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Introduzione

Contesto della Tesi

La presente tesi si propone di analizzare, confrontare e valutare diverse
architetture di Machine e Deep Learning: Random Forest, XGBoost, Multi-
Layer Perceptron (MLP) e Kolmogorov-Arnold Networks (KAN). Questi
modelli rappresentano paradigmi differenti nel panorama dell’apprendi-
mento automatico, coprendo sia le reti neurali tradizionali, che quelle di
recente introduzione, che i metodi ensemble. L'obiettivo e quello di fornire,
da un lato, un’analisi teorica esaustiva di ciascun modello, includendo i fon-
damenti matematici e le architetture; dall’altro, valutare sperimentalmente
le prestazioni dei modelli su tre casi di studio: regressione sulle emissioni
di automobili, classificazione dell'inquinamento atmosferico (PM2.5) e
classificazione di immagini mediante CNN abbinate a MLP e KAN. Oltre
allo studio comparativo dei modelli, la tesi include un’ampia indagine sui
metodi di Ottimizzazione degli iperparametri ed uno studio di ablazione
post-training, che valutano il compromesso tra la complessita del modello e

le prestazioni.

Obiettivo della Tesi

L'obiettivo primario € quello di condurre una valutazione metodologica
ed applicativa completa dei modelli selezionati, con un focus specifico
sulla loro efficacia in scenari del mondo reale. Per la valutazione empirica
sono stati scelti tre casi di studio diversificati per tipologia di problema



(regressione e classificazione) e natura dei dati (tabellari, serie storiche e
immagini). Le metodologie adottate, come la Nested Cross-Validation e la
Time Series Cross-Validation, sono state impiegate per garantire stime robuste
e non distorte della capacita di generalizzazione dei modelli.

Un ulteriore obiettivo é stato quello di investigare l'efficacia di diverse
strategie di ottimizzazione, tra cui Grid Search, Random Search, Bayesian
Optimization e Genetic Algorithms, selezionando il Random Search per la sua
efficienza e scalabilita nei casi di studio. A completamento, sono stati
condotti studi di ablazione post-addestramento per analizzare I'impatto del
pruning sulla performance dei modelli. In particolare, ¢ stato applicato il
pruning L1 per le reti neurali (KAN e MLP) ed il pruning ensemble (basato sul
ranking per Random Forest e cumulativo per XGBoost), al fine di misurare
il compromesso tra la riduzione dei parametri ed il mantenimento della

qualita predittiva.

Struttura della Tesi

La tesi e organizzata in capitoli che si susseguono in modo logico, par-
tendo dalle basi teoriche dei modelli fino all’analisi dei risultati sperimentali.

* Multi-Layer Perceptron (MLP): Questo capitolo introduce il Multi-Layer
Perceptron, descrivendone 1’architettura, i fondamenti matematici e
l'algoritmo di backpropagation. Vengono analizzate le funzioni di
attivazione e le tecniche di regolarizzazione, con una discussione finale

sui vantaggi e sui limiti di questa architettura.

* Kolmogorov-Arnold Networks (KAN): Il capitolo introduce le KAN,
un’architettura neurale che si ispira al teorema di approssimazione
di Kolmogorov-Arnold. Vengono esaminati i fondamenti matematici,
'architettura, il funzionamento operativo ed un confronto dettagliato

con le MLP tradizionali.



Random Forest (RF): Questo capitolo descrive il Random Forest, un
modello ensemble basato su alberi di decisione. Vengono trattati i
concetti fondamentali come il bagging ed il feature bagging, che ne
garantiscono la robustezza e la capacita di generalizzazione, e vengono

discussi vantaggi e svantaggi.

eXtreme Gradient Boosting (XGBoost): Il capitolo si concentra su
XGBoost, unimplementazione ottimizzata del gradient boosting. Ven-
gono analizzati i principi iterativi, i miglioramenti rispetto al boosting
tradizionale e I'importanza dei suoi iperparametri per il tuning del

modello.

Convolutional Neural Networks (CNN): Questo capitolo introduce le
CNN, un’architettura fondamentale per 1’analisi di immagini. Vengono
descritti i principi di convoluzione, pooling ed il suo funzionamento, con

una panoramica dei vantaggi e dei limiti.

Ottimizzazione degli Iperparametri: Il capitolo offre una panoramica
delle metodologie di ottimizzazione degli iperparametri, tra cui Grid
Search, Random Search, Bayesian Optimization e Genetic Algorithms, con un
focus sulla scelta del Random Search per gli studi di caso.

Studio di Ablazione e Pruning post-training: Vengono introdotte le
metodologie di ablazione e di pruning post-training, analizzando in
dettaglio le tecniche di pruning L1 per le reti neurali e quelle specifiche

per gli ensemble.

Metodologie e Procedure Comuni: Questo capitolo descrive le scelte
condivise che costituiscono la base per la verifica sperimentale dei casi di
studio, inclusi gli ambienti di sviluppo, le librerie software, le metriche

di valutazione, le procedure di validazione e di ablazione.

Primo, Secondo e Terzo Caso studio: I capitoli finali presentano i tre
casi di studio applicativi (regressione su emissioni di automobili, classi-

ficazione di PM2.5 e classificazione di fasce d’eta), con una trattazione
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dettagliata delle fasi di preparazione dei dati, training, valutazione e

pruning per ciascuno.

Tecnologie e Strumenti

Il workflow sperimentale e di analisi & stato interamente sviluppato in
Python, facendo uso di un insieme di librerie consolidate nel settore del
machine learning e dell’analisi dati. Per la manipolazione e I'analisi dei dati
sono state utilizzate le librerie Pandas e NumPy. La visualizzazione é stata
realizzata con Matplotlib e Seaborn. Le reti neurali sono state implementate
in PyTorch, sfruttando anche la libreria pykan per I'implementazione
delle Kolmogorov-Arnold Networks. Gli approcci ensemble sono stati
gestiti tramite le librerie scikit-learn e XGBoost. 1l framework di lavoro ha
previsto 1"utilizzo di Jupyter notebooks per la prototipazione e il debug,
mentre gli esperimenti su larga scala sono stati eseguiti su un cluster HPC
dell’Universita di Bologna, con allocazione di GPU tramite SLURM. La
gestione dei metadati, il tracciamento degli esperimenti e 'automazione

del workflow sono stati gestiti con moduli standard come json, os e logging.
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Capitolo 1

Multi-Layer Perceptron (MLP)

1.1 Introduzione

Questo capitolo presenta una descrizione del Multi-Layer Perceptron (MLP),
un’architettura fondamentale delle reti neurali. L'obiettivo & esplorare
la sua struttura e le sue capacita di modellare relazioni complesse, a
partire dai principi matematici. Verranno analizzate le sue componenti
principali, tra cui la distinzione tra gli strati e le funzioni di attivazione,
che sono cruciali per I'apprendimento di relazioni non lineari. II testo
spieghera poi il meccanismo attraverso cui la rete impara, descrivendo i
passaggi di calcolo che avvengono durante il forward pass e l'algoritmo di
backpropagation che aggiorna i parametri del modello. Verranno inoltre
affrontate le tecniche di regolarizzazione, indispensabili per evitare che la
rete memorizzi i dati di addestramento invece di imparare a generalizzare.
Infine, il capitolo riassume i vantaggi ed i limiti delle MLP, ponendo I’accento
sulla loro flessibilita e sui problemi legati alla profondita della rete, come il

vanishing/exploding gradient. [1, 2} 4,15, (10} 22, 3]
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Figura 1.1: Architettura della rete neurale Multi-Layer Perceptron.

1.2 Fondamenti matematici

1.2.1 Enunciato formale

Sia K ¢ R" uno spazio compatto e sia C(K) lo spazio delle funzioni continue
su K munito della norma uniforme || - ||. Sia 0 : R — R una funzione di

attivazione che soddisfa una delle seguenti ipotesi:

(A1) o écontinua e sigmoide, cioe lim;_,_ 0(t) = a e lim;_, 4 0(f) = b con
a # b (Cybenko);

(A2) o é continua e non polinomiale (Leshno etal.).

Allora vale il seguente risultato di approssimazione universale.

1.2.2 Teorema di approssimazione universale

Per ogni f € C(K) e per ogni ¢ > 0, esistono un intero N € N (indica il

numero di neuroni nello strato nascosto), coefficienti scalari c; € R, vettori
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w; € R" ebias b; € R tali che la funzione a singolo strato

N
fN(x) = Z cio(wi X+ bi)
i=1
soddisfa
If = fullo = sup|f(x) = fn(x)| < e.

xekK

In altre parole, lo span delle funzioni elementari (cioe 1'insieme di tutte le
possibili combinazioni lineari di queste funzioni) x — o(w - x + b) € denso
in C(K) rispetto alla norma uniforme. Cio significa che per ogni funzione
continua f € C(K) e per ogni ¢ > 0 esiste una combinazione lineare finita di
blocchi attivati da o (cioe una rete a singolo strato nascosto) che approssima
f uniformemente su K con errore massimo minore di €. Formalmente,
la chiusura (nell’|| - ||lo) dello spazio generato dalle funzioni elementari
coincide con l'intero C(K).

1.2.3 Significato di sup, .

La notazione sup, ., denota l'estremo superiore di un insieme di reali. Nella

norma uniforme

If = Allo = supf(x) = fn(x)]

xeK
il valore indicato € ’errore massimo di approssimazione su tutto il dominio
K. Poiché nel teorema K € assunto compatto e la funzione x — | f(x)— fn(x)|

e continua, l’estremo superiore coincide con il massimo:

sup |f(x) = f(¥)] = max|f(x) = fu(x)l.

xeK xeK

Esempio Se K =1[0,1] e f(x) = sin(2mx), affermare che esiste N tale che

sup |f(x) - fn(x) < 0.01
x€[0,1]
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significa che con quel numero di neuroni si puo costruire fy che differisce

dalla sinusoide al pit1 di 0.01 in ogni punto dell'intervallo [0, 1].

1.2.4 Ipotesi e Precisazioni

* Compattezza del dominio K. Il teorema ¢ enunciato per funzioni
continue definite su un insieme compatto K C R” (ad es. l'intervallo
chiuso [0, 1]"). La compattezza garantisce che la norma uniforme
lIglle = sup,.x |g(x)| sia ben definita e che 1’estremo superiore sia
effettivamente un massimo raggiunto su K. Su domini non limitati

(per es. R") la formulazione uniforme non & direttamente applicabile.

* Ipotesi sulla funzione di attivazione ¢: la validita del risultato

dipende dalle proprieta di 0. Due formulazioni tipiche sono:

— Sigmoide limitata e continua (Cybenko): dove ¢ ha limiti finiti

agli estremi e cambia valore tra —co e +oco.

— Funzione continua non polinomiale (Leshno etal.): condizione

piu generale che garantisce densita dello span.

Queste ipotesi escludono funzioni che non introducono la non linearita
richiesta per generare uno spazio denso in C(K). Per attivazioni mo-
derne (ad esempio, ReLU) il teorema rimane valido ma con enunciati

e ipotesi tecniche differenti.

* Natura esistenziale del risultato: il teorema e di tipo qualitativo: affer-
ma che esiste un numero finito di neuroni N e parametri (c;, w;, b;) tali
che 'approssimazione uniforme & ottenuta entro qualsiasi tolleranza
prefissata ¢. Non fornisce pero una procedura esplicita per la ricerca
dei parametri ed un bound quantitativo generale che esprima N in

funzione di € per una data f.

¢ Non implica una fase di training facile: anche se esiste una rete che

approssima f, nella pratica:
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— gli algoritmi numerici di ottimizzazione (SGD, Adam, ecc.) non
sono garantiti a trovare quei parametri ottimali: la funzione di
perdita € non convessa e puo avere molteplici ottimi locali o
regioni piatte;

— la buona approssimazione teorica non assicura buona genera-
lizzazione se i dati a disposizione sono scarsi: quindi é necessa-
rio usare tecniche di regolarizzazione, validazione e controllo

dell’overfitting.

1.3 Struttura delle MLP

1.3.1 Strati: input, nascosti, output

Le Multi-layer Perceptron (MLP) sono una tipologia di reti neurali feed-
forward, costituite da pit strati (layer) di neuroni: uno strato di input, che
riceve i dati iniziali; uno o piu strati nascosti; ed uno strato di output che
genera le previsioni finali. Ogni neurone, appartenente ad uno strato, &
connesso a tutti i neuroni di quello successivo (architettura fully connected).
Questo significa che ogni input viene trasformato dallo strato di input ai layer
nascosti intermedi ed infine allo strato di output, con ogni collegamento
caratterizzato da un peso w. Il numero di neuroni, in ciascun layer, € un
iperparametro da scegliere: tipicamente lo strato di input ha tante unita
quanti sono i parametri in ingresso, gli strati nascosti possono variare da
pochi a molti nodi, a seconda del problema, e lo strato di output ha un
neurone per ogni valore target.

In ogni neurone (esclusi quelli di input), si calcola una somma pesata degli
input e di un termine di bias, per poi applicare una funzione di attivazione.
Loutput di un neurone 7 nel layer / & dato da:

N1
0 _ () _(1-1) (0
z;' = E w;; 4, +bi
j=1

I I
ag) = a(zg ))
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(0

ij

(I-1)

Dove z” & 1a somma esata, w., e il peso della connessione, a: "~ e l'output

del neurone precedente, bl(. ) ¢ il bias, e 0 & la funzione di attivazione non
lineare.

1.3.2 Funzioni di attivazione comuni

Le funzioni di attivazione sono cruciali nelle reti neurali, poiché introducono
la non linearita necessaria per modellare relazioni complesse tra input e
output. In assenza di tali funzioni, una rete multi-layer si ridurrebbe ad una
trasformazione lineare. Di seguito vengono descritte alcune delle funzioni

di attivazione piu diffuse, con le loro proprieta matematiche, i pro e contro.

Proprietarilevanti Quando si valuta una funzione di attivazione, conviene
considerare la sua differenziabilita, che ¢ fondamentale per la backpro-
pagation; la boundedness dell’output e zero-centering, cioé se l'output e
centrato attorno a 0; la saturazione, che puo causare il vanishing gradient; la
sparsita ed il costo computazionale.

1. Sigmoide

Figura 1.2: Grafico della funzione di attivazione Sigmoide.
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1

1+ex’ o’(x) = o(x)(1 - o(x)).

o(x) =

Questa funzione ha un output che si colloca nell’intervallo (0,1) ed una
caratteristica forma a "S", rendendola utile per rappresentare la probabilita
(quindi un output normalizzato); la sua derivata ¢ semplice da calcolare.
Tuttavia, la sua principale debolezza ¢ la saturazione per x — +oo, dove il
gradiente tende a zero. Questo fenomeno porta al problema del vanishing
gradient nei layer profondi. E tipicamente utilizzata nello strato di output

per la classificazione binaria, in combinazione con la binary cross-entropy.

2. Tangente iperbolica (tanh)

Figura 1.3: Grafico della funzione di attivazione Tangente iperbolica.

X

et —e
tanh(x) = ———
et +e™*

x, tanh’(x) = 1 — tanh?(x).

La funzione tanh ha un output compreso tra (-1, 1) ed e centrata in 0, il
che, quando i dati sono normalizzati, porta ad una convergenza migliore
rispetto alla sigmoide. Nonostante questo vantaggio, rimane una funzione
saturante per valori estremi, e di conseguenza puo soffrire ancora del
problema del vanishing gradient. Il suo uso tipico e nei layer nascosti di
reti poco profonde o quando & desiderabile un output centrato.
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3. Rectified Linear Unit ReLU (ReLU)

25 |

Figura 1.4: Grafico della funzione di attivazione ReLU.

0 x<0,
ReLU(x) = max(0, x), ReLU’(x) =

1 x>0,

La ReLU é una funzione semplice e computazionalmente efficiente, che,
nella maggior parte dei casi, evita il problema del vanishing gradient
sulle porzioni attive e favorisce la sparsita delle attivazioni. Il principale
svantaggio € il problema della "dying ReLU": i neuroni possono diventare
permanentemente inattivi se ricevono input negativi. Un neurone si con-
sidera "morto" se, per tutte (o quasi) le istanze del dataset, I'input x < 0,
dato che in tal caso l'output € sempre nullo. Poiché la derivata di ReLU
é zero per x < 0, il gradiente non si propaga a ritroso, e il neurone non
riceve pill aggiornamenti dei pesi, rimanendo inattivo per tutta la durata
dell’allenamento. Viene ampiamente utilizzata nei layer nascosti in quasi
tutte le architetture di reti neurali.
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4. Leaky ReLU (LReLU) / Parametric ReLU (PReLU)

Leaky ReLU Parametric ReLU
a a
a=2 a=z
z z
a=0.01z a=az

Figura 1.5: Grafico delle funzioni di attivazione LReLU e PReLU.

0.01x x<0, 001 x<0,
LReLU(x) = LReLU’(x) =
X x>0, 1 x>0,
ax x <0, a x<0,
PReLU(x) = PReLU’(x) = ae(0,1)
X x>0, 1 x>0,

PReLU apprende il parametro a durante il training. Entrambe le varianti
mantengono un piccolo gradiente per x < 0, riducendo significativamente
il problema dei "dead neurons". L'introduzione (o 'apprendimento) di un
iperparametro & un potenziale svantaggio, ed il loro comportamento non
€ sempre superiore a quello della semplice ReLU. Sono impiegate dove si
vuole evitare il problema della "dying ReLU", mantenendo la semplicita.
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5. Exponential Linear Unit (ELU)

2 L L L I I I
-4 -3 -2 -1 0 1 2 3 4

Figura 1.6: Grafico della funzione di attivazione ELU.

x>0, a(e*) x<0,
ELU'(x) = a>0

ELU(x) =
a(e*-1) x<0, 1 x>0,

L'ELU produce un output pit1 centrato rispetto alla ReLU e ha un gradiente
non nullo per x < 0, che in alcuni casi puo portare a una migliore conver-
genza. Tuttavia, € leggermente pit1 costosa a livello computazionale a causa
della funzione esponenziale ed introduce un parametro a da ottimizzare.
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6. Softplus

-3 —I2 —Il (I) Zi. 2I 3
Figura 1.7: Grafico della funzione di attivazione Softplus.

1
1+e>*

softplus(x) = log(1 + e”), softplus’(x) =

La Softplus € una versione continua e completamente differenziabile del-
la ReLU. Nonostante questa proprieta, € pitt costosa dal punto di vista

computazionale e meno sparsa rispetto alla ReLU.
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7. Gaussian Error Linear Unit (GELU)

=

-1

Figura 1.8: Grafico della funzione di attivazione GELU.

GELU(x) = x - (x)

dove ®(x) e la funzione di distribuzione cumulativa (CDF) della distribu-

zione normale standard e “erf” & la funzione degli errori di Gauss:

ol

GELU'(x) = ®(x) + %x d(x)

D(x) = %

dove

__ 1 ep
P(x) = \/2—716

La GELU ha dimostrato un eccellente comportamento empirico, specialmen-
te nei modelli di linguaggio, ed & considerata una funzione di attivazione
"soft" che combina linearita e gating stocastico. Il suo principale svantaggio
e il costo computazionale piti elevato. Viene ampiamente utilizzata nelle

architetture Transformer.
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8. Softmax

Per un vettore x € RK:

e’i

softmax(x); = ——.
( )] Z[k(:1 ok

Questa funzione viene utilizzata per trasformare i logits (gli output grezzi
di un layer) in una distribuzione di probabilita. E normalmente combinata
con la funzione di perdita di categorical cross-entropy per problemi di

classificazione multi-classe.

1.4 Procedura di forward pass

1.4.1 Calcolo delle attivazioni

Durante la fase di propagazione in avanti (forward pass), i dati attraversano
la rete dallo strato di input a quello di output. Ogni neurone calcola prima
un ingresso pesato sommandolo con il bias. Dato un neurone j dello strato

nascosto o di output, I'eccitazione, o attivazione lineare, é:
zZj = Z WijiXxi + b]',
i

dove x; sono gli output (o input iniziali), wj; i pesi di connessione, e b; il
bias. In seconda battuta, si applica la funzione di attivazione ¢ per ottenere

l"uscita del neurone:
aj = ¢(z)).

Ad esempio, con ¢ = o (sigmoide), avremmo a; = 1/(1 + e™/). Questo
processo viene eseguito strato per strato. Ogni layer trasforma in modo non
lineare i dati in ingresso, permettendo alla rete di apprendere composizioni

funzionali complesse.
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1.4.2 Propagazione ed output

Dopo aver calcolato le attivazioni in tutti gli strati intermedi, 1"uscita dello
strato finale (aoyt) costituisce la previsione della rete. Se il problema e di
regressione, 'ultima funzione di attivazione puo essere identita (o lineare);
se e di classificazione binaria, si puo0 usare la sigmoide; se € multi-classe,
si usa tipicamente la softmax. Ad esempio, in una classificazione a K
classi lo strato di output contiene K neuroni con softmax, e ciascuna uscita
ar € (0,1) rappresenta la probabilita assegnata alla classe k. Loutput
finale & dunque un vettore di predizioni che dipende dalle scelte di pesi,
bias e funzioni di attivazione attraverso la rete. Infine, confrontando agyt
con il valore target (ground truth) del training si calcola una funzione di
perdita che misura I’errore di previsione (ad esempio, MSE per regressione
o cross-entropy per classificazione). Questa funzione di perdita viene poi

utilizzata nell’allenamento per aggiornare i pesi tramite backpropagation.

1.5 Algoritmo di backpropagation

L'algoritmo di backpropagation é fondamentale per 'addestramento delle
reti neurali, poiché calcola come i pesi della rete devono essere modificati
per minimizzare ’errore. Questo processo si basa sull’applicazione della
regola della catena (chain rule) per derivare il gradiente della funzione di
perdita L rispetto a ogni peso w.

1.5.1 Derivazione del gradiente

Il processo inizia con la definizione dell’errore, calcolato attraverso una
funzione di perdita L, che misura la differenza tra il valore previsto dalla
rete e il valore target effettivo. Ad esempio, per la regressione si puo usare
I'errore quadratico medio (MSE), mentre per la classificazione si ricorre
spesso alla cross-entropy.

Una volta definito l'errore, ’algoritmo procede calcolando la derivata

parziale della funzione di perdita L rispetto all’attivazione netta di ciascun
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neurone. Questo valore € noto come "errore locale" o 6; per il neurone j, ed
€ una misura di quanto I'errore di output sia influenzato dall'input di quel

neurone prima dell’applicazione della funzione di attivazione.

JdL

oj = =—.
J 82]'

Per un neurone nello strato di output, il calcolo di 6; ¢ diretto (dipende
dalla perdita e dalla derivata dell’attivazione). Per i neuroni nei layer
nascosti, invece, 6; si determina propagando a ritroso gli errori dei neuroni
del layer successivo: ogni neurone nascosto riceve contributi di errore da
tutti i neuroni a cui e collegato nel layer seguente. In forma esplicita, se
indichiamo con k gli indici dei neuroni del layer successivo e con wy; il
peso che connette il neurone j (nascosto) al neurone k (del layer successivo),

allora
6 = o(z)) ) w57,
k

dove z; ¢ la net-input del neurone j e ¢’ ¢ la derivata della funzione di
attivazione valutata in z;. Questa formula mostra chiaramente due passaggi:
si sommano i contributi di errore 65{“8)“) dei neuroni del layer successivo
pesati dai corrispondenti pesi wy; ed il risultato viene moltiplicato per 0’(z;)
per tener conto della non linearita locale del neurone ;.

L'applicazione della chain rule permette quindi di ottenere il gradiente
della perdita rispetto a ciascun peso w; che connette il neurone i al neurone
s JdL

Wji =4a; (3]' ,

dove a; & 'output (attivazione) del neurone i nel layer precedente e 6; e
I'errore locale del neurone j calcolato come sopra. Quindi, l’algoritmo
calcola l'errore allo strato di output e lo distribuisce a ritroso lungo la
rete, scalando i contributi con le derivate delle attivazioni; il prodotto a;6;
fornisce per ogni peso la misura del suo contributo all’errore complessivo e,

quindji, la direzione in cui occorre modificarlo per ridurre la perdita.
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1.5.2 Aggiornamento dei pesi

Una volta noti i gradienti parziali 3—5], 1 pesi vengono aggiornati solitamente
tramite discesa del gradiente (gradient descent). Con un learning rate 17,
I’aggiornamento ¢ dato da:

JdL

wew-n o

Questo modifica ogni peso nella direzione negativa del gradiente per ridurre
la perdita. In termini di formula, per 1'esempio di un singolo campione e

peso w]-i:
dL
3”60ji

iji:—n =—1]6]'6l,'.

Questa e la regola standard di backpropagation con discesa del gradiente.
In pratica, si iterano piu epoche di allenamento aggiornando i pesi in base
a molti esempi, eventualmente con varianti come la discesa del gradiente
stocastico (SGD) oppure con algoritmi avanzati (momentum, Adam, ecc.).
Tra un passo di forward e il successivo di backward, possono essere applicate
tecniche di batching: 1’errore puo essere aggregato su minibatch di esempi
per stabilizzare 'aggiornamento. In ogni caso, il principio fondamentale &
che i pesi vengono "aggiustati" proporzionalmente al proprio contributo

all’errore complessivo, come descritto nelle sezioni precedenti.

1.5.3 Tecniche di regolarizzazione

Affinché la rete abbia un’ottima capacita di generalizzazione (non si li-
miti a riprodurre il rumore dei dati di training), si usano tecniche di

regolarizzazione:

* Dropout: durante la fase di training, in ciascuna iterazione si disattiva
casualmente una parte di neuroni in alcuni layer, impostando le loro
attivazioni a zero. Questo costringe la rete a non fare affidamento
eccessivo su singoli neuroni, favorendo lo sviluppo di rappresentazioni

ridondanti e riducendo l'overfitting. Ad esempio, con una dropout
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probability p, un neurone viene disattivato con probabilita p e gli altri

sono scalati di 1/(1 — p) per compensazione.

* Regolarizzazione L1 (LASSO): si aggiunge alla loss un termine

proporzionale alla somma dei valori assoluti dei pesi:

L' (w) = L(w) + Allwll = L@w) + A )" lwil,

con A > 0. La funzione di penalita ¢; induce sparsita: molte compo-
nenti dei pesi vengono impostate a zero, facilitando la selezione di

feature e l'interpretabilita del modello.

* Regolarizzazione L2 (Ridge): si aggiunge il quadrato della norma
dei pesi:
L' (w) = L(w) + &[lwl|? = L(w) + 4 Z w?.
i

I termine ¢, non produce soluzioni esattamente sparse ma riduce la

magnitudine di tutti i pesi verso lo zero.

¢ Combinazione L1+L2 (Elastic Net): combina entrambe le precedenti
penalita:
L'(w) = Liw) + a (Aalkolh + Zlwl?),

e viene scelta per ottenere sia sparsita (L1) sia stabilita (L2) quando
le features sono correlate. Elastic Net e spesso preferibile quando
il numero di variabili supera il numero di osservazioni o quando ci

sono gruppi di variabili fortemente correlate.

1.6 Vantaggi e limiti

1.6.1 Flessibilita e capacita di generalizzazione

Le reti MLP offrono grande flessibilita: grazie alla combinazione di pesi e
attivazioni non lineari, possono modellare relazioni complesse e non lineari

tra input e output. Possono apprendere sia compiti di regressione che di
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classificazione (binarie o multi-classe) e sono in grado di approssimare
praticamente qualsiasi funzione continua. Tale capacita di rappresentazione
rende le MLP potenti modelli predittivi in molti ambiti. Inoltre, in presenza
di dati adeguati e con 1'uso di tecniche di regolarizzazione, le MLP tendono
ad avere una buona capacita di generalizzazione, ossia sono in grado di

fare previsioni corrette su dati non visti.

1.6.2 Problemi di vanishing/exploding gradient

Uno dei limiti piu importanti delle MLP (soprattutto se possiedono molti
hidden layer) riguarda il problema del vanishing gradient. Poiché, durante
la backpropagation, i gradienti vengono moltiplicati per le derivate delle
funzioni di attivazione in ogni layer, se queste derivate sono piccole (come
in sigmoide o tanh, che assumono valori entro (0, 1)), il prodotto dei
gradienti tende a diminuire esponenzialmente con la profondita. Di
conseguenza, i pesi nei primi strati (vicini all’input) ricevono gradienti
quasi nulli e la rete impara molto lentamente le rappresentazioni nei layer
bassi. Al contrario, se derivate o pesi sono grandi (> 1), puo manifestarsi
un exploding gradient, dove i gradienti crescono esponenzialmente e
portano ad instabilita numeriche (pesanti oscillazioni o overflow). Per
questo si usano funzioni, come le ReLU, che hanno derivate pit stabili,
normalizzazione dei dati, inizializzazione specifiche dei pesi, o architetture

speciali per alleviare il fenomeno.

1.6.3 Efficienza computazionale

Dal punto di vista computazionale, le MLP possono diventare costose da
addestrare se il numero di layer o di neuroni é elevato. Ogni propagazione
in avanti ed indietro richiede calcoli intensivi e su set di dati di grandi
dimensioni 1’allenamento puo richiedere molto tempo e risorse computa-
zionali. Il costo cresce con il numero di connessioni del modello. Inoltre,

le MLP richiedono un tuning accurato degli iperparametri (learning rate,
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struttura della rete, regolarizzazione, ecc.) per ottimizzare performance ed

efficienza.
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Capitolo 2

Kolmogorov—-Arnold Networks
(KAN)

2.1 Introduzione

Il presente capitolo introduce le Kolmogorov-Arnold Networks (KAN),
una nuova classe di reti neurali che si ispira direttamente al teorema di
approssimazione di Kolmogorov-Arnold. Lobiettivo € esplorare la loro
architettura innovativa, che differisce dalle tradizionali reti MLP nel modo
in cui gestiscono le funzioni di attivazione. Verranno esaminati i fonda-
menti matematici che giustificano la loro efficacia, in particolare come le
KAN si propongono di superare la "maledizione della dimensionalita"
(curse of dimensionality) grazie alla loro capacita di approssimare funzioni
complesse. Il capitolo si concentra sul funzionamento operativo, descri-
vendo come le funzioni parametriche basate su B-spline sostituiscono i
pesi scalari e le attivazioni fisse degli MLP. Infine, verranno discussi in
dettaglio i vantaggi e gli svantaggi delle KAN, come la loro interpretabilita
e maggiore flessibilita locale rispetto agli MLP, ma anche la loro maggiore
complessita computazionale e la dipendenza dalla struttura del problema.
16,17, 8, 11,9, 12]
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Figura 2.1: Kolmogorov—-Arnold Networks

2.2 Fondamenti matematici

2.2.1 Enunciato del teorema di Kolmogorov—-Arnold

Il teorema di Kolmogorov—-Arnold (KART) stabilisce che ogni funzione
continua multivariata (cioé su piut variabili), su un intervallo compatto, puo
essere espressa come una combinazione di somme di funzioni univariate
(cioe su una variabile). In forma esplicita, per una funzione continua

f :10,1]" — R esistono funzioni continue univariate ¢, , e @, tali che

2n+1 n
flx1,...,xy) = Z D, Z qu,p(xp))z
q:l p:l

perg=1,...,2n+1.

Cio signifca che ogni funzione continua multivariata puo essere scomposta
in una somma di funzioni univariate piu semplici ®;, (dette funzioni
esterne), ciascuna delle quali dipende da una combinazione lineare delle

variabili originali trasformate tramite funzioni univariate, dette funzioni
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interne ¢, ,. In questo contesto le funzioni interne agiscono da "features
extractor", cioé estraggono informazioni rilevanti da ciascuna variabile,
mentre le funzioni esterne combinano queste caratteristiche per produrre il
valore finalle della funzione, agendo in modo simile ad un classificatore
delle features estratte. Questo risultato afferma che qualsiasi funzione
continua di pit variabili puo essere completamente rappresentata tramite
combinazioni di funzioni continue di una sola variabile.

2.2.2 Sulla natura "non costruttiva" delle dimostrazioni

Le dimostrazioni originali del KART, eseguite da Kolmogorov nel 1957 e
successivamente Arnold nel 1967, sono di natura esistenziale: garantiscono
I’esistenza delle funzioni ¢, e ®;, ma non forniscono una procedura espli-
cita o una formula chiusa per costruirle. Pertanto il teorema e fondamentale
dal punto di vista teorico ma, senza ulteriori risultati costruttivi, ha un’utili-
ta pratica limitata per la costruzione diretta di architetture neurali basate su
tali funzioni, spingendo i ricercatori a privilegiare le reti neurali multistrato

(MLP) che, pur con i loro limiti, erano piu facili da implementare.
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2.3 Architettura delle KAN

Model | Multi-Layer Perceptron (MLP) | Kolmogorov-Arnold Network (KAN)
Theorem Universal Approximation Theorem Kolmogorov-Arnold Representation Theorem
N ! N(e) 2n+1 n
ormula =
(Shallow) fx) = Y ao(w;-x+b) =3 @, X bg,x)
i=1 g=1 p=1
(a) fixed activation functions | (b) /T\ learnable activation functions
/ on nodes N 7 ow o o —" on edges
Model
(Shallow) Wi {/J ~—* sum operation on rodes
1 learnable weights AL NI NA AV 0
- VT o edges /.
F(‘l’;;“e';l)a MLP(x) = (W5 o 05 s W, 0 6, e W,)(X) KAN(X) = (@, » @, o ®,)(x)
(d) """"""""""""""""""""" KAN(X)
’\/\T/\J @,
Model | [ AT AT A1 /777 6 . lnonlinear,|| =  -c-o-thosreeooccecodonimmeniieaadones
(Deep) nonlinear,
learnable
X

Figura 2.2: Confronto tra Multi-Layer Perceptron (MLP) e Kolmogo-
rov—Arnold Network (KAN).

Una KAN é strutturalmente simile ad una rete feedforward completamente
connessa, simile ad una MLP, ma differisce in modo sostanziale nell’uso
delle funzioni di attivazione: ogni arco (collegamento) tra i neuroni di
strati consecutivi porta con sé una funzione univariata parametricamente
definita (spesso una B-spline), anziché un peso scalare come nelle MLP.
Ciascun neurone di uno strato riceve gli output dei collegamenti in ingresso
e calcola semplicemente la somma di tali output, senza 1'uso di pesi lineari
o di funzioni di attivazione non lineari applicate ai singoli nodi stessi.
Il modello generale si descrive cosi: se lo strato (¢ — 1) ha dy—1 neuroni e
lo strato ¢ ne ha dy, allora esiste una matrice di funzioni unidimensionali
(¢-1)

i=1,...,d . 9. . . .
{ fé“}f=1 dj_l tale che, dati gli output degli d¢—1 neuroni precedenti x; ,
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"uscita x](.g) del j-esimo neurone del livello ¢ é:

deq

® (6) (D)
6 = 2 p ).

i=1

In forma matriciale si puo scrivere x(9 = fO(x(-1)), dove f) & I'insieme
delle funzioni collegate a quello strato. L'output complessivo della KAN &

quindi dato dalla composizione degli strati successivi:

y = = fOFEC O )

dove x© & il vettore di input della rete.

