretabili come intensita di pixel.

class Decoder (nn.Module):

def __init__(...):

in_ch = base_channels * channel multipliers[-1]

self.conv_in = nn.Conv2d(latent_channels, in_ch, 3, padding=1)

self.mid_blockl = ResidualBlock(in_ch, in_ch); self.mid_attn
= AttentionBlock(in_ch)

self.mid_block2 = ResidualBlock(in_ch, in_ch)

self .up_blocks = nn.ModuleList([...]) # (RestidualBlock N)
+ Upsample per livello

self .norm_out = nn.GroupNorm(min(group_norm_groups, in_ch),
in_ch)

self.conv_out = nn.Conv2d(in_ch, out_channels, 3, padding=1)

nn.init.zeros_(self.conv_out.weight);

nn.init.zeros_(self.conv_out.bias)

def forward(self, z):
h = self.conv_in(z)
h = self.mid_block2(self.mid_attn(self.mid_blocki(h)))
for block in self.up_blocks: h = block(h)

x = self.conv_out(F.silu(self.norm_out(h)))

return torch.sigmoid(x)

Listing 5.17: Decoder: conv-in dal latente, upsampling gerarchico, head sigmoide

VAE: reparameterization trick e percorso end-to-end. Il campionamento
differenziabile z = u+o0®e (e~N(0, 1)) consente di propagare il gradiente attraverso

la latente; il forward esegue encode—sample—decode.

class VAE(nn.Module):
def sample(self, mu, logvar):
std

torch.exp(0.5 * logvar)

eps = torch.randn_like(std)

return mu + eps * std

62

def forward(self, x):

mu, logvar = self.encoder(x) # parametri q(z/z)
z = self.sample(mu, logvar) # reparameterization
x_rec = self.decoder(z) # ricostruzione

return x_rec, mu, logvar

Listing 5.18: Reparameterization trick e forward del VAE

5.3.2 Visualizzazione dello spazio latente

Per ispezionare la struttura del latente, si possono proiettare le medie p dell’encoder
in 2D tramite t-SNE, una tecnica di riduzione della dimensionalita non lineare, utile
per visualizzare dati ad alta dimensionalita in uno spazio a 2 o 3 dimensioni, rendendo
possibile rappresentarli con grafici di dispersione.. In pratica, si raccolgono le medie
i su un sottoinsieme del dataset (senza calcolare i gradienti), appiattendo le mappe
spaziali in vettori; successivamente si applica t-SNE e per ridurre la dimensionalita e
la figura risultante viene colorata in base alla classe di appartenenza dei dati. (utile

su MNIST /Fashion-MNIST per verificare separabilita e coerenza semantica).

Q@torch.no_grad()
def collect_latents_and_labels(model, loader, device,
max_points=3000) :
model.eval()
mu_list, y_list, n =[], [1, O
for x, y in loader:
x = x.to(device)
_, mu, _ = model(x) #mu: [B, C, H, W’]
mu = mu.flatten(start_dim=1).cpu() # [B, C*H’*W’]
mu_list.append(mu); y_list.append(y)
n += x.size(0)
if n >= max_points: break
Z = torch.cat(mu_list, 0).numpy().astype("float32")
Y = torch.cat(y_list, 0).numpy()

return Z, Y

Listing 5.19: Raccolta di mu e proiezione t-SNE

5.3.3 Sampling

Per generare nuove immagini, viene campionato un vettore z ~ A(0, I) nel formato

spaziale corretto e che viene successivamente decodificato tramite il decoder del VAE;

63

per valutare la qualita ricostruttiva, le immagini originali vengono affiancate alle
rispettive ricostruzioni.. Il codice seguente mostra (i) il calcolo della risoluzione
latente a partire dall'immagine d’ingresso e dai livelli di downsampling, (ii) il sampling

diretto dal prior e (iii) il salvataggio di griglie di ricostruzioni.

@torch.no_grad()

def latent_spatial_size(image_size: int, channel multipliers):
Ogni livello (tranne il primo) dimezza H,W: fattore =
27 (len(mult)-1)
num_down = len(channel multipliers) - 1
s = image_size // (2 *x num_down)

return s

@torch.no_grad()
def generate_samples(vae, num_samples, image_size,
channel multipliers, out_path):

vae.eval()

s latent_spatial_size(image_size, channel_multipliers)
z = torch.randn(num_samples, vae.latent_channels, s, s,
device=next (vae.parameters()) .device)

x = vae.decode(z).clamp(0, 1)

from torchvision.utils import save_image

nrow = int(num_samples**0.5); nrow = nrow if
nrow*nrow==num_samples else min(8, num_samples)

save_image(x, out_path, nrow=nrow)

@torch.no_grad()
def save_reconstructions(vae, loader, num_images, out_path):
vae.eval()
xs, xh = [1, [I
for x, _ in loader:
X = x.to(next(vae.parameters()).device)
xr, _, _ = vae(x); xr = xr.clamp(0,1)
take = min(x.size(0), num_images - sum(t.size(0) for t in xs))
xs.append(x[:take] .cpu()); xh.append(xr[:take].cpu())
if sum(t.size(0) for t in xs) >= num_images: break
if not xs: return
import torch
grid = torch.cat([torch.cat(xs,0), torch.cat(xh,0)], dim=0)

from torchvision.utils import save_image

64

save_image(grid, out_path, nrow=num_images)

Listing 5.20: Sampling dal prior e salvataggio ricostruzioni

65

Capitolo 6

Ottimizzazione degli iperparametri
e addestramento dei modelli

generativi

L’ottimizzazione degli iperparametri ¢ una fase cruciale nello sviluppo di modelli
di apprendimento automatico, poiché influenza direttamente le prestazioni e la
convergenza del modello. A differenza dei parametri del modello, che vengono appresi
durante 'addestramento, gli iperparametri sono impostazioni predefinite che regolano
il processo di addestramento, come il tasso di apprendimento, la dimensione del
batch e le configurazioni architetturali. La regolazione manuale degli iperparametri
e spesso laboriosa e inefficiente, portando all’adozione di framework automatici per
I'ottimizzazione, come Optuna.

In questo capitolo, viene introdotto Optuna, un framework avanzato per 1’ot-
timizzazione degli iperparametri [16], [17], e viene descritta la sua applicazione
nell’ottimizzazione di due modelli generativi: un Variational Autoencoder (VAE) e
un Denoising Diffusion Probabilistic Model (DDPM). Vengono discussi i componenti
principali di Optuna, tra cui la strategia di ricerca, lo spazio degli iperparametri,
gli obiettivi di ottimizzazione e i meccanismi di pruning. Inoltre, viene dettagliata
I'integrazione di Optuna nei processi di addestramento dei modelli VAE e DDPM,

evidenziando gli iperparametri ottimizzati e il loro impatto sulle prestazioni.

6.1 Descrizione dei dataset utilizzati

Per la valutazione dei modelli generativi sono stati utilizzati due dataset classici:
MNIST e Fashion-MNIST. Entrambi i dataset sono costituiti da immagini in

scala di grigi, con dimensione 28 x 28 pixel e un singolo canale, e comprendono

66

10 classi distinte. Queste caratteristiche li rendono particolarmente adatti come

benchmark iniziali per modelli generativi e di rappresentazione.

6.1.1 MNIST

Il dataset MNIST (Modified National Institute of Standards and Technology) contiene
immagini di cifre scritte a mano, suddivise in 60.000 esempi per il training e 10.000
per il test. Le immagini sono normalizzate in scala [0,1]. La distribuzione delle
classi ¢ uniforme, garantendo un equilibrio tra i dieci numeri da 0 a 9. MNIST
e ampiamente utilizzato come benchmark per testare la capacita dei modelli di
apprendere rappresentazioni latenti compatte, ricostruire dati e generare campioni
plausibili. La relativa semplicita del dataset permette di analizzare in modo chiaro
le prestazioni dei modelli senza introdurre complessita eccessive.

Per fornire un riscontro visivo, riportiamo alcuni esempi di cifre dal dataset

MNIST:

olo[olojo[e[solo[Of
i e bl S S E RN
£S £ I NS S S Y ES Y
ol [0 W] fwa ol B
<lefrl2lelnlRlcw]<
L2 0 N Y R
R S RS N EN DN ENES -
NMESSNSINMSIENS

% [oa] 4 [%0]% | [onfor [§
o[a[sfololvlofalo]of

i cifre dal dataset MINIST.

2
OS]
o
=
®
&
=
td
0
@
=
2.
o

6.1.2 Fashion-MNIST

Il dataset Fashion-MNIST ¢ stato introdotto come alternativa piu complessa a
MNIST. Contiene immagini di articoli di abbigliamento (come magliette, scarpe,
borse, giacche, borse e cappelli) con la stessa dimensione e suddivisione in training
(60.000) e test (10.000) di MNIST. La distribuzione delle classi & uniforme e la
varieta intra-classe ¢ maggiore rispetto a MNIST, con differenze sottili tra categorie
visivamente simili. Fashion-MNIST rappresenta quindi una sfida piu realistica per i

modelli generativi, richiedendo capacita di catturare dettagli complessi, texture e

67

forme differenti. L’utilizzo di questo dataset consente di valutare la generalizzazione

dei modelli e la loro capacita di mantenere coerenza semantica nelle generazioni.
Alcuni esempi di articoli presenti nel dataset Fashion-MNIST sono mostrati nella

figura seguente:

] |

| §
N\
=
t— 1 4)

—m

=] —==iEe

]
T—
=

Tl

5[B

Evma

et h:-mms

B
%
I

=

::

=
B

D -
CEGS i fy o [

{

Figura 6.2: Esempi di articoli dal dataset Fashion-MNIST.

Utilizzo nei modelli generativi. Sia MNIST che Fashion-MNIST sono stati
utilizzati per testare le pipeline di VAE e DiffuseVAE. MNIST permette di valutare
le proprieta di ricostruzione e generazione in uno scenario semplice, mentre Fashion-
MNIST mette alla prova la capacita dei modelli di apprendere e generare strutture
piu complesse. L’analisi dei risultati su entrambi i dataset consente di confrontare

fedelta percettiva, diversita dei campioni e organizzazione dello spazio latente.

6.2 Panoramica di Optuna

Optuna e un framework open-source per 'ottimizzazione automatica degli iper-
parametri, progettato per accelerare e semplificare la ricerca delle configurazioni
ottimali. E altamente flessibile e compatibile con diversi framework di apprendimento
automatico, come PyTorch, TensorFlow e scikit-learn. Le principali caratteristiche

di Optuna includono:

o API Define-by-Run: A differenza delle tradizionali API define-and-run, Optu-
na consente di costruire dinamicamente lo spazio di ricerca durante ’esecuzione,

adattando le proposte di iperparametri in base ai risultati intermedi.

68

o Algoritmi di ricerca efficienti: Optuna utilizza il Tree-structured Parzen
Estimator (TPE) come strategia di campionamento predefinita, che model-
la la relazione tra iperparametri e prestazioni per guidare la ricerca verso
configurazioni promettenti.

e Meccanismo di pruning: Optuna supporta l'interruzione anticipata dei trial
meno promettenti tramite pruner come il MedianPruner, che termina i trial
con prestazioni inferiori rispetto alla mediana dei risultati intermedi .

e Scalabilita: Optuna supporta la parallelizzazione e ’ottimizzazione distribuita,
rendendolo adatto a esperimenti su larga scala.

Optuna organizza il processo di ottimizzazione in studi e trial. Uno studio
rappresenta l'intero processo di ottimizzazione, definito da un obiettivo (ad esempio,
minimizzare la perdita di validazione) e una direzione di ottimizzazione (minimizzare o
massimizzare). Ogni trial corrisponde a una singola valutazione di una configurazione
di iperparametri, in cui Optuna suggerisce valori di iperparametri da uno spazio di

ricerca predefinito e li valuta tramite una funzione obiettivo definita dall’utente.

6.2.1 Spazio di ricerca e campionamento

Lo spazio di ricerca definisce I'insieme dei valori possibili per ciascun iperparametro.
Optuna supporta diversi tipi di parametri, tra cui categorici (ad esempio, scelta
tra scheduler “lineare” o “coseno”), interi (ad esempio, numero di timestep) e
continui (ad esempio, tasso di apprendimento). Il campionatore TPE costruisce
un modello probabilistico della funzione obiettivo, dando priorita alle regioni dello
spazio di ricerca con maggiore probabilita di produrre risultati ottimali in base ai

trial precedenti.

6.2.2 Pruning con MedianPruner

Per migliorare 'efficienza, Optuna implementa il pruning per terminare anticipata-
mente i trial poco promettenti. Il MedianPruner, utilizzato in entrambi gli esperimenti
VAE e DDPM, confronta le prestazioni intermedie di un trial (ad esempio, la perdita
di validazione a una determinata epoca) con la mediana delle prestazioni dei trial
precedenti. Se le prestazioni di un trial sono peggiori della mediana dopo un periodo

di warmup specificato, il trial viene interrotto, risparmiando risorse computazionali.

6.2.3 Miglior trial e risultati dell’ottimizzazione

Al termine di uno studio, Optuna identifica il miglior trial, che corrisponde alla con-

figurazione di iperparametri con il miglior valore obiettivo. I parametri e le metriche

69

di prestazione del miglior trial vengono salvati per ulteriori analisi o implementazioni.

6.3 Applicazione al Variational Autoencoder (VAE)

Il VAE e¢ stato ottimizzato utilizzando Optuna per migliorare le sue prestazioni sui
dataset. L’obiettivo era minimizzare la perdita di validazione, che combina la perdita
di ricostruzione e la divergenza di Kullback-Leibler (KL), bilanciate tramite un peso
KL (k1_weight).

6.3.1 Configurazione di Optuna per il VAE

Per il VAE, ¢ stato definito uno spazio di ricerca che includeva i seguenti iperparametri:

e latent_channels: numero di canali nello spazio latente, con valori possibili
8,16, 32, 64].

e base_channels: numero di canali base nell’architettura, con valori [16, 32, 64].

e dropout: probabilita di dropout, compresa tra 0.0 e 0.3.

e learning rate: tasso di apprendimento, campionato log-uniformemente tra
107° e 1073,

o k1l _weight: peso della divergenza KL nella funzione di perdita, campionato
log-uniformemente tra 1076 e 1072,

e batch_size: dimensione del batch, con valori [64, 128, 256].

Il processo di ottimizzazione € stato eseguito per 25 trial, con un massimo di 40
epoche per trial, utilizzando il MedianPruner con 5 trial di startup e 5 epoche di
warmup. La funzione obiettivo restituiva la perdita di validazione media, calcolata
utilizzando la funzione di perdita VAELoss, che combina la perdita di ricostruzione e
la divergenza KL. Il pruning veniva attivato se la perdita di validazione di un trial

era significativamente peggiore della mediana delle perdite intermedie.

6.3.2 Risultati

I risultati dell’ottimizzazione sono stati salvati in un file YAML (optuna_best_params.
contenente la configurazione ottimale del miglior trial. L’ottimizzazione ha consentito
di identificare una combinazione di iperparametri in grado di bilanciare efficacemente
la qualita della ricostruzione e la regolarizzazione dello spazio latente, migliorando la

capacita del VAE di generare immagini coerenti e diverse sul dataset MNIST.

70

yaml),

6.4 Applicazione al Denoising Diffusion Probabili-
stic Model (DDPM)

I1 DDPM e stato ottimizzato utilizzando Optuna per migliorare le prestazioni sul
dataset. L’obiettivo e stato quello di minimizzare la perdita di validazione, calcolata
come l'errore quadratico medio (MSE) tra il rumore predetto (eps_pred) e il rumore

reale (eps).

6.4.1 Configurazione di Optuna per il DDPM

Per il DDPM, lo spazio di ricerca includeva i seguenti iperparametri:

e scheduler_type: tipo di scheduler per il processo di diffusione, con valori
linear o cosine.

e num_timesteps: numero di timestep nel processo di diffusione, con valori
[500, 750, 1000].

e beta_end: valore massimo dello scheduler lineare, campionato tra 0.01 e 0.03
con passo 0.002.

e 1r: tasso di apprendimento, campionato log-uniformemente tra 5 x 107° e
5x 1074,

e batch_size: dimensione del batch, con valori [32, 64, 128].

e time_emb_dim: dimensione dell’embedding temporale, con valori [64, 128].

« num_heads: numero di teste di attenzione, con valori [2,4].

L’ottimizzazione e stata condotta per 20 trial, ciascuno con 3 epoche di adde-
stramento, utilizzando il MedianPruner con una sola epoca di warmup. La funzione
obiettivo calcolava la perdita di validazione media (MSE) su un set di validazione. I
trial venivano interrotti anticipatamente in caso di prestazioni inferiori alla mediana
o in caso di errori di memoria CUDA, garantendo un uso efficiente delle risorse

computazionali.

6.4.2 Risultati

La configurazione ottimale ¢ stata salvata in un file YAML (ddpm_best_optuna.yaml).
L’ottimizzazione ha permesso di identificare una combinazione di iperparametri che
ha migliorato la qualita delle immagini generate dal DDPM, bilanciando la comples-
sita del modello e la stabilita del processo di diffusione. La Tabella 6.1 riporta gli
iperparametri ottimali identificati per il DDPM.

71

Tabella 6.1: Migliori iperparametri trovati per il DDPM tramite Optuna sul MNIST

Iperparametro | Valore
scheduler_type | linear
num_timesteps | 1000
beta_start 0.0001
beta_end 0.024

1r 0.000374048
batch_size 64
time_emb_dim 128
num_heads 4

6.5 Discussione e confronto

L’uso di Optuna ha semplificato e accelerato il processo di ottimizzazione per
entrambi i modelli generativi. Per il VAE, l'ottimizzazione si ¢ concentrata sul
bilanciamento tra la ricostruzione e la regolarizzazione dello spazio latente, mentre
per il DDPM I’attenzione era sulla qualita della predizione del rumore e sulla stabilita
del processo di diffusione. Il MedianPruner si e rivelato efficace nel ridurre il tempo
di calcolo, interrompendo i trial meno promettenti. I risultati hanno mostrato che
configurazioni con tassi di apprendimento piu bassi e dimensioni di batch moderate
tendevano a produrre migliori prestazioni in entrambi i modelli.

Il training e stato effettuato utilizzando due tipologie di GPU all’interno del cluster
di calcolo reso disponibile dal Dipartimento di Informatica, Scienza ed Ingegneria
dell’Universita di Bologna. La prima, RTX 2080 Ti (partizione rtx2080), dispone
di nodi di elaborazione con CPU singola quad-core e 44 GB di RAM, e una scheda
grafica Nvidia GeForce RTX 2080 Ti (GPU Turing TU102 con 4352 core e memoria
da 11 GB), pilotata con driver Nvidia v. 535 e librerie CUDA 11.8. La seconda, L.40
(partizione L40), dispone di nodi di elaborazione con CPU singola octa-core e 64 GB
di RAM, e una scheda grafica Nvidia L40 (GPU Ada Lovelace AD102GL con 18176
core e memoria da 48 GB), anch’essa gestita tramite driver Nvidia v. 535 e librerie
CUDA 11.8.

Sia il VAE che il DDPM (all’interno della pipeline DiffuseVAE) sono stati
addestrati per 50 epoche. I tempi di training e di sampling variano in funzione della
GPU e della dimensione del batch: il VAE mostra tempi di inferenza nell’ordine dei
millisecondi per immagine, mentre DiffuseVAE, eseguendo 1000 passi di denoising
DDPM, richiede un tempo di generazione superiore ma comunque gestibile in scenari
batch. I valori di riferimento per MNIST e Fashion-MNIST (ridimensionati a 32 x 32)
sono riportati nelle Tabelle 6.2 e 6.3. Il DDPM, integrato nella pipeline DiffuseVAE,
beneficia del pre-addestramento del VAE: la componente latente fornisce una buona

inizializzazione della struttura globale, consentendo al processo di diffusione di

72

concentrarsi sul raffinamento dei dettagli.

Tabella 6.2: Confronto tra VAE e DiffuseVAE su MNIST (28 x 28, ridimensionato a
32 x 32) nelle partizioni rtx2080 e L40. I tempi di training sono espressi in hh:mm.
Sampling calcolato con 1000 step DDPM e batch size 128.

Modello Partizione Training (50 epoche) Sampling / immagine (ms)

VAE rtx2080 04:45 4
VAE L40 02:08 2
DiffuseVAE rtx2080 11:20 ~1200
DiffuseVAE 140 04:58 ~600

Tabella 6.3: Confronto tra VAE e DiffuseVAE su Fashion-MNIST (28 x 28, ridimen-
sionato a 32 x 32) nelle partizioni rtx2080 e L40. I tempi di training sono espressi
in hh:mm. Sampling calcolato con 1000 step DDPM e batch size 128.

Modello Partizione Training (50 epoche) Sampling / immagine (ms)

VAE rtx2080 05:10 5
VAE L40 02:23 3
DiffuseVAE rtx2080 12:05 ~1300
DiffuseVAE L40 05:21 ~700

73

Capitolo 7

Valutazione quantitativa e

qualitativa delle immagini generate

Questo capitolo presenta un’analisi dettagliata delle prestazioni dei modelli generativi,
VAE e DiffuseVAE, utilizzati per la ricostruzione e la generazione di immagini sui
dataset MNIST e FashionMNIST [18], [19]. L’obiettivo ¢ valutare la qualita delle im-
magini generate rispetto a quelle originali attraverso un insieme di metriche standard,
tra cui PSNR, SSIM, MSE, MAE, Edge Similarity (basata su Sobel) e Histogram
Similarity (basata sul chi-quadrato). Ogni metrica viene descritta in termini di
formula matematica e significato pratico, fornendo una base rigorosa per confrontare
i due modelli. I risultati quantitativi e qualitativi, derivati dall’elaborazione di 10.000
immagini per ciascun dataset, saranno presentati nella sezione finale, consentendo
di valutare l'efficacia dei modelli in termini di fedelta visiva, accuratezza numerica
e preservazione dei dettagli strutturali. Questo capitolo rappresenta un elemento
chiave della tesi, poiché permette di quantificare le capacita dei modelli e di discutere

i loro punti di forza e limiti nel contesto della generazione di immagini.

7.1 PSNR

Il Peak Signal-to-Noise Ratio (PSNR) ¢ una metrica ampiamente utilizzata per
valutare la qualita di ricostruzione delle immagini. Misura il rapporto tra il segnale
massimo possibile e il rumore presente tra 'immagine originale e quella ricostruita,
esprimendo il risultato in decibel (dB). Valori di PSNR piu alti indicano una migliore

qualita di ricostruzione, con meno distorsione rispetto all'immagine originale.

La formula del PSNR ¢ data da:

74

2

MSE

dove: MAX ¢ il valore massimo possibile del pixel (ad esempio, 1.0 per immagini
normalizzate in [0, 1]); MSE ¢ lerrore quadratico medio (Mean Squared Error),
definito nella sezione 7.3.

I1 PSNR e¢ particolarmente utile per confrontare la fedelta delle immagini rico-
struite rispetto a quelle originali, specialmente in contesti come la compressione o
la ricostruzione di immagini tramite modelli generativi come VAE e DiffuseVAE.
Tuttavia, non tiene conto della percezione visiva umana, il che puo limitarne 'efficacia

in alcune applicazioni.

7.2 SSIM

La Structural Similarity Index Measure (SSIM) ¢ una metrica progettata per valutare
la somiglianza strutturale tra due immagini, tenendo conto di luminanza, contrasto
e struttura. A differenza del PSNR, I’'SSIM ¢ piu allineata alla percezione visiva
umana, poiché considera le relazioni locali tra i pixel.

La formula dell’SSIM ¢ definita come:

(2papty + C1)(204y + Co)
(12 + pg + Cr) (02 + of + Cs)

SSIM(z,y) =

dove:

o [z, [ty medie di intensita dei pixel delle immagini = e y;
e 02,07 varianze delle intensita dei pixel di z e y;
e 04, covarianza tra x e y;
o O = (kiL)? Cy = (kyL)* costanti di stabilizzazione, con k; = 0.01, ky = 0.03,
e L il range dinamico dell’immagine (es. 1.0 per immagini normalizzate).
L’SSIM produce valori in [0, 1], dove 1 indica identita perfetta tra le immagini.
Nel nostro contesto, I’'SSIM e stato calcolato utilizzando una finestra Gaussiana di

dimensione 11x11 con o = 1.5.

7.3 MSE

L’Mean Squared Error (MSE) misura l'errore quadratico medio tra i pixel di due

immagini, fornendo un’indicazione della differenza media al quadrato tra valori

75

corrispondenti.. E una metrica semplice ma efficace per quantificare la distorsione

numerica.
La formula dell’MSE eé:

N
MSE = ;Z(x, —5;)?
i=1

dove:

o x;,y;: valori dei pixel dell'immagine originale x e di quella ricostruita y;

e N: numero totale di pixel.

Valori di MSE piu bassi indicano una maggiore fedelta dell'immagine ricostruita
rispetto all’originale. Tuttavia, come il PSNR, ’MSE non considera la percezione
visiva umana e puo non riflettere pienamente la qualita percepita. Nel nostro studio,
I’MSE e stato calcolato per ogni batch di immagini e mediato per ottenere un valore

rappresentativo per i dataset MNIST e FashionMNIST.

7.4 MAE

L’Mean Absolute Error (MAE) misura I'errore assoluto medio tra i pixel di due
immagini, calcolando la differenza media in valore assoluto tra pixel corrispondenti.
Rispetto allMSE, 'MAE e meno sensibile agli errori di grande entita, fornendo una
valutazione piu robusta in presenza di outlier.

La formula del’MAE e:

1 N
MAE = — i — Ui
N;:lﬁ\x Yil

dove:

e x;,1y;: valori dei pixel dell'immagine originale x e di quella ricostruita y;

e N: numero totale di pixel.

L’MAE e stato introdotto per valutare la qualita delle ricostruzioni di VAE
e DiffuseVAE, offrendo un complemento all’MSE. Valori pit bassi indicano una

maggiore somiglianza tra le immagini.

7.5 Edge Similarity (Sobel-based)

La Edge Similarity basata su Sobel misura la somiglianza tra le strutture di contorno

(bordi) di due immagini, utilizzando filtri Sobel per rilevare i gradienti. Questa

76

metrica e utile per valutare la capacita dei modelli di preservare i dettagli strutturali,
come i contorni degli oggetti nelle immagini.
La procedura ¢ la seguente: 1. Si applicano due filtri Sobel (orizzontale e verticale)

alle immagini z e y:

~1 0 1 -1 -2 -1
G.=1-20 2, G=|l0 0 0
-1 0 1 1 2 1

2. Si calcola I'ampiezza del gradiente per ogni immagine:

Edge, = \/(Gx xx)2 + (Gy)2, Edge, = \/(Gz x)2+ (G *y)?

dove * indica la convoluzione. 3. Si calcola I'errore quadratico medio tra le mappe

dei bordi:
N

1
Edge Similarity = N > " (Edge, (i) — Edge,(i))?
i=1
Valori piu bassi di questa metrica indicano una maggiore somiglianza tra i contorni
delle immagini. Nel nostro studio, 'Edge Similarity ¢ stata calcolata per valutare la
capacita dei modelli VAE e DiffuseVAE di preservare i dettagli strutturali nei dataset
MNIST e FashionMNIST, particolarmente rilevanti per immagini con contorni netti

come cifre e abiti.

7.6 Histogram Similarity (Chi-Squared)

La Histogram Similarity basata sulla distanza del chi-quadrato misura la somiglianza
tra le distribuzioni di intensita dei pixel di due immagini, confrontando i loro
istogrammi. Questa metrica ¢ utile per valutare la somiglianza globale delle immagini

in termini di distribuzione del colore o dell’intensita.

La formula della distanza del chi-quadrato é:

B
HistSimilarity = Z

dove:

e hy, hy: istogrammi normalizzati delle immagini = e y, con B bin (nel nostro
caso, 256);

« ¢ piccola costante (es. 1071°) per evitare la divisione per zero.

77

Valori piu bassi indicano una maggiore somiglianza tra le distribuzioni di intensita.
Nel nostro esperimento, gli istogrammi sono stati calcolati sui valori dei pixel
normalizzati in [0, 1]. Questa metrica & particolarmente utile per valutare la fedelta

tonale delle immagini generate.

7.7 LPIPS

11 Learned Perceptual Image Patch Similarity (LPIPS) ¢ una metrica percettiva
che misura la distanza tra immagini utilizzando feature apprese da reti neurali
convoluzionali pre-addestrate (ad esempio AlexNet o VGG). A differenza di MSE
o PSNR, LPIPS ¢ piu allineata alla percezione visiva umana, poiché confronta
rappresentazioni intermedie invece che valori di pixel grezzi.

La definizione formale é:

1
HW,

LPIPS(z,y) =) > llwr © (G2 — ¢l(y)hw)”§
l h,aw

dove:

o ¢(+) indica le feature estratte al layer [della rete pre-addestrata,
e H;, W, sono dimensioni spaziali delle feature map,

o w; sono pesi di calibrazione appresi per ciascun layer.

LPIPS restituisce valori reali non negativi: pitu bassi sono i valori, maggiore & la

somiglianza percettiva tra le immagini.

7.8 Risultati Finali

La valutazione dei modelli e stata effettuata utilizzando metriche che privilegiano
la qualita percettiva e strutturale delle immagini generate, come SSIM, LPIPS,
EdgeSim e HistSim, oltre a misure pixel-wise (MSE, PSNR, MAE) per avere un

quadro completo delle prestazioni.

Modello MSE PSNR SSIM LPIPS MAE EdgeSim HistSim

VAE 0.0102 20.37 0.686 7.38x107% 0.059 2.323 0.377
DiffuseVAE 0.0142 19.01 0.730 7.96x107% 0.062 2.644 0.036

Tabella 7.1: Confronto quantitativo e qualitativo tra VAE e DiffuseVAE su Fa-
shionMNIST.

78

Modello MSE PSNR SSIM LPIPS MAE EdgeSim HistSim

VAE 0.0069 23.42 0.823 6.90x107% 0.038 1.80 0.070
DiffuseVAE 0.0085 22.50 0.858 6.50x107¢ 0.045 1.95 0.055

Tabella 7.2: Confronto quantitativo e qualitativo tra VAE e DiffuseVAE su MINIST.

Dalle tabelle emerge chiaramente che su FashionMINIST, il DiffuseVAFE ottiene
valori superiori di SSIM e EdgeSim, indicando una migliore preservazione della
struttura locale e dei dettagli visivi rispetto al VAE, mentre quest’ultimo mostra un
MSE leggermente piu basso. Anche I'HistSim leggermente inferiore per DiffuseVAE
non compromette la percezione complessiva, poiché le immagini risultano piu coerenti
e realistiche all’occhio umano.

Su MNIST, nonostante il VAE mostri un MSE e un PSNR leggermente migliori,
il DiffuseVAE eccelle in termini di SSIM e EdgeSim, confermando la capacita del
modello di mantenere coerenza strutturale e dettagli percettivi. Questo suggerisce
che, pur sacrificando leggermente ’accuratezza numerica, il DiffuseVAE ¢ piu efficace
nel generare immagini visivamente convincenti e fedeli alla distribuzione dei dati,
con caratteristiche che rispecchiano meglio la percezione visiva umana.

In sintesi, i risultati evidenziano una differenza di priorita tra i due modelli: il VAFE
tende a ottimizzare la precisione a livello di singolo pixel, mentre il DiffuseVAFE
privilegia la qualita percettiva e la coerenza strutturale (SSIM, EdgeSim, HistSim).
Di conseguenza, il DiffuseVAE risulta piu adatto a compiti di generazione visiva
realistica, dove la fedelta percettiva e la struttura globale dell’immagine sono piu

rilevanti dell’errore numerico medio.

7.9 Visualizzazione delle immagini generate

In questa sezione vengono riportati esempi di immagini generate dai modelli VAE e
DiffuseVAE su dataset MNIST e FashionMNIST. Inoltre, viene mostrata ’evoluzione
dello spazio latente durante ’addestramento, insieme a una comparazione qualitativa

tra i due approcci.

7.9.1 Immagini generate dal VAE
7.9.1.1 MNIST

Per valutare la capacita generativa del VAE sul dataset MINIST, sono state analizzate

le immagini prodotte in diverse fasi dell’addestramento. Le figure riportano un con-

79

fronto tra un’epoca iniziale e una finale, evidenziando un progressivo miglioramento

della qualita delle cifre generate.

L

AR DS
W 6™ (W) &0

P 3
L <«
7 [/
b2 9
? ¢
2 &
? {
3 3

WO oy WA A

DWwO~NaTOD=
W Vo2 O %X
—_—— ey~ Ve 1 W
a0 NOa Y N
LA NSO NS
WO OY D

7 9
G R
£ 4
¢ 3
"
2 %
z 4

\“Hl

Figura 7.1: Evoluzione delle immagini generate dal VAE su MNIST: epoca 5 (sinistra)
ed epoca 50 (destra).

7.9.1.2 FashionMNIST

Per analizzare I’andamento dell’addestramento sul dataset FashionMNIST, sono
state generate immagini campione in diverse epoche. Il confronto tra epoca 5 ed epoca
50 evidenzia un miglioramento significativo nella nitidezza e nella riconoscibilita dei
capi di abbigliamento, segno della progressiva capacita del modello di catturare le

strutture del dataset.

Figura 7.2: Evoluzione delle immagini generate dal VAE su FashionMNIST: epoca 5
(sinistra) ed epoca 50 (destra).

80

7.9.2 Evoluzione dello spazio latente del VAE
7.9.2.1 MNIST

Per comprendere come il VAE strutturi le rappresentazioni interne, e stata analizzata
I’evoluzione dello spazio latente mediante t-SNE. Le figure mostrano la disposizione
dei campioni in differenti epoche, evidenziando la progressiva formazione di cluster

piu definiti e la separazione tra classi numeriche.

Latent p t-SNE @ epoch 10 Latent p t-SNE @ epoch 20

601 o

404 o

CowouswNHO
CovouswNLO

204

60

40 4

CeoNoUuswWN RO

204

CowouswNRoO

80

Figura 7.3: Evoluzione dello spazio latente del VAE su MNIST visualizzata con
t-SNE: (a) Epoca 10, (b) Epoca 20, (c) Epoca 40, (d) Epoca 50.

7.9.2.2 FashionMNIST

Anche per il dataset FashionMNIST e stata analizzata 1’evoluzione dello spazio
latente mediante t-SNE. la formazione dei cluster risulta meno netta e presenta

sovrapposizioni parziali, riflettendo la maggiore complessita visiva rispetto al dataset

MNIST.

81

Latent p t-SNE @ epoch 10 Latent p t-SNE @ epoch 20
60 4 .

60

40
40

CovouswNEoO

204 20

—60

Latent p t-SNE @ epoch 50

60 4

60
40 4

40

CevouswNEoO
CoNouRwWNRO

204

20

Figura 7.4: Evoluzione dello spazio latente del VAE su FashionMNIST visualizzata
con t-SNE: (a) Epoca 10, (b) Epoca 20, (¢) Epoca 40, (d) Epoca 50.

Dall’analisi delle rappresentazioni nello spazio latente emerge una differenza signi-
ficativa tra i due dataset. Nel caso di MINIST, il VAE riesce a suddividere le classi
in cluster ben distinti e regolarmente distribuiti, mostrando una chiara separazione
tra le cifre. Questa organizzazione regolare riflette la relativa semplicita del dataset,

caratterizzato da strutture visive poco complesse e facilmente distinguibili.

Al contrario, nel caso di FashionMNIST, lo spazio latente risulta meno regolare,
con cluster meno definiti e parzialmente sovrapposti. Questo fenomeno ¢ imputabile
alla maggiore complessita intrinseca del dataset, i cui campioni presentano variabilita
piu elevata in termini di forme, texture e dettagli visivi. Di conseguenza, il VAE
incontra maggiori difficolta nel modellare una separazione netta tra le classi, gene-
rando una rappresentazione latente che risulta meno strutturata rispetto a quella
osservata per MNIST.

82

7.9.3 Immagini generate dal DiffuseVAE

Per confrontare il comportamento del modello proposto con quello del VAE standard,
sono state analizzate le immagini generate dal DiffuseVAE su entrambi i dataset a

diverse epoche di training.

70
U
7 #
© ¥
o>
€5
¢ 7
|)

D ~N 1\'(5'%
N &N~ 9NN C\WN

Figura 7.5: Evoluzione delle immagini generate dal DiffuseVAE su MNIST e Fa-
shionMNIST: (a) Epoca 5 MNIST, (b) Epoca 50 MNIST, (c) Epoca 5 Fashion-MNIST,
(d) Epoca 50 Fashion-MNIST.

Un aspetto particolarmente rilevante riguarda il ruolo del condizionamento nel
processo di generazione. Come mostrato in Figura 7.5, gia dopo sole 5 epoche di adde-
stramento il DiffuseVAE produce immagini di qualita visibilmente superiore rispetto
al VAE. Tale risultato e attribuibile al forte vincolo imposto dal condizionamento
della rete di diffusione sulle ricostruzioni fornite dal VAE pre-addestrato e congelato.
In fase di training, infatti, ’'UNet del modello di diffusione riceve come input non

soltanto la versione rumorizzata z; del dato, ma anche xy,, = VAE(z), che fornisce

83

una guida strutturale stabile per la predizione del rumore €. Questo meccanismo
consente al modello di apprendere in maniera piu rapida la distribuzione dei dati,
preservando fin dalle prime epoche la coerenza strutturale e i dettagli percettivi delle
immagini reali. Al contrario, il VAE tradizionale, privo di tale condizionamento,
richiede molte pitu epoche di addestramento per raggiungere un livello qualitativo

comparabile.

7.9.4 Confronto fra dataset reale, VAE e DiffuseVAE

Per concludere I'analisi qualitativa, viene proposto un confronto diretto tra immagini
reali, ricostruzioni ottenute dal VAE e campioni generati dal DiffuseVAE. Questo

confronto permette di evidenziare le differenze visive e valutare la capacita dei modelli

di preservare fedelmente le caratteristiche intrinseche del dataset.

Figura 7.6: Confronto qualitativo su FashionMNIST: (a) immagini reali, (b) generate
dal VAE, (c) generate dal DiffuseVAE.

Un esempio emblematico e visibile nella Figura 7.6, in particolare nella prima
riga, seconda colonna, dove I'immagine reale presenta chiaramente la scritta “Lee”
sulla maglia. Tale dettaglio risulta molto meno delineato sia nella ricostruzione del
VAE, sia nel campione generato dal DiffuseVAE. Questo fenomeno riflette la natura
probabilistica dei modelli generativi: essi non ricostruiscono pixel per pixel, ma
approssimano la distribuzione statistica dei dati, privilegiando la coerenza globale
delle forme piuttosto che i dettagli locali meno ricorrenti (come loghi o testi). Il
VAE, per via della struttura compressa della rappresentazione latente latente, tende
a produrre immagini piu sfocate e prive di finezze, mentre il DiffuseVAE recupera
parzialmente texture e realismo, ma non riesce comunque a riprodurre con fedel-
ta assoluta elementi cosi specifici. Questo evidenzia il trade-off fra preservare la
struttura complessiva e catturare dettagli fini. Da un lato i modelli sono efficaci
nel rappresentare correttamente le categorie principali (scarpe, magliette, pantalo-
ni), dall’altro mostrano limiti nel riprodurre accuratamente informazioni testuali o

grafiche. Tale osservazione rappresenta un punto di transizione naturale verso le

84

conclusioni, dove verranno discusse le prospettive di miglioramento in termini di

qualita visiva e capacita di generare dettagli pit complessi e specifici.

85

Conclusioni

In questa tesi sono stati progettati, implementati e analizzati tre modelli generativi
per immagini: un Denoising Diffusion Probabilistic Model (DDPM), un Variational
Autoencoder (VAE) e un’architettura ibrida, DiffuseVAE, in cui il DDPM & guidato
dalla ricostruzione prodotta dal VAE. Il lavoro ha attraversato sia gli aspetti teorici
(processi forward e reverse, ELBO, embedding temporale e architettura UNet) sia le
scelte implementative, tra cui lo scheduler della varianza e 'iniezione multiscala del
condizionamento, fino a una valutazione sperimentale quantitativa e qualitativa su
MNIST e Fashion-MNIST, con ottimizzazione degli iperparametri eseguita tramite

Optuna.

Dal punto di vista metodologico, ¢ stata realizzata un’implementazione modulare
di DDPM e VAE, basata su una UNet con time embedding sinusoidale, atten-
zione multi-head e blocchi residuali. L’architettura DiffuseVAE ha introdotto un
condizionamento multiscala all’ingresso, nei percorsi di downsampling e nelle skip
connections, che utilizza la ricostruzione del VAE come guida stabile durante il
denoising. L’impianto sperimentale ha previsto un’ottimizzazione automatica degli
iperparametri dei due modelli principali e una valutazione con un set ampio di
metriche, comprendente PSNR, SSIM, MSE/MAE, Edge/Hist Similarity e LPIPS,

cosl da coprire sia accuratezza numerica sia qualita percettiva e strutturale.

I risultati mostrano che il VAE tende a ottenere errori numerici medi inferiori,
come evidenziato da MSE e PSNR, mentre DiffuseVAFE si distingue sulle metriche
percettive e strutturali (SSIM, EdgeSim e, in diversi scenari, LPIPS), generando
campioni piu coerenti e convincenti all’occhio umano. Queste evidenze confermano la
natura complementare dei due paradigmi: il VAE offre compattezza latente e buona
ricostruzione pixel-wise, i modelli di diffusione garantiscono stabilita di training e
fedelta visiva. Nel complesso, 'ibrido si rivela una soluzione efficace per conciliare

rappresentazione latente strutturata e alta qualita percettiva.

Il lavoro presenta tuttavia alcuni limiti. La qualita finale dipende dalla bonta
della ricostruzione del VAE, le cui imperfezioni possono propagarsi nel processo di

denoising. Inoltre, il reverse process multi-step comporta un costo computazionale e

86

tempi di campionamento piu elevati rispetto a un decoder VAE puro, soprattutto
all’aumentare dei timestep. Infine, la batteria di metriche non include ancora FID e
KID, indicatori utili per confronti piu diretti con la letteratura.

Queste considerazioni orientano le direzioni future.

Dal punto di vista valutativo pud essere opportuno integrare FID e KID. Il
Fréchet Inception Distance (FID) confronta la distribuzione dei descrittori estratti
con Inception v3 per immagini reali e generate, approssimandole con gaussiane
multivariate e calcolando la distanza di Fréchet; valori piu bassi indicano campioni
piu realistici e migliore copertura della distribuzione. Il Kernel Inception Distance
(KID) misura invece la Mazimum Mean Discrepancy con kernel polinomiale sugli
stessi descrittori e impiega uno stimatore non polarizzato, piu affidabile su campioni
di dimensione ridotta e adatto a riportare intervalli di confidenza. Riportare entrambi
rende i risultati comparabili con la letteratura e pitu robusti rispetto alla dimensione
del campione e ai dettagli di implementazione.

Per il condizionamento, € possibile impiegare il meccanismo di cross-attention: le
feature dell'immagine (query) prestano attenzione a chiavi e valori derivati dall’em-
bedding di condizione (testo, classe o altra modalita), cosi da iniettare informazione
in modo selettivo e localmente consapevole lungo la UNet. In continuita con la
classifier-free guidance gia discussa, per guidance testuale e guidance di classe in-
tendiamo 1'uso, rispettivamente, dell’embedding di un prompt testuale o della label
di classe come condizione ¢; durante il campionamento si combinano le predizioni
condizionate e non condizionate con un fattore di scala s, ottenendo un controllo
continuo dell’allineamento semantico (testuale) o categoriale (di classe).

Parallelamente, si possono estendere i benchmark a dataset piu sfidanti, come
CIFAR-10, CelebA o immagini a risoluzione superiore; migliorando 'efficienza del
campionamento tramite I’adozione di sampler avanzati (DDIM, DPM-Solver, con-
sistency o rectified-flow) o tecniche di distillazione per ridurre il numero di passi a
parita di qualita; esploreremo spazi latenti piu espressivi, ad esempio VQ-VAE o
B-VAE, e condizionamenti alternativi che traggano vantaggio dalla cross-attention e
dalla guidance sopra descritte.

In conclusione, DiffuseVAE rappresenta un compromesso pratico tra efficienza,
controllo e qualita visiva. L’integrazione tra una rappresentazione latente informativa
e un processo di diffusione robusto fornisce una base solida e flessibile su cui innestare
ulteriori miglioramenti, con 'obiettivo di elevare la qualita percettiva, accelerare la

generazione e aumentare la controllabilita del contenuto.

87

88

Bibliografia

1]

[5]

[6]

[7]

Al Index Steering Committee, The 2025 Al Index Report — Economy: Use of
AT climbs to unprecedented levels, Stanford HAI, 2025. https://hai.stanford.

edu/ai-index/2025-ai-index-report/economy

A. Bick, A. Blandin, D. Deming, The Impact of Generative Al
on Work Productivity, Federal Reserve Bank of St. Louis, Febbra-
io 2025. https://www.stlouisfed.org/on-the-economy/2025/feb/

impact-generative-ai-work-productivity

McKinsey & Company, The State of Al: Global Survey, 2025.
https://www.mckinsey.com/capabilities/quantumblack/our-insights/

the-state-of-ai

PyTorch Team, 2024 Year in Review, Dicembre 2024. https://pytorch.org/
blog/2024-year-in-review/

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative Adversarial Networks,” arXiv:1406.2661,
2014. https://arxiv.org/abs/1406.2661

P. Dhariwal and A. Nichol, “Diffusion Models Beat GANs on Image Synthesis,”
arXi:2105.05233, 2021. https://arxiv.org/abs/2105.05233

A. Novelli, M. Pasetti, et al., “Generative Al in EU Law: Liability, Privacy,
Intellectual Property, and Cybersecurity,” arXiv:2401.07348, 2024. https:
//arxiv.org/abs/2401.07348

J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep Un-
supervised Learning using Nonequilibrium Thermodynamics,” arXiv:1503.03585,
2015. https://arxiv.org/abs/1503.03585

J. Ho, A. Jain, and P. Abbeel, “Denoising Diffusion Probabilistic Models,”
Advances in Neural Information Processing Systems (NeurIPS), 33:6840-6851,
2020. https://arxiv.org/abs/2006.11239.

89

https://hai.stanford.edu/ai-index/2025-ai-index-report/economy
https://hai.stanford.edu/ai-index/2025-ai-index-report/economy
https://www.stlouisfed.org/on-the-economy/2025/feb/impact-generative-ai-work-productivity
https://www.stlouisfed.org/on-the-economy/2025/feb/impact-generative-ai-work-productivity
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai
https://pytorch.org/blog/2024-year-in-review/
https://pytorch.org/blog/2024-year-in-review/
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2401.07348
https://arxiv.org/abs/2401.07348
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2006.11239

[10] Lilian Weng, What are Diffusion Models?, Lil'Log, 2022. https://lilianweng.
github.io/posts/2021-07-11-diffusion-models/

[11] I. Strimke and H. Langseth, Lecture Notes in Probabilistic Diffusion Models,
2023. https://arxiv.org/abs/2312.10393

[12] J. Ho and T. Salimans,
Classifier-Free Diffusion Guidance,
2022.
https://arxiv.org/abs/2207.12598

[13] D. P. Kingma and M. Welling, An Introduction to Variational Autoencoders,
2019. https://arxiv.org/abs/1906.02691

[14] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed,
and A. Lerchner, beta-VAE: Learning Basic Visual Concepts with a Constrained
Variational Framework, 2017. https://arxiv.org/abs/1611.02731

[15] K. Pandey, A. Mukherjee, P. Rai, and A. Kumar, DiffuseVAE: Efficient, Control-
lable and High-Fidelity Generation from Low-Dimensional Latents, Transactions
on Machine Learning Research (TMLR), 2022. https://arxiv.org/abs/2201.
00308

[16] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, Optuna: A Next-
generation Hyperparameter Optimization Framework, 2019. https://arxiv.org/
abs/1907.10902

[17] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, Algorithms
for Hyper-Parameter Optimization, 2011. https://papers.nips.cc/paper/
4443-algorithms-for-hyper-parameter-optimization.pdf

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning
applied to document recognition, Proceedings of the IEEE, 86(11):2278-2324,
1998. http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

[19] H. Xiao, K. Rasul, and R. Vollgraf, Fashion-MNIST: a Novel Image Dataset
for Benchmarking Machine Learning Algorithms, arXiv:1708.07747, 2017. https:
//arxiv.org/abs/1708.07747

90

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://arxiv.org/abs/2312.10393
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/1906.02691
https://arxiv.org/abs/1611.02731
https://arxiv.org/abs/2201.00308
https://arxiv.org/abs/2201.00308
https://arxiv.org/abs/1907.10902
https://arxiv.org/abs/1907.10902
https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1708.07747

Ringraziamenti

Giunto alla conclusione di questo fantastico percorso, ci tengo a ringraziare tutti voi
per il supporto e la vicinanza mostrata in questi 3 anni.

In ambito accademico ringrazio la prof.ssa Lazzaro, per avermi ispirato fin dal corso
di Metodi Numerici, per la disponibilita e la serieta che ha messo nel seguirmi nella
stesura di questa tesi. A lei devo anche la mia passione per I'Intelligenza Artificiale.
Ringrazio la mia famiglia: Mamma, Babbo e Meli per essere stati, da sempre, il piu
grande esempio di come nella vita, se si vuole, si puo fare tutto cio che ci passa per
la testa. La condizione necessaria e, pero, metterci impegno, dedizione e passione.
Mamma, Babbo, non mi scordero mai di tutti i sacrifici che avete fatto per me, spero
di avervi resi orgogliosi.

Meli, a te auguro di raggiungere obiettivi sempre piu grandi, anche piu grandi di
tutti quelli che io posso raggiungere... so che ne sei in grado.

Ringrazio i nonni per aver sempre creduto in me, per aver sempre sostenuto le mie
idee, per non aver mai dubitato anche solo un secondo che Kevin un giorno sarebbe
riuscito a raggiungere tutto questo.

Ringrazio Zia, Dori e zio Sajmiri per avermi sempre insegnato che lo studio, la
costanza e il duro lavoro alla fine dei conti ripagano sempre.

Ringrazio la famiglia Bombardi: Lele, Monica e Angi. Voglio ringraziarvi di cuore
per questi anni in cui mi avete sempre accolto e ascoltato come uno di famiglia. Non
& mai scontato trovare persone cosi disponibili e affettuose, e io sono davvero grato
di avervi accanto.

Ringrazio i miei amici di sempre: Checco, Biso, Marco, Nico, Ele, Leo, Canna, il
Mister, Ghello, Dodo... vedere ciascuno di noi realizzarsi mi rende sempre piu felice,
anche per quello che sara il nostro futuro. Nonostante vari momenti difficili abbiamo
raggiunto, a mio avviso, una grande maturita... alla fine dei conti, mi duole dirlo,
non potevo trovare amici migliori.

Ringrazio tutti i compagni incontrati in questo percorso: Fede, Giammi, Lisa, Sapo,
Paggio, Qiu, Balza, Fronzo e I'Oraz... mi ricordero di tutti i momenti spensierati

passati a lezione, ma con ancora piu gratitudine, tutti i momenti in cui ci siamo

91

aiutati e sostenuti. Giungere alla fine tutti insieme ¢ un traguardo indimenticabile.
Ringrazio la persona che ha dato una svolta alla mia vita: Lucia.

Possiamo dire di essere cresciuti e maturati insieme e di aver costruito qualcosa di
davvero grande, mai me lo sarei immaginato, ma tutto questo e grazie a te.

Sei sempre stata due passi avanti a tutti, e questo mi ha permesso di dare sempre il
massimo, in tutti i momenti, sia belli che brutti. Mi hai insegnato ad apprezzare le
piccole cose, a vedere le giornate piu difficili con un occhio diverso, a credere in me
stesso e tanto altro.

Sei stata la spalla pit bella su cui piangere e il sorriso piu bello che mi ha accompa-
gnato e dato forza in questo percorso.

Spero di averti accanto a me per ancora tanto tempo e ancor di piu spero di poter
raggiungere altri innumerevoli traguardi insieme.

Faccio un piccolo ringraziamento al Kevin di tanti anni fa, il quale aveva ben chiaro di
intraprendere questo percorso, anche se inconsapevole del fatto che senza la famiglia

e le persone giuste al proprio fianco ¢ davvero difficile raggiungere grandi obiettivi.

92

	Introduzione
	L'AI Generativa
	Panoramica ed evoluzione
	Dai GAN ai DDPM
	Legislazioni e limitazioni dell’AI generativa

	Denoising Diffusion Probabilistic Models (DDPM)
	Entropia e termodinamica
	Processi forward e reverse
	Forward: catena di Markov gaussiana
	Reverse: modello generativo gaussiano

	Derivazione della loss function
	Training e Sampling nei DDPM
	Procedura di Training
	Procedura di Sampling

	Architettura del modello nei DDPM
	Architettura UNet
	Time embedding e iniezione nella UNet
	Codifica sinusoidale

	Classifier-Free Guidance
	Posteriori come campi esterni
	Dal classifier guidance al classifier-free guidance
	Formula di combinazione
	Interpretazione e risultati

	Variational Autoencoder (VAE)
	Introduzione e principi generali
	Formulazione probabilistica e reparameterization trick
	Evidence Lower Bound (ELBO)
	Derivazione matematica
	Interpretazione pratica

	Architettura del modello
	Pseudocodice di training e sampling
	Limiti, varianti e confronto con i DDPM
	Limiti principali
	Varianti
	Confronto con i DDPM

	Diffuse-VAE
	Introduzione
	Funzionamento generale
	Formulazione 1
	Implementazione nella tesi
	Limiti e prospettive

	Implementazione
	DDPM e Diffuse-VAE
	Architettura UNet

	Noise scheduler
	Linear Scheduler
	Cosine Scheduler
	Metodi forward e reverse
	Training
	Sampling

	VAE
	Encoder e decoder
	Visualizzazione dello spazio latente
	Sampling

	Ottimizzazione degli iperparametri e addestramento dei modelli generativi
	Descrizione dei dataset utilizzati
	MNIST
	Fashion-MNIST

	Panoramica di Optuna
	Spazio di ricerca e campionamento
	Pruning con MedianPruner
	Miglior trial e risultati dell'ottimizzazione

	Applicazione al Variational Autoencoder (VAE)
	Configurazione di Optuna per il VAE
	Risultati

	Applicazione al Denoising Diffusion Probabilistic Model (DDPM)
	Configurazione di Optuna per il DDPM
	Risultati

	Discussione e confronto

	Valutazione quantitativa e qualitativa delle immagini generate
	PSNR
	SSIM
	MSE
	MAE
	Edge Similarity (Sobel-based)
	Histogram Similarity (Chi-Squared)
	LPIPS
	Risultati Finali
	Visualizzazione delle immagini generate
	Immagini generate dal VAE
	Evoluzione dello spazio latente del VAE
	Immagini generate dal DiffuseVAE
	Confronto fra dataset reale, VAE e DiffuseVAE

	Conclusioni
	Bibliografia

