
Alma Mater Studiorum
Università di Bologna

Campus di Cesena

DIPARTIMENTO DI INFORMATICA – SCIENZA E INGEGNERIA

Corso di Laurea Triennale in Ingegneria e Scienze Informatiche

Gestione degli allarmi e simulazione degli

spostamenti in un sistema di allerta per

evacuazione

Elaborato in:

Basi di Dati

Relatore:

Prof.ssa Alessandra Lumini

Correlatore:

Prof.ssa Annalisa Franco

Presentata da:

Beatrice di Gregorio

Sessione II

Anno Accademico 2024-2025





A papà, la stella che non mi ha mai

lasciata sola nei momenti di difficoltà.

Alla mia super mamma che mi ha

insegnato a camminare passo dopo passo,

tenendomi sempre per mano.

Alle mie piccole pesti:

Stefano, Lorenzo, Adele, Mariele,

Caterina, Alma, Matilde e Ambra,

per avermi insegnato cos’è davvero la

felicità e a guardare il mondo con

gli occhi di un bambino.





Introduzione

Il problema della gestione delle emergenze, a causa dei crescenti eventi estremi e dei

disastri naturali, è diventato una sfida cruciale per la sicurezza e il benessere delle po-

polazioni. Eventi come terremoti, inondazioni e incendi richiedono una risposta rapida e

coordinata, spesso ostacolata dalla frammentazione delle informazioni e dalla mancanza

di un sistema integrato. Le soluzioni esistenti, come i sistemi di allerta a livello territo-

riale (es. IT-Alert in Italia e IPAWS negli Stati Uniti), sono efficaci per le notifiche su

larga scala ma presentano dei limiti: si concentrano sulla comunicazione passiva e non

offrono una reazione dinamica e automatizzata che si adatti in tempo reale all’evolversi

dell’emergenza. Questa lacuna è ancora più evidente in contesti specifici e confinati, come

gli edifici, dove la necessità di una localizzazione precisa e di un ricalcolo dinamico delle

vie di fuga è fondamentale per garantire l’incolumità degli occupanti.

Il presente lavoro di tesi si propone di affrontare questa sfida progettando e implemen-

tando un sistema di gestione delle emergenze innovativo. L’obiettivo principale è superare

le inefficienze dei protocolli di allerta tradizionali creando un’architettura che non si limiti

alla semplice notifica, ma che orchestri una risposta intelligente e automatica. L’obiettivo

è quello di fornire agli utenti percorsi di evacuazione dinamici e sicuri, calcolati in tempo

reale in base alla situazione di pericolo.

Per raggiungere questo scopo, il problema è stato affrontato attraverso la progettazione

e l’implementazione di un’architettura a microservizi. Questa scelta metodologica ha per-

messo di dividere il sistema in componenti indipendenti, rendendolo modulare, scalabile

e resiliente. L’architettura proposta integra componenti specializzati per la gestione degli

alert, l’elaborazione e la visualizzazione dei dati spaziali e la pianificazione dei percorsi

di evacuazione, realizzando un sistema modulare e coerente per il supporto alla gestione

delle emergenze. Nello specifico, il mio contributo si è concentrato sullo sviluppo di tre

microservizi chiave: il Gestore degli alert, responsabile dell’elaborazione delle allerte; il

Simulatore delle posizioni, che ha permesso di validare il sistema in assenza di dati reali;

e il Gestore delle posizioni, che valuta il rischio e gestisce le informazioni georeferenziate

degli utenti.

I risultati ottenuti, validati attraverso un’analisi sperimentale condotta su un caso di

i



ii INTRODUZIONE

studio (il Campus universitario di Cesena), dimostrano l’efficacia e l’efficienza del sistema

proposto. Le simulazioni, basate su scenari di terremoto e alluvione, hanno confermato

la capacità dell’architettura di elaborare le allerte e di fornire percorsi di evacuazione

aggiornati in tempo reale, fornendo cos̀ı un robusto benchmark per futuri sviluppi.

Questo documento è suddiviso in sette capitoli. Il Capitolo 1 analizza il problema

e lo stato dell’arte dei sistemi di allerta esistenti. Il Capitolo 2 descrive l’architettura

a microservizi proposta e il flusso di gestione dell’emergenza. Il Capitolo 3 illustra le

tecnologie fondamentali utilizzate nello sviluppo. I Capitoli 4, 5 e 6 entrano nel dettaglio

dell’implementazione dei microservizi di mia diretta responsabilità. Il Capitolo 7 presenta

e analizza i risultati sperimentali. Infine le Conclusioni riassumono il lavoro svolto e

delineano le future prospettive.



Indice

Introduzione i

1 Descrizione del problema affrontato 1

1.1 Descrizione del problema . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Analisi dello stato dell’arte . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Common Alerting Protocol (CAP) . . . . . . . . . . . . . . . . . . 2

1.2.2 IT-Alert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 IPAWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Motivazioni dello sviluppo . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Architettura del sistema 11

2.1 Scelta dell’architettura a microservizi . . . . . . . . . . . . . . . . . . . . . 11

2.2 Panoramica dell’architettura proposta . . . . . . . . . . . . . . . . . . . . . 13

2.3 Design dei microservizi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Gestore degli alert . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Centro notifiche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Simulatore delle posizioni . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.4 Gestore delle posizioni . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.5 Visualizzatore della mappa . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.6 Gestore della mappa . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Comunicazione tra microservizi: flusso dell’emergenza . . . . . . . . . . . . 19

2.4.1 Fase 1: Inizio della gestione dell’emergenza . . . . . . . . . . . . . . 20

2.4.2 Fase 2: Analisi continua del pericolo e notifiche . . . . . . . . . . . 20

2.4.3 Fase 3: Reazione alle notifiche di evacuazione e aggiornamento delle

posizioni simulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.4 Fase 4: Aggiornamento della mappa e ricalcolo dei percorsi . . . . . 22

2.4.5 Fase 5: Riassegnamento delle rotte . . . . . . . . . . . . . . . . . . 23

2.4.6 Fase 0: Configurazione del sistema . . . . . . . . . . . . . . . . . . 24

iii



iv INTRODUZIONE

3 Tecnologie fondamentali del sistema 27

3.1 Linguaggio di programmazione: Python . . . . . . . . . . . . . . . . . . . . 28

3.2 Sistema di message queuing: RabbitMQ . . . . . . . . . . . . . . . . . . . 30

3.3 Database di persistenza: PostgreSQL . . . . . . . . . . . . . . . . . . . . . 33

3.4 File di configurazione: YAML . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Conclusioni sulle tecnologie fondamentali . . . . . . . . . . . . . . . . . . . 37

4 Microservizio gestore degli alert 39

4.1 Introduzione e funzionalità specifiche . . . . . . . . . . . . . . . . . . . . . 39

4.2 Analisi dello stato dell’arte e motivazione delle scelte implementative . . . 40

4.2.1 Sistemi di monitoraggio e allerta generici . . . . . . . . . . . . . . . 40

4.2.2 Soluzioni specifiche per il dominio applicativo . . . . . . . . . . . . 41

4.2.3 Conclusioni sull’analisi dello stato dell’arte . . . . . . . . . . . . . . 42

4.3 Sviluppo operativo del microservizio . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Componenti principali e flusso di lavoro degli alert . . . . . . . . . . 43

4.3.2 Elaborazione del Common Alerting Protocol . . . . . . . . . . . . . 46

4.3.3 Gestione della configurazione esterna e logica di filtraggio . . . . . . 49

4.3.4 Persistenza dei dati e archiviazione storica . . . . . . . . . . . . . . 52

4.3.5 Instradamento e notifica via RabbitMQ . . . . . . . . . . . . . . . . 53

4.3.6 Sistema di logging . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Conclusioni sul gestore degli alert . . . . . . . . . . . . . . . . . . . . . . . 56

5 Microservizio simulatore delle posizioni 59

5.1 Introduzione e funzionalità specifiche . . . . . . . . . . . . . . . . . . . . . 60

5.2 Analisi dello stato dell’arte e motivazione delle scelte implementative . . . 60

5.2.1 Necessità strategica di un simulatore dedicato . . . . . . . . . . . . 60

5.2.2 Confronto con framework e librerie di simulazione generiche . . . . 61

5.2.3 Conclusioni sull’analisi dello stato dell’arte . . . . . . . . . . . . . . 63

5.3 Sviluppo operativo del microservizio . . . . . . . . . . . . . . . . . . . . . . 63

5.3.1 Componenti principali e flusso di lavoro del simulatore . . . . . . . 64

5.3.2 Modulo di avvio e orchestrazione . . . . . . . . . . . . . . . . . . . 66

5.3.3 Modulo di gestione della configurazione . . . . . . . . . . . . . . . . 67

5.3.4 Modulo di interazione con il database . . . . . . . . . . . . . . . . . 69

5.3.5 Modulo di comunicazione asincrona . . . . . . . . . . . . . . . . . . 70

5.3.6 Modulo core di simulazione . . . . . . . . . . . . . . . . . . . . . . 72

5.3.7 Modulo di logging e servizio . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Conclusioni sul simulatore delle posizioni . . . . . . . . . . . . . . . . . . . 75



INDICE v

6 Microservizio gestore delle posizioni 77

6.1 Introduzione e funzionalità specifiche . . . . . . . . . . . . . . . . . . . . . 77

6.2 Analisi dello stato dell’arte e motivazione delle scelte implementative . . . 78

6.2.1 Architetture tradizionali e limiti dei sistemi RTLS . . . . . . . . . . 78

6.2.2 Modelli moderni di stream processing e la loro non applicabilità al

prototipo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Sviluppo operativo del microservizio . . . . . . . . . . . . . . . . . . . . . . 80

6.3.1 Componenti principali . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3.2 Flusso di lavoro delle posizioni . . . . . . . . . . . . . . . . . . . . . 81

6.3.3 Modulo di interazione con il database . . . . . . . . . . . . . . . . . 83

6.3.4 Modulo di comunicazione asincrona . . . . . . . . . . . . . . . . . . 86

6.3.5 Modulo di logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.6 Conclusioni sul gestore delle posizioni . . . . . . . . . . . . . . . . . 87

7 Risultati sperimentali 89

7.1 Analisi del caso di studio: Campus universitario di Cesena . . . . . . . . . 89

7.2 Simulazioni qualitative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.2.1 Allerta di tipo Earthquake . . . . . . . . . . . . . . . . . . . . . . . 92

7.2.2 Allerta di tipo Flood . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.3 Validazione quantitativa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3.1 Impatto del carico del sistema . . . . . . . . . . . . . . . . . . . . . 103

7.3.2 Impatto del contesto spaziale e temporale . . . . . . . . . . . . . . 107

7.3.3 Impatto della tipologia allerta . . . . . . . . . . . . . . . . . . . . . 111

7.3.4 Impatto della capacità del grafo (archi e nodi) . . . . . . . . . . . . 114

7.4 Riepilogo della validazione quantitativa . . . . . . . . . . . . . . . . . . . . 117

Conclusioni 119

Appendici 121

Appendice A: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Appendice B: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Appendice C: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Appendice D: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Bibliografia 129

Ringraziamenti 133





Elenco delle figure

1.1 Esempio di notifica IT-Alert e IPAWS . . . . . . . . . . . . . . . . . . . . . 3

2.1 Confronto tra Architettura Monolitica e a Microservizi. . . . . . . . . . . . 12

2.2 Grafo architettura del sistema a microservizi . . . . . . . . . . . . . . . . . 14

2.3 Sequence diagram sull’inizio della gestione dell’emergenza . . . . . . . . . . 20

2.4 Sequence diagram sull’analisi del pericolo . . . . . . . . . . . . . . . . . . . 21

2.5 Sequence diagram sulle reazioni alle notifiche di evacuazione . . . . . . . . 22

2.6 Sequence diagram sull’aggiornamento della mappa e dei percorsi . . . . . . 23

2.7 Sequence diagram sul riassegnamento delle rotte . . . . . . . . . . . . . . . 24

2.8 Sequence diagram sulla configurazione iniziale del sistema . . . . . . . . . . 25

3.1 Esempio di implementazione Python-Based . . . . . . . . . . . . . . . . . . 30

3.2 Esempio di implementazione con RabbitMQ . . . . . . . . . . . . . . . . . 32

3.3 Esempio di database relazionale nel sistema complessivo . . . . . . . . . . 35

4.1 Struttura interna del microservizio Alert Manager . . . . . . . . . . . . . . 43

4.2 Flusso interno del microservizio Alert Manager . . . . . . . . . . . . . . . . 44

4.3 Struttura standard di un messaggio CAP . . . . . . . . . . . . . . . . . . . 47

4.4 Logica di filtraggio degli Alert . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Schema semplificato del database per la persistenza degli Alert CAP . . . . 52

4.6 Flusso del Messaggio di Alert tramite RabbitMQ . . . . . . . . . . . . . . 54

5.1 Struttura interna del microservizio User Simulator . . . . . . . . . . . . . 64

5.2 Flusso interno del microservizio User Simulator . . . . . . . . . . . . . . . 65

5.3 Flusso del modulo di avvio e orchestrazione . . . . . . . . . . . . . . . . . 67

5.4 Tabelle nodes e arcs del database dedicato alla rappresentazione dell’edificio 70

5.5 Flusso delle posizioni tramite RabbitMQ . . . . . . . . . . . . . . . . . . . 71

6.1 Struttura interna del microservizio Position Manager . . . . . . . . . . . . 81

6.2 Flusso interno del microservizio Position Manager . . . . . . . . . . . . . . 83

6.3 Flusso interno delle query SQL per la gestione delle posizioni . . . . . . . . 84

vii



viii ELENCO DELLE FIGURE

6.4 Flusso interno delle query SQL per l’analisi e l’aggregazione dei dati . . . . 85

6.5 Rappresentazione del meccanismo TTL per l’ottimizzazione delle query . . 86

7.1 Piano 0 del Campus di Cesena . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2 Piano 1 del Campus di Cesena . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3 Piano 2 del Campus di Cesena . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.4 Posizioni iniziali Piano 0 prima dell’allerta Terremoto . . . . . . . . . . . . 93

7.5 Posizioni iniziali Piano 1 prima dell’allerta Terremoto . . . . . . . . . . . . 93

7.6 Posizioni iniziali Piano 2 prima dell’allerta Terremoto . . . . . . . . . . . . 94

7.7 Nodi iniziali degli utenti e percorsi di evacuazione associati per l’allerta

Earthquake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.8 Percorso degli utenti del Piano 0 . . . . . . . . . . . . . . . . . . . . . . . . 95

7.9 Percorso degli utenti del Piano 1 . . . . . . . . . . . . . . . . . . . . . . . . 95

7.10 Percorso degli utenti del Piano 2 . . . . . . . . . . . . . . . . . . . . . . . . 96

7.11 Posizioni iniziali Piano 0 prima dell’allerta Alluvione . . . . . . . . . . . . 97

7.12 Posizioni iniziali Piano 1 prima dell’allerta Alluvione . . . . . . . . . . . . 97

7.13 Posizioni iniziali Piano 2 prima dell’allerta Alluvione . . . . . . . . . . . . 98

7.14 Nodi iniziali degli utenti e percorsi di evacuazione associati per l’allerta Flood 98

7.15 Percorso degli utenti nel Piano 0 . . . . . . . . . . . . . . . . . . . . . . . . 99

7.16 Posizioni degli utenti nel Piano 1 . . . . . . . . . . . . . . . . . . . . . . . 99

7.17 Posizioni degli utenti nel Piano 2 . . . . . . . . . . . . . . . . . . . . . . . 100

7.18 Confronto variazione tempi di ricezione al variare del numero di utenti

simulati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.19 Utenti salvati nel tempo — Terremoto, capacità limitata, ore 10. . . . . . . 105

7.20 Confronto tra Throughput e Latency Gap al variare del numero di utenti

a rischio nello scenario Terremoto con capacità archi e nodi limitata e

simulazione alle ore 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.21 Confronto variazione tempi di ricezione al variare della fascia oraria di

simulazione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.22 Utenti salvati nel tempo — Terremoto, capacità limitata, 1000 utenti;

confronto tra quattro fasce orarie. . . . . . . . . . . . . . . . . . . . . . . . 109

7.23 Confronto tra Throughput e Latency Gap nelle diverse fasce orarie (scena-

rio Terremoto, capacità limitata, 1000 utenti). . . . . . . . . . . . . . . . . 110

7.24 Confronto variazione tempi di ricezione al variare della tipologia di allerta . 112

7.25 Utenti salvati nel tempo—Ore 10, capacità limitata, 1000 utenti; confronto

tra allerta terremoto e alluvione. . . . . . . . . . . . . . . . . . . . . . . . . 112

7.26 Confronto tra Throughput e Latency Gap negli scenari Terremoto e Allu-

vione con capacità archi e nodi limitata e 1000 utenti. . . . . . . . . . . . . 113



INDICE ix

7.27 Confronto variazione tempi di ricezione al variare della capacità degli archi

e dei nodi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.28 Utenti salvati nel tempo — Terremoto, ore 10, 1000 utenti; confronto tra

capacità limitata e infinita. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.29 Confronto tra Throughput e Latency Gap per allerta Terremoto e simula-

zione di 1000 utenti alle ore 10 . . . . . . . . . . . . . . . . . . . . . . . . 117





Elenco delle tabelle

1.1 Confronto tra IT-alert e IPAWS . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Confronto tra Microservizi e Architettura Monolitica . . . . . . . . . . . . 13

3.1 Sintesi delle motivazioni per la scelta di Python . . . . . . . . . . . . . . . 29

3.2 Sintesi delle motivazioni per la scelta di RabbitMQ nel sistema a microservizi 33

7.1 Dati raccolti per allerta Terremoto con capacità di archi e nodi limitata,

simulata alle ore 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Riepilogo delle metriche di performance nello scenario Terremoto con ca-

pacità limitata e simulazione alle ore 10 . . . . . . . . . . . . . . . . . . . . 106

7.3 Dati raccolti per allerta Terremoto con capacità di archi e nodi limitata,

simulata per 1000 utenti . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.4 Riepilogo delle metriche di performance nello scenario Terremoto con ca-

pacità limitata e numero utenti a 1000 . . . . . . . . . . . . . . . . . . . . 110

7.5 Dati raccolti per simulazioni alle ore 10 con capacità di archi e nodi limitata

e 1000 utenti simulati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.6 Riepilogo delle metriche di performance con capacità archi e nodi limitata,

simulazione di 1000 utenti alle ore 10 . . . . . . . . . . . . . . . . . . . . . 113

7.7 Dati raccolti per allerta Terremoto, simulazioni alle ore 10 con 1000 utenti

simulati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.8 Riepilogo delle metriche di performance per allerta di tipo Terremoto,

simulazione di 1000 utenti alle ore 10 . . . . . . . . . . . . . . . . . . . . . 116

xi



xii ELENCO DELLE TABELLE



Capitolo 1

Descrizione del problema affrontato

1.1 Descrizione del problema

Negli ultimi decenni, i cambiamenti climatici e le emergenze ambientali sono diventati

una minaccia crescente per la sicurezza e il benessere delle popolazioni. Eventi estremi,

come inondazioni, terremoti e incendi boschivi, si verificano con una frequenza sempre

maggiore, richiedendo risposte tempestive e coordinate da parte delle autorità competenti.

Tuttavia, la gestione di queste emergenze è spesso ostacolata da vari fattori, sia a livello

di gestione territoriale, sia in scala ridotta all’interno di singole strutture ed edifici.

In primo luogo, la frammentazione delle informazioni rappresenta un problema si-

gnificativo. Le diverse agenzie e organizzazioni coinvolte nella gestione delle emergenze

possono utilizzare sistemi e protocolli differenti, rendendo difficile la condivisione e l’inte-

grazione dei dati. Questa mancanza di coordinamento può portare a ritardi nelle risposte

e a decisioni inefficaci. Analogamente, all’interno di un edificio, la mancanza di un sistema

centralizzato per la raccolta e la diffusione delle informazioni può ostacolare una gestione

efficace delle emergenze locali, come incendi o guasti strutturali.

In secondo luogo, la comunicazione con il pubblico è spesso carente. Gli avvisi e le

notifiche riguardanti situazioni di emergenza non sempre raggiungono le persone in tempo

utile o non sono sufficientemente chiari. Questo può portare a confusione e, in ultima

analisi, a conseguenze gravi per la sicurezza delle persone. Questo aspetto è cruciale

anche in un contesto edilizio, dove sistemi di allarme e comunicazione interna inefficienti

possono mettere a rischio l’incolumità degli occupanti.

Infine, la rapidità con cui si evolvono le situazioni di emergenza richiede sistemi flessibili

e adattabili. Le attuali soluzioni tecnologiche non sempre riescono a tenere il passo con

la velocità degli eventi, rendendo difficile per le autorità rispondere in modo efficace e

proattivo. Anche nella gestione delle emergenze all’interno di un edificio, la necessità di

sistemi reattivi e capaci di adattarsi rapidamente all’evolversi della situazione (ad esempio,

1



2 1. Descrizione del problema affrontato

la propagazione di un incendio o la necessità di evacuazione parziale) è fondamentale.

Queste problematiche evidenziano la necessità di sviluppare un sistema integrato e

innovativo che possa migliorare la gestione delle emergenze. Un tale sistema dovrebbe

facilitare la raccolta e l’analisi dei dati, migliorare la comunicazione tra le diverse entità

coinvolte e garantire che le informazioni cruciali raggiungano il pubblico in modo tem-

pestivo e chiaro. La presente tesi si concentra sulla progettazione e implementazione di

un sistema di gestione delle emergenze specificamente pensato per un contesto edilizio.

Tuttavia, per comprendere appieno le sfide e le potenzialità di un sistema integrato, si

prenderanno in esame anche sistemi di gestione delle emergenze implementati su scala

territoriale più ampia, analizzando il loro funzionamento e i protocolli utilizzati, al fine di

identificare approcci e tecnologie applicabili anche al contesto specifico di un edificio.

1.2 Analisi dello stato dell’arte

L’analisi dello stato dell’arte rappresenta un passo fondamentale per comprendere il

contesto attuale in cui si inserisce il progetto di gestione delle emergenze. In questo para-

grafo, esamineremo le soluzioni esistenti e le tecnologie attualmente in uso, evidenziando

le loro caratteristiche, i punti di forza e le limitazioni. In particolare, ci concentreremo su

due sistemi di allerta pubblica: IT-alert e IPAWS, che rappresentano esempi concreti di

come le tecnologie possano essere utilizzate per la comunicazione durante le emergenze.

1.2.1 Common Alerting Protocol (CAP)

Il Common Alerting Protocol (CAP) si configura come uno standard internazionale

aperto, definito da OASIS1 (OASIS Standard, 2010), con l’obiettivo di uniformare il for-

mato dei messaggi di allerta di emergenza per diverse tipologie di pericoli e sistemi di

comunicazione. La sua adozione mira a superare la frammentazione informativa, promuo-

vendo l’interoperabilità tra piattaforme di allerta a livello globale. Un messaggio CAP è

strutturato per contenere informazioni essenziali sull’emergenza, come la sua natura, la

gravità, l’urgenza, l’area interessata (anche con precise coordinate geografiche) e le azioni

raccomandate. [1]

In Italia, il sistema di allerta pubblica IT-alert utilizza un profilo specifico del CAP,

denominato CAP-IT, adattato al contesto nazionale e alle procedure della Protezione

Civile. Sebbene derivato dallo standard OASIS, il CAP-IT presenta specificità legate

all’implementazione nel sistema italiano, come i requisiti per la registrazione dei mittenti.

[2]

1OASIS - Organization for the Advancement of Structured Information Standards



1.2 Analisi dello stato dell’arte 3

Entrambe le versioni del CAP condividono l’importanza di elementi come la localiz-

zazione geografica degli avvisi e la gestione degli aggiornamenti. Tuttavia, l’adattamento

italiano sottolinea come uno standard globale possa essere specificato per rispondere alle

esigenze di un determinato contesto. [2]

Per la progettazione del sistema di gestione delle emergenze all’interno dell’edificio

oggetto di questa tesi, si farà riferimento al CAP come modello fondamentale per la strut-

turazione degli avvisi. L’obiettivo è definire un formato di messaggio che, pur essendo

specifico per le dinamiche interne di un edificio (come la localizzazione per piani o aree

specifiche), possa potenzialmente interoperare con sistemi basati su standard CAP, ga-

rantendo una comunicazione efficace e coerente in caso di necessità di integrazione con

sistemi di allerta più ampi. Le caratteristiche di flessibilità del CAP nella gestione della

localizzazione e della multicanalità saranno particolarmente rilevanti nello sviluppo del

microservizio dedicato alla generazione e diffusione degli avvisi interni. [3]

La comprensione del Common Alerting Protocol e delle sue diverse implementazioni,

come quella italiana adottata da IT-alert e lo standard OASIS utilizzato come base per

sistemi come l’IPAWS statunitense, fornisce un contesto fondamentale per analizzare co-

me questi sistemi gestiscono l’allerta. Nei paragrafi successivi verranno analizzati i due

sistemi per evidenziare le loro caratteristiche, i punti di forza e le limitazioni, al fine di

identificare le migliori pratiche applicabili al sistema proposto per la gestione delle emer-

genze all’interno di un edificio. [1][2][4] La Figura 1.1 mette a confronto un esempio di

interfaccia di una notifica IT-alert con quella di del sistema statunitense IPWAS.

Figura 1.1: Esempio di notifica IT-Alert e IPAWS



4 1. Descrizione del problema affrontato

1.2.2 IT-Alert

IT-alert è il sistema nazionale di allerta per la popolazione in Italia, progettato per ga-

rantire informazioni tempestive e precise durante situazioni di emergenza. Sviluppato dal

Dipartimento della Protezione Civile, questo sistema si basa su una rete di comunicazione

integrata che consente alle autorità di inviare avvisi mirati e tempestivi.

Rappresentando un significativo passo avanti nella gestione delle emergenze, IT-alert

funge da strumento cruciale per la comunicazione diretta con i cittadini in momenti critici.

Il sistema si attiva in risposta a eventi gravi, come incidenti nucleari, attività vulcaniche e il

collasso di dighe. Utilizzando la tecnologia cell-broadcast, i messaggi possono raggiungere

tutti i dispositivi collegati alle celle telefoniche attive nella zona interessata, garantendo

cos̀ı una diffusione rapida ed efficace, anche in situazioni di congestione della rete. Ogni

avviso è caratterizzato da un suono distintivo e dall’etichetta ”IT-alert”, informando la

popolazione su pericoli imminenti e incoraggiando comportamenti di autoprotezione. [2]

Un aspetto fondamentale del sistema è la necessità di aumentare la consapevolezza dei

rischi tra gli utenti, supportata da un’educazione continua e da informazioni sui compor-

tamenti appropriati da adottare in caso di emergenza. Inoltre, IT-alert è progettato per

operare senza richiedere il download di app o la condivisione di dati personali, rispettando

cos̀ı la privacy degli utenti. La sua implementazione integra le modalità di comunicazione

già esistenti, migliorando l’efficacia della risposta alle emergenze attraverso una rete di

collaborazione tra le diverse componenti del Servizio nazionale di protezione civile. [5] [6]

Le caratteristiche principali del sistema IT-alert sono:

• Multicanalità: Utilizza diversi canali di comunicazione, come SMS, e-mail e messaggi

vocali, per raggiungere un pubblico ampio.

• Localizzazione: Gli avvisi possono essere inviati a gruppi specifici in base alla loro

posizione geografica, aumentando la pertinenza delle informazioni.

• Accessibilità: È progettato per essere accessibile a tutti i cittadini, indipendente-

mente dal tipo di dispositivo utilizzato.

I punti di forza del sistema IT-alert sono:

• Risposta rapida: La capacità di inviare avvisi in tempo reale può salvare vite in

situazioni critiche.

• Integrazione con altre piattaforme: IT-alert può collaborare con altri sistemi di

emergenza, migliorando la coordinazione e la risposta complessiva.

Le limitazioni dell’IT-alert sono:



1.2 Analisi dello stato dell’arte 5

• Dipendenza dalla tecnologia: La necessità di dispositivi mobili limita l’accesso per

alcune fasce della popolazione, come gli anziani.

• Saturazione delle comunicazioni: Durante eventi di emergenza, l’elevato volume di

notifiche può portare a una saturazione, riducendo l’attenzione degli utenti.

In sintesi, IT-alert rappresenta un passo importante verso un sistema di allerta pub-

blico più moderno e reattivo, contribuendo in modo significativo alla sicurezza e alla

protezione dei cittadini. [2][5][6][7]

1.2.3 IPAWS

L’Integrated Public Alert and Warning System (IPAWS) è un sistema statunitense

che consente la distribuzione di avvisi pubblici attraverso diverse piattaforme e canali.

IPAWS integra vari sistemi di allerta, come il Wireless Emergency Alerts (WEA) e il

Emergency Alert System (EAS). [4]

Le caratteristiche principali del sistema IPAWS sono:

• Multicanalità: IPAWS consente la diffusione di avvisi attraverso radio, televisioni e

dispositivi mobili, aumentando la probabilità che le informazioni vengano ricevute.

• Coordinamento: Facilita la comunicazione tra diverse agenzie e livelli di governo,

garantendo una risposta efficace durante le emergenze.

• Integrazione con EAS: L’EAS è un sistema di allerta pubblico nazionale che con-

sente al Presidente di comunicare con il popolo americano entro dieci minuti duran-

te un’emergenza nazionale. Questo sistema richiede la collaborazione di emittenti

radiofoniche e televisive, operatori satellitari e sistemi via cavo.

• Test e Valutazione: La FEMA2 è responsabile dei test nazionali di EAS, che valutano

la prontezza del sistema e la capacità di allerta nazionale in assenza di connettività

Internet.

I punti di forza del sistema IPWAS sono:

• Raggiungibilità: L’uso di molteplici canali aumenta la possibilità che il pubblico

riceva avvisi critici.

• Standardizzazione: Fornisce un framework unificato per la creazione e la distribu-

zione di avvisi, migliorando l’efficacia della comunicazione.

2FEMA - Federal Emergency Management Agency



6 1. Descrizione del problema affrontato

• Messaggi EAS: I messaggi possono interrompere la programmazione radio e televi-

siva per trasmettere informazioni di allerta di emergenza, coprendo una vasta area

geografica.

• Avvisi WEA: Brevi messaggi di emergenza inviati da autorità di allerta pubbliche

che possono raggiungere dispositivi mobili in aree specifiche, migliorando ulterior-

mente la sicurezza pubblica. [8]

Le limitazioni dell’IPAWS sono:

• Formazione necessaria: Le autorità locali devono essere adeguatamente formate per

utilizzare IPAWS in modo efficace, il che può rappresentare una sfida.

• Problemi di copertura: Non tutte le aree hanno la stessa qualità di ricezione, il che

può limitare l’efficacia degli avvisi.

• Relazioni con i Broadcast: È cruciale che le autorità che inviano messaggi EAS

abbiano una relazione con le emittenti per comprendere le politiche di trasmissione,

che possono variare da stazione a stazione.

• Limitazioni di geo-targeting: Anche se i WEA utilizzano il geo-targeting per inviare

avvisi solo a coloro che si trovano all’interno dell’area di allerta, non tutti i dispositivi

supportano attualmente questa tecnologia.

In sintesi, IPAWS è un sistema fondamentale per la gestione delle emergenze negli

Stati Uniti, progettato per garantire che le informazioni vitali siano comunicate in modo

tempestivo e chiaro. Grazie alla sua capacità di integrare vari canali e sistemi, IPAWS

rappresenta un modello efficace per la sicurezza pubblica, sebbene ci siano ancora sfide

da affrontare per ottimizzare la sua implementazione e l’efficacia degli avvisi. [4]

La Tabella 1.1 presenta un confronto tra IT-alert e IPAWS, evidenziando le loro

principali caratteristiche.



1.3 Motivazioni dello sviluppo 7

Caratteristiche IT-alert IPAWS

Paese Italia Stati Uniti

Standard CAP CAP-IT (profilo specifico

italiano)

Basato su OASIS CAP 1.2

Tipologia di avvisi Notifiche su smartphone,

SMS, e-mail

Avvisi tramite radio, TV,

dispositivi mobili, EAS e

WEA

Localizzazione Avvisi mirati in base alla

posizione

Avvisi a livello nazionale e

locale, con geo-targeting per

WEA

Multicanalità S̀ı S̀ı

Punti di forza Risposta rapida, integrazio-

ne con altre piattaforme

Raggiungibilità, standardiz-

zazione, integrazione con

EAS

Limitazioni Dipendenza dalla tecnolo-

gia, saturazione delle comu-

nicazioni

Necessità di formazione,

problemi di copertura,

variazione nelle politiche di

trasmissione

Tabella 1.1: Confronto tra IT-alert e IPAWS

1.3 Motivazioni dello sviluppo

Come evidenziato nella descrizione del problema, la gestione efficace delle emergenze,

sia a livello territoriale che all’interno di singole strutture, rappresenta una sfida complessa.

Sebbene sistemi di allerta pubblica come IT-alert e IPAWS abbiano introdotto importanti

miglioramenti nella comunicazione e nel coordinamento delle risposte su vasta scala, le loro

caratteristiche e protocolli operativi non sono direttamente trasferibili o completamente

efficaci in contesti più circoscritti come gli edifici. [4] [5]

L’analisi dei sistemi di allerta nazionali, basati su principi di multicanalità, localizza-

zione e integrazione, offre spunti preziosi per la progettazione di un sistema di gestione

delle emergenze interno a un edificio. Tuttavia, le peculiarità di un ambiente chiuso, con le

sue specifiche dinamiche di evacuazione, comunicazione interna e interazione con i sistemi

di sicurezza esistenti, richiedono un approccio progettuale dedicato.

Le attuali soluzioni per la gestione delle emergenze in edificio spesso si limitano a siste-

mi di allarme incendio tradizionali o a protocolli di evacuazione generici, senza sfruttare

appieno le potenzialità delle moderne tecnologie di comunicazione e localizzazione precisa.



8 1. Descrizione del problema affrontato

Questa lacuna evidenzia la necessità di sviluppare un sistema innovativo, specificamente

mirato ai contesti edilizi, che possa superare le limitazioni delle soluzioni esistenti e dei

protocolli pensati per scenari più ampi.

Le motivazioni principali per lo sviluppo di un sistema di gestione delle emergenze

focalizzato su un edificio possono essere cos̀ı riassunte:

1. Invio di avvisi granulari e in tempo reale:

• Esistenti: i sistemi di allerta pubblica, pur essendo rapidi nella diffusione su

vasta area, non offrono la granularità necessaria per indirizzare avvisi specifici a

determinate zone all’interno di un edificio in tempo reale. I sistemi tradizionali

interni potrebbero non essere altrettanto dinamici o integrati con informazioni

contestuali sull’emergenza.

• Requisito: un sistema interno deve garantire l’invio immediato di avvisi spe-

cifici alle aree interessate dell’edificio, fornendo istruzioni chiare e localizzate

per gli occupanti, minimizzando i tempi di risposta e massimizzando l’efficacia

delle azioni di autoprotezione.

2. Localizzazione interna precisa:

• Esistenti: i sistemi di allerta pubblica si basano sulla localizzazione geografica

su vasta scala. Le soluzioni tradizionali interne agli edifici potrebbero non

disporre di meccanismi di localizzazione precisa degli occupanti in tempo reale.

• Requisito: è fondamentale integrare funzionalità di geolocalizzazione interna

avanzate per inviare avvisi mirati agli occupanti effettivamente presenti nelle

aree di pericolo o in quelle che necessitano di evacuazione, evitando allarmi

generalizzati e aumentando la pertinenza delle informazioni ricevute.

3. Interfaccia User-Friendly:

• Esistenti: le interfacce dei sistemi di allerta pubblica sono progettate per rag-

giungere un vasto pubblico con diversi livelli di familiarità tecnologica. I sistemi

interni tradizionali potrebbero avere interfacce limitate o non integrate con i

dispositivi personali degli utenti.

• Requisito: il nuovo sistema deve offrire un’interfaccia semplice, intuitiva e ac-

cessibile tramite diversi dispositivi (smartphone, display dedicati, ecc.), facili-

tando la ricezione e la comprensione delle informazioni di emergenza da parte di

tutti gli occupanti, indipendentemente dalla loro familiarità con la tecnologia.

4. Integrazione nativa con i sistemi edilizi esistenti:



1.3 Motivazioni dello sviluppo 9

• Esistenti: I sistemi di allerta pubblica operano indipendentemente dai sistemi

di sicurezza e gestione degli edifici. Le soluzioni interne tradizionali potrebbe-

ro non essere completamente integrate con i sistemi antincendio, di controllo

accessi o di gestione tecnica.

• Requisito: il sistema proposto deve prevedere una stretta integrazione con gli

altri sistemi di sicurezza e gestione delle emergenze presenti nell’edificio (es.

rilevazione incendi, controllo accessi, sistemi di ventilazione), consentendo una

risposta coordinata e automatizzata agli eventi critici.

5. Protocolli di gestione delle emergenze specifici per l’edificio:

• Esistenti: i protocolli standardizzati per la gestione delle emergenze sono spesso

generici e pensati per scenari su larga scala, senza considerare le specificità di

un ambiente confinato come un edificio (es. percorsi di evacuazione interni,

punti di raccolta specifici, gestione di persone con mobilità ridotta all’interno

della struttura).

• Requisito: è necessario sviluppare protocolli ad hoc, basati sulle planimetrie

dell’edificio, sui percorsi di evacuazione interni, sulla posizione dei dispositivi

di sicurezza e sulle procedure specifiche per diverse tipologie di emergenza

(incendio, allarme bomba, guasto strutturale), garantendo una gestione più

efficace e mirata.

In sintesi, lo sviluppo di un sistema di gestione delle emergenze specificamente pro-

gettato per un contesto edilizio è motivato dalla necessità di superare le limitazioni delle

soluzioni esistenti e dei protocolli su larga scala. Un sistema integrato, capace di for-

nire avvisi granulari e in tempo reale, sfruttare la localizzazione interna precisa, offrire

un’interfaccia utente intuitiva e integrarsi con i sistemi edilizi esistenti, unitamente a pro-

tocolli di gestione delle emergenze specifici per l’edificio, rappresenta un passo cruciale

per garantire la sicurezza e la protezione degli occupanti. L’analisi dei sistemi di allerta

pubblica come IT-alert e IPAWS fornisce un quadro di riferimento utile per comprendere

le potenzialità di un sistema di allerta efficace, ma sottolinea anche la necessità di un

adattamento e di uno sviluppo specifico per il contesto degli edifici. [1]



10 1. Descrizione del problema affrontato



Capitolo 2

Architettura del sistema

Questo capitolo descrive l’architettura a microservizi del sistema di gestione emergen-

ze, soluzione progettata e sviluppata per affrontare le criticità di frammentazione e man-

canza di coordinamento identificate nel Capitolo 1. In particolare, si approfondiscono i

seguenti aspetti:

• Scelta dell’architettura a microservizi: verrà presentato un confronto tecnico tra

l’approccio a microservizi e quello monolitico (Sezione 2.1), motivando la decisione

in base a requisiti di scalabilità, manutenibilità e interoperabilità.

• Panoramica generale dell’architettura proposta: sarà fornita una descrizione del-

l’architettura proposta (Sezione 2.2), illustrando i componenti principali e il flusso

dati.

• Analisi dettagliata dei microservizi sviluppati: si procederà con un’analisi approfon-

dita dei microservizi sviluppati (Sezione 2.3), ponendo l’accento sulle funzionalità

offerte e le interfacce esposte.

2.1 Scelta dell’architettura a microservizi

L’architettura a microservizi rappresenta un moderno paradigma di sviluppo software

che scompone l’applicazione in una costellazione di componenti indipendenti. Ciascun mi-

croservizio, progettato per essere autosufficiente e specializzato in una precisa funzionalità,

comunica con gli altri attraverso interfacce ben definite. Questa struttura modulare adot-

ta il principio share-nothing, dove ogni servizio opera come processo stateless, garantendo

cos̀ı scalabilità orizzontale e facilità di manutenzione, caratteristiche fondamentali per su-

perare le problematiche di frammentazione informativa e la difficoltà di coordinamento

riscontrate nei sistemi tradizionali di gestione delle emergenze. [9]

11



12 2. Architettura del sistema

Per contrasto, l’approccio monolitico consolida tutte le funzionalità in un’unica en-

tità coesa, dove i diversi moduli sono strettamente interconnessi e condividono le stesse

risorse di sistema. Sebbene questa architettura tradizionale offra una semplicità iniziale,

presenta limitazioni evidenti in contesti che richiedono evoluzione continua e scalabilità

differenziata (Figura 2.1). [10]

Figura 2.1: Confronto tra Architettura Monolitica e a Microservizi.

L’architettura a microservizi è stata adottata per la progettazione del sistema in esame

in virtù delle sue caratteristiche di modularità, scalabilità e resilienza. Questa scelta

si basa sull’analisi dei requisiti del progetto, che richiedono un’elevata flessibilità nello

sviluppo, una gestione efficiente delle risorse e la capacità di evolvere rapidamente in

risposta alle esigenze aziendali. [11] La scelta di questa architettura è motivata da quattro

fattori chiave:

1. Modularità e indipendenza: ogni microservizio rappresenta un’unità funzionale au-

tonoma, sviluppabile e distribuibile indipendentemente dagli altri. Questo ap-

proccio consente di aggiornare singoli componenti senza impattare l’intero sistema,

riducendo i rischi legati al deployment e facilitando la manutenzione.

2. Flessibilità tecnologica: l’architettura a microservizi permette di utilizzare linguaggi

di programmazione e database diversi per ciascun servizio, in base alle specifiche

esigenze. Tale eterogeneità tecnologica è fondamentale per ottimizzare le prestazioni

e sfruttare al meglio le competenze dei gruppi di sviluppo.

3. Scalabilità orizzontale: i microservizi possono essere scalati singolarmente in base

al carico di lavoro, ottimizzando l’utilizzo delle risorse. Ad esempio, un servizio ad

alta richiesta (come l’autenticazione degli utenti), può essere replicato senza dover

scalare l’intera applicazione.



2.2 Panoramica dell’architettura proposta 13

4. Resilienza e fault tolerance: l’isolamento dei servizi limita l’impatto dei guasti per

cui un malfunzionamento in un microservizio non compromette l’intero sistema.

La motivazione per l’adozione dell’architettura a microservizi, illustrata nei quattro

fattori chiave, trova un riscontro pratico nel confronto con l’architettura monolitica ri-

portato nella Tabella 2.1. Questa tabella affianca le due architetture secondo diverse

caratteristiche, offrendo una prospettiva più chiara sui benefici attesi.

Caratteristica Microservizi Monolite

Deployment Indipendente per ogni servizio Richiede il riavvio dell’intera

applicazione

Scalabilità Selettiva (solo sui servizi criti-

ci)

Globale (anche per componenti

non critici)

Tecnologie Eterogenee (multi-linguaggio,

multi-database)

Omogenee (stack tecnologico

unico)

Complessità Gestione distribuita e strumen-

ti avanzati

Centralizzata, ma rischia di

diventare ingombrante

Resilienza Isolamento dei guasti Fallimento sistemico in caso di

errore

Tabella 2.1: Confronto tra Microservizi e Architettura Monolitica

Nonostante i vantaggi, l’adozione dei microservizi introduce alcune complessità. La

più rilevante riguarda la gestione della comunicazione: la comunicazione tra servizi (tra-

mite API REST, gRPC o message broker) può introdurre latenza e problemi di sincro-

nizzazione, oltre alla necessità di implementare meccanismi robusti per la gestione della

consistenza dei dati in un ambiente distribuito.

In conclusione, la scelta dell’architettura a microservizi è giustificata dalla necessità

di costruire un sistema scalabile, flessibile e resiliente, in linea con le moderne esigen-

ze di sviluppo software. Sebbene richieda strumenti avanzati per l’orchestrazione (come

Kubernetes) e il monitoring (Prometheus, Grafana), i benefici in termini di agilità e ma-

nutenibilità superano gli svantaggi, specialmente in contesti dove la rapidità di evoluzione

è critica. [9][10][11][12]

2.2 Panoramica dell’architettura proposta

In questa sezione verrà presentato un diagramma dei microservizi, rappresentato co-

me un grafo orientato, ovvero una struttura dati astratta che permette di modellare le



14 2. Architettura del sistema

relazioni tra oggetti. Ogni microservizio è visualizzato come un nodo collegato agli al-

tri componenti attraverso archi. Gli archi hanno lo scopo di mostrare i flussi di dati

tra i vari microservizi. Questo diagramma (Figura 2.2) fornisce una visione chiara del-

le relazioni e delle interazioni tra i vari componenti dell’architettura, evidenziando come

ciascun microservizio contribuisca al funzionamento complessivo del sistema di gestione

delle emergenze.

Figura 2.2: Grafo architettura del sistema a microservizi

Il sistema coinvolge diversi attori chiave, tra cui un sistema di generazione allerte,

un motore per la gestione della mappa e dei percorsi di evacuazione e un sistema di ri-

levazione degli utenti in pericolo. Inoltre, come mostrato nel grafo, i dati fondamentali

per il funzionamento del sistema sono gestiti attraverso diversi database specializzati. La

struttura rappresentata evidenzia la progettazione di un sistema modulare con diversi

componenti funzionali dedicati ad attività specifiche.

La rappresentazione dell’architettura sotto forma di grafo, oltre a evidenziare la modula-

rità del sistema e la scelta dei microservizi, serve ad anticipare l’analisi più approfondita

dei singoli componenti che verrà condotta nella parte successiva di questo capitolo.



2.3 Design dei microservizi 15

2.3 Design dei microservizi

Questo paragrafo descrive il ruolo e le responsabilità di ciascun microservizio, focaliz-

zandosi sulla loro logica di dominio – ovvero l’insieme di regole, concetti e processi che

governano un’area funzionale specifica di un sistema software. Si vuole fornire una visione

complessiva del sistema generale, frutto di un lavoro di squadra. Per questo motivo, ver-

ranno descritti tutti i microservizi coinvolti. Tale approccio permetterà di comprendere

il contesto generale, le scelte progettuali che hanno portato alla risoluzione dei requisiti

e il flusso complessivo della gestione delle emergenze. Gli aspetti implementativi, incluse

le tecnologie adottate, le scelte progettuali low-level e i dettagli infrastrutturali, verranno

approfonditi in seguito. Il Capitolo 3 presenterà la struttura e le scelte implementati-

ve generali, mentre i capitoli successivi scenderanno nel dettaglio per ogni microservi-

zio dell’architettura proposta. Si sottolinea che per quanto riguarda l’implementazione,

l’attenzione sarà rivolta esclusivamente ai microservizi di mia diretta responsabilità.

2.3.1 Gestore degli alert

Il microservizio Gestore degli alert (Alert Manager) rappresenta il componente cen-

trale per la gestione del ciclo di vita degli allarmi all’interno dell’ecosistema software.

Progettato per garantire un’elaborazione continua degli eventi critici, il servizio si oc-

cupa dell’intera catena di valore degli alert, dalla fase iniziale di generazione fino alla

distribuzione finale delle notifiche.

Nell’ambito del suo dominio funzionale, l’Alert Manager assolve a due responsabilità

fondamentali:

• Generazione strutturata ed elaborazione intelligente dei messaggi di allerta, confor-

memente ai protocolli standard di settore e alle specifiche tecniche del sistema.

• Valutazione contestuale della rilevanza degli eventi mediante apposite regole di

business, con conseguente archiviazione selettiva nella base dati dedicata.

Il servizio non si limita alla mera gestione interna degli alert. Infatti, svolge un ruolo

attivo nell’ecosistema a microservizi attraverso precise interazioni con altri componenti

specializzati. In particolare, questa interazione è cruciale per la diffusione coordinata delle

notifiche.

Per una trattazione esaustiva degli aspetti implementativi - tra cui le modalità di inte-

grazione con il layer di persistenza, gli algoritmi di valutazione degli eventi e i meccanismi

di comunicazione interservizio - si rimanda al Capitolo 4.



16 2. Architettura del sistema

2.3.2 Centro notifiche

Il microservizio Centro notifiche (Notification Center) costituisce il nucleo coordina-

tore della comunicazione di emergenza all’interno del sistema. Garantisce la corretta

distribuzione degli avvisi agli utenti e tutta la comunicazione interna del servizio.

La sua logica di dominio si concentra su:

• Gestione integrata del flusso di notifiche, dall’identificazione dei destinatari alla

diffusione degli avvisi.

• Interazione con gli altri servizi per garantire una comunicazione contestuale e geo-

localizzata.

Come componente centrale dell’ecosistema, il servizio assicura che ogni messaggio

raggiunga i destinatari appropriati con le modalità e i contenuti rilevanti al contesto

specifico, mantenendo coerenza operativa in tutto il sistema. Il suo scopo è ricevere e

smistare le notifiche in modo corretto per garantire una corretta gestione dell’emergenza.

2.3.3 Simulatore delle posizioni

Nel contesto dell’attuale fase progettuale, il microservizio Simulatore delle posizioni

(User Simulator) assume una funzione di particolare rilievo, seppur transitoria. Questo

componente è stato concepito per emulare, con rigore metodologico, il comportamento e

la distribuzione spaziale degli utenti all’interno degli ambienti oggetto di monitoraggio.

Va precisato che tale soluzione rappresenta un’astrazione temporanea, destinata a esse-

re sostituita nel sistema definitivo da un meccanismo di rilevamento in tempo reale delle

posizioni effettive degli utenti. Tuttavia, nella presente implementazione, il simulatore

assolve a un ruolo fondamentale:

• Fornisce un modello dinamico e verosimile della presenza umana.

• Garantisce la coerenza dei flussi informatici con gli altri servizi.

• Consente la validazione delle logiche di emergenza.

La scelta di implementare questo servizio di appoggio deriva dalla necessità di:

1. Testare in ambiente controllato le dinamiche di notifica.

2. Verificare l’integrazione tra i vari componenti.

3. Sviluppare in parallelo i moduli dipendenti dalla geolocalizzazione.



2.3 Design dei microservizi 17

Pur nella sua natura provvisoria, il simulatore si configura come un elemento cardine del-

l’attuale architettura, permettendo di valutare con precisione l’efficacia del sistema nelle

diverse condizioni operative. Per una trattazione più approfondita delle scelte progettuali

relative a questo componente, si rimanda al Capitolo 5.

2.3.4 Gestore delle posizioni

Il Microservizio Gestore delle posizioni (Position Manager) rappresenta un elemento

architettonico cardine all’interno del sistema distribuito, assumendo la completa respon-

sabilità dell’elaborazione e dell’interpretazione dei flussi di dati geospaziali. La sua pro-

gettazione aderisce rigorosamente ai principi di separazione delle competenze (separation

of concerns) e di singola responsabilità (single responsibility). Questi principi garantisco-

no una netta distinzione tra le diverse funzionalità del sistema e assicurano che ciascun

componente sia dedicato a un’unica funzione specifica. Tali scelte progettuali consentono

una gestione precisa ed efficace della logica di dominio, con particolare riferimento all’ana-

lisi spaziale e alla valutazione del rischio. Un aspetto fondamentale di questa valutazione

del rischio è la verifica continua dello stato di sicurezza degli utenti. Il Position Mana-

ger monitora costantemente i dati geospaziali per determinare se persistono condizioni di

pericolo.

La logica di dominio si esprime principalmente attraverso l’analisi spaziale, ovvero

l’elaborazione dei dati relativi alla posizione e al movimento, e la conseguente valutazione

del rischio, che identifica e classifica le potenziali situazioni di pericolo.

Il servizio è strutturato per assolvere a due funzioni fondamentali, ciascuna delle quali

contribuisce alla corretta gestione delle informazioni posizionali e alla risposta a potenziali

situazioni critiche:

• Valutazione delle condizioni di rischio mediante l’applicazione sistematica di regole

di dominio predefinite, utili a identificare situazioni potenzialmente pericolose e a

classificare gli utenti in base alla loro esposizione a criticità spaziali. Questa valu-

tazione include anche la verifica periodica per accertare se le condizioni si pericolo

sono cessate per tutti gli utenti.

• Generazione di risposte coordinate in seguito all’identificazione di condizioni ano-

male, supportando le successive fasi di intervento. Inoltre, una volta accertato che

non sussistono più utenti in pericolo, è responsabile della comunicazione di tale

condizione, innescando la gestione della conclusione dell’emergenza.

La centralizzazione della logica spaziale all’interno di questo microservizio realizza un’a-

strazione coerente e univoca dei concetti di posizione e pericolo, ottimizzando l’integra-



18 2. Architettura del sistema

zione con le altre componenti sistemiche e garantendo la massima consistenza semantica

nell’elaborazione dei dati.

Per un’esposizione completa delle modalità di interazione con le altre componenti

del sistema e delle strategie adottate per garantire l’efficienza operativa, si rimanda al

Capitolo 6.

2.3.5 Visualizzatore della mappa

Il Microservizio Visualizzatore della mappa (Map Viewer) rappresenta la componen-

te specializzata nell’interpretazione e rappresentazione grafica dell’ecosistema monitora-

to. La sua concezione architettonica incarna i principi fondamentali della domain-driven

design, focalizzandosi esclusivamente sull’astrazione e visualizzazione delle informazioni

georeferenziate.

Il microservizio assolve a due compiti essenziali nell’ambito dell’architettura comples-

siva:

• Acquisizione e trasformazione dei dati spaziali: riceve e processa i flussi informativi

relativi alle posizioni, convertendoli da formati tecnici grezzi in una rappresentazione

strutturata adatta alla visualizzazione.

• Generazione della rappresentazione dinamica: produce una visualizzazione interat-

tiva che si aggiorna in tempo reale, mantenendo una perfetta corrispondenza con lo

stato attuale del sistema. La mappa risultante incorpora funzionalità di esplorazio-

ne spaziale che permettono di analizzare la distribuzione delle entità a diversi livelli

di dettaglio.

La soluzione proposta manifesta tre qualità essenziali che ne definiscono il valore operativo

nell’ecosistema architetturale:

• Capacità rappresentativa: garantisce l’inclusione di tutte le dimensioni spaziali si-

gnificative per il dominio applicativo, traducendosi in una visualizzazione esaustiva

che non tralascia alcun aspetto rilevante della distribuzione geografica delle entità.

• Tempestività della rappresentazione: riflette con precisione temporale ogni varia-

zione dello stato del sistema, assicurando una perfetta sincronizzazione tra la realtà

dinamica e la sua rappresentazione grafica.

• Interazione spaziale avanzata: abilita modalità sofisticate di navigazione e interro-

gazione della mappa, supportando operazioni complesse di esplorazione dei dati e

permettendo all’utente finale di investigare la distribuzione spaziale a diversi livelli

di granularità e secondo molteplici prospettive analitiche.



2.4 Comunicazione tra microservizi: flusso dell’emergenza 19

2.3.6 Gestore della mappa

Il Microservizio Gestore della mappa (Map Manager) rappresenta il componente spe-

cializzato nell’elaborazione intelligente delle strategie di evacuazione all’interno dell’ar-

chitettura distribuita. La sua progettazione incarna i principi fondamentali dei sistemi

decisionali adattivi, focalizzandosi sull’analisi contestuale e sulla generazione di soluzioni

ottimizzate per la gestione delle emergenze.

Il servizio esplica una funzione duale nell’ecosistema applicativo:

• Integrazione dei dati contestuali: sintetizza molteplici fonti informative, tra cui i flus-

si di posizionamento in tempo reale e la rappresentazione topologica dell’ambiente

strutturata come grafo navigabile. Questa integrazione consente una comprensione

globale dello stato corrente del sistema, considerando sia la distribuzione delle entità

che le caratteristiche infrastrutturali.

• Generazione di strategie di evacuazione: applica algoritmi avanzati di analisi dei

percorsi che incorporano vincoli dinamici, tra cui metriche di capacità residua e

indicatori derivati da segnalazioni. L’approccio adattivo garantisce la continua

rielaborazione delle soluzioni in risposta all’evoluzione delle condizioni ambientali.

La natura specializzata del componente si riflette nella sua capacità di coniugare preci-

sione analitica e tempestività operativa. Il sistema dimostra particolare efficacia nella

gestione di scenari complessi, dove la simultanea considerazione di molteplici fattori (dal-

la densità di occupazione alle condizioni infrastrutturali) permette di generare soluzioni

sia tecnicamente rigorose che praticamente attuabili. L’integrazione di questo microser-

vizio nell’architettura complessiva garantisce un approccio sistematico alla gestione delle

emergenze, mantenendo un’astrazione completa dalle complessità implementative.

2.4 Comunicazione tra microservizi: flusso dell’emer-

genza

L’architettura distribuita implementa un sofisticato meccanismo di coordinamento in-

terservizi per la gestione degli eventi emergenziali, basato su un modello a eventi e stato

condiviso. Il flusso informativo si articola attraverso una serie di interazioni ben definite

tra i vari componenti, mantenendo un rigoroso disaccoppiamento tra le responsabilità di

ciascun microservizio.



20 2. Architettura del sistema

2.4.1 Fase 1: Inizio della gestione dell’emergenza

Il processo ha inizio quando l’Alert Manager genera e valida una potenziale situazione

critica. Dopo aver applicato i necessari filtri di rilevanza basati su regole di dominio, il

servizio procede alla persistenza dell’evento nel repository dedicato e alla notifica al Noti-

fication Center, includendo l’identificativo univoco dell’alert e i metadati rilevanti. Questa

comunicazione segnala l’attivazione del protocollo di emergenza all’intero ecosistema. Il

Notification Center, una volta ricevuta la segnalazione, recupera dal database delle sot-

toscrizioni la lista aggiornata degli utenti interessati e provvede all’invio delle notifiche

iniziali attraverso i vari canali configurati. Contestualmente, richiede al User Simulator le

posizioni correnti degli utenti, avviando cos̀ı la fase di analisi geospaziale della situazione.

Per chiarire la sequenza degli eventi che avvengono durante la fase iniziale di gestione del-

l’emergenza, la Figura 2.3 presenta un diagramma di sequenza che delinea le comunicazioni

tra i principali microservizi coinvolti.

Figura 2.3: Sequence diagram sull’inizio della gestione dell’emergenza

2.4.2 Fase 2: Analisi continua del pericolo e notifiche

In questa fase lo User Simulator procede con la simulazione delle posizioni degli utenti

all’interno dell’edificio e le comunica al Position Manager indicando le informazioni rela-

tive all’utente (identificato da un id univoco) e le informazioni relative al tipo di evento in

corso. Il Position Manager, ricevuti i dati di localizzazione, esegue una validazione topo-

logica delle coordinate e identifica gli utenti potenzialmente esposti al rischio. I risultati

di questa analisi vengono comunicati parallelamente a due componenti: al Notification



2.4 Comunicazione tra microservizi: flusso dell’emergenza 21

Center, che riceve l’identificativo dell’utente in pericolo e il percorso di evacuazione rela-

tivo, e al Map Manager, al quale viene fornita una vista aggregata per nodi topologici.

Nel caso in cui nessun utente venga identificato in pericolo, il Position Manager notifica

il Notification Center inviando un messaggio di Stop. Tale notifica indica la fine della

gestione dell’emergenza.

Questo flusso di interazioni è illustrato nel dettaglio nel diagramma di sequenza presentato

in Figura 2.4.

Figura 2.4: Sequence diagram sull’analisi del pericolo

2.4.3 Fase 3: Reazione alle notifiche di evacuazione e aggiorna-

mento delle posizioni simulate

Questa fase descrive come il Notification Center inoltra i messaggi ricevuti dal Posi-

tion Manager allo User Simulator. A seconda del messaggio (percorso di evacuazione o

’Stop’), lo User Simulator simula il movimento dell’utente seguendo il percorso ricevuto

o interrompe la simulazione. Nel caso in cui si procede continuando a simulare lo stato di

emergenza, lo User Simulator invia le nuove posizioni degli utenti al Position Manager.

Questo flusso di interazioni è illustrato nel diagramma di sequenza in Figura 2.5 nella

quale è ben visibile la risposta differente dello User Simulator sulla base del messaggio

ricevuto.



22 2. Architettura del sistema

Figura 2.5: Sequence diagram sulle reazioni alle notifiche di evacuazione

2.4.4 Fase 4: Aggiornamento della mappa e ricalcolo dei per-

corsi

L’aggiornamento della rappresentazione visiva è gestito attraverso un meccanismo di

trigger temporali, attivati dal Position Manager in base alla frequenza degli aggiorna-

menti ricevuti. Quando scattano, questi trigger inducono il Map Viewer a recuperare le

ultime posizioni disponibili e a generare una nuova visualizzazione dello stato del sistema.

Parallelamente, il Map Manager, ricevute le informazioni dal PositionManager, avvia il

calcolo dei percorsi di evacuazione ottimizzati, tenendo conto di molteplici fattori, tra cui

la capacità residua dei percorsi, le eventuali interruzioni rilevate e i vincoli strutturali del-

l’ambiente. Per ciascun nodo vengono generate diverse alternative, salvate nel repository

condiviso delle posizioni e mappe.

Nella figura 2.6 viene mostrato come comunicano i vari servizi in questa fase e viene

evidenziato come l’aggiornamento della visualizzazione della mappa viene ripetuto du-

rante tutta la gestione dell’emergenza in modo da fornire una visione in tempo reale della

situazione all’interno dell’edificio.



2.4 Comunicazione tra microservizi: flusso dell’emergenza 23

Figura 2.6: Sequence diagram sull’aggiornamento della mappa e dei percorsi

2.4.5 Fase 5: Riassegnamento delle rotte

Il Position Manager gioca un ruolo cruciale nel ciclo di gestione. Ogni volta che riceve

la posizione di un utente, recupera il percorso di evacuazione assegnato basandosi sulla

posizione ricevuta. Questi percorsi di evacuazione non sono statici, ma vengono aggior-

nati dinamicamente dal Map Manager che ha la responsabilità di ricalcolare e mantenere

aggiornati i percorsi seguendo le regole di evacuazione e tenendo conto di eventuali aree

non accessibili. Di conseguenza, il Position Manager utilizza i percorsi aggiornati per rias-

segnare gli utenti alle rotte. Le istruzioni risultanti vengono poi inoltrate al Notification

Center per la diffusione finale agli utenti interessati, come descritto precedentemente. La

Figura 2.7 mostra l’aggiornamento dinamico dei percorsi e il riassegnamento delle rotte.



24 2. Architettura del sistema

Figura 2.7: Sequence diagram sul riassegnamento delle rotte

2.4.6 Fase 0: Configurazione del sistema

Dopo aver delineato il flusso operativo del sistema di gestione delle emergenze, è

fondamentale considerare anche la fase di configurazione iniziale. Questa fase, sebbene

non rappresenti un’operazione continua o parte del ciclo di gestione dell’emergenza vero e

proprio, è cruciale per predisporre l’ambiente e i dati necessari al corretto funzionamento

di tutti i componenti. In particolare, la configurazione del sistema include l’inizializzazione

delle informazioni relative alla struttura dell’edificio, che sono essenziali per la simulazione

delle posizioni degli utenti e per il calcolo dei percorsi di evacuazione. Consiste nella

rappresentazione della mappa dell’edificio mediante un grafo composto da nodi ed archi.

Tale configurazione avviene attraverso un’interfaccia dedicata che permette di inserire i

nodi, che rappresentano le stanze di un edificio e che vengono classificate mediante una

tipologia, e gli archi che rappresentano i collegamenti tra le stanze. Si tratta di una fase

cruciale in quanto l’intero sistema si basa poi sulla rappresentazione astratta dell’edificio.

Queste informazioni, infatti, saranno utilizzate non solo dal Map Manager per definire i

percorsi di evacuazione, ma anche dallo User Simulator per simulare gli utenti all’interno

dell’edificio e dal Position Manager per inserire le posizioni degli utenti nel database e per

verificare se un utente è in pericolo sulla base del tipo di emergenza che si sta gestendo.

Il diagramma di sequenza presentato di seguito (Figura 2.8) illustra i passaggi chiave di



2.4 Comunicazione tra microservizi: flusso dell’emergenza 25

questa fase preparatoria, focalizzandosi sulle interazioni che coinvolgono il Map Viewer e

il sistema di memorizzazione dei dati della mappa.

Figura 2.8: Sequence diagram sulla configurazione iniziale del sistema



26 2. Architettura del sistema



Capitolo 3

Tecnologie fondamentali del sistema

Questo capitolo esplora le tecnologie fondamentali che costituiscono l’infrastruttura

portante dell’intero sistema a microservizi proposto. Dopo aver discusso l’architettura

generale e i suoi elementi concettuali, l’analisi si concentra ora sulle scelte concrete che

definiscono il funzionamento di ogni singolo componente software. In questo capitolo,

l’attenzione è rivolta alle decisioni di fondo che definiscono le capacità operative di base

del sistema nella sua interezza.

Il percorso intrapreso analizzerà a fondo le motivazioni che hanno portato alla scelta di

specifiche soluzioni: il linguaggio di programmazione utilizzato per lo sviluppo del codice,

il sistema che orchestra la comunicazione asincrona tra i servizi, la soluzione adottata per

la persistenza dei dati e l’approccio alla gestione della configurazione. Per ciascuna di

queste aree, verranno ripercorse le opzioni considerate durante la fase di progettazione,

mettendo in luce i pro e i contro che hanno inclinato l’ago della bilancia verso la scelta

finale.

L’intento di questo capitolo è duplice:

• articolare un ragionamento solido e trasparente dietro le scelte tecnologiche del siste-

ma, illustrando le motivazioni che hanno portato all’adozione di Python, RabbitMQ,

PostgreSQL e YAML.

• costruire un quadro di riferimento tecnologico comune, essenziale per i capitoli suc-

cessivi dedicati all’implementazione dei singoli microservizi. Questo permetterà di

evitare ripetizioni e di focalizzarsi sulle specifiche di ogni componente.

In sintesi questo capitolo definisce le fondamenta tecnologiche su cui poggia l’intero

edificio del nostro sistema. Attraverso un’analisi delle scelte e delle loro motivazioni, si

mira a fornire una visione chiara e profonda delle decisioni che ne determinano l’essenza

operativa a un livello fondamentale.

27



28 3. Tecnologie fondamentali del sistema

3.1 Linguaggio di programmazione: Python

La selezione del linguaggio di programmazione ha rappresentato una delle decisioni

architetturali più ponderate per lo sviluppo del nostro sistema a microservizi. L’esigenza

era quella di individuare uno strumento che combinasse potenza e flessibilità e che avesse

una curva di apprendimento accessibile per il team. Secondo la nostra analisi, un lin-

guaggio di programmazione che rispettasse tali esigenze, avrebbe consentito una gestione

efficiente delle complessità intrinseche della nostra architettura. La scelta finale è stata

quella di adottare Python come linguaggio principale dell’intero sistema.

Questa decisione è stata guidata da diverse considerazioni pratiche e tecniche. Innan-

zitutto, Python si è rivelato estremamente adatto per la gestione di diversi formati dati e

configurazioni. Non solo ha semplificato notevolmente l’elaborazione dei file XML, cruciali

per lo standard CAP (Common Alerting Protocol) utilizzato da microservizi come l’Alert

Manager, ma ha anche offerto una solida capacità nella gestione dei file di configurazio-

ne in formato YAML. Questi ultimi sono ampiamente impiegati in tutti i microservizi

per definire regole operative e parametri di sistema. La facilità di interazione offerta da

librerie come PyYAML ha ottimizzato i processi di configurazione e manutenzione. [13]

Un altro fattore determinante è stato il supporto robusto di Python per l’interazione

con i sistemi di persistenza dati. Per un sistema come il nostro, che necessita di gesti-

re e analizzare informazioni geografiche complesse, la capacità di interfacciarsi in modo

efficiente con un database relazionale dotato di funzionalità spaziali era un requisito im-

prescindibile. In questo contesto, Python si è dimostrato particolarmente efficace nel

connettersi a PostgreSQL e, in particolare, nello sfruttare appieno l’estensione PostGIS.

Quest’ultima è cruciale per la memorizzazione, l’interrogazione e la manipolazione di dati

geospaziali, un elemento fondamentale per diverse componenti del sistema che elaborano

posizioni, aree di interesse e percorsi. Le librerie dedicate di Python hanno garantito pre-

stazioni affidabili e una notevole flessibilità, permettendo ai nostri microservizi di accedere

e gestire queste informazioni geografiche con precisione e velocità.

Durante il processo di valutazione, abbiamo attentamente considerato anche alter-

native come Node.js. Si tratta di un ambiente di esecuzione che permette di utilizzare

JavaScript al di fuori del browser web, tipicamente sul lato server. Tale ambiente è noto

per la sua architettura basata su eventi e per la gestione ”non bloccante” delle opera-

zioni di input/output (I/O). Questo significa che è molto efficiente nel gestire un elevato

numero di richieste contemporaneamente, senza che una richiesta debba attendere il com-

pletamento della precedente. Questa caratteristica lo rende particolarmente adatto per

applicazioni che richiedono alta scalabilità e reattività, come le chat in tempo reale o le

API ad alto traffico. [14] Nonostante questi vantaggi, la nostra analisi ha evidenziato alcu-

ni aspetti che ci hanno orientato diversamente. Innanzitutto, per il nostro team, la curva



3.1 Linguaggio di programmazione: Python 29

di apprendimento di Node.js è stata percepita come potenzialmente più ripida rispetto a

Python. Ciò avrebbe potuto rallentare la fase di sviluppo iniziale e l’integrazione del con-

tributo dei membri. In secondo luogo, pur essendo Node.js dotato di un vasto ecosistema

di librerie, abbiamo riscontrato che per le nostre esigenze specifiche – in particolare per

la gestione avanzata di file XML conformi allo standard CAP e per l’interazione profon-

da con database relazionali come PostgreSQL e la sua estensione PostGIS – l’ecosistema

Python offriva soluzioni più mature e direttamente allineate alle nostre necessità. Non ab-

biamo identificato, per il nostro contesto, vantaggi cos̀ı marcati che potessero giustificare

il compromesso in termini di familiarità e integrazione specifica. [13][14]

La familiarità preesistente con Python all’interno del team, sebbene non approfondita,

unita alla sua vasta comunità e alla ricchezza di librerie mature (dalla creazione di API

REST con framework come Flask e FastAPI, all’integrazione con message broker come

RabbitMQ tramite pika), ha offerto un percorso di sviluppo più diretto e sicuro. Que-

sta combinazione ha ridotto la potenziale curva di apprendimento per l’intero progetto,

favorendo una maggiore produttività e coesione del team.

La Tabella 3.1 riassume le motivazioni che hanno dettato la scelta di Python come

linguaggio principale del sistema complessivo.

Criterio di

Valutazione

Python (Vantaggi) Node.js (Motivazioni della

Non-Scelta)

Gestione Dati e

Configurazione

Ottima per XML (CAP); Soli-

da per YAML.

Ecosistema meno allineato per

XML (CAP).

Interazione con

Persistenza Dati

Supporto robusto PostgreSQ-

L/PostGIS; Librerie affidabili.

Ecosistema meno allineato per

PostGIS.

Familiarità e

Produttività Team

Familiarità preesistente; Curva

di apprendimento accessibile;

Ricco ecosistema e comunità.

Curva di apprendimento perce-

pita più ripida; Minore familia-

rità; Vantaggi non decisivi.

Vantaggi

Comparativi

Specifici del

Progetto

Sviluppo diretto e si-

curo; Equilibrio po-

tenza/versatilità/facilità

d’uso.

I/O asincrono non decisivo per

il contesto; Nessun vantag-

gio significativo per esigenze

specifiche.

Tabella 3.1: Sintesi delle motivazioni per la scelta di Python

Per illustrare concretamente come queste considerazioni tecniche si traducano in bene-

fici operativi, e per fornire un esempio pratico della nostra architettura basata su Python,

si prenda in esame il microservizio Alert Manager. Questo componente cruciale del siste-

ma sfrutta appieno le capacità di Python per gestire flussi di dati complessi e interfacciarsi



30 3. Tecnologie fondamentali del sistema

con diverse piattaforme esterne. La figura 3.1 visualizza il funzionamento dell’Alert Ma-

nager, evidenziando le librerie Python specifiche e le motivazioni strategiche dietro il loro

impiego in ogni fase chiave del processo. Questo esempio dimostra la versatilità e la poten-

za di Python nel gestire le complessità richieste dalla nostra architettura a microservizi,

confermando la sua idoneità come linguaggio principale per l’intero sistema.

Figura 3.1: Esempio di implementazione Python-Based

In sintesi, la scelta di Python è stata dettata da un’analisi pragmatica che ha eviden-

ziato il suo equilibrio tra potenza, versatilità e facilità d’uso. Ha fornito le fondamenta tec-

nologiche ideali per implementare un’architettura a microservizi complessa, consentendoci

di concentrarci sulle sfide del dominio applicativo.[13]

3.2 Sistema di message queuing: RabbitMQ

Nelle architetture a microservizi, dove un sistema è composto da tanti piccoli servizi

che lavorano insieme, farli comunicare in modo efficiente e affidabile è una sfida complessa.

Le tecniche di comunicazione diretta, come le chiamate HTTP (Hypertext Transfer Pro-

tocol), che funzionano in modo sincrono (ovvero, un servizio invia una richiesta e si ferma

ad attendere una risposta immediata), pur essendo semplici da implementare per scambi

rapidi, possono introdurre vulnerabilità. Se il servizio chiamato è lento o temporaneamen-

te non disponibile, il servizio che ha effettuato la richiesta può bloccarsi o, nel peggiore

dei casi, fallire. Per mitigare questi rischi e promuovere un’architettura più resiliente e

disaccoppiata, si è resa necessaria l’adozione di un modello di comunicazione asincrona.



3.2 Sistema di message queuing: RabbitMQ 31

Questo approccio si realizza tramite l’uso di code di messaggi (Message Queues), che

permettono a un servizio mittente di inviare un messaggio e proseguire con le proprie

attività senza attendere una conferma istantanea. Il messaggio viene depositato in una

coda e sarà prelevato e processato dal servizio destinatario solo quando quest’ultimo sarà

pronto. Questo meccanismo garantisce un fondamentale disaccoppiamento temporale e

spaziale: i servizi non devono essere attivi e comunicare nello stesso istante, aumentando

la flessibilità e la tolleranza ai guasti del sistema. [15]

La nostra analisi ha condotto alla scelta di RabbitMQ come implementazione princi-

pale per il sistema di message queuing. Questa decisione si è basata sulla sua comprovata

affidabilità e sulla sua maturità operativa consolidata in numerosi contesti reali e com-

plessi. RabbitMQ è stato specificamente progettato per offrire una garanzia di consegna

dei messaggi, una caratteristica critica per il nostro progetto: essa assicura che le infor-

mazioni, una volta inviate, non vadano perse, anche in condizioni di elevato carico o in

presenza di temporanee interruzioni dei servizi riceventi. Un altro aspetto determinante

è la sua flessibilità nel supportare vari pattern di routing – ovvero le modalità con cui i

messaggi vengono indirizzati tra chi li produce (i mittenti) e chi li consuma (i destinatari)

– e diverse topologie di messaggistica. Questa versatilità ci ha permesso di modellare con

precisione le esigenze differenziate di comunicazione tra i nostri microservizi, contribuendo

a costruire un’infrastruttura di comunicazione robusta e adattabile. [16]

Durante il processo di valutazione delle soluzioni per la comunicazione asincrona, ab-

biamo esaminato anche Apache Kafka. Questa è una piattaforma di event streaming

distribuita ad alte prestazioni. La sua funzione principale è gestire flussi di dati continui

e ad alto volume, operando essenzialmente come un log immutabile di eventi storici. Seb-

bene Kafka sia estremamente potente per scenari che richiedono l’elaborazione di grandi

quantità di dati in tempo reale o la riproduzione storica di flussi di eventi, per le nostre

esigenze iniziali è stata ritenuta non necessaria. La nostra priorità era la garanzia di

consegna individuale dei messaggi e un disaccoppiamento più tradizionale tra produttori

e consumatori. Per questi obiettivi specifici, la maggiore complessità infrastrutturale e di

gestione di Kafka non si giustificava. Similmente, le chiamate HTTP dirette sono state

scartate poiché, essendo sincrone, avrebbero reintrodotto le dipendenze temporali che sta-

vamo cercando di eliminare e non avrebbero fornito i meccanismi di persistenza impliciti

cruciali per la resilienza nella propagazione delle informazioni critiche.

È opportuno riconoscere che, per rafforzare ulteriormente la resilienza di un’architet-

tura a microservizi[17], esistono pattern avanzati che sono stati considerati. Tra questi, il

Circuit Breaker (Interruttore di Circuito), un meccanismo che, come un fusibile, ”apre il

circuito” per un periodo di tempo quando un servizio mostra ripetuti fallimenti o lentezza.

Questo impedisce di sovraccaricare ulteriormente un componente già in difficoltà, per-



32 3. Tecnologie fondamentali del sistema

mettendogli di recuperare.[18] Abbiamo anche valutato l’impiego di Dead Letter Queues

(DLQ), code speciali dove i messaggi che non possono essere elaborati con successo (ad

esempio, a causa di errori nel formato o logica applicativa incompatibile) vengono auto-

maticamente reindirizzati. Questo evita che tali messaggi ”velenosi” blocchino la coda

principale e fornisce un punto centralizzato per l’analisi e la correzione degli errori.[19]

Sebbene l’importanza di questi pattern sia indiscutibile, in questa fase iniziale del progetto

la priorità è stata posta sulla stabilizzazione della comunicazione fondamentale e sull’im-

plementazione di efficaci sistemi di logging e monitoraggio per l’identificazione rapida dei

problemi. La loro eventuale adozione potrà essere valutata in futuro, in relazione all’e-

voluzione della complessità del sistema e delle specifiche esigenze operative che dovessero

emergere.

Per illustrare concretamente l’implementazione della comunicazione asincrona e il ruo-

lo di RabbitMQ in un contesto operativo reale, la Figura 3.2 presenta un diagramma sem-

plificato delle interazioni chiave che coinvolgono il microservizio User Simulator. Questo

diagramma evidenzia il flusso di messaggi attraverso le code di RabbitMQ, mostrando

come il simulatore riceva istruzioni e invii dati in modo disaccoppiato e affidabile, po-

nendosi al centro di scambi informativi eterogenei tra il Notification Center e il Position

Manager.

Figura 3.2: Esempio di implementazione con RabbitMQ

In sintesi, la scelta di RabbitMQ e l’adozione strategica delle code di messaggi rappre-

sentano una decisione architetturale fondamentale. Essa ha permesso di definire un’in-

frastruttura di comunicazione robusta, affidabile e scalabile per l’intero sistema a mi-



3.3 Database di persistenza: PostgreSQL 33

croservizi, fornendo le basi necessarie per la sua futura crescita. La Tabella 3.2 illustra

sinteticamente le motivazioni che hanno portato all’adozione di RabbitMQ, mettendole a

confronto con le principali alternative valutate.

Criterio RabbitMQ (Scel-

ta Effettuata)

Apache Kafka

(Motivazioni

della Non-Scelta

Iniziale)

Chiamate HTTP

Dirette (Motiva-

zioni della Non-

Scelta)

Modello di

Comunicazione

Comunicazione

asincrona tra-

mite code. Di-

saccoppiamento

temporale.

Streaming di even-

ti. Log immutabile

di eventi.

Comunicazione sin-

crona. Accoppia-

mento diretto.

Affidabilità e

Garanzia Consegna

Alta affidabilità.

Consegna dei

messaggi garantita.

Alta resilienza.

Consegna garan-

tita con maggiore

complessità.

Nessuna garanzia di

consegna implicita.

Fallimenti diretti.

Flessibilità di

Routing

Supporto nativo per

vari pattern e topo-

logie di messaggisti-

ca.

Focalizzato su flus-

si di eventi e topic.

Routing basato su

partizioni.

Punto-punto. Nes-

sun pattern di rou-

ting avanzato.

Complessità di

Gestione

Maturità operativa.

Gestione relativa-

mente semplice per

code.

Maggiore comples-

sità infrastrutturale

e di gestione inizia-

le.

Minima complessità

infrastrutturale. Li-

miti funzionali.

Adeguatezza

Obiettivi

Ideale per garanzia

di consegna indivi-

duale e disaccoppia-

mento.

Orientato a big da-

ta e eventi storici.

Non prioritario per

esigenze attuali.

Mancanza di resi-

lienza e persistenza

asincrona.

Tabella 3.2: Sintesi delle motivazioni per la scelta di RabbitMQ nel sistema a microservizi

3.3 Database di persistenza: PostgreSQL

La definizione della strategia di persistenza dei dati ha rappresentato una scelta ar-

chitetturale cardine nell’implementazione del sistema a microservizi. L’esigenza primaria

era individuare una soluzione che garantisse l’affidabilità e l’integrità delle informazio-



34 3. Tecnologie fondamentali del sistema

ni, unitamente alla capacità di gestire specifici domini di dati. L’analisi ha coinvolto

principalmente due categorie di database: i sistemi di gestione di database relazionali

(RDBMS), che organizzano i dati in tabelle con collegamenti precisi e strutturati, esem-

plificati da PostgreSQL, e i database NoSQL, più flessibili e orientati a documenti o altri

formati, quali MongoDB. La decisione finale di adottare PostgreSQL per le istanze di

database afferenti ai microservizi è stata il risultato di una valutazione multicriterio.

Per il nostro sistema, la garanzia di massima integrità e affidabilità dei dati era un

requisito imprescindibile per entità critiche quali gli eventi di allerta, le posizioni degli

utenti e la rappresentazione strutturale dell’edificio. In questo contesto, PostgreSQL si è

imposto come la scelta più coerente. Essendo un RDBMS pienamente conforme agli stan-

dard ACID (Atomicità, Consistenza, Isolamento, Durabilità) - un insieme di proprietà

che assicurano che le transazioni sui dati siano elaborate in modo affidabile, prevenendo

corruzioni o perdite - PostgreSQL offre transazioni robuste e una integrità referenziale na-

tiva. Quest’ultima caratteristica garantisce che i collegamenti tra i dati in diverse tabelle

siano sempre validi e consistenti, aspetto fondamentale per mantenere la coerenza delle

complesse relazioni intrinseche tra le diverse entità. Sebbene i database NoSQL come

MongoDB offrano notevole flessibilità di schema e scalabilità orizzontale, la loro archi-

tettura non si allineava altrettanto efficacemente alle nostre esigenze di un modello dati

strutturato e fortemente relazionale. La gestione di relazioni complesse e l’assicurazione

dell’integrità transazionale in un contesto NoSQL avrebbe richiesto un’implementazione

a livello applicativo significativamente più complessa e soggetta a potenziali incoerenze.

L’elemento definitivo che ha consolidato la preferenza per PostgreSQL è stata la di-

sponibilità e la maturità dell’estensione PostGIS. Questa estensione dota PostgreSQL di

funzionalità avanzata per la gestione di dati geografici, supportando specifici tipi di dato

geometrici (come punti per posizioni, linee per percorsi o poligoni per aree) e un’ampia

gamma di operazioni georeferenziali e di analisi spaziale. Ad esempio, calcolare distanza,

individuare intersezioni o determinare contenimenti geografici. In un’architettura dove

un’ampia varietà di informazioni - quali le zone degli alert, le coordinate delle posizioni

utente, i percorsi di evacuazione e la topologia dell’edificio - sono intrinsecamente legate ad

un contesto spaziale, l’integrazione nativa di PostGIS ha rappresentato un vantaggio stra-

tegico. Questa capacità di persistenza e interrogazione di dati spaziali, senza la necessità

di ricorrere a soluzioni esterne o stratificazione architetturali complesse, ha ottimizzato

sia la semplificazione del design complessivo, sia l’efficienza delle operazioni geospaziali.

[20][21]

Nel nostro sistema, PostgreSQL con PostGIS è stato implementato attraverso due

istanze principali dedicate alla persistenza dei dati sotto la nostra responsabilità. Una

prima istanza è specificamente dedicata all’archiviazione selettiva degli alert rilevanti ge-



3.3 Database di persistenza: PostgreSQL 35

nerati, registrando i relativi metadati e le coordinate geospaziali per successive analisi

storico-epidemiologiche (ovvero, studi basati sui dati storici per comprendere tendenze

o impatti degli eventi). Questa istanza è primariamente gestita dal microservizio Alert

Manager. Una seconda istanza di database, come illustrato in Figura 3.3, presenta una

struttura più articolata, ospitando diverse tabelle con funzionalità distinte: include la

rappresentazione dei nodi e degli archi del grafo dell’edificio, una tabella per le posizioni

correnti degli utenti (cruciale per l’identificazione di situazioni di pericolo e la visualiz-

zazione della mappa), e una tabella per lo storico delle posizioni degli utenti, orientata

principalmente a finalità di analisi retrospettiva.

Figura 3.3: Esempio di database relazionale nel sistema complessivo

Sebbene le posizioni utente siano attualmente generate da un simulatore per scopi di

testing, il sistema è progettato per integrare futuri meccanismi di rilevazione di posizioni

reali e gestire coordinate geografiche effettive. Questa seconda istanza è accessibile in

modalità lettura e scrittura sia dal microservizio User Simulator che dal Position Mana-

ger. L’interazione con entrambe le istanze PostgreSQL/PostGIS è gestita efficacemente

tramite le librerie Python, quali psycopg2 per la connettività diretta al database e SQ-

LAlchemy per facilitare l’Object-Relational Mapping (ORM). Questo approccio assicura

una connettività robusta e performante, pienamente integrata nell’ecosistema di sviluppo

selezionato.

In sintesi, l’adozione di PostgreSQL, con la sua estensione PostGIS, ha fornito una so-

luzione robusta, affidabile e altamente flessibile. Questa scelta ha soddisfatto pienamente



36 3. Tecnologie fondamentali del sistema

le esigenze del nostro sistema a microservizi per la gestione di dati relazionali complessi e

l’elaborazione geospaziale avanzata, costituendo una base solida per l’intera architettura.

3.4 File di configurazione: YAML

Per la gestione delle configurazioni operative e dei parametri applicativi all’interno del

sistema a microservizi, è stato adottato il formato YAML (YAML Ain’t Markup Lan-

guage). YAML si configura come un linguaggio di serializzazione di dati estremamente

leggibile dall’essere umano, progettato per favorire la chiarezza e la semplicità, pur man-

tenendo una robusta capacità di rappresentazione di strutture dati complesse attraverso

l’uso dell’indentazione per definire la gerarchia.[22]

La scelta di YAML è stata guidata da molteplici fattori strategici. La sua sintassi

pulita e intuitiva contribuisce significativamente alla leggibilità e alla manutenibilità dei

file di configurazione, minimizzando il rischio di errori e semplificando la collaborazione

tra gli sviluppatori. La capacità di organizzare i dati in una struttura gerarchica nidifi-

cata, basata su mappe (equivalenti a dizionari o oggetti) e liste (equivalenti ad array), si

è rivelata ideale per modellare parametri complessi in modo ordinato e facilmente navi-

gabile. Questa caratteristica è particolarmente vantaggiosa in un’architettura distribuita

dove ogni microservizio richiede un insieme specifico e spesso articolato di impostazioni.

Nel contesto specifico del nostro sistema di gestione delle emergenze, i file YAML

svolgono un ruolo fondamentale nel disaccoppiamento tra la logica applicativa e la confi-

gurazione dell’ambiente o dello scenario. Ad esempio, vengono impiegati per:

• Definire i criteri di filtraggio degli alert rilevanti: È possibile configurare soglie, tipi

di eventi o zone specifiche all’interno dell’edificio che attivano un’allerta, senza dover

modificare il codice sorgente del microservizio Alert Manager.

• Modellare la distribuzione e il comportamento degli utenti nella simulazione: Para-

metri quali il numero di utenti simulati, e le probabilità di simulazione all’interno di

una tipologia di nodo dell’edificio possono essere definiti esternamente, permettendo

di testare il sistema in diversi scenari senza ricompilazione dell User Simulator.

• Stabilire le regole per la determinazione dello stato di pericolo di un utente: I file

YAML configurano le condizioni che il Position Manager utilizza per classificare un

utente come in pericolo, garantendo flessibilità nella definizione delle politiche di

sicurezza.

Questo approccio basato su file di configurazione YAML incarna un principio chiave della

progettazione software: la separazione delle responsabilità (separation of concerns). Tale



3.5 Conclusioni sulle tecnologie fondamentali 37

metodologia consente di adattare il sistema a diversi contesti ed edifici semplicemente

modificando questi file, senza la necessità di intervenire sulla parte implementativa del

codice. Ciò riduce drasticamente il tempo e la complessità delle operazioni di adattamento,

test e deployment per nuovi scenari o strutture, elevando la flessibilità e la riusabilità del

sistema a un livello superiore. In conclusione, l’adozione di YAML non solo ottimizza la

gestione delle impostazioni, ma contribuisce attivamente alla modularità e all’estensibilità

dell’intera architettura.

3.5 Conclusioni sulle tecnologie fondamentali

In sintesi, la progettazione architetturale del sistema si è basata su una selezione mira-

ta di tecnologie fondamentali, ciascuna scelta per rispondere a requisiti specifici e cruciali.

L’adozione di RabbitMQ come message broker ha garantito un’infrastruttura di comu-

nicazione robusta e asincrona, essenziale per il disaccoppiamento dei microservizi e la

gestione efficiente dei flussi di eventi. Parallelamente, PostgreSQL, con la sua estensione

geospaziale PostGIS, ha fornito una soluzione di persistenza dati affidabile e scalabile,

capace di gestire sia relazioni complesse che informazioni geografiche ad alta precisione,

fondamentali per la rappresentazione dell’ambiente e il tracciamento delle posizioni uten-

te. A completamento di queste scelte infrastrutturali, l’impiego di YAML per i file di

configurazione ha assicurato la flessibilità e la manutenibilità del sistema, permettendo

un adattamento rapido a scenari operativi e contesti di edificio diversi senza la necessità

di modifiche al codice.

La sinergia tra questi componenti chiave è cruciale per l’efficienza e la resilienza del-

l’intera architettura. La comunicazione disaccoppiata via code di messaggi consente ai

microservizi di operare in modo indipendente, reagendo agli eventi senza vincoli diretti

di disponibilità, mentre il database relazionale garantisce l’integrità e la coerenza delle

informazioni persistenti, e i file di configurazione ne rendono agevole la personalizzazio-

ne. Questa combinazione strategica crea un’architettura che non solo soddisfa i requisiti

funzionali e non funzionali più stringenti, ma è anche intrinsecamente predisposta alla

scalabilità, alla riusabilità e alla manutenibilità. Le scelte tecnologiche illustrate in que-

sto capitolo costituiscono, pertanto, il pilastro su cui si erge l’intera implementazione

del sistema, la cui struttura dettagliata e l’operatività verranno approfondite nei capitoli

successivi.



38 3. Tecnologie fondamentali del sistema



Capitolo 4

Microservizio gestore degli alert

Questo capitolo dell’elaborato si addentra nella fase di implementazione del sistema

proposto. Vuole, dunque, arrivare al punto di convergenza tra le fondamenta teoriche

e le scelte architetturali di cui si è precedentemente discusso. L’analisi che seguirà si

concentrerà specificamente sul contributo individuale apportato allo sviluppo, partendo

dal primo microservizio la cui realizzazione ha rappresentato una responsabilità diretta

all’interno del progetto complessivo.

4.1 Introduzione e funzionalità specifiche

Nel contesto dell’architettura a microservizi che abbiamo adottato, il microservizio

Alert Manager svolge un ruolo di primo piano. La sua funzione principale è quella di

coordinare l’intero percorso degli allarmi che si manifestano all’interno del nostro siste-

ma. In sostanza, questo servizio prende in carico gli eventi critici nel momento in cui

accadono, li elabora seguendo una logica precisa e si occupa di inviare le notifiche a chi ne

ha bisogno. È fondamentale comprendere che una sua eventuale incapacità nell’identifi-

care correttamente un alert che rappresenti una minaccia per l’edificio comprometterebbe

seriamente la funzionalità dell’intero sistema.

Due responsabilità fondamentali gravano sull’Alert Manager. In primo luogo, ha il

compito di ricevere e interpretare i messaggi di allerta conformi al Common Alerting Pro-

tocol, estraendone tutte le informazioni rilevanti all’evento di pericolo. Successivamente,

deve valutare la rilevanza di tale evento basandosi su un set di regole di business configu-

rabili. Queste regole sono definite all’interno di un file di configurazione e permettono di

adattare il sistema alle specificità di ogni edificio, consentendo di personalizzare i criteri

di filtraggio degli alert. Se l’evento viene ritenuto rilevante sulla base di queste logiche,

l’Alert Manager provvede ad archiviarlo nel database dedicato e, infine, si occupa dell’in-

39



40 4. Microservizio gestore degli alert

stradamento del messaggio di allerta verso i microservizi destinatari e attraverso i canali

dedicati.

4.2 Analisi dello stato dell’arte e motivazione delle

scelte implementative

Per comprendere meglio il panorama delle soluzioni e delle tecnologie disponibili per

la gestione degli alert, e al fine di giustificare le scelte implementative che hanno guidato

la progettazione dell’Alert Manager, questa sezione analizza lo stato dell’arte e le alter-

native considerate. Tale indagine si focalizzerà sia su sistemi di monitoraggio e alerting

di carattere generale, impiegati nel settore dell’Information Technology, sia su soluzioni

specifiche per il dominio applicativo della gestione degli alert negli edifici.

4.2.1 Sistemi di monitoraggio e allerta generici

Nel vasto panorama delle soluzioni IT dedicate al monitoraggio e all’allerting, emer-

gono per la loro diffusione e importanza architetture come Prometheus Alertmanager,

Zabbix e Nagios.[23][24][25] Nonostante la loro comune finalità di identificare e gestire

situazioni anomale all’interno di un sistema, le loro architetture e le modalità operative

presentano caratteristiche distintive che meritano un’analisi comparativa, specialmente in

relazione ai requisiti specifici di un sistema di gestione degli alert che adotta lo standard

CAP.

• Prometheus Alertmanager: componente del sistema di monitoraggio Prometheus

che si specializza nell’elaborazione e nell’instradamento degli allarmi generati dal

sistema, il cui funzionamento si basa sull’analisi di sequenze temporali di metriche.

La sua efficacia nella deduplica, nell’aggregazione e nell’inoltro flessibile degli alert

è notevole, tuttavia il suo focus primario rimane la gestione di alert derivati da

indicatori di performance IT. L’integrazione con un sistema che implementa nativa-

mente lo standard CAP richiederebbe un adattamento significativo, in particolare

per quanto riguarda la strutturazione delle notifiche e la gestione di alert provenienti

da sorgenti diverse dalle metriche monitorate da Prometheus, che si basano sulla

semantica specifica degli eventi di emergenza, non solo su valori numerici. [23]

• Zabbix: piattaforma di monitoraggio completa per infrastrutture IT, che integra

in un unico ambiente la raccolta dei dati e la gestione degli alert. Il suo modello

operativo si fonda sulla sorveglianza di host, servizi e parametri specifici (item),

con l’impiego di trigger per l’individuazione dei problemi e di azioni per l’ammi-



4.2 Analisi dello stato dell’arte e motivazione delle scelte implementative 41

nistrazione delle notifiche. Nonostante la sua vasta gamma di canali di notifica e

l’elevato grado di personalizzazione, il supporto intrinseco per lo standard CAP è

assente. L’implementazione di notifiche conformi al CAP implicherebbe la creazione

di script ad hoc o l’adozione di soluzioni di integrazione esterne, e la sua architettura

centralizzata potrebbe non allinearsi idealmente con i principi di un’architettura a

microservizi che pone l’accento su un formato standardizzato per la comunicazione

degli alert.[24]

• Nagios: costituisce un sistema di monitoraggio la cui flessibilità risiede nell’utilizzo

di plugin per l’esecuzione di controlli su host e servizi. Gli alert sono generati in base

agli esiti di tali verifiche, e le notifiche sono gestite attraverso comandi configurabili.

Analogamente a Prometheus e Zabbix, Nagios non fornisce un supporto intrinseco

per lo standard CAP. L’adozione di CAP richiederebbe lo sviluppo di plugin di

notifica su misura, e la sua architettura, sebbene estendibile, potrebbe necessitare

di una significativa personalizzazione per integrarsi efficacemente con un sistema che

fa dello standard per la comunicazione di emergenza il suo pilastro.[25]

Nessuno di questi sistemi offre un supporto nativo per lo standard CAP, che è un requisito

fondamentale per il nostro progetto. La loro architettura e filosofia operativa sono orienta-

te al monitoraggio di metriche IT o alla gestione di allarmi basati su stati di servizio, con

una limitata comprensione della semantica specifica degli eventi di mergenza definita da

standard come CAP. Questa lacuna, unita alla necessità di un’architettura a microservizi

flessibile e interoperabile, evidenzia il bisogno di una soluzione personalizzata. [26]

4.2.2 Soluzioni specifiche per il dominio applicativo

È fondamentale, nell’analisi dello stato dell’arte, considerare come le soluzioni di ge-

stione degli alert sono attualmente implementate nel dominio specifico dei sistemi di

gestione degli edifici, al fine di identificare potenziali limitazioni e giustificare le scelte

progettuali dell’ Alert Manager.

Nel settore dell’automazione degli edifici, la gestione degli alert è spesso integrata

nei Building Management Systems (BMS), che utilizzano protocolli standardizzati come

BACnet e Modbus per il controllo centralizzato degli impianti. Questi sistemi si concen-

trano principalmente sul garantire la sicurezza, l’efficienza e la gestione centralizzata degli

impianti all’interno dell’edificio. Tuttavia, le soluzioni esistenti presentano alcune limita-

zioni significative in termini di interoperabilità con sistemi esterni e standardizzazione del

formato degli alert. In particolare:

• Interoperabilità limitata: i protocolli BACnet1[27] e Modbus[28], sebbene ampia-

1BACnet - Building Automation and Control Networks



42 4. Microservizio gestore degli alert

mente utilizzati per la comunicazione interna tra i dispositivi di un edificio, non for-

niscono un supporto nativo per la comunicazione con sistemi esterni che utilizzano

standard diversi, come il CAP. Ciò rende difficile l’integrazione degli allarmi gene-

rati dai sistemi BMS con sistemi di emergenza più ampi o piattaforme di gestione

degli incidenti.

• Formati di alert non standardizzati: i diversi sistemi all’interno di un edificio (ad

esempio, allarmi antincendio, allarmi di sicurezza) possono utilizzare formati di

alert proprietari o standard di settori specifici, rendendo complessa l’aggregazione e

l’elaborazione centralizzata degli alert provenienti da fonti diverse.

L’Alert Manager mira a superare queste limitazioni adottando il Common Alerting

Protocol. Il CAP fornisce un formato standardizzato per la comunicazione di emergenza,

facilitando l’interoperabilità con una vasta gamma di sistemi esterni e consentendo una

gestione più efficiente e centralizzata degli alert provenienti da diverse fonti all’interno

dell’edificio. L’adozione del CAP è una scelta progettuale fondamentale che consente

all’Alert Manager di fungere da ponte tra i sistemi BMS interni e il mondo esterno, ga-

rantendo che le informazioni di emergenza possano essere comunicate in modo tempestivo

e accurato.

4.2.3 Conclusioni sull’analisi dello stato dell’arte

L’analisi dello stato dell’arte ha fornito diverse importanti indicazioni che hanno

guidato le scelte implementative per il nostro microservizio Alert Manager.

In primo luogo, è emerso chiaramente che i sistemi di monitoraggio generici come

Prometheus Alertmanager, Zabbix e Nagios, pur essendo potenti e flessibili, non offrono

un supporto nativo per lo standard CAP, che rappresenta un requisito fondamentale per

il nostro progetto. La loro architettura e la loro filosofia operativa sono spesso orientate al

monitoraggio di metriche IT o alla gestione di allarmi basati su stati di servizio, con una

limitata comprensione della semantica specifica definita da standard come CAP. Questa

lacuna evidenzia la necessità di una soluzione personalizzata che possa interpretare e

generare alert conformi a tale standard.

In secondo luogo, la ricerca di soluzioni specifiche per il dominio applicativo della

gestione degli alert in edifici non ha rivelato l’esistenza di soluzioni che supportino nativa-

mente lo standard CAP. I sistemi BMS e le piattaforme di gestione degli allarmi esistenti

tendono a utilizzare protocolli e standard propri del settore dell’automazione edilizia.

Questa mancanza di soluzioni standardizzate con supporto CAP rafforza la necessità

di sviluppare un microservizio su misura che possa aderire pienamente a tale standard e

integrarsi specificamente con i sistemi dell’edificio, colmando un vuoto nell’offerta attuale.



4.3 Sviluppo operativo del microservizio 43

Le lacune evidenziate nell’analisi dello stato dell’arte, hanno influenzato in modo si-

gnificativo le scelte implementative per il microservizio Alert Manager. L’obiettivo pri-

mario è stato, e rimane, quello di creare una soluzione personalizzabile, interoperabile ed

estremamente efficace, per la gestione degli alert nel nostro contesto applicativo.

4.3 Sviluppo operativo del microservizio

Questa sezione rappresenta il cuore dell’implementazione del microservizio. Qui si esa-

mina come le scelte architetturali e i requisiti funzionali si siano tradotti in una soluzione

operativa concreta. Verranno descritte le sue componenti principali, il flusso dettagliato

di elaborazione degli alert e gli aspetti implementativi specifici.

4.3.1 Componenti principali e flusso di lavoro degli alert

Il microservizio Alert Manager, sviluppato interamente in Python, è l’elemento chiave

del sistema per la gestione degli alert di emergenza. La sua architettura è stata concepita

per garantire robustezza e flessibilità in ogni fase di gestione di un alert, dalla sua acqui-

sizione all’instradamento finale. La sua struttura è schematizzata in Figura 4.1, offrendo

una visione d’insieme dell’organizzazione del progetto.

Figura 4.1: Struttura interna del microservizio Alert Manager



44 4. Microservizio gestore degli alert

Il microservizio è logicamente scomponibile in diverse componenti principali, ognuna

con una responsabilità ben definita. Tali componenti operano in sinergia per imple-

mentare il flusso di lavoro degli alert che viene orchestrato dal modulo principale del

microservizio (main.py). Il flusso si articola in una pipeline ben definita, progettata per

garantire che ogni alert venga sistematicamente acquisito, validato, filtrato, archiviato e

infine instradato solo se ritenuto rilevante, come mostrato in Figura 4.2.

Figura 4.2: Flusso interno del microservizio Alert Manager

Vediamo ora in dettaglio le componenti principali che rendono possibile questo flusso:

• Modulo di acquisizione alert: questa componente riceve i messaggi di emergenza.

Sebbene il sistema sia progettato per integrarsi con fonti esterne, nella fase prototi-

pale il microservizio preleva file CAP in formato XML da una cartella locale. Questo

approccio consente di testare la logica del microservizio con un set controllato di

alert, simulando diversi scenari di pericolo. Il ciclo di vita di un alert inizia con la

sua acquisizione e l’immediata elaborazione del file XML.

• Modulo di elaborazione e filtraggio CAP: una volta acquisito il messaggio CAP, que-

sto modulo dà il via alla fase di elaborazione del messaggio. Attraverso l’uso della

libreria xml.etree.ElementTree di Python, viene eseguito il parsing del messaggio



4.3 Sviluppo operativo del microservizio 45

XML in modo da comprenderne la struttura ed estrarre le informazioni principali.

Queste informazioni vengono poi trasformate in un dizionario Python, un passaggio

utile per standardizzare i dati e renderli più facili da utilizzare. Durante l’elabora-

zione, vengono estratti i campi principali dell’alert (come identifier, sender e status),

i dettagli dei blocchi info (ad esempio event, severity, description) e infine le infor-

mazioni geografiche dalla sezione area (come polygon e areaDesc), con le geometrie

convertite in formato GeoJSON pronto per il database. Una volta estrapolate le

informazioni essenziali dall’alert, il modulo applica una logica di filtraggio basata su

regole di business configurabili, contenute all’interno di un file YAML esterno. Se

un alert rientra nei criteri di rilevanza (ad esempio per tipo di evento o gravità), si

procede con i passaggi successivi.

• Archiviazione storica del CAP grezzo: indipendentemente dalla sua rilevanza o dal

risultato del filtraggio, ogni messaggio CAP ricevuto viene salvato in una cartella

storica. Questo garantisce di avere una traccia completa di tutti gli alert passati

per il sistema. Vengono conservate sia la versione XML originale, sia una versione

JSON completa (ottenuta dalla conversione a dizionario), entrambe identificate con

un timestamp unico per facilitare le analisi e il monitoraggio futuri.

• Modulo di persistenza dati: gli alert che superano il filtro di rilevanza vengono

salvati in un database PostgreSQL. Questa componente gestisce la connessione al

database e l’inserimento dei dati in tabelle normalizzate (alerts, info, areas). L’uso

dell’estensione PostGIS in PostgreSQL permette di gestire e interrogare in modo

efficiente le informazioni geospaziali contenute nei messaggi CAP, come le aree inte-

ressate dall’emergenza. L’intero processo di inserimento dei dati è trattato come una

transazione atomica, un approccio che assicura la completa integrità e affidabilità

del database.

• Modulo di instradamento e notifica: nel momento in cui l’alert supera il filtro, viene

immediatamente inviato al Notification Center, un altro microservizio del sistema.

Questo passaggio è l’ultima fase del processo e assicura una propagazione rapida

delle informazioni critiche. L’invio avviene tramite un sistema di messaggistica

asincrona che impiega RabbitMQ come intermediario (message broker). L’Alert

Manager agisce da produttore (Producer), inserendo il dizionario Python che rap-

presenta l’alert su una coda di messaggi dedicata. Questo utilizzo di RabbitMQ è

fondamentale, poiché separa l’Alert Manager dal Notification Center, migliorando

la resilienza e la scalabilità dell’intero sistema.



46 4. Microservizio gestore degli alert

• Modulo di supporto e logging: oltre alle sue funzioni principali, il microservizio

integra un robusto sistema di logging. Questo modulo è essenziale per il monito-

raggio, la risoluzione dei problemi (debugging) e la tracciabilità delle operazioni,

registrando eventi importanti ed eventuali errori sia a console che su file dedicati.

Questo flusso di lavoro si ripete continuamente, permettendo all’Alert Manager di mo-

nitorare ed elaborare senza sosta nuovi messaggi di emergenza, assicurando che solo le

informazioni critiche e rilevanti vengano propagate e archiviate in modo efficiente.

4.3.2 Elaborazione del Common Alerting Protocol

Il Common Alerting Protocol (CAP), uno standard OASIS riconosciuto a livello inter-

nazionale per la comunicazione di emergenza, rappresenta la base su cui l’Alert Manager

costruisce la sua logica di funzionamento. Questo protocollo, come anticipato nel Capi-

tolo 1, fornisce un formato versatile e interoperabile per la trasmissione di messaggi di

allerta pubblica, indipendentemente dal mezzo di comunicazione o dall’applicazione. Per

il microservizio in esame, la capacità di ricevere, interpretare e processare messaggi CAP

è fondamentale per la sua missione di coordinamento degli alert.

Un messaggio CAP è un documento XML con una struttura gerarchica che incapsula

tutte le informazioni relative ad un evento di emergenza. Per le finalità dell’Alert Manager,

i blocchi principali di interesse sono:

• <alert>: rappresenta il nodo radice del messaggio. Contiene i metadati essenziali

relativi all’allerta nel suo complesso, come un identificatore univoco, il mittente, il ti-

mestamp di invio, lo stato dell’allerta, il tipo di messaggio e l’ambito di distribuzione.

Questi campi servono a fornire una prima contestualizzazione dell’evento.

• <info>: un messaggio CAP può contenere uno o più blocchi di questo tipo, ciascuno

dei quali descrive un aspetto specifico dell’allerta, spesso in lingue diverse o per

pubblico differenti. L’Alert Manager estrae da essi dettagli cruciali come la categoria

dell’evento, il tipo di evento e le istruzioni per la risposta all’emergenza.

• <area >: all’interno di ciascun blocco <info>, possono essere presenti uno o più

blocchi di questo tipo, che definiscono l’area geografica interessata dall’alert. Questo

blocco include una descrizione dell’area e, in particolare, le geometrie che specificano

il confine dell’evento. La gestione di queste informazioni spaziali è cruciale per

localizzare l’emergenza e per successive analisi.

Per una comprensione visiva della gerarchia e dei principali elementi del messaggio CAP,

si rimanda alla Figura 4.3.



4.3 Sviluppo operativo del microservizio 47

Figura 4.3: Struttura standard di un messaggio CAP

Il microservizioAlert Manager, in particolare attraverso il suo modulo cap generator.py,

è incaricato di effettuare il parsing dei messaggi CAP in formato XML e di convertirli in

una struttura dati più gestibile per il sistema: un dizionario Python. Questo processo è

fondamentale per normalizzare le informazioni e facilitarne l’accesso e la manipolazione

da parte degli altri moduli. Per illustrare questa trasformazione, consideriamo un esempio

schematico di messaggio CAP XML. La Figura 4.1 mostra un estratto contenente gli ele-

menti principali che il microservizio processa, concentrandosi sui metadati di alto livello

e sulla sezione <area >per le informazioni geografiche. Per il listato XML completo, si

rimanda all’Allegato A, Figura 7.1.

Listing 4.1: Estratto schematico di messaggio CAP XML

<alert xmlns=”urn : o a s i s : names : tc : emergency : cap :1.2”>

<identi f ier>Test−Alert −001</ identi f ier>

<sender>example@example . org</sender>

<sent>2025−04−30T12:00:00+00:00</ sent>



48 4. Microservizio gestore degli alert

<status>Actual</status>

<msgType>Alert</msgType>

<scope>Public</scope>

<info>

<area>

<areaDesc>Bui ld ing A</areaDesc>

<polygon>45.0 ,9 .0 4 5 . 0 , 9 . 1 4 5 . 1 , 9 . 1 4 5 . 1 , 9 . 0 45.0 ,9 .0</

polygon>

<altitude>10</altitude>

</area>

</info>

</alert>

Il modulo responsabile del parsing analizza la struttura XML, estraendo i valori dei tag

rilevanti e organizzandoli nel dizionario Python. Particolare attenzione è rivolta alla

conversione delle coordinate geografiche dei poligoni (formato latitude, longitude) in un

formato GeoJSON (longitude, latitude) compatibile con lo standard. La trasformazio-

ne dell’esempio XML mostrato sopra produce la rappresentazione parziale in dizionario

Python in Figura 4.2, evidenziando la sezione geografica convertita in ‘geom‘:

Listing 4.2: Estratto della rappresentazione in dizionario Python

{
” i d e n t i f i e r ” : ”Test−Alert −001” ,

” sender ” : ”example@example . org ” ,

” sent ” : ”2025−04−30T12 : 00 : 00+00 : 00” ,

” s t a tu s ” : ”Actual ” ,

”msgType” : ”Ale r t ” ,

” scope ” : ”Publ ic ” ,

” i n f o ” : [

{
” areas ” : [

{
” areaDesc ” : ”Bui ld ing A” ,

”polygon” : ”45 . 0 , 9 . 0 4 5 . 0 , 9 . 1 4 5 . 1 , 9 . 1 4 5 . 1 , 9 . 0

4 5 . 0 , 9 . 0 ” ,

” a l t i t u d e ” : ”10” ,

”geom” : {
” type” : ”Polygon ” ,



4.3 Sviluppo operativo del microservizio 49

” coo rd ina t e s ” : [

[

[ 9 . 0 , 45 .0 ] ,

[ 9 . 1 , 45 .0 ] ,

[ 9 . 1 , 45 .1 ] ,

[ 9 . 0 , 45 .1 ] ,

[ 9 . 0 , 45 .0 ]

]

]

} ,

” geometry type ” : ”Polygon”

}
]

}
]

}

Per la rappresentazione completa in dizionario Python del messaggio CAP, si rimanda

all’Allegato B, Figura 7.2.

Questa trasformazione permette al microservizio di lavorare con i dati CAP in un

formato che Python gestisce facilmente, semplificando le operazioni successive come il

filtraggio, la validazione e l’inserimento nel database, senza dover interagire direttamente

con la complessità del formato XML originale.

4.3.3 Gestione della configurazione esterna e logica di filtraggio

Il microservizio Alert Manager è stato progettato per essere flessibile e adattabile a

diverse esigenze operative. Per questo motivo, la logica che determina la rilevanza di un

alert e, di conseguenza, se debba essere processato e inoltrato, è gestita attraverso un file

di configurazione esterno in formato YAML. Questa scelta architetturale offre numerosi

vantaggi: permette agli operatori di modificare i criteri di filtraggio senza dover intervenire

sul codice del microservizio, facilitando l’aggiornamento delle politiche di gestione degli

allarmi in tempo reale e riducendo il rischio di errori.

Il file di configurazione contiene un insieme di regole predefinite che l’Alert Mana-

ger utilizza per valutare ogni messaggio CAP ricevuto. Queste regole sono organizzate

gerarchicamente e specificano i valori che i vari campi di un alert devono assumere per

essere considerati rilevanti. La figura 4.3 mostra un estratto della struttura del file di

configurazione.



50 4. Microservizio gestore degli alert

Listing 4.3: Esempio di configurazione del filtro alert

cap_filter:

event:

- "Fire"

- "Earthquake"

- "Flood"

- "Hazardous␣Material"

- "Severe␣Weather"

- "Power␣Outage"

urgency:

- "Immediate"

- "Expected"

- "Future"

area:

- "Building␣A"

- "Parking␣Lot"

- "Surrounding␣Area"

Il file raggruppa le regole sotto la chiave principale cap filter. Ogni sotto-chiave (come

event, urgency e area) rappresenta un campo del messaggio CAP che viene utilizzato per

il filtraggio. Il valore associato a ciascuna di queste chiavi è una lista di valori accettati.

Ad esempio, un alert con event: ”Flood” o event: ”Fire” sarà considerato rilevante per

il criterio ”event”. Per la configurazione completa del filtro, si rimanda all’Allegato C,

Figura 7.3.

Il processo di filtraggio avviene dopo che il messaggio CAP è stato acquisito e conver-

tito nel dizionario Python. L’Alert Manager esamina il dizionario dell’alert e lo confronta

con le regole definite nel filtro seguendo una logica di tipo ”AND” (congiunzione logica)

e ”OR” (disgiunzione logica):

• Valutazione per campo (logica OR): per ogni campo definito nel file di configura-

zione, il valore corrispondente nel messaggio CAP deve essere presente in almeno

uno dei valori elencati nella lista di configurazione. Ad esempio, se urgency nel

CAP è ”immediate”, il criterio è soddisfatto in quanto presente anche nella lista di

configurazione.

• Valutazione complessiva (logica AND): affinchè un alert venga considerato rilevante

e superi il filtro, i campi di filtraggio definiti nel file di configurazione devono soddi-

sfare i rispettivi criteri. In altre parole, se il filtro ha regole per event e urgency, un

alert sarà rilevante solo se il suo event rientra nei valori accettati e la sua urgency

rientra nei valori accettati.



4.3 Sviluppo operativo del microservizio 51

Per una rappresentazione visiva di questa logica di filtraggio, si veda la Figura 4.4, che

illustra il flusso di decisione basato sulle regole definite.

Figura 4.4: Logica di filtraggio degli Alert

Se anche un solo campo dell’alert non corrisponde a nessuno dei valori accettati nella

sua lista di riferimento nel file di configurazione, l’intero alert viene scartato dal processo

di inoltro e persistenza, ma viene comunque archiviato nella storia dei CAP grezzi.

Questa logica di filtraggio granulare, basata su una configurazione esterna, garantisce

che l’Alert Manager processerà e inoltrerà solo le informazioni di emergenza che sono

effettivamente pertinenti agli interessi e alle politiche di allerta del sistema, riducendo il

rumore e concentrando l’attenzione sugli eventi critici.



52 4. Microservizio gestore degli alert

4.3.4 Persistenza dei dati e archiviazione storica

Una volta che il messaggio CAP è stato elaborato e ha superato la logica di filtraggio,

l’Alert Manager procede con la persistenza dei dati all’interno di un database relazio-

nale. Questa fase è essenziale per garantire che le informazioni critiche sugli alert siano

conservate in modo strutturato, facilitando la loro consultazione, l’analisi successiva e

l’integrazione con altri componenti del sistema.

Per la persistenza degli alert filtrati, il microservizio utilizza un database PostgreSQL

con l’estensione PostGIS. PostGIS è fondamentale per la gestione efficiente dei dati geo-

spaziali, consentendo di archiviare e interrogare le geometrie delle aree interessate dagli

alert (come poligoni e cerchi) in modo nativo. La Figura 4.5 mostra la struttura del

database adottata per la persistenza degli alert, articolata in tre tabelle principali.

Figura 4.5: Schema semplificato del database per la persistenza degli Alert CAP

Il modello dati è progettato per riflettere la struttura gerarchica del CAP, distribuendo

le informazioni principali in tre tabelle relazionate tra loro:

• Tabella alerts: memorizza i metadati principali di ogni messaggio CAP.

• Tabella info: contiene i blocchi informativi aggiuntivi associati a ciascun alert,

gestendo la possibilità che un singolo alert contenga uno o più blocchi info.



4.3 Sviluppo operativo del microservizio 53

• Tabella areas: dedicata alle aree geografiche coinvolte nell’alert, supportando le

geometrie complesse tramite PostGIS.

L’inserimento dei dati nel database avviene in una transazione atomica. Questo significa

che l’intero processo di salvataggio - che abbraccia la tabella alerts e tutte le sue dipen-

denze come le tabelle info e areas - viene trattata come un’unica e indivisibile unità di

lavoro. Di conseguenza, il processo si conclude sempre in uno dei due modi:

• Inserimento con successo: tutti i dati vengono salvati correttamente in ogni tabella

coinvolta.

• Annullamento totale (Rollback): al primo errore, non importa quanto piccolo, tut-

te le modifiche già apportate vengono automaticamente annullate, riportando il

database allo stato precedente.

Questo approccio è fondamentale per garantire l’integrità e la coerenza dei dati. Previene

scenari in cui solo una parte dell’informazione di un alert viene persistita, lasciando il

database in uno stato inconsistente o incompleto.

Oltre alla persistenza dei dati strutturati nel database, l’Alert Manager implementa un

meccanismo di archiviazione storica di tutti i messaggi CAP ricevuti, indipendentemente

dall’esito del filtraggio. Ogni messaggio CAP XML originale viene salvato in un’apposita

directory, insieme alla sua corrispondente rappresentazione in formato JSON. Questa

archiviazione ha molteplici finalità:

• Tracciabilità completa: permette di conservare una copia esatta di ogni alert cos̀ı

come è stata ricevuta, garantendo una tracciabilità completa nel tempo.

• Audit e debugging: in caso di anomalie o necessità di analisi retrospettiva, è possibile

risalire al messaggio originale e verificarne il contenuto esatto.

• Analisi futura: anche gli alert che non superano i criteri di filtraggio correnti possono

rivelarsi utili per future analisi di trend o statistiche.

In sintesi, l’Alert Manager non solo filtra e struttura i dati degli alert rilevanti, ma man-

tiene anche un archivio completo e inalterato di tutti i messaggi CAP per finalità di

robustezza operativa e analisi a lungo termine.

4.3.5 Instradamento e notifica via RabbitMQ

Dopo aver elaborato e persistito un alert rilevante, il microservizio Alert Manager pro-

cede con la pubblicazione del messaggio verso un sistema di message brokering basato su



54 4. Microservizio gestore degli alert

RabbitMQ. Questa fase è cruciale per abilitare la comunicazione asincrona e il disaccoppia-

mento tra i vari componenti del sistema, garantendo che altri microservizi o applicazioni

possano ricevere e reagire agli alert in tempo reale, senza dipendere direttamente dallAlert

Manager stesso.

Il microservizio utilizza la classe interna AlertProducer per gestire l’interazione con

RabbitMQ. Questa classe si connette al broker utilizzando le credenziali definite nella con-

figurazione del sistema. Il modello di comunicazione, in questo specifico scenario di noti-

fica, prevede che l’Alert Manager agisca come publisher inviando i messaggi direttamente

a una coda specifica.

La Figura 4.6 illustra il flusso di un messaggio di alert attraverso RabbitMQ, evi-

denziando il ruolo dell’Alert Manager come publisher e del Notification Center come

consumer.

Figura 4.6: Flusso del Messaggio di Alert tramite RabbitMQ

A differenza di un modello publish/subscribe tramite un fanout exchange, l’Alert Ma-

nager sfrutta il Default Exchange di RabbitMQ. Questo è uno scambio implicito di tipo

direct a cui tutte le code appena create sono automaticamente legate con una routing key



4.3 Sviluppo operativo del microservizio 55

pari al loro nome. Quando l’Alert Manager invia un messaggio, lo indirizza a una rou-

ting key corrispondente al nome della coda di destinazione. Per le notifiche di alert, la

coda predefinita è alert queue. È importante sottolineare che la dichiarazione e la gestio-

ne di questa coda sono responsabilità del Notification Center, il microservizio designato

a consumare questi messaggi e a gestirne la notifica finale agli utenti. Il flusso di mes-

saggi è il seguente: una volta che un alert ha superato il filtro e i suoi dati sono stati

correttamente salvati nel database, l’Alert Manager formatta l’alert in un messaggio e lo

invia direttamente alla coda alert queue. Per garantire la durabilità del messaggio e la

sua sopravvivenza in caso di riavvii del broker RabbitMQ, i messaggi vengono inviati con

l’attributo persistent=True.

Il formato del messaggio inviato su RabbitMQ è il dizionario Python dell’alert proces-

sato, convertito in formato JSON. Questo garantisce che tutte le informazioni strutturate

dell’alert, cos̀ı come estratte e validate, siano disponibili per i servizi consumatori in un

formato standard e facilmente parsabile. L’utilizzo di JSON facilita l’interoperabilità tra

servizi sviluppati in linguaggi diversi, mantenendo al contempo un’alta leggibilità dei dati.

In sintesi, l’integrazione con RabbitMQ permette all’Alert Manager di operare come

una componente centrale di elaborazione degli alert, distribuendo le informazioni rilevanti

in modo efficiente e disaccoppiato verso il Notification Center, che si occuperà delle fasi

successive di notifica. Il tutto è supportato da un sistema di logging che traccia ogni

operazione di invio.

4.3.6 Sistema di logging

Un sistema di logging robusto è un componente indispensabile per qualsiasi microser-

vizio, specialmente in un’architettura distribuita come quella dell’Alert Manager. La sua

funzione principale è registrare gli eventi significativi, le operazioni svolte e gli eventuali

errori che si verificano durante l’esecuzione del servizio. Questo non solo facilita le atti-

vità di debugging e monitoraggio in fase di sviluppo e produzione, ma fornisce anche una

traccia storica cruciale per audit, analisi delle prestazioni e conformità normativa.

Il microservizio Alert Manager integra un sistema di logging basato sulla libreria stan-

dard di Python, logging. La configurazione di questo sistema è centralizzata nel modulo

logger.py, che gestisce la creazione e la personalizzazione dell’istanza del logger. La confi-

gurazione prevede la creazione automatica di una directory logs/ all’interno della struttura

del progetto se questa non esiste. Successivamente, viene inizializzata un’istanza del logger

con il nome AlertManager.

Esempi di eventi che vengono sistematicamente loggati dall’Alert Manager includono:



56 4. Microservizio gestore degli alert

• Successo o fallimento delle connessioni al database: registrazioni di INFO in caso di

connessione riuscita e ERROR in caso di problemi di connessione.

• Parsing e conversione dei messaggi CAP: messaggi INFO che tracciano l’estrazione

dei campi e avvisi WARNING per campi obbligatori mancanti o vuoti nei messaggi

CAP.

• Esito delle operazioni di filtraggio: messaggi che indicano se un alert è stato consi-

derato rilevante o scartato.

• Stato dell’invio dei messaggi RabbitMQ: INFO per l’invio riuscito degli alert alla

coda alert queue e ERROR in caso di problemi durante la pubblicazione.

Questo approccio al logging assicura che l’Alert Manager fornisca una visione completa

del suo funzionamento interno, facilitando la diagnosi e la risoluzione dei problemi, e

garantendo la piena osservabilità delle sue operazioni.

4.4 Conclusioni sul gestore degli alert

Questo capitolo ha illustrato in dettaglio il microservizio Alert Manager, un compo-

nente fondamentale nell’architettura del sistema di notifica di emergenza. Il suo ruolo

principale è la gestione coordinata degli allarmi, partendo dalla loro acquisizione fino

all’instradamento delle notifiche. L’analisi dello stato dell’arte ha chiarito come le solu-

zioni esistenti per il monitoraggio IT (come Prometheus Alertmanager, Zabbix e Nagios)

e quelle specifiche per la gestione di edifici (BMS) non offrano un supporto nativo al

Common Alerting Protocol (CAP). Questa lacuna ha guidato la scelta progettuale di svi-

luppare una soluzione personalizzata, capace di interpretare e generare alert conformi a

questo standard internazionale, garantendo interoperabilità e una semantica precisa per

gli eventi di emergenza.

L’implementazione dell’Alert Manager, sviluppata in Python, è stata presentata at-

traverso le sue componenti principali e il flusso di lavoro degli alert. Abbiamo esaminato

il processo di parsing e validazione dei messaggi CAP, che trasforma i dati XML grezzi

in una struttura Python facilmente gestibile, pronta per le successive elaborazioni. Un

aspetto cruciale è la logica di filtraggio, gestita tramite un file di configurazione YAML

esterno. Questa configurazione permette di definire criteri granulari basati su campi spe-

cifici del CAP (come event, urgency, severity, area e altri), garantendo che solo gli alert

pertinenti vengano processati ulteriormente. La combinazione di logiche ”AND” e ”OR”

applicate a questi criteri assicura flessibilità e precisione nel determinare la rilevanza di

un alert.



4.4 Conclusioni sul gestore degli alert 57

La persistenza dei dati e l’archiviazione storica sono state dettagliate come pilastri

per la robustezza del sistema. Gli alert che superano il filtraggio vengono salvati in un

database PostgreSQL con l’estensione PostGIS, fondamentale per la gestione efficiente

delle informazioni geospaziali. Il modello dati, articolato nelle tabelle alerts, info e areas,

riflette fedelmente la struttura gerarchica del CAP. L’utilizzo di transazioni atomiche e

indici sulle chiavi esterne garantisce rispettivamente l’integrità dei dati e l’ottimizzazio-

ne delle prestazioni. Parallelamente, ogni messaggio CAP originale, indipendentemente

dal suo filtraggio, viene archiviato in formato XML e JSON, fornendo una tracciabilità

completa e risorse preziose per audit e future analisi.

L’instradamento e la notifica via RabbitMQ rappresentano l’ultimo passaggio nel ciclo

di vita dell’alert all’interno di questo microservizio. L’Alert Manager agisce come publi-

sher, inviando i messaggi (alert in formato JSON) direttamente alla coda alert queue del

Default Exchange di RabbitMQ. Questa scelta garantisce un disaccoppiamento efficace

tra l’Alert Manager e il Notification Center (responsabile della gestione della coda), pro-

muovendo scalabilità e resilienza. La persistenza dei messaggi (persistent=True) assicura

inoltre la loro durabilità anche in caso di riavvii del broker.

Infine, il sistema di logging, basato sulla libreria standard logging di Python, fornisce

una visione completa delle operazioni interne del microservizio. Con livelli di logging

differenziati per console (INFO) e file (DEBUG), e un formato uniforme per i messaggi,

facilita enormemente il debugging, il monitoraggio e la manutenza del sistema.

In sintesi, il microservizio Alert Manager è stato progettato e implementato come

una soluzione robusta, flessibile e interoperabile per la gestione degli alert CAP. Le sue

capacità di parsing, filtraggio configurabile, persistenza sicura e integrazione asincrona

tramite RabbitMQ, supportate da un logging completo, lo rendono un componente critico

ed efficace in un sistema di notifica di emergenza, capace di adattarsi a requisiti dinamici

e di operare in scenari complessi con alta affidabilità.



58 4. Microservizio gestore degli alert



Capitolo 5

Microservizio simulatore delle

posizioni

Questo capitolo è dedicato all’analisi approfondita del microservizioUser Simulator, un

componente chiave ma transitorio nell’architettura del sistema di gestione delle emergenze.

Sebbene la sua funzione sia quella di emulare il comportamento e la distribuzione spaziale

degli utenti, il suo design e la sua implementazione sono stati concepiti per replicare

fedelmente le dinamiche che un sistema di rilevamento in tempo reale dovrà un giorno

gestire. Nel corso di questo capitolo, verranno esplorati in profonfità gli aspetti cruciali di

questo microservizio, fornendo una visione completa della sua funzione e del suo impatto

sull’architettura:

• Il ruolo e lo scopo specifico del simulatore all’interno dell’ecosistema. Si analizzerà

la posizione strategica del simulatore all’interno dell’architettura a microservizi e la

sua funzione primaria nel processo di sviluppo e validazione.

• La sua architettura interna e le tecnologie impiegate per la sua realizzazione. Ver-

ranno spiegate le scelte architetturali e le tecnologie, giustificandone l’adozione.

• Come vengono gestiti e configurati i dati relativi agli utenti e all’ambiente.

• Il flusso operativo completo, dalla gestione degli utenti alla gestione delle diverse

fasi di movimento (normale e di emergenza).

• I meccanismi di comunicazione con gli altri microservizi. Verranno illustrati le

modalità e i protocolli di interazione con gli altri microservizi, sottolineando il ruolo

del simulatore come fonte di dati per gli altri microservizi.

59



60 5. Microservizio simulatore delle posizioni

5.1 Introduzione e funzionalità specifiche

Nel contesto dell’architettura a microservizi adottata, lo User Simulator ricopre un

ruolo di rilevo, sebbene temporaneo. La sua funzione principale è emulare, con rigore

metodologico, il comportamento e la distribuzione spaziale degli utenti all’interno degli

ambienti monitorati. È fondamentale comprendere che, pur essendo una soluzione di

supporto destinata a essere sostituita da un meccanismo di rilevamento in tempo reale,

la sua accurata implementazione è cruciale per la validazione delle logiche di emergenza

dell’intero sistema. Due responsabilità fondamentali sono assegnate allo User Simulator :

• Generazione e gestione dinamica delle posizioni degli utenti: il simulatore crea un

numero configurabile di utenti virtuali e ne gestisce il movimento all’interno di un

modello astratto dell’edificio. Questo movimento può essere casuale in condizioni

normali o guidato da percorsi specifici durante un’emergenza.

• Comunicazione coerente delle posizioni: si occupa di inviare le posizioni aggiorna-

te degli utenti al Position Manager in modo granulare (una posizione per utente

alla volta), replicando l’interfaccia che un futuro sistema di tracciamento reale do-

vrebbe fornire. Riceve inoltre istruzioni dal Notification Center per modificare il

comportamento degli utenti simulati in base allo stato dell’emergenza.

5.2 Analisi dello stato dell’arte e motivazione delle

scelte implementative

La progettazione e l’implementazione del microservizio User Simulator sono state il

risultato di un’attenta valutazione delle opzioni disponibili, ponderando le esigenze speci-

fiche del nostro sistema a microservizi e confrontando le soluzioni esistenti nel panorama

della simulazione. Sebbene l’obiettivo primario del simulatore sia quello di fungere da

strumento di test e validazione in assenza di dati di posizione reali, le scelte tecnologiche

e architetturali sono state dettate dalla ricerca di efficienza, accuratezza e integrazione

con l’ecosistema esistente.

5.2.1 Necessità strategica di un simulatore dedicato

In un’architettura complessa, dove molteplici componenti interagiscono dinamicamen-

te, la disponibilità di flussi di dati realistici è fondamentale per le fasi di sviluppo, test

e ottimizzazione. Per il nostro sistema di gestione delle emergenze, dipendente dalle po-

sizioni degli utenti per attivare logiche di allerta e guidare percorsi di evacuazione, la



5.2 Analisi dello stato dell’arte e motivazione delle scelte implementative 61

mancanza di un sistema di tracciamento hardware in tempo reale in fase di prototipazio-

ne ha reso indispensabile l’introduzione di un simulatore. Questo componente non è una

semplice soluzione provvisoria, ma si configura come un elemento chiave che permette di:

• Sbloccare lo sviluppo concorrente: permette ai microservizi dipendenti dalle posi-

zioni - quali il Position Manager e il Map Viewer - di progredire indipendentemente

dal sistema di rilevamento fisico. Questo accelera il ciclo di sviluppo complessivo e

riduce le dipendenze critiche.

• Garantire scenari di test controllati e ripetibili: la capacità di generare profili di

movimento utente predefiniti o casuali, e di innescare eventi di allerta in condizioni

riproducibili, è essenziale per la validazione rigorosa delle logiche di business del

sistema. A differenza di dati reali, che sono imprevedibili, il simulatore offre un

ambiente deterministico per identificare e risolvere anomalie.

• Valutare le performance e la scalabilità: regolando il numero di utenti simulati

e la frequenza di aggiornamento delle posizioni, è possibile sottoporre il sistema

a carichi di lavoro variabili. Questo fornisce indicazioni preziose sulla scalabilità

dei microservizi a valle (come capacità di elaborazione del Position Manager o del

Notification Center) e sulla resilienza dell’infrastruttura di messaggistica. [29][30]

La realizzazione di un simulatore dinamico è stata preferita all’uso di dati statici o mock

pre-registrati. Sebbene questi ultimi siano più semplici da implementare, avrebbero limi-

tato fortemente la capacità di testare le reazioni in tempo reale del sistema a variazioni

continue delle posizioni e non avrebbero permesso la simulazione di scenari complessi,

come l’interazione con percorsi di evacuazione dinamici. Un simulatore attivo, pur nella

sua natura transitoria, replica in modo più fedele il comportamento di una fonte di dati

reale, facilitando la futura transizione e minimizzando l’impatto architetturale.

5.2.2 Confronto con framework e librerie di simulazione generi-

che

Nel vasto e diversificato panorama delle soluzioni software, esistono numerose categorie

di strumenti e librerie dedicate alla simulazione, ognuna caratterizzata da un proprio focus

e un livello di astrazione. Per la modellazione di comportamenti di entità discrete in un

ambiente, in Python si distinguono in particolare le seguenti tipologie:

• Framework di Agent-Based modeling (ABM): Tra gli esempi più noti figurano

Mesa[31] e NetLogo (spesso con estensioni Python)[32]. Questi strumenti sono

eccellenti per costruire simulazioni dove l’attenzione è rivolta al comportamento



62 5. Microservizio simulatore delle posizioni

emergente di agenti autonomi che interagiscono tra loro e con l’ambiente. Essi of-

frono spesso capacità di visualizzazione complesse e strumenti di analisi statistica

integrati.

• Piattaforme di simulazione integrate: strumenti come AnyLogic[33] o GAMA1[34]

rapresentano piattaforme di modellazione e simulazione complete. Queste suppor-

tano tipicamente più paradigmi (ABM, simulazione a eventi discreti, dinamica dei

sistemi) e offrono interfacce grafiche avanzate, librerie predefinite per specifici do-

mini (es. traffico, pedoni) e capacità di visualizzazione e analisi complesse. Sono

soluzioni potenti per studi di ricerca o per la prototipazione di sistemi su larga scala.

• Librerie per la manipolazione e l’analisi di grafi: librerie come NetworkX[35] offrono

potenti strumenti per la creazione, manipolazione e studio di strutture a grafo. Seb-

bene non siano framework di simulazione nel senso stretto, consentono di modellare

reti complesse

• Librerie per animazioni e motori fisici: sebbene meno pertinenti per il nostro scopo,

esistono librerie (es. Pygame per semplici simulazioni 2D o wrappers per motori

fisici più complessi) che consentono di animare oggetti e simulare interazioni fisiche

in ambienti grafici, utili per contesti con requisiti visivi.[36]

La scelta di procedere con un’implementazione custom dello User Simulator, piuttosto

che adottare o adattare uno di questi framework generici, è stata dettata da una serie di

motivazioni pragmatiche e di allineamento con gli obiettivi specifici del progetto:

• Riduzione dell’overhead funzionale e di complessità: framework come Mesa o Simpy[37],

cos̀ı come piattaforme integrate quali Anylogic o GAMA, pur essendo potenti e ver-

satili, introducono un significativo overhead in termini di funzionalità non stretta-

mente necessarie per il nostro specifico scopo. Essi sono spesso orientati alla ricerca

accademica o alla modellazione di fenomeni complessi, offrendo capacità (come mo-

tori di rendering avanzati, collezionisti di dati statistici avanzati, gestione di agenti

con apprendimento) che avrebbero appesantito il progetto senza un beneficio diret-

to e proporzionato alle nostre esigenze. L’integrazione, l’apprendimento e la con-

figurazione di tali sistemi avrebbero incrementato la curva di apprendimento e la

complessità di manutenzione del software, distogliendo risorse dal core del problema.

• Massimizzazione della flessibilità e adattabilità al dominio specifico: lo User Si-

mulator è intrinsecamente legato a specifiche del nostro sistema: deve leggere la

topologia dell’edificio da un database PostGIS, interpretare percorsi di evacuazione

1GAMA - General Agent-based Modeling Architecture



5.3 Sviluppo operativo del microservizio 63

come sequenze di archi su un grafo e comunicare tramite RabbitMQ con payload

di messaggi precisi. Adattare un framework generico a queste interfacce I/O e a

un modello di movimento cos̀ı specifico (basato su nodi e archi di un edificio reale)

avrebbe richiesto uno sforzo di personalizzazione potenzialmente maggiore rispetto

allo sviluppo di una soluzione mirata. L’approccio custom ha permesso un controllo

granulare su ogni aspetto del ciclo di vita dell’utente simulato, dal respawn alla

navigazione guidata.

• Focus sulla generazione di dati per il testing di sistema: l’obiettivo primario del

simulatore non è l’analisi scientifica del comportamento di una folla o la predizione

di fenomeni complessi, ma l’erogazione di un flusso di dati di posizione coerente

e controllabile per testare l’efficacia e la robustezza degli altri microservizi. Una

soluzione custom ha consentito di concentrare le risorse sullo sviluppo di una logi-

ca di simulazione essenziale e performante per questo scopo, senza la necessità di

implementare caratteristiche che avrebbero spostato il focus dalla sua funzione di

validatore di sistema.

• Integrazione nell’ecosistema a microservizi: data la predominanza di Python come

linguaggio di sviluppo e l’adozione di RabbitMQ come message broker standard

nell’architettura complessiva, la costruzione di un simulatore specifico ha garantito

un’integrazione senza frizioni con l’architettura esistente. Questo ha facilitato la

gestione delle dipendenze, la configurazione e il deployment del servizio.

5.2.3 Conclusioni sull’analisi dello stato dell’arte

L’approfondita analisi delle alternative e delle motivazioni ha chiarito come la scelta di

sviluppare un microservizio User Simulator custom sia stata la più coerente e strategica

per le esigenze del progetto. Le soluzioni di simulazione generiche, pur valide per i loro

scopi, avrebbero introdotto un onere eccessivo in termini di complessità e funzionalità

superflue, e non avrebbero offerto la flessibilità necessaria per integrarsi nativamente con

le specifiche architetturali e di dominio del nostro sistema. L’implementazione mirata

ha consentito di creare uno strumento leggero, efficiente e perfettamente allineato al suo

ruolo di generatore di dati per il testing e la validazione degli altri microservizi, gettando

le basi per una futura sostituzione trasparente con un sistema di rilevamento reale.

5.3 Sviluppo operativo del microservizio

Il microservizio User Simulator è progettato per replicare il movimento e il com-

portamento degli utenti all’interno di un ambiente mappato. Il suo scopo è simulare



64 5. Microservizio simulatore delle posizioni

dinamicamente le risposte degli utenti a eventi specifici e a condizioni ambientali mutevo-

li. L’implementazione si fonda su un’architettura modulare, caratterizzata da componenti

distinti che si occupano di configurazione, interazione con il database, comunicazione asin-

crona e la logica core della simulazione. Questo approccio favorisce una chiara separazione

delle responsabilità, promuovendo la scalabilità e la manutenibilità del sistema.

5.3.1 Componenti principali e flusso di lavoro del simulatore

Il microservizio User Simulator, sviluppato interamente in Python, è l’elemento chiave

del sistema per la simulazione del comportamento degli utenti. La sua architettura è stata

concepita per garantire robustezza e flessibilità in ogni fase della simulazione, dalla genera-

zione iniziale degli utenti alla gestione delle loro reazioni a eventi esterni. La sua struttura

è schematizzata nella Figura 5.1, offrendo una visione d’insieme dell’organizzazione del

progetto.

Figura 5.1: Struttura interna del microservizio User Simulator

Il microservizio è organizzato in diverse componenti principali, ciascuna con una re-

sponsabilità specifica. Queste componenti lavorano insieme in sinergia per realizzare il

flusso operativo del simulatore, orchestrato dal modulo principale main.py. Il processo

si sviluppa attraverso una pipeline ben definita, pensata per garantire che ogni utente

simulato sia sistematicamente inizializzato, posizionato e aggiornato nel suo stato e mo-



5.3 Sviluppo operativo del microservizio 65

vimento. Questo approccio assicura anche che le sue interazioni con l’ambiente e gli altri

servizi siano gestite in modo coerente, come illustrato in Figura 5.2.

Figura 5.2: Flusso interno del microservizio User Simulator

Analizziamo ora in dettaglio le componenti principali che rendono possibile questo

flusso:

• Modulo di avvio e orchestrazione: questa componente funge da punto di ingresso

del microservizio, gestendo l’inizializzazione e l’orchestrazione delle altre parti.

• Modulo di gestione della configurazione: si occupa di caricare, validare e interpretare

tutti i parametri operativi del simulatore.



66 5. Microservizio simulatore delle posizioni

• Modulo di interazione con il database: questa componente gestisce la connessione al

database PostgreSQL per il recupero delle informazioni topologiche dell’ambiente.

• Modulo di comunicazione asincrona: dedicato alla gestione di tutte le interazioni

con il message broker RabbitMQ.

• Modulo core di simulazione: questo è il cuore logico del simulatore, includendo le

classi che modellano gli utenti e il motore che ne gestisce il comportamento.

• Modulo di logging e servizio: raccoglie funzioni di supporto generiche che non rien-

trano direttamente nelle logiche principali, ma sono indispensabili per il funziona-

mento del microservizio.

5.3.2 Modulo di avvio e orchestrazione

Il file main.py non è solo il punto di avvio del microservizio, ma è anche il suo or-

chestratore centrale. La sua funzione principale è quella di inizializzare l’applicazione

FastAPI, un framework web leggero e performante che espone gli endpoint del simula-

tore per consentire l’interrogazione esterna delle posizioni simulate. Successivamente, si

occupa di caricare tutti i parametri di configurazione essenziali tramite il modulo di ge-

stione della configurazione, garantendo che il simulatore operi secondo le impostazioni

desiderate.

Un ruolo cruciale di questa componente è quello di stabilire le connessioni vitali con

le risorse esterne: il database PostgreSQL, dal quale vengono letti i dati topologici della

mappa, e il message broker RabbitMQ, fondamentale per la comunicazione in tempo reale

con gli altri microservizi del sistema. Dopo aver assicurato tutte le connessioni, main.py

avvia i thread in background dedicati alla logica di simulazione vera e propria e alla ge-

stione asincrona dei messaggi di RabbitMQ. Questo approccio basato sui thread consente

al simulatore di eseguire simultaneamente il suo motore logico e di rimanere in ascolto

per eventi esterni senza bloccare l’interfaccia API. In sintesi, main.py è il catalizzatore

che rende l’intero simulatore funzionale, coordinando l’attivazione e l’interazione di tutti

i suoi sottosistemi, come mostrato in Figura 5.3.



5.3 Sviluppo operativo del microservizio 67

Figura 5.3: Flusso del modulo di avvio e orchestrazione

5.3.3 Modulo di gestione della configurazione

Il modulo di gestione della configurazione è fondamentale per l’adattabilità e la robu-

stezza del microservizio. Si compone di due parti:

• Un file con estensione YAML (config.yaml): rappresenta il file di configurazione

primario che contiene la definizione di tutti i parametri operativi del simulatore. La

scelta del formato YAML garantisce una leggibilità elevata e una struttura chiara

per la definizione delle impostazioni.



68 5. Microservizio simulatore delle posizioni

• Un modulo Python (config loader.py): rappresenta il componente software respon-

sabile del caricamento, della validazione e dell’interpretazione dei parametri definiti

nel file di configurazione. Assicura che il simulatore operi sempre in accordo con le

impostazioni previste.

Il file di configurazione è un file in cui vengono definiti tutti i parametri utili al siste-

ma, ad esempio, il numero di utenti da generare, le velocità di movimento differenziate

(una speed normal per i comportamenti di routine e una speed alert per le situazioni di

emergenza), e l’intervallo di tempo (simulation tick) che intercorre tra un aggiornamento

e l’altro della simulazione. Un elemento distintivo e particolarmente utile è la capacità di

definire time slots (fasce orarie), ognuna delle quali è associata a una specifica distribuzio-

ne probabilistica di tipi di nodo (es. ”aula”, ”caffetteria”, ”ufficio”). Questo meccanismo

permette al simulatore di posizionare in modo realistico gli utenti in diverse aree della

mappa a seconda dell’ora del giorno. Per esempio, è possibile simulare una maggiore

presenza di persone nelle aule durante le lezioni o nelle aree comuni durante le pause,

riflettendo accuratamente le dinamiche di un ambiente reale. Infine, i dettagli essenziali

per la connessione al message broker RabbitMQ, come l’host, le porte e i nomi delle code,

sono anch’essi configurati qui, centralizzando la gestione delle risorse esterne.

Un estratto rappresentativo del file config.yaml, che illustra la struttura e alcuni dei

parametri chiave menzionati, è riportato nel Listato 5.1.

Listing 5.1: Estratto del file di configurazione (config.yaml)

rabbitmq:

host: "localhost"

port: 5672

username: "guest"

password: "guest"

alert_queue: "user_simulator_queue"

evacuation_paths_queue: "evacuation_paths_queue"

position_queue: "position_queue"

n_users: 4

speed_normal: 20.0

speed_alert: 350.0

simulation_tick: 1.0

timeout_after_stop: 15

time_slots:

- name: "morning_class_1"

start: "08:30"



5.3 Sviluppo operativo del microservizio 69

end: "10:30"

distribution:

classroom: 0.6

corridor: 0.1

coffee shop: 0.05

canteen: 0.05

office: 0.1

bathroom: 0.05

stairs: 0.03

outdoor: 0.02

- name: "morning_break"

start: "10:30"

end: "11:00"

distribution:

classroom: 0.05

corridor: 0.15

coffee shop: 0.3

canteen: 0.3

office: 0.05

bathroom: 0.1

stairs: 0.03

outdoor: 0.02

Per una consultazione completa del file di configurazione, si rimanda all’Appendice D,

Figura 7.4

Il componente software responsabile del caricamento del file di configurazione non si

limita alla semplice lettura di tale file. Il suo compito include la logica necessaria per

analizzare le fasce orarie e fornire al motore di simulazione le distribuzioni appropriate

per la posizione iniziale degli utenti in base all’orario corrente. Questo assicura che il

comportamento del simulatore si adatti dinamicamente agli scenari temporali predefiniti,

garantendo che i dati di configurazione siano sempre validi e coerenti con le aspettative

operative del sistema.

5.3.4 Modulo di interazione con il database

Il modulo di interazione con il database è la componente essenziale per accedere alle

informazioni spaziali e topologiche dell’ambiente simulato. All’interno di questo modulo,

la classe DB incapsula tutta la logica necessaria per la connessione al database PostgreSQL

e per il recupero dei dati della mappa. I dati cruciali che vengono letti sono i nodi



70 5. Microservizio simulatore delle posizioni

(che rappresentano aree specifiche o punti di interesse nell’ambiente, come aule, corridoi,

uscite di sicurezza) e gli archi (che definiscono le connessioni percorribili tra questi nodi,

modellando percorsi pedonali, scale, ecc.). Questi dati, recuperati dal database, sono

poi utilizzati dal motore di simulazione per guidare il movimento degli utenti simulati

all’interno della mappa. Di seguito, la Figura 5.4 mostra la struttura delle tabelle a cui

accede lo User Simulator.

Figura 5.4: Tabelle nodes e arcs del database dedicato alla rappresentazione dell’edificio

È importante sottolineare che lo User Simulator non ha alcuna facoltà di modificare,

aggiungere o eliminare dati relativi alla mappa. La responsabilità di creare, popolare e

mantenere aggiornato il database con tutte le informazioni cartografiche spetta intera-

mente a un microservizio esterno dedicato: il Map Viewer. Questa chiara separazione

delle responsabilità garantisce l’integrità dei dati della mappa e assicura che il simulatore

sia un ”consumatore” passivo e affidabile delle informazioni topologiche.

5.3.5 Modulo di comunicazione asincrona

Il modulo di comunicazione asincrona è dedicato interamente alla gestione di tutte le

interazioni del microservizio attraverso il message broker RabbitMQ. Questa componente

è cruciale per l’integrazione del simulatore nell’architettura complessiva del sistema di

gestione delle emergenze. La classe RabbitMQHandler è il fulcro di questo sistema di

comunicazione. Essa gestisce l’intera lifecycle della connessione e delle operazioni con

RabbitMQ: dalla connessione al server del broker, alla dichiarazione delle code necessa-

rie sia per l’invio che per la ricezione dei messaggi, fino all’implementazione della logica

di consumo e pubblicazione. Questo handler è specificamente configurato per ascoltare



5.3 Sviluppo operativo del microservizio 71

messaggi provenienti da altri microservizi, quali ad esempio i messaggi di ”allerta” (che

innescano un cambio di stato nel simulatore e negli utenti) e i percorsi di evacuazione,

essenziali per guidare il movimento degli utenti in caso di emergenza. Contemporanea-

mente, la RabbitMQHandler ha il compito fondamentale di pubblicare in modo continuo

e regolare le posizioni aggiornate di tutti gli utenti simulati. Queste informazioni vengo-

no inviate a code dedicate, rendendole immediatamente disponibili ad altri microservizi

interessati, come il Position Manager, che elabora i dati di posizione per l’intero sistema.

L’uso di RabbitMQ permette di disaccoppiare lo User Simulator dagli altri servizi, mi-

gliorando la resilienza, la scalabilità e la flessibilità dell’intera architettura, come mostrato

in Figura5.5.

Figura 5.5: Flusso delle posizioni tramite RabbitMQ



72 5. Microservizio simulatore delle posizioni

5.3.6 Modulo core di simulazione

Il modulo di simulazione rappresenta il cuore operativo del microservizio User Simula-

tor, contenendo la logica fondamentale che governa la simulazione degli utenti. È qui che

avviene la generazione degli utenti, il loro movimento dinamico e la gestione dei loro stati

in risposta a vari stimoli. Questo modulo integra anche il modello dati che descrive ciascun

utente e le logiche che ne regolano il comportamento. Contiene due classi principali:

• La classe Simulator: è il motore principale della simulazione. È responsabile di

inizializzare il pool di oggetti User, ognuno dei quali rappresenta un individuo simu-

lato all’interno dell’ambiente. Questa classe gestisce l’avanzamento temporale della

simulazione attraverso ”tick” regolari, che fungono da unità di tempo discrete. Du-

rante ogni ”tick”, il Simulator orchestra l’aggiornamento delle posizioni di tutti gli

utenti in base alle loro logiche di movimento e allo stato corrente. È anche il punto

di coordinamento per la reazione agli eventi esterni, come l’attivazione di stati di

allerta (che possono modificare drasticamente il comportamento degli utenti) o la

ricezione di comandi di ”stop” che indicano la fine di un’emergenza o l’arresto del-

la simulazione. Il Simulator inoltre delega al modulo di comunicazione RabbitMQ

l’invio delle posizioni aggiornate degli utenti.

• La classe User: è il modello di un singolo individuo all’interno dell’ambiente simula-

to. Ogni istanza di User incapsula tutte le informazioni rilevanti relative al suo stato

e alla sua posizione. Le proprietà chiave che descrivono un utente sono le seguenti:

1. user id: identificatore univoco che distingue ogni utente simulato.

2. Posizione spaziale: l’utente mantiene le coordinate (x, y, z) della sua posizione

precisa all’interno del current node (l’ID del nodo o area in cui si trova). La

posizione iniziale degli utenti al momento della loro creazione è determinata

in modo casuale, ma è influenzata da distribuzioni temporali configurabili de-

finite nel file di configurazione per replicare scenari realistici di occupazione

dell’ambiente in base all’ora del giorno.

3. Stato comportamentale: attributo fondamentale in quanto definisce il com-

portamento corrente dell’utente, evolvendo in base agli eventi. Può assumere

diversi valori. Nello stato normale l’utente si muove liberamente e casualmen-

te tra i nodi della mappa, simulando le attività di routine quotidiana. Nello

stato di allerta, dopo aver ricevuto una notifica di emergenza, l’utente assume

una priorità alta nel muoversi. La sua velocità e il suo obiettivo di movimento

cambiano per riflettere la situazione. Nello stato salvo l’utente ha raggiun-

to il punto di sicurezza disignato o l’emergenza è stata dichiarata terminata,



5.3 Sviluppo operativo del microservizio 73

cessando cos̀ı il movimento attivo. Lo stato di allerta presenta anche un sotto-

stato: in attesa percorso. In questo caso l’utente è momentaneamente fermo,

in attesa di ricevere un percorso di evacuazione specifico da un servizio esterno.

4. Velocità di movimento: l’utente possiede due velocità predefinite: speed normal

per i movimenti di routine e speed alert per i movimenti accelerati in condi-

zioni di emergenza. La speed effettiva viene impostata dinamicamente in base

allo stato corrente dell’utente.

5. Informazioni di evento e percorso: in caso di allerta, l’utente può avere as-

sociato un event (es. ”incendio”) che descrive la natura dell’emergenza, e un

evacuation path, che è una sequenza di arc id che l’utente è istruito a seguire

per raggiungere la salvezza.

6. Gestione di anomalie: vari flag e contatori, come blocked (per indicare se l’u-

tente è momentaneamente bloccato, magari a causa di un ostacolo o in attesa

di istruzioni) e stuck ticks (un contatore che traccia per quanti ”tick” consecu-

tivi l’utente è rimasto nello stesso nodo), sono utilizzati per gestire e risolvere

comportamenti inattesi o situazioni di blocco nella simulazione, permettendo

al simulatore di reagire in modo robusto.

Il simulatore nel suo complesso, attraverso la classe Simulator, opera secondo diversi stati

che influenzano il comportamento generale degli utenti e la logica di avanzamento:

• Stato di funzionamento normale: in questo stato, il simulatore genera utenti e li fa

muovere secondo la loro logica di esplorazione casuale o basata sulle distribuzioni

orarie. L’ambiente è considerato stabile e non ci sono emergenze attive.

• Stato di allerta: questo stato viene attivato dal simulatore quando riceve un messag-

gio di allerta da RabbitMQ. Una volta in questo stato, il simulatore inizia a gestire

le reazioni degli utenti: li pone inizialmente in stato ”in attesa percorso” e succes-

sivamente, non appena riceve percorsi di evacuazione dal servizio di pathfinding,

istruisce gli utenti a seguirli, aumentando la loro velocità a speed alert.

• Stato di Stop: questo stato si verifica quando il simulatore riceve un messaggio di

”stop” (ad esempio, indicante la fine dell’emergenza). In questo caso, gli utenti che

non hanno ancora completato un percorso di evacuazione passano allo stato ”salvo”

e smettono di muoversi. Il simulatore stesso, dopo un timeout configurabile (tempo

per il reset dopo un’emergenza), può resettarsi allo stato ”normale”, permettendo

agli utenti di riprendere il loro movimento libero se la situazione è completamente

risolta.



74 5. Microservizio simulatore delle posizioni

Le transizioni tra questi stati sono governate dal motore di simulazione, che reagisce

dinamicamente ai comandi esterni (allerta, stop) e alle condizioni interne (es. un utente

che raggiunge la fine del suo percorso).

In sintesi, la gestione dei dati e dello stato nello User Simulator è un meccanismo

reattivo e configurabile che consente agli utenti di modificare il proprio comportamento

in base a eventi esterni e di contribuire al monitoraggio della situazione trasmettendo le

proprie posizioni. L’architettura basata su configurazione esterna e la lettura della mappa

da un database dedicato consentono una notevole flessibilità nella definizione degli scenari

di simulazione, mantenendo al contempo una chiara separazione delle responsabilità tra i

diversi microservizi del sistema.

5.3.7 Modulo di logging e servizio

Il modulo di logging e servizio raccoglie una serie di funzioni di supporto che, pur

non essendo parte della logica core del simulatore, sono indispensabili per il corretto

funzionamento, la manutenibilità e l’interazione del microservizio con il mondo esterno.

Questo modulo è scomponibile in due parti:

• API HTTP/S: si occupa della registrazione degli endpoint API HTTP/S dell’appli-

cazione, sfruttando il framework FastAPI. La sua funzione principale è esporre un

endpoint specifico, ad esempio /positions, che consente a servizi esterni di interroga-

re e recuperare le posizioni attuali di tutti gli utenti simulati. Questo è cruciale per

l’integrazione del simulatore con applicazioni di monitoraggio, dashboard o sistemi

di visualizzazione, fornendo un flusso di dati dinamico e consultabile on-demand

senza richiedere una conoscenza profonda del funzionamento interno del simulatore.

• logger: si occupa della configurazione e gestione di un sistema di logging centra-

lizzato per l’intero microservizio. Questo assicura che tutti i messaggi generati dal

sistema (come debug, informazioni operative, avvertimenti e errori critici) siano regi-

strati in modo consistente, sia su console che su file dedicati. Il logging è fondamen-

tale per il monitoraggio delle operazioni in tempo reale, la diagnostica di eventuali

problemi (il debugging) e il tracciamento del comportamento del simulatore nel cor-

so del tempo, sia durante le fasi di sviluppo che in un ambiente di produzione. Una

buona configurazione del logger permette di avere visibilità su cosa stia accadendo

all’interno del simulatore, facilitando la manutenzione e la risoluzione dei problemi.



5.4 Conclusioni sul simulatore delle posizioni 75

5.4 Conclusioni sul simulatore delle posizioni

Il microservizio User Simulator si è dimostrato un componente indispensabile nell’ar-

chitettura complessiva del sistema di gestione delle emergenze, fungendo da ponte cruciale

tra la fase di prototipazione e un futuro scenario con dati di posizione reali. Sebbene la sua

natura sia transitoria, la sua implementazione robusta e flessibile ha permesso di validare

le logiche di sistema in assenza di un hardware di tracciamento fisico.

L’architettura modulare, con una chiara separazione delle responsabilità tra i moduli di

avvio, configurazione, interazione con il database, comunicazione asincrona, simulazione

e utilità, ha garantito un’elevata manutenibilità e scalabilità. La capacità di definire

il comportamento degli utenti tramite configurazione esterna, inclusa la simulazione di

distribuzioni spaziali basate su fasce orarie, ha permesso di creare scenari di test realistici

e controllabili. La gestione dinamica dello stato degli utenti e del simulatore, in risposta

a eventi come le allerte e i percorsi di evacuazione, ha validato l’efficacia delle logiche di

reazione del sistema.

In conclusione, lo User Simulator ha raggiunto pienamente il suo scopo strategico: ha

sbloccato lo sviluppo concorrente degli altri microservizi, ha fornito un ambiente di test

controllato e ripetibile per scenari complessi e ha permesso di valutare le performance del-

l’intera pipeline di gestione delle emergenze. La sua concezione ha facilitato l’integrazione

con il resto dell’ecosistema, dimostrando come un componente transitorio possa essere

fondamentale per la maturazione di un sistema complesso.



76 5. Microservizio simulatore delle posizioni



Capitolo 6

Microservizio gestore delle posizioni

Nei sistemi di gestione delle emergenze in ambienti complessi, come edifici o contesti

industriali, la capacità di reagire in maniera tempestiva ed efficace a eventi imprevisti è di

importanza critica. Un requisito fondamentale in questo ambito è l’elaborazione in tempo

reale dei dati di posizione. Storicamente, le architetture di monitoraggio si sono affidate a

sistemi centralizzati in cui un server principale raccoglie dati da sensori distribuiti attra-

verso un modello di polling, un meccanismo in cui il server interroga regolarmente ogni

sensore per verificare la disponibilità di nuovi dati. Tuttavia, tale approccio mostra limiti

intrinseci di scalabilità: l’aggiunta di ogni nuovo sensore incrementa linearmente il carico

sul server, portando a una latenza che può risultare inaccettabile in scenari ad alta densità

di dati, come in un’evacuazione di massa. Per affrontare queste problematiche, il Position

Manager è stato concepito come un broker intelligente. Abbandonando il paradigma del

pull (in cui il server interroga attivamente i client per ricevere informazioni) in favore di

un modello event-driven (push), i dati di posizione sono inviati in modo asincrono non

appena disponibili. Questo design garantisce che il microservizio non resti in attesa pas-

siva, ma si attivi solo in risposta a un evento (l’arrivo di un nuovo dato), ottimizzando

l’uso delle risorse e la reattività complessiva del sistema.

6.1 Introduzione e funzionalità specifiche

Il microservizio Position Manager rappresenta il fulcro operativo del sistema, agendo

da ponte tra i dati di posizione grezzi generati dallo User Simulator e le informazioni

elaborate, essenziali per gli altri componenti dell’architettura. La sua funzione primaria

consiste nel ricevere, analizzare e distribuire i dati di posizione degli utenti in tempo

reale, distinguendo lo stato di sicurezza di ogni individuo e comunicando i dati aggregati

rilevanti agli altri microservizi. Le sue responsabilità principali si possono riassumere in:

77



78 6. Microservizio gestore delle posizioni

• Gestione delle posizioni: riceve e analizza le posizioni simulate. Mantiene un data-

base con una duplice logica: una tabella per le posizioni correnti (current position)

e una tabella per lo storico degli spostamenti (user historical position).

• Analisi del rischio: valuta lo stato di pericolo di ciascun utente in base alla posizione

e alle proprietà specifiche del nodo corrispondente all’interno della mappa.

• Aggregazione dei dati: aggrega i dati di pericolo per nodi e utenti, fornendo una

visione d’insieme delle aree a rischio.

• Comunicazione: si occupa della comunicazione asincrona mirata, inviando i da-

ti elaborati a microservizi specifici come il Map Manager e il Notification Center

attraverso code RabbitMQ dedicate.

La progettazione di questo microservizio è stata guidata dalla necessità di una logica di

elaborazione reattiva ed efficiente, capace di gestire un flusso continuo di dati di posizione

e di reagire prontamente a ogni potenziale situazione di pericolo.

6.2 Analisi dello stato dell’arte e motivazione delle

scelte implementative

Lo sviluppo del microservizio Position Manager è stato guidato dall’obiettivo di crea-

re un sistema che superasse le limitazioni dei tradizionali approcci di monitoraggio, pur

riconoscendo i compromessi necessari nella progettazione di una soluzione prototipale.

L’analisi dello stato dell’arte nei sistemi di monitoraggio in tempo reale (RTLS1)[38], e

la successiva valutazione delle architetture per la loro gestione, ha rappresentato il fon-

damento teorico per le scelte progettuali del microservizio Position Manager. L’obiettivo

primario era superare i limiti dei sistemi convenzionali, pur mantenendo un equilibrio

tra complessità e funzionalità. Per sviluppare una soluzione efficace, è stato necessario

valutare criticamente le architetture esistenti e i loro limiti, specialmente in un contesto

di gestione delle emergenze.

6.2.1 Architetture tradizionali e limiti dei sistemi RTLS

I sistemi RTLS sono ampiamente utilizzati in vari settori, dalla logistica all’automa-

zione industriale, sfruttando diverse tecnologie per il tracciamento di persone e risorse in

1RTLS - Real Time Location System



6.2 Analisi dello stato dell’arte e motivazione delle scelte implementative 79

ambienti chiusi. La loro implementazione si basa su tecnologie come Bluetooth Low Ener-

gy (BLE), Wi-Fi2 e RFID3, ciascuna con le sue specificità. I sistemi BLE, ad esempio,

usano beacon a basso consumo che emettono segnali radio, i cui dati vengono trian-

golati per stimare la posizione. Allo stesso modo, i sistemi Wi-Fi e RFID funzionano

raccogliendo dati da punti di accesso o lettori distribuiti.

Nonostante la loro efficacia nel fornire dati di posizione, questi sistemi sono tipicamente

progettati con un’architettura monolitica. Tutta la logica, dalla ricezione dei dati grezzi

all’analisi e alla presentazione, risiede in un unico blocco software. Questo design porta a

una serie di problemi critici, soprattutto in un contesto come la gestione di un’evacuazione:

• Scalabilità ridotta: ogni nuovo sensore o dispositivo utente aumenta linearmente il

carico sull’unico server centralizzato, creando un collo di bottiglia che compromette

le prestazioni all’aumentare degli utenti.

• Vulnerabilità: l’intera applicazione dipende dalla funzionalità di un singolo com-

ponente. Un guasto in una parte del sistema può causare il malfunzionamento

dell’intero processo.

• Latenza elevata: l’approccio basato sul polling, dove il server interroga regolarmente

ogni sensore, introduce un ritardo tra la raccolta del dato e la sua elaborazione,

un’inefficienza inaccettabile durante un’emergenza.

Inoltre, un’ulteriore criticità di queste soluzioni è l’assenza di una logica di analisi del

pericolo integrata. Il loro scopo è puramente di monitoraggio, fornendo una fotografia della

posizione degli utenti, ma senza la capacità di valutare autonomamente il rischio e attivare

risposte immediate. Per un’efficace gestione delle emergenze, è invece fondamentale che

l’analisi del pericolo e la notifica siano strettamente integrate nel processo di elaborazione

dei dati di posizione.

6.2.2 Modelli moderni di stream processing e la loro non appli-

cabilità al prototipo

Le architetture per il monitoraggio su larga scala si sono evolute verso soluzioni di

stream processing, progettate per gestire flussi di dati massicci con latenze minime.[39]

Due delle piattaforme più influenti in questo ambito sono Apache Kafka[40] e Apache

Flink[41].

2Wi-Fi - Wireless Fidelity
3RFID - Radio Frequency IDentification



80 6. Microservizio gestore delle posizioni

• Apache Kafka: Kafka è una piattaforma di event streaming distribuita. Funziona

come un message broker dove i dati vengono organizzati in topic e gestiti da un

cluster di broker. I dati vengono resi persistenti su disco garantendo che gli eventi

non vadano persi. Gli utenti, chiamati consumer, possono leggere i dati da questi

topic in modo asincrono. Presenta una elevata scalabilità orizzontale, un’elevata

resilienza e tolleranza ai guasti per cui risulta capace di gestire milioni di messaggi

al secondo. Tale scalabilità tuttavia si traduce in una complessità infrastutturale

molto alta in quanto richiede la gestione di un cluster, l’installazione di Zookeeper

e una configurazione complessa che introduce un notevole overhead operativo.

• Apache Flink: Flink è un framework per l’elaborazione di flussi di dati in tempo rea-

le. A differenza di Kafka, che si concentra sul trasporto dei dati, Flink si specializza

nell’esecuzione di calcoli complessi, come aggregazioni e funzioni di stato, sui dati

in streaming. Funziona come un motore di calcolo che riceve dati in tempo reale e

produce risultati continui. Presenta una latenza estremamente bassa, una gestione

dello stato dei flussi di dati e la capacità di eseguire analisi sofisticate. Tali carat-

teristiche comportano competenze specialistiche per essere implementate e gestite.

Non è una soluzione stand-alone ma un framework che necessita di integrazione e

un’infrastruttura di supporto.

L’adozione di un’architettura basata su Kafka o Flink per il presente progetto, pur of-

frendo una scalabilità superiore, sarebbe risultata sovradimensionata e controproducente.

L’obiettivo del Position Manager era dimostrare la validità di un’architettura a microser-

vizi e di un modello event-driven per la gestione di un flusso di dati controllato e simulato.

L’implementazione di una piattaforma di Big Data avrebbe spostato il focus dal problema

principale, introducendo una complessità e un overhead che non erano necessari per un

prototipo funzionale. Il progetto si è quindi concentrato sulla creazione di un’architettura

che bilanciasse in modo ottimale funzionalità, efficienza e semplicità.

6.3 Sviluppo operativo del microservizio

6.3.1 Componenti principali

Lo sviluppo del Position Manager ha seguito un approccio modulare e orientato alla

produzione, con una chiara separazione dei compiti tra i vari componenti. La sua struttura

è schematizzata nella Figura 6.1 , offrendo una visione d’insieme dell’organizzazione del

microservizio.



6.3 Sviluppo operativo del microservizio 81

Figura 6.1: Struttura interna del microservizio Position Manager

Il microservizio è composto da tre moduli principali:

• Consumer: il cuore operativo del microservizio. Gestisce la connessione con Rab-

bitMQ e contiene la logica principale per l’elaborazione dei messaggi.

• Database Manager: un’astrazione per le interazioni con il database. Questa classe

incapsula tutte le query SQL, rendendo il codice del consumer indipendente dalla

specifica implementazione del database.

• Logger: un modulo dedicato alla gestione del logging, essenziale per il debug e il

monitoraggio del servizio in ambiente di produzione.

Infine il modulo main funge da punto di ingresso del servizio, inizializzando il consumer

e avviando il processo di ascolto.

6.3.2 Flusso di lavoro delle posizioni

Il flusso di lavoro del Position Manager è un ciclo continuo e asincrono in più fasi:

1. Ricezione del messaggio: il microservizio si mette in ascolto sulla coda RabbitMQ

position queue per i messaggi provenienti dallo User Simulator. Da tale coda viene

prelevato, analizzato e decodificato un messaggio JSON contenente l’identificatore

dell’utente, le coordinate x,y,z e l’identificatore del nodo.

2. Analisi della sicurezza: il microservizio determina lo stato di sicurezza dell’utente

in base al nodo in cui si trova. Viene interrogata la tabella del database relativa ai

nodi dell’edificio in modo da ottenere informazioni sulla pericolosità del nodo stesso

(l’attributo safe se impostato a true indica un nodo sicuro, altrimenti un nodo

pericoloso). Tale informazione permette al microservizio di identificare un utente in



82 6. Microservizio gestore delle posizioni

pericolo e di attribuire alla posizione corrente dell’utente la variabile danger prima

che la posizione venga memorizzata nella tabella delle posizioni correnti.

3. Aggiornamento del database: la posizione, arricchita con la variabile booleana dan-

ger, viene salvata sulle due tabelle del database attraverso due operazioni distinte:

• aggiornamento della posizione corrente dell’utente nella tabella current position.

L’operazione garantisce che per ogni utente esista un solo record aggiornato,

ottimizzando l’accesso ai dati in tempo reale.

• inserimento di un nuovo record nella tabella user historical position creando

una cronologia degli spostamenti degli utenti. Queste informazioni sono utili

per analisi a posteriori, come la ricostruzione del percorso di un utente durante

un’emergenza.

4. Logica di invio dati: l’invio dei dati agli altri microservizi non avviene per ogni

singola posizione, ma è regolato da una strategia ibrida che garantisce reattività ed

efficienza:

• Soglia di messaggi: dopo l’elaborazione di un numero di messaggi definito, il

microservizio invia i dati aggregati agli altri microservizi.

• Intervallo temporale: un thread separato assicura che, anche con un basso

flusso di dati, un invio avvenga dopo che sia passato un intervallo definito.

5. Invio messaggi: i dati aggregati vengono inviati su due code distinte, map manger queue

e alerted users queue, a seconda del destinatario e del formato del messaggio richie-

sto.

6. Gestione della fine emergenza: il sistema monitora costantemente lo stato di tutti

gli utenti attraverso le posizioni correnti. Se tutti gli utenti sono in stato salvo, il

microservizio invia un messaggio di tipo Stop al Notification Center per segnalare

la fine dell’emergenza.

Il flusso appena descritto è rappresentato graficamente in Figura 6.2.



6.3 Sviluppo operativo del microservizio 83

Figura 6.2: Flusso interno del microservizio Position Manager

6.3.3 Modulo di interazione con il database

Il modulo db manager.py incapsula l’intera logica di interazione con il database, fun-

gendo da strato di astrazione tra il microservizio e lo storage dei dati. Questo approccio

garantisce che la logica di business rimanga indipendente dalla specifica implementazione

del database. Le sue funzionalità chiave sono:

• Gestione delle posizioni: le funzioni upsert current position e insert historical position

sono responsabili della persistenza dei dati. L’uso di un’operazione di UPSERT



84 6. Microservizio gestore delle posizioni

(una combinazione di UPDATE e INSERT) sulla tabella current position è una

scelta critica di design. Questo evita la creazione di record duplicati e garantisce

che la tabella rifletta sempre l’ultima posizione nota di ogni utente, ottimizzando

le query per l’accesso ai dati in tempo reale. Parallelamente, ogni aggiornamen-

to o inserimento su current position scatta un trigger database che incrementa o

decrementa automaticamente il contatore current occupancy nella tabella nodes,

mantenendo l’occupazione dei nodi sincronizzata senza richiedere calcoli aggiuntivi

dal microservizio. L’utilizzo delle query SQL è rappresentato in Figura 6.3.

Figura 6.3: Flusso interno delle query SQL per la gestione delle posizioni

• Analisi e aggregazione: per supportare le funzionalità di analisi, il modulo fornisce

query specializzate. La funzione get dangerous node aggregates sfrutta le capacità



6.3 Sviluppo operativo del microservizio 85

di aggregazione di PostgreSQL con la clausola GROUP BY per raggruppare gli uten-

ti a rischio per nodo. La funzione get aggregated evacuation data estende questa

logica, eseguendo un’operazione di JOIN tra le tabelle current position e nodes per

recuperare, per ogni nodo in pericolo, la lista degli utenti a rischio e il corrispondente

percorso di evacuazione. Il flusso interno delle query è riportato in Figura 6.4.

Figura 6.4: Flusso interno delle query SQL per l’analisi e l’aggregazione dei dati

• Ottimizzazione delle query: il metodo is node safe implementa una cache in memo-

ria con un meccanismo di Time-To-Live (TTL) di 5 secondi. Questa strategia riduce

drasticamente il numero di interrogazioni al database per lo stesso nodo, un’otti-

mizzazione fondamentale per un’applicazione che gestisce un flusso di dati ad alta

frequenza e che deve minimizzare la latenza. Il diagramma in Figura 6.5 rappre-

senta la logica di caching utilizzata per ottimizzare il funzionamento del Position

Manager.



86 6. Microservizio gestore delle posizioni

Figura 6.5: Rappresentazione del meccanismo TTL per l’ottimizzazione delle query

6.3.4 Modulo di comunicazione asincrona

Il modulo consumer.py rappresenta il cuore reattivo del microservizio. È responsabile

dell’ascolto continuo sulla coda di input e della gestione efficiente dei messaggi in arrivo.

La sua architettura interna è progettata per bilanciare reattività e stabilità, utilizzando

un modello di concorrenza basato su thread.

• Concorrenza: oltre al thread principale che consuma i messaggi dalla position queue,

un thread separato viene utilizzato per garantire che i messaggi aggregati vengano

inviati a intervalli regolari. Questa logica previene che i dati rimangano bloccati nel



6.3 Sviluppo operativo del microservizio 87

microservizio in situazioni di traffico ridotto, assicurando che gli altri componenti

del sistema ricevano aggiornamenti tempestivi.

• Gestione delle code: il consumer gestisce diverse connessioni e canali RabbitMQ

per inviare messaggi a destinatari specifici. Vengono utilizzate due code di output

principali: map manager queue, per inviare dati aggregati al microservizio di visua-

lizzazione, e alerted users queue, per inviare dati più dettagliati, inclusi i percorsi

di evacuazione, al microservizio di notifica.

• Logica di invio: la strategia di invio dei messaggi è ibrida. I dati aggregati vengono

inviati sia al raggiungimento di una soglia di messaggi elaborati, sia quando un

intervallo di tempo scade. Questo approccio garantisce che il sistema risponda in

modo rapido agli eventi improvvisi e frequenti, mantenendo al contempo un flusso

costante di aggiornamenti.

6.3.5 Modulo di logging

Il modulo di logging (logger.py) è un componente cruciale per la manutenibilità e il

debug del microservizio. Nonostante la sua apparente semplicità, è stato configurato per

fornire output su due destinazioni distinte, ciascuna con un livello di dettaglio differente.

• Console: l’handler della console è configurato per mostrare messaggi con un livello di

gravità INFO o superiore. Questo fornisce una visione chiara e sintetica dell’attività

del microservizio in tempo reale, utile per il monitoraggio operativo.

• File: l’handler del file di log cattura tutti i messaggi con un livello di gravità DEBUG

o superiore. Questo livello di dettaglio è fondamentale per l’analisi post-mortem

e il debug, consentendo di tracciare ogni singola operazione, inclusi i valori delle

variabili, i risultati delle query e lo stato interno del consumer.

L’uso di un logger strutturato e configurabile è essenziale in un’architettura a microservizi,

dove il debug su sistemi distribuiti può essere particolarmente complesso.

6.3.6 Conclusioni sul gestore delle posizioni

Il microservizio Position Manager ha dimostrato con successo la validità di un’archi-

tettura event-driven e a microservizi per la gestione di dati di posizione in tempo reale.

Sebbene la sua implementazione non sia ottimizzata per una scalabilità a livello di Big

Data, le scelte di design adottate, come l’uso di Python, PostgreSQL e RabbitMQ, hanno



88 6. Microservizio gestore delle posizioni

fornito una piattaforma robusta e affidabile per la validazione del sistema. Le funzio-

nalità di gestione dei dati, di analisi e di comunicazione sono state implementate con

un’attenzione alla performance e alla resilienza.

Questo microservizio rappresenta un prototipo funzionale che convalida i principi fon-

damentali del progetto: la separazione delle responsabilità, la resilienza del sistema at-

traverso la messaggistica asincrona e l’efficienza nell’elaborazione dei dati. Le lezioni

apprese e i compromessi di design evidenziati in questo capitolo saranno fondamentali

per un’eventuale futura evoluzione del sistema, orientata a gestire volumi di dati di or-

dini di grandezza superiori, magari con l’integrazione di tecnologie di stream processing

specializzate.



Capitolo 7

Risultati sperimentali

Questa sezione dell’elaborato è dedicata alla presentazione e all’analisi dei risultati

ottenuti dalle simulazioni condotte per validare l’architettura a microservizi proposta.

L’obiettivo principale è duplice: dimostrare il funzionamento del sistema nella gestione di

scenari di emergenza e misurarne le performance opertative in termini di latenza e effica-

cia. I dati raccolti offrono un’analisi quantitativa che supporta le motivazioni progettuali

esposte nei capitoli precedenti, confermando come la modularità e il disaccoppiamento dei

microservizi contribuiscano a un’elevata reattività e resilienza del sistema. Per garantire

una valutazione completa e robusta, l’approccio adottato è stato a due livelli: una valu-

tazione qualitativa basata su simulazioni complete di singoli scenari, e una valutazione

quantitativa su larga scala, variando il numero di utenti.

7.1 Analisi del caso di studio: Campus universitario

di Cesena

Le simulazioni sono state eseguite per valutare la capacità del sistema di gestione

delle emergenze di reagire in modo tempestivo e coerente a eventi critici in un ambiente

complesso. Il caso di studio scelto è il Campus universitario di Cesena, un ambiente

che, per le sue dimensioni e la sua struttura, rappresenta uno scenario ideale per testare

l’architettura distribuita.

L’edificio è stato modellato come un grafo orientato, dove i nodi rappresentano le aule,

i corridoi e le uscite, e gli archi denotano i collegamenti tra di essi. Questa astrazione

topologica consente al sistema di operare su una rappresentazione precisa dell’ambiente,

essenziale per il calcolo dei percorsi di evacuazione. La configurazione specifica dell’edificio

è stata definita nelMap Viewer come segue: l’edificio si sviluppa su tre piani, ciascuno con

funzionalità distinte. Il terzo piano è adibito a uffici e spazi di lavoro, mentre il primo e il

89



90 7. Risultati sperimentali

secondo piano ospitano principalmente aule didattiche, laboratori, zone ristoro e servizi

igienici. La configurazione dell’edificio è rappresentata dalle seguenti Figure 7.1, 7.2, 7.3.

Figura 7.1: Piano 0 del Campus di Cesena

Figura 7.2: Piano 1 del Campus di Cesena



7.1 Analisi del caso di studio: Campus universitario di Cesena 91

Figura 7.3: Piano 2 del Campus di Cesena

L’edificio è rappresentato attraverso l’insieme di 148 nodi differenti, collegati tra loro

mediante 343 archi. La configurazione iniziale della distribuzione degli utenti, che avvie-

ne all’avvio del sistema in stato normale, è un aspetto cruciale delle simulazioni. Questo

permette di posizionare un numero variabile di utenti in modo strategico, simulando sce-

nari realistici come la concentrazione di persone nelle aule durante le lezioni o negli uffici

durante l’orario di lavoro. Una volta che l’Alert Manager genera un’allerta, la simula-

zione del movimento degli utenti è gestita in modo dinamico, basandosi sui percorsi di

evacuazione calcolati in tempo reale dal sistema.

Per dimostrare la versatilità del sistema, sono stati simulati due tipi di emergenza.

La scelta di questi scenari non è casuale, in quanto rappresentano due macro-categorie di

eventi che richiedono logiche di evacuazione differenti, testando la capacità del sistema di

adattarsi a vincoli diversi.

• Allagamento (Flood): Questo scenario simula un’emergenza localizzata che rende

alcune aree della mappa inaccessibili, costringendo il sistema a ricalcolare i percorsi

escludendo dinamicamente le zone a rischio. Nel caso di studio, è stato ipotizzato

che l’allagamento renda inaccessibile l’intero Piano 0. Di conseguenza, tutti gli

utenti presenti in quel piano, indipendentemente dalla loro posizione, devono essere

direzionati verso i nodi che consentono il passaggio ai livelli superiori, ovvero i nodi



92 7. Risultati sperimentali

di tipo stairs. Il sistema ha il compito di calcolare i percorsi più efficienti per

raggiungere le scale, evitando che nessun utente rimanga intrappolato al Piano 0.

Questo scenario testa in modo specifico la logica di esclusione di aree e la navigazione

tra i piani.

• Terremoto (Earthquake): Questo scenario, che si applica anche ad altre tipologie di

allerta come attacco terroristico, incendio e crollo strutturale, richiede una logica di

evacuazione basata sulla distribuzione degli utenti verso l’esterno dell’edificio. La

risposta del sistema in questo caso deve essere il calcolo di percorsi che portino gli

utenti verso le uscite di sicurezza e punti di raccolta esterni. A differenza dell’alla-

gamento, dove l’obiettivo è raggiungere un piano superiore, qui la priorità è lasciare

l’edificio il più rapidamente possibile.

Questa distinzione è fondamentale: l’allagamento si concentra sull’inaccessibilità di alcune

aree e sulla navigazione tra i piani, mentre il terremoto (e gli altri eventi correlati) richiede

una logica di evacuazione completa verso l’esterno, testando la capacità del sistema di

gestire un’emergenza su larga scala. Le analisi successive si baseranno su questi scenari

per fornire una valutazione completa delle performance e della robustezza del sistema.

7.2 Simulazioni qualitative

Per un’analisi dettagliata del flusso operativo, sono state eseguite due simulazioni

complete, ciascuna con 25 utenti, replicando i due scenari di emergenza predefiniti: Al-

lagamento (Flood) e Terremoto (Earthquake). L’obiettivo primario di queste simulazioni

non era la misurazione delle performance, bens̀ı la validazione funzionale del sistema. Di

seguito verrà mostrato l’intero processo di emergenza eseguito dal sistema complessivo

per entrambe le tipologie di allerta, soffermandosi sull’evacuazione completa di 5 utenti.

Viene mostrata una visuale limitata in modo da rendere più comprensibile il processo di

evacuazione fornito dal sistema.

7.2.1 Allerta di tipo Earthquake

L’analisi qualitativa del primo caso di studio riguarda la tipologia di allerta Ear-

thquake, che ha permesso di verificare, passo dopo passo, la corretta interazione tra i

microservizi, la reattività del sistema e l’efficacia del calcolo dei percorsi di evacuazione

nel caso in cui è necessaria un’evacuazione totale dell’edificio.

La simulazione ha inizio con il sistema in stato normale. Gli utenti sono distribuiti in

diverse aree dell’edificio, in conformità con la configurazione iniziale definita dallo User



7.2 Simulazioni qualitative 93

Simulator. Le Figure7.4, 7.5, 7.6 mostrano le posizioni di partenza degli utenti. Questo

stato iniziale serve come punto di riferimento per l’intero processo di evacuazione.

Figura 7.4: Posizioni iniziali Piano 0 prima dell’allerta Terremoto

Figura 7.5: Posizioni iniziali Piano 1 prima dell’allerta Terremoto



94 7. Risultati sperimentali

Figura 7.6: Posizioni iniziali Piano 2 prima dell’allerta Terremoto

A seguito della ricezione di un’allerta di tipo Earthquake, il sistema entra in funzione,

calcolando per ogni nodo in cui si trova un utente in pericolo il percorso di evacuazione

ottimale per evacuare l’utente all’esterno dell’edificio. La Figura 7.7 mostra un esempio

dei percorsi generati. In questa immagine, vengono riportati i nodi iniziali degli utenti, il

piano in cui si trovano, la tipologia di nodo e la sequenza ordinata di archi che compongono

il percorso di evacuazione.

Figura 7.7: Nodi iniziali degli utenti e percorsi di evacuazione associati per l’allerta Ear-

thquake

Dopo aver osservato i percorsi, il sistema inizia a simulare il movimento degli utenti

seguendo gli archi indicati. Le Figure 7.8, 7.9, 7.10 rappresentano il percorso eseguito dagli

utenti, fornendo una prova visiva che il movimento simulato segue fedelmente i percorsi

calcolati.



7.2 Simulazioni qualitative 95

Figura 7.8: Percorso degli utenti del Piano 0

Figura 7.9: Percorso degli utenti del Piano 1



96 7. Risultati sperimentali

Figura 7.10: Percorso degli utenti del Piano 2

L’analisi qualitativa effettuata, supportata da rappresentazioni visive, valida in modo

esaustivo la logica e l’affidabilità del sistema di gestione delle emergenze nel caso in cui è

necessaria un’evacuazione totale dell’edificio.

7.2.2 Allerta di tipo Flood

La valutazione qualitativa del secondo caso di studio, l’allerta Flood, ha permesso di

verificare la corretta reazione del sistema a un’evacuazione parziale e mirata, basata su

una configurazione predefinita. In questo scenario, l’allerta Flood prevede l’evacuazione

di tutti gli utenti che si trovano nel Piano 0, considerato inagibile.

La simulazione inizia con il sistema in stato normale e gli utenti distribuiti strategica-

mente nei tre piani dell’edificio. Come mostrato nelle Figure 7.11, 7.12, e 7.13, il Piano 0

è l’unica area di pericolo, mentre il resto dell’edificio rimane sicuro. Pertanto, il protocollo

di evacuazione si attiva solo per gli utenti del Piano 0, senza coinvolgere quelli dei piani

superiori.



7.2 Simulazioni qualitative 97

Figura 7.11: Posizioni iniziali Piano 0 prima dell’allerta Alluvione

Figura 7.12: Posizioni iniziali Piano 1 prima dell’allerta Alluvione



98 7. Risultati sperimentali

Figura 7.13: Posizioni iniziali Piano 2 prima dell’allerta Alluvione

A seguito dell’allerta Flood, il sistema richiede al Map Manager di calcolare i percorsi

di evacuazione. La logica applicata è che gli utenti in pericolo devono essere direzionati

verso i nodi di tipo stairs che li portino ai piani superiori, evitando completamente l’area

inagibile. La Figura 7.14 mostra un esempio dei percorsi calcolati, dove si nota che tutti i

percorsi degli utenti del Piano 0 convergono verso il nodo che rappresenta le scale. Questa

convergenza è la prova visiva del corretto funzionamento dell’algoritmo in uno scenario di

evacuazione parziale.

Figura 7.14: Nodi iniziali degli utenti e percorsi di evacuazione associati per l’allerta Flood

Similmente allo scenario Earthquake, lo User Simulator inizia a muovere gli utenti

in pericolo lungo i percorsi calcolati. Il Position Manager registra le nuove posizioni a

intervalli regolari. Le Figure 7.15, 7.16, 7.17 mostrano il movimento degli utenti sulle

rispettive mappe, rendendo visibile il percorso compiuto dai soli utenti del Piano 0.



7.2 Simulazioni qualitative 99

Figura 7.15: Percorso degli utenti nel Piano 0

Figura 7.16: Posizioni degli utenti nel Piano 1



100 7. Risultati sperimentali

Figura 7.17: Posizioni degli utenti nel Piano 2

L’analisi qualitativa effettuata, supportata dalle rappresentazioni visive, valida in mo-

do esaustivo la logica e l’affidabilità del sistema di gestione delle emergenze nel caso in

cui è necessaria un’evacuazione parziale e selettiva dell’edificio.

7.3 Validazione quantitativa

Questa sezione è dedicata alla validazione quantitativa della piattaforma, un processo

che si concentra sull’impiego di metodi numerici e misurazioni precise per dimostrare le

prestazioni, la scalabilità e la robustezza del sistema al variare delle condizioni operative.

A differenza della validazione qualitativa, che si basa su osservazioni e descrizioni, questo

approccio si fonda su dati e statistiche misurabili. In particolare, l’analisi si concentra sui

microservizi di simulazione del movimento (User Simulator) e di gestione dello stato degli

utenti (Position Manager), componenti cruciali per la capacità del sistema di modellare

il comportamento della popolazione e di tracciarne la condizione di sicurezza in tempo

reale.

Per condurre l’analisi, è stato adottato un approccio di analisi di sensitività univariata.

Questo metodo prevede l’esecuzione di una serie di esperimenti, partendo da uno scena-

rio di base e modificando un singolo fattore sperimentale alla volta, mantenendo gli altri

costanti. Questa tecnica ha permesso di isolare e quantificare con precisione l’impatto di

ciascuna variabile sugli Indicatori Chiave di Prestazione (KPI). Un KPI è una metrica

utilizzata per misurare e valutare il successo di un sistema; nel nostro caso, i KPI tradu-

cono obiettivi astratti come la sicurezza in valori numerici e misurabili. Per ogni scenario



7.3 Validazione quantitativa 101

di test, sono state eseguite cinque simulazioni distinte. Questo approccio ha permesso

di minimizzare l’impatto della variabilità stocastica intrinseca al modello, garantendo la

significatività statistica e la riproducibilità dei risultati.

La valutazione delle prestazioni si basa su due KPI primari: efficacia ed efficienza.

• L’efficacia del sistema: quantificata dal numero di utenti salvati, che rappresenta la

percentuale di occupanti che completano con successo il percorso designato, misu-

rando la capacità del sistema di garantire la sicurezza della totalità della popolazione

coinvolta.

• L’efficienza del sistema: misurata dal tempo totale di evacuazione, definito come l’in-

tervallo temporale che intercorre tra l’istante di emissione dell’allerta e il momento

in cui l’ultimo utente raggiunge un punto di raccolta sicuro.

Per ogni scenario, l’evento di allerta definisce t0 = 0; tutti i tempi sono riportati come

∆t rispetto a t0. Le misure elementari raccolte in ogni esecuzione sono:

1. Ricezione primo path ∆tFirst: istante di consegna del primo percorso allo User

Simulator.

2. Ricezione ultimo path ∆tLast: istante di consegna dell’ultimo percorso allo User

Simulator.

3. Ricezione Stop ∆tStop: istante della notifica di termine emergenza, che attesta che

tutti gli utenti simulati a rischio sono in sicurezza, rappresenta il tempo totale di

evacuazione.

Per l’interpretazione dei risultati, sono state impiegate metriche statistiche standard,

calcolate sui dati aggregati delle cinque esecuzioni per ogni scenario. Questo approccio

è stato scelto per superare le limitazioni di una singola misurazione, che potrebbe essere

influenzata da fattori casuali. Analizzando un campione di dati, è possibile ottenere una

stima più robusta e rappresentativa delle performance. Per ogni set di dati, sono stati

calcolati la media (µ) e la deviazione standard (σ). La media è utilizzata come indicatore

di tendenza centrale, mentre la deviazione standard quantifica la dispersione dei dati

rispetto alla media. Un valore basso di σ indica una maggiore stabilità e affidabilità del

sistema.

Le formule utilizzate per il calcolo sono: La media campionaria definita come:

x̄ =
1

n

n∑
i=1

xi (7.1)



102 7. Risultati sperimentali

La deviazione standard campionaria definita come:

s =

√√√√ 1

, n− 1,

n∑
i=1

(
xi − x̄

)2
(7.2)

dove n rappresenta il numero di osservazioni (in questo caso n = 5), xi è la i-esima

osservazione e x̄ è la media. I risultati sono presentati nella notazione compatta µ± σ.

Le prestazioni sono state inoltre caratterizzate da due metriche chiave: il throughput e

il latency gap. Il throughput è definito come il numero di utenti evacuati con successo per

unità di tempo e misura l’efficienza del flusso di persone. Concettualmente, è calcolato

come il rapporto tra il numero totale di utenti salvati e il tempo totale di evacuazione.

La sua formula è:

Throughput =
Utenti salvati

Tempo totale di evacuazione
(7.3)

Il latency gap, che quantifica l’intervallo temporale in cui il sistema è in una fase attiva,

è definito come la differenza tra il momento in cui viene inviato l’ultimo percorso di

evacuazione e il momento in cui viene inviato il primo. La sua formula è:

Latency Gap = TUltimo percorso inviato − TPrimo percorso inviato (7.4)

Entrambe le misurazioni sono calcolate come intervalli di tempo, con l’istante di ricezione

allerta considerato come il tempo zero del processo.

L’analisi è stata strutturata modulando quattro fattori sperimentali che riflettono le di-

verse dimensioni del problema, con particolare attenzione a come influenzano il movimento

degli utenti e la gestione dei loro dati:

• Carico del sistema: sono stati definiti cinque livelli di carico (100, 300, 500, 750 e

1000 utenti) per testare la scalabilità dei microservizi di simulazione e di gestione

del database sotto stress crescente.

• Contesto temporale e spaziale: sono state modellate quattro fasce orarie rappresen-

tative per simulare profili di occupazione eterogenei e valutare come la distribuzione

iniziale degli utenti influenzi le metriche di evacuazione e la capacità del sistema di

identificare gli utenti in pericolo.

• Tipologia di allerta: sono state investigate due tipologie di emergenza, Terremoto

e Alluvione, per verificare come il sistema si adatta a strategie di evacuazione che

variano da totali a parziali.

• Capacità del grafo topologico: sono state confrontate due configurazioni, a capacità

infinita e a capacità reale, per valutare come i fenomeni di congestione influiscano

sulla fluidità del movimento degli utenti gestito dal modulo di simulazione.



7.3 Validazione quantitativa 103

I risultati di queste analisi, presentati nei sottoparagrafi successivi, permetteranno di

ottenere una comprensione dettagliata e oggettiva delle performance della piattaforma,

fornendo una base solida per le conclusioni generali del lavoro.

7.3.1 Impatto del carico del sistema

In questa sezione viene analizzato l’impatto del carico del sistema sulle metriche di

performance della piattaforma. L’esperimento è stato condotto variando il numero di

utenti simulati (da 100 a 1000) e mantenendo costanti le altre condizioni: uno scenario di

allerta Terremoto con capacità di archi e nodi limitata, simulato alle ore 10. Questa analisi

è particolarmente rilevante per valutare la scalabilità dei microservizi di simulazione del

movimento e di gestione dello stato degli utenti, responsabili di processare e tracciare un

numero crescente di agenti.

La Tabella 7.1 e la Figura 7.18 presentano i tempi medi e la deviazione standard per

i principali eventi di notifica. I tempi di ricezione del primo percorso mostrano una no-

tevole stabilità fino a 750 utenti, attestandosi tra i 16 e i 25 secondi. Questo risultato

evidenzia la tempestiva capacità del sistema di avviare il processo di evacuazione anche

con un numero elevato di richieste simultanee. Solo al carico massimo di 1000 utenti si

osserva un aumento del tempo medio (38.6 s) accompagnato da una maggiore variabilità

(σ = 45.2), indicando che in condizioni di carico estremo, il microservizio di simulazione

gestisce le richieste in modo meno uniforme.

Terremoto con capacità archi e nodi limitata simulata alle ore 10

Utenti simulati Ricezione primo path (∆t) Ricezione ultimo path (∆t) Ricezione Stop (∆t)

100 25.0± 7.4 33.2± 7.1 37.8± 6.7

300 18.0± 24.8 33.8± 17.6 35.2± 17.4

500 16.8± 4.6 23.6± 14.7 44.0± 10.2

750 16.0± 2.9 61.4± 14.4 91.8± 13.0

1000 38.6± 45.2 154.0± 38.7 165.0± 43.1

Tabella 7.1: Dati raccolti per allerta Terremoto con capacità di archi e nodi limitata,

simulata alle ore 10

Parallelamente, i tempi di ricezione dell’ultimo percorso e del segnale di stop aumenta-

no in modo progressivo con l’incremento degli utenti, con un’accelerazione notevole oltre

i 750 utenti. Questo incremento non rappresenta un fallimento, ma un comportamento

atteso in sistemi complessi: l’aumento del numero di agenti da tracciare e coordinare por-

ta inevitabilmente a un allungamento dei tempi di completamento del processo. Questo



104 7. Risultati sperimentali

trend dimostra che i microservizi mantengono la loro funzionalità anche a fronte di un

carico massiccio, completando l’evacuazione di tutti gli utenti, seppur con tempistiche più

estese.

100 300 500 750 1000
0

50

100

150

200

Numero utenti simulati

T
em

p
o
(s
)

Primo percorso Ultimo percorso Stop

Figura 7.18: Confronto variazione tempi di ricezione al variare del numero di utenti

simulati

La Figura 7.19 illustra le curve di utenti salvati nel tempo per i diversi livelli di carico,

offrendo una rappresentazione visiva diretta dell’andamento del processo di evacuazione.

• Per carichi inferiori o uguali a 500 utenti, le curve mostrano una crescita estre-

mamente rapida e quasi verticale, raggiungendo il 100% degli utenti salvati in un

intervallo di tempo molto breve. Questo andamento a ”S” schiacciata è tipico di

sistemi ad alta efficienza dove i microservizi di simulazione gestiscono il movimen-

to degli agenti con un’efficienza ottimale, senza che si verifichino colli di bottiglia

o ritardi significativi. La ripidità della curva evidenzia la capacità del sistema di

processare rapidamente un elevato numero di agenti e di aggiornare in tempo reale

il loro stato di sicurezza.

• Con l’aumento del carico a 750 e 1000 utenti, le curve di evacuazione diventano

progressivamente meno ripide. L’evacuazione non è più istantanea, ma si distribuisce

su un arco di tempo più lungo. Questo cambiamento nella pendenza non indica un

fallimento, ma piuttosto un comportamento di saturazione previsto in scenari ad



7.3 Validazione quantitativa 105

alta densità. I microservizi di simulazione e di gestione del database lavorano sotto

stress crescente, gestendo un numero maggiore di collisioni tra gli agenti e un flusso

di dati più intenso. La pendenza meno accentuata è la diretta conseguenza di questa

gestione adattiva che, pur rallentando il processo, assicura che il 100% degli utenti

raggiunga la salvezza.

In sintesi, l’analisi delle curve dimostra la resilienza del sistema: pur in condizioni estreme,

dove il numero di utenti supera la soglia ottimale di performance, la piattaforma continua

a garantire il successo dell’evacuazione per tutta la popolazione, sacrificando la rapidità

a favore della robustezza.

15 30 45 60 75 90 10
5
12
0
13
5
15
0
16
5
18
0
19
5
21
0
22
5
24
0
25
5
27
0
28
5
30
0

0

100

300

500

750

1,000

Tempo (s)

U
te
n
ti
sa
lv
at
i
(n
)

100 utenti 300 utenti 500 utenti
750 utenti 1000 utenti

Figura 7.19: Utenti salvati nel tempo — Terremoto, capacità limitata, ore 10.

La Tabella 7.2 e la Figura 7.20 offrono una visione quantitativa di questo fenomeno,

concentrandosi sul throughput e sul latency gap.

• Il throughput, che misura l’efficienza del flusso di persone, mostra un comportamen-

to interessante. Raggiunge il suo massimo con 500 utenti (11.1 utenti/s), superando

notevolmente i carichi inferiori. Questo suggerisce un’ottimizzazione dei microser-

vizi a carichi intermedi, probabilmente dovuta a una migliore gestione delle risorse.

Oltre questa soglia, il throughput si riduce progressivamente (8.2 utenti/s a 750

utenti, 6.1 a 1000 utenti), ma rimane su valori elevati. Questa riduzione non è un

segno di inefficienza, ma riflette l’aumento delle collisioni e dei ritardi inevitabi-

li in un ambiente sovraffollato, che i microservizi gestiscono in modo adattivo per

garantire che nessun agente venga lasciato indietro.



106 7. Risultati sperimentali

• Il latency gap, che riflette l’intervallo di tempo durante il quale il sistema continua

a inviare percorsi di evacuazione, mostra un trend di crescita non lineare, con un

balzo notevole in corrispondenza del passaggio da 500 a 750 utenti (da 6.8 s a 45.4

s) e da 750 a 1000 utenti (da 45.4 s a 115.6 s). Questo aumento è una diretta

conseguenza del lavoro aggiuntivo che i microservizi devono svolgere: l’aumento

del carico estende il tempo necessario per calcolare e inviare tutti i percorsi, ma

il sistema mantiene la sua funzionalità, dimostrando che la capacità di risposta è

resiliente anche in condizioni di forte stress.

Utenti simulati Evacuazione totale (s) Throughput (utenti/s) Latency Gap (s) Successo (%)

100 37.8 2.6 8.2 100

300 35.2 8.5 15.8 100

500 44.0 11.1 6.8 100

750 142.8 8.2 45.4 100

1000 73.8 6.1 115.6 100

Tabella 7.2: Riepilogo delle metriche di performance nello scenario Terremoto con capacità

limitata e simulazione alle ore 10

100 300 500 750 1,000
0

2

4

6

8

10

12

Numero di utenti simulati

T
h
ro
u
gh

p
u
t
(u
te
n
ti
/s
)

Relazione tra Utenti, Throughput e Latency Gap

Throughput (utenti/s) Latency Gap (s)

0

20

40

60

80

100

120

L
at
en
cy

G
ap

(s
)

Figura 7.20: Confronto tra Throughput e Latency Gap al variare del numero di utenti a

rischio nello scenario Terremoto con capacità archi e nodi limitata e simulazione alle ore

10.

L’analisi dei dati in questo scenario dimostra che la piattaforma possiede un’ottima

scalabilità fino a 500 utenti, mostrando anzi un’efficienza ottimale. Oltre questa soglia,



7.3 Validazione quantitativa 107

il sistema dimostra una notevole robustezza, affrontando l’aumento del carico non con

un collasso, ma con un comportamento adattivo che privilegia la completa evacuazione

di tutti gli utenti. Il calo del throughput e l’allungamento dei tempi in scenari estremi

non sono un fallimento, ma una dimostrazione di come i microservizi di simulazione e di

gestione degli utenti siano stati progettati per gestire e superare le sfide del carico compu-

tazionale, garantendo sempre l’obiettivo principale del progetto. Questo comportamento

resiliente è un dato cruciale per la futura calibrazione e ottimizzazione del sistema in

contesti di elevata densità di popolazione.

7.3.2 Impatto del contesto spaziale e temporale

Questa sezione esplora come la variazione della distribuzione iniziale degli utenti al-

l’interno dell’edificio influenzi le prestazioni della piattaforma. Le fasce orarie simulate,

descritte in dettaglio nel Capitolo 5, riflettono scenari realistici di occupazione, in cui il

simulatore distribuisce gli utenti in aree specifiche in base a percentuali predefinite (es.

aule, laboratori, uffici). L’analisi si basa su uno scenario ad alto carico (1000 utenti) con

allerta Terremoto e capacità del grafo limitata, per valutare la robustezza dei microservizi

di simulazione e gestione degli utenti in contesti di evacuazione complessi.

La Tabella 7.3 e il relativo istogramma (Figura 7.21) presentano i tempi medi e la de-

viazione standard per i principali eventi di notifica. Si nota una notevole variazione nelle

performance tra le diverse fasce orarie. La fascia 15:15-16:00, che rappresenta la pausa

tra le lezioni, mostra i tempi più brevi per la ricezione dell’ultimo percorso (79.8 s) e del

segnale di stop (88.8 s). In questo scenario, gli utenti sono più distribuiti o meno concen-

trati in zone a rischio, il che permette ai microservizi di simulazione di calcolare i percorsi

e di tracciare gli agenti in modo più efficiente. Al contrario, le fasce 13:00-14:00 (Pausa

Pranzo) e 16:00-18:00 (Lezione Pomeriggio) mostrano i tempi di evacuazione più lunghi

e, in particolare, una deviazione standard molto elevata (σ > 100s¿). Questo suggerisce

che la distribuzione degli utenti in queste fasce orarie crea una maggiore variabilità nel

processo di evacuazione, probabilmente a causa di una concentrazione in aree con capacità

di evacuazione limitata. Questo comportamento è un’indicazione diretta delle sfide che i

microservizi di simulazione affrontano nel gestire la complessità spaziale e dinamica del

sistema.



108 7. Risultati sperimentali

Terremoto con capacità archi e nodi limitata simulata per 1000 utenti

Fascia oraria Ricezione primo path (∆t) Ricezione ultimo path (∆t) Ricezione Stop (∆t)

8:30-10:30 38.6± 45.2 154.0± 38.7 165.0± 43.1

13:00-14:00 17.4± 6.2 173.2± 131.4 182.0± 132.1

15:15-16:00 22.6± 23.0 79.8± 18.3 88.8± 14.2

16:00-18:00 36.8± 44.3 181.6± 110.3 189.6± 108.1

Tabella 7.3: Dati raccolti per allerta Terremoto con capacità di archi e nodi limitata,

simulata per 1000 utenti

8:30–10:30 13:00–14:00 15:15–16:00 16:00–18:00

30

60

90

120

150

180

210

240

270

300

330

Fascia oraria

T
em

p
o
d
i
ev
ac
u
az
io
n
e
(s
)

Primo percorso Ultimo percorso Stop

Figura 7.21: Confronto variazione tempi di ricezione al variare della fascia oraria di simu-

lazione

La Figura 7.22 illustra le curve di utenti salvati nel tempo, evidenziando chiaramente le

differenze di efficienza in base alla fascia oraria. Tutte le curve, come atteso, raggiungono

il successo del 100% dell’evacuazione, dimostrando la resilienza del sistema. Tuttavia,

la pendenza delle curve varia in modo significativo. La fascia 15:15-16:00 mostra una

pendenza molto più ripida, raggiungendo rapidamente il completamento dell’evacuazione,

a conferma della sua maggiore efficienza in termini di tempo. Le altre fasce mostrano

pendenze più graduali, indicando che la gestione degli utenti è più complessa e richiede

più tempo.



7.3 Validazione quantitativa 109

15 30 45 60 75 90 10
5
12
0
13
5
15
0
16
5
18
0
19
5
21
0
22
5
24
0
25
5
27
0
28
5
30
0

0

100

300

500

750

1,000

Tempo (s)

U
te
n
ti
sa
lv
at
i
(n
)

Lezione Mattina Pausa Pranzo
Pausa tra Lezioni Lezione Pomeriggio

Figura 7.22: Utenti salvati nel tempo — Terremoto, capacità limitata, 1000 utenti; con-

fronto tra quattro fasce orarie.

La Tabella 7.4 e la Figura 7.23 offrono una visione quantitativa di questo fenomeno,

concentrandosi sul throughput e sul latency gap.

• Il throughput raggiunge il suo massimo nella fascia 15:15-16:00 (11.3 utenti/s), con-

fermando che la distribuzione degli utenti in questo intervallo di tempo ottimizza

l’efficienza del flusso di evacuazione. Al contrario, il throughput è inferiore nelle al-

tre fasce, specialmente nella fascia 16:00-18:00 (5.3 utenti/s), dove la concentrazione

degli utenti probabilmente crea colli di bottiglia che i microservizi devono gestire in

modo adattivo.

• Il latency gap mostra una correlazione inversa con il throughput. La fascia con il

throughput più alto (15:15-16:00) ha il latency gap più basso (57.2 s), indicando che

il sistema completa la fase di invio dei percorsi di evacuazione in un tempo più bre-

ve. Le fasce con un throughput più basso, come 13:00-14:00 (155.8 s) e 16:00-18:00

(144.8 s), presentano un latency gap significativamente più elevato. Questo sugge-

risce che una distribuzione degli utenti in aree congestionate o complesse impegna i

microservizi per un periodo di tempo più lungo nel calcolo e nell’invio dei percorsi,

pur mantenendo la loro funzionalità.



110 7. Risultati sperimentali

Fascia oraria Evacuazione totale (s) Throughput (utenti/s) Latency Gap (s) Successo (%)

8:30-10:30 165.0 6.1 115.4 100

13:00-14:00 182.0 5.5 155.8 100

15:15-16:00 88.8 11.3 57.2 100

16:00-18:00 189.6 5.3 144.8 100

Tabella 7.4: Riepilogo delle metriche di performance nello scenario Terremoto con capacità

limitata e numero utenti a 1000

8:3
0–1

0:3
0

13:
00–

14:
00

15:
15–

16:
00

16:
00–

18:
00

0

2

4

6

8

10

12

Fascia oraria

T
h
ro
u
gh

p
u
t
(u
te
n
ti
/s
)

Relazione tra fasce oraire, Throughput e Latency Gap

Throughput (utenti/s) Latency Gap (s)

0

50

100

150

200

L
at
en
cy

G
ap

(s
)

Figura 7.23: Confronto tra Throughput e Latency Gap nelle diverse fasce orarie (scenario

Terremoto, capacità limitata, 1000 utenti).

L’analisi dimostra che il contesto spaziale e temporale dell’allerta ha un impatto di-

retto sulle performance della piattaforma. La distribuzione degli utenti che caratterizza

la fascia 15:15-16:00 risulta essere la più efficiente per il processo di evacuazione, grazie a

una gestione ottimizzata dei flussi da parte dei microservizi. Al contrario, le distribuzioni

delle altre fasce orarie, pur rendendo il processo più lungo, non compromettono la funzio-

nalità del sistema. I risultati evidenziano la robustezza dei microservizi di simulazione e

gestione degli utenti che, anche in scenari complessi con una distribuzione non ottimale,

garantiscono l’evacuazione del 100% degli agenti.



7.3 Validazione quantitativa 111

7.3.3 Impatto della tipologia allerta

Questa sezione analizza l’influenza della tipologia di allerta sulle prestazioni della

piattaforma, confrontando uno scenario di evacuazione totale (Terremoto) con uno di

evacuazione parziale (Alluvione). In entrambi i casi, la simulazione mantiene le condizioni

di alto carico (1000 utenti), capacità del grafo limitata e fascia oraria 10:00, permettendo

di isolare l’impatto della natura dell’allerta. Questa comparazione è fondamentale per

valutare la versatilità dei microservizi di simulazione e gestione degli utenti nel gestire

processi di evacuazione con obiettivi diversi.

La Tabella 7.5 e il relativo istogramma (Figura 7.24) mostrano i tempi medi e la

deviazione standard per i principali eventi di notifica. I tempi di ricezione del primo

percorso per l’allerta Alluvione sono significativamente più rapidi e stabili (21.2 ± 7.5s)

rispetto a quelli per il Terremoto (38.6± 45.2s). Questa differenza è un indicatore diretto

dell’efficienza del microservizio di gestione degli utenti, che nel caso dell’alluvione deve

identificare e filtrare solo la popolazione a rischio, escludendo quella già in zone sicure.

Tale operazione, seppur complessa, porta a un avvio del processo di evacuazione più snello.

Al contrario, i tempi di ricezione dell’ultimo percorso e del segnale di stop risultano

più lunghi per lo scenario Alluvione (191.0 s e 202.8 s, rispettivamente) rispetto a quelli

del Terremoto (154.0 s e 165.0 s). Questo andamento, sebbene controintuitivo, è spiega-

bile. L’evacuazione parziale comporta che gli utenti a rischio si trovino in aree specifiche

dell’edificio, spesso caratterizzate da una maggiore complessità del percorso o da un ac-

cesso limitato ai punti di evacuazione. I microservizi di simulazione si trovano quindi a

gestire una congestione più localizzata e intensa, che rallenta il processo di completamento

dell’evacuazione, nonostante il minor numero totale di utenti da gestire.

Simulazione ore 10 con capacità archi e nodi limitata e 1000 utenti

Tipologia allerta Ricezione primo path (∆t) Ricezione ultimo path (∆t) Ricezione Stop (∆t)

Terremoto 38.6± 45.2 154.0± 38.7 165.0± 43.1

Alluvione 21.2± 7.5 191.0± 61.5 202.8± 60.2

Tabella 7.5: Dati raccolti per simulazioni alle ore 10 con capacità di archi e nodi limitata

e 1000 utenti simulati



112 7. Risultati sperimentali

Terremoto Alluvione

30

60

90

120

150

180

210

240

270

Tipologia di allerta

T
em

p
o
d
i
ev
ac
u
az
io
n
e
(s
)

Primo percorso Ultimo percorso Stop

Figura 7.24: Confronto variazione tempi di ricezione al variare della tipologia di allerta

La Figura 7.25 illustra le curve di utenti salvati nel tempo. Come atteso, entrambe

le simulazioni portano a un successo del 100% nell’evacuazione, dimostrando la resilienza

del sistema in entrambi gli scenari. Tuttavia, la curva dell’Alluvione mostra una pen-

denza complessiva più graduale e un tempo di completamento più lungo, confermando

che, nonostante il minor numero di utenti, la loro specifica distribuzione spaziale rende

l’evacuazione più complessa.

15 30 45 60 75 90 10
5
12
0
13
5
15
0
16
5
18
0
19
5
21
0
22
5
24
0
25
5
27
0
28
5
30
0

0

100

300

500

750

1,000

Tempo (s)

U
te
n
ti
sa
lv
at
i
(n
)

Terremoto Alluvione

Figura 7.25: Utenti salvati nel tempo — Ore 10, capacità limitata, 1000 utenti; confronto

tra allerta terremoto e alluvione.



7.3 Validazione quantitativa 113

La Tabella 7.6 e la Figura 7.26 offrono una visione quantitativa di questo fenomeno,

concentrandosi sul throughput e sul latency gap.

• Il throughput nello scenario Alluvione (4.9 utenti/s) è inferiore a quello del Terre-

moto (6.1 utenti/s). Questo dato conferma l’ipotesi che la congestione localizzata,

tipica di un’evacuazione parziale, riduca la velocità complessiva del flusso. I mi-

croservizi di simulazione si trovano a dover gestire un numero elevato di utenti in

un’area ristretta, portando a un rallentamento del processo di evacuazione rispetto

a un’evacuazione totale, dove il carico è distribuito su un’area più vasta.

• Il latency gap per l’allerta Alluvione (169.8 s) è notevolmente superiore a quello

del Terremoto (115.4 s). Questo risultato è particolarmente rilevante: il sistema

impiega un tempo significativamente più lungo per completare l’invio dei percorsi

di evacuazione, pur gestendo un minor numero di utenti. Questo comportamento

è una diretta conseguenza della complessità del calcolo dei percorsi in un ambiente

parzialmente inagibile, che richiede ai microservizi una maggiore elaborazione e un

tempo esteso per garantire la sicurezza di ogni singolo agente a rischio.

Tipologia allerta Evacuazione totale (s) Throughput (utenti/s) Latency Gap (s) Successo (%)

Terremoto 165.0 6.1 115.4 100

Alluvione 202.8 4.9 169.8 100

Tabella 7.6: Riepilogo delle metriche di performance con capacità archi e nodi limitata,

simulazione di 1000 utenti alle ore 10

Terremoto Alluvione
0

2

4

6

Tipologia allerta

T
h
ro
u
gh

p
u
t
(u
te
n
ti
/s
)

Relazione tra tipologia di allerta, Throughput e Latency Gap

Throughput (utenti/s) Latency Gap (s)

0

50

100

150

200

L
at
en
cy

G
ap

(s
)

Figura 7.26: Confronto tra Throughput e Latency Gap negli scenari Terremoto e Alluvione

con capacità archi e nodi limitata e 1000 utenti.



114 7. Risultati sperimentali

L’analisi comparativa tra i due tipi di allerta rivela che, sebbene un’evacuazione par-

ziale (Alluvione) possa sembrare più semplice, la sua implementazione pratica presenta

sfide specifiche legate alla distribuzione spaziale degli utenti a rischio. La piattaforma

dimostra una notevole robustezza in entrambi gli scenari, garantendo sempre il successo

dell’evacuazione. Tuttavia, le performance in termini di tempi e throughput evidenziano

che la tipologia di allerta e la conseguente distribuzione degli utenti hanno un impatto

diretto sulla complessità della simulazione. I microservizi gestiscono in modo efficace que-

ste sfide, ma il processo per un’allerta parziale risulta più lungo e meno efficiente a causa

della congestione localizzata.

7.3.4 Impatto della capacità del grafo (archi e nodi)

Questa sezione confronta le prestazioni della piattaforma in due scenari distinti che

si differenziano unicamente per la capacità degli archi e dei nodi del grafo che rappre-

senta la mappa dell’edificio. In un caso, la capacità è limitata e calcolata in base alle

dimensioni reali delle aree dell’edificio, mentre nel secondo caso è considerata infinita,

eliminando i vincoli di congestione. L’esperimento mantiene costanti le altre condizioni

(allerta Terremoto, 1000 utenti simulati, fascia oraria 10:00). L’analisi è fondamentale

per isolare l’impatto della congestione sul processo di evacuazione e per dimostrare come

i microservizi di simulazione del movimento e di gestione dello stato affrontino tali sfide.

La Tabella 7.7 e il relativo istogramma (Figura 7.27) mostrano una netta superiorità

delle performance nello scenario con capacità illimitata. I tempi di ricezione dell’ultimo

percorso e del segnale di stop sono drasticamente ridotti: il tempo di evacuazione totale

scende da 165.0 s a 77.0 s. Questa riduzione di oltre il 50% evidenzia l’effetto critico dei

colli di bottiglia causati dalla capacità limitata. I microservizi di simulazione, dovendo ge-

stire la congestione, rallentano il movimento degli agenti per evitare che si sovrappongano,

portando a tempi di evacuazione più lunghi.

Nello scenario a capacità illimitata, la deviazione standard per tutti i tempi di rice-

zione è significativamente più bassa, attestandosi tra i 5 e i 6 secondi, a differenza dello

scenario limitato dove raggiunge valori superiori a 40 secondi. Questo dato dimostra che

un ambiente non soggetto a congestione permette ai microservizi di operare in modo molto

più stabile e prevedibile, con una variabilità minima tra le diverse simulazioni.



7.3 Validazione quantitativa 115

Terremoto con 1000 utenti simulata alle ore 10

Capacità archi e nodi Ricezione primo path (∆t) Ricezione ultimo path (∆t) Ricezione Stop (∆t)

Limitata 38.6± 45.2 154.0± 38.7 165.0± 43.1

Infinita 21.6± 5.7 72.0± 5.9 77.0± 6.1

Tabella 7.7: Dati raccolti per allerta Terremoto, simulazioni alle ore 10 con 1000 utenti

simulati

Capacità limitata Capacità illimitata

30

60

90

120

150

180

210

240

Capacità archi e nodi

T
em

p
o
d
i
ev
ac
u
az
io
n
e
(s
)

Primo percorso Ultimo percorso Stop

Figura 7.27: Confronto variazione tempi di ricezione al variare della capacità degli archi

e dei nodi

La Figura 7.28 illustra le curve di utenti salvati nel tempo. Nello scenario a capacità

illimitata, la curva mostra una crescita quasi istantanea, raggiungendo il 100% degli utenti

salvati in un tempo molto più breve rispetto allo scenario a capacità limitata. Questo

andamento evidenzia che, senza i vincoli fisici, il processo di evacuazione è notevolmente

più rapido ed efficiente, un risultato atteso e che conferma il modello simulativo.



116 7. Risultati sperimentali

15 30 45 60 75 90 10
5
12
0
13
5
15
0
16
5
18
0
19
5
21
0
22
5
24
0
25
5
27
0
28
5
30
0

0

100

300

500

750

1,000

Tempo (s)

U
te
n
ti
sa
lv
at
i
(n
)

Capacità limitata Capacità infinita

Figura 7.28: Utenti salvati nel tempo — Terremoto, ore 10, 1000 utenti; confronto tra

capacità limitata e infinita.

La Tabella 7.8 e la Figura 7.29 offrono una visione quantitativa di questo fenomeno,

concentrandosi sul throughput e sul latency gap.

• Il throughput nello scenario a capacità illimitata (13.0 utenti/s) è più che doppio

rispetto allo scenario a capacità limitata (6.1 utenti/s). Questo dimostra in modo

inequivocabile come i vincoli fisici del grafo abbiano un impatto diretto sulla velocità

del flusso di evacuazione. Il throughput maggiore nello scenario illimitato riflette la

capacità del simulatore di muovere gli agenti senza dover considerare le collisioni o

la saturazione dei percorsi.

• Il latency gap nello scenario a capacità illimitata (50.4 s) è significativamente più

basso rispetto allo scenario a capacità limitata (115.4 s). Questo dato indica che

il microservizio di simulazione completa l’invio dei percorsi di evacuazione in un

tempo notevolmente inferiore quando non deve gestire la complessità derivante dalla

capacità limitata. Il sistema termina il suo lavoro in modo più rapido ed efficiente.

Capacità archi e nodi Evacuazione totale (s) Throughput (utenti/s) Latency Gap (s) Successo (%)

Limitata 165.0 6.1 115.4 100

Illimitata 77.0 13.0 50.4 100

Tabella 7.8: Riepilogo delle metriche di performance per allerta di tipo Terremoto, simu-

lazione di 1000 utenti alle ore 10



7.4 Riepilogo della validazione quantitativa 117

Limitata Infinita
0

5

10

Capacità archi e nodi

T
h
ro
u
gh

p
u
t
(u
te
n
ti
/s
)

Relazione tra capcità di archi e nodi, Throughput e Latency Gap

Throughput (utenti/s) Latency Gap (s)

0

50

100

150

200

L
at
en
cy

G
ap

(s
)

Figura 7.29: Confronto tra Throughput e Latency Gap per allerta Terremoto e simulazione

di 1000 utenti alle ore 10

L’analisi comparativa tra i due scenari dimostra che la capacità degli archi e dei nodi

è un fattore critico che influenza direttamente le performance del sistema. La presenza di

vincoli fisici, sebbene rallenti il processo di evacuazione e ne aumenti la variabilità, non

compromette l’obiettivo finale di salvare tutti gli utenti. I microservizi di simulazione e

gestione degli utenti dimostrano la loro robustezza e la capacità di operare in condizioni di

congestione, gestendo in modo efficace il flusso di persone e garantendo il completamento

del processo. Lo scenario a capacità illimitata serve come benchmark teorico, dimostrando

il potenziale massimo di efficienza del sistema in assenza di vincoli spaziali.

7.4 Riepilogo della validazione quantitativa

L’analisi quantitativa è stata condotta per validare la robustezza e l’affidabilità dell’in-

tera piattaforma in scenari dinamici e complessi. I risultati complessivi hanno confermato

che il sistema è in grado di garantire l’obiettivo primario del progetto: l’evacuazione del

100% degli utenti a rischio in ogni condizione simulata.

I test condotti si sono concentrati in particolare sulla performance dei microservizi di

simulazione del movimento e di gestione dello stato degli utenti, per i quali la validazione

ha evidenziato tre risultati principali:

• Scalabilità e adattabilità: i microservizi dimostrano una scalabilità ottimale fino a

500 utenti, mantenendo un’elevata efficienza. Oltre questa soglia, la loro capacità



118 7. Risultati sperimentali

di adattamento permette di gestire efficacemente l’aumento del carico, garantendo

il completamento dell’evacuazione nonostante il naturale incremento dei tempi di

processo.

• Gestione del contesto spaziale: la loro efficienza varia in base alla distribuzione ini-

ziale degli utenti. Sono particolarmente performanti in scenari con flussi di persone

più uniformi, mentre in contesti di congestione localizzata, come quelli dovuti a

un’evacuazione parziale, gestiscono in modo efficace i colli di bottiglia, sebbene ciò

si traduca in un aumento del latency gap e del tempo totale di evacuazione.

• Robustezza in presenza di vincoli: l’analisi ha isolato il ruolo fondamentale dei

vincoli fisici del grafo. I microservizi di simulazione riescono a operare con successo

anche in presenza di capacità limitate, dimostrando la loro robustezza nel gestire

le sfide del mondo reale. Lo scenario a capacità infinita ha fornito un benchmark

teorico che ha evidenziato come l’implementazione del simulatore sia in grado di

sfruttare al massimo le risorse disponibili.

In sintesi, i dati raccolti confermano che la parte del sistema dedicata alla simulazione

e alla gestione degli utenti è non solo efficiente, ma anche resiliente, fornendo una base

solida e affidabile per la pianificazione di emergenze in contesti reali.



Conclusioni

L’obiettivo principale di questo lavoro di tesi è stato quello di affrontare le sfide e le

inefficienze intrinseche dei sistemi di gestione delle emergenze, sia a livello territoriale che,

in modo più specifico, all’interno di contesti edilizi complessi. L’analisi dello stato dell’arte

ha evidenziato come le soluzioni esistenti, come IT-Alert e IPAWS, pur rappresentando un

notevole passo avanti nella comunicazione su vasta scala, si concentrino principalmente

sulla notifica passiva del pericolo, trascurando la necessità di una risposta dinamica e

automatizzata che si adatti in tempo reale all’evolversi dell’evento.

La lacuna principale individuata è stata l’assenza di un sistema in grado di orchestrare

una reazione attiva a un’emergenza. I protocolli attuali non sono sufficientemente granu-

lari per contesti specifici, non sfruttano la localizzazione precisa all’interno degli edifici e

non offrono un ricalcolo dinamico delle vie di fuga in base all’evoluzione del pericolo. Di

fronte a queste limitazioni, l’obiettivo di questa ricerca è stato duplice: da un lato, proget-

tare e implementare un’architettura di sistema che superasse queste criticità; dall’altro,

dimostrare la validità di un approccio che integra la notifica di allerta con una risposta

coordinata e intelligente, mirata a guidare gli occupanti verso la sicurezza nel modo più

efficiente possibile.

Per superare le criticità identificate, il presente lavoro ha adottato un’architettura a

microservizi, un paradigma moderno che ha permesso di costruire un sistema intrinse-

camente modulare, scalabile e resiliente. Tale approccio si è rivelato fondamentale per

gestire la complessità di un sistema che deve reagire in modo dinamico a eventi critici

in tempo reale. Nello specifico, il contributo principale di questa tesi si è concentrato

sulla progettazione e sull’implementazione dei microservizi di simulazione delle posizioni

(User Simulator) e di gestione delle posizioni (Position Manager), componenti cruciali

per la validazione e il funzionamento del sistema. Il primo ha rappresentato una soluzione

metodologica innovativa, permettendo di emulare il comportamento degli occupanti in

assenza di dati reali, mentre il secondo ha garantito la logica di valutazione del rischio e

l’aggiornamento dinamico delle posizioni.

L’efficacia dell’architettura proposta è stata validata attraverso un’analisi sperimentale

basata su un caso di studio concreto: il Campus universitario di Cesena. Le simulazioni

119



120 CONCLUSIONI

qualitative, che hanno riprodotto scenari di terremoto e alluvione, hanno dimostrato la

capacità del sistema di processare un’allerta in tempo reale e di orchestrare una risposta

dinamica, generando percorsi di evacuazione aggiornati in base all’evoluzione del pericolo.

Questa fase ha confermato la validità concettuale del nostro approccio e la sua capacità

di adattarsi a eventi di natura diversa.

La validazione quantitativa ha rappresentato una fase cruciale, fornendo un benchmark

oggettivo delle performance del sistema. I dati hanno dimostrato che il sistema è non solo

scalabile fino a 500 utenti, ma anche resiliente in condizioni di stress computazionale,

garantendo sempre l’evacuazione del 100% degli utenti. Le analisi hanno inoltre rivelato

che il contesto spaziale e la tipologia di allerta hanno un impatto diretto sull’efficienza: la

gestione di un’evacuazione parziale, sebbene coinvolga un numero inferiore di utenti, può

essere più complessa a causa della congestione localizzata, che i microservizi gestiscono in

modo efficace. Il confronto con uno scenario a capacità illimitata ha infine confermato che

i vincoli fisici dell’edificio sono il fattore principale che incide sui tempi di evacuazione,

pur senza compromettere la funzionalità del sistema.

I risultati raggiunti in questo lavoro dimostrano la validità e l’affidabilità del siste-

ma proposto. Il prototipo ha mostrato la sua capacità di gestire scenari di emergenza

complessi, e i dati di validazione hanno permesso di identificare con precisione le aree di

miglioramento che aprono a promettenti sviluppi futuri.

Un primo e fondamentale sviluppo riguarda la transizione da un ambiente simula-

to a un sistema operativo. Il microservizio User Simulator dovrà essere integrato con

tecnologie di tracciamento in tempo reale, come il Wi-Fi Positioning System (WPS) o

l’Ultra-Wideband (UWB), per acquisire la posizione esatta degli utenti. Parallelamente,

l’Alert Manager dovrà evolvere per connettersi a fonti di allerta ufficiali tramite protocolli

standard come il CAP.

Ulteriori ottimizzazioni si concentreranno sul miglioramento dell’interazione con l’u-

tente finale, attraverso l’integrazione di un sistema di notifiche push per l’invio istantaneo

di avvisi e percorsi. Infine, l’analisi dei dati ha suggerito la presenza di possibili inefficien-

ze nella comunicazione asincrona, che rallentano la gestione della congestione. I futuri

sviluppi si focalizzeranno sull’ottimizzazione del flusso di dati tra i microservizi per mi-

gliorare il throughput e la reattività del sistema, con la possibilità di integrare tecniche

di analisi predittiva per mitigare i colli di bottiglia in anticipo.

In un’ottica più ampia, l’architettura a microservizi qui proposta è intrinsecamente

flessibile e può essere estesa per supportare una vasta gamma di contesti, dalla gestione di

eventi di massa alla sicurezza in ambienti industriali complessi, offrendo una base solida

per lo sviluppo di sistemi di gestione delle emergenze di nuova generazione.



Appendici

Appendice A:

Listing 7.1: Esempio schematico di messaggio CAP XML

<alert xmlns=”urn : o a s i s : names : tc : emergency : cap :1.2”>

<identi f ier>Test−Alert −001</ identi f ier>

<sender>example@example . org</sender>

<sent>2025−04−30T12:00:00+00:00</ sent>

<status>Actual</status>

<msgType>Alert</msgType>

<scope>Public</scope>

<info>

<category>Env</category>

<event>Flood</event>

<urgency>Immediate</urgency>

<severity>Severe</severity>

<certainty>Like ly</certainty>

<language>en−US</language>
<responseType>She l t e r</responseType>

<description>Heavy f l o od i n g expected in low−l y i n g areas .</

description>

<instruction>Move to h igher ground .</ instruction>

<area>

<areaDesc>Bui ld ing A</areaDesc>

<polygon>45.0 ,9 .0 4 5 . 0 , 9 . 1 4 5 . 1 , 9 . 1 4 5 . 1 , 9 . 0 45.0 ,9 .0</

polygon>

<altitude>10</altitude>

</area>

121



122 Appendici

</info>

</alert>

.

Appendice B:

Listing 7.2: Rappresentazione in dizionario Python del messaggio CAP

{
” i d e n t i f i e r ” : ”Test−Alert −001” ,

” sender ” : ”example@example . org ” ,

” sent ” : ”2025−04−30T12 : 00 : 00+00 : 00” ,

” s t a tu s ” : ”Actual ” ,

”msgType” : ”Ale r t ” ,

” scope ” : ”Publ ic ” ,

” i n f o ” : [

{
” category ” : ”Env” ,

” event ” : ”Flood ” ,

”urgency” : ”Immediate ” ,

” s e v e r i t y ” : ” Severe ” ,

” c e r t a i n t y ” : ” L ike ly ” ,

” language ” : ”en−US” ,
” responseType” : ” She l t e r ” ,

” d e s c r i p t i o n ” : ”Heavy f l o od i n g expected in low−l y i n g areas

. ” ,

” i n s t r u c t i o n ” : ”Move to h igher ground . ” ,

” a reas ” : [

{
” areaDesc ” : ”Bui ld ing A” ,

”polygon” : ”45 . 0 , 9 . 0 4 5 . 0 , 9 . 1 4 5 . 1 , 9 . 1 4 5 . 1 , 9 . 0

4 5 . 0 , 9 . 0 ” ,

” a l t i t u d e ” : ”10” ,

”geom” : {
” type” : ”Polygon ” ,

” coo rd ina t e s ” : [



Appendici 123

[

[ 9 . 0 , 45 .0 ] ,

[ 9 . 1 , 45 .0 ] ,

[ 9 . 1 , 45 .1 ] ,

[ 9 . 0 , 45 .1 ] ,

[ 9 . 0 , 45 .0 ]

]

]

} ,

” geometry type ” : ”Polygon”

}
]

}
]

}

Appendice C:

Listing 7.3: Esempio di configurazione del filtro alert

cap_filter:

event:

- "Fire"

- "Earthquake"

- "Flood"

- "Hazardous␣Material"

- "Severe␣Weather"

- "Power␣Outage"

urgency:

- "Immediate"

- "Expected"

- "Future"

severity:

- "Extreme"

- "Severe"

- "Moderate"

- "Minor"

certainty:



124 Appendici

- "Observed"

- "Likely"

area:

- "Building␣A"

- "Parking␣Lot"

- "Surrounding␣Area"

responseType:

- "Shelter"

- "Evacuate"

- "Prepare"

- "Monitor"

- "AllClear"

status:

- "Actual"

- "Exercise"

- "System"

- "Test"

msgType:

- "Alert"

- "Update"

- "Cancel"

scope:

- "Public"

- "Restricted"

- "Private"

Appendice D:

Listing 7.4: Esempio di configurazione del simulatore utenti

rabbitmq:

host: "localhost"

port: 5672

username: "guest"

password: "guest"

alert_queue: "user_simulator_queue"

evacuation_paths_queue: "evacuation_paths_queue"

position_queue: "position_queue"



Appendici 125

simulation_mode: "from_scratch" # "from_scratch" | "from_file

"

user_file: "UserSimulator/config/current_position.csv"

alert_event_type: "Earthquake"

n_users: 750 message

speed_normal: 20.0

speed_alert: 350.0

simulation_tick: 2.0

timeout_after_stop: 60

time_slots:

- name: "morning_class_1"

start: "08:30"

end: "10:30"

distribution: across locations

classroom: 0.6

corridor: 0.1

coffee shop: 0.05

canteen: 0.05

office: 0.1

bathroom: 0.05

stairs: 0.03

outdoor: 0.02

- name: "morning_break"

start: "10:30"

end: "11:00"

distribution:

classroom: 0.05

corridor: 0.15

coffee shop: 0.3

canteen: 0.3

office: 0.05

bathroom: 0.1

stairs: 0.03

outdoor: 0.02



126 Appendici

- name: "morning_class_2"

start: "11:00"

end: "13:00"

distribution:

classroom: 0.6

corridor: 0.15

coffee shop: 0.05

canteen: 0.05

office: 0.1

bathroom: 0.03

stairs: 0.01

outdoor: 0.01

- name: "lunch_break"

start: "13:00"

end: "14:00"

distribution:

classroom: 0.02

corridor: 0.1

coffee shop: 0.3

canteen: 0.4

office: 0.05

bathroom: 0.08

stairs: 0.03

outdoor: 0.02

- name: "afternoon_class_1"

start: "14:00"

end: "15:15"

distribution:

classroom: 0.6

corridor: 0.15

coffee shop: 0.05

canteen: 0.05

office: 0.1

bathroom: 0.03

stairs: 0.01

outdoor: 0.01



Appendici 127

- name: "afternoon_break"

start: "15:15"

end: "16:00"

distribution:

classroom: 0.05

corridor: 0.15

coffee shop: 0.3

canteen: 0.3

office: 0.05

bathroom: 0.1

stairs: 0.03

outdoor: 0.02

- name: "afternoon_class_2"

start: "16:00"

end: "18:00"

distribution:

classroom: 0.4

corridor: 0.1

coffee shop: 0

canteen: 0

office: 0.1

bathroom: 0.1

stairs: 0

outdoor: 0.3





Bibliografia

[1] OASIS Standard. Common alerting protocol version 1.2, July 2010. URL http:

//docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.pdf. Informazioni

utilizzate nel capitolo 1.2.1.

[2] Dipartimento della Protezione Civile. It-alert: il sistema nazionale di allarme

pubblico, . URL https://www.protezionecivile.gov.it/it/approfondimento/

it-alert-il-sistema-nazionale-di-allarme-pubblico/. Informazioni utilizza-

te nel capitolo 1.2.2.

[3] UNDRR. Studio del protocollo cap (common alert protocol). URL https://www.

undrr.org/early-warnings-for-all/common-alerting-protocol. Informazioni

utilizzate nel capitolo 1.2.1.

[4] Federal Emergency Management Agency. Ipaws overview.

URL https://www.fema.gov/emergency-managers/practitioners/

integrated-public-alert-warning-system. Informazioni utilizzate nel capitolo

1.2.3.

[5] IT-alert. Sito ufficiale di it-alert. URL https://www.it-alert.it/it/. Informazioni

utilizzate nel capitolo 1.2.2.

[6] Dipartimento della Protezione Civile. Il sistema di allarme pubblico it-

alert in italia, . URL https://www.protezionecivile.gov.it/static/

79a4f5e9bb9d804a043f55e29dc4e0a6/all6-it-alert-io-capit.pdf. Informa-

zioni utilizzate nel capitolo 1.2.1 e 1.2.2.

[7] Dipartimento della Protezione Civile. Rappresentazione tabellare del cap italia-

no e standard italiano, . URL https://www.protezionecivile.gov.it/static/

60f148a4a63756446dfb15acab736dbe/all7-dpc-edxl-cap-it-10.pdf. Informa-

zioni utilizzate nel capitolo 1.2.1.

[8] National Oceanic and Atmospheric Administration. Wireless emergency alerts (wea).

URL https://www.weather.gov/wrn/wea. Informazioni utilizzate nel capitolo 1.2.3.

129

http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.pdf
http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.pdf
https://www.protezionecivile.gov.it/it/approfondimento/it-alert-il-sistema-nazionale-di-allarme-pubblico/
https://www.protezionecivile.gov.it/it/approfondimento/it-alert-il-sistema-nazionale-di-allarme-pubblico/
https://www.undrr.org/early-warnings-for-all/common-alerting-protocol
https://www.undrr.org/early-warnings-for-all/common-alerting-protocol
https://www.fema.gov/emergency-managers/practitioners/integrated-public-alert-warning-system
https://www.fema.gov/emergency-managers/practitioners/integrated-public-alert-warning-system
https://www.it-alert.it/it/
https://www.protezionecivile.gov.it/static/79a4f5e9bb9d804a043f55e29dc4e0a6/all6-it-alert-io-capit.pdf
https://www.protezionecivile.gov.it/static/79a4f5e9bb9d804a043f55e29dc4e0a6/all6-it-alert-io-capit.pdf
https://www.protezionecivile.gov.it/static/60f148a4a63756446dfb15acab736dbe/all7-dpc-edxl-cap-it-10.pdf
https://www.protezionecivile.gov.it/static/60f148a4a63756446dfb15acab736dbe/all7-dpc-edxl-cap-it-10.pdf
https://www.weather.gov/wrn/wea


130 BIBLIOGRAFIA

[9] Martin Fowler. Microservices. 2014. URL https://martinfowler.com/articles/

microservices.html. Definizione e principi dei microservizi, utilizzati nel capitolo

2.1.

[10] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley,

2002. Riferimento utilizzato per la descrizione dell’architettura monolitica nel

Capitolo 2.1.

[11] Amazon Web Services. What is microservices architecture? URL https://

aws.amazon.com/microservices/. Informazioni utilizzate per il confronto tra

architetture nel Capitolo 2.1.

[12] Sam Newman. Building Microservices: Designing Fine-Grained Systems. O’Reilly

Media, 2015. Informazioni utilizzate nel capitolo sul confronto tra architetture 2.1.

[13] Python Software Foundation. Python 3.13.0 documentation. URL https://docs.

python.org/3/. Documentazione ufficiale di Python utilizzata nel capitolo 3.1.

[14] Node.js. Node.js v20.13.1 documentation. URL https://nodejs.org/en/docs/.

Documentazione ufficiale di Node.js (se pertinente) utilizzata nel capitolo 3.1.

[15] Amazon Web Services (AWS). What is a message queue?, . URL https://aws.

amazon.com/message-queue/. Informazioni sul pattern Message Queues utilizzate

nel capitolo 3.2.

[16] RabbitMQ Team. Rabbitmq documentation. URL https://www.rabbitmq.com/

documentation.html. Documentazione ufficiale di RabbitMQ utilizzata nel capitolo

3.2.

[17] Microsoft. Event-driven architecture style - azure architecture center,

. URL https://learn.microsoft.com/en-us/azure/architecture/guide/

architecture-styles/event-driven. Informazioni sul pattern Event-Driven

Architecture utilizzate nel capitolo 3.2.

[18] Microsoft. Circuit breaker pattern, . URL https://learn.microsoft.

com/en-us/azure/architecture/patterns/circuit-breaker. Informazioni sul

pattern Circuit Breaker utilizzate nel capitolo 3.2.

[19] Amazon Web Services (AWS). What is dlq? - dead-letter queue explained - aws,

. URL https://aws.amazon.com/what-is/dead-letter-queue/. Informazioni sul

pattern Dead Letter Queue utilizzate nel capitolo 3.2.

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://aws.amazon.com/microservices/
https://aws.amazon.com/microservices/
https://docs.python.org/3/
https://docs.python.org/3/
https://nodejs.org/en/docs/
https://aws.amazon.com/message-queue/
https://aws.amazon.com/message-queue/
https://www.rabbitmq.com/documentation.html
https://www.rabbitmq.com/documentation.html
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://learn.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker
https://learn.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker
https://aws.amazon.com/what-is/dead-letter-queue/


BIBLIOGRAFIA 131

[20] PostgreSQL Global Development Group. Postgresql documentation. URL https:

//www.postgresql.org/docs/current/. Documentazione ufficiale di PostgreSQL

utilizzata nella sezione 3.3.

[21] PostGIS Development Team. Postgis documentation. URL https://postgis.net/

documentation/. Documentazione ufficiale di PostGIS utilizzata nella sezione 3.3.

[22] YAML Ain’t Markup Language (YAML) Community. Yaml 1.2 (5th edition) specifi-

cation. URL https://yaml.org/spec/1.2/spec.html. Specifiche ufficiali di YAML

utilizzate nel capitolo 3.4.

[23] Prometheus. Prometheus - monitoring system time series database. URL https:

//prometheus.io/. Informazioni generali su Prometheus e Alertmanager utilizzate

nel capitolo 4.2.1.

[24] Zabbix. Zabbix - the enterprise-class open source monitoring solution. URL https:

//www.zabbix.com/. Informazioni generali su Zabbix utilizzate nel capitolo 4.2.1.

[25] Nagios Enterprises, LLC. Nagios - the industry standard in it infrastructure moni-

toring. URL https://www.nagios.org/. Informazioni generali su Nagios utilizzate

nel capitolo 4.2.1.

[26] Amir Mahdavi, Alireza Khosravi, Ahmed Al-Ani, and Fawaz Al-Saif. A review of

interoperability challenges and solutions in smart building systems. Journal of Buil-

ding Engineering, 34:101887, 2021. URL https://doi.org/10.1016/j.jobe.2020.

101887. Articolo di rassegna sull’interoperabilità nei sistemi di building automation.

[27] ASHRAE. Bacnet - the building automation and control protocol. URL https:

//www.bacnet.org/. Sito ufficiale e fonte della documentazione per il protocollo

BACnet.

[28] Modbus Organization. Modbus - the universal industrial protocol. URL https:

//modbus.org/. Sito ufficiale e fonte della documentazione per il protocollo Modbus.

[29] Michael Wooldridge. An introduction to multiagent systems. John Wiley Sons,

2009. Testo di riferimento sui sistemi multi-agente e l’Agent-Based Modeling, utile

per il contesto teorico.

[30] Sang-Hee Lee, Jun-Jae Lee, and Gye-Yong Cho. A review of evacuation simulation

models and their applications. Journal of the Korean Society of Civil Engineers, 32

(3A):213–222, 2012. Articolo di rassegna sui modelli di simulazione di evacuazione e

le loro applicazioni.

https://www.postgresql.org/docs/current/
https://www.postgresql.org/docs/current/
https://postgis.net/documentation/
https://postgis.net/documentation/
https://yaml.org/spec/1.2/spec.html
https://prometheus.io/
https://prometheus.io/
https://www.zabbix.com/
https://www.zabbix.com/
https://www.nagios.org/
https://doi.org/10.1016/j.jobe.2020.101887
https://doi.org/10.1016/j.jobe.2020.101887
https://www.bacnet.org/
https://www.bacnet.org/
https://modbus.org/
https://modbus.org/


132 BIBLIOGRAFIA

[31] M. Masad and A. Kazil. Mesa: Agent-based modeling in python. Journal of Open

Source Software, 4(37):1655, 2019. URL https://joss.theoj.org/papers/10.

21105/joss.01655. Framework di Agent-Based Modeling utilizzato per il confronto

nel capitolo 5.2.

[32] Uri Wilensky. Netlogo. Center for Connected Learning and Computer-Based

Modeling, Northwestern University, Evanston, IL, 1999. URL https://ccl.

northwestern.edu/netlogo/. Framework di simulazione agent-based citato per

contesto nel capitolo 5.2.

[33] AnyLogic Company. Anylogic simulation software. AnyLogic Company, 2024.

URL https://www.anylogic.com/. Piattaforma di simulazione integrata citata per

contesto nel capitolo 5.2.

[34] Patrick Taillandier, Duong Vo, Antoine Grignard, and Barbara Sgreggia. Gama:

A platform for agent-based modeling and simulation. Open-Source Project, 2023.

URL http://gama-platform.org/. Piattaforma di simulazione integrata citata per

contesto nel capitolo 5.2.

[35] NetworkX Developers. Networkx: Documentation. URL https://networkx.

org/documentation/stable/. Documentazione ufficiale della libreria NetworkX,

utilizzata per la gestione e l’analisi dei grafi dell’edificio.

[36] Pygame Community. Welcome to pygame. URL https://www.pygame.org/docs/.

Libreria per animazione e simulazioni 2D di base considerata nel confronto del

capitolo 5.2.

[37] SimPy Developers. Simpy 4.0.1 documentation. URL https://simpy.readthedocs.

io/en/latest/. Libreria di simulazione di processi discreti utilizzata per il confronto

nel capitolo 5.2.

[38] Juan L. Carpio and Alberto J. Arribas. Real-time location systems (rtls) in industry

4.0: A literature review. Sensors, 19(17), 2019.

[39] J. Kreps, N. Narkhede, and J. Rao. The log: What every software engineer should

know about real-time data’s unifying abstraction. ACM Queue, 11(5), 2013.

[40] Apache Software Foundation. Apache kafka documentation, . URL https://kafka.

apache.org/documentation/. Documentazione ufficiale utilizzata per l’analisi dei

sistemi di stream processing.

https://joss.theoj.org/papers/10.21105/joss.01655
https://joss.theoj.org/papers/10.21105/joss.01655
https://ccl.northwestern.edu/netlogo/
https://ccl.northwestern.edu/netlogo/
https://www.anylogic.com/
http://gama-platform.org/
https://networkx.org/documentation/stable/
https://networkx.org/documentation/stable/
https://www.pygame.org/docs/
https://simpy.readthedocs.io/en/latest/
https://simpy.readthedocs.io/en/latest/
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/


BIBLIOGRAFIA 133

[41] Apache Software Foundation. Apache flink documentation, . URL https://flink.

apache.org/docs/. Documentazione ufficiale utilizzata per l’analisi dei sistemi di

stream processing.

https://flink.apache.org/docs/
https://flink.apache.org/docs/




Ringraziamenti

A colei che ha saputo essere roccia e faro, la cui melodia non è sempre stata facile

da cogliere, ma che a distanza si è fatta più limpida. A lei che mi ha insegnato che a

rimettermi al mio posto è solo la mano di chi mi ama.

A lui, la mia stella nel cielo, la cui assenza ha lasciato un vuoto che si è fatto spazio,

ma la cui ombra mi ha protetto, insegnandomi che a volte la strada più spensierata è

quella che non ti aspetti. A lui che mi ha mostrato che seconda stella a destra, questo è

il cammino.

Ai miei nipoti, rifugio di risate e innocenza. Con loro, ho imparato che anche dopo le

giornate più lunghe, la serenità si trova in un abbraccio improvviso e in occhi che vedono

la magia in ogni angolo.

Infine, a me stessa, per aver creduto in questo viaggio, anche quando la strada si è

fatta ripida. Per aver imparato che il futuro non è scritto, non è scritto da nessuna parte

e lo devi scrivere tu.

array, multirow, makecell, tabularx


	Introduzione
	Descrizione del problema affrontato
	Descrizione del problema
	Analisi dello stato dell'arte
	Common Alerting Protocol (CAP)
	IT-Alert
	IPAWS

	Motivazioni dello sviluppo

	Architettura del sistema
	Scelta dell'architettura a microservizi
	Panoramica dell'architettura proposta
	Design dei microservizi
	Gestore degli alert
	Centro notifiche
	Simulatore delle posizioni
	Gestore delle posizioni
	Visualizzatore della mappa
	Gestore della mappa

	Comunicazione tra microservizi: flusso dell'emergenza
	Fase 1: Inizio della gestione dell'emergenza
	Fase 2: Analisi continua del pericolo e notifiche
	Fase 3: Reazione alle notifiche di evacuazione e aggiornamento delle posizioni simulate
	Fase 4: Aggiornamento della mappa e ricalcolo dei percorsi
	Fase 5: Riassegnamento delle rotte
	Fase 0: Configurazione del sistema


	Tecnologie fondamentali del sistema
	Linguaggio di programmazione: Python
	Sistema di message queuing: RabbitMQ
	Database di persistenza: PostgreSQL
	File di configurazione: YAML
	Conclusioni sulle tecnologie fondamentali

	Microservizio gestore degli alert
	Introduzione e funzionalità specifiche
	Analisi dello stato dell'arte e motivazione delle scelte implementative
	Sistemi di monitoraggio e allerta generici
	Soluzioni specifiche per il dominio applicativo
	Conclusioni sull'analisi dello stato dell'arte

	Sviluppo operativo del microservizio
	Componenti principali e flusso di lavoro degli alert
	Elaborazione del Common Alerting Protocol
	Gestione della configurazione esterna e logica di filtraggio
	Persistenza dei dati e archiviazione storica
	Instradamento e notifica via RabbitMQ
	Sistema di logging

	Conclusioni sul gestore degli alert

	Microservizio simulatore delle posizioni
	Introduzione e funzionalità specifiche
	Analisi dello stato dell'arte e motivazione delle scelte implementative
	Necessità strategica di un simulatore dedicato
	Confronto con framework e librerie di simulazione generiche
	Conclusioni sull'analisi dello stato dell'arte

	Sviluppo operativo del microservizio
	Componenti principali e flusso di lavoro del simulatore
	Modulo di avvio e orchestrazione
	Modulo di gestione della configurazione
	Modulo di interazione con il database
	Modulo di comunicazione asincrona
	Modulo core di simulazione
	Modulo di logging e servizio

	Conclusioni sul simulatore delle posizioni

	Microservizio gestore delle posizioni
	Introduzione e funzionalità specifiche
	Analisi dello stato dell'arte e motivazione delle scelte implementative
	Architetture tradizionali e limiti dei sistemi RTLS
	Modelli moderni di stream processing e la loro non applicabilità al prototipo

	Sviluppo operativo del microservizio
	Componenti principali
	Flusso di lavoro delle posizioni
	Modulo di interazione con il database
	Modulo di comunicazione asincrona
	Modulo di logging
	Conclusioni sul gestore delle posizioni


	Risultati sperimentali
	Analisi del caso di studio: Campus universitario di Cesena
	Simulazioni qualitative
	Allerta di tipo Earthquake
	Allerta di tipo Flood

	Validazione quantitativa
	Impatto del carico del sistema
	Impatto del contesto spaziale e temporale
	Impatto della tipologia allerta
	Impatto della capacità del grafo (archi e nodi)

	Riepilogo della validazione quantitativa

	Conclusioni
	Appendici
	Appendice A: 
	Appendice B: 
	Appendice C: 
	Appendice D: 

	Bibliografia
	Ringraziamenti