Questa architettura combina, in un’unica funzione f;; per ogni arco, le
trasformazioni lineari e non lineari, permettendo alla rete di apprendere
la forma esatta della funzione di attivazione necessaria per ogni arco di
connessione.

Si noti che un MLP applica funzioni di attivazione predefinite (ReLU,
sigmoide, ecc.) sui singoli neuroni e moltiplica gli input per pesi scalari; al
contrario, una KAN utilizza funzioni parametriche sugli archi e non applica

ulteriori attivazioni non lineari sui neuroni.
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2.3.1 Funzioni univariate parametriche
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Figura 2.3: Struttura delle funzioni univariate parametriche.

Le funzioni di attivazione utilizzate nelle KAN sono funzioni univariate
parametriche che possono apprendere flessibilmente la forma durante il
training. Nell'implementazione classica proposta da Liu et al. (2024), queste
funzioni sono rappresentate tramite B-spline (polinomi a tratti di basso
grado), che offrono un buon trade-off tra flessibilita locale e complessita di
calcolo.

Ciascuna funzione di attivazione su un collegamento in una KAN &

quindi espressa nella forma

fij(t) =t + gij(t),
dove g;j(t) & una combinazione lineare di B-spline:
G+p fp
gij(t) = Z CkBip (%) :

=1 max — tmin

I termine lineare ¢ garantisce un comportamento affine iniziale, miglioran-
do la stabilita dell’ottimizzazione durante il training, mentre il contributo

spline introduce la non linearita appresa dalla rete, permettendo di model-
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lare funzioni di attivazione flessibili e adattabili.

Un aspetto importante e la definizione della spline grid, ovvero la suddivi-
sione dell’asse degli input in nodi che delimitano gli intervalli su cui sono
definiti i singoli segmenti delle B-spline. Il numero di nodi G e la loro
posizione influenzano la capacita espressiva e la risoluzione locale delle
funzioni attivazione. In generale, oltre alle B-spline, si possono utilizzare
anche altre famiglie di funzioni unidimensionali parametriche, come i poli-
nomi di Chebyshev o altre basi ortogonali, in base alle esigenze specifiche
del problema. Infatti, le reti KAN sono in grado di adattare i coefficienti di
queste basi durante il training, permettendo alla rete di apprendere funzioni

di attivazione ottimali per ciascun collegamento.

2.3.2 B-spline

B-Spline

O control point ® knot

L J L 1 |

Uo U1 a2 b K U4

Figura 2.4: Struttura delle B-spline.
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Definizione

Le B-spline sono funzioni polinomiali a tratti che costituiscono la base per
la rappresentazione di funzioni spline di un dato grado. Una B-spline di

ordine p + 1 (ovvero di grado p) e definita ricorsivamente come segue:

1 seti<t<tiyg

Bio(t) = ' '
0 altrimenti
eperp > 0:
t—t; ti+p+1 —t
B; ,(t) = —B,; ,_1(t) + Bit, —1(t),
l'p( ) ti+p —t P ( ) ti+p+1 —tin .

dove {t;} e il vettore dei nodi (knot vector), che suddivide il dominio
della funzione in intervalli. Ogni B-spline B; ,(t) e diversa da zero solo
sull’intervallo [¢;, ti+p+1), conferendo proprieta di supporto locale.

Implementazione delle B-spline nelle KAN

Nelle implementazioni standard delle KAN, le funzioni di attivazione sui
collegamenti sono parametrizzate come combinazioni lineari di B-spline
cubiche (p = 3):

G+p
X — Xmin
fij(x) = wox + Z CkBip (—) ,
=1 Xmax — Xmin

dove:

* wy e il termine residuo lineare che garantisce un comportamento

iniziale affine,
* {cx} sono i coefficienti addestrabili della spline,
¢ G eil numero di intervalli della griglia di nodj,

* By, sono le funzioni base B-spline di grado p.
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Il termine residuo lineare wox stabilizza 1'ottimizzazione, permettendo
alla funzione di partire come lineare e apprendere non linearita tramite la

componente spline.

Adattamento della griglia

Un aspetto importante delle KAN é 'adattamento dinamico della spline
grid. Inizialmente, la griglia ¢ generalmente uniforme, ma puo essere
ampliata aumentando il numero di nodi. Durante il training, i nodi possono
essere riposizionati strategicamente per concentrare la risoluzione nelle
aree in cui la funzione varia maggiormente, migliorando cosi la capacita di
modellazione locale della rete. Per mantenere la stabilita durante queste
modifiche alla griglia, si utilizzano tecniche di interpolazione lineare sui
parametri dell’ottimizzatore, garantendo transizioni fluide e controllate

nella definizione della griglia.

2.3.3 Scaling laws e Curse of dimensionality

Come suggerito dal teorema matematico KART, le KAN godono di pro-
prieta di approssimazione analoghe ma piu raffinate rispetto alle MLP. In
particolare, il teorema di Kolmogorov-Arnold garantisce che ogni funzione
continua multivariata definita su un dominio compatto possa essere rap-
presentata esattamente come composizione di funzioni univariate e somme,
realizzabile da una KAN con 2 strati e larghezza proporzionale all’input
n (in particolare, larghezza 2n + 1). Di conseguenza, per ogni tolleranza
€ > 0 esiste una KAN sufficientemente ampia che approssima la funzione
f entro errore €, cioé

| fxan = fll < €.

Questa capacita permette alle KAN di superare il problema noto come curse
of dimensionality, a condizione che la funzione da approssimare possieda
una struttura additivo-composizionale sufficientemente regolare. In parti-
colare, l’errore di approssimazione di una KAN dipende principalmente
dalla risoluzione della griglia spline utilizzata nelle funzioni univariate,
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risultando approssimativamente indipendente dalla dimensione dell’input.
Questa proprieta si traduce in scaling laws pit favorevoli rispetto alle MLP
tradizionali, per le quali il numero di parametri necessari per garantire una
certa accuratezza generalmente cresce esponenzialmente con la dimensione
dell'input. Il vantaggio teorico delle KAN deriva dal fatto che esse, a
differenza delle MLP, apprendono non solo la struttura composizionale
della funzione, ma sono anche in grado di modellare con elevata precisione
le funzioni univariate interne, grazie all'uso di attivazioni parametriche

basate su spline.

2.4 Funzionamento operativo

2.4.1 Calcolo del mapping input-hidden—output

Nel funzionamento operativo di una KAN, i dati scorrono in avanti attraverso
gli strati esattamente come in una normale MLP, ma usando le funzioni
di attivazione sugli archi. Dato un vettore di input x(o), il calcolo procede
layer dopo layer: per ciascun neurone nel primo strato nascosto si valuta la
somma delle funzioni dei collegamenti in ingresso applicate alle componenti
di x©, ottenendo xV) e cosi via. Al livello successivo si ripete lo stesso
procedimento prendendo x!) come input, e cosi via fino allo strato di output.
Formalmente, ogni layer ¢ esegue la trasformazione x\9 = fO(x(¢-1)) e
loutput finale & y = x(&.

Poiché tutte le operazioni, cioé l'applicazione delle funzioni univariate
e le somme, sono differenziabili, I'intero modello ¢ addestrabile tramite
backpropagation. Questo significa che i coefficienti delle funzioni di
attivazione (ad esempio, delle spline) possono essere ottimizzati tramite
discesa del gradiente, minimizzando una funzione di perdita, allo stesso

modo di quanto avviene in un MLP.
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2.4.2 Processo di training e Calcolo dei pesi

I training di una KAN segue la procedura standard di addestramento
supervisionato con discesa del gradiente. Si parte da un dataset di training
ed una funzione loss, quindi si aggiornano iterativamente i parametri delle
funzioni di attivazione. Nelle KAN, i "pesi" da addestrare sono i coefficienti
che definiscono le funzioni unidimensionali sui collegamenti. Per esempio,
una spline di ordine 3 su r intervalli ha r + 3 coefficienti; ciascun coefficiente
& un parametro della rete. E comune includere un termine base lineare (di

solito la stessa identita), come in

fij(t) = t + gij(t),

dove g;; € la spline addestrabile. Questo facilita la convergenza iniziale.
Durante 'ottimizzazione si puo anche aggiornare adattivamente la griglia
di definizione delle spline, cosi da coprire automaticamente i nuovi inter-
valli di attivazione che emergono durante il training (grid extension). In
pratica, ogni volta che un valore di attivazione supera la griglia corrente, si
estende dinamicamente il supporto della spline per mantenere il dominio
di apprendimento adeguato. In sintesi, il flusso di calcolo € identico ad
un MLP: si effettua forward pass, si calcola la loss, e poi si retropropaga
I’errore calcolando gradienti rispetto ai coefficienti delle funzioni g;;.
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2.5 Confronto con MLP tradizionali

KAN Layer MLP Layer
Ac‘tiva\‘tio:i\\

we,iﬁl-\‘ts

Figura 2.5: Differenze tra i Layer delle reti MLP e KAN.

2.5.1 Architettura a confronto

Dal punto di vista architetturale, I’architettura di base di una KAN e fee-
dforward e totalmente connessa come quella di un MLP. La differenza
fondamentale risiede nel collocamento delle non-linearita e nell’assenza di
matrici di pesi lineari. Come abbiamo visto, in un MLP ogni neurone applica
una funzione di attivazione fissa, dopo una combinazione lineare dei suoi
input, mentre in una KAN ogni collegamento possiede direttamente una
funzione di attivazione addestrabile. Di conseguenza, una KAN "unisce" le

trasformazioni lineari e non-lineari in un’unica funzione fi]' per ogni arco,
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anziché trattarle separatamente come in un MLP.

In termini pratici, una MLP a L strati alterna operazioni x — Wx +b e
x — o(x), mentre una KAN sostituisce ogni prodotto W;;x; con fij(x;).
Questo implica che una KAN puo essere vista come un MLP "con pesi che

variano in modo non-lineare col valore dell'input".

2.5.2 Complessita computazionale

Dal punto di vista parametrico, una KAN puo avere un numero di para-
metri superiore rispetto ad una MLP di dimensioni simili. Ad esempio,
supponiamo una KAN con L strati, ciascuno di larghezza m, che usa spline
di ordine p su r intervalli. Allora il numero totale dei parametri della rete
KAN cresce come O(L m? p ), mentre una MLP con L strati e larghezza m
avrebbe circa O(L m?) pesi scalari. In teoria quindi le KAN appaiono meno
efficienti in termini di numero di parametri. Tuttavia, empiricamente si
osserva che spesso basta una KAN con dimensioni molto piti piccole per
eguagliare le prestazioni di una MLP molto piti grande. Dal punto di vista
computazionale, I'impiego di funzioni parametriche sugli archi comporta
un overhead rispetto alle semplici moltiplicazioni peso-input di una MLP.
In pratica, valutare una B-spline su ogni collegamento e pitt costoso del
prodotto scalare in una MLP, soprattutto se la rete € profonda o le spline
sono molto finemente discretizzate (cioé utilizzano un numero elevato di
punti di controllo). Quindji, 'addestramento di una KAN, puo essere piu
lento, con stime che indicano un tempo di training circa 10 volte superiore

rispetto alle MLP a parita di condizioni.

2.5.3 Interpretabilita e flessibilita locale

Uno dei principali vantaggi delle KAN e la loro interpretabilita. Poiché
ogni arco implementa una funzione univariata ben definita, ¢ possibile vi-
sualizzare direttamente le forme delle attivazioni apprese. Questo permette

di comprendere i singoli contributi delle variabili di input e, in alcuni casi,
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di dedurre formule simboliche sottostanti, oltre a rendere pitt semplice il

debug e la semplificazione del modello.

Fhase 1 Phase 2 Phase 3 Phase 4 Phase 5

JA A A A A

Data

M | MM

| oot | o s | | o

-1 a 1 =1 o 1 =1 ] 1 <1 1] 1 «1 o 1

%
(
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Figura 2.6: Differenza nel Catastrophic forgetting di MLP e KAN.

Un altro vantaggio importante € la flessibilita locale che deriva dal-
la natura delle spline. A differenza delle MLP che usano funzioni di
attivazione globali (come ReLU o Tanh), una KAN modifica solo una pic-
cola regione di input quando apprende una nuova informazione. Cid
riduce significativamente il rischio di "catastrophic forgetting", un fenome-
no in cui I’addestramento su nuovi dati puo distruggere le informazioni

precedentemente apprese.

44



2.54 Precisione controllabile tramite grid extension
P(x)
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Figura 2.7: Grid extension delle B-spline nelle KAN.

Le funzioni univariate nelle KAN sono parametrizzate tramite B-spline
definite su una griglia. E possibile aumentare la risoluzione della griglia
("grid extension") per incrementare la precisione in modo controllato:
partendo da spline grossolane si possono ottenere spline piti fini con una
procedura di inizializzazione che conserva la continuita e permette rapide

riduzioni della loss senza costi computazionali esponenziali.

2.5.5 Dipendenza dalla struttura composizionale

I vantaggi pitt evidenti delle KAN si manifestano quando la funzione target
da approssimare ha una struttura che si avvicina ad una decomposizione
in somme di funzioni univariate, cioé puo essere sufficientemente rappre-
sentata come somma di trasformazioni su singole variabili. Quando la
funzione ¢ intrinsecamente non decomponibile o presenta forti interazioni
multivariate, la rappresentazione KAN perde efficacia e puo risultare meno

efficiente rispetto ad una parametrizzazione densa tipica delle MLP.
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2.5.6 Irregolarita nella rappresentazione di Kolmogorov

Il teorema di Kolmogorov—-Arnold garantisce 'esistenza di una rappre-
sentazione, ma non la regolarita delle funzioni intermedie ¢, ,. In casi
pratici, queste funzioni possono essere non-smooth o altamente oscillanti;
per approssimarle con spline possono essere necessarie griglie molto fitte,

annullando i vantaggi teorici in termini di parametri e costo computazionale.

2.5.7 Overhead computazionale e scelta della struttura

Parametrizzare ogni arco come funzione spline introduce overhead in
memoria ed in tempo di calcolo (valutazione e aggiornamento di B-spline,
gestione di griglie differenziate). Inoltre, la scelta automatica della topologia
(numero di rami, profondita, risoluzione delle griglie per ciascuna spline)
non & banale e richiede procedure di pruning o ricerca strutturale che
aumentano la complessita del workflow.

2.5.8 Sensibilita al rumore e necessita di regolarizzazione

In presenza di dati molto rumorosi, una parametrizzazione spline troppo
fine tende al sovraffitting locale. E quindi necessario un attento tuning
degli iperparametri (ordine della spline, numero di nodi, termine di rego-
larizzazione, smoothing), e in alcuni casi una MLP ben regolarizzata puo

mostrare maggiore robustezza.
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Capitolo 3

Random forest (RF)

3.1 Introduzione

In questo capitolo viene descritto il Random forest, un algoritmo di Machine
learning molto versatile, in grado di gestire sia compiti di classificazione
che di regressione. Il suo funzionamento si basa sull’idea dell’ensemble
learning, combinando la forza di piu alberi di decisione per ottenere
un modello finale pit1 robusto e preciso. L'introduzione del capitolo si
concentra sui concetti fondamentali che guidano la costruzione del modello,
come i criteri di divisione dei dati e la tecnica di bagging, che sfrutta il
campionamento casuale per ridurre la varianza. Si approfondisce poi
l’architettura specifica del Random forest, che aggiunge un ulteriore livello
di casualita nella selezione delle variabili per ogni albero, rendendo la
"foresta" pit1 diversificata e meno soggetta ad overfitting. Il capitolo si
conclude con una valutazione dei vantaggi e degli svantaggi dell’algoritmo,
evidenziando la sua robustezza e la sua capacita di generalizzazione, ma
anche i suoi requisiti in termini di risorse computazionali e la minore

interpretabilita rispetto ad un singolo albero. [14,(15,[13, (18]
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Figura 3.1: Architettura del Random forest.

Il Random forest & un algoritmo di Machine learning ampiamente utiliz-
zato, noto per la sua robustezza e versatilita sia in problemi di classificazione
e regressione. La sua efficacia deriva dalla combinazione di pit alberi di
decisione "deboli", formando un "ensemble" che supera le prestazioni di un

singolo albero, mitigando le debolezze di ciascuno.

3.2 Concetti fondamentali

3.2.1 Alberididecisione: Criteri di splitting (Gini, Entropia,

Gain ratio)

Gli alberi di decisione costituiscono i "learner deboli" fondamentali al-
I'interno di un Random forest. La loro costruzione implica la divisione
iterativa dei dati basata sulle features per creare sottoinsiemi sempre piul
omogenei. La qualita di queste divisioni € misurata da specifici criteri di
impurita o Information gain. Il Gini impurity (o Gini index) € una misura
di non-omogeneita ampiamente utilizzata negli alberi di classificazione.
Essa quantifica la probabilita che un elemento scelto casualmente da un set

venga erroneamente etichettato, se classificato in modo casuale, secondo la
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distribuzione delle classi nel sottoinsieme. Un valore di 0 indica purezza
perfetta, dove tutti gli elementi appartengono alla stessa classe, mentre un
valore massimo di 1 — %, dove n é il numero di classi, indica la massima im-
purita, con le classi equamente distribuite. La formula per il Gini impurity
e data da:

Gini=1- Z(pi)z
i=1

dove p; rappresenta la proporzione delle istanze della classe i nel set.
Ad esempio, se un nodo contiene 50 campioni, di cui 25 di una classe e 25
di un’altra, I'impurita di Gini sarebbe 0.5, indicando la massima incertezza.
Dopo uno split, ’algoritmo seleziona la variabile che produce la maggiore
diminuzione dell'impurita di Gini, portando a nodi pit puri.
L'’Entropia (Entropy) misura il grado di disordine, imprevedibilita o incer-
tezza in un dataset. Un’entropia di 0 indica un set perfettamente puro,
mentre un valore di log,(n) indica la massima incertezza. L'Information
gain misura la riduzione dell’entropia ottenuta da uno split, indicando
quanta "informazione" viene acquisita sulla variabile target. La formula per
I’Entropia é:

Entropy = — ) pilogy(pi)

i=1

dove p; € la probabilita della classe i.
I1 Gain ratio e stato introdotto per mitigare un problema dell'Information
gain, che ha un bias verso attributi con un gran numero di valori. Questi
attributi tendono a creare molti nodi piccoli e puri, il che puo condurre
a un potenziale overfitting. Il Gain ratio normalizza 1'Information gain,

penalizzando gli split che creano molti sottoinsiemi. La sua formula e:

Informationgain

Gainratio = — .
Splitin formation

dove lo Split in formation e 1’entropia dello split stesso:
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0
Splitin formation(S, A) = — Z 5] 082U
i=1

dove S e il set di dati del nodo, A é la feature su cui si sta splittando,
v & il numero di valori unici della feature, |S;| & il numero di istanze nel

¢ il numero totale di istanze.

sottoinsieme i e |S
Un confronto tra Gini impurity, Entropia e Gain ratio rivela differenze
importanti. Il Gini impurity ha un intervallo di valori compreso tra [0, 1- 1],
mentre 1’Entropia ha un intervallo tra [0,log,(n)]. Dal punto di vista
computazionale, il Gini index & generalmente piu efficiente da calcolare
rispetto all’Entropia, poiché quest'ultima richiede 1'uso di logaritmi. La
scelta tra i criteri non e arbitraria, ma implica un compromesso. Il Gini,
essendo computazionalmente pit1 veloce, € meno incline a produrre alberi
di decisione molto profondi, poiché privilegia split che generano nodi pitt
bilanciati. Al contrario, I’'Entropia, sebbene piti onerosa, tende a generare
alberi che massimizzano la riduzione dell’incertezza, ma il suo bias puo
portare a preferire caratteristiche con molte categorie, aumentando il rischio
di overfitting. Per mitigare cio, il Gain Ratio si dimostra piti robusto.

Per dataset molto grandi o per applicazioni con stringenti requisiti di
velocita, il Gini potrebbe essere la scelta preferibile. Per contro, in contesti
dove la massima purezza deinodi é cruciale, I'Entropia (o, pit1 precisamente,
il Gain ratio) potrebbe rivelarsi piu efficace, a condizione che il rischio di
overfitting venga gestito adeguatamente. Questa decisione fondamentale, a
livello del singolo albero, si ripercuote sulla performance e sulla struttura
complessiva del Random forest. Un albero "piti debole" ma piu rapido,
generato con il Gini, puo essere efficacemente compensato dall’approccio
Ensemble, mentre alberi "pit forti" ma pitt lenti, derivanti dall’Entropia,

potrebbero non scalare con la stessa efficienza.

3.2.2 Ensemble learning e Bagging

I principio alla base dell’Ensemble learning e spesso descritto come la

"saggezza della folla": un gruppo di learner deboli, che individualmente
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potrebbero non performare in modo ottimale, a causa di alta varianza o
alto bias, puo, quando le loro previsioni vengono aggregate, formare un

"learner forte" con prestazioni notevolmente migliorate.

Boo‘t&l‘apping

Bootsrapped Model #1
dataset #1

Bootsrapped
dataset #2 Modlel #2

Training Data

Bootsrapped Model #K
dataset #K

Figura 3.2: Funzionamento del Bagging.

Il Bagging € un metodo di Ensemble learning il cui scopo principale &
ridurre la varianza all'interno di un dataset "rumoroso"”, migliorando cosi
la capacita di generalizzazione del modello e mitigando l'overfitting. Il

processo di Bagging si articola in tre fasi fondamentali:

1. Bootstrapping: questa tecnica di ricampionamento genera diversi
sottoinsiemi del training set. Il campionamento avviene selezionando
istanze in modo casuale con re-immissione, cid significa che una
singola istanza puo essere scelta pitt volte all’interno dello stesso
sottoinsieme. Questo processo € cruciale per creare diversita tra i

campioni su cui verranno addestrati i modelli individuali.

2. Addestramento parallelo: i campioni bootstrap cosi generati vengono
utilizzati per addestrare, in modo indipendente e parallelo, una serie
di learner deboli, che nel contesto di Random forest sono tipicamente

alberi di decisione.
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3. Aggregazione: una volta che i modelli individuali hanno prodotto
le loro previsioni, queste vengono combinate. Per i problemi di
regressione, si utilizza un processo noto come Soft voting (cioe la
media di tutti gli output previsti dai singoli learner), mentre, per i
problemi di classificazione, si utilizza 'Hard o Majority voting (cioe

viene scelta la classe pit votata).

Il beneficio piu significativo e la riduzione della varianza, particolar-
mente utile con dati ad alta dimensionalita o in presenza di valori mancanti,
dove un’alta varianza puo rendere il modello piu incline all’overfitting.
La diversita introdotta nei dati di training per ciascun modello contribui-
sce a ridurre la varianza nelle previsioni finali. Questo processo mitiga
I'influenza del rumore nei dati e degli outlier, producendo un modello
aggregato piu stabile ed affidabile. Tuttavia, il Bagging puo portare ad una
perdita di interpretabilita, rendendo difficile estrarre intuizioni precise a
causa del processo di media delle previsioni. E anche computazionalmente
costoso, rallentando e diventando piu intensivo all’aumentare del numero
di iterazioni. Infine, € meno flessibile con algoritmi gia stabili o con un alto
bias, poiché i benefici, in termini di riduzione della varianza, sono meno
visibili.

Il Bagging non & semplicemente un metodo per combinare modelli, ma
agisce come una forma intrinseca di regolarizzazione. Addestrando modelli
su sottoinsiemi diversi del dataset, ottenuti attraverso il campionamento
di tipo bootstrap, ciascun modello apprende una prospettiva leggermente
differente del problema. Quando le previsioni di questi modelli, sebbene
diversi, sono aggregate, gli errori casuali e la varianza intrinseca di un
singolo modello tendono a compensarsi reciprocamente. Cio porta a una
previsione finale che € pit stabile e meno sensibile al rumore oppure agli
outlier. Questo meccanismo ¢é la ragione fondamentale per cui il Bagging
e cosi efficace nel ridurre l'overfitting, specialmente per learner ad alta
varianza, come gli alberi di decisione profondi. Questa capacita di ridurre
la varianza senza introdurre un bias significativo rende il Bagging una base
cosi potente per algoritmi come Random forest, che altrimenti sarebbero

molto inclini all’overfitting. E una dimostrazione del principio che la "di-
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versita" all'interno di un ensemble conduce a una maggiore robustezza del

modello complessivo.

3.3 Architettura e Costruzione

Random forest estende il concetto di Bagging introducendo un ulterio-
re livello di casualita, rendendo I’Ensemble ancora piti robusto e meno

propenso all’overfitting.

3.3.1 Bootstrapping e Feature bagging

La costruzione di un Random forest si basa su due fonti principali di
casualita, essenziali per garantire che gli alberi individuali siano il piu
possibile non correlati tra loro.

La prima fonte di casualita e il campionamento di tipo bootstrap. Per ogni
albero che fa parte della foresta, viene estratto un campione casuale di
dati dal set di training originale con re-immissione. Questo sottoinsieme
di dati € noto come Bootstrap sample. Una caratteristica importante di
questo processo e che circa un terzo dei dati originali non viene selezionato
per un dato bootstrap sample; questi dati non utilizzati sono chiamati
campioni "out-of-bag" e possono essere impiegati per la validazione interna
del modello. Questo tipo di campionamento assicura che ogni albero
sia addestrato su un sottoinsieme leggermente diverso dei dati originali,
promuovendo una diversita fondamentale tra gli alberi.

La seconda fonte di casualita ¢ legata alle features, nota come feature bag-
ging o random subspace method. Ad ogni split dei nodji, all'interno di un
albero di decisione, Random forest non considera tutte le feature disponibili,
ma seleziona solo un sottoinsieme casuale di esse. Questa € una differenza
importante rispetto agli alberi di decisione standard, che valuterebbero
tutte le feature possibili per trovare lo split migliore. L'introduzione di
questa casualita nella selezione delle feature aggiunge ulteriore diversita al
dataset per ogni albero e riduce significativamente la correlazione tra gli

alberi di decisione individuali.
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La casualita introdotta nel Random Forest, tramite bootstrapping e feature
bagging, non é ridondante, ma complementare e strategica. Il Bootstrap-
ping riduce la varianza generale del modello assicurando che ogni albero
acquisisca una prospettiva leggermente diversa del dataset complessivo. Il
Feature bagging, d’altra parte, previene che caratteristiche particolarmente
forti o dominanti influenzino la costruzione di tutti gli alberi. Se una singola
caratteristica fosse sempre scelta come il miglior punto di split, tutti gli alberi
all’interno della foresta risulterebbero molto simili e altamente correlati,
rendendo inutili i benefici derivanti dall’approccio Ensemble. Introducendo
la casualita nella selezione delle feature, si forza ogni albero ad esplorare
diverse combinazioni di caratteristiche, riducendo ulteriormente la loro

correlazione e, di conseguenza, la varianza dell'intero Ensemble.

3.3.2 Aggregazione delle predizioni

Una volta che tutti gli alberi di decisione sono stati costruiti e addestrati
sui rispettivi sottoinsiemi di dati e feature, le loro previsioni vengono
combinate per ottenere il risultato finale del Random forest. I1 metodo
di aggregazione dipende dalla natura del problema. Nei problemi di
regressione, le previsioni numeriche generate da ciascun albero individuale
vengono semplicemente mediate. Il valore medio di tutte le previsioni
degli alberi costituisce la previsione finale del modello. Nei problemi di
classificazione, la classe finale viene determinata attraverso un processo di
voto di maggioranza. Ogni albero nella foresta produce una previsione e la
classe che riceve il maggior numero di "voti" (cioe, la pit scelta) tra tutti gli
alberi viene accettata come previsione finale del Random forest.

Questo processo di aggregazione trasforma un insieme di learner deboli
in un modello forte. Sebbene gli alberi di decisione individuali possano
presentare un’alta varianza, la media o il voto di maggioranza sulle loro pre-
visioni riduce significativamente la varianza complessiva e rende il modello
meno sensibile ad errori ed outlier. Questo processo mitiga la tendenza
del singolo albero a sovrastimare o sottostimare i valori, producendo una

previsione finale pit stabile e robusta. Questo meccanismo di aggregazione
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e cio che consente al Random forest di raggiungere un’elevata accuratez-
za mantenendo al contempo una solida capacita di generalizzazione. E
un esempio pratico dell’applicazione del principio della "saggezza della
folla" nel Machine learning, dove la combinazione di molteplici opinioni

individuali, seppur imperfette, conduce ad un risultato finale superiore.

3.4 Vantaggi

Il Random Forest si distingue per la sua robustezza e flessibilita, offrendo
diversi vantaggi che lo rendono una scelta popolare nel machine learning.
Un punto di forza principale € la riduzione della varianza, che lo rende
intrinsecamente meno propenso all’overfitting rispetto a un singolo albero
di decisione. Questo risultato e ottenuto grazie alla sua natura ensemble,
che aggrega le previsioni di molti alberi indipendenti, ed all’introduzione
di casualita sia nel campionamento dei dati (bootstrap) sia nella selezione
delle feature per ogni singolo albero. La sua robustezza non si limita
alla varianza. L’algoritmo mostra anche una notevole robustezza agli
outlier, poiché 'impatto di singole osservazioni estreme viene diluito e
mediato tra i vari alberi. Il Random Forest eccelle anche nella gestione dei
valori mancanti, semplificando notevolmente la fase di pre-elaborazione
dei dati. Allo stesso modo, ¢ in grado di gestire efficacemente dataset
sbilanciati. Dal punto di vista della usabilita, il Random Forest facilita la
determinazione dell’importanza delle feature, offrendo un modo diretto
per valutare il contributo di ogni variabile al modello. La sua architettura
é inoltre parallelizzabile, il che significa che i singoli alberi possono
essere addestrati in parallelo. Questa caratteristica contribuisce in modo
significativo alla sua velocita di addestramento, in particolare con dataset

di grandi dimensioni e hardware multi-core.
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3.5 Svantaggi

Nonostante i numerosi vantaggi, il Random Forest presenta alcune limita-
zioni, principalmente legate ai requisiti computazionali e alla complessita.
Uno svantaggio notevole ¢ il costo computazionale ed il tempo di adde-
stramento. L'addestramento puo essere lento, soprattutto con un numero
elevato di alberi o su dataset molto grandi, poiché la costruzione di ogni
singolo albero € un’operazione computazionalmente intensiva. Di conse-
guenza, il modello ha anche requisiti di memoria piu elevati rispetto a un
singolo albero, dato che deve memorizzare la struttura di tutti gli alberi che
compongono la foresta. Un’altra debolezza significativa & la complessita e
la perdita di interpretabilita. A differenza di un singolo albero di decisione,
la cui logica ¢ facile da visualizzare e comprendere, una "foresta" composta
da centinaia o migliaia di alberi rende la previsione molto pit1 difficile da
interpretare a livello globale. Infine, il Random Forest non include una
regolarizzazione esplicita nel suo nucleo. A differenza di altri algoritmi
ensemble che possono incorporare tecniche di regolarizzazione dirette,
il Random Forest si affida principalmente alla sua natura ensemble ed

all'introduzione di casualita per prevenire l'overfitting.
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Capitolo 4

eXtreme Gradient Boosting
(XGBoost)

41 Introduzione

Questo capitolo presenta eXtreme Gradient Boosting (XGBoost), un algorit-
mo che ha rivoluzionato il Machine Learning per la sua efficacia e velocita.
L'obiettivo e analizzare come XGBoost, pur basandosi sul Gradient Boo-
sting, lo superi grazie ad una serie di importanti ottimizzazioni. Verranno
esaminati i miglioramenti che lo rendono cosi performante, come 1'uso
di una funzione di perdita avanzata ed una gestione piu efficiente della
regolarizzazione e dei dati mancanti. Il testo spieghera come la sua archi-
tettura sfrutti il parallelismo e 'uso intelligente della cache per velocizzare
i calcoli, rendendo 'addestramento piti rapido. Si affrontera anche il tema
degli iperparametri, che offrono una grande flessibilita per personalizzare il
modello, sebbene richiedano un’attenta calibrazione. Il capitolo si conclude
con un riassunto dei suoi vantaggi, come la robustezza e l'efficienza, e dei
suoi svantaggi, tra cui la complessita e la maggiore richiesta di risorse per il
tuning. [17, (16} 19, 20, 21, 18]
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Figura 4.1: Architettura del XGBoost.
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Figura 4.2: Funzionamento del Gradient boosting.
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Il Gradient boosting € una tecnica di Ensemble learning che costruisce un
modello predittivo forte combinando iterativamente i risultati di numerosi
"learner deboli". A differenza del Bagging, che addestra i modelli in
parallelo, il Boosting adotta un approccio sequenziale, dove ogni nuovo

modello cerca di correggere gli errori commessi dai modelli precedenti.

4.2.1 Principi iterativi e Weak learners

Il gradient boosting si fonda sull'idea di migliorare progressivamente un
modello addestrando nuovi learner per correggere gli errori commessi dai
precedenti. Questo processo € intrinsecamente iterativo e sequenziale. A
differenza del Bagging, dove i learner sono addestrati in modo parallelo ed
indipendente, il gradient boosting costruisce un modello additivo passo
dopo passo. Ogni nuovo "albero" (che funge da learner debole) viene
costruito specificamente per ridurre gli errori, o piti precisamente gli
"pseudo-residui”, generati dalle previsioni degli alberi addestrati nelle
iterazioni precedenti. I "learner deboli", in questo caso, sono modelli
che, se utilizzati singolarmente, classificano o predicono i dati in modo
scarso e presentano un alto tasso di errore. Nel framework del gradient
boosting, i learner deboli sono tipicamente alberi di decisione semplici.
Possono essere molto semplici, a volte ridotti ad un singolo split, in tal
caso sono noti come "decision stumps". L'obiettivo generale del gradient
boosting & minimizzare una funzione di perdita predefinita, aggiungendo
iterativamente funzioni (i learner deboli) che puntano nella direzione del
gradiente negativo di tale funzione. Mentre il Bagging mira a ridurre la
varianza addestrando modelli indipendenti e poi mediandone i risultati, il
Boosting si concentra sulla riduzione del bias del modello. Addestrando
sequenzialmente nuovi learner per correggere gli errori dei precedenti,
il modello impara a concentrarsi sulle istanze piti difficili da classificare
o predire. Questo processo iterativo consente al modello di adattarsi in
modo piu efficace alle relazioni complesse presenti nei dati, riducendo il
bias complessivo e portando spesso a una maggiore accuratezza predittiva.

Questa differenza fondamentale nell’approccio, ovvero la riduzione della
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varianza contro la riduzione del bias, spiega perché il Bagging ed il Boosting

eccellono in contesti diversi.

4.2.2 Funzione di perdita e Discesa del gradiente

Il processo di apprendimento nel gradient boosting ¢ formalizzato come
un algoritmo di discesa del gradiente nello spazio delle funzioni, dove
'obiettivo e trovare la funzione che minimizza la funzione di perdita, che
quantifica quanto bene il modello sta eseguendo le previsioni sui dati forniti.
La scelta della funzione di errore dipende dalla natura del problema: ad
esempio, per problemi di regressione si potrebbe usare 'errore quadratico
medio (MSE), mentre per problemi di classificazione si potrebbe usare
la log-loss. L'algoritmo di gradient boosting mira a minimizzare questa
funzione di perdita. In ogni iterazione, il modello calcola i cosiddetti
"pseudo-residui”, che non sono i residui tradizionali (differenza tra valore
osservato e previsto), ma piuttosto i gradienti negativi della funzione di
perdita rispetto alle previsioni attuali del modello. Il nuovo learner debole
(tipicamente un albero di decisione) viene quindi addestrato per predire
questi pseudo-residui, imparando cosi a correggere gli errori del modello
ensemble cumulativo. Il processo di aggiunta di nuovi alberi puo essere
interpretato come un passo nella direzione del gradiente negativo della
funzione di perdita nello spazio delle funzioni.

Un’innovazione significativa in XGBoost rispetto al gradient boosting tradi-
zionale e "utilizzo di un’approssimazione di Taylor del secondo ordine nella
funzione di perdita. Questo approccio collega il processo di ottimizzazione
di XGBoost al metodo Newton-Raphson, che & piti robusto e puo portare a
una convergenza piul rapida rispetto alla discesa del gradiente del primo
ordine. ['utilizzo di un’approssimazione di Taylor del secondo ordine nella
funzione di perdita distingue XGBoost dal gradient boosting tradizionale,
che si basa sul gradiente del primo ordine. Cio implica che XGBoost
considera, non solo la direzione di discesa piui ripida (data dal gradiente),
ma anche la curvatura della funzione di perdita (data dall’hessiana). Cio

consente al modello di compiere passi pilt informati e potenzialmente pitt
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ampi verso il minimo della funzione di perdita, portando a una convergenza
piu rapida e stabile. Di conseguenza, XGBoost risulta meno sensibile a
problemi come i minimi locali rispetto agli algoritmi che utilizzano esclusi-
vamente il gradiente del primo ordine. Questa modifica € uno dei motivi
principali della superiorita prestazionale di XGBoost in numerose competi-
zioni di machine learning ed in svariate applicazioni reali. Dimostra come
un’implementazione pit1 avanzata dei principi fondamentali possa tradursi
in miglioramenti significativi in termini di prestazioni ed efficienza del

modello.

4.3 Miglioramenti di XGBoost rispetto al Gra-

dient boosting tradizionale

XGBoost e riconosciuto come un’evoluzione del gradient boosting, grazie
all'integrazione di una serie di ottimizzazioni e tecniche di regolarizzazione

che ne migliorano significativamente prestazioni, velocita e robustezza.

4.3.1 Regolarizzazione e Tree pruning

XGBoost si distingue per l'integrazione di meccanismi di regolarizzazione
configurabili, che sono cruciali per prevenire 1'overfitting e migliorare la
sua capacita di generalizzazione. Il modello incorpora termini di regolariz-
zazione L1 (Lasso) e L2 (Ridge) direttamente nella sua funzione obiettivo.
Questi termini penalizzano la complessita del modello e i pesi di grandi
dimensioni. In particolare, la regolarizzazione L1, che si basa sulla somma

del valore assoluto dei pesi:

Q(w) = Allwlh = A ) fwjl
]

incoraggia la sparsita, spingendo i pesi meno importanti verso lo zero. Al

contrario, la regolarizzazione L2, che si basa sulla somma dei quadrati dei
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pesi:
Q) = Alwlf =1 )" w?
j

incoraggia pesi piu piccoli e distribuiti.

Una componente fondamentale della regolarizzazione nel gradient boosting
e il learning rate (o shrinkage). Questo parametro riduce il contributo di
ogni nuovo albero aggiunto al modello. L'uso di learning rate piccoli (ad
esempio, 0.01 o 0.1) migliora notevolmente la capacita di generalizzazione
del modello, sebbene cid comporti un aumento del numero di iterazioni e,
di conseguenza, del tempo di calcolo.

XGBoost implementa anche tecniche avanzate di tree pruning. A differenza
di alcuni algoritmi che costruiscono alberi fino alla massima profondita,
XGBoost pota gli alberi in base a un "guadagno" del nodo. La decisione di
effettuare una ulteriore divisione su un nodo foglia dipende dal raggiungi-
mento di un guadagno minimo, specificato dall'iperparametro y (gamma).
Un valore pitt grande di y rende l’algoritmo piti conservativo, limitando
la crescita dell’albero e aiutando a prevenire l'overfitting. Il guadagno di
un nodo in XGBoost quantifica il miglioramento nella funzione obiettivo
che si ottiene dividendo un nodo. Questo guadagno deve superare una
soglia minima, definita dall'iperparametro y, per autorizzare la divisione.

La formula per il guadagno e:

1 (Xier, gi)z (Xielg gi)z (Zier 81‘)2

Gain = = + _ _
2| Zie, hi+ A Xierghi+ A Xiegrhi+A 4

Dove I, e Ig sono gli insiemi di istanze (dati di addestramento) nei nodi figli
sinistro e destro, mentre I rappresenta l'insieme di istanze nel nodo padre.
In questa formula, g; & la derivata prima della funzione di perdita rispetto
all’output dell’istanza i, mentre h; € la derivata seconda della funzione
di perdita rispetto allo stesso output. Il parametro A € un termine di
regolarizzazione L2 che penalizza i pesi elevati, e y & la soglia di guadagno
minima richiesta per la divisione. Se il guadagno calcolato é inferiore a ),
la divisione viene annullata.
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Un altro parametro cruciale per la regolarizzazione ¢ la somma minima dei
pesi delle istanze, noto come "min_child_weight". Questo iperparametro
agisce come un criterio di regolarizzazione per controllare la crescita degli
alberi. Un nodo figlio puo essere creato solo se la somma dei pesi delle
istanze al suo interno supera un valore soglia predefinito. Questa somma
e calcolata usando 1"**hessiana**, e la condizione per uno split puo essere

espressa come:

Z h; > min_child_weight e Z h; > min_child_weight

iEIL iEIR

Se una delle somme ¢ inferiore al valore di "min_child_weight", la par-
tizione viene annullata. Un valore pitt grande di questo iperparametro
rende l’algoritmo piti conservativo, riducendo la complessita degli alberi

individuali e aiutando a prevenire l'overfitting.

4.3.2 Gestione dei valori mancanti

XGBoost e in grado di lavorare efficacemente anche quando nel dataset ci
sono dati assenti o non registrati per alcune feature. XGBoost incorpora
internamente un meccanismo che permette di decidere automaticamente,
durante la costruzione degli alberi, come trattare i valori mancanti. Durante
la costruzione degli alberi di decisione, quando viene incontrato un valore
mancante per una determinata feature, XGBoost non si limita a ignorare o
richiedere una rimozione preliminare di essa. Invece, 1’algoritmo impara
quale direzione (ramo dell’albero) seguire per le istanze con valori mancanti
per ottimizzare le performance. Internamente, durante la fase di training,
XGBoost tratta la "mancanza" del dato come una caratteristica informativa
a sé stante, apprendendo la direzione ottimale per i dati mancanti in modo
da ottimizzare le suddivisioni. Questa capacita semplifica la pipeline di
preparazione dei dati, evitando bias o rumori introdotti da imputazioni
errate o rimozioni arbitrarie, e rende il modello pit1 robusto e affidabile in
scenari del mondo reale, dove i dati spesso presentano valori mancanti.

Questa funzionalita rende XGBoost particolarmente efficiente e pratico
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per dataset reali, che spesso contengono valori mancanti, riducendo la
necessita di avere una fase di pre-processing complessa, migliorando cosi
l'affidabilita del modello in scenari del mondo reale.

4.3.3 Ottimizzazioni (Parallelismo, Cache-awareness)

Una delle ottimizzazioni chiave di XGBoost & il parallelismo. Sebbene il
gradient boosting sia intrinsecamente sequenziale nella costruzione degli
alberi (ogni albero corregge gli errori del precedente), XGBoost introduce il
parallelismo, nella costruzione dei singoli alberi, in particolare sui livelli del-
I'albero o di split. Questo significa che, anziché costruire gli alberi in modo
strettamente sequenziale, XGBoost puo scansionare i valori del gradiente ed
utilizzare somme parziali per valutare la qualita degli split in parallelo. I
sistema sfrutta tutti i core della CPU disponibili su una singola macchina e
puo operare in modalita distribuita, massimizzando 'utilizzo della potenza
di calcolo. Questo parallelismo su larga scala accelera significativamente il
processo di addestramento.

Un’altra ottimizzazione interessante ¢ il Cache-awareness. XGBoost & pro-
gettato per utilizzare in modo intelligente la cache della CPU per accelerare
I’accesso ai dati. Durante I’addestramento, memorizza nella cache i calcoli
intermedi e le statistiche importanti, evitando cosi di ricalcolare gli stessi
valori ripetutamente. Questo riduce i ritardi nel recupero dei dati tra la
CPU e memoria principale, portando ad un’elaborazione e previsioni molto
piu veloci.

Infine, XGBoost beneficia della GPU acceleration, che velocizza significativa-
mente I’addestramento del modello e contribuisce a migliorare l'accuratezza
delle previsioni. L'algoritmo sfrutta il calcolo parallelo per eseguire ope-
razioni veloci, per ripartizionare i dati e costruire gli alberi un livello alla

volta, elaborando l'intero dataset contemporaneamente sulla GPU.
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4.4 Parametri chiave e Tuning

XGBoost offre un’ampia e dettagliata lista di iperparametri che possono
essere ottimizzati per personalizzare il comportamento del modello e
massimizzare le sue prestazioni. Questa flessibilita, sebbene potente,
richiede una comprensione approfondita ed un’attenta strategia di tuning.
I parametri per il Tree booster controllano la costruzione dei singoli alberi

all’interno dell’Ensemble:

* learning_rate (o eta): questo e il tasso di apprendimento, un para-
metro cruciale che controlla la dimensione del passo di shrinkage per
prevenire 'overfitting. Valori pit1 piccoli di eta rendono il processo
di boosting pit conservativo, riducendo il rischio di overfitting ma

richiedendo pit iterazioni. Il suo intervallo & (0, 1].

* max_depth: definisce la profondita massima di un albero. Aumentare
questo valore rende il modello piti complesso e potenzialmente piti
incline all’overfitting. Un valore di 0 indica nessuna limitazione di
profondita, ma ci0 puod portare a un elevato consumo di memoria.
L'intervallo & [0, oo].

* min_child_weight: specifica la somma minima del peso delle istanze
(basata sull’hessiana) necessaria in un nodo figlio per consentire un ul-
teriore split. Un valore pit1 grande rende 'algoritmo pit1 conservativo,
limitando la crescita dell’albero. L'intervallo e [0, co].

* subsample: rappresenta la frazione di osservazioni (istanze) campio-
nate casualmente per la costruzione di ogni albero. Questo campiona-
mento avviene una volta per ogni iterazione di boosting ed aiuta a
prevenire l'overfitting. L'intervallo e (0, 1].

* colsample_bytree: indica la frazione di features campionate casual-
mente per la costruzione di ogni albero. Questo parametro contribui-
sce anch’esso a prevenire l'overfitting introducendo casualita nella

selezione delle caratteristiche. L'intervallo ¢ (0, 1].
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* lambda (o reg_lambda): € il termine di regolarizzazione L2 sui pe-
si. Aumentare questo valore rende il modello piti conservativo,

penalizzando i pesi grandi. L'intervallo ¢ [0, o).

* alpha (o reg_alpha): é il termine di regolarizzazione L1 sui pesi. Un
valore piu grande rende il modello pit1 conservativo e incoraggia la
sparsita, spingendo i pesi meno importanti verso lo zero. L'intervallo
e [0, c].

e objective: definisce la funzione obiettivo che il modello mira a mini-
mizzare. Ad esempio, reg: squarederror per problemi diregressione,
binary:logistic per classificazione binaria e multi:softprob per

classificazione multiclasse.

e eval_metric: specifica la metrica di valutazione da monitorare

durante I'addestramento. E possibile specificare piit metriche.

A differenza di Random forest, che tende ad avere meno parametri da
ottimizzare, XGBoost richiede una comprensione pitt approfondita ed una
sperimentazione pil estesa per raggiungere le sue prestazioni ottimali.
Questo implica che, sebbene XGBoost possa teoricamente superare Random
forest in termini di accuratezza, raggiungere tale superiorita richiede un

investimento maggiore in termini di tempo e risorse per il tuning.

4.5 Vantaggi

L'algoritmo XGBoost e rinomato per le sue prestazioni e si distingue per
una serie di vantaggi chiave che lo rendono uno standard nel machine
learning competitivo. Uno dei suoi punti di forza principali e la robustezza
all’overfitting, garantita da varie tecniche di regolarizzazione integrate.
Questo controllo granulare sulla complessita del modello € un fattore
determinante per la sua notevole capacita di generalizzazione.

XGBoost é stato progettato per la scalabilita e l'efficienza, permettendogli

una gestione efficiente di grandi dataset, dati sparsi e valori mancanti.
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La sua architettura ottimizzata consente di elaborare volumi di dati che
per altri algoritmi sarebbero difficili da gestire. Nonostante la sua natura
sequenziale, la velocita di addestramento di XGBoost ¢ eccezionale; puo
superare quella del Random Forest, specialmente quando si sfruttano le
sue capacita di parallelismo e 1’accelerazione GPU, oltre al supporto per
sistemi distribuiti.

Un altro vantaggio significativo ¢ la sua flessibilita e personalizzazione.
L’algoritmo offre un’ampia gamma di iperparametri che consentono un
fine-tuning profondo, adattando il modello alle specifiche esigenze di
ogni problema e dataset. Inoltre, XGBoost e particolarmente efficace nella
gestione di dati sbilanciati, un problema comune in molti contesti di

classificazione.

4.6 Svantaggi

Nonostante i suoi punti di forza, XGBoost presenta alcune limitazioni,
principalmente legate alla sua complessita. Il processo di addestramento
sequenziale puo renderlo intrinsecamente piti lento del Random Forest
nella costruzione completa degli alberi, dato che ogni albero dipende dal
precedente. Sebbene siano state introdotte ottimizzazioni per il parallelismo
interno, la sua natura sequenziale rimane una potenziale barriera, a meno
che non si sfruttino appieno le sue capacita di parallelismo e le accelerazioni
hardware.

La complessita e la necessita di tuning rappresentano un’altra sfida. XG-
Boost & un algoritmo pit complesso da comprendere e implementare
rispetto al Random Forest. La sua vasta gamma di iperparametri richiede
una maggiore conoscenza ed esperienza per un fine-tuning efficace, ren-
dendo il processo pitt dispendioso in termini di tempo e risorse.

Inoltre, XGBoost puo risultare meno interpretabile del Random Forest.
Sebbene fornisca 1'importanza delle feature, la complessita dell’ensemble
di alberi sequenziali puo rendere le sue decisioni specifiche piu difficili da

interpretare. Spesso sono necessari strumenti aggiuntivi per la spiegabilita,
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a differenza del Random Forest che, in alcuni casi, puo essere pit traspa-
rente.

Infine, il consumo di memoria puo essere una limitazione significativa.
XGBoost pud consumare una notevole quantita di memoria, in particolare
quando si addestrano alberi molto profondi. Questo puo rappresentare
un problema per dataset estremamente grandi su hardware con risorse

limitate.
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Capitolo 5

Convolutional Neural Networks
(CNN)

5.1 Introduzione

Questo capitolo si occupa di introdurre le Convolutional Neural Networks
(CNN), un’architettura di rete neurale che eccelle nell’analisi di immagini
e di dati con una struttura a griglia. L'obiettivo & esplorare come queste
reti riescano ad estrarre automaticamente le caratteristiche rilevanti, supe-
rando i limiti delle reti tradizionali. II testo descrivera il funzionamento
dei principali blocchi costruttivi, come la convoluzione e il pooling, che
permettono alla rete di identificare forme e pattern in modo gerarchico e di
ridurne la complessita. Verra poi spiegato come, attraverso una sequenza
di operazioni, unimmagine viene trasformata in rappresentazioni via via
piu astratte fino a giungere ad una decisione finale. Infine, il capitolo
riassume i vantaggi delle CNN, come la loro efficienza e la capacita di
riconoscere oggetti a prescindere dalla loro posizione, e i loro svantaggi, tra
cui la necessita di enormi quantita di dati e il loro costo computazionale.
[23] 24, 25, 26| 27| 128, 29]
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Figura 5.1: Architettura delle Convolutional Neural Networks.

5.2 Principi fondamentali delle CNN

5.2.1 Convoluzione: kernel, stride, padding

Un kernel (o filtro) & una matrice di piccole dimensioni, tipicamente 3x3,
5x5 0 7x7, contenente pesi apprendibili che vengono moltiplicati elemento
per elemento con porzioni locali dell’input. Durante l'operazione di convo-
luzione, il kernel viene fatto scorrere attraverso l'intera immagine di input,
calcolando il prodotto scalare tra i pesi del filtro e i valori corrispondenti
dell’input in ogni posizione.

Lo stride rappresenta la grandezza in pixel di cui il kernel si sposta ad ogni
passo durante la convoluzione. Uno stride di 1 significa che il filtro si muove
di un pixel alla volta, producendo un output con dimensioni spaziali simili
all'input. Uno stride maggiore (ad esempio 2 o 3) riduce significativamente
le dimensioni dell’output, fornendo un effetto di downsampling.

Il padding é una tecnica che consiste nell’aggiungere pixel (solitamente con
valore zero) ai bordi dell'immagine di input. Esistono due tipi principali di

padding:
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* Valid padding: nessun padding viene aggiunto, I'output risulta piu

piccolo dell'input.

e Same padding: viene aggiunto padding sufficiente per mantenere le

stesse dimensioni spaziali dell’input.
La formula per calcolare le dimensioni dell’output di una convoluzione é:

_ W -—K+2P

© S

+1

dove W e la dimensione dell’input, K e la dimensione del kernel, P e il

padding e S e lo stride.

5.2.2 Feature maps e profondita dei canali

Le feature maps rappresentano l'output prodotto dall’applicazione di
filtri convoluzionali all'input. Ogni feature map corrisponde ad un filtro
specifico e rappresenta la risposta di quel filtro all'immagine di input. Negli
strati iniziali della rete, le feature maps possono catturare caratteristiche
semplici come bordji, linee e angoli, mentre negli strati pitt profondi possono
rappresentare pattern piti complessi come forme, texture o addirittura
oggetti interi.

La profondita dei canali si riferisce al numero di feature maps prodotte
da uno strato convoluzionale. Aumentare il numero di feature maps
consente alla rete di apprendere caratteristiche pit1 complesse e astratte, ma
incrementa anche il costo computazionale e puo portare ad overfitting se
la rete & troppo grande per i dati disponibili. Un aspetto cruciale e che la
profondita di un filtro deve corrispondere alla profondita dell’input. Ad
esempio, per un'immagine RGB (3 canali), ogni filtro deve avere profondita
3. L'output di ogni convoluzione € una feature map 2D, indipendentemente

dalla profondita dell’input.
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5.3 Pooling e normalizzazione

5.3.1 Max pooling vs average pooling

Il pooling e un’operazione di downsampling che riduce le dimensioni
spaziali delle feature maps mantenendo le informazioni piti importanti.
Questa operazione migliora l'efficienza computazionale e introduce una
forma di invarianza alle traslazioni, rendendo la rete meno sensibile a
piccoli spostamenti nell’input.

Il max pooling seleziona il valore massimo all’interno di ogni finestra di
pooling. E particolarmente efficace nel preservare le caratteristiche piti
importanti e nell’introdurre invarianza alle traslazioni. Ad esempio, con
una finestra 2x2 e stride 2, il max pooling riduce le dimensioni dell’input
della meta mantenendo le attivazioni piu forti.

L'average pooling calcola la media dei valori all’interno di ogni finestra di
pooling. Mentre preserva pili informazione locale rispetto al max pooling,
puo essere meno efficace nel gestire variazioni sottili delle caratteristiche o

features significative in certe regioni dell'immagine.

5.3.2 Global pooling

Il global pooling e una variante che riduce ogni feature map ad un singolo
valore, eliminando completamente le dimensioni spaziali. Il global max
pooling seleziona il valore massimo da ogni feature map intera, mentre il
global average pooling calcola la media di tutti i valori in ogni feature map.
Questa tecnica e spesso utilizzata prima degli strati fully connected finali
nelle architetture CNN per la classificazione, riducendo drasticamente il

numero di parametri e prevenendo l'overfitting.

5.3.3 Batch, Layer e Group normalization

La batch normalization € una tecnica introdotta per accelerare 1’addestra-
mento delle reti neurali profonde e ridurre la sensibilita all’inizializzazione

dei parametri. Normalizza gli input di ogni strato utilizzando la media e
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varianza del mini-batch corrente durante I’addestramento.

Per ogni canale, durante la fase di apprendimento, la batch normalization

calcola:
" Xi —HUB
X; = —H
| 2
o B + €
dove upe 0123 sono la media e varianza del batch, ed € € una costante piccola

per evitare divisioni per zero. Successivamente applica una trasformazione

affine apprendibile:
yi=y%i+p

dove y e f sono parametri apprendibili.

La layer normalization normalizza tutti i neuroni in un particolare strato per
ogni input individualmente, rendendola indipendente dalla dimensione
del batch.

La group normalization divide i canali in gruppi e normalizza all’interno

di ogni gruppo, offrendo un compromesso tra batch e layer normalization.

5.4 Data augmentation: rotazioni, zoom, colour
jitter

La data augmentation & una tecnica che aumenta artificialmente le dimensio-
ni del dataset applicando trasformazioni realistiche agli esempi di training,
migliorando la generalizzazione e riducendo l'overfitting.

Le rotazioni ruotano le immagini di angoli casuali (tipicamente tra -50°
e 50°), aiutando la rete a riconoscere oggetti indipendentemente dal loro
orientamento. Studi hanno dimostrato che la rotazione puo migliorare
significativamente le prestazioni.

Lo zoom (o scaling) modifica le dimensioni degli oggetti nell'immagine,
permettendo alla rete di riconoscere oggetti a diverse scale. Il random crop
€ una variante che estrae porzioni casuali dell'immagine originale.

Il colour jitter modifica luminosita, contrasto, saturazione e tonalita delle
immagini. Questa tecnica varia i canali RGB con valori casuali, producendo
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cambiamenti casuali nel colore che aiutano la rete a essere invariante alle

variazioni di illuminazione e colore.

5.5 Funzionamento delle CNN

5.5.1 Forward pass

E-step = Step 1
| FORWARD PASS >

Z,=s(X+w,)
W, 1
@ U| Step 2
I - = !
I Z, U 0.2 D
' —> a 01 >0
I 1 W, 0.7 1
1
| [ S ppR U, PREDICTED TARGET
LABEL LABEL
INPUT MNIST W, PROBABILITIES
IMAGE
Z"
INPUT CONVOLUTION HIDDEN HADAMARD SOFT-MAX
IMAGE MASKS LAYER PRODUCT OUTPUT LAYER
{only weight matricas U
for first autput neurcn shawn)

M-step = Step 3
< ERROR BACKPROPAGATION |
Figura 5.2: Diagramma del forward pass in una CNN.

Il forward pass rappresenta il percorso che i dati seguono dall’input verso
I'output attraverso l'intera architettura della rete. Questo processo inizia con
I'immagine grezza e termina con la predizione finale, passando attraverso
una serie di trasformazioni matematiche che estraggono progressivamente

caratteristiche sempre pitt complesse.

5.5.2 Strati di convoluzione

Il primo stadio, per l’elaborazione delle immagini, coinvolge gli strati

convoluzionali, che rappresentano il cuore dell’architettura CNN. Quando

74



un’immagine di input entra nella rete, essa viene elaborata attraverso un
insieme di filtri (kernel) che eseguono l'operazione di convoluzione. Ogni
filtro & responsabile del rilevamento di una specifica caratteristica: negli
strati iniziali, questi filtri apprendono a riconoscere caratteristiche di basso
livello come bordji, linee e angoli. Loperazione di convoluzione produce le
teature maps, che rappresentano la risposta di ciascun filtro all'immagine
di input. Ogni elemento nella feature map indica l'intensita della presenza

di quella specifica caratteristica in quella posizione dell'immagine.

5.5.3 Funzioni di attivazione

Dopo ogni operazione di convoluzione, viene applicata una funzione di
attivazione, tipicamente ReLU. Questa fase & cruciale perché introduce
non-linearita nel modello, permettendo alla rete di apprendere relazioni
complesse nei dati.

5.5.4 Strati di pooling

Successivamente agli strati convoluzionali, i dati passano attraverso gli strati
di pooling. Questi strati eseguono un’operazione di downsampling che
riduce le dimensioni spaziali delle feature maps mantenendo le informazioni

pitt importanti.

5.5.5 Gerarchia delle caratteristiche

Man mano che i dati attraversano strati successivi, si verifica un fenomeno
fondamentale: la costruzione gerarchica delle caratteristiche. Gli strati
iniziali rilevano caratteristiche elementari (bordi, texture), gli strati inter-
medi combinano queste caratteristiche per formare pattern pitt complessi
(forme geometriche, motivi), mentre gli strati piti profondi assemblano
questi pattern in rappresentazioni di alto livello che corrispondono a parti
di oggetti o oggetti interi.
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5.5.6 Strati fully-connected

Dopol’estrazione gerarchica delle caratteristiche, i dati raggiungono gli strati
fully-connected. Prima di entrare in questi strati, le mappe di caratteristiche
multidimensionali vengono convertite in un vettore unidimensionale. Negli
strati fully-connected, ogni neurone e collegato a tutti i neuroni dello
strato precedente, consentendo alla rete di combinare tutte le caratteristiche
estratte per prendere la decisione finale, in base al tipo di problema.
Durante il terzo caso di studio, verranno esplorate le modifiche agli strati
fully-connected delle CNN, analizzando due diverse architetture: MLP e
KAN.

5.5.7 Flusso informativo e Trasformazioni progressive

Durante tutto questo processo, I'immagine originale, inizialmente rappre-
sentata come una matrice di valori pixel, viene gradualmente trasformata
in rappresentazioni sempre pil1 astratte e significative dal punto di vista
semantico. Ogni strato della rete contribuisce a questa trasformazione: gli
strati convoluzionali estraggono e raffinano le caratteristiche, gli strati di
pooling riducono la complessita computazionale e introducono invarianza,
mentre gli strati fully-connected integrano tutte le informazioni per la
classificazione finale.

Questo design architetturale permette alle CNN di apprendere automati-
camente le rappresentazioni ottimali per il compito specifico, eliminando
la necessita di progettare manualmente gli estrattori di caratteristiche. La
capacita di costruire rappresentazioni gerarchiche rende le CNN partico-
larmente efficaci per compiti di computer vision, dove la comprensione
dell'immagine richiede l'integrazione di informazioni a diversi livelli di

astrazione.
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5.6 Vantaggi

Le CNN si distinguono per una serie di vantaggi che le rendono lo standard
per l'elaborazione delle immagini. Il loro punto di forza principale &
il rilevamento automatico delle caratteristiche. A differenza delle reti
neurali tradizionali che richiedono un’estrazione manuale delle feature, le
CNN apprendono e identificano autonomamente le caratteristiche rilevanti
direttamente dai dati grezzi. Questo approccio riduce drasticamente lo
sforzo di pre-processing e permette al modello di adattarsi in modo pitt
efficace ai dati.

Un’altra caratteristica distintiva e la loro efficienza computazionale e
riduzione dei parametri. L'uso del weight sharing (una tecnica che permette
ad un singolo filtro di rilevare la stessa caratteristica in qualsiasi posizione
dell'immagine utilizzando lo stesso set di pesi) e degli strati di pooling
riduce notevolmente il numero di parametri da addestrare rispetto alle reti
fully-connected. Questo non solo accelera ’addestramento, ma contribuisce
anche a prevenire l'overfitting.

Grazie all’operazione di convoluzione, le CNN offrono invarianza alla
traslazione. Sono in grado di riconoscere un oggetto indipendentemente
dalla sua posizione nell'immagine. Un filtro che ha imparato a riconoscere
un occhio, ad esempio, lo riconoscera sia che si trovi in alto a sinistra che in
basso a destra.

Le architetture CNN sono anche estremamente scalabili: possono essere
adattate facilmente a dataset di grandi dimensioni ed a compiti complessi,
aumentando la profondita e la larghezza della rete per gestire immagini ad

alta risoluzione o per apprendere pattern piu astratti.

5.7 Svantaggi

Nonostante i loro numerosi vantaggi, le CNN presentano alcune limitazioni.
La principale e la loro dipendenza da grandi dataset. Specialmente le
architetture piti complesse richiedono enormi quantita di dati etichettati

per un addestramento efficace. La mancanza di un dataset sufficientemente
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grande puo portare all'overfitting o ad una scarsa capacita di generalizza-
zione.

Un altro limite e I'invarianza limitata. Le CNN standard sono invarianti
alla traslazione, ma non lo sono rispetto ad altre trasformazioni geometriche.
Se un’immagine viene ruotata o scalata in modo significativo, il modello
potrebbe non riconoscerla correttamente, a meno che non si usino tecniche
di data augmentation per esporre il modello a tali variazioni durante I’ad-
destramento.

Le CNN sono spesso criticate per la loro mancanza di interpretazione.
E difficile capire il motivo per cui un modello prenda una determinata
decisione. Le feature map intermedie possono essere visualizzate, ma
il processo decisionale complessivo rimane una "black box", rendendo
complicato il debugging e I’adozione in settori critici come la medicina,
dove é essenziale la trasparenza.

Infine, 'addestramento di architetture CNN molto profonde ha un elevato
costo computazionale. Spesso richiede una notevole potenza di calcolo
e hardware specializzato come le GPU. Anche l'inferenza su dispositivi a
bassa potenza puo risultare problematica.

78



Capitolo 6

Ottimizzazione degli

iperparametri

6.1 Introduzione

Questo capitolo presenta una panoramica delle metodologie di ottimizzazio-
ne degli iperparametri, essenziali per migliorare le performance dei modelli
di Machine e Deep Learning. L'obiettivo ¢ esplorare come queste tecniche
permettano di navigare lo spazio delle configurazioni di un modello per
trovare la combinazione ideale. 1l testo inizia descrivendo diverse forme
di Cross-Validation, tra cui la K-fold CV, la Nested Cross-Validation e la
Time Series Cross-Validation, pensata specificamente per i dati temporali.
Successivamente, il capitolo si concentra sulle strategie di ricerca, a partire
dai metodi pitt semplici come il Grid Search e il Random Search, per poi
introdurre approcci pit1 sofisticati come 1’Ottimizzazione Bayesiana e gli
Algoritmi Genetici. Infine, viene fornito un confronto pratico tra questi
metodi per aiutare a comprendere quando applicare ciascuno di essi. Per la
sua efficienza e scalabilita, in questa ricerca e stato scelto il Random Search,
che e stato ottimizzato utilizzando una formula che utilizza le probabilita

per determinare il numero ideale di iterazioni. [31}[34, 35|30, 32, 33]]
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6.2 Cross-Validation (CV)

Fold1 Fold 2 Fold 3 Fold 4 Fold 5

: < < : c Performance
Iteration 1 Test Train Train Train Train e

Iteration2 | Train Test Train Train Train
lteration 3 | Train Train Test Train Train
Iteration 4 [ Train Train Train Test Train

. o < 5 . Performance
lteration 5 | Train Train Train Train Test B e

Figura 6.1: Funzionamento della tecnica di Cross-Validation.
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La CV é una metodologia utilizzata per la valutazione delle prestazioni
di un modello predittivo. Il suo scopo principale & quello di stimare
quanto un modello é in grado di generalizzare su dati indipendenti non
visti durante la fase di training. Dato un dataset D = {z1,...,zN} e una
procedura di training che produce un modello fp, la K-fold cross-validation
divide i dati in K parti disgiunte (fold), dove ognuno ha una dimensione
approssimativamente uguale. Il processo si ripete K volte. Per ogni
iterazione k € {1, ..., K}, si usano le restanti K — 1 parti, che costituiscono
il training set D® =D \ Dy, per allenare il modello. Questo produce un
modello parziale fDm. Poi, si valuta ’errore del modello fD(k) sul fold
lasciato fuori Dy, che ricopre il ruolo del validation set per questa iterazione.
L'errore viene calcolato come E; = Errore( fD(k), Dy). Al termine delle K
iterazioni, si ottiene una lista di K errori {E1, E», ..., Ex}. La stima finale
della performance del modello ¢ data dalla media degli errori calcolati su
ogni fold, E= % Zlkil Eg.
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6.2.1 Time Series Cross-Validation (TSCV)

Data

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

5-fold cross-validation

Block 1

Block 1

Block 2

i O Train set

[ Validation set

Block 1 Block 2
Block 1 Block 2 Block 3 Block 4
Block 1 Block 2 Block 3 Block 4

Figura 6.2: Svolgimento della tecnica di Time Series Cross-Validation.

Per i dati che hanno una dipendenza temporale, come le serie storiche, la

CV standard non ¢ adatta. Suddividere i dati in fold casuali romperebbe la

struttura temporale, e 'addestramento su dati futuri per testare il modello su

dati passati (fenomeno noto come data leakage) non avrebbe senso pratico

e porterebbe a risultati fuorvianti. La TSCV, sviluppata per risolvere questa

problematica, crea un training set che cresce sequenzialmente nel tempo,

ed il validation set € sempre un blocco di dati che segue immediatamente il

dataset di allenamento. Il processo funziona cosi:

¢ Prima iterazione: il modello é addestrato sui primi m punti temporali

e testato sui successivi n punti.

* Seconda iterazione: il modello & addestrato sui primi m + n punti

temporali e testato sui successivi n punti.

¢ Iterazioni successive: il processo continua, con il training set che si

espande ad ogni passo ed il validation set che avanza nel tempo.

Questo approccio rispecchia fedelmente lo scenario reale in cui un modello

di serie storica viene addestrato su dati passati e utilizzato per fare previsioni
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su dati futuri non ancora visti. La media degli errori di validazione su tutte
le iterazioni fornisce una stima robusta e realistica delle prestazioni del

modello.

6.3 Nested Cross-Validation (NCV)

All Data

Training data Test data

Fold 1 | Fold2 || Fold3 || Foldd @ Folds |\

split1 | Fold 1 | Fold2 || Fold3 || Fold4 | Fold5

spiitz | Fold1 | Fold 2 | Fold3 || Folda = Folds
>- Finding Parameters

Split3 Fold 1 | Fold 2 | Fold 3 Fold 4 Fold 5

Split4 | Fold 1 | Fold 2 | Fold3 || Foldd  Fold5

Split 5 Fold1| F::Jld2| Fold3 || Fold4 @ Folds |/

Final evaluation { Test data
Figura 6.3: Funzionamento della tecnica di Nested Cross-Validation.

La NCV é un estensione della classica CV. Il suo scopo principale e quello di
fornire una stima imparziale ed affidabile dell’errore di generalizzazione di
un modello, risolvendo il problema del bias di selezione che puo verificarsi
quando gli stessi dati vengono utilizzati sia per la scelta degli iperparametri
che per la valutazione finale del modello. Lidea alla base della NCV &

quella di creare due cicli di CV: un ciclo esterno ed uno interno.

1. Ciclo esterno (Outer loop): ha il compito di stimare l'errore di
generalizzazione del modello. Il dataset viene diviso in K fold. Per
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ogni iterazione di questo ciclo, vengono utilizzati K — 1 parti per
costruire il training set esterno ed il restante fold agisce da test set
finale, che non verra mai utilizzato per la selezione degli iperparametri,

garantendo una valutazione finale imparziale.

2. Ciclo interno (Inner loop): all’interno di ogni iterazione del ciclo
esterno, si esegue un altro ciclo di CV (solitamente con L fold) sul
training set esterno. Questo ciclo interno & dedicato esclusivamente
all’ottimizzazione degli iperparametri. Per ogni combinazione di
essi da testare (ad esempio, utilizzando Grid o Random Search), si
addestra il modello sui L — 1 fold interni e si valuta la sua performance
sul fold interno rimanente. La combinazione di iperparametri che
ottiene la migliore performance media su tutte le L iterazioni viene

selezionata.

3. Valutazione del modello ottimizzato: una volta trovata la migliore
combinazione di iperparametri nel ciclo interno, il modello viene
addestrato nuovamente sull’intero training set esterno utilizzando
proprio quella combinazione ottimale. Infine, la performance di
questo modello viene valutata sul test set esterno, che é stato lasciato
fuori all'inizio dell’iterazione K. L'errore ottenuto in questa fase ¢ la
stima delle prestazioni di generalizzazione del modello per quella

specifica iterazione del ciclo esterno.

Questo processo viene ripetuto per tutti i K fold del ciclo esterno. La stima
finale dell’errore del modello e la media dei K errori ottenuti sui test set

esterni.
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6.4 Grid search (GS)
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Figura 6.4: Grafico che mostra come Grid search ispeziona lo spazio degli
iperparametri.
6.4.1 Spiegazione dell’algoritmo

I1 GS consiste nel definire una griglia discreta di possibili valori per ciascun
iperparametro e nell’eseguire una valutazione esaustiva del modello per
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ogni combinazione. Alla fine, si seleziona il set di iperparametri che otti-
mizza la metrica di interesse. Il metodo non introduce casualita, risultando

completamente ripetibile e deterministico.

6.4.2 Vantaggi

L'approccio del Grid Search offre diversi vantaggi. Primo fra tutti, la sua
natura esaustiva: esplora tutte le combinazioni predefinite nello spazio di
ricerca, permettendo di trovare 1'ottimo globale se questo ¢ incluso nella
griglia. Inoltre, € un metodo deterministico e riproducibile, dato che
I'assenza di casualita assicura che ogni esecuzione dell’algoritmo fornisca
risultati replicabili. Infine, la sua semplicita di implementazione lo rende
ideale in spazi di ricerca ridotti e ben definiti, o come baseline quando si

dispone di elevate risorse computazionali.

6.4.3 Limiti

Nonostante i suoi vantaggi, il Grid Search presenta anche dei limiti si-
gnificativi. Il suo costo computazionale & esponenziale, a causa della
curse of dimensionality, rendendolo impraticabile per spazi di ricerca ampi
o ad alta dimensionalita. Il metodo e spesso inefficiente, poiché molte
valutazioni potrebbero riguardare regioni poco promettenti, specialmente
quando solo alcuni parametri influenzano la performance ottimale. La
discretizzazione e la perdita di ottimi sono altri problemi rilevanti: la
necessita di fissare una griglia per iperparametri continui puo portare a
saltare valori potenzialmente migliori che non sono inclusi. Infine, non &
adatto a modelli e dataset complessi, poiché il costo aumenta drasticamente

con la complessita e la dimensione del dataset.
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6.5 Random Search (RS)
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Figura 6.5: Grafico che mostra come Random search esegue 1'ottimizzazione
degli iperparametri sullo spazio definito.
6.5.1 Spiegazione dell’algoritmo

I1 RS seleziona casualmente N configurazioni dagli intervalli o distribuzioni

scelte per ciascun iperparametro, valutando il modello solo in quei punti. La
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campionatura puo avvenire secondo distribuzioni uniformi, log-uniformi o
guidate da conoscenze pregresse. Questo approccio si basa, quindi, sulla
randomizzazione invece che su una griglia predefinita.

6.5.2 Vantaggi

I Random Search presenta numerosi vantaggi, tra cui l'efficienza su
spazi estesi. Campionando casualmente, si ha una maggiore probabilita
di individuare combinazioni efficaci, specialmente quando solo pochi
parametri sono percepiti come determinanti per le prestazioni. Un altro
punto di forza e la sua scalabilita: il numero di valutazioni puo essere
fissato (es. N=100), spesso ottenendo performance simili a quelle del
Grid Search con molte meno combinazioni. L'algoritmo e anche facile
da parallelizzare, poiché ogni valutazione é indipendente, consentendo
I'esecuzione in parallelo. Infine, ¢ molto adattabile, in quanto e possibile

scegliere distribuzioni di campionamento informate da conoscenze a priori.

6.5.3 Limiti

Trailimiti del Random Search, il piti evidente € la sua natura non sistematica,
che non esplora esaustivamente lo spazio delle ipotesi e pu6 quindi saltare
l'ottimo globale. Le prestazioni dipendono in gran parte dalla distribuzione
di campionamento scelta; campionamenti mal scelti possono ignorare
regioni promettenti. Inoltre, i risultati non sono ripetibili a meno che non
si fissi un random seed. Infine, su spazi di ricerca piccoli e ben definiti, il

Grid Search puo risultare pit efficace.
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6.6 Bayesian optimization (BO)
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Figura 6.6: Confronto tra la ricerca di Grid e Random search con 'ottimiz-
zazione bayesiana.

6.6.1 Spiegazione dell’algoritmo

La BO interpreta l'ottimizzazione degli iperparametri come la ricerca del
massimo/minimo di una funzione obiettivo costosa ed ignota. Si costruisce
un modello surrogato probabilistico (come un Gaussian Process, GP) che
stima la funzione obiettivo e quantifica l'incertezza predittiva. Ad ogni
iterazione, una funzione di acquisizione determina il prossimo punto da
valutare.

Modello surrogato: Gaussian Process (GP)

Un GP definisce, per ogni punto A, una distribuzione normale per il
valore f(A) con media u(A) e varianza (). Dopo aver osservato alcune

valutazioni, si aggiorna u e o per riflettere cio che si & imparato.

Le fasi del BO

1. Campionamento iniziale: Si comincia con una serie di prove iniziali,
selezionando casualmente diverse combinazioni di iperparametri. Per

ogni combinazione, si addestra il modello e si calcola una metrica
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di performance, come la precisione (accuracy) o 'errore quadratico

medio (MSE), che funge da risultato della funzione obiettivo.

. Modello surrogato: sullabase deirisultati del campionamentoiniziale,
si costruisce un modello probabilistico, solitamente un Gaussian
process, che approssima la funzione obiettivo. Questo modello non
solo predice la performance attesa per una data combinazione di

iperparametri, ma fornisce anche un’incertezza sulla predizione.

. Funzione di acquisizione: viene usata per decidere la prossima
combinazione di iperparametri da testare. Questa funzione bilancia
'esplorazione (provare combinazioni di cui si sa poco, per ridurre
l'incertezza) e lo sfruttamento (provare combinazioni che il modello

surrogato ritiene promettenti, per migliorare la performance).

. Valutazione della performance: la nuova combinazione di iper-
parametri viene utilizzata per addestrare il modello e valutarne le
prestazioni. Il risultato di questa valutazione rappresenta il nuovo

punto dati che viene aggiunto al nostro set di informazioni.

. Aggiornamento del modello surrogato: viene aggiornato con i nuovi
risultati. Questo affina le sue predizioni e riduce l'incertezza, per-
mettendo alla funzione di acquisizione di prendere decisioni pitt
informate nelle iterazioni successive.

. Ripetizione: i passaggi 3, 4 e 5 vengono ripetuti. Il ciclo si ferma
quando si raggiunge un criterio predefinito, come un budget di tempo,
un numero massimo di iterazioni, o quando la performance del

modello smette di migliorare significativamente.

6.6.2 Vantaggi

La Bayesian optimization € un metodo molto efficiente, riducendo dra-

sticamente il numero di valutazioni necessarie, il che la rende ideale per

funzioni costose. La sua funzione di acquisizione permette un eccellente

89



bilanciamento tra exploration ed exploitation, permettendo di esplorare
nuove regioni e raffinare quelle gia note. Inoltre, il modello surrogato
offre una modellazione dell’incertezza, che indirizza la ricerca nelle zone

potenzialmente pili promettenti.

6.6.3 Limiti

Tra i limiti della BO, si include 1'overhead computazionale dovuto al
mantenimento e all’aggiornamento del modello surrogato. La sua natura
sequenziale rende piti complessa la parallelizzazione rispetto a Random
o Grid Search. Infine, la sua scalabilita e limitata: pur essendo efficiente
su spazi continui di media dimensione, l'ottimizzazione puo diventare

difficoltosa su spazi molto ampi.
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6.7 Genetic algorithm (GA)

Genetic Algorithms

A1 [0]o]olo]o

0| | Gene A1 [0]o]o]o]o]0]
A

A2|[1]1]1]1][1]1]| | Chromosome A2 [1]1]1[1][1]1]

>

A3 [1]o[1]0]1]1]

A5 [1]1]1]0]0]0]

A4 [1]1]0]1]1]0] |Population

A6 [0]0]0[1]1]1]

Figura 6.7: Definizione dei concetti principali alla base del funzionamento
degli Algoritmi genetici.

6.7.1 Spiegazione dell’algoritmo

I Genetic algorithm(GA) sono metodi di ottimizzazione degli iperparametri,
ispirati al processo di selezione naturale. Funzionano mantenendo una
popolazione di soluzioni e migliorandole nel tempo tramite un processo
iterativo. Ad ogni iterazione, detta anche generazione, vengono applicati

tre operatori evolutivi principali:

* Selezione: gli individui con un punteggio di fitness piu alto (le
soluzioni "migliori" o pit "adatte") vengono scelti per la riproduzione.
Questo processo assicura che le caratteristiche positive si diffondano
nella popolazione.
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* Crossover: le soluzioni selezionate vengono combinate per creare
nuovi individui "figli". Questo operatore permette di esplorare nuove
combinazioni e di mescolare le caratteristiche delle soluzioni migliori.

* Mutazione: vengono introdotte piccole, casuali variazioni nelle nuove
soluzioni. La mutazione é fondamentale per mantenere la diversita
genetica e per evitare che l'algoritmo rimanga bloccato in un'unica

soluzione.

Questi operatori permettono, agli algoritmi genetici, di esplorare un vasto
spazio disoluzioni (esplorazione globale) ed, allo stesso tempo, di migliorare
le soluzioni promettenti (esplorazione locale), migliorandole sempre di pilt

nel corso delle generazioni.

Le fasi del GA

Initialization

Crossover

Generation

Selection

Figura 6.8: Le varie fasi del processo del Genetic algorithm.

e Inizializzazione:

— Definire lo spazio di ricerca degli iperparametri.

— Generare una popolazione iniziale di N individui casuali.
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— Impostare i parametri: dimensione popolazione (N), generazioni

massime (Gqx), tassi di crossover (p.) e mutazione (p).
* Ciclo evolutivo (per ogni generazione g =1,2,..., Gyax):

— Valutazione: allenare il modello per ogni individuo e calcolare
il fitness f(x;).

— Selezione: scegliere i genitori migliori.

— Crossover: combinare coppie di genitori con probabilita p. per
generare figli.

— Mutazione: introdurre variazioni casuali nei figli con probabilita
P

— Sostituzione: formare la nuova popolazione (strategia elitista o

generazionale).
* Terminazione:
— Fermarsi quando: raggiunto G4y, nessun miglioramento per k

generazioni, o fitness target raggiunto.

— Restituire l'individuo con il miglior fitness come soluzione

ottimale.

6.7.2 Vantaggi

Gli algoritmi genetici offrono una esplorazione robusta grazie a crossover
e mutazioni, il che li rende adatti a spazi complessi e non lineari per trovare
ottimi globali. Sono inoltre efficaci nella gestione di spazi misti, lavorando
bene con iperparametri discreti, continui e categorici. Un altro vantaggio e
la loro parallelizzazione, in quanto le valutazioni del fitness possono essere

distribuite in parallelo.

6.7.3 Limiti

Tra gli svantaggi, si evidenzia il costo computazionale elevato, poiché

richiedono molte generazioni e valutazioni. I risultati dipendono anche
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da iperparametri evolutivi, come la dimensione della popolazione e i
tassi di mutazione/crossover, che devono essere a loro volta ottimizzati.
Infine, non c’é¢ una garanzia di convergenza all’'ottimo globale, dato che
l'algoritmo potrebbe bloccarsi in minimi sub-ottimali se la diversita non

viene mantenuta.

6.8 Confronto pratico

6.8.1 Criteri per la scelta

Nella scelta del metodo di ottimizzazione degli iperparametri, € fondamen-
tale valutare diversi criteri per identificare la soluzione piu adatta ad un
problema specifico. I criteri principali includono 1’efficienza, che si riferisce
al numero di valutazioni necessarie per trovare una buona soluzione; la
scalabilita, ovvero il comportamento dell’algoritmo all’aumentare della
dimensionalita degli iperparametri; il supporto per vari tipi di variabili,
che possono essere continue, discrete o categoriche; la parallelizzazione,
ovvero la facilita con cui I’algoritmo puo essere eseguito su cluster o GPU;
la robustezza, ovvero la capacita di gestire rumore e funzioni complesse; e
infine le risorse computazionali richieste, che considerano 1'overhead e i

costi aggiuntivi dell’algoritmo.

6.8.2 Tabella riassuntiva comparativa

Metodo Efficienza Scalabilita Parallelizz. Complessita Spazi misti
Grid search Bassa Pessima Eccellente Bassa Bassa
Random search ~ Media Buona Eccellente Bassa Bassa
Bayesian opt. Alta Limitata Moderata Alta Media
Genetic alg. Variabile"  Discreta Eccellente = Media-Alta Alta

* N . . . . . . .
puo essere molto efficace su spazi complessi/discreti, ma richiede molte
valutazioni rispetto a BO in spazi piccoli; meno efficiente se valutazioni

sono molto care.
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6.8.3 Matrice decisionale per la scelta del metodo

Condizioni Metodo consigliato  Alternativa Da evitare
Spazi piccoli (2-3 param.) Grid Search Random Search Bayesian Opt.
Spazi medi/ampi (> 4 param.) Random Search ~ Bayesian Opt. Grid Search
Valutazioni costose, budget limitato ~ Bayesian Opt. = Random Search Grid Search
Spazi molto complessi Genetic Algorithms Bayesian Opt. Grid Search
Multi-obiettivo Genetic Algorithms - Grid/Random Search
Risorse limitate Random Search ~ Bayesian Opt. Grid Search

6.8.4 Scelta peri casi studio: Random search
Motivazioni della scelta

Per i casi studio, si e scelto di adottare il Random Search per diverse ra-
gioni. Questo approccio garantisce una notevole efficienza su spazi ampi,
offrendo prestazioni superiori al Grid Search quando 'impatto di alcuni
iperparametri ¢ marginale. Inoltre, la sua scalabilita lo rende immune
all’aumento esponenziale della complessita, mantenendo performance ele-
vate anche con un gran numero di iperparametri. A livello implementativo,
la sua semplicita lo rende un metodo ideale per I'implementazione e la
parallelizzazione, riducendo la complessita del codice e facilitando l'esecu-
zione su cluster e GPU. Un’altra motivazione importante ¢ la sua flessibilita
operativa, che permette interruzioni anticipate tramite Early stopping ed un
facile riutilizzo dei risultati per analisi successive. Infine, il Random Search
offre il miglior rapporto costo-beneficio, bilanciando efficienza esplorativa
e semplicita computazionale, rendendolo la scelta ideale per il contesto di
questa tesi.

6.8.5 Ottimizzazione del numero di iterazioni nel Random

search

Per massimizzare 1'efficienza del Random search, ¢ fondamentale stimare il
numero minimo di iterazioni necessarie per garantire un’alta probabilita

di trovare configurazioni quasi-ottimali. Questo approccio consente di
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bilanciare l'efficacia esplorativa con il costo computazionale, evitando

valutazioni superflue.

Derivazione teorica della formula

La stima del numero di iterazioni richieste si basa sulla teoria della probabili-
ta discreta. Il processo di derivazione segue unalogica chiara, partendo dalla
probabilita di fallimento in un singolo tentativo. Se in uno spazio di ricerca
con M configurazioni totali ne esistono k che consideriamo "quasi-ottimali",
la probabilita di non selezionarne una in un singolo campionamento casuale
e:

P(fallimento singolo) = 1 — %

La probabilita di fallire in tutti gli n tentativi indipendenti & quindi:

k n
P(fallimento totale) = (1 - —)
M
Da qui, si ricava la probabilita di successo, ovvero di trovare almeno una

configurazione top-k in n tentativi:

k n
P(successo) =1-[1-—
M
Infine, per determinare il numero di iterazioni n necessarie per raggiungere

una probabilita di successo P desiderata, si risolve la formula per n:

(1K) _In@-P)
1 (1 M) e

Quando il numero delle migliori configurazioni (k) & molto piu piccolo
del numero totale di configurazioni (M), si pud usare I’approssimazione

In(1 — x) = —x per x piccolo. In questo caso, la formula si semplifica in:

_ In(1-P)
- k/M
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Vantaggi dell’approccio probabilistico

L'approccio probabilistico al Random search offre notevoli vantaggi. Ga-
rantisce un’elevata efficienza computazionale, riducendo drasticamente il
numero di valutazioni necessarie. Fornisce inoltre un forte controllo statisti-
co, offrendo una garanzia probabilistica di trovare soluzioni quasi-ottimali.
Grazie alla sua flessibilita, permette di modulare il trade-off tra accuratezza
desiderata (P) e il costo computazionale (1). Infine, il metodo si distingue
per la sua scalabilita, adattandosi automaticamente alla dimensione dello

spazio di ricerca, un aspetto cruciale in contesti con molti iperparametri.
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Capitolo 7

Studio di ablazione e Pruning

post-training

7.1 Introduzione

Questo capitolo introduce e analizza due metodologie fondamentali per
l'ottimizzazione e la comprensione dei modelli di Machine e Deep Learning:
lo studio di ablazione ed il post-training pruning. L'obiettivo € esplorare co-
me queste tecniche permettano non solo di diagnosticare il funzionamento
interno di un modello, ma anche di migliorarne 1'efficienza senza compro-
metterne significativamente le prestazioni. Il testo inizia descrivendo la
natura degli studi di ablazione e la loro utilita nell’identificare le componenti
critiche di un modello. Successivamente, il capitolo si concentra sul pruning
post-training, partendo da una definizione generale per poi focalizzarsi
sulla tecnica di L1 pruning applicata a diverse architetture, come i classici
MLP e le KAN. Infine, viene fornito un confronto tra il pruning rank-based
per le Random Forest e il cumulative pruning per XGBoost, illustrando
come queste tecniche possano essere adattate per ottimizzare diversi tipi
di ensemble. Per la sua efficienza e la sua flessibilita, il pruning L1 & stato
scelto come tecnica di riferimento per 1'ottimizzazione dei modelli di deep

learning presentati in questa ricerca. [38| 37, 36]
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7.2 Studi di ablazione

Gli studi di ablazione rappresentano una metodologia fondamentale nel-
l’analisi e nell’ottimizzazione dei modelli di machine e deep learning, che
consiste nella rimozione temporanea di una componente del modello, come
un layer o gruppo di parametri, per osservare I'impatto sulle prestazioni. Si
tratta di un esperimento diagnostico che aiuta a comprendere quali elemen-
ti contribuiscono maggiormente alla capacita predittiva del modello. In
questo contesto, il pruning post-training viene utilizzato come una tecnica
complementare che permette non solo di comprendere I'importanza delle
componenti del modello, ma anche di ottenere versioni piu efficienti senza

compromettere significativamente le prestazioni.

7.2.1 Definizione

Per formalizzare matematicamente il concetto di ablazione, consideriamo
un modello fg dove O rappresenta l'insieme completo dei suoi parametri,
e L(0) indica la funzione di perdita del modello. Dato un sottoinsieme
specifico di parametri S, la variazione di performance dovuta all’ablazione

puo essere quantificata come:

As = L(0-s) — L(0)

In questa formulazione, 6_s rappresenta il modello con la componente
S rimossa. Un valore elevato di As indica che la componente S fornisce
un contributo importante alle prestazioni del modello. Questa definizione
matematica fornisce una base quantitativa per valutare 'importanza relativa

delle diverse componenti del modello.

7.2.2 Benefici

Gli studi di ablazione offrono diversi benefici significativi. Innanzitutto,
permettono l'identificazione delle componenti critiche, aiutando a com-

prendere la sensibilita del modello a specifiche parti della sua architettura
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e rivelando potenziali vulnerabilita o punti di forza. Inoltre, i risultati di
questi studi fungono da guida per la semplificazione del modello, fornendo
una base empirica per le decisioni di pruning. Infine, I’analisi di come
la rimozione di una componente specifica influenzi le previsioni facilita
I'interpretazione del comportamento del modello, contribuendo a una
maggiore comprensione dei meccanismi interni che portano alle predizioni

finali.

7.3 Pruning post-training

7.3.1 Definizione

Il pruning post-training puo essere considerato come l’applicazione di un
operatore  ad un modello gia addestrato, che elimina parametri secondo
criteri specifici (come l'ampiezza del parametro, l'importanza stimata, o il
contributo marginale) per avere un modello piu leggero.

La scelta del criterio di pruning influenza significativamente sia 'efficacia
della compressione sia il mantenimento delle prestazioni. I criteri pit1
comuni includono la magnitudine dei parametri, misure di sensibilita
basate sui gradienti, e metriche di importanza derivate dall’analisi della

struttura del modello.

7.3.2 Benefici

I benefici del pruning sono molteplici. Il primo e piti evidente ¢ la riduzione
della memoria e del tempo di inferenza: il pruning riduce lo spazio di
memoria richiesto e il tempo necessario per le predizioni, aspetti critici per
il deployment in ambienti con risorse limitate. L'obiettivo primario e il
mantenimento delle prestazioni, bilanciando 'efficienza e 1’accuratezza
del modello in modo che le performance rimangano entro una tolleranza
accettabile. Infine, riducendo il numero di elementi attivi, il pruning
contribuisce a un aumento dell'interpretabilita, facilitando 1’analisi e la

comprensione del contributo delle parti rimanenti.
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7.3.3 Trade-off bias-varianza

La riduzione della complessita del modello, attraverso I’eliminazione di
parametri, tende a diminuire la varianza, riducendo il rischio di overfitting
sui dati di training. Tuttavia, questa semplificazione puo introdurre bias,
limitando la capacita del modello di catturare pattern complessi nei dati.
L'obiettivo pratico del pruning consiste nel trovare il punto ottimale dove
la riduzione della varianza compensa ’aumento del bias, mantenendo
prestazioni globalmente superiori. Questo equilibrio é altamente dipenden-
te dalla natura dei dati, dalla complessita del task, e dalle caratteristiche

specifiche dell’architettura del modello.

7.4 Pruning L1 post-training per MLP e KAN

7.4.1 Definizione

Dato un insieme di parametri del modello ® = {01, 0,, ..., On}, la procedu-
ra di L1 pruning opera applicando una trasformazione a ciascun parametro
0;, che & definita da una soglia di potatura A, che viene tipicamente de-
terminata a livello globale per il modello o a livello locale per ciascun
strato.

La formula é:
0 selfil<A

Qpruned _
l 0; sel6i|>A

In questa formulazione, se la magnitudine assoluta (|0;|) di un parametro
¢ inferiore o uguale alla soglia A, esso viene permanentemente impostato
a zero. Al contrario, se la sua magnitudine é superiore a A, il parametro

viene mantenuto invariato.

7.4.2 Considerazioni specifiche per le KAN

L'applicazione del L1 pruning alle KAN é abbastanza diverso rispetto a
MLP. La motivazione principale risiede nella diversa natura dei parametri
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che compongono questi modelli. Nelle MLP, i parametri sono pesi e bias
che operano su connessioni lineari, mentre nelle KAN sono coefficienti che
definiscono funzioni univariate (tipicamente B-spline) su ogni arco della
rete.

Il pruning su KAN puo essere implementato in due modi. II primo
approccio prevede la rimozione di coefficienti locali delle spline, riducendo
la risoluzione locale della rappresentazione funzionale mantenendo la
struttura generale. Il secondo approccio elimina intere funzioni su specifici
archi della rete, semplificando direttamente 1’architettura della KAN.

La scelta tra questi approcci deve considerare 1'impatto sulla continuita
delle funzioni e sulla loro interpretabilita. La rimozione di coefficienti
locali mantiene la struttura generale ma puo creare delle discontinuita
o irregolarita indesiderate nella curva che la spline rappresenta, mentre
I'eliminazione di intere funzioni preserva la continuita locale ma puo

alterare significativamente la capacita espressiva del modello.

7.5 Pruning per Ensemble: Rank-based pruning

per Random forest

7.5.1 Principio fondamentale

Il rank-based pruning per Random forest si basa sul principio che non tutti
gli alberi nell’ensemble contribuiscono equamente alle prestazioni finali.
Alcuni alberi possono essere ridondanti o addirittura dannosi per la capacita
di generalizzazione dell’ensemble, rendendo la loro rimozione vantaggiosa
sia in termini di efficienza e prestazioni. L'approccio implementato definisce
per ogni albero m un contributo stimato alle prestazioni, quantificato
attraverso la variazione di errore AL, che si osserverebbe rimuovendo
I’albero dall’ensemble. Gli alberi con contributo minore sono candidati

prioritari per la rimozione durante il processo di pruning.
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7.5.2 Criterio di ranking basato sulla feature importance

Invece di valutare l'impatto della rimozione di ogni singolo albero sull’errore
complessivo, il criterio di ranking si basa sulle feature importance di
ogni singolo albero. Specificamente, 'importanza di un albero m viene
calcolata come la somma delle feature importance che I’albero utilizza. La
logica sottostante e che un albero che si basa su feature pit discriminative,
che riducono significativamente ’entropia o 1'indice di Gini, & probabile
che fornisca un contributo maggiore all’ensemble. Questo metodo offre
un vantaggio computazionale significativo rispetto a un’analisi diretta

dell’errore.

7.5.3 Procedura di selezione

La procedura di selezione implementa una strategia greedy che ordina
gli alberi per importanza decrescente e seleziona i primi k alberi, dove
k & determinato dal pruning ratio desiderato. Questa scelta greedy &
giustificata dall’assunzione che l'utilita marginale degli alberi decresce
monotonicamente con il loro ranking. La validazione empirica di questa
assunzione rappresenta un aspetto critico della metodologia, poiché la sub-
modularita della funzione di utilita non € sempre garantita negli ensemble
reali. L'implementazione, infatti, include procedure di validazione che

verificano che la selezione greedy produca risultati coerenti.

7.6 Pruning per Ensemble: Cumulative pruning
per XGBoost

7.6.1 Criterio di pruning cumulativo

Il pruning cumulativo implementato si basa su un principio di selezione
basato sull’ordine: vengono mantenuti solo i primi n round di boosting,
scartando i successivi. Il presupposto € che le prime iterazioni, che hanno

I'obiettivo di ridurre al massimo l’errore iniziale, contribuiscano in modo
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piu significativo e non siano ridondanti come gli alberi meno performanti
che si trovano alla fine del processo di training. La percentuale di iterazioni
da mantenere & controllata direttamente dal pruning ratio, che determina
la frazione di modello da eliminare. In pratica, 1’algoritmo mantiene le
iterazioni da 1 a n, dove n ¢ calcolato come (1 — pruning ratio) moltiplicato

per il numero totale di round di boosting.

7.6.2 Procedura di selezione

A differenza di Random forest, che puo semplicemente rimuovere alberi
dalla lista degli "estimators", XGBoost richiede un’operazione pitt delicata a
causa della natura additiva delle sue predizioni.

I1 processo tecnico consiste in:

1. Calcolo del numero di iterazioni da mantenere: si determina il
numero di alberi da utilizzare per la predizione. Questo valore
viene calcolato in base ad un pruning ratio definito. Nei problemi
di classificazione multiclasse, ogni round di boosting aggiunge un

albero per ogni classe.

2. Predizione con iterazioni limitate: invece di modificare la struttura
del modello, si sfrutta una funzionalita di XGBoost che permette di
specificare il numero di alberi da usare per la predizione. Il modello
addestrato mantiene al suo interno tutti gli alberi, ma per calcolare il

risultato finale si usa solo I'insieme limitato di alberi specificato.

Se l'obiettivo e creare un modello pitl leggero da salvare o esportare,
e possibile potare il modello in modo permanente. Questo si ottiene
limitando I’ensemble agli alberi selezionati e salvando il nuovo modello
ridotto. Questo processo ¢ utile per ridurre 'occupazione di memoria e
rendere il modello piu efficiente per la distribuzione in produzione, una
volta che la migliore configurazione e stata identificata tramite lo studio di

ablazione.
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Capitolo 8

Metodologie e Procedure comuni
per la Verifica sperimentale dei

Casi di studio

8.1 Introduzione

In questo capitolo vengono illustrate le scelte comuni che costituiscono la
base della verifica sperimentale delle metodologie proposte. L'obiettivo e
fornire un quadro chiaro e coerente delle strategie condivise e specifiche
adottate per ciascun caso di studio. Verranno descritte la pipeline speri-
mentale condivisa: progettazione, pipeline di preprocessing, suddivisione
dei dati e validazione, metriche utilizzate, valutazione e studio di ablazione
dei modelli precedentemente definiti teoricamente.

La parte dedicata alla preparazione dei dati non & riportata qui in forma
aggregata: per ciascun caso di studio e presente una sottosezione specifica
che documenta le scelte di Data Preparation e le motivazioni sperimentali.
Per ogni caso saranno inoltre presentate le architetture testate, la procedura
di tuning e validazione, i risultati numerici e grafici con intervalli di confi-
denza e le conclusioni interpretative.

Il capitolo comprende infine uno studio di ablazione trasversale, volto ad

esplorare il compromesso tra compressione dei modelli e mantenimento
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delle prestazioni; i risultati di questo studio vengono discussi e messi a
confronto per facilitare considerazioni pratiche sul deployment. Le sezioni
che seguono sviluppano in dettaglio quanto qui sintetizzato, distinguendo

esplicitamente le componenti comuni da quelle specifiche di ciascun caso.

8.2 Progettazione dei casi di studio

8.2.1 Tecnologie e librerie

Il workflow sperimentale e di analisi € stato interamente sviluppato in
Python, con un insieme di librerie comuni ai tre casi studio e componenti
specifiche in base alla natura del problema affrontato.

Per la manipolazione dei dati si e fatto uso di NumPy e pandas, mentre
la visualizzazione dei grafici ¢ stata realizzata con matplotlib e seaborn.
I moduli json, os, inspect e copy sono stati utilizzati per la gestione dei
metadati, il salvataggio dei risultati e la serializzazione delle configurazioni.
Le reti neurali e loro estensioni CNN sono state implementate in PyTorch.
Nel terzo caso studio e stato inoltre utilizzato torchvision per le trasforma-
zioni e la gestione delle immagini. La libreria pykan é stata integrata in tutti
i casi studio per I'implementazione della Kolmogorov-Arnold Network, che
si basa anch’essa su PyTorch. Sono stati adottati scikit-learn e XGBoost
per gli approcci ensemble, le metriche, le pipeline di preprocessing e per
'ottimizzazione degli iperparametri. Nel secondo caso studio si € inoltre
fatto uso di imblearn (SMOTE, ImbPipeline) per il bilanciamento delle classi.
Inoltre, sono stati utilizzati tqdm per le progress bar, logging per il trac-
ciamento degli esperimenti e librerie standard come random, time, glob,
zipfile, pathlib e PIL.Image per la gestione dei dataset e delle immagini.

8.2.2 Ambienti di sviluppo e infrastruttura

La prototipazione ed il debug sono stati effettuati su Google Colab; le
sperimentazioni su larga scala e 'addestramento intensivo dei modelli sono

stati condotti sul Cluster HPC dell’Universita di Bologna, con allocazione
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di GPU tramite SLURM.

Per la riproducibilita delle dipendenze, sono stati creati ambienti virtuali
dedicati (venv) ed un file requirements. txt. I risultati di ogni run, insieme
a configurazioni ed iperparametri, sono stati serializzati in JSON, mentre
i notebook eseguiti sul cluster sono stati automaticamente convertiti in

HTML per la documentazione.

8.2.3 Linguaggi, scripting e automazione del workflow

I linguaggio principale & Python. Le analisi esplorative e la reportistica
sono state realizzate in Jupyter notebooks, mentre 1’automazione degli
esperimenti e la sottomissione su cluster sono state gestite tramite script
bash integrati con SLURM.

La conversione automatica ed esecuzione dei notebook e stata gestita con
nbconvert, cosi da produrre sia versioni aggiornate in formato notebook
che report in HTML. Ogni esperimento ha registrato seed, configurazioni
ed eventi salienti del training con logging strutturato, assicurando piena

riproducibilita.

8.2.4 Script di sottomissione (Cluster GPU)

La struttura degli script SLURM é risultata uniforme tra i casi studio, con
differenze solo nelle risorse richieste, nel nome del job e nel notebook
eseguito. Un esempio generico ¢ riportato di seguito:

#!/bin/bash

#SBATCH --job-name=Generic_Case

#SBATCH --mail-type=ALL

#SBATCH --mail-user=martin.tomassi@studio.unibo.it
#SBATCH --time=120:00:00

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1

#SBATCH --cpus-per-task=8

#SBATCH --mem=60G
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#SBATCH --partition=140

#SBATCH --output=output_jupyter_exec_job_%j.txt
#SBATCH --chdir=/scratch.hpc/martin.tomassi
#SBATCH --gres=gpu:l

export JUPYTER_CONFIG_DIR=
"/scratch.hpc/martin. tomassi/jupyter_config_$SLURM_JOB_ID"
export MPLCONFIGDIR=

"/scratch.hpc/martin.tomassi/matplotlib_cache_$SLURM_JOB_ID"

mkdir -p "$JUPYTER_CONFIG_DIR"
mkdir -p "$MPLCONFIGDIR"

source venv_case/bin/activate
jupyter nbconvert --to notebook
--execute case_notebook.ipynb
--output case_notebook_trained.ipynb
jupyter nbconvert --to html case_notebook_trained.ipynb

deactivate

rm -rf "$JUPYTER_CONFIG_DIR"
rm -rf "$MPLCONFIGDIR"

8.2.5 Scelte architetturali ed iperparametri

Le scelte architetturali e gli iperparametri finali sono stati specifici per
ciascun caso studio. Le configurazioni dettagliate, incluse nelle tabelle dei
singoli capitoli, documentano gli iperparametri selezionati dopo la fase di
ottimizzazione. In tuttii casi, si e fatto ricorso a Early stopping per migliorare

la generalizzazione.
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8.3 Addestramento dei modelli

In tutti i casi studio considerati e stata adottata una pipeline di addestra-
mento fondamentalmente omogenea che mira a garantire comparabilita

sperimentale tra le architetture.

8.3.1 Pipeline di preprocessing

Le trasformazioni iniziali applicate alle variabili indipendenti sono state
incapsulate in pipeline riutilizzabili (ad es. ColumnTransformer) per evitare
data leakage e garantire riproducibilita. La selezione delle feature ha
rimosso colonne non informative o ridondanti; le variabili categoriche sono
state codificate con OneHotEncoder eseguito all'interno della pipeline; le
feature numeriche sono state standardizzate tramite StandardScaler. I
missing values sono stati trattati in modo coerente tra gli esperimenti: dove
possibile si e preferita la rimozione controllata delle righe; si sottolinea
che, sebbene XGBoost gestisca NaN nativamente, per confronto omogeneo
i NaN sono stati generalmente eliminati. Per i dataset di immagini il
preprocessing include resize e crop centrato a 224 X 224, normalizzazione
canale-per-canale e data augmentation (flip orizzontale, rotazioni lievi,
jitter di luminosita/contrasto) applicata esclusivamente in fase di training.
Per problemi di classificazione sbilanciata si & fatto ricorso a tecniche di
bilanciamento approcciate esclusivamente sul training fold (SMOTE per
dati tabellari, pesi di classe o WeightedRandomSampler per immagini).

8.3.2 Suddivisione dei dati e validazione

Il dataset e stato suddiviso in test set indipendente (circa 20%) e training
pool (circa 80%). Per i dataset non temporali si € impiegata una Nested
Cross-Validation con outer KFold = 5 e inner KFold = 3 in combinazione
con Random Search per la selezione degli iperparametri e la stima della
performance generalizzata. Per i dataset temporali si € usata una Time

Series Cross Validation che rispetta 1’'ordine cronologico delle osservazioni.
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8.3.3 Metriche e intervalli di confidenza

Le metriche sono state scelte in funzione del tipo di problema. Per i compiti

di regressione, sono state utilizzate:
¢ MSE (Mean Squared Error): MSE = 1 37" (y; — ;)%
e MAE (Mean Absolute Error): MAE = % Zl’-lzl lyi — 7il-

4

e MAPE (Mean Absolute Percentage Error): MAPE = 10 31t | )%y;,%

calcolata escludendo i casi con y; = 0 o valori non finiti.
e R? e R?-adjusted:

)2 —
2y i) 2 _1_(1_R2)nr_1 1

R2=q- YTV = ,
2(yi — 9)? adj k-1

dove n ¢ il numero di osservazioni, k il numero di predittori, i e la
media dei valori reali, y; rappresenta il valore reale (ground truth) e

i rappresenta il valore predetto da un modello.
e Max Error: max; |y; — 7il-
Per i compiti di classificazione, sono state considerate:

® Accuracy:

Numero di predizioni corrette SN Iy = i)

Accuracy = . — =
¥~ "Numero totale di predizioni N

dove y; e il valore vero, ; & il valore predetto e I(-) e la funzione
indicatrice.

¢ Precisione (P) e Recall (R):

TP TP
P_TP+FP' R_TP+FN

dove TP = True Positives, FP = False Positives, FN = False Negatives.
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* Fl-score: basato su Precisione e Recall della classe specifica.

P-R
F1=2. ——
P+ R

* Fl-score macro e weighted:

1 C
Flmacro = E ZFlc
c=1

Ne

C
Flweighted = Z F1l.- N
c=1

dove C é il numero di classi, F1, e I'Fl-score della classe ¢, N; ¢ il
numero di istanze della classe ¢, e N ¢ il numero totale di istanze.

¢ Confusion Matrix: la matrice di confusione ¢ una tabella che riassume
la performance di un modello di classificazione. Per un problema di

classificazione binaria, la sua struttura é:

Predetto
Reale Positivo | Negativo
Positivo P FN
Negativo FP TN

dove TP = True Positives, FP = False Positives, FN = False Negatives,
TN = True Negatives.

* AUC-ROC weighted: I'area sotto la curva ROC (Receiver Operating
Characteristic), che traccia il True Positive Rate (TPR) contro il False

Positive Rate (FPR) per diverse soglie.

TP FP

TPR=m5m PR N

LAUC-ROC weighted é la media pesata del’AUC di ogni classe.

111



e AUC-PR weighted: I’area sotto la curva Precision-Recall, che traccia

la Precisione in funzione del Recall.
1
AUC-PR = / Precision(Recall) d(Recall)
0
L’AUC-PR weighted é la media pesata del’AUC-PR di ogni classe.

Intervalli di confidenza Per tutte le metriche principali e stata stimata
l'incertezza statistica tramite bootstrap, un metodo di ricampionamento
che approssima la distribuzione empirica delle metriche. La procedura
consiste nel generare B campioni bootstrap S, Sy, ..., Sp estraendo con
ripetizione N elementi dal test set S; su ciascun campione viene calcolata la
metrica M(S;). L'intervallo di confidenza al livello (1 — «) si ottiene quindi

dai percentili della distribuzione delle metriche:
Cl(1—q) = (Percentile, »(M), Percentile;_,;»(M)).

Nel presente lavoro sono riportati intervalli al 95%, calcolati in modo
uniforme in tutti i casi studio per le seguenti metriche:

* Regressione: R%, MSE, MAE, MAPE;

* Classificazione: Accuracy, F1 macro, F1 weighted, AUC-ROC weighted,

AUC-PR weighted.

Complessita dei modelli Oltre alle metriche predittive, per tutti i casi

studio e stata calcolata la complessita dei modelli:

¢ Per le KAN, la formula per calcolare la sua complessita é:

L-1

PxanN = Z(Ni *Niy1) - (G +k +3)+ N
i=0

dove L ¢ il numero di strati, N; indica le dimensioni dello strato i, G &
la dimensione della griglia e k & I’ordine della spline.
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e Per le MLP, la formula é:

L-1

Pvip = ZNz' “Niy1 + Nip1
i=1

* Per Random Forest e XGBoost, la complessita e il numero totale di
nodi in tutti gli alberi dell’ensemble.

T
Complessita .., = Z Nodi;
i=1

dove T ¢ il numero totale di alberi nell’ensemble e Nodi; € il numero

di nodi nell’albero i.

8.4 Valutazione dei modelli

La procedura di valutazione adottata in tutti e tre i casi di studio e organiz-
zata in tre fasi principali: (1) analisi qualitativa e quantitativa, (2) selezione
del miglior modello e (3) conclusione finale. Le fasi sono pensate per essere

applicabili, in modo coerente, a problemi di regressione e classificazione.

8.4.1 Fase 1: Analisi qualitativa e quantitativa integrata

La prima fase integra l’analisi visiva dei barplot e I’analisi numerica delle
metriche, con 'obiettivo di ottenere in un unico passaggio una panoramica
iniziale delle prestazioni comparative dei modelli, evidenziando quelli
che si sono dimostrati pit1 performanti e quelli che presentano limitazioni.
Per ciascun modello si selezionano le configurazioni iperparametriche
ottimali risultanti dalla fase di tuning e si generano i grafici per le metriche
rilevanti del task. I barplot consentono un confronto visivo immediato tra
modelli, evidenziando quale soluzione appare dominante per metriche da
massimizzare o da minimizzare . Parallelamente, per le stesse configurazioni

ottimali si riportano i valori numerici delle metriche calcolate sul test set,
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corredati da intervalli di confidenza (tipicamente CI95%). Questo approccio
integrato combina la rapidita interpretativa dei grafici con la solidita delle
stime numeriche, permettendo di identificare rapidamente i modelli piu
promettenti, ed al contempo di validare le impressioni visive con stime
oggettive e replicabili. Qualsiasi segnale visivo di instabilita o possibile

overfitting individuato nei barplot viene verificato sui valori calcolati.

8.4.2 Fase 2: Selezione del miglior modello

Sulla base delle evidenze raccolte nella fase di analisi qualitativa e quanti-
tativa, la selezione finale del modello preferibile viene condotta mediante
una procedura di ranking multi-criterio che incorpora in modo esplicito sia
le prestazioni sia la complessita.

Per prima cosa si definisce I'insieme delle metriche rilevanti per il task e la

direzione di ottimizzazione per ciascuna.

regression_metrics = {
"MSE_Test’ : 'min’,
"MAE_Test’ : 'min’,
"MAPE_Test’ : 'min’,
"R2_Test’ : 'max’,
"R2_Adjusted_Test’ : 'max’
}

classification_metrics = {

"Accuracy_Test’: ’'max’,
"F1_Weighted_Test’: ’'max’,
’F1_Macro_Test’: ’'max’,
"AUC_ROC_OVR_Weighted’: ’max’,

"AUC_PR_OVR_Weighted’: ’'max’
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Per ogni metrica e per ciascun modello si calcola un rank (rank =1
corrisponde allo score migliore). Il performance_score di un modello ¢ la
media aritmetica dei rank sulle metriche di interesse:

1 M
performance_score, = i Z rank, ;,
j=1

dove M e il numero di metriche considerate e rank;, ; & il rank del modello
m sulla metrica j.

In parallelo si ottiene un indicatore di complessita, il complexity_rank,
calcolato ordinando i modelli in base alla formula di complessita scelta
(definita precedentemente); anche in questo caso rank 1 indica il modello
meno complesso. Per rendere confrontabili i due contributi, & utile nor-
malizzare gli score su una scala comune. Una normalizzazione semplice e
robusta consiste nel trasformare ogni score s, in un valore normalizzato
nell’intervallo [0, 1] con la formula:

§m = . 4
applicata separatamente a performance_score ed a complexity_rank.
L'aggregazione finale esplora pil strategie operative per bilanciare perfor-
mance e complessita. Nella strategia Equal Weight il punteggio aggregato
e la somma diretta delle componenti normalizzate:
1:1 ~ ~

aggf(’ﬂ '= Pm + Cm,
dove p,, rappresenta il punteggio di performance (performance_score) nor-
malizzato del modello m, mentre ¢, rappresenta il punteggio di complessita
(complexity_rank) normalizzato del modello m.
Nella strategia Complexity Weighted la complessita € maggiormente pena-
lizzata tramite un fattore di scala w, (ad esempio w, = 2 nella variante 1:2 e
w. = 3 nella variante extreme 1:3):

aggguk) = ﬁm + wC * Em.
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Nel Pareto Approach le due componenti vengono normalizzate e combinate
con pesi specifici (in questo contesto, 0.4 per la performance e 0.6 per la
complessita).

Nel caso in cui ci siano dei puntaggi pari, viene scelto il modello con minore
complessita normalizzata.

I risultati della procedura vengono documentati con una tabella riassun-
tiva che riporta per ciascun modello: numero totale di parametri/nodi,
performance_score, complexity_rank e punteggi aggregati per ciascuna
strategia. Inoltre, viene mostrata la classifica dei migliori modelli basata
sulla strategia Complexity Weighted.

Di seguito, il codice responsabile del ranking multi-criterio:

df_ranks = results_df.set_index(’Model’)
ranks = pd.DataFrame(index=df_ranks.index)

for metric, direction in metrics.items():
if direction == ’'max’:
ranks[f"{metric}_rank"] = df_ranks[metric]
.rank(ascending=False, method=’average’)
elif direction == 'min’:
ranks[f"{metric}_rank"] = df_ranks[metric]

.rank(ascending=True, method=’average’)

ranks[’Complexity_rank’] = df_ranks[’Parameters’]

.rank(ascending=True, method=’average’)

performance_cols = [col for col in ranks.columns
if col.endswith(’_rank’) and col != ’Complexity_rank’]
ranks[’performance_score’] = ranks[performance_cols]

.mean(axis=1)

ranks[’equal_weight_score’] = ranks[’performance_score’] +
ranks[’Complexity_rank’]
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ranks[’complexity_weighted_score’] = ranks[’performance_score’] +
(2 * ranks[’Complexity_rank’])

ranks[’extreme_complexity_score’] = ranks[’performance_score’] +

(3 * ranks[’Complexity_rank’])

performance_norm = (
ranks[’performance_score’] - ranks[’performance_score’].min()) /
(ranks[’performance_score’] .max() - ranks[’performance_score’].min())
complexity_norm = (
ranks[’Complexity_rank’] - ranks[’Complexity_rank’].min()) /
(ranks[’Complexity_rank’].max() - ranks[’Complexity_rank’].min())
ranks|[’pareto_score’] = 0.4 * performance_norm +

0.6 * complexity_norm

methods = {
"Equal Weight (1:1)’: ’equal_weight_score’,
"Complexity Weighted (1:2)’: ’complexity_weighted_score’,
"Extreme Complexity (1:3)’: ’extreme_complexity_score’,
"Pareto Approach (40:60)’: ’pareto_score’

results_summary = pd.DataFrame(index=df_ranks.index)
results_summary[’Performance_Score’] = ranks[’performance_score’]
results_summary[’Complexity_Rank’] = ranks[’Complexity_rank’]

results_summary[’Parameters’] = df_ranks[’Parameters’]

print("---")
print ("Best Models by Weighting Scheme")
print("---")
best_models_summary_data = {
"Weighting Scheme’: [],

117



"Best Model(s)’: []
}

for method_name, score_col in methods.items():

best_model = ranks[score_col].idxmin()
best_models_summary_data[’Weighting Scheme’].append(method_name)
best_models_summary_data[’Best Model(s)’].append(best_model)

summary_df = pd.DataFrame(best_models_summary_data)

print (summary_df.to_markdown(index=False))

print("\n---")
print("Detailed Ranking Table")
print(u___u)

ranking_display = pd.DataFrame(index=df_ranks.index)

ranking_display[’Parameters’] = df_ranks[’Parameters’]
.astype(int)

ranking_display[’Avg_Performance_Rank’] = ranks[’performance_score’]
.round(2)

ranking_display[’Complexity_Rank’] = ranks[’Complexity_rank’]
.astype(int)

for method_name, score_col in methods.items():
ranking_display[f’ {method_name.split()[0]}_Rank’] = ranks[score_col]
.rank() .astype(int)

ranking_display_sorted = ranking_display.sort_values(’Complexity_Rank’)

print (ranking_display_sorted.to_markdown())

print("\n---")
print ("Recommendation")

print("---")
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recommended_model

ranks[’complexity_weighted_score’]
Lidxmin(O

recommended_score = ranks.loc|
recommended_model,
"complexity_weighted_score’

1

recommended_params = df_ranks.loc[
recommended_model,

’Parameters’

1

recommended_mse = df_ranks.loc[
recommended_model,

"MSE_Test’

1

print (£"**RECOMMENDED MODEL:** {recommended_model}")
print (f"**Parameters:** {int(recommended_params):,}")
print (£"**MSE Test Score:** {recommended_mse:.4f}")

print (£"**Complexity-Weighted Rank Score:** {recommended_score:.3f}")

print (£"\n**TOP 3 MODELS** (Based on Complexity-Weighted Ranking):")
top_3 = ranks.sort_values(’complexity_weighted_score’).head(3)
for i, (model, row) in enumerate(top_3.iterrows(), 1):
params = int(df_ranks.loc[model, ’'Parameters’])
mse_score = df_ranks.loc[model, ’MSE_Test’]
print(£" {i}. **{model}** |
Parameters: {params:>8,} |
MSE: {mse_score:.4f} |

Score: {row[’complexity_weighted_score’]:.3f}")
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8.4.3 Fase 3: Conclusione finale

La conclusione finale sintetizza le evidenze emerse dalla fase di analisi e
dalla procedura di selezione. La sintesi riporta i punti di forza ed i limiti del
modello selezionato, confronta i margini numerici rispetto ai concorrenti e
valuta la sostenibilita operativa in funzione della complessita stimata. Si
motivano le scelte effettuate mediante riferimenti chiari ai barplot ed alle

tabelle con le metriche.

8.5 Studio di ablazione

Lobiettivo dello studio di ablazione e valutare il compromesso tra compres-
sione del modello, intesa come numero di parametri attivi e rapporto di
compressione, e mantenimento delle prestazioni predittive. Lo scopo finale
e confrontare le prestazioni dei modelli alle quattro soglie di pruning prefis-
sate (30%, 50%, 70%, 90%), analizzando per ciascuna soglia sia la retention
delle metriche target sia il rapporto di compressione, al fine di identificare
quale modello offra il miglior trade-off tra efficienza computazionale e

qualita predittiva.

8.5.1 L1 pruning su MLP e KAN

La tecnica di pruning impiegata é il L1 post-training pruning, applicato
ai pesi lineari della MLP ed ai coefficienti spline della KAN. Sono stati
testati diversi pruning ratios, specificamente 1'insieme {0.0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95}. Ciascuna versione del modello potata ¢
stata valutata, sia sul test set che sul train set, utilizzando le metriche
definite precedentemente. Per ogni configurazione, sono stati calcolati il
numero totale di parametri, il numero di parametri attivi post-pruning ed
il rapporto di compressione. Per interpretare i risultati, sono state definite
alcune definizioni operative. La baseline ¢ il modello non potato (pruning
ratio = 0.0). Il punto di degrado significativo ¢ il primo pruning ratio che

comporta una perdita relativa in R?>/F1-Weighted superiore al 5% rispetto
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alla baseline. Il best trade-off ¢ il punto di massima compressione che causa
una perdita relativa in R?/F1-Weighted inferiore o uguale al 2%.
Il codice mostrato di seguito racchiude le principali funzioni che costitui-

scono il nucleo dello studio sull’ablazione.

class PruningAblationStudy:
def __init__(self, device="cpu’):
self.device = device

self.pruning_results = []

def get_model_sparsity(self, model):
if hasattr(model, ’width’) and hasattr(model, ’act_fun’):
try:
total_params = count_params(model)

zero_params = 0

for i in range(len(model.width) - 1):

if i < len(model.act_fun):
layer = model.act_fun[i]
if hasattr(layer, ’'coef’) and layer.coef is not None:
zero_params += float(torch.sum(layer.coef == 0))

return zero_params / total_params

if total_params > 0 else 0.0

except Exception as e:
print(f" Error calculating KAN sparsity: {e}'")

return 0.0

else:
zero_params = 0

total_params = count_params(model)

for module in model.modules():
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if isinstance(module, torch.nn.Linear):

if hasattr(module, ’weight’):

zero_params += float(torch.sum(module.weight == 0))
if hasattr(module, ’bias’) and module.bias is not None:

zero_params += float(torch.sum(module.bias == 0))

return zero_params / total_params

if total_params > 0 else 0.0

def count_active_parameters(self, model):
if hasattr(model, ’width’) and hasattr(model, ’act_fun’):
try:
active_params = 0
for i in range(len(model.width) - 1):
if i < len(model.act_fun):
layer = model.act_fun[i]
if hasattr(layer, ’coef’) and layer.coef is not None:

active_params += float(torch.sum(layer.coef != 0))

return int(active_params)
except:

return count_params (model)

else:
active_params = 0
for module in model.modules():
if isinstance(module, torch.nn.Linear):
if hasattr(module, ’weight’):
active_params += float(torch.sum(module.weight != 0))
if hasattr(module, ’bias’) and module.bias is not None:

active_params += float(torch.sum(module.bias != 0))

return int(active_params)
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def apply_l1_pruning(self, model, pruning_ratio):
pruned_model = copy.deepcopy(model)

if hasattr(model, ’width’) and hasattr(model, ’act_fun’):
try:
if pruning_ratio == 0.0:

return pruned_model

kan_modules_to_prune = []
for i in range(len(model.width) - 1):
if i < len(model.act_fun):
layer = pruned_model.act_fun[i]
if hasattr(layer, ’coef’) and layer.coef is not None:
temp_module = torch.nn.Linear(l, 1, bias=False)
temp_module.weight = torch.nn
.Parameter(layer.coef.view(-1, 1))
kan_modules_to_prune
.append((temp_module, ’weight’))

if kan_modules_to_prune:
prune.global_unstructured(
kan_modules_to_prune,
pruning_method=prune.L1lUnstructured,
amount=pruning_ratio,

)

idx = 0
for i in range(len(model.width) - 1):
if i < len(model.act_fun):
layer = pruned_model.act_fun[i]
if hasattr(layer, ’coef’) and layer.coef is not None:
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original_shape = layer.coef.shape

mask = kan_modules_to_prune[idx][0]
.weight_mask.view(original_shape)

layer.coef.data = layer.coef.data * mask

idx += 1

for module, param_name in kan_modules_to_prune:

prune.remove(module, param_name)

print(f" Applied L1 pruning to KAN
with ratio: {pruning_ratio:.3f}")

return pruned_model

except Exception as e:
print(f" Error during KAN L1 pruning: {e}")
return model

else:

modules_to_prune = []

for module in pruned_model.modules():

if isinstance(module, torch.nn.Linear):
modules_to_prune.append((module, ’weight’))
if hasattr(module, ’bias’) and module.bias is not None:

modules_to_prune.append((module, ’bias’))

if modules_to_prune:
prune.global_unstructured(
modules_to_prune,
pruning_method=prune.L1Unstructured,
amount=pruning_ratio,

)
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for module, param_name in modules_to_prune:

prune.remove(module, param_name)
print(f" Applied L1 pruning to MLP
with ratio: {pruning_ratio:.3f}")

return pruned_model

def run_pruning_study(self, model, model_name,

X_test, y_test, X_train, y_train, pruning ratios):

if hasattr(model, ’width’) and hasattr(model, ’act_fun’):

model_type = "KAN"
else:
model_type = "MLP"

total_params = count_params(model)

print (f"Total Parameters: {total_params:,}")

for pruning_ratio in pruning_ratios:
print(£"\nTesting {model_type} pruning ratio:
{pruning_ratio:.4f}")

if pruning_ratio == 0.0:
pruned_model = model
sparsity = 0.0
active_params = total_params
else:
pruned_model = self
.apply_11_pruning(model, pruning_ratio)
pruned_model.to(self.device)
sparsity = self
.get_model_sparsity(pruned_model)
active_params = self
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.count_active_parameters(pruned_model)

metrics = self.evaluate_pruned_model (
pruned_model, model_name, X_test, y_test, X_train, y_train

)

compression_ratio = total_params / active_params

if active_params > 0 else float(’inf’)

result = {
'model_name’: model_name,
’model_type’: model_type,
’pruning_ratio’: pruning_ratio,
’sparsity’: sparsity,
"total_params’: total_params,
’active_params’: active_params,
’compression_ratio’: compression_ratio,

'metrics’: metrics

self.pruning_results.append(result)

8.5.2 Ensemble pruning su Random Forest e XGBoost

La metodologia di pruning varia per i due modelli. Per il Random Forest, e
stato utilizzato un Rank-Based Pruning: gli alberi sono stati ordinati per
importanza e quelli meno rilevanti sono stati rimossi fino a raggiungere il
pruning_ratio desiderato. Per XGBoost, si € optato per un Cumulative
Pruning, mantenendo solo le prime iterazioni di boosting fino al numero
corrispondente a (1 — pruning_ratio) della lunghezza originale, troncando
di fatto la sequenza di boosting. Anche in questo caso, i pruning ratios testati
sono stati 0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95. Per ogni versione
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potata, sono stati calcolati il numero totale e residuo di alberi, il rapporto di
compressione e le metriche di performance su train e test set. Le definizioni
operative di baseline, punto di degrado significativo e best trade-off sono
rimaste le medesime.

Il codice mostrato di seguito racchiude le principali funzioni che costitui-

scono il nucleo dello studio sull’ablazione:

class EnsemblePruningAblationStudy:
def __init__(self):
self.pruning_results = []

def rank_based_pruning_rf(self, rf_model, pruning ratio):
if pruning_ratio == 0.0:

return rf_model, list(range(len(rf_model.estimators_)))

tree_importances = []
for i, tree in enumerate(rf_model.estimators_):
tree_importance = np.sum(tree.feature_importances_)

tree_importances.append((i, tree_importance))
tree_importances.sort(key=lambda x: x[1], reverse=True)

n_trees_to_keep = max(1,

int(len(rf_model.estimators_) * (1 - pruning_ratio)))

selected_indices = [idx
for idx, _ in tree_importances[:n_trees_to_keep]]
selected_indices.sort()

pruned_rf = copy.deepcopy(rf_model)
pruned_rf.estimators_ = [rf_model.estimators_[i]
for i in selected_indices]

pruned_rf.n_estimators = len(selected_indices)
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return pruned_rf, selected_indices

def cumulative_pruning_xgb(self, xgb_model, pruning ratio):
if pruning_ratio == 0.0:
return xgb_model, list(range(xgb_model.n_estimators))

total_trees = xgb_model.n_estimators

num_classes = xgb_model.n_classes_
total_rounds = total_trees // num_classes
keep_rounds = max(l, int(total_rounds * (1 - pruning_ratio)))

n_keep = keep_rounds * num_classes

pruned_model = copy.deepcopy(xgb_model)
pruned_model .n_estimators = n_keep

def predict_pruned(self, X):
dmat = xgb.DMatrix(X)
raw_predictions = self.get_booster()
.predict(dmat, iteration_range=(0, n_keep))
predicted_labels = np.argmax(raw_predictions, axis=1)

return predicted_labels

def predict_proba(self, X):
dmat = xgb.DMatrix(X)
raw_predictions = self.get_booster()
.predict(dmat, iteration_range=(0, n_keep))
proba = np.exp(raw_predictions) /
np.sum(np.exp(raw_predictions), axis=1, keepdims=True)

return proba

pruned_model .predict = types
.MethodType(predict_pruned, pruned_model)

pruned_model .predict_proba = types
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.MethodType(predict_proba, pruned_model)

selected_indices = list(range(n_keep))

return pruned_model, selected_indices

def calculate_ensemble_sparsity(self, original_count, pruned_count):
return (original_count - pruned_count) / original_count

if original_count > 0 else 0.0

def run_rf pruning study(self, rf_model, model_name,
X_test, y_test, X_train, y_train, pruning_ratios):

print (f"\n=== Rank-Based Pruning Study for {model_name} ===")

total_trees = len(rf_model.estimators_)
print(f"Total Trees: {total_trees:,}")

for pruning_ratio in pruning_ratios:
print(£f"\nTesting RF pruning ratio: {pruning_ratio:.2f}")

pruned_model, selected_indices = self

.rank_based_pruning_rf(rf_model, pruning_ratio)

remaining_trees = len(selected_indices)
sparsity = self

.calculate_ensemble_sparsity(total_trees, remaining_trees)
compression_ratio = total_trees / remaining_trees

if remaining_trees > 0 else float(’inf’)

metrics = self.evaluate_pruned_ensemble(
pruned_model, model_name, X_test, y_test, X_train, y_train

)

result = {

129



"model_name’: model_name,

'model_type’: ’Random Forest’,
’pruning_method’: ’Rank-Based’,
’pruning_ratio’: pruning_ratio,
’sparsity’: sparsity,

’total_trees’: total_trees,
’remaining_trees’: remaining_trees,
’compression_ratio’: compression_ratio,
'metrics’: metrics

self.pruning_results.append(result)

def run_xgb_pruning_study(self, xgb_model, model_name,
X_test, y_test, X_train, y_train, pruning_ratios):

print (f"\n=== Cumulative Pruning Study for {model_name} ==="

total_trees = xgb_model.n_estimators
print(f"Total Trees: {total_trees:,}")

print (£"Number of Classes: {xgb_model.n_classes_}")

for pruning_ratio in pruning_ratios:

print(£f"\nTesting XGB pruning ratio: {pruning_ratio:.2f}")

pruned_model, selected_indices = self

.cumulative_pruning_xgb(xgb_model, pruning_ratio)

remaining_trees = len(selected_indices)
sparsity = self

.calculate_ensemble_sparsity(total_trees, remaining_trees)
compression_ratio = total_trees / remaining_trees

if remaining_trees > 0 else float(’inf’)
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metrics = self.evaluate_pruned_ensemble(

pruned_model, model_name, X_test, y_test, X_train, y_train

)

result = {
'model_name’: model_name,
"model_type’: ’'XGBoost’,
’pruning_method’: ’Cumulative’,
’sparsity’: sparsity,
’pruning_ratio’: pruning_ratio,
"total_trees’: total_trees,
’remaining_trees’: remaining_trees,
’compression_ratio’: compression_ratio,

'metrics’: metrics

self.pruning_results.append(result)

8.5.3 Confronto complessivo

Questa sezione si concentra sul confronto sistematico degli studi di ablazio-
ne eseguiti su ciascun modello, con I'obiettivo di identificare quale modello
offra il miglior compromesso tra qualita predittiva e compressione. 1l
confronto viene effettuato sulle quattro soglie di pruning prefissate (30%,
50%, 70%, 90%), valutando per ciascuna soglia la retention delle metriche e
il rapporto di compressione, cosi da evidenziare il modello pit efficiente in
termini di trade-off tra prestazioni e riduzione dei parametri.

Le informazioni principali vengono presentate in forma tabellare, ripor-
tando baseline delle metriche principali, best trade-off e compressione
ottenuta per ciascun modello, consentendo un confronto rapido e chiaro
delle prestazioni relative. I'analisi delle soglie tipiche permette inoltre di

osservare trend di stabilita, degrado o miglioramento dei modelli, fornendo
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indicazioni pratiche per la scelta del modello pit1 adatto a scenari di deploy-

ment con vincoli di memoria o risorse computazionali.

def compare_all_pruning_methods(metrics):
all_models_comparison = []

for _, result in results_df.iterrows():
if result[’pruning_ratio’] in [0.0, 0.3, 0.5, 0.7, 0.9]:
all_models_comparison.append({

"Model’: result[’model_name’],

"Type’: ’Neural Network’,

"Pruning_Method’: L1 Norm’,

"Pruning_Ratio’: result[’pruning_ratio’],

’Metrics’: result[’metrics’],

"Compression’: result[’compression_ratio’],

"Components’: f"{result[’active_params’]}/{result[’total_params’]}"

D)

for _, result in ensemble_results_df.iterrows():
if result[’pruning_ratio’] in [0.0, 0.3, 0.5, 0.7, 0.9]:
pruning_method = ’Rank-Based’

if result[’model_name’] == ’Random Forest’ else ’Cumulative’
all_models_comparison.append({

’Model’ : result[’model_name’],

"Type’: ’Ensemble’,

"Pruning_Method’: pruning_method,

"Pruning_Ratio’: result[’pruning_ratio’],

"Metrics’: result[’metrics’],

"Compression’: result[’compression_ratio’],

"Trees’: f"{result[’remaining_trees’]}/{result[’total_trees’]}"

D)
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comparison_df = pd.DataFrame(all_models_comparison)

for m in metrics:

pivot = comparison_df.pivot_table(
values=mn,
index=[’Model’, ’Type’, ’'Pruning_Method’],
columns="Pruning_Ratio’,
fill_value=np.nan

)

print (f"\n{m} Performance Across Pruning Levels:")
print (pivot.round(4))

pruning_levels = [0.3, 0.5, 0.7, 0.9]

for pruning_level in pruning_levels:

print(£f"\n{’-"*603}")

print (f"PERFORMANCE RETENTION AT {int(pruning_level*100)3}% PRUNING")
print(£"{’-"*60}")

retention_summary = []

for model in comparison_df[’Model’].unique():

model_data = comparison_df[comparison_df[’Model’] == model]
baseline = model_data[model_data[’'Pruning Ratio’] == 0.0]
pruned = model_data[model_data[’Pruning_Ratio’] == pruning_level]

if len(baseline) > 0 and len(pruned) > 0:
baseline_metric = baseline.iloc[0] [metrics[0]]
pruned_metric = pruned.iloc[0] [metrics[0]]
retention = pruned_metric / baseline_metric

if baseline_metric != ® else 0
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retention_summary.append({
’Model’ : model,
"Type’ : baseline.iloc[0][’Type’],
’Method’: baseline.iloc[0][’Pruning_Method’],
f’Baseline_{metrics[0]}’: baseline_metric,
f’Pruned_{metrics[0]}’: pruned_metric,
"Retention’: retention,
’Compression’: pruned.iloc[0®][’Compression’]

D)

if retention_summary:
retention_df = pd.DataFrame(retention_summary)
.sort_values(’Retention’, ascending=False)

print(retention_df.round(4))

best_model = retention_df.iloc[0]

print (£"\nBEST PRUNING METHOD AT {int(pruning_level*100)3}% LEVEL:")
print (f"Model: {best_model[’Model’]} ({best_model[’Type’]1})™)

print (f"Method: {best_model[’Method’]}")

print (f"Performance Retention: {best_model[’Retention’]:.1%}")

print (f"Compression Achieved: {best_model[’Compression’]:.1£f}x")
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Capitolo 9

Primo Caso Studio: Regressione

su emissioni di automobili

9.1 Introduzione

Il presente caso studio affronta la previsione delle emissioni di CO2 di veicoli
a partire da caratteristiche tecniche e di consumo (anno di produzione,
cilindrata, tipo di trasmissione e carburante, consumo L/100km, ecc.). 1l
dataset utilizzato deriva dalla fusione di tre sorgenti ufficiali: i dati originali
provengono dalla Vehicle Certification Agency (VCA) del Department for
Transport del Regno Unito, dal sito ufficiale del Governo canadese e dal
Instituto para la Diversificacién y Ahorro de la Energia (IDAE), istituzione
spagnola; il materiale e stato fornito in forma pre-elaborata da terze parti
[41]. Per questo motivo, la trattazione qui riportata si concentra sulle fasi di
modellazione, validazione ed analisi dei risultati, piti che sulle operazioni
di preprocessing. Inoltre, sono condotti studi di ablazione che valutano
I'impatto di tecniche di pruning sui diversi tipi di modello per investigare il
trade-off tra compressione e mantenimento della qualita predittiva.

Nel capitolo vengono presentati, in ordine: una sintetica nota sull’origine e lo
stato del dataset; la pipeline di preprocessing e le scelte di split; la descrizione
delle procedure di training e ottimizzazione; i risultati principali con le

valutazioni comparative e gli esperimenti di ablazione con le considerazioni
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finali sul compromesso performance/complessita.

9.2 Data preparation

9.2.1 Riassunto delle principali trasformazioni

Le principali trasformazioni applicate come descritto in [41]: I'unione delle
tre sorgenti in un unico dataframe coerente; 1'omogeneizzazione degli
schemi attraverso la mappatura e la ridenominazione delle colonne per
ottenere uno schema comune; la pulizia testuale con la standardizzazione e
capitalizzazione dei valori e la rimozione di suffissi o annotazioni spurie.
Inoltre, e stata effettuata una rimozione conservativa, utilizzando la mediana
per riempire i valori mancanti numerici significativi, con eliminazioni
conservative per categoria quando necessario. Infine, sono stati applicati
dei filtri per eliminare righe prive della variabile target (CO2_Emissions) o

prive di attributi ritenuti fondamentali per I’allenamento dei modelli.

9.3 Addestramento dei modelli

I dataset finale comprende le seguenti features:
* Year: anno di produzione del veicolo (numerica);
* Manufacturer: casa automobilistica (categorica);
* Model: nome del modello (categorica);
e Engine_cm3: cilindrata in cm? (numerica);
* Transmission_type: Automatic / Manual (categorica);
* Fuel_type: Petrol / Diesel / LPG / ... (categorica);

e Fuel_consumption: L/100km (numerica).
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Per poter essere utilizzate negli algoritmi di machine learning, le variabili
categoriche sono state codificate in formato numerico tramite One-Hot
Encoding.

La variabile target da prevedere & CO2_Emissions (g/km).

9.3.1 Strategia di training comune e griglie di iperparametri

La strategia di training é stata mantenuta coerente per tutti i modelli consi-
derati e si € basata su una Nested Cross-Validation, con un KFold esterno a
5 fold e uno interno a 3 fold. La configurazione che minimizzava la MSE
di validazione interna e stata selezionata come ottimale per ogni outer
split. Per le reti neurali, la procedura ha distinto i parametri di modello
da quelli di addestramento, con training condotto tramite ottimizzatore
Adam e funzione di perdita MSELoss. Il numero massimo di epoche &
stato fissato a 1000, ma controllato da un meccanismo di Early Stopping
per interrompere l’addestramento in caso di mancato miglioramento. Per
i modelli ensemble, la logica é rimasta analoga: ogni configurazione di
iperparametri ¢ stata valutata nei fold interni e quella con la migliore media
di MSE é stata riaddestrata sull’intero sottoinsieme interno e testata sull’ou-
ter fold corrispondente. I risultati finali di ciascun outer fold includono i
migliori iperparametri individuati e le metriche di test, successivamente
aggregati per la costruzione delle statistiche riassuntive e degli intervalli di
confidenza.

def nested_random_search_neural (model_builder, param_dist, dataset,
outer_folds=5, inner_folds=3, n_iter=10,
early_patience=10, early_min_delta=1le-4):
train_keys = [’1r’, ’batch_size’, '12_lambda’]
outer_cv = KFold(
n_splits=outer_folds,
shuffle=True,
random_state=42)

results = []
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for train_idx, test_idx in outer_cv.split(
range(len(dataset))):
inner_train = Subset(dataset, train_idx)
inner_test = Subset(dataset, test_idx)
best_val_loss = float(’inf’)
best_model_params, best_train_params = None, None

for params in ParameterSampler(
param_dist, n_iter=n_iter, random_state=42):
model_params = {k: v for k, v in params.items()
if k not in train_keys}
train_params = {k: v for k, v in params.items()

if k in train_keys}

inner_cv = KFold(
n_splits=inner_folds, shuffle=True, random_state=42)
val_losses = []
for subtrain_idx, val_idx in inner_cv.split(range(len(inner_train))):
subtrain = Subset(inner_train, subtrain_idx)
valset = Subset(inner_train, val_idx)
train_loader = Dataloader(
subtrain,
batch_size=train_params[’batch_size’],
shuffle=True)
val_loader = Dataloader(
valset,
batch_size=train_params[’batch_size’],
shuffle=False)

model = model_builder(**model_params)
if hasattr(model, ’speed’):
model . speed()

model.to(device)
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optimizer = optim.Adam(
model .parameters(),
lr=train_params[’1lr’],
weight_decay=train_params.get(
’12_lambda’, 0.0)
)
stopper = EarlyStopper(
patience=early_patience,
min_delta=early_min_delta

)

for epoch in range(1000):

train_epoch(

model, train_loader,

optimizer, nn.MSELoss(),

12_lambda=train_params.get(

’12_lambda’, 0.0)

)
val_loss = eval_loss(model, val_loader, nn.MSELoss())
if stopper.early_stop(val_loss):

break

val_losses.append(eval_loss(model, val_loader, nn.MSELoss()))

mean_val = np.mean(val_losses)

if mean_val < best_val_loss:
best_val_loss = mean_val
best_model_params = model_params
best_train_params = train_params

full_train_loader = Dataloader(
inner_train,

batch_size=best_train_params[’batch_size’],
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shuffle=True)

test_loader = Dataloader(

inner_test,
batch_size=best_train_params[’batch_size’],
shuffle=False)

final_model = model_builder(**best_model_params)
if hasattr(final_model, ’speed’):
final_model.speed()

final_model.to(device)

optimizer = optim.Adam(
final_model .parameters(),
lr=best_train_params[’1lr’],
weight_decay=train_params.get(
’12_lambda’, 0.0))

stopper = EarlyStopper(
patience=early_patience,
min_delta=early_min_delta)

for epoch in range(1000):
train_epoch(final_model, full_train_loader, optimizer,
nn.MSELoss(), 12_lambda=best_train_params.get(
’12_lambda’, 0.0))
if stopper.early_stop(eval_loss(
final_model, full_train_loader, nn.MSELoss())):
break

test_loss = eval_loss(
final_model,
test_loader,
nn.MSELoss ()

)
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results.append((
best_model_params,
best_train_params,
test_loss)

)

return results

def nested_random_search_ensemble(model_builder, param_dist,
X_data, y_data, outer_folds=5,
inner_folds=3, n_iter=10):
outer_cv = KFold(
n_splits=outer_folds,
shuffle=True,
random_state=42)

results = []

for train_idx, test_idx in outer_cv.split(X_data):

X_inner_train, X_inner_test

X_data.iloc[train_idx],
X_data.iloc[test_idx]

y_inner_train, y_inner_test

y_data.iloc[train_idx],

y_data.iloc[test_idx]

best_val_mse = float(’inf’)

best_params = None

for params in ParameterSampler(

param_dist, n_iter=n_iter, random_state=42):
inner_cv = KFold(

n_splits=inner_folds,

shuffle=True,
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random_state=42)

val_mses = []

for subtrain_idx, val_idx in inner_cv.split(X_inner_train):
X_subtrain, X_val =

X_inner_train.iloc[subtrain_idx],
X_inner_train.iloc[val_idx]

y_subtrain, y_val =

y_inner_train.iloc[subtrain_idx],

y_inner_train.iloc[val_idx]

model = model_builder(**params)
model.fit(X_subtrain, y_subtrain)

val_pred = model.predict(X_val)

val_mse = mean_squared_error(y_val, val_pred)

val_mses.append(val_mse)
mean_val_mse = np.mean(val_mses)

if mean_val_mse < best_val_mse:

best_val_mse = mean_val_mse

best_params = params

final_model = model_builder (**best_params)
final_model.fit(X_inner_train, y_inner_train)
test_pred = final_model.predict(X_inner_test)

test_mse = mean_squared_error(y_inner_test, test_pred)

results.append((best_params, {}, test_mse))

return results

Di seguito sono riportate le griglie di iperparametri entro cui la Random
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Search esplora le combinazioni, al fine di individuare quelle che forniscono
i risultati migliori per ciascun modello.
MLP (Random Search: n = 15)

e input_dim: dimensionalita input

e hidden_sizes: [(32,32), (64,64), (128,)]

dropout: [0.1,0.2, 0.5]

1r: [1073,1074]

e batch_size: 32

12_lambda: [0,107°, 1074, 1073]
KAN (Random Search: n = 6)

e input_dim: dimensionalita input

e width: [(84), (16,8)]

e grid: [5,10]

e k: [2,4]

* seed: 0

e Ir: 1073

® batch_size: 32

e 12_lambda: [0,107°,107%, 107°]
Random Forest (Random Search: n = 32)

e n_estimators: [100, 200, 300, 500]

e max_depth: [10, 20, 30]

e min_samples_split: [10, 20, 30]
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e min_samples_leaf: [5, 10]
* max_features: ['sqrt’, log2’]
e random_state: 42
XGBoost (Random Search: n = 677)
e n_estimators: [100, 200, 300]
e max_depth: [3,4,5, 6]
e learning_rate: [0.01,0.05, 0.1]
e subsample: [0.7,0.8, 0.9]
e colsample_bytree: [0.7,0.8, 0.9]
e reg_alpha: [0.5,1.0, 2.0]
e reg_lambda: [2.0,5.0,10.0]

e random_state: 42

9.3.2 Scelte architetturali finali

Nella Tabella 9.1) vengono mostrate le scelte finali, dopo 1'ottimizzazione
degli iperparametri, utilizzate per training, valutazioni comparative e studio

di ablazione.

144



Tabella 9.1: Configurazioni finali dei modelli usati per il Training, dopo
aver effettuato I'ottimizzazione degli iperparametri.

MLP input_dim = 1048, hidden_sizes = (128,),
dropout = 0.1; ottimizzatore: Adam; lr =
le-3; 12_lambda = le-5, batch_size = 32.
Early stopping applicato.

KAN input_dim = 1048, width = (16,8), grid =
10, k = 4, seed = 0; ottimizzatore: Adam; 1r
= le-3; 12_lambda = le-4; batch_size = 32.
Early stopping applicato.

Random Forest n_estimators = 100, max_depth = 30,
min_samples_split = 20, min_samples_leaf
= 5, max_features = ’sqrt’, random_state =
42.

XGBoost n_estimators = 300, max_depth = 6,
learning _rate = 0.1, subsample = 0.8,
colsample_bytree = 0.7, reg_alpha = 2.0,

reg_lambda = 2.0, random_state = 42.
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9.4 Valutazione dei modelli

R Score (Train vs Test) MSE Test + CI95% MAE Test + CI95%

ML

7777777777 2.

KAN

Model

Random Forest

XGBoost Set XGBoost [H
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00 02 04 06 08 10 0 00 200 300 400 500 600 00 25 50 75 100 125 150 175 200
R® Score MSE MAE

MAPE (%) Test = CI95% R? Adjusted Test Model Complexity (Parameters)

.6 10°
R? Adjusted Parameter Count

Figura 9.1: Confronto visivo della complessita e prestazioni dei modelli,
utilizzando come metriche R%, MSE, MAE, MAPE e R? aggiustato.

Model MSE Train (CI95%) MSE Test (CI195%) R?Train R2Test R?Adj. Test MAE Test MAPE Test (CI95%) Max Error Test

MLP 589.72 (568.69 — 610.76)  605.28 (556.94 — 653.62)  0.8541 0.8467 0.8451 18.69 10.46 (9.91-11.01) 136.45
KAN 119.10 (112.34-125.86)  123.33 (110.11-136.54)  0.9705 0.9688 0.9687 8.63 4.63 (4.45-4.81) 108.35
RF 529.81 (510.10 - 549.51) 511.72 (465.44 - 558.00)  0.8717  0.8704 0.8654 15.98 10.89 (10.02 - 11.76) 134.95
XGBoost 12.42 (11.22 - 13.63) 17.52 (12.56 - 22.48) 0.9970 0.9956 0.9968 2.39 146 (1.31-1.62) 70.21

Tabella 9.2: Tabella riassuntiva delle prestazioni (MSE con CI95%, R?, MAE,
MAPE con CI95%), Max Error e complessita.

9.4.1 Analisi dei risultati sperimentali

L'analisi dei risultati ha messo in evidenza differenze significative tra le reti
neurali e i modelli ensemble, sia in termini di accuratezza sia di complessita
computazionale.

Per quanto riguarda le reti neurali, la MLP ha ottenuto un R? in test pari a
0.8467 e un R? aggiustato di 0.8451, con un errore quadratico medio (MSE)
di circa 605 e un errore assoluto medio (MAE) pari a 18.9. 1l valore di
MAPE si attesta attorno al 10.5%, mentre il massimo errore assoluto in test
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ha raggiunto circa 136.5. Queste prestazioni sono accettabili ma non parti-
colarmente competitive, soprattutto considerando il numero relativamente
elevato di parametri del modello (circa 134k), che lo rende piti pesante
da addestrare e meno efficiente rispetto ad altre soluzioni. La KAN ha
invece fornito risultati decisamente migliori, raggiungendo un R? test pari
a 0.9688 e un R? aggiustato di 0.9687, con un MSE di 123 e un MAE di 9.0.
Anche il MAPE, pari a circa 4.6%, conferma 1’elevata accuratezza, mentre il
massimo errore assoluto in test e stato di circa 108.3. Questo incremento
di precisione ¢ stato ottenuto al costo di una complessita ancora maggiore,
pari a circa 220k parametri. Nel complesso, le reti neurali hanno mostrato
un buon compromesso tra capacita di generalizzazione e accuratezza, ma
con differenze marcate: I'MLP & risultato il meno competitivo, mentre KAN
ha dimostrato una notevole capacita di modellare il problema, pur a fronte
di un costo parametrico elevato.

I modelli ensemble hanno mostrato un comportamento altrettanto interes-
sante. La Random Forest ha raggiunto un R? test pari a 0.8704 e un R?
aggiustato di 0.8654, con MSE di 511 e MAE di 15.9. Il MAPE ha raggiunto
un valore medio del 10.9%, mentre il massimo errore assoluto e stato di circa
134.9. Le sue prestazioni sono state quindi superiori a quelle del’'MLP, ma
comunque meno accurate di quelle della KAN e soprattutto di XGBoost. La
complessita del modello, stimata in circa 47k parametri, lo rende piti leggero
delle reti neurali, ma non sufficientemente performante da rappresentare la
soluzione migliore. XGBoost, al contrario, si e distinto come il modello pitt
efficace: il suo R? test ha raggiunto il valore di 0.9956 con un R? aggiustato
di 0.9968, accompagnato da un MSE di appena 17.5 e un MAE paria 2.5. 1l
MAPE medio in test si attesta intorno all’1.5%, e il massimo errore assoluto
e stato limitato a circa 70.2, valori che lo rendono nettamente superiore agli
altri modelli. Oltre all’elevata precisione, un ulteriore vantaggio di XGBoost
e l'efficienza, poiché la sua complessita e di soli 15k parametri, rendendolo

non solo il pitt accurato ma anche il pit1 scalabile e pratico da utilizzare.
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9.4.2 Selezione del miglior modello

I risultati hanno mostrato una chiara prevalenza del modello XGBoost
su tutte le metriche ponderate. Nello specifico, XGBoost & risultato il
modello vincente in Equal Weight (1:1), Complexity Weighted (1:2), Extreme
Complexity (1:3) e Pareto Approach (40:60).

Di seguito la tabella riassuntiva con i valori principali usati per il ranking
(valori ricavati dall’analisi finale):

Model Param_Count Perf_Score Compl_Rank Equal_Rank Ext_Rank Pareto_Rank

MLP 134,401 3.83 3 4 3 4
KAN 219,752 2.00 4 3 4 3
XGB 14,764 1.00 1 1 1 1
RF 46,944 3.17 2 2 2 2

Tabella 9.3: Riepilogo ranking: conteggio parametri, performance media
(rank-based) e ranks per metodo di aggregazione.

9.4.3 Conclusioni

L'analisi ha portato ad individuare XGBoost come il piti adatto al problema.
Questo modello non solo ha ottenuto le migliori performance assolute su
tutte le metriche diregressione, ma ha anche la complessita stimata pitibassa,
rendendolo la scelta ideale per un deployment operativo. La rete KAN ha
raggiunto un buon compromesso in termini di performance, sebbene la sua
complessita stimata sia risultata elevata in rapporto al beneficio predittivo
assoluto. MLP, pur avendo il maggior numero di parametri di XGBoost,
ha conseguito performance inferiori rispetto ad esso in termini di MSE e
MAE. Il Random Forest ha fornito risultati stabili e prestazioni intermedie,
ma non e riuscito a superare XGBoost nel compromesso tra performance e
complessita.

La classifica dei tre migliori modelli, secondo il criterio complexity-weighted

(dal migliore al peggiore), e la seguente:

1. XGBoost (Parametri: 14,764; MSE: 17.52)
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2. Random Forest (Parametri: 46,944; MSE: 511.72)

3. MLP (Parametri: 134,401; MSE: 605.28)

9.5 Studio di ablazione

9.5.1 Ablation study: L1 pruning su MLP e KAN

Figura riassuntiva

L1 Pruning Study
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Figura 9.2: Risultati dello studio L1 pruning per MLP e KAN, utilizzando
metriche principali e indicatori di compressione (MSE, R?, MAE, MAPE,
max error, sparsitd, parametri attivi, performance retention).
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Risultati

Model Total params Baseline R? Best trade-off Sign. degr.
MLP 134 401 0.8467  50% pruning (compression ~ 2.0x) 60% pruning
KAN 219752 0.9688  10% pruning (compression =~ 3.1x) 20% pruning

Tabella 9.4: Riepilogo dei punti di trade-off e dei punti di degrado osservati
nello studio L1 pruning.

La MLP ha una baseline R? = 0.8467. Fino a un pruning del 50%, non si
osserva una perdita significativa in R?, rappresentando il miglior trade-off
con una compressione di circa 2.0X. Il modello inizia a mostrare un degra-
do significativo intorno al 60% di pruning, dove MSE e MAE aumentano
drasticamente e 1'R? diventa negativo per pruning pili aggressivi. La com-
pressione massima sperimentata € di circa 20X (pruning del 95%), ma a
questo livello la performance é inutilizzabile.

La KAN, con una baseline R? = 0.9688, ha mostrato il suo miglior trade-off
empirico con un pruning del 10% con una compressione di circa 3.1X, man-
tenendo la performance praticamente invariata. Il degrado significativo
compare gia a circa il 20% di pruning, oltre il quale MSE e MAE aumentano
rapidamente. La massima compressione sperimentata & di circa 57.8%
(pruning del 95%), ma con una perdita di performance molto elevata.
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9.5.2 Ablation study: ensemble pruning su Random Forest
e XGBoost

Figura riassuntiva

Ensemble Pruning Study - Random Forest (Rank-Based) & XGBoost (Cumulative)
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Figura 9.3: Risultati dello studio di pruning per Random Forest (rank-based)
e XGBoost (cumulative), utilizzando metriche principali e indicatori di
compressione (MSE, R?, MAE, MAPE, max error, sparsitd, parametri attivi,
performance retention).

Risultati

Model Total components Baseline (R?) Best trade-off Sign. degr.

RF 100 trees 0.8704  95% (compression 20.0x) no degr. rilevata
XGB 300 trees 0.9956 90% (compression 10.3x)  95% pruning

Tabella 9.5: Riepilogo sintetico dei punti di trade-off osservati per i due
ensemble.

XGBoost ha dimostrato di essere molto robusto anche con pruning aggres-
sivi, mantenendo una perdita trascurabile in R? fino ad una riduzione del
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70-80% degli estimators. Il miglior trade-off empirico si é verificato al 90%
di pruning, mantenendo 29 alberi su 300, con una compressione di circa
10.3x ed una perdita relativa di R? di appena 1'1.3%. Oltre questa soglia, le
performance calano rapidamente.

Nel caso del Random Forest, il pruning rank-based ha mostrato una tenden-
za a mantenere o addirittura a migliorare leggermente la generalizzazione,
riducendo l'overfitting. L'esperimento ha rivelato che il modello rimane
stabile anche con pruning aggressivi: mantenendo solo 5 alberi su 100 (95%
di pruning, compressione 20x), I'R? sul test set non peggiora e, in alcuni

casi, migliora rispetto alla baseline.

9.5.3 Ablation study — Confronto complessivo (Neural

Networks vs Ensemble)

Figure riassuntive

B: Studio di Ablazione Random Fore-
A: Studio di Ablazione MLP e KAN st (Rank-based) e XGBoost (cumula-
(L1 pruning). tive).

Figura 9.4: Risultati sintetici degli studi di ablazione.
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Riepilogo

Model Baseline R? Best trade-off Compression

XGB 0.9956  0.9823 @90% pr  ~ 10.3%
RF 0.8704 09219 @95% pr  ~ 20.0x
MLP 0.8467  0.8467 @ 50% pr ~ 2.0x
KAN 0.9688  0.9688 @ 10% pr ~ 3.1

Tabella 9.6: Riepilogo sintetico dei principali punti di trade-off e compres-
sione.

Confronto su soglie tipiche (30%, 50%, 70%, 90%)

Ad un pruning del 30%, Random Forest e XGBoost mantengono le pre-
stazioni quasi invariate (R? ~ 0.894 e 0.995 rispettivamente), mentre la
MLP rimane stabile (R? = 0.8467). La KAN, al contrario, degrada molto
rapidamente (R? ~ 0.364).

Con un pruning del 50%, XGBoost conserva un R? ~ 0.994, e Random
Forest migliora ulteriormente la generalizzazione (R?> ~ 0.904). La MLP
resta stabile, mentre la KAN crolla sotto lo 0.

Al70% di pruning, XGBoost si dimostra ancora robusto (R? ~ 0.993, con una
compressione di 3.3x. Il Random Forest continua a migliorare (R? ~ 0.917),
mentre la MLP e la KAN subiscono un forte degrado, con un R? negativo.
A un pruning del 90%, Random Forest mostra la migliore performance in
termini di retention (R? ~ 0.9296) con una compressione di 11x. Anche
XGBoost mantiene buone prestazioni (R? ~ 0.9823, compressione 10.3%),

mentre MLP e KAN risultano completamente compromessi.

Conclusioni

1. XGBoost si conferma il modello piu stabile sotto pruning aggressivo,
mantenendo un R? > 0.98 ed una compressione di circa 10.3X fino ad
un pruning del 90%.
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2. Per il Random Forest, il pruning rank-based porta ad un notevole
miglioramento della generalizzazione, con un R? che sale a 0.9296 con
un pruning del 90% ed una compressione di circa 11.1x.

3. La MLP tollera il pruning fino al 50% (compressione 2X) senza perdita
di R?, ma degrada rapidamente oltre questa soglia.

4. La KAN & estremamente sensibile al pruning: gia al 20% I'R? scende
a circa 0.893, e crolla sotto lo 0 oltre il 40-50%.
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Capitolo 10

Secondo Caso Studio:
Classificazione di PM2.5

10.1 Introduzione

I1 presente caso studio si occupa della classificazione dei livelli di PM2.5,
polveri fini inquinanti, utilizzando un dataset nazionale di misurazioni
orarie provenienti da 453 citta indiane nel periodo 2010-2023, arricchito
con variabili meteorologiche. I dati utilizzati sono stati forniti dal Central
Pollution Control Board (CPCB), portale ufficiale del Governo indiano per il
monitoraggio e il controllo dell’'inquinamento, resi pubblicamente disponi-
bili sul sito istituzionale (https://cpcb.nic.in). In questo caso di studio,
le operazioni di caricamento, pulizia, gestione dei missing, individuazione
degli outlier, ricampionamento ed aggregazione costituiscono parte inte-
grante del workflow sperimentale e sono descritte nelle sezioni successive.
Gli obiettivi del caso studio sono: (i) trasformare la previsione delle con-
centrazioni di PM2.5 in un problema di classificazione ordinata secondo le
classi AQI (GOOD — HAZARDOUS) per garantire interpretabilita applica-
tiva; (ii) confrontare i quattro modelli precedentemente definiti e valutare
I'effetto delle scelte di preprocessing, del feature engineering temporale
(lag, componenti cicliche), delle tecniche di bilanciamento e delle procedure

di ottimizzazione sugli indicatori di performance. Per una stima robusta
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della generalizzazione si utilizza una validazione con criterio temporale e
si forniscono intervalli di confidenza per le principali metriche.

Nel capitolo vengono presentati, in sequenza: una nota sulle sorgenti e
la composizione del dataset; la pipeline di preprocessing e le scelte di
indicizzazione/aggregazione; le tecniche di feature engineering e la di-
scretizzazione in classi AQI; la strategia di training e ottimizzazione; i
risultati quantitativi (metriche aggregate con CI95% e confusion matrix);
infine gli studi di ablazione e le considerazioni finali sul compromesso tra

performance e complessita per scenari di deployment.

10.2 Data preparation

Questa sezione descrive in dettaglio le operazioni svolte per il caricamento,
la normalizzazione, la pulizia e I'arricchimento del dataset utilizzato nel
caso studio. Lo scopo principale della fase di Data preparation é trasformare
i dati grezzi in una rappresentazione coerente, completa e utilizzabile per

la successiva fase di allenamento.

10.2.1 Fonti e descrizione generale del dataset

Il dataset principale utilizzato nello studio raccoglie misurazioni relative
alla qualita dell’aria in numerose stazioni di monitoraggio presenti in 453
citta indiane per il periodo temporale 2010-2023. Le osservazioni includono
sia concentrazioni di inquinanti sia variabili meteorologiche ed ambientali.
Un file ausiliario, denominato stations_info.csv, contiene la mappatura tra
i file contenenti le misure e informazioni di contesto (stato, citta, agenzia
responsabile, data di inizio rilevamento), permettendo in tal modo una

gestione centralizzata dei metadati associati alle stazioni di monitoraggio.

10.2.2 Caricamento dati e organizzazione iniziale

Il caricamento del dataset ¢ stato effettuato tramite la lettura dei file compres-
si estratti in una directory locale o su Google Colab. Per ogni file contenente
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le misure di una singola stazione, sono state eseguite diverse operazioni.
Innanzitutto, il contenuto di ciascun archivio ZIP é stato estratto in una
directory strutturata per stato. In seguito, sono stati letti i metadati dal
file stations_info.csv e sono state rimosse le colonne non necessarie per
I’analisi, al fine di semplificare la tabella. Infine, & stato costruito un insieme
aggregato: per ogni stato, sono stati individuati automaticamente tutti i file
CSV con il prefisso identificativo dello stato, ogni file e stato letto e arricchito
con le colonne "city" e "state", e tutte le tabelle sono state concatenate in un
unico DataFrame nazionale.

Il risultato di questa fase € un DataFrame unico che contiene le misurazio-
ni orarie con colonne per le concentrazioni degli inquinanti, le variabili

meteorologiche e gli identificatori geografici.

10.2.3 Indicizzazione temporale

Nel dataset originale, le finestre temporali di misurazione sono definite
dalle colonne "From Date" e "To Date". Per semplificare la gestione delle
serie storiche, la colonna "From Date" e stata convertita in tipo datetime,
quindi rinominata in "datetime" ed impostata come indice temporale del
DataFrame. La colonna "To Date", ridondante per l’analisi, e stata rimos-
sa. Questa trasformazione permette di sfruttare le funzionalita native di
raggruppamento e ricampionamento temporale offerte dalle librerie per la

manipolazione delle serie storiche.

10.2.4 Riduzione e unificazione di feature ridondanti

Durante l'esplorazione iniziale ¢ emersa la presenza di colonne duplicate o
varianti dello stesso nome, come "Ozone (ug/m3)" e "Ozone (ppb)". Per
evitare rappresentazioni inconsistenti della stessa grandezza, sono state
seguite alcune operazioni. In primo luogo, sono stati identificati i gruppi
di colonne equivalenti tramite 1’analisi grafica dei trend (andamento delle
medie annue) ed il confronto delle statistiche di base. Successivamente, &

stato definito un mapping di riduzione, ad esempio aggregando tutte le
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varianti di Xilene in una singola colonna comune. Infine, per ogni gruppo,
i valori non nulli provenienti dalle colonne secondarie sono stati trasferiti
nella colonna principale, e le colonne ridondanti sono state eliminate.

Il codice seguente mostra le funzioni usate per la riduzione e 1'unificazione
delle colonne ridondanti.

def plot_feature_similarities(
dataframe, feature_groups, columns=2):

rows = int((len(feature_groups)/columns)//1)

fig, axes = plt.subplots(rows, columns, figsize=(13, 4*rows))
fig.tight_layout(pad=3.0)

row_num = 0

col_num = 0

for pos, group in enumerate(feature_groups):
if pos % columns == 0 and pos != 0:
row_hum += 1

col_num = 0

for feature in feature_groups[group]:

df_feature = dataframe[dataframe[feature].notnull()][feature]
df_feature = df_feature.groupby([df_feature.index.year])

.mean(numeric_only=True)

sns.lineplot(

data=df_feature,

label=feature,

ax=axes[row_num, col_num])
axes[row_num, col_num].set_title(group)
axes[row_num, col_num].set(xlabel=None)

col_num += 1
plt.plot()

groups = {
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"Xylene’: [’Xylene (ug/m3)’, ’'Xylene ('],
"MP-Xylene": [’MP-Xylene (ug/m3)’, ’'MP-Xylene ('],
'Wind Direction’: ["WD (degree)", "WD (degree C)",
"WD (deg)", "WD O"],
’0Ozone’: [’0Ozone (ug/m3)’, ’Ozone (ppb)’],
"Nitrogen Oxides’: [’NOx (ug/m3)’, ’NOx (ppb)’],
’Relative humidity’: ['RH (%)’, 'RH Q’'],
’Solar Radiation’: [’SR (W/mt2)’, 'SR Q’],
"Air Temperature’: [’AT (degree C)’, AT Q']

}

plot_feature_similarities(df_india, groups, columns=2)

reduction_groups = {

"Xylene (ug/m3)": ["Xylene O"],

"MP-Xylene (ug/m3)": ["MP-Xylene ("],

"Benzene (ug/m3)": ["Benzene ()"],

"Toluene (ug/m3)": ["Toluene (O"],

"S02 (ug/m3)": ["S02 O"],

"NOx (ug/m3)": ["NOx (ppb)"],

"Ozone (ug/m3)": ["Ozone (ppb)"],

"AT (degree O)": ["AT O"],

"WD (degree)": ["WD (degree )", "WD (deg)", "WD QO"],
"WS (m/s)": ["WS O]

}
def merge_columns(dataframe, columns):
for column, cols_to_merge in columns.items():
if column not in dataframe.columns
and any(name in dataframe.columns for name in cols_to_merge):
dataframe[column] = np.nan

for col_name in cols_to_merge:
if col_name in dataframe.columns:

dataframe[column] = dataframe[column]
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.fillna(dataframe[col_name])

dataframe = dataframe.drop(columns=[col_name])

return dataframe

df_india = merge_columns(df_india, reduction_groups)
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Figura 10.1: Similarit4 delle features - Analisi medie annue
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10.2.5 Verifica e gestione dei valori mancanti

La quantificazione dei valori mancanti e stata effettuata calcolando il nume-

ro assoluto e la percentuale di missing per ogni variabile.

def get_null_info(dataframe):

null_vals = dataframe.isnull().sum()

df_null_vals = pd.concat(
{’Null Count’: null_vals,
"Percentage of Missing Values (%)’:
round(null_vals * 100 / len(dataframe), 2)}, axis=1)

return df_null_vals.sort_values(
by=['Null Count’], ascending=False)

df_india_null_info = get_null_info(df_india)

plt.figure(figsize=(8, 10))
sns.barplot(
data=df_india_null_info,
x="Percentage of Missing Values (%)’,
y=df_india_null_info.index,
orient="h’,
color="steelblue’)
plt.show()
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Figura 10.2: Percentuali dei Valori Mancanti.

Sono stati applicati i seguenti criteri: la rimozione delle osservazioni
completamente vuote e delle colonne completamente vuote; 1’eliminazione
delle colonne con una proporzione di valori mancanti superiore al 40%,
una soglia scelta per bilanciare la perdita informativa con la robustezza
statistica; e, per le restanti colonne numeriche, la sostituzione dei valori NaN.
Questa sostituzione e stata eseguita tramite il metodo di interpolazione
forward-fill (propagazione dell’ultimo valore valido), seguita da una

sostituzione tramite la media per eventuali valori mancanti residui. Questa
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strategia € comunemente adottata nelle serie temporali, poiché preserva la
dinamica locale dei segnali ed evita I'introduzione di discontinuita.

numeric_cols = df_india.select_dtypes(include="number’)
.columns

df_india[numeric_cols] = df_india[numeric_cols]
.interpolate(method="pad’)

df_india[numeric_cols] = df_india[numeric_cols]

.fillna(df_india[numeric_cols].mean())

10.2.6 Analisi esplorativa e selezione delle feature rilevanti

Per esplorare le relazioni e le correlazioni tra le variabili, sono state eseguite
diverse analisi. Sono state calcolate le medie su diverse frequenze temporali
(giorno, mese, anno) per visualizzare i trend con grafici a linee. E stato
utilizzato il pairplot per ispezionare le relazioni bivariate e le distribuzioni
univariate. Inoltre, e stata costruita la matrice di correlazione e visualizzata
tramite una heatmap per quantificare le correlazioni lineari, identificando
come potenziali feature rilevanti quelle con una correlazione assoluta
superiore a 0.4 con "PM2.5".

slice_groups = {
’Group by Day’: df_india.groupby(pd.Grouper(freq="1D"))
.mean(numeric_only=True),
"Group by Month’: df_india.groupby(pd.Grouper(freq="1ME’))
.mean(numeric_only=True),
"Group by Year’: df_india.groupby(pd.Grouper(freq='1YE’))
.mean(numeric_only=True)
}
def plot_features_by_group(features, slice_groups):
for feature in features:
fig, ax = plt.subplots(l, 1, figsize=(12, 4))
fig.suptitle(feature)
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labels = []

for i, (group, group_df) in enumerate(slice_groups.items()):
data_slice = group_df[
group_df.columns.intersection(pollutants[feature])

]

if feature == "Nitrogen Compounds":
data_slice = data_slice.drop(
[’NO (ug/m3)’, ’NO2 (ug/m3)’], axis=1)

data_slice.plot(kind="1ine", ax=ax)

for column in data_slice.columns:
labels.append(f’{column} [{group}]’)

ax.set(xlabel=None)

ax.legend(labels)

plt.plot()
features_to_plot = [

’Particulate Matter’,

’Carbon Monoxide’,

’0zone Concentration’,

"Nitrogen Compounds’]
plot_features_by_group(features_to_plot, slice_groups)
df_india.head()

sns.pairplot(slice_groups[’Group by Month’])
corr = slice_groups[’Group by Day’]

.corr(numeric_only=True) .round(2)
mask = np.triu(np.ones_like(corr, dtype=bool))
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plt.figure(figsize=(10,5))
sns.heatmap(

data=corr,

mask=mask,

annot=True,

cmap="rocket_r")

plt.show()
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Figura 10.3: Analisi dei trend giornalieri, mensili e annuali per il Particolato.
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Figura 10.4: Analisi dei trend giornalieri, mensili e annuali per il Monossido
di carbonio.
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Figura 10.5: Analisi dei trend giornalieri, mensili e annuali per 1'Ozono.
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Figura 10.6: Analisi dei trend giornalieri, mensili e annuali per i Composti
dell’azoto.
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Figura 10.8: Analisi della correlazione tra variabili.

Dall’analisi, si é deciso di mantenere la variabile aggregata "NOx" e
rimuovere le componenti ridondanti ("NO", "NO2") per evitare multicolli-

nearitd e semplificare i modelli successivi.

10.2.7 Ricampionamento ed aggregazione a livello statale

Poiché i dati aggregati includevano misurazioni provenienti da pit sta-
zioni all’interno dello stesso stato con lo stesso timestamp, si é deciso di
ricampionare temporaneamente i dati a frequenza oraria e di aggregare
le osservazioni a livello di stato tramite media aritmetica. La procedura

implementata é la seguente:

df_resampled = (df_india
.groupby(’state’)
.resample(’60min’)
.mean(numeric_only=True)

.reset_index()
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df_resampled = df_resampled.set_index(’datetime’)

df_india=df_resampled.copy()

10.2.8 Rilevamento e rimozione degli outlier

Per I'identificazione degli outlier nelle concentrazioni degli inquinanti, si
e utilizzato 1’algoritmo Isolation Forest, un metodo ensemble efficace per
l'identificazione di valori anomali indipendentemente dalla distribuzione
a priori dei dati [39]. I punti principali dell’approccio sono stati: la
scelta di un insieme limitato di variabili ("PM2.5", "CO", "Ozone", "NOx");
l'inizializzazione del modello con un valore di contamination paria 0.01 ed
un random_state fisso per la riproducibilita; ’addestramento del modello
e l'utilizzo del metodo predict per etichettare le istanze anomale (-1) e
quelle normali (1); infine, la rimozione delle osservazioni etichettate come

outlier e la verifica della distribuzione prima e dopo tramite istogrammi.

features = [

"PM2.5 (ug/m3)’,

’CO (mg/m3)’,

’0zone (ug/m3)’,

"NOx (ug/m3)’]
df_india_features = df_india[features].copy()
iso = IsolationForest(

contamination=0.01,

random_state=42,

n_jobs=-1)
iso.fit(df_india_features)
df_india[’anomaly’] = iso.predict(df_india_features)
df_india_clean = df_india[df_india[’anomaly’] == 1]

.drop(columns="anomaly’)

fig, axes = plt.subplots(4, 2, figsize=(14, 12))

for i, col in enumerate(features):
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axes[i, 0].hist(df_india[col].dropna(), bins=100)
axes[i, 0].set_title(f"Originale: {coll}l")

axes[i, 1].hist(df_india_clean[col].dropna(), bins=100)
axes[i, 1].set_title(f"Pulita: {col}")
plt.tight_layout()
plt.show()

df_india = df_india_clean.copy()
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Figura 10.9: Visualizzazione della distribuzione, di ogni variabile esaminata,
prima e dopo.
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10.2.9 Feature engineering ed arricchimento temporale

Per catturare informazioni temporali rilevanti e migliorare la capacita
predittiva dei modelli, sono state create variabili derivate dall’indice tempo-
rale quali: "hour", "dayofmonth", "dayofweek", "dayofyear", "weekofyear",
"month", "quarter" e "year". Queste variabili servono a modellare sta-
gionalita, ciclicita giornaliera e pattern settimanali/annuali tipici sia dei
processi atmosferici sia delle attivita umane che influenzano l'inquinamento

atmosferico.

def create_features(df):
df = df.copy(Q
df[’hour’]
df[’dayofmonth’]
df[’dayofweek’]
df[’dayofyear’]
df[’weekofyear’]

df.index.hour

df.index.day
df.index.dayofweek

df.index.dayofyear

df.index.isocalendar() .week.astype("int64")

df[’month’] = df.index.month
df[’quarter’] = df.index.quarter
df[’year’] = df.index.year
return df

df_india = create_features(df_india)

def plot_by_datetime(metric, time_groups):

for time_group in time_groups:

fig, ax = plt.subplots(figsize=(12, 4))
sns.boxplot(

data=df_india,

x=time_group,

y=metric,

hue=time_group,

palette="icefire",

showfliers=False,

legend=False)
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ax.set_title(f’{metric} by {time_group}’)
ax.set(xlabel=time_group)
plt.show()
plot_by_datetime(’PM2.5 (ug/m3)’, [
"hour’ ,
’dayofmonth’,
’dayofweek’,
"weekofyear’,
"month’,
‘quarter’,

‘year’])
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Figura 10.10: Visualizzazione della distribuzione di PM2.5 per ora.

173



PM2.5 (ug/m3) by dayofmonth

S o =
o o ©

PM2.5 (ug/m3)

= B & 8 8

1.2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
dayofmonth

Figura 10.11: Visualizzazione della distribuzione di PM2.5 per giorno del
mese.
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Figura 10.12: Visualizzazione della distribuzione di PM2.5 per giorno della
settimana.
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Figura 10.13: Visualizzazione della distribuzione di PM2.5 per settimana

dell’anno.
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Figura 10.14: Visualizzazione della distribuzione di PM2.5 per mese del-
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Figura 10.15: Visualizzazione della distribuzione di PM2.5 per trimestre
dell’anno.
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Figura 10.16: Visualizzazione della distribuzione di PM2.5 per anno.

10.2.10 Creazione dilag-features e categorizzazione di PM2.5

Per catturare 1'informazione storica intrinseca nelle serie temporali, sono
state create delle lag-features per alcune delle variabili pit1 rilevanti, che
consentono ai modelli di sfruttare dipendenze temporali (ad esempio sta-
gionalita annua, effetto di breve periodo e persistenti condizioni mensili).
La creazione di lag e una tecnica consolidata nella preparazione dei dati
per serie temporali. In questo caso, sono state generate lag a lungo termine
(1 e 2 anni), a medio termine (1 mese) ed a breve termine (1 settimana e

ultimi 3 giorni).
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Per trasformare la variabile target "PM2.5" da continua a discreta, con 'o-
biettivo di passare da un problema di regressione ad uno di classificazione,
si é deciso di mappare i valori di PM2.5 in sei categorie dell’AQI (Good,
Moderate, Unhealthy for Sensitive, Unhealthy, Very Unhealthy, Hazardous)
usando le soglie standard corrispondenti ai breakpoints AQI per "PM2.5"
(National Ambient Air Quality Standards for PM). Questo passaggio € mo-
tivato dalla volonta di concentrarsi sulla valutazione della qualita dell’aria
in termini di rischio per la salute, piuttosto che sulla semplice previsione
del valore esatto della concentrazione. Per molte applicazioni, e pit utile
sapere se la qualita dell’aria rientra in una categoria di rischio "pericoloso" o
"buono", piuttosto che prevedere un valore numerico preciso, che potrebbe
non essere immediatamente interpretabile.

Le soglie utilizzate, misurate in pg/m?, sono le seguenti:

e GOOD: 0-9.0

MODERATE: 9.1-35.4

UNHEALTHY FOR SENSITIVE: 35.5-55.4

UNHEALTHY: 55.5-125.4

VERY UNHEALTHY: 125.5-225.4

HAZARDOUS: 225.5+

Per facilitare 1’analisi e I’addestramento dei modelli, le categorie sono state
convertite in etichette intere da 1 (GOOD) a 6 (HAZARDOUS). Questo
approccio non solo semplifica la gestione dei dati, ma mantiene anche la

relazione ordinale tra le classi.

10.3 Addestramento dei modelli

Il dataset finale comprende le seguenti features:

e Year: anno della misurazione (numerica);
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Month: mese dell’anno (numerica);
DayOfMonth: giorno del mese (numerica);
DayOfWeek: giorno della settimana (numerica);
DayOfYear: giorno dell’anno (numerica);
WeekOfYear: settimana dell’anno (numerica);
Quarter: trimestre dell’anno (numerica);
State: stato di misurazione (categorica);

PM_lag_1D,PM_lag_2D,PM_lag_3D,PM_lag_1W,PM_lag_1M,PM_lag_1Y:
valori ritardati di PM2.5 rispettivamente di 1, 2, 3 giorni, 1 settimana,

1 mese e 1 anno (numeriche);

C0_lag_1D,C0_lag_2D,C0_lag_3D,CO_lag_1W,CO_lag_1M,CO_lag_1Y:
valori ritardati di CO rispettivamente di 1, 2, 3 giorni, 1 settimana, 1

mese e 1 anno (numeriche);

03_lag_1D,03_lag_2D,03_lag_3D,03_lag_1W,03_lag_1M,03_lag_1Y:
valori ritardati di Os rispettivamente di 1, 2, 3 giorni, 1 settimana, 1

mese e 1 anno (numeriche).

La variabile target da prevedere ¢ una variabile discreta a 6 classi,

corrispondenti ai livelli di qualita dell’aria per la concentrazione di PM2.5

definiti dalla scala EPA (Environmental Protection Agency, USA).

10.3.1 Strategia di training comune e griglie di iperparame-

tri

La strategia di training e stata mantenuta coerente per tutti i modelli,

con differenze mirate alle singole architetture. Per i modelli ensemble,

la pipeline ha incluso un preprocessore per la standardizzazione delle

variabili numeriche e la codifica one-hot di quelle categoriche, seguito

dall’'oversampling tramite SMOTE e dal classificatore. Per gestire i casi
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in cui il numero di campioni minoritari risultava troppo basso rispetto
al parametro k_neighbors, é stata implementata una versione adattiva di
SMOTE, in grado di ridurre dinamicamente k. In aggiunta,  stato applicato
il bilanciamento dei pesi di classe. Per le reti neurali, 'addestramento ha
utilizzato 'ottimizzatore Adam, la funzione di perdita CrossEntropyLoss,
una regolarizzazione L2 opzionale e il meccanismo di early stopping per
ridurre l'overfitting. La configurazione finale per ciascun modello é stata

selezionata in base alle prestazioni medie sui fold di validazione. [40]

class SmoteKNeighbors(SMOTE):
def __init__(self, **kwargs):
super().__init__ (**kwargs)

def _fit_resample(self, X, y):
counts = np.bincount(y)
minority_class = np.argmin(counts)

n_samples_minority = counts[minority_class]

if self.k neighbors >= n_samples_minority:

new_k_neighbors = max(1l, n_samples_minority - 1)

original_k_neighbors = self.k_neighbors

self.k_neighbors = new_k_neighbors

print(f"Warning: k_neighbors too high.
Adjusting from {original_k_neighbors}
to {self.k_neighbors} for this fold.")

X_res, y_res = super()._fit_resample(X, y)

self.k _neighbors = original_k_neighbors
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return X_res, y_res
else:
return super()._fit_resample(X, y)

model_ht_rf = ImbPipeline([
("preproc", preprocessor),
("sampler", SmoteKNeighbors(random_state=42)),
("tree", RandomForestClassifier(
random_state=42,
class_weight="balanced’))
1
gs_rf = RandomizedSearchCV(
model_ht_rf, grid_rf, n_iter=49,
cv=tscv, scoring=’"fl_weighted’, n_jobs=-1,

verbose=0, random_state=42)

model_ht_xgb = ImbPipeline([
("preproc", preprocessor),
("sampler", SmoteKNeighbors(random_state=42)),
("xgb", xgb.XGBClassifier(objective="multi:softprob’,
num_class=num_classes,
use_label_encoder=False,
eval_metric="mlogloss’,
n_jobs=-1,
verbosity=0,
random_state=42))

1

gs_xgb = RandomizedSearchCV(
model_ht_xgb, grid_xgb, n_iter=98,
cv=tscv, scoring=’"fl_weighted’, n_jobs=-1,
verbose=0, random_state=42

)
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def random_search_neural (model_builder, param_dist, dataset,
n_iter=10, cv_folds=5, early_patience=5,
early_min_delta=1le-4, class_weights=None,
smote_k_neighbors=6):

train_keys = [’1r’, '12_lambda’]

best_val_loss = float(’inf’)

best_model_params, best_train_params = None, None

best_model = None

tscv = TimeSeriesSplit(n_splits=cv_folds)

print ("Avvio Random Search")

smote = SMOTE(
k_neighbors=smote_k_neighbors,
random_state=RANDOM_STATE

)

for param_id, params in enumerate(ParameterSampler(
param_dist, n_iter=n_iter, random_state=42)):

print(f"Testing parameter set {param_id+1}/{n_iter}")

model_params = {k: v for k, v in params.items()
if k not in train_keys}

train_params = {k: v for k, v in params.items()
if k in train_keys}

val_losses = []

for fold_idx, (train_idx, val_idx) in

enumerate(tscv.split(range(len(dataset)))):
print(f" Fold {fold_idx+1}/{cv_folds}")
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train_features = dataset.tensors[0][train_idx]
.cpu() .numpy ()
train_labels = dataset.tensors[1][train_idx]

.cpu() .numpy ()

val_features = dataset.tensors[0][val_idx]

val_labels = dataset.tensors[1][val_idx]

try:
unique_classes = np.unique(train_labels)
if len(unique_classes) < 2:
train_features_resampled = train_features
train_labels_resampled = train_labels
else:
min_samples = min([np.sum(train_labels == cls)
for cls in unique_classes])
if min_samples <= smote_k_neighbors:
print (£f" Warning:
some classes have fewer than
{smote_k_neighbors+1} samples.
Reducing k_neighbors.™")
smote_fold = SMOTE(
k_neighbors=min(min_samples-1, 1),
random_state=42)
else:
smote_fold = smote

train_features_resampled, train_labels_resampled =
smote_fold.fit_resample(
train_features,

train_labels)

print (£" SMOTE applicato:
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{len(train_features)} ->

{len(train_features_resampled)} campioni'™)

unique, counts = np.unique(
train_labels_resampled,
return_counts=True)
print (£" Distribuzione post-SMOTE:
{{{’, ’.join(f’{u}: {c}’ for u, c in zip(unique, counts))}}}™)

except Exception as e:

print (£" Warning: SMOTE fallito ({str(e)}).
Uso dataset originale.™)
train_features_resampled = train_features

train_labels_resampled = train_labels

train_features_tensor = torch.FloatTensor(
train_features_resampled)
train_labels_tensor = torch.LongTensor(

train_labels_resampled)

balanced_train_dataset = TensorDataset(
train_features_tensor, train_labels_tensor)
val_dataset = TensorDataset(

val_features, val_labels)

train_loader = DatalLoader/(

balanced_train_dataset, batch_size=32, shuffle=True)
val_loader = Dataloader(

val_dataset, batch_size=32, shuffle=False)

model = model_builder(**model_params)
if hasattr(model, ’speed’):
model.speed()
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model.to(device)

optimizer = optim.Adam(

model .parameters(),
lr=train_params[’1lr’]
)
criterion = nn.CrossEntropyLoss()
stopper = EarlyStopper(
patience=early_patience,

min_delta=early_min_delta)

for epoch in range(1000):
train_loss = train_epoch(
model,
train_loader,
optimizer,
criterion,
12_lambda=train_params.get(’12_lambda’, 0.0))
val_loss = eval_loss(

model, val_loader, criterion)

if epoch % 10 == 0:

print (£" Epoch {epoch}:
train_loss = {train_loss:.6f},
val_loss = {val_loss:.6f}")

if stopper.early_stop(val_loss):

print (£" Early stopping at epoch {epoch},
best_val_loss: {stopper.best_loss:.6f}")

break

final_val_loss = eval_loss(model, val_loader, criterion)
val_losses.append(final_val_loss)
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mean_val = np.mean(val_losses)

print(f" Mean validation loss: {mean_val:.6f}")

if mean_val < best_val_loss:

best_val_loss = mean_val

best_model_params = model_params

best_train_params = train_params

best_model = model_builder(**best_model_params).to(device)
best_model.load_state_dict(model.state_dict())

print(f" New best validation loss: {best_val_loss:.6f}")

print (f"\nBest validation loss: {best_val_loss:.6f}")
return best_model, best_model_params, best_train_params

Di seguito sono riportate le griglie di iperparametri entro cui la Random
Search esplora le combinazioni, al fine di individuare quelle che forniscono
i risultati migliori per ciascun modello.

Random Forest (Random Search: n = 49)

e n_estimators: [100, 150, 200]

e max_samples: [0.5,0.7, 0.9]

e max_depth: [5, 10, 15]

e min_samples_split: [2, 5]

e min_samples_leaf: [2, 5]

* max_features: ['sqrt’, "log2’]
XGBoost (Random Search: n = 98)

e max_depth: [3, 5]

e learning_rate: [0.01,0.05,0.1]
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e n_estimators: [100, 200, 300]

subsample: [0.7, 0.9]

colsample_bytree: [0.7, 0.9]

gamma: [0, 0.2, 0.4]

min_child_weight: [1, 5]
MLP (Random Search: n = 26)
e hidden_sizes: [(64,64), (128,), (128,64), (256,128), (512,256)];
e dropout: [0.0,0.2,0.5];
* 1r (learning rate): [1073, 1074];
e 12_lambda (coefficiente L.2): [0.0, 10~°, 107#, 1073].
KAN (Random Search: n = 43)

e width: [(8,4), (16,8), (32,16), (64,32)] (struttura a livelli della rete);

grid: [5, 10, 20] (dimensione della griglia interna);

k: [2, 4] (ordine/complessita della combinazione);

seed: [0] (per riproducibilita);

1r: [1073,1074];

12_lambda: [0.0, 1073, 1074, 107°].

10.3.2 Scelte architetturali finali

Nella Tabella vengono mostrate le scelte finali, dopo l'ottimizzazione
degliiperparametri, utilizzate per training, valutazioni comparative e studio
di ablazione.

186



Tabella 10.1: Configurazioni finali dei modelli usati per il Training, dopo
aver effettuato I'ottimizzazione degli iperparametri.

MLP input_dim = 49; hidden_sizes = (64, 64);
dropout = 0.2, ottimizzatore = Adam; 1lr =
le-04; 12_lambda = 1e-03; batch_size = 32.
Early stopping applicato.

KAN input_dim = 49; width = (16,8); grid = 5;k
= 4, seed = 0; ottimizzatore = Adam;, lr =
le-04; 12_lambda = 1le-05; batch_size = 32.
Early stopping applicato.

Random Forest n_estimators = 100; max_depth = 15;
min_samples_split = 5, min_samples_leaf
= 2; max_features = ’sqrt’; max_samples =

0.7; random_state = 42.

XGBoost n_estimators = 300; max_depth =
5; learning_rate = 0.05; subsample
=0.9; colsample_bytree = 0.7;
min_child _weight = 1; gamma = 0.2;
objective = ’multi:softprob’; eval_metric
= 'mlogloss’; random_state = 42.
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10.4 Valutazione dei modelli
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Figura 10.17: Confronto visivo delle prestazioni dei modelli (Accuracy train
vs test, F1-weighted / F1-macro con CI95%, AUC-ROC e AUC-PR OVR
weighted, e complessita in parametri/nodi).

Classification report e confusion matrix per modello

Random Forest
Numero di parametri / nodi: 412 430.

Tabella 10.2: Classification report

Classe precision recall fl-score support
0 076  0.73 0.74 321
1 0.89 0.86 0.88 2727
2 0.65 0.70 0.67 1364
3 0.85 0.80 0.82 1831
4 0.61 0.82 0.70 307
5 032  0.37 0.34 30
accuracy 0.80 6580
macro avg 0.68 0.71 0.69 6580
weighted avg 0.81  0.80 0.80 6580
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XGBoost

Tabella 10.3: Confusion matrix

AUC-ROC (OVR, weighted): 0.952

233 8 0 0 0 O]
73 2350 286 18 0 O
1 19 953 213 1 O
0 9 222 1456 143 1
0o 1 0 32 252 22
o0 0 o0 0 19 11

AUC-PR (OVR, weighted): 0.858

Numero di parametri / nodi: 90 416.

Tabella 10.4: Classification report

Classe precision recall fl-score support
0 076  0.79 0.77 321
1 0.89 0.87 0.88 2727
2 0.67  0.68 0.68 1364
3 0.83 0.85 0.84 1831
4 0.69 0.70 0.70 307
5 032 043 0.37 30
accuracy 0.81 6 580
macro avg 069 072 0.71 6580
weighted avg 0.81 0.1 0.81 6580
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MLP

Tabella 10.5: Confusion matrix

253 68 0 0 0 0]
79 2360 266 22 0 O
1 200 930 232 1 O
0 8§ 187 1556 78 2

0 1 0 64 216 26

0

0 0 0 17 13]

AUC-ROC (OVR, weighted): 0.957

AUC-PR (OVR, weighted): 0.875

Numero di parametri: 7 750.

Tabella 10.6: Classification report

Classe precision recall fl-score support
0 043 0.38 0.40 321
1 0.86 0.80 0.83 2727
2 0.63 0.72 0.67 1364
3 0.85 0.80 0.82 1831
4 059 0.82 0.69 307
5 037 057 0.45 30
accuracy 0.76 6 580
macro avg 0.62 0.68 0.64 6580
weighted avg 077 076 0.77 6580
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Tabella 10.7: Confusion matrix

121 200 O 0 0 0]
157 2189 360 21 0 O
4 160 977 220 3 O
0 5 204 1465 156 1
0 1 0 27 251 28
0

0 0 0 13 17]

AUC-ROC (OVR, weighted): 0.938
AUC-PR (OVR, weighted): 0.800

KAN
Numero di parametri: 7 680.

Tabella 10.8: Classification report

Classe precision recall fl-score support
0 0.65 0.36 0.46 321
1 0.85 0.85 0.85 2727
2 0.63 0.72 0.67 1364
3 0.84 0.82 0.83 1831
4 074  0.69 0.71 307
5 0.51  0.60 0.55 30
accuracy 0.78 6 580
macro avg 070  0.67 0.68 6580
weighted avg 079 0.78 0.78 6580
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Tabella 10.9: Confusion matrix

116 204 1 0 0 O]
61 2329 320 17 0 O
2 198 985 179 0 0
0 7 261 1498 63 2
o 1 0 79 212 15
o0 0o o0 0 12 18

AUC-ROC (OVR, weighted): 0.948
AUC-PR (OVR, weighted): 0.840

10.4.1 Analisi dei risultati sperimentali

L'analisi dei classification report e delle confusion matrix (riportati nella
sottosezione precedente) mostra che, a livello di metriche aggregate, le
differenze tra i modelli testati sono complessivamente contenute: accura-
tezza, F1-score, AUC-ROC e AUC-PR si collocano su valori molto simili,
con scarti percentuali spesso marginali. La discriminante pit1 evidente ¢ la
complessita architetturale, che diventa il fattore operativo principale per
decisioni di deployment, latenza e consumo di memoria.

Per quanto riguarda le reti neurali, la MLP ha ottenuto un’accuratezza in
test pari al 76%, con un F1-weighted di 0.7654, un F1-macro di 0.7421, un
AUC-ROC di 0.938 e un AUC-PR di 0.800. L'analisi per classe evidenzia
una sensibilita ridotta sulle classi meno rappresentate (ad es. la classe 0 &
spesso confusa), sebbene il modello mantenga buone prestazioni sulla classe
maggioritaria (1). Con circa 7,750 parametri la MLP & una soluzione leggera
e facilmente scalabile, ma meno competitiva rispetto ad altre alternative sul
piano delle performance complessive.

La KAN ha mostrato un comportamento piu equilibrato: accuratezza in test
del 78%, F1-weighted 0.7823, F1-macro 0.7608, AUC-ROC 0.948 e AUC-PR
0.840. KAN presenta inoltre una migliore capacita di trattare le classi meno
rappresentate rispetto alla MLP (si osservano recall e F1 mediamente pitt

alti su alcune classi difficili), mantenendo un numero di parametri molto
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contenuto (circa 7,680). Queste caratteristiche rendono KAN una candidata
interessante quando si richiede un buon compromesso tra accuratezza e
parsimonia computazionale.

I modelli ensemble si differenziano principalmente per il trade-off tra per-
formance leggermente migliori e complessita superiore. La Random Forest,
con circa 412k nodi, ha raggiunto un’accuratezza dell’80%, F1-weighted
0.7997, F1-macro 0.7750, AUC-ROC 0.952 e AUC-PR 0.858. Le confusion
matrix mostrano che Random Forest & robusta nel predire la classe maggio-
ritaria e riduce alcune specifiche confusioni osservate nelle reti neurali, ma
il costo in termini di complessita ¢ molto elevato.

XGBoost é risultato il modello con le metriche aggregate piu alte: accura-
tezza in test 81%, F1-weighted 0.8107, F1-macro 0.7901, AUC-ROC 0.957 e
AUC-PR 0.875. Tuttavia i miglioramenti rispetto a KAN e Random Forest
sono marginali. Con circa 90k parametri XGBoost occupa una posizione
intermedia: molto piu leggero della Random Forest ma sensibilmente pitt
complesso rispetto alle architetture neurali leggere come MLP e KAN. Dal
confronto delle confusion matrix emerge come XGBoost migliori legger-
mente il recall sulle classi meno rappresentate rispetto a Random Forest e
MLP, pur restando i guadagni contenuti in termini assoluti.

Va inoltre segnalato che, per mitigare lo sbilanciamento delle classi, nel
training sono state impiegate sia la ponderazione degli errori per classe
(class weights) sia una procedura di oversampling basata su SMOTE. Queste
contromisure hanno portato a miglioramenti locali nei punteggi di recall
sulle classi minority (riducendo alcuni falsi negativi), ma non hanno elimi-
nato completamente le difficolta associate alle classi con supporto molto

basso.

10.4.2 Selezione del miglior modello

I risultati di questa procedura di ranking multi-criterio mostrano che
XGBoost e il migliore secondo il criterio di Equal Weight (1:1), mentre
la KAN risulta vincente nei criteri Complexity Weighted (1:2), Extreme
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Complexity (1:3) e Pareto Approach (40:60). I valori principali utilizzati per

il ranking sono riassunti nella tabella seguente:

Tabella 10.10: Riepilogo ranking aggiornato: conteggio parametri, perfor-
mance media (rank-based) e ranks per metodo di aggregazione.

Model Param_Count Perf Score Compl Rank Equal_Rank Ext Rank

Pareto_Rank

KAN 7,680 3.0 1 1 1
XGBoost 90,416 1.0 2 1 2
MLP 7,750 4.0 3 3 2
RF 412,430 2.0 4 3 4

1

2
3
4

10.4.3 Conclusioni

Dalla procedura di ranking multi-criterio e dall’analisi delle metriche aggre-
gate, XGBoost presenta le performance assolute pit1 elevate sulle metriche di

classificazione (in particolare I'F1-weighted), ma richiede una complessita

molto maggiore rispetto alle reti neurali testate. KAN offre un eccellente

compromesso fra accuratezza e parsimonia e, nelle strategie che penalizzano

la complessita, risulta il modello raccomandato per il deployment. La MLP

mantiene un buon rapporto performance/complessita, ma e lievemente

inferiore a KAN, secondo il criterio complexity-weighted. Il Random Forest,
pur competitivo in termini di metriche assolute, € meno interessante quando
la parsimonia del modello e un vincolo operativo.

La classifica dei tre migliori modelli, basata sul criterio "complexity-

weighted" (dal migliore al peggiore), ¢ la seguente:
1. KAN (Params: 7,680; F1-Weighted: 0.7823)
2. XGBoost (Params: 90,416; F1-Weighted: 0.8107)

3. MLP  (Params: 7,750; F1-Weighted: 0.7654)
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10.5 Studio di ablazione

10.5.1 Ablation study: L1 pruning su MLP e KAN

Figura riassuntiva

L1 Pruning Study
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Figura 10.18: Risultati dello studio L1 pruning per MLP e KAN, utilizzando
metriche principali e indicatori di compressione (Accuracy, F1-Weighted,
F1-Macro, AUC-ROC, AUC-PR, sparsitd, parametri attivi, performance
retention).
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Risultati

Model Total params Baseline F1 Best trade-off Sign. degr.
MLP 7,750 0.7654  50% pruning (2.0xX compression) 70% pruning
KAN 7,680 0.7823  70% pruning (3.0x compression) 90% pruning

Tabella 10.11: Riepilogo dei punti di trade-off e dei punti di degrado
osservati nello studio L1 pruning (valori aggiornati).

La MLP, con baseline F1-Weighted = 0.7654, mostra il miglior trade-off al
50% di pruning: in questa condizione la compressione e di circa 2X e la
variazione relativa in F1-weighted e trascurabile (ossia < 0.2% in termini
assoluti, nel nostro run si € misurata una variazione leggermente positiva
rispetto alla baseline). Il punto di degrado significativo per la MLP si
evidenzia a partire da circa il 70% di pruning, oltre il quale la perdita di
performance diventa marcata; a pruning estremi (> 90%) le prestazioni
decadono drasticamente.

La KAN, con baseline F1-Weighted = 0.7823, risulta piti robusta per pruning
moderati: il miglior trade-off osservato e al 70% di pruning, corrispondente
a una compressione di circa 3X e a una perdita relativa in F1-weighted
dell’ordine di ~ 1.4%. La soglia di degrado significativo per KAN si trova
invece intorno al 90% di pruning.

La compressione massima raggiungibile nei test & stata dell’ordine di ~ 20x
per la MLP e ~ 17.8X per la KAN (pruning 95%), ma tali livelli estremi
comportano perdite di prestazione troppo elevate per essere considerati
praticabili in un contesto di deployment senza ulteriori tecniche (ad esempio,

retraining post-pruning).
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10.5.2 Ablation study: ensemble pruning su Random Forest
e XGBoost

Figura riassuntiva

Ensemble Pruning Study - Forest & X
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Figura 10.19: Risultati dello studio di pruning per Random Forest (rank-
based) e XGBoost (cumulative), utilizzando metriche principali e indicatori
di compressione (Accuracy, F1-Weighted, F1-Macro, AUC-ROC, AUC-PR,
sparsita, alberi rimanenti, performance retention).

Risultati

Model Total trees Baseline F1 Best trade-off (pruning) Sign. degr.

RF 100 0.8011  90% (11.1X compression) nessuna degr. rilevata
XGB 300 0.8107  60% (2.5% compression) nessuna degr. rilevata

Tabella 10.12: Riepilogo sintetico dei punti di trade-off osservati per i due
ensemble (valori aggiornati).
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XGBoost mantiene buona parte delle prestazioni riducendo il numero di
rounds. Il miglior compromesso osservato nel run corrente e stato al 60% di
pruning, con i primi 120 rounds su 300, corrispondente a una compressione
di ~ 2.5x ed ad una perdita relativa in F1-weighted di circa 1.5% rispetto
alla baseline.

Random Forest dimostra elevata robustezza: 1’approccio rank-based per-
mette di rimuovere un gran numero di alberi mantenendo metriche stabili;
nel nostro esperimento il best trade-off si ¢ verificato al 90% di pruning (9
alberi rimanenti), con una compressione ~ 11.11x ed una perdita relativa
in Fl-weighted di circa 1.7%. In nessuno dei due casi si & osservata una
perdita relativa superiore al 5% nell'intervallo di pruning testato.

La compressione massima sperimentata e stata dell’ordine di ~ 20X per
Random Forest e ~ 25X per XGBoost (pruning 95%), tuttavia tali livelli
estremi comportano perdite di prestazione significativamente maggiori
e risultano poco praticabili senza interventi aggiuntivi (es. fine-tuning

post-pruning, distillazione o quantizzazione).
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10.5.3 Ablation study — Confronto complessivo (Neural

Networks vs Ensemble)

Figure riassuntive

B: Studio di ablazione Random Forest
(rank-based) e XGBoost (cumulative).

A: Studio di ablazione MLP e KAN
(L1 pruning).

Figura 10.20: Risultati sintetici degli studi di ablazione.

Riepilogo

Model Baseline F1 (weighted) Best trade-off (pruning) Compression

MLP 0.7654 0.7662 @ 50% pr ~ 2.0x
KAN 0.7823 0.7710 @ 70% pr ~ 3.0x
RF 0.8011 0.7878 @ 90% pr ~ 11.1x
XGBoost 0.8107 0.7982 @ 60% pr ~ 2.5%

Tabella 10.13: Riepilogo sintetico dei principali punti di trade-off e com-
pressione (valori aggiornati).

Confronto su soglie tipiche (30%, 50%, 70%, 90%)

Al 30% di pruning, tutti i modelli mantengono o presentano leggeri mi-
glioramenti rispetto alla baseline nelle metriche principali: MLP mostra un
lieve incremento dell’F1-weighted, mentre KAN e XGBoost mantengono

prestazioni molto elevate. A 50% di pruning la MLP raggiunge il suo miglior
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trade-off operativo (compressione ~ 2x con Fl-weighted sostanzialmente
invariata rispetto alla baseline), mentre KAN e gli ensemble rimangono
stabili. A 70% di pruning XGBoost continua a mostrare una ritenzione delle
prestazioni accettabile (nelle soglie tra il 50% ed il 70% la perdita relativa
di F1 é inferiore al 2%), KAN risulta robusto fino a questo livello e la MLP
inizia a evidenziare un degrado piti marcato oltre certe soglie di sparsity. A
90% di pruning le reti neurali presentano una degradazione significativa
(pit pronunciata per MLP), mentre gli ensemble (in particolare Random
Forest con pruning rank-based) conservano una retention relativamente

migliore fino a livelli molto elevati di riduzione.

Conclusioni

1. XGBoost é la scelta consigliata quando 'obiettivo primario & massimiz-
zare la performance assoluta (F1-weighted baseline: 0.8107). Ridurre
i rounds fino a circa il 50% — 60% ha permesso di ottenere un buon
compromesso (compressione ~ 2.0-2.5X) con una perdita contenuta
in F1 (tipicamente < 2%).

2. Le reti MLP e KAN rispondono bene all’L1 pruning: la MLP ottiene
il miglior trade-off operativo al 50% di pruning (compressione ~ 2x
con F1 invariata o leggermente superiore), mentre KAN risulta pitt

robusta fino al 70% (compressione ~ 3x con perdita relativa contenuta
~ 1%-1.5%).

3. Random Forest presenta un comportamento interessante con il rank-
based pruning: e possibile rimuovere gran parte degli alberi mante-
nendo performance stabili; il best trade-off € risultato ad un pruning
molto elevato (90%), con 9 alberi rimasti (compressione =~ 11.1x) ed
una perdita relativa in F1 dell’ordine di 1%-2%. Questo rende la
RF particolarmente utile quando si desidera una forte riduzione del

modello senza operare ri-addestramenti complessi.
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Capitolo 11

Terzo Caso Studio: Classificazione

di fasce d’eta tramite immagini

11.1 Introduzione

I1 presente caso studio affronta il problema della classificazione di fasce
d’eta a partire da immagini facciali. Il dataset utilizzato si chiama UTKFace
(https://susanqq.github.io/UTKFace/) ed ¢ un insieme di volti annotati
con eta, genere ed etnia, che copre un ampio intervallo di eta (da 0 a 116 anni)
e mostra un’ampia variabilita in termini di posa, espressione, illuminazione
e qualita delle immagini.

Gli obiettivi del caso di studio sono: innanzitutto si trasforma il compito di
stima continua dell’eta in un problema di classificazione multi-classe me-
diante la definizione di fasce d’eta interpretabili (child, young, adult, senior),
bilanciate quando possibile per garantire stabilita statistica; in secondo
luogo viene valutata e confrontata 1’efficacia di CNN con classificatore
MLP e KAN, con particolare attenzione alla quantificazione del trade-off
prestazioni/complessita; inoltre si analizza I'impatto delle scelte di pre-
processing, comprendenti la pulizia delle etichette estratte dai nomi file,
la normalizzazione e le strategie di data augmentation, cosi come delle
politiche di campionamento e bilanciamento.

Nel capitolo vengono presentati, in sequenza, la composizione del dataset;
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la pipeline di preprocessing e le motivazioni alla base della discretizzazione
delle eta; la strategia di training e le procedure di ottimizzazione degli iper-
parametri; la descrizione delle architetture finali impiegate per i confronti; i
risultati quantitativi corredati da intervalli di confidenza, confusion matrix

ed analisi per classe.

11.2 Data preparation

La preparazione dei dati e stata condotta seguendo un protocollo ripro-
ducibile e tracciabile, volto a trasformare il repository grezzo di immagini
facciali e le informazioni codificate nei nomi dei file in insiemi di dati pronti
per la fase di addestramento, valutazione e studio di ablazione. Il workflow
adottato comprende: acquisizione e normalizzazione dei percorsi delle
immagini, estrazione e pulizia delle etichette (eta, genere, etnia), definizione
di classi d’eta coerenti con I'obiettivo sperimentale, bilanciamento numerico
del dataset, controllo di integrita dei file immagine ed un’analisi esplorativa

finalizzata all’identificazione di bias e anomalie.

11.2.1 Pre-processing e costruzione delle etichette

I nomi dei file seguono la convenzione <age>_<gender>_<ethnic>_. .. jpg
e sono stati analizzati per estrarre le tre etichette primarie: eta, genere ed
etnia. Le righe contenenti metadati non conformi o non numerici sono state
scartate e le colonne rimanenti sono state convertite ai tipi pitt appropriati
per l'elaborazione.

Per migliorare la leggibilita e la coerenza delle analisi successive, i codici
numerici relativi a genere ed etnia sono stati mappati su etichette testuali
(ad esempio Male/Female per il genere; tassonomia semantica per i gruppi
etnici). Le colonne relative a genere ed etnia sono state trattate come varia-
bili categoriche per ridurre I'occupazione di memoria e facilitare operazioni
di aggregazione e raggruppamento.

La variabile eta, originariamente numerica e molto dettagliata, & stata

discretizzata in quattro fasce d’eta: bambini ("child"), adolescenti ("young"),
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adulti ("adult") e anziani ("senior"). Tale scelta nasce dall’esigenza di un
compromesso tra risoluzione predittiva e robustezza statistica: una granula-
rita eccessiva porta a classi con numerosita troppo basse, compromettendo
la capacita dei modelli di generalizzare.

Scelta della dimensione target e procedura di campionamento

Per ottenere un dataset sperimentale con distribuzioni pit bilanciate tra le
fasce d’eta, e stata definita una dimensione complessiva target del dataset
e, a partire da questa, il numero target di esempi per ciascuna classe.
Indichiamo con Ny, la dimensione target complessiva e con G il numero di

gruppi (fasce d’eta); il numero target per gruppo e calcolato come

N,
Ntarget = \\ t0t|/

G

con gestione del resto tramite possibile assegnazione di una o piti istanze
aggiuntive ad alcune classi. I campioni per ogni classe vengono concatenati
ed infine rimescolati con seed fissato, ottenendo cosi il dataset sperimentale
definitivo. Tale procedura controllata consente di limitare il bias dovuto
a classi fortemente sbilanciate mantenendo riproducibilita e semplicita di
implementazione.

Di seguito, il codice responsabile della generazione del grafico a torta che
mostra il bilanciamento tra classi nel dataset modificato.

class_counts = df[’age_group’].value_counts()
print(class_counts)

age_group_labels = {

0: "Child [1;12]",

1: "Young [13;18]",

2: "Adult [19;60]",

3: "Senior [60;inf]"}
pie_labels = [age_group_labels[i]

for i in class_counts.index]

203



plt.figure(figsize=(8, 8))
plt.pie(
class_counts,
labels=pie_labels,
autopct="%1.1f%%’,
startangle=140)
plt.title(’Distribution of Classes’)
plt.show()

Distribution of Classes

Senior [60;inf]

Child [1:12]

Adult [19:60]

Young [13;18]

Figura 11.1: Distribuzione delle classi in percentuale.

Controllo di integrita dei file e politica di fallback

Prima dell’estrazione finale dei tensori con immagini all’interno, si & eseguito
un controllo di integrita su tutti i percorsi indicati nel DataFrame. Per
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ogni percorso, in caso di mancata corrispondenza tra entry e file reale,
si sostituisce con un altro esempio appartenente alla stessa fascia d’eta,

selezionato a campione tra le istanze disponibili di quella fascia.

Trasformazioni immagine e criteri di normalizzazione

Per la compatibilita con le architetture CNN impiegate, tutte le immagini
sono state ridimensionate e ritagliate centralmente a risoluzione 224 x 224
pixel, convertite in tensori e normalizzate canale per canale con parametri di
media e deviazione standard comunemente adottati nelle reti pre-addestrate.
Durante la fase di addestramento e stata valutata 'applicazione di data aug-
mentation controllata (flip orizzontale, rotazioni leggere, leggere variazioni
di luminosita e contrasto); 'ampiezza delle trasformazioni e stata limitata
per non alterare i dettagli del viso che sono informazioni importanti per il

compito di stima dell’eta.

11.2.2 Data exploration

L'analisi esplorativa é stata finalizzata a identificare squilibri ed anomalie
nei dati grezzi e a produrre una serie di visualizzazioni da inserire nella
tesi per documentare lo stato del dataset.

La prima visualizzazione e una rappresentazione circolare (pie chart) della
distribuzione percentuale delle eta; le eta con frequenza inferiore alla soglia
dell1% sono state aggregate nella categoria "Others" al fine di migliorare
chiarezza e leggibilita.

age_counts = df.age.value_counts()
total_count = age_counts.sum()

age_percentages = (age_counts / total_count) * 100

other_ages = age_percentages[age_percentages < 1]

other_percentage = other_ages.sum()
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plot_data = age_percentages[age_percentages >= 1]
if other_percentage > 0:
plot_data[’Others’] = other_percentage

sns.set_style("whitegrid")

plt.figure(figsize=(10, 10))
plt.title("Distribution of Ages in Percentage')
plot_data.plot.pie(autopct="%1.1f%%’, startangle=90)
plt.ylabel(’’)
plt.figtext(0.5, 0.01,

"The ’Others’ category includes ages

with a distribution of less than 1%.",
ha="center",

fontsize=10,

bbox={"facecolor":"orange", "alpha":0.5, "pad":5})
plt.show()
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Distribution of Ages in Percentage

17

26

65

75
4 13 e 8 0

The 'Others' category includes ages with a distribution of less than 1%.

Figura 11.2: Distribuzione dell’eta in percentuale.

A complemento della panoramica generale, sono stati prodotti tre grafici
a barre posti in parallelo che mostrano la distribuzione per eta del dataset
complessivo, dei soli individui di genere maschile e femminile. Questa
tripletta di visualizzazioni consente di osservare in maniera immediata
eventuali bias di genere associati a singole eta o fasce d’eta.

sns.set_style("whitegrid")
fig, axes = plt.subplots(3, 1, figsize=(40, 30))
fig.suptitle("Distribution of Ages by Gender", fontsize=40)
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age_counts = df.age.value_counts()

sns.barplot(

x=age_counts.index,

y=age_counts.values,

ax=axes[0], color="black’)
axes[0].set_title("Distribution of All Ages", fontsize=20)
axes[0].set_xlabel ("Age", fontsize=18)
axes[0].set_ylabel("Count", fontsize=18)

male_age_counts = df[df.gender == ’Male’].age.value_counts()
sns.barplot(

x=male_age_counts.index,

y=male_age_counts.values,

ax=axes[1l], color="blue’)

axes[1].set_title("Distribution of Ages for Males", fontsize=20)
axes[1].set_xlabel("Age", fontsize=18)

axes[1].set_ylabel ("Count", fontsize=18)

female_age_counts = df[df.gender == ’Female’].age.value_counts()
sns.barplot(

x=female_age_counts.index,

y=female_age_counts.values,

ax=axes[2], color=’orange’)

axes[2].set_title("Distribution of Ages for Females", fontsize=20)
axes[2].set_xlabel("Age", fontsize=18)

axes[2].set_ylabel ("Count", fontsize=18)

plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.show()

208



Distribution of Ages by Gender

Figura 11.3: Distribuzione dell’eta per genere.

In aggiunta alla distribuzione delle fasce d’eta, é stata analizzata la
composizione di genere del dataset, che evidenzia la quasi perfetta parita
tra soggetti maschili e femminili, condizione che riduce il rischio di bias

sistematici legati al genere.

sns.set_style("whitegrid")
plt.figure(figsize=(8,8))
plt.title("Distribution of Genders")
plt.pie(
df.gender.value_counts(),
labels=df.gender.value_counts().index,
autopct="%1.1£f%%")
plt.show()
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Distribution of Genders

Male

Female

Figura 11.4: Distribuzione percentuale dei generi.

Per indagare la relazione tra eta e genere & stato inoltre prodotto un
grafico a barre che mostra, per ciascuna eta, la percentuale di individui
maschi e femmine, che evidenzia come la distribuzione sia in generale

bilanciata, pur mostrando variazioni locali dovute a squilibri demografici.

age_gender_counts = df.groupby([’age’, ’gender’], observed=True)
.size() .unstack(fill_value=0)

age_gender_percentages = age_gender_counts
.apply(lambda x: x / x.sum(), axis=1)

ax = age_gender_percentages.plot(
kind="bar’,

stacked=True,

figsize=(20, 10),

color=[’blue’, ’orange’])

plt.title(’Percentage of Males and Females by Age’, fontsize=20)
plt.xlabel(’Age’, fontsize=15)
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plt.ylabel (’Percentage’, fontsize=15)
plt.xticks(fontsize=8)
plt.yticks(fontsize=10)
plt.legend(title="Gender’)

for p in ax.patches:
width, height = p.get_width(), p.get_height()
if height > 0:
X, ¥y = p.get_xyQ
ax.text(
X + width / 2,
y + height / 2,
"{:.11£}%’ . format Cheight * 100),
horizontalalignment=’center’,
verticalalignment='center’,
fontsize=6,

color="white’

plt.tight_layout()
plt.show()
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Percentage of Males and Females by Age

Percentage

Figura 11.5: Distribuzione percentuale di maschi e femmine, per ciascuna
eta.

La ripartizione etnica é stata analizzata mediante grafici a torta e con-
teggi per eta distinti per ciascun gruppo etnico, in modo da mettere in
evidenza potenziali disparita demografiche all’interno delle fasce d’eta.

sns.set_style("whitegrid")
plt.figure(figsize=(8,8))
plt.title("Distribution of Ethnic groups'™)
plt.pie(
df.ethnic.value_counts(),
labels=df.ethnic.value_counts().index,
autopct="%1.1£f%%")
plt.show()

for ethnic_group in df[’ethnic’].unique():
plt.figure(figsize=(20, 10))

ethnic_df = df[df[’ethnic’] == ethnic_group]
sns.countplot(data=ethnic_df, x=’age’)
plt.title(f’Age Distribution for {ethnic_group}’)
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plt.xlabel(’Age’)
plt.ylabel (’Count’)
plt.xticks(rotation=90)
plt.show()

Distribution of Ethnic groups

White

Others

Asian

Indian

Black

Figura 11.6: Distribuzione delle etnie in percentuale.
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Age Distribution for Asian
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Figura 11.7: Distribuzione dell’etnia asiatica per eta.
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Figura 11.8: Distribuzione dell’etnia con persone di carnagione bianca per
eta.

214



120

Count.

80

60

Age Distribution for Black

o‘"lhl“l.ll ||||||||||“| ||‘||I| I..I..| Il 1 ||‘I ||‘ ‘I| II 1l ||...I|_.

ANmMTNON©O g N m

88372

Figura 11.9: Distribuzione dell’etnia con persone di carnagione scura per
eta..
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Figura 11.10: Distribuzione di altre etnie per eta.
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Age Distribution for Indian
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Figura 11.11: Distribuzione dell’etnia indiana per eta.

L'interazione tra etnia e genere ¢ stata ulteriormente indagata con un

grafico a barre con suddivisione per genere, utile per rilevare concentrazioni

di genere in specifici cluster etnici. Per ricapitolare la composizione delle

classi d’eta, € stato infine elaborato un grafico a torta riepilogativo che sin-

tetizza la quota relativa di ciascuna fascia definita nella fase di preprocessing.

plt.

sns

figure(figsize=(10, 6))

.countplot(data=df, x='ethnic’, hue=’'gender’)
plt.
plt.
plt.
plt.
plt.

title(’Distribution of Gender by Ethnicity’)
xlabel (CEthnicity’)

ylabel (’Count’)

legend(title="Gender’)

show ()
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Distribution of Gender by Ethnicity
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Figura 11.12: Distribuzione dei generi per etnia.

Per I'ispezione qualitativa, sono state generate delle griglie di immagini
in formato 5x5 per triple "eta—genere-etnia" specifiche. Tali griglie sono state
impiegate per valutare variabilita intrinseca al dataset (pose, espressioni,

illuminazione, qualita) e per motivare eventuali scelte di pulizia addizionale.

print (£’ Choose one Age in:
{sorted([int(age) for age in df["age"].unique()]1)}\n’)
print (f’Choose one Gender in:
{df["gender"] .unique()}\n’)
print (£’ Choose one Ethnic (or "All") in:
{df["ethnic"].unique()}\n’)

age = 26
gender = 'Male’
ethnic = "All’

if ethnic == ’All’:
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files = df.loc[(df[’gender’]

& (df[’age’] == age)

1
else:

files = df.loc[(df[’gender’] == gender)

& (df[’ethnic’] == ethnic)

& (df[’age’] == age)

1

= gender)

plt.figure(figsize=(20,20))
for i, (index, row) in enumerate(files.head(25).iterrows()):
plt.subplot(5,5, i+1)

img = Image.open(row[’image’])

img = np.array(img)

plt.imshow(img)

plt.title(f"Age: {row[’age’]} ; Gender: {row[’gender’]}")
plt.axis(C’off’)

plt.show()
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Figura 11.13: Esempio di Griglia di Immagini, in formato 5 x 5, di maschi

con 26 anni di qualsiasi etnia.

11.3 Addestramento dei modelli

11.3.1 Strategia di training comune e criteri di arresto

La strategia di addestramento é stata mantenuta omogenea per entrambe le

architetture, con ottimizzatore Adam, perdita CrossEntropyLoss e batch size

configurabile (tipicamente 32). Per prevenire l'overfitting é stato adottato
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I'early stopping basato sulla validation loss, parametrizzato da patience e
min_delta. Laricerca degli iperparametri é stata effettuata tramite Random
Search abbinata a K-Fold cross-validation. La gestione dei dati immagine &
centralizzata in una classe ImageDataset che si occupa di trasformazioni

standard (resize, center crop, normalizzazione).

class CNNFeatureExtractor (nn.Module):

def __init__(self, input_channels=3):
super (CNNFeatureExtractor, self).__init__Q)
self.convl = nn.Conv2d(input_channels, 6, 3, 1)
self.conv2 = nn.Conv2d(6, 16, 3, 1)
self. feature_dim = 16 * 54 * 54

def forward(self, x):

x = F.relu(self.convl(x))

x = F.max_pool2d(x, 2, 2)

x = F.relu(self.conv2(x))

x = F.max_pool2d(x, 2, 2)

X = x.view(-1, self.feature_dim)
return x

class CNN_MLP(nn.Module):
def __init__(self, input_channels=3,
hidden_sizes=[120, 84, 20],
dropout=0.0, num_classes=6,
device="cpu’):
super (CNN_MLP, self).__init__QO

self.cnn_features = CNNFeatureExtractor(input_channels)

layers = []

dim = self.cnn_features. feature_dim
for hs in hidden_sizes:
layers.append(nn.Linear(dim, hs))
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layers.append(nn.ReLUQ))
layers.append(nn.Dropout (dropout))

dim = hs
layers.append(nn.Linear(dim, num_classes))

self.mlp = nn.Sequential(*layers)

def forward(self, x):
features = self.cnn_features(x)
return self.mlp(features)

class CNN_KAN(nn.Module):
def __init__(self, input_channels=3, width=[8, 4],
grid=5, k=3, num_classes=6,
seed=0, device=’cpu’):
super (CNN_KAN, self).__init__(Q)

self.cnn_features = CNNFeatureExtractor(input_channels)

kan_width = [self.cnn_features. feature_dim] +
list(width) +

[num_classes]
self.kan = KAN(

width=kan_width,

grid=grid,

k=k,

seed=seed,

device=device

def forward(self, x):
features = self.cnn_features(x)
return self.kan(features)
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class ImageDataset(torch.utils.data.Dataset):

def __init__(self, image_paths, labels, transform=None):
self.image_paths = image_paths
self.labels = labels

self.transform = transform

if self.transform is None:

self.transform = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],

[0.229, 0.224, 0.225])
D

def __len__(self):

return len(self.image_paths)

def __getitem__(self, idx):
try:

img

Image.open(self.image_paths[idx]).convert(’RGB’)
img = self.transform(img)

label = self.labels[idx]

return img, label
except Exception as e:

print (f"Errore nel caricamento dell’immagine

{self.image_paths[idx]}: {e}')
img = torch.zeros(3, 224, 224)

return img, self.labels[idx]

def create_image_train_test_sets(image_paths, labels, split=0.8):
dataset_size = len(image_paths)

train_size = int(dataset_size * split)
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train_paths = image_paths[:train_size]
test_paths = image_paths[train_size:]
train_labels = labels[:train_size]

test_labels = labels[train_size:]

return train_paths, test_paths, train_labels, test_labels

def random_search_cnn(model_builder, param_dist,
train_paths, train_labels,
n_iter=10, cv_folds=5, batch_size=32,
early_patience=5, early_min_delta=1le-4,
class_weights=None, device="cpu’):

train_keys = [’'1r’, 'l12_lambda’]
best_val_loss = float(’inf’)
best_model_params, best_train_params = None, None

best_model = None

kf = KFold(n_splits=cv_folds, shuffle=True, random_state=42)

print ("Starting Random Search CNN with KFold Cross Validation...")

for param_id, params in enumerate(
ParameterSampler(
param_dist, n_iter=n_iter, random_state=42)):

print (f"Testing parameter set {param_id+1}/{n_iter}")

model_params = {k: v for k, v in params.items()
if k not in train_keys}

train_params = {k: v for k, v in params.items()
if k in train_keys}

val_losses = []
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indices = np.arange(len(train_paths))

for fold_idx, (train_idx, val_idx) in enumerate(
kf.split(indices)):
print(f" Fold {fold_idx+1}/{cv_folds}")

fold_train_paths = [train_paths[i] for i in train_idx]
fold_train_labels = [train_labels[i] for i in train_idx]
fold_val_paths = [train_paths[i] for i in val_idx]
fold_val_labels = [train_labels[i] for i in val_idx]

train_dataset = ImageDataset(fold_train_paths, fold_train_labels)
val_dataset = ImageDataset(fold_val_paths, fold_val_labels)

if class_weights is not None:
sample_weights = np.array([class_weights.get(label, 1.0)
for label in fold_train_labels])
sampler = WeightedRandomSampler(
weights=sample_weights,
num_samples=len(sample_weights),
replacement=True
)
train_loader = DatalLoader/(
train_dataset,
batch_size=batch_size,
sampler=sampler)
else:
train_loader = DatalLoader(
train_dataset,
batch_size=batch_size,
shuffle=True)
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val_loader = Dataloader(
val_dataset,
batch_size=batch_size,
shuffle=False)

if ’width’ in model_params:
model = model_builder(**model_params, device=device)
if isinstance(model, CNN_KAN):
model .kan. speed()
else:
model = model_builder(**model_params)

model.to(device)

optimizer = torch.optim.Adam(

model .parameters(), lr=train_params[’lr’])
criterion = nn.CrossEntropyLoss()

stopper = EarlyStopper(

patience=early_patience, min_delta=early_min_delta)

for epoch in range(100):
train_loss = train_cnn_epoch(
model, train_loader, optimizer,
criterion, device,
12_lambda=train_params.get(’12_lambda’, 0.0))
val_loss = eval_cnn_loss(
model, val_loader, criterion, device)

if epoch % 10 == 0:

print (£" Epoch {epoch}:
train_loss = {train_loss:.6f},
val_loss = {val_loss:.6f}")

if stopper.early_stop(val_loss):
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print (£" Early stopping at
epoch {epoch},

best_val_loss: {stopper.best_loss:.6f}")

break

final_val_loss = eval_cnn_loss(
model, val_loader, criterion, device)

val_losses.append(final_val_loss)

mean_val = np.mean(val_losses)

print(f" Mean validation loss: {mean_val

if mean_val < best_val_loss:
best_val_loss = mean_val
best_model_params = model_params
best_train_params = train_params
if ’width’ in best_model_params:
best_model = model_builder(
**pest_model_params,
device=device).to(device)
else:
best_model = model_builder(

**pest_model_params).to(device)

1.6£1")

best_model.load_state_dict(model.state_dict())

print(f" New best validation loss:
{best_val_loss:.6f}")

print (f"\nBest validation loss: {best_val_loss:.6f}")

return best_model, best_model_params, best_train_params

Di seguito sono riportate le griglie di iperparametri entro cui la Random
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Search esplora le combinazioni, al fine di individuare quelle che forniscono

i risultati migliori per ciascun modello.

CNN + MLP (Random Search: n = 11) Il modello adotta una rete convo-
luzionale come feature extractor, composta da due blocchi di convoluzione
+ pooling. Per un input di dimensione 224 x 224, la prima convoluzione
con kernel 3 X 3 e successivo max pooling riduce la dimensione spaziale
a 111 x 111. La seconda convoluzione seguita da max pooling produce
una mappa finale di 16 X 54 X 54, corrispondente a un vettore flatten di
dimensione feature_dim = 46, 656.

Questo vettore viene passato ad una MLP configurabile, in cui sono stati

esplorati diversi insiemi di iperparametri, quali:
* hidden_sizes: [(120, 84, 20), (64, 32), (128, 64, 32)];
¢ dropout: [0.0,0.2, 0.5];
e Ir: [107%,107%];
e 12_lambda: [0.0, 1074, 107°];

CNN + KAN (Random Search: n = 15) La variante CNN+KAN utilizza
la stessa CNN di base per garantire comparabilita. Le feature estratte sono
fornite come input ad una KAN. Questo vettore viene passato ad una KAN
configurabile, in cui sono stati esplorati diversi insiemi di iperparametri,

quali:

» width: [(8,4), (16,8), (32,16)];

grid: [5, 10];

k: [2, 3];

Ir: [1073,1074];

12_lambda: [0.0, 1074, 1075];

seed: 0 per riproducibilita.
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11.3.2 Scelte architetturali finali

Nella Tabella vengono mostrate le scelte finali, dopo l'ottimizzazione
degliiperparametri, utilizzate per training, valutazioni comparative e studio
di ablazione.

Tabella 11.1: Configurazioni finali dei modelli usati per il Training, dopo
aver effettuato 'ottimizzazione degli iperparametri.

CNN + MLP input_channels = 3; hidden_sizes = (128,
64, 32);dropout = 0.5;1r = 1073;12_lambda
= 1074 num_classes = 4. Early stopping appli-
cato.

CNN + KAN input_channels = 3; width = (32,16); grid
= 10; k = 2, seed = §; 1r = 107%; 12_lambda
= 107°; num_classes = 4. Early stopping appli-
cato.
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11.4 Valutazione dei modelli

Model Complexity (Parameters/Nodes)

eeeeeeeeeeeeeeeeeee

Figura 11.14: Confronto visivo delle prestazioni dei modelli (Accuracy
train vs test, F1-weighted /macro, AUC-ROC e AUC-PR OVR weighted con
CI95%, e complessita in parametri).

Classification report e confusion matrix per modello

CNN + MLP
Numero di parametri / nodi: 5983 612.

Tabella 11.2: Classification report

Classe precision recall fl-score support
0 085 0.71 0.78 775
1 091 0.80 0.85 815
2 057 0.75 0.65 807
3 078 0.75 0.76 803
accuracy 0.75 3200
macro avg 078 0.75 0.76 3200
weighted avg 078 0.75 0.76 3200
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Tabella 11.3: Confusion matrix

553 21 158 43
22 649 126 18
49 38 607 113
28 5 168 602

AUC-ROC (OVR, weighted): 0.918
AUC-PR (OVR, weighted): 0.813

CNN + KAN
Numero di parametri / nodi: 16 430 296.

Tabella 11.4: Classification report

Classe precision recall fl-score support
0 0.83 0.75 0.79 775
1 0.85 0.89 0.87 815
2 0.66  0.68 0.67 807
3 0.80 0.81 0.81 803
accuracy 0.78 3200
macro avg 079 0.78 0.78 3200
weighted avg 079 0.78 0.78 3200

Tabella 11.5: Confusion matrix

582 28 124 41
21 727 53 14
70 85 547 105
30 13 106 654

AUC-ROC (OVR, weighted): 0.928
AUC-PR (OVR, weighted): 0.837
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11.4.1 Analisi dei risultati sperimentali

L'analisi complessiva delle prestazioni mostra differenze contenute ma
significative tra le due architetture considerate. La CNN+KAN ottiene le
migliori prestazioni aggregate sul test set, con un’accuratezza attorno a
0.78, un F1-weighted pari a circa 0.78 ed un F1-macro vicino a 0.78. I valori
di AUC risultano anch’essi a favore della CNN+KAN (AUC-ROC OVR
weighted = 0.93, AUC-PR OVR weighted = 0.84). La CNN+MLP presenta
prestazioni leggermente inferiori sul test set con un’accuratezza = 0.75, con
F1-weighted e macro intorno a 0.76, AUC-ROC = 0.92 e AUC-PR = 0.81. La
differenza di performance, pur costante, rimane nell’ordine di pochi punti
percentuali; e pertanto necessario pesare questi guadagni rispetto ai vincoli
computazionali e di memoria.

L'analisi per classe, utilizzando i classification report e le confusion matrix,
mostra che la classe 1 € la pit stabile in entrambe le architetture, con
precision e recall elevate. La classe 2 ¢ quella che presenta il maggior
compromesso precision/recall: nella CNN+MLP si osserva una tenden-
za all’'over-prediction su tale classe, mentre la CNN+KAN riduce questo
effetto migliorando sia precision sia recall. Le confusioni piti frequenti
coinvolgono classi adiacenti (fenomeno atteso per la classificazione d’eta),
suggerendo che molte errate assegnazioni sono dovute a sovrapposizioni

tra fasce contigue piuttosto che a errori casuali.

11.4.2 Selezione del miglior modello

Tramite il calcolo del ranking multi-criterio, CNN_MLP é stato definito come
il modello migliore su tutte le metriche ponderate, anche se a livello di pure
performance CNN_KAN rimane il migliore. Nello specifico, CNN_MLP &
risultato il modello vincente in Equal Weight (1:1), Complexity Weighted
(1:2), Extreme Complexity (1:3) e Pareto Approach (40:60).

Di seguito la tabella riassuntiva con i valori principali usati per il ranking:
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Tabella 11.6: Riepilogo ranking: conteggio parametri, performance media
(rank-based) e ranks per metodo di aggregazione.

Model Param_Count Perf_Score Compl_Rank Equal_Rank Ext_Rank Pareto_Rank

CNN_MLP 5,983,612 2.0 1 1 1 1
CNN_KAN 16,430,296 1.0 2 1 2 2

11.4.3 Conclusioni

Dalla procedura di ranking multi-criterio e dall’analisi delle metriche
aggregate emerge che la rete CNN+KAN raggiunge le migliori prestazio-
ni complessive sul test set (F1 e AUC sensibilmente pit alti), mentre la
CNN+MLP presenta una complessita nettamente inferiore (circa 6M vs
16.4M parametri). I risultati sintetizzati nella Tabella di selezione mostrano
chiaramente questo trade-off tra qualita predittiva e complessita computa-
zionale.

Se l'obiettivo primario ¢ massimizzare le performance e le risorse computa-
zionali non sono vincolanti, la scelta preferibile ¢ la CNN+KAN per il suo
livello di accuratezza e per la maggiore robustezza osservata su alcune classi
difficili. Se invece il vincolo dominante e la complessita, la CNN+MLP
rappresenta il modello raccomandato: offre prestazioni ancora competitive
con costi di deployment significativamente inferiori e quindi un miglior
compromesso per scenari reali a bassa latenza o risorse limitate.

La classifica, basata sul criterio "complexity-weighted" (dal migliore al

peggiore), € la seguente:
1. CNN_MLP (Params: 5,983,612; F1-Weighted: 0.7595)

2. CNN_KAN (Params: 16,430,296; F1-Weighted: 0.7843)
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Conclusioni

Sintesi dei contributi scientifici e metodologici

La presente tesi ha condotto un’indagine metodologica ed applicativa
approfondita su quattro paradigmi di apprendimento automatico: le reti
neurali classiche (MLP), una loro recente evoluzione (KAN) e due mo-
delli ensemble basati su alberi (Random Forest e XGBoost). L'obiettivo
primario era duplice: da un lato, fornire un’analisi teorica esaustiva di
ciascun modello, esaminandone architettura, fondamenti matematici e
funzionamento operativo; dall’altro, valutare sperimentalmente le loro
prestazioni su tre distinti casi di studio del mondo reale, che comprende-
vano problemi di regressione su dati tabellari, di classificazione su serie
storiche e di classificazione su immagini. Un aspetto centrale della ricerca
é stata I'implementazione di un rigoroso framework sperimentale volto a
garantire stime robuste e non distorte della capacita di generalizzazione
dei modelli. Sono state impiegate metodologie di validazione avanzate,
come la Nested Cross-Validation per i dati non temporali e la Time Series
Cross-Validation per i dati con dipendenza temporale, al fine di evitare
il data leakage e simulare in modo fedele lo scenario di deployment. Per
la selezione degli iperparametri & stato scelto il Random Search, ritenuto
il miglior compromesso tra efficienza esplorativa e scalabilita in contesti
con spazi di ricerca ampi. A completamento, e stato condotto un esteso
studio di ablazione post-addestramento, che ha valutato il compromesso
tra la complessita e le prestazioni dei modelli attraverso tecniche di pruning

mirate.
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Risultati dei casi di studio

I risultati empirici hanno evidenziato che la scelta del modello ottimale non e
universale, ma dipende strettamente dalla natura del problema e dai vincoli

operativi, in particolare il compromesso tra performance e complessita.

Primo Caso Studio: Regressione su emissioni di automobili

In questo task di regressione su dati tabellari eterogenei, il modello XG-
Boost ha dimostrato una superiorita schiacciante, ottenendo un R? in test
di 0.9956 ed un errore quadratico medio (MSE) di appena 17.52. Ha su-
perato nettamente la Random Forest (R? = 0.8704), che a sua volta ha
sovraperformato le reti neurali. Questo risultato conferma l'eccezionale
efficacia degli algoritmi di gradient boosting su dati strutturati, dove la loro
natura additiva e sequenziale, che corregge progressivamente gli errori,
si dimostra particolarmente adatta a modellare relazioni complesse e non
lineari. Il ranking multi-criterio ha confermato la dominanza di XGBoost,
che é risultato il migliore in tutte le strategie di ponderazione (Equal Weight,
Complexity Weighted, ecc.), grazie all’ottimale equilibrio tra performance

ed un numero di parametri molto contenuto (circa 15k).

Secondo Caso Studio: Classificazione di PM2.5

Per il problema di classificazione su serie storiche, le performance dei
modelli si sono allineate su valori aggregati molto simili. Sebbene XGBoost
abbia mantenuto il primato per le metriche assolute piu1 elevate (F1-weighted
di 0.8107), l'analisi del ranking multi-criterio ha rivelato un’altra dinamica.
Penalizzando la complessita del modello, le KAN sono emerse come la
scelta raccomandata. Con un numero di parametri di circa 7, 680 contro i
90,416 di XGBoost ed 1412, 430 di Random Forest, le KAN hanno fornito un
Fl-weighted di 0.7823, un valore leggermente inferiore ma in un modello
drasticamente piu leggero. Questo risultato dimostra come in scenari reali,
dove vincoli di memoria, velocita e scalabilita sono cruciali, un modello con

un rapporto favorevole tra performance e complessita parametrica possa
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essere preferibile rispetto ad un modello che offre un guadagno marginale

di accuratezza ad un costo computazionale molto superiore.

Terzo Caso Studio: Classificazione di Fasce d’Eta tramite
Immagini

Questo caso di studio ha richiesto un’architettura ibrida, utilizzando una
CNN come estrattore di feature, abbinata ad un classificatore finale basato
su MLP o KAN. L'architettura CNN+KAN ha ottenuto una performance
leggermente superiore (F1-weighted di 0.7843) rispetto alla CNN+MLP
(F1-weighted di 0.7595). Tuttavia, questa piccola differenza e stata ottenuta
ad un costo parametrico significativo, con la KAN che ha richiesto circa
16.4M di parametri contro i 6M della MLP. L'analisi di ranking multi-criterio,
che ha privilegiato la parsimonia, ha quindi indicato la CNN+MLP come
il modello raccomandato. Questa scoperta suggerisce che, pur con i suoi
vantaggi teorici, il costo parametrico della KAN, specialmente in architetture
complesse, puo renderla una soluzione meno pratica e scalabile rispetto a

un classificatore pitl convenzionale e leggero.

Sintesi finale: Trade-off, Robustezza e Pruning

I risultati di questo lavoro possono essere riassunti in una serie di rac-
comandazioni pratiche basate sul problema e sui vincoli operativi. Per
ottenere la massima accuratezza con dati tabellari, XGBoost € emerso come
la scelta ottimale. Quando si affrontano problemi piti complessi, come le
serie storiche, e si ha un vincolo di complessita, le KAN offrono un equili-
brio superiore. Infine, per 1’analisi di immagini, I’architettura CNN+MLP
rappresenta un’alternativa piu efficiente, a livello computazionale, rispetto
ad una configurazione pitt complessa come la CNN+KAN.

Lo studio di ablazione ha rivelato differenze profonde nella robustezza
e comprimibilita dei modelli. Gli ensemble, in particolare la Random
Forest, hanno mostrato una straordinaria resilienza: il modello poteva

essere ridotto del 90% mantenendo o persino migliorando leggermente
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le prestazioni di generalizzazione. Similmente, XGBoost ha mostrato una
perdita trascurabile di performance dopo un pruning del 90% nel primo
caso studio. Questa notevole comprimibilita suggerisce un alto grado di
ridondanza strutturale e di complementarieta tra i weak learner, rendendoli
ideali per l'ottimizzazione in ambienti con risorse limitate. Al contrario,
le reti neurali si sono dimostrate piu fragili. La MLP ha tollerato un pru-
ning fino al 50% senza un degrado significativo, ma oltre questa soglia
ha manifestato una rapida perdita di performance. Le KAN, sebbene pit1
resistenti rispetto alle MLP, hanno mostrato un degrado piti marcato con
pruning superiore al 70%. La minore tolleranza al pruning suggerisce che
la densa parametrizzazione delle reti neurali, pur essendo efficiente per
I"approssimazione funzionale, potrebbe non contenere lo stesso grado di

ridondanza sfruttabile per la compressione che si ritrova negli ensemble.

Considerazioni finali

Questa tesi ha fornito un quadro di valutazione basato su dati empirici che
supporta la scelta del modello in diversi scenari applicativi, dimostrando che
I’efficacia di un algoritmo va ben oltre la sua performance grezza. L'analisi
integrata di accuratezza, complessita e comprimibilita offre una guida
concreta per il deployment in contesti operativi. In particolare, il lavoro
ha messo in luce che, mentre XGBoost ¢ lo standard per eccellenza su dati
tabellari, le KAN offrono una valida e leggera alternativa con un equilibrio
unico in termini di performance e complessita. I risultati sullo studio di
ablazione sottolineano un vantaggio cruciale degli ensemble, ovvero la
loro intrinseca robustezza alla compressione, un fattore determinante per

I’'adozione di modelli su dispositivi edge.
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