
Alma Mater Studiorum
Università di Bologna

Campus di Cesena

DIPARTIMENTO DI INFORMATICA – SCIENZA E INGEGNERIA

Corso di Laurea Triennale in Ingegneria e Scienze Informatiche

Ottimizzazione dei percorsi di

evacuazione e gestione delle notifiche

in un sistema di allerta

Elaborato in:

Basi di Dati Avanzate

Relatore:

Prof.ssa Alessandra Lumini

Correlatore:

Prof.ssa Annalisa Franco

Presentata da:

Lisa Vandi

Sessione II

Anno Accademico 2024-2025

Alla mia famiglia,

linfa della mia esistenza:

è con voi e per voi che ogni mio sogno diventa realtà.

È vostro un capo del filo, con l’altro io correrò nel mondo.

Se dovessi perdermi, voi, tirate.

Introduzione

Il presente elaborato di tesi investiga la problematica della gestione dell’e-

vacuazione in ambienti interni in contesti emergenziali. Lo studio si concentra

sull’analisi di un caso pratico applicato al Campus di Cesena dell’Università

di Bologna, proponendo una soluzione che supera i limiti dei sistemi di aller-

ta pubblica macro-geografici. Il sistema ideato offre la granularità necessaria

per una gestione efficace dell’evacuazione, garantendo una comunicazione

personalizzata e un percorso di fuga ottimizzato per ogni occupante.

La gestione efficace delle emergenze richiede di superare il divario tra

sistemi di allerta su larga scala e strategie di evacuazione dettagliate e perso-

nalizzate. Come illustrato nel Capitolo 1, ciò implica la capacità di localizzare

gli individui, acquisire in tempo reale informazioni sui loro movimenti, e ge-

nerare percorsi personalizzati che eludano aree di rischio e colli di bottiglia.

La letteratura e le pratiche industriali indicano che un’architettura modu-

lare ed event-driven - quale quella descritta nel Capitolo 2 - è la soluzione

ottimale per soddisfare requisiti di bassa latenza, reattività e scalabilità.

La soluzione progettata e implementata, le cui tecnologie principali sono

analizzate nel Capitolo 3, adotta un’architettura event-driven a microservi-

zi in Python. Il sistema integra RabbitMQ per la messaggistica asincrona

e PostgreSQL/PostGIS per la persistenza dei dati geospaziali. La topolo-

gia dell’edificio, modellata come un grafo multi-piano, consente il calcolo in

tempo reale dei percorsi sicuri, escludendo dinamicamente aree a rischio. La

comunicazione tra i servizi è gestita attraverso un meccanismo di handshake

che garantisce la consistenza dei dati.

i

ii INTRODUZIONE

I microservizi principali comprendono il Gestore degli alert, il Centro notifi-

che, il Simulatore delle posizioni, il Gestore delle posizioni, il Visualizzatore

della mappa e il Gestore della mappa, ciascuno dedicato a responsabilità

funzionali specifiche nell’ambito della gestione delle emergenze. I dettagli

implementativi dei microservizi sviluppati sono discussi nei Capitoli 4-6.

I contributi originali di questa tesi includono: l’ideazione di un’architet-

tura a microservizi scalare e modulare; lo sviluppo di una pipeline determi-

nistica per il ricalcolo adattivo dei percorsi; la creazione di un’applicazione

web interattiva per la visualizzazione e l’editing del grafo; l’implementazio-

ne di un protocollo di sincronizzazione per garantire la comunicazione tra i

microservizi.

La validazione sperimentale, presentata nel Capitolo 7, ha attestato l’ef-

ficienza, la correttezza topologica e la robustezza del sistema: esso genera e

comunica in tempi utili percorsi di evacuazione corretti, che evitano sistema-

ticamente aree pericolose e e deviano il flusso in caso di criticità, avvalorando

l’efficacia dell’approccio.

Il lavoro si conclude con le riflessioni finali e le prospettive di sviluppo

futuro 7.5.4.

Indice

Introduzione i

1 Descrizione del problema affrontato 1

1.1 Descrizione del problema . 2

1.2 Analisi dello stato dell’arte . 3

1.2.1 IT-Alert . 4

1.2.2 IPAWS . 5

1.3 Motivazioni dello sviluppo . 7

2 Architettura del sistema 9

2.1 Scelta dell’architettura a microservizi 9

2.1.1 Architettura a microservizi 9

2.1.2 Analisi delle alternative: l’architettura monolitica . . . 11

2.1.3 Motivazioni della scelta 13

2.2 Panoramica dell’architettura proposta 14

2.3 Design dei microservizi . 16

2.3.1 Gestore degli alert . 16

2.3.2 Centro notifiche . 17

2.3.3 Simulatore delle posizioni 17

2.3.4 Gestore delle posizioni 18

2.3.5 Gestore della mappa 19

2.3.6 Visualizzatore della mappa 21

2.4 Comunicazione tra microservizi: flusso dell’emergenza 23

2.4.1 Fase 0: configurazione del sistema 23

iii

iv INTRODUZIONE

2.4.2 Fase 1: gestione dell’allerta 24

2.4.3 Fase 2: gestione delle posizioni e rilevamento del pericolo 25

2.4.4 Fase 3: risposta alle notifiche di evacuazione e aggior-

namento delle posizioni simulate 26

2.4.5 Fase 4: aggiornamento della mappa e ricalcolo dei per-

corsi . 27

2.4.6 Fase 5: riassegnamento dei percorsi 28

3 Tecnologie fondamentali del sistema 31

3.1 Linguaggio di programmazione: Python 31

3.1.1 Requisiti del linguaggio di programmazione 32

3.1.2 Python . 32

3.1.3 Analisi delle alternative: Node.js 33

3.2 Broker di messaggistica: RabbitMQ 34

3.2.1 Requisiti del sistema di messaggistica 35

3.2.2 RabbitMQ . 35

3.2.3 Analisi delle alternative: Apache Kafka 37

3.3 Database di persistenza: PostgreSQL 39

3.3.1 Requisiti del sistema di persistenza 40

3.3.2 PostgreSQL con PostGIS 41

3.3.3 Analisi delle alternative: RethinkDB 42

3.4 File di configurazione . 44

3.4.1 Requisiti dei file di configurazione 45

3.4.2 Caratteristiche e casi d’uso 45

4 Implementazione: microservizio Centro Notifiche 47

4.1 Analisi dello stato dell’arte . 49

4.1.1 Innovazioni introdotte dal Centro Notifiche 50

4.2 Analisi delle alternative: motivazioni delle scelte 51

4.3 Sviluppo operativo del microservizio 53

4.3.1 Struttura dei componenti e classi principali 54

4.3.2 Flusso operativo . 56

INTRODUZIONE v

4.3.3 Tecnologie e implementazione 58

4.3.4 Gestione degli errori e resilienza 59

5 Implementazione: microservizio Visualizzatore della Mappa 61

5.1 Analisi dello stato dell’arte . 62

5.1.1 Visualizzazione indoor e cartografia dedicata 62

5.1.2 Modelli spaziali indoor e grafi di navigazione 63

5.1.3 Estrazione automatica e modellazione manuale del gra-

fo indoor . 63

5.1.4 Basi di dati spaziali e gestione del grafo 64

5.1.5 Frontend e librerie di mappatura web 66

5.2 Analisi delle alternative: motivazioni delle scelte 68

5.2.1 Estrazione automatica del grafo con OpenCV 68

5.2.2 Database e sistema di coordinate 70

5.2.3 Libreria di visualizzazione: Leaflet, OpenLayers e Ma-

pbox . 72

5.3 Sviluppo operativo del microservizio 73

5.3.1 Progettazione dell’architettura 74

5.3.2 Implementazione del backend 75

5.3.3 Sviluppo del frontend 79

5.3.4 Flusso dei dati . 80

6 Implementazione: microservizio Gestore della Mappa 85

6.1 Analisi dello stato dell’arte . 86

6.1.1 Approcci basati su ricalcolo reattivo su grafo 86

6.1.2 Approcci basati su apprendimento e ottimizzazione glo-

bale . 87

6.2 Analisi delle alternative: motivazioni delle scelte 89

6.2.1 Modellazione dei nodi stairs 89

6.2.2 Funzionalità GIS integrate nel database 90

6.2.3 Percorsi di evacuazione predefiniti 91

vi INDICE

6.2.4 Coordinamento tra microservizi: gestione della race

condition . 91

6.3 Sviluppo operativo del microservizio 93

6.3.1 Flusso operativo . 93

6.3.2 Consumatori di messaggi e architettura 94

6.3.3 Calcolo dei percorsi di evacuazione 96

6.3.4 Inizializzazione e notifiche 99

7 Risultati sperimentali 101

7.1 Analisi del caso di studio . 102

7.2 Descrizione dei dati . 105

7.3 Validazione qualitativa: terremoto 105

7.3.1 Posizioni iniziali e rilevamento del pericolo 106

7.3.2 Generazione dei percorsi di evacuazione 108

7.3.3 Validazione dell’arrivo e visualizzazione del flusso . . . 110

7.4 Validazione qualitativa: alluvione 110

7.4.1 Posizioni iniziali e rilevamento del pericolo 111

7.4.2 Generazione dei percorsi di evacuazione 113

7.4.3 Validazione dell’arrivo e visualizzazione del flusso . . . 114

7.5 Validazione quantitativa . 115

7.5.1 Analisi della scalabilità del sistema in funzione del ca-

rico utenti . 118

7.5.2 Analisi della resilienza in funzione della fascia oraria . . 123

7.5.3 Analisi della reattività in funzione della tipologia di

allerta . 131

7.5.4 Analisi della robustezza in funzione della capacità di

archi e nodi . 137

Conclusioni 143

Bibliografia 147

Ringraziamenti 157

Elenco delle figure

2.1 Architettura del sistema . 15

2.2 Diagramma di sequenza: configurazione iniziale del sistema . . 24

2.3 Diagramma di sequenza: inizio dell’emergenza 25

2.4 Diagramma di sequenza: gestione delle posizioni e rilevamento

del pericolo . 26

2.5 Diagramma di sequenza: risposta alle notifiche di evacuazione

e aggiornamento delle posizioni 27

2.6 Diagramma di sequenza: aggiornamento della mappa e rical-

colo dei percorsi . 28

2.7 Diagramma di sequenza: aggiornamento e riassegnamento dei

percorsi di evacuazione . 29

4.1 Diagramma delle classi: Notification Center 56

5.1 Diagramma UML dei componenti del backend di Map Viewer. 77

5.2 Diagramma di sequenza — (1) Inizializzazione e precaricamen-

to; (2) Scoperta e caricamento. 81

5.3 Diagramma di sequenza — (3) Aggiornamento periodico delle

posizioni. 82

5.4 Diagramma di sequenza — (4) Modifica del grafo. 83

5.5 Diagramma di sequenza — (5) Riallineamento della cache. . . 84

6.1 Diagramma di sequenza: meccanismo di handshake tra Map

Manager e Position Manager 93

vii

viii ELENCO DELLE FIGURE

6.2 Flowchart: Pipeline di pathfinding 98

7.1 Piano 0 del Campus di Cesena 103

7.2 Piano 1 del Campus di Cesena 103

7.3 Piano 2 del Campus di Cesena 104

7.4 Posizioni iniziali prima dell’allerta: piano 0 106

7.5 Posizioni iniziali prima dell’allerta: piano 1 107

7.6 Posizioni iniziali prima dell’allerta: piano 2 107

7.7 Nodi in pericolo durante l’allerta di tipo terremoto 108

7.8 Flusso degli utenti in evacuazione: piano 0 109

7.9 Flusso degli utenti in evacuazione: piano 1 109

7.10 Flusso degli utenti in evacuazione: piano 2 110

7.11 Posizioni iniziali: piano 0 . 111

7.12 Posizioni iniziali: piano 1 . 112

7.13 Posizioni iniziali: piano 2 . 112

7.14 Nodi al piano 0 in pericolo: la colonna evacuation path con-

tiene la sequenza di archi computata per la fuga. 113

7.15 Flusso degli utenti in evacuazione 114

7.16 Confronto variazione tempi di ricezione al variare del numero

di utenti simulati . 120

7.17 Utenti salvati nel tempo — Terremoto, capacità limitata, ore

10. 121

7.18 Confronto tra Throughput e Latency Gap al variare del nu-

mero di utenti a rischio nello scenario Terremoto con capacità

archi e nodi limitata e simulazione alle ore 10. 122

7.19 Confronto variazione tempi di ricezione al variare della fascia

oraria di simulazione . 127

7.20 Utenti salvati nel tempo — Terremoto, capacità limitata, 1000

utenti; confronto tra quattro fasce orarie. 128

7.21 Confronto tra Throughput e Latency Gap nelle diverse fasce

orarie (scenario Terremoto, capacità limitata, 1000 utenti). . . 130

INDICE ix

7.22 Confronto variazione tempi di ricezione al variare della tipo-

logia di allerta . 133

7.23 Utenti salvati nel tempo — Ore 10, capacità limitata, utenti

fissi; confronto tra allerta terremoto e alluvione. 134

7.24 Confronto tra Throughput e Latency Gap negli scenari Ter-

remoto e Alluvione con capacità archi e nodi limitata e 1000

utenti. 136

7.25 Confronto variazione tempi di ricezione al variare della capa-

cità degli archi e dei nodi . 139

7.26 Utenti salvati nel tempo — Terremoto, ore 10, 1000 utenti;

confronto tra capacità limitata e infinita. 140

7.27 Confronto tra Throughput e Latency Gap per allerta Terre-

moto e simulazione di 1000 utenti alle ore 10 141

Elenco delle tabelle

2.1 Confronto tra architettura monolitica e microservizi. 13

3.1 Confronto tra RabbitMQ e Apache Kafka per il sistema di

gestione delle emergenze. 39

3.2 Confronto tra PostgreSQL con PostGIS e RethinkDB per il

sistema di evacuazione indoor. 44

3.3 Confronto tra formati di configurazione. 46

7.1 Dati raccolti per allerta Terremoto con capacità di archi e nodi

limitata, simulata alle ore 10 119

7.2 Riepilogo delle metriche di performance nello scenario Terre-

moto con capacità limitata e simulazione alle ore 10 122

7.3 Dati raccolti per allerta Terremoto con capacità di archi e nodi

limitata, simulata per 1000 utenti 125

7.4 Riepilogo delle metriche di performance nello scenario Terre-

moto con capacità limitata e numero utenti a 1000 129

7.5 Dati raccolti per simulazioni alle ore 10 con capacità di archi

e nodi limitata e 1000 utenti simulati 132

7.6 Riepilogo delle metriche di performance con capacità archi e

nodi limitata, simulazione di 1000 utenti alle ore 10 135

7.7 Dati raccolti per allerta Terremoto, simulazioni alle ore 10 con

1000 utenti simulati . 138

7.8 Riepilogo delle metriche di performance per allerta di tipo

Terremoto, simulazione di 1000 utenti alle ore 10 141

xi

xii ELENCO DELLE TABELLE

Capitolo 1

Descrizione del problema

affrontato

Il presente capitolo analizza il contesto applicativo ed esamina le criticità

tecniche e organizzative connesse alla gestione dell’evacuazione indoor in sce-

nari emergenziali, con specifico riferimento al caso di studio del Campus di

Cesena dell’Università di Bologna.

In primo luogo, la Sezione 1.1 formalizza il problema, evidenziando i requisiti

funzionali e non funzionali che hanno orientato la progettazione di una solu-

zione alternativa, basata su un’architettura modulare e tecnologie avanzate

di comunicazione e localizzazione. Segue, nella Sezione 1.2, un’analisi critica

dello stato dell’arte, con particolare attenzione ai sistemi di allerta pubblica

IT-Alert e IPAWS, valutandone caratteristiche, punti di forza e limitazioni

rispetto al contesto indoor. Infine, la Sezione 1.3 giustifica la necessità di

un’architettura innovativa, evidenziando le carenze delle soluzioni esistenti

rispetto ai requisiti definiti e motivando lo sviluppo di un sistema scalabile,

interoperabile e orientato alla gestione in tempo reale di scenari emergenziali.

1

2 1. Descrizione del problema affrontato

1.1 Descrizione del problema

La gestione dell’evacuazione di edifici complessi in scenari emergenziali

rappresenta una sfida di natura tecnica e organizzativa che trascende la mera

diffusione di un segnale di allarme. In contesti caratterizzati da alta densità

di occupanti, variabilità spaziale e vincoli topologici, è necessario affrontare

criticità specifiche per garantire un’evacuazione rapida, sicura ed efficiente.

Le principali difficoltà riscontrate nello sviluppo progettuale possono essere

sintetizzate nei seguenti punti:

• Tempestività dell’allerta: le prime informazioni devono raggiungere

gli occupanti con latenza nulla o trascurabile, in maniera tale da ridurre

la probabilità di vittime in scenari critici quali incendi, rilasci chimici

o eventi sismici.

• Affidabilità del canale di comunicazione: i sistemi di messaggi-

stica tradizionali (SMS, reti dati) decadono drasticamente in presenza

di congestione, blackout parziale o saturazione cellulare. Occorre dun-

que un’infrastruttura che sia resiliente a fault di rete e integrabile con

standard di allerta pubblica (CAP) [1].

• Consapevolezza situazionale in tempo reale: il tracciamento fine-

grained degli occupanti, le cui densità e distribuzione spaziale varia-

no dinamicamente fra aule, corridoi e spazi comuni, riduce i colli di

bottiglia sulle vie di fuga.

• Ottimizzazione dei percorsi di evacuazione: occorre generare, in

modo automatizzato e con complessità prossima al real-time, percorsi

che minimizzino tempo di evacuazione, esposizione al rischio e sovrac-

carico dei nodi critici, tenendo conto di vincoli topologici (scale, uscite

di sicurezza, barriere architettoniche) e di scenari in evoluzione.

• Scalabilità e robustezza architetturale: la soluzione deve essere

modulare, distribuibile su microservizi e tollerante ai guasti; deve inol-

1.2 Analisi dello stato dell’arte 3

tre supportare l’estensione a edifici ulteriori e a classi di rischio differenti

senza reingegnerizzazione sostanziale.

In questo contesto, il Campus di Cesena dell’Università di Bologna

rappresenta un caso di studio esemplare. Contraddistinto da una struttura

complessa, con aule, corridoi, spazi comuni e una popolazione eterogenea,

esso presenta sfide specifiche legate alla variabilità della densità degli occu-

panti e alla necessità di coordinare un’evacuazione efficace in presenza di

vincoli topologici. In termini operativi, il quesito si traduce in un ecosistema

software che: (i) integri messaggi CAP generati da fonti autorevoli, (ii) lo-

calizzi gli utenti in tempo reale, (iii) generi percorsi di evacuazione ottimali,

(iv) diffonda istruzioni personalizzate con bassa latenza e (v) mantenga una

rappresentazione topologica aggiornata dell’edificio.

Ne risulta un problema intrinsecamente complesso che coinvolge orchestra-

zione distribuita, ottimizzazione e comunicazione fault-tolerant.

1.2 Analisi dello stato dell’arte

Nel contesto della gestione delle emergenze pubbliche, la tempestività e

l’efficacia della comunicazione si configurano come parametri cruciali per la

protezione della popolazione. A tale scopo, diversi paesi hanno sviluppato

soluzioni avanzate per la trasmissione di messaggi urgenti. Tra i sistemi di

allerta più rilevanti, IT-Alert in Italia [2] e IPAWS [3] negli Stati Uniti costi-

tuiscono esempi di piattaforme sofisticate che utilizzano tecnologie moderne

per garantire una comunicazione rapida ed efficace in scenari di emergenza.

La presente sezione esplora in dettaglio le caratteristiche distintive di IT-

Alert e IPAWS, esaminando le modalità operative di ciascun sistema e le

sinergie con altre tecnologie internazionali, con l’obiettivo di evidenziare il

loro contributo al miglioramento delle capacità di gestione delle emergenze

in tempo reale.

4 1. Descrizione del problema affrontato

1.2.1 IT-Alert

IT-Alert è il sistema nazionale italiano di allerta pubblica, progettato per

la trasmissione immediata e diretta di informazioni relative a situazioni di

emergenza alla popolazione. Il sistema consente di notificare i dispositivi

mobili situati in aree geografiche specifiche, interessate da pericoli imminenti

o in corso, assicurando una comunicazione rapida ed efficace, essenziale per

la sicurezza pubblica [2].

Nella sua fase iniziale, IT-Alert è stato concepito per la trasmissione dei

messaggi di allerta esclusivamente attraverso il Dipartimento della Protezione

Civile, che ha assunto il ruolo centrale nella gestione delle notifiche. Questa

fase pilota ha permesso di testare l’efficacia del sistema nel raggiungere la

popolazione in situazioni di emergenza. Tuttavia, il sistema è destinato a un

ampliamento progressivo, che lo renderà accessibile a tutte le componenti del

Servizio Nazionale di Protezione Civile [2]. L’integrazione graduale di enti lo-

cali, regionali e nazionali ha come obiettivo quello di rendere la gestione delle

emergenze più capillare ed efficiente, ottimizzando l’uso dei canali di comuni-

cazione disponibili in funzione degli specifici scenari di rischio. L’obiettivo è

consentire una diffusione istantanea e performante delle informazioni iniziali

e delle istruzioni di autoprotezione.

IT-Alert utilizza la tecnologia di cell broadcast per l’invio simultaneo di

avvisi a tutti i dispositivi mobili accesi e connessi alle celle di rete nella zona

di interesse [4]. Questa tecnologia assicura robustezza anche in condizioni

di scarsa copertura o congestione della rete telefonica. I dispositivi spenti o

fuori copertura non ricevono il messaggio, mentre quelli attivi emettono un

tono distintivo che identifica il mittente come ”IT-Alert”.

Il sistema è unidirezionale, non prevedendo feedback né raccolta di dati

personali, tutelando cos̀ı la privacy. Non è richiesta l’installazione di ap-

plicazioni dedicate né procedure di registrazione; i telefoni abilitati ricevono

automaticamente i messaggi. IT-Alert è conforme allo standard internaziona-

le Common Alerting Protocol (CAP) [5], che definisce un formato globale per

la trasmissione degli avvisi di allerta pubblica. L’adozione del CAP garan-

1.2 Analisi dello stato dell’arte 5

tisce un’interpretazione uniforme e facilita l’integrazione e l’interoperabilità

con altre piattaforme di allerta internazionali, come IPAWS, discusso nella

Sezione 1.2.2. Questo contribuisce a una gestione delle emergenze coordinata

a livello globale [6].

Tuttavia, la piattaforma non effettua localizzazione indoor e non fornisce

routing personalizzato.

Dal febbraio 2024, IT-Alert è operativo con messaggi reali per scena-

ri di rischio elevato, quali incidenti nucleari, emergenze industriali, collassi

di grandi dighe e attività vulcanica critica. Per altre circostanze di pericolo,

come terremoti, maremoti e alluvioni, il sistema è ancora in fase di sperimen-

tazione, con l’intenzione di estendere la copertura alle emergenze naturali.

Grazie a test continuativi e miglioramenti del sistema, si prevede un pro-

gressivo affinamento della tecnologia e l’ampliamento delle aree geografiche

coperte, assicurando una capacità di intervento sempre più robusta e pronta

a rispondere a ogni tipo di emergenza.

1.2.2 IPAWS

IPAWS (Integrated Public Alert and Warning System) è il sistema na-

zionale statunitense, gestito dalla Federal Emergency Management Agency

(FEMA), finalizzato alla diffusione capillare e simultanea di allerte di emer-

genza attraverso molteplici canali di comunicazione [3]. Esso consente alle

autorità federali, statali, locali, tribali e territoriali di inviare un unico mes-

saggio di allerta che raggiunge la popolazione tramite TV, radio, dispositivi

mobili e altri media.

IPAWS utilizza un’ampia gamma di tecnologie per una diffusione ottimale

delle allerte. Il sistema impiega il Wireless Emergency Alerts (WEA) per

dispositivi mobili, l’Emergency Alert System (EAS) per trasmissioni via radio

e televisione, e i canali del NOAA Weather Radio per eventi meteo specifici

[3]. Questi canali operano in parallelo, assicurando una copertura completa

e multifocale. Il sistema è stato sviluppato dalla FEMA in collaborazione

con il Department of Homeland Security (DHS) per modernizzare e unificare

6 1. Descrizione del problema affrontato

l’infrastruttura di comunicazione d’emergenza nazionale, creando un sistema

altamente integrato e affidabile in situazioni di criticità [7].

Il processo tecnico prevede che le autorità autorizzate redigano un messag-

gio di emergenza nel formato Common Alerting Protocol (CAP) e lo inviino

alla piattaforma centrale IPAWS-OPEN. Da l̀ı, il messaggio viene autenticato

e diffuso simultaneamente tramite tutti i canali disponibili [8]. Questo ap-

proccio centralizzato consente a IPAWS di raggiungere il massimo numero di

cittadini con un’unica emissione, riducendo i tempi di risposta e migliorando

la gestione delle emergenze a livello nazionale.

I principali canali utilizzati da IPAWS includono [3]:

• EAS (Emergency Alert System): trasmissione di avvisi su radio AM/-

FM e TV, essenziale per una rapida diffusione delle allerte in aree ad

alta densità di popolazione.

• WEA (Wireless Emergency Alerts): notifiche geolocalizzate inviate

direttamente ai dispositivi mobili, funzionanti anche in caso di rete

congestionata.

• NOAA Weather Radio: trasmissione via radio dedicata a eventi me-

teorologici specifici [9].

• altri canali: sirene, pannelli elettronici stradali, applicazioni e piatta-

forme online, che completano la rete di comunicazione e permettono

una copertura completa [10].

Il sistema consente la segmentazione geografica (geofencing), indirizzando

l’avviso solo ai dispositivi presenti nella zona di interesse, senza la necessità

di iscrizioni da parte dell’utente [3]. Questo approccio assicura che gli avvisi

siano inviati solo a chi si trova effettivamente nella zona di pericolo, evitando

allarmi inconsistenti.

Dunque, IPAWS è concepito per coperture macro-geografiche: manca di pre-

cisione spaziale in ambienti confinati e di percorsi di evacuazione personaliz-

zati. Restano inoltre assenti meccanismi di feedback utente e di adattamento

topologico in tempo reale.

1.3 Motivazioni dello sviluppo 7

Pertanto, IPAWS si distingue per la sua scalabilità e interoperabilità, es-

sendo progettato per una copertura massima in situazioni di emergenza, e

per l’efficienza con cui gestisce la trasmissione dei messaggi su più canali, ga-

rantendo una risposta rapida e coordinata a livello nazionale e internazionale

[11].

1.3 Motivazioni dello sviluppo

Sebbene IT-Alert e IPAWS rappresentino soluzioni valide e avanzate per

l’allerta pubblica, demandano alle autorità locali la gestione indoor, dove

granularità spaziale e dinamiche di folla richiedono approcci dedicati.

Le loro limitazioni principali riguardano:

• Mancanza di localizzazione indoor: entrambi i sistemi operano a

livello territoriale, senza capacità di localizzazione precisa all’interno di

edifici, essenziale per gestire la densità variabile e i vincoli topologici

di un campus universitario.

• Assenza di ottimizzazione dei percorsi: IT-Alert e IPAWS si li-

mitano a trasmettere notifiche generiche, senza generare percorsi di

evacuazione personalizzati o adattarsi a scenari dinamici;

• Limitata interattività: l’approccio unidirezionale non consente feed-

back dagli occupanti né la gestione dinamica delle informazioni situa-

zionali.

Queste lacune giustificano lo sviluppo di un sistema innovativo, modulare

e interoperabile, che integri:

• Localizzazione in tempo reale basata su tecnologie indoor.

• Algoritmi di ottimizzazione per percorsi di evacuazione perso-

nalizzati, basati su modelli topologici e dati dinamici.

8 1. Descrizione del problema affrontato

• Diffusione di istruzioni personalizzate a bassa latenza, utilizzando

protocolli fault-tolerant.

• Architettura a microservizi per garantire scalabilità e robustezza.

La piattaforma proposta colma cos̀ı il divario tra i sistemi d’allerta macro-

geografici e le necessità di evacuazione indoor, soddisfacendo i requisiti cri-

tici del Campus di Cesena e costituendo un modello replicabile in contesti

analoghi.

Capitolo 2

Architettura del sistema

Nel presente capitolo si analizza in dettaglio l’architettura a microservizi

adottata per il sistema di gestione delle emergenze, scelta e sviluppata per

rispondere alle problematiche descritte nel Capitolo 1. L’obiettivo è fornire

una visione chiara e strutturata delle scelte progettuali adottate e delle so-

luzioni implementate, con particolare attenzione ai parametri di scalabilità,

manutenibilità e interoperabilità del sistema.

La trattazione si apre con un’analisi comparativa tra l’architettura a mi-

croservizi e quella monolitica (Sezione 2.1), allo scopo di giustificare la scelta

effettuata in funzione dei requisiti specifici del progetto. Si prosegue con una

panoramica dell’architettura proposta (Sezione 2.2), in cui vengono delineati

i principali componenti del sistema e il flusso informativo tra essi. Infine, la

Sezione 2.3 approfondisce le caratteristiche dei singoli microservizi, analiz-

zandone le responsabilità, le interfacce esposte e il ruolo che ciascuno riveste

all’interno dell’intero ecosistema software.

2.1 Scelta dell’architettura a microservizi

2.1.1 Architettura a microservizi

Il paradigma a microservizi definisce uno stile architetturale che struttu-

ra un’applicazione come un insieme di servizi autonomi e indipendentemen-

9

10 2. Architettura del sistema

te deployabili1, orientati a singole funzionalità di dominio, che comunicano

mediante protocolli leggeri (quali HTTP/REST) e mantengono la proprietà

esclusiva dei propri dati[12, 13].

Le caratteristiche cardine comprendono:

• Loose coupling (accoppiamento debole): le dipendenze tra servizi

sono ridotte al minimo indispensabile, in maniera tale che variazioni in

un servizio non impongano modifiche negli altri.

• High cohesion (alta coesione): ogni servizio racchiude funzionalità

strettamente correlate allo stesso dominio o bounded context2.

• Decentralizzazione della governance e del data management.

• Possibilità di scalare e rilasciare ogni servizio in modo isolato.

Dal punto di vista formale, un microservizio è un processo autonomo che

implementa un bounded context ben definito[14]. Esso espone un’interfaccia

contrattuale stabile (tipicamenteREST), possiede un modello di dati privato

e non condiviso, e può essere sviluppato, testato, distribuito e scalato indi-

pendentemente dagli altri servizi. Pertanto, l’unità di deployment coincide

con l’unità di responsabilità funzionale: secondo il principio “one team, one

service, one database”[13], ogni team controlla in autonomia l’intero ciclo di

vita del proprio microservizio e del relativo database, riducendo al minimo

le dipendenze organizzative e tecniche.

1Un servizio è indipendentemente deployabile quando può essere rilasciato in produ-

zione senza richiedere la ricostruzione o la riconfigurazione degli altri componenti del

sistema.
2Nel Domain-Driven Design, un bounded context è un confine semantico entro il qua-

le un modello di dominio ha validità e coerenza; al suo interno termini e regole hanno

significato univoco, mentre all’esterno possono divergere.

2.1 Scelta dell’architettura a microservizi 11

2.1.2 Analisi delle alternative: l’architettura monoliti-

ca

Un’architettura monolitica è un modello tradizionale di sviluppo software

in cui l’intero applicativo è costruito e distribuito come un unico artefatto

eseguibile. In tale approccio, tutti i componenti (interfaccia utente, logica

di dominio, persistenza dati) risultano strettamente integrati e condividenti

le medesime risorse e dipendenze [15, 16]. Da un punto di vista organizzati-

vo, il monolite adotta un paradigma di single code-base: qualsiasi evoluzione

funzionale, seppur circoscritta, richiede la ricompilazione e il redeploy del-

l’intera applicazione, comportando cicli di rilascio più lunghi e un workflow

di sviluppo centralizzato [17].

L’adozione di un unico artefatto comporta indubbi benefici in termini di

semplicità gestionale e coerenza operativa, ma introduce vincoli significativi

sulla scalabilità, la resilienza e l’evoluzione tecnologica dell’applicazione.

Di seguito, in forma schematica, si riportano i principali punti di forza e

le relative criticità del modello architetturale monolitico.

Punti di forza:

• Semplicità di avvio progetto: una base di codice unica semplifi-

ca l’avvio del progetto e consente al team di configurare rapidamente

pipeline di build, test e deploy [18].

• Debug e testing centralizzati: l’intera logica di esecuzione risie-

de in un solo processo, agevolando il tracciamento end-to-end delle

transazioni e l’analisi dei malfunzionamenti [15].

• Deployment semplificato: la distribuzione avviene con un singolo

comando di rilascio (”one-shot deploy”3) senza necessità di orchestra-

zione tra componenti [19].

3Un unico artefatto contenente l’intero stack applicativo.

12 2. Architettura del sistema

• Prestazioni intraprocesso: l’assenza di chiamate di rete interne eli-

mina overhead di serializzazione e latenza, aumentando il throughput

in scenari I/O bound [15].

Criticità:

• Scalabilità orizzontale limitata: per gestire un aumento di carico

è necessario replicare l’intero artefatto, con conseguente inefficienza

nell’utilizzo delle risorse [20].

• Forte accoppiamento: una modifica locale impone la ricompilazione

e il redeploy dell’intera applicazione, rallentando i cicli di rilascio [16].

• Single point of failure (SPoF): un guasto in qualunque componente

può compromettere l’intero sistema, riducendone la resilienza [20].

• Technology lock-in: l’adozione di nuove tecnologie o linguaggi è

vincolata allo stack esistente, aumentando la rigidità e ostacolando

l’evoluzione architetturale [21].

La Tabella 2.1 evidenzia come l’architettura monolitica privilegi la sem-

plicità iniziale a scapito di flessibilità, scalabilità e resilienza. Al contrario,

i microservizi offrono un paradigma di decomposizione verticale, con servizi

autonomi e indipendenti, sebbene introducano complessità operativa aggiun-

tiva (orchestrazione, osservabilità, gestione del traffico) e latenza di rete nelle

comunicazioni inter-servizio[18]. La scelta architetturale deve pertanto bilan-

ciare i requisiti di tempi di deploy, scalabilità attesa e tolleranza ai guasti

nell’ambiente di esecuzione.

2.1 Scelta dell’architettura a microservizi 13

Dimensione Monolite Microservizi

Unità di deploy-

ment

Singolo artefatto esegui-

bile

Servizi autonomi, indi-

pendentemente deploya-

bili

Scalabilità Replica dell’intero stack Scale-out mirato per

ogni servizio

Accoppiamento /

Coesione

Forte accoppiamento,

coesione eterogenea

Loose coupling, high co-

hesion per bounded con-

text

Resilienza SPoF intrinseco Fault isolation e degrado

parziale

Governance dati Database condiviso Database per servizio,

responsabilità locale

Tabella 2.1: Confronto tra architettura monolitica e microservizi.

2.1.3 Motivazioni della scelta

L’adozione di un’architettura a microservizi per il sistema di gestione delle

emergenze è stata guidata da una valutazione approfondita dei requisiti in-

dividuati nel Capitolo 1 e dalle limitazioni riscontrate nei modelli monolitici.

In particolare, quattro fattori critici ne hanno determinato la preferenza:

1. Modularità e indipendenza: grazie al bounded context e al princi-

pio di single responsibility, ogni microservizio incapsula un sottoinsieme

coerente di funzionalità, riducendo la complessità cognitiva e permet-

tendo cicli di sviluppo, test e rilascio autonomi per ciascun modulo. Ciò

agevola l’applicazione del paradigma “one team, one service” e facilita

la localizzazione e la correzione di eventuali malfunzionamenti senza

impattare sull’intero sistema[13, 14].

2. Flessibilità tecnologica: l’architettura a microservizi supporta un

approccio polyglot, consentendo di selezionare il linguaggio di program-

14 2. Architettura del sistema

mazione, il framework e il sistema di persistenza dati più idonei per le

specifiche esigenze di ogni servizio. Questa libertà tecnologica riduce il

technology lock-in e favorisce l’adozione di innovazioni qualitativamente

rilevanti[13, 22].

3. Scalabilità orizzontale: poiché ciascun microservizio implementa un

dominio funzionale autonomo, è possibile scalare in modo fine-grained

soltanto i componenti sottoposti a maggior carico, ottimizzando l’uti-

lizzo delle risorse e riducendo i costi infrastrutturali. Tale modello si

adatta particolarmente ai picchi di accesso tipici dei sistemi di allerta

in situazioni emergenziali[15, 22].

4. Resilienza e fault tolerance: l’isolamento processuale dei microser-

vizi favorisce il contenimento dei guasti, evitando che un malfunziona-

mento locale si propaghi all’intero sistema.

In sintesi, l’architettura a microservizi si allinea in modo ottimale con i

requisiti di modularità, flessibilità, scalabilità e tolleranza ai guasti definiti

per il sistema, superando le limitazioni intrinseche del modello monolitico e

ponendo le basi per una soluzione evolutiva e manutenibile nel lungo periodo.

2.2 Panoramica dell’architettura proposta

Lo scopo di questa sezione è fornire una visione d’insieme delle principali

entità software e dei flussi informativi che le collegano, evidenziando co-

me l’orchestrazione distribuita e la separazione dei contesti di responsabilità

permettano di soddisfare i requisiti di scalabilità, resilienza e manutenibilità

illustrati nel Capitolo 1.

2.2 Panoramica dell’architettura proposta 15

Figura 2.1: Architettura del sistema

Il grafo in Figura 2.1 rappresenta ciascun microservizio come un nodo e

utilizza archi orientati per indicare i percorsi di comunicazione e i messaggi

scambiati. Tale formalismo semplifica l’individuazione dei bounded context

in cui ogni servizio opera, rendendo evidente il confine tra le responsabilità

funzionali. La distinzione tra flussi sincroni e asincroni è immediata, age-

volando la scelta del paradigma di comunicazione più adatto tra chiamate

REST e sistemi di messaging in base ai requisiti di latenza e throughput.

Inoltre, la topologia di rete cos̀ı delineata facilita l’identificazione di even-

tuali cluster critici e possibili punti unici di guasto, supportando strategie

di fault isolation e load balancing. Dal punto di vista operativo, il team di

sviluppo può pianificare in modo accurato il dimensionamento delle risor-

se e l’auto-scaling dei singoli servizi. Inoltre, durante le attività di debug

e audit, il grafo assume il ruolo di “single source of truth”, consentendo di

localizzare rapidamente i servizi coinvolti in eventuali malfunzionamenti e di

verificare la compliance dei flussi informativi. Infine, l’estensione futura del-

l’ecosistema si traduce in un semplice aggiornamento del grafo, che evidenzia

16 2. Architettura del sistema

immediatamente l’impatto sulle connessioni esistenti e previene l’insorgere di

dipendenze indesiderate.

Nei paragrafi successivi verranno esaminati nel dettaglio ciascuno di que-

sti componenti e il ruolo che essi svolgono all’interno dell’ecosistema com-

plessivo.

2.3 Design dei microservizi

In questa sezione vengono presentati, in ordine di flusso operativo, i mi-

croservizi che costituiscono l’architettura del sistema. Per ciascun servizio

verranno descritti il contesto di responsabilità, le funzionalità principali, l’in-

terfaccia di comunicazione e i requisiti di performance e resilienza soddisfat-

ti. L’analisi mira a mettere in evidenza come la scomposizione in servizi

autonomi risponda alle esigenze di modulabilità, scalabilità e manutenibilità

delineate nei capitoli precedenti.

Per una panoramica dei flussi di messaggistica e delle modalità di intera-

zione tra microservizi, si rimanda alla Sezione 2.4. Le specifiche tecnologiche

e i dettagli di implementazione saranno invece illustrati nei Capitoli 4, 5 e 6.

2.3.1 Gestore degli alert

Il microservizio Gestore degli alert (Alert Manager) riveste un ruolo cen-

trale nella pipeline di gestione delle emergenze all’interno del sistema. Infatti,

si occupa della raccolta, elaborazione, filtraggio e archiviazione degli allarmi

CAP in ingresso, garantendone un trattamento accurato e conforme ai criteri

definiti. La sua funzione principale consiste nell’assicurare una elaborazione

efficace e precisa delle allerte, supportando il sistema nel monitoraggio e nella

supervisione degli eventi critici.

Il microservizio interagisce con altri componenti del sistema per l’invio delle

informazioni relative agli alert, contribuendo alla distribuzione tempestiva

delle segnalazioni di allerta agli utenti.

2.3 Design dei microservizi 17

2.3.2 Centro notifiche

Il microservizio Centro notifiche (Notification Center) funge da hub cen-

trale per la gestione e la distribuzione di notifiche all’interno dell’architettura

a microservizi del sistema. La sua funzione primaria consiste nell’assicurare

la disseminazione tempestiva e accurata di informazioni critiche relative a

eventi di emergenza. In particolare, il servizio è responsabile di:

• Diffusione degli alert: gestione della trasmissione di allerte e aggior-

namenti in tempo reale, indirizzati ai destinatari pertinenti in base a

criteri di rilevanza e urgenza.

• Comunicazione tra microservizi: interfacciamento con gli altri mi-

croservizi del sistema, al fine di aggregare e distribuire informazioni

contestuali relative all’evento di emergenza.

• Gestione del ciclo di vita delle notifiche: supervisione dell’inte-

ro ciclo di vita delle notifiche di allerta, dalla generazione alla termi-

nazione, garantendo una comunicazione continua e puntuale fino alla

risoluzione dell’evento.

L’implementazione delle funzionalità sopra descritte richiede l’adozione di

protocolli di comunicazione efficienti e strategie di notifica ottimali, al fine di

minimizzare la latenza e massimizzare l’affidabilità della trasmissione. Tali

aspetti tecnici, inclusi i dettagli relativi ai protocolli di invio e alle strate-

gie di notificazione degli utenti, saranno oggetto di analisi approfondita nel

Capitolo 4.

2.3.3 Simulatore delle posizioni

Il microservizio Simulatore delle posizioni (User Simulator) implementa

la generazione di dati di localizzazione sintetici con granularità configurabile,

con l’obiettivo di emulare la presenza, il movimento e la distribuzione spa-

ziale di utenti all’interno di un ambiente definito. Tale funzionalità si rivela

18 2. Architettura del sistema

imprescindibile nelle fasi di test e validazione, in cui l’accesso a dati di traccia-

mento reali risulta spesso impraticabile per motivi logistici, economici o etici.

La disponibilità di stream di posizioni realistici è determinante per:

• Verificare la capacità del Position Manager di individuare e classificare,

in tempo quasi reale, gli utenti esposti al rischio.

• Misurare la reattività del Map Manager nel ricalcolo dinamico dei

percorsi di esodo.

• Collaudare la robustezza del Notification Center nella distribuzione

massiva di istruzioni geolocalizzate.

Lo User Simulator consente di modellare scenari eterogenei di affolla-

mento, modulare i tassi di mobilità e i pattern di fuga, generando cos̀ı ca-

richi controllati sull’intera pipeline. Pur configurandosi come componente

placeholder, destinato a essere sostituito da un sistema di real-time indoor

positioning, il servizio riveste un ruolo strategico nell’emulazione di emer-

genze: consente di orchestrare esercitazioni virtuali, analizzare le metriche

di latenza end-to-end e calibrare le soglie di attivazione delle politiche di

auto-scaling, mitigando il rischio di regressioni prima del dispiegamento in

ambiente operativo.

2.3.4 Gestore delle posizioni

Il microservizio Gestore delle posizioni (Position Manager) si configura

come il componente fondamentale per la gestione e l’elaborazione dei dati

geospaziali nell’infrastruttura complessiva del sistema. Esso ha la responsa-

bilità di raccogliere, analizzare e monitorare le posizioni degli utenti all’in-

terno dell’edificio, al fine di supportare in maniera tempestiva le decisioni in

contesti di emergenza.

Le principali funzionalità del Position Manager si esplicano nei seguenti

ambiti:

2.3 Design dei microservizi 19

• Analisi spaziale: il microservizio esegue un’analisi dettagliata delle

posizioni e dei movimenti degli utenti, identificando la loro distribu-

zione spaziale all’interno dell’edificio. Questa capacità di monitoraggio

in tempo reale è cruciale per l’adozione di misure preventive, come la

gestione delle aree di congestione o la segnalazione di zone a rischio

elevato.

• Valutazione dinamica del rischio: attraverso l’applicazione di mo-

delli predittivi e regole predefinite, il Position Manager è in grado di

classificare le situazioni di pericolo in relazione alla posizione degli uten-

ti. Tale valutazione consente di assegnare un livello di criticità ad ogni

area, garantendo una risposta rapida ed efficace in scenari di emergenza.

• Supporto alle operazioni di intervento: una volta identificati i

rischi, il Position Manager attiva risposte operative mirate, fornendo

gli strumenti necessari per la gestione delle emergenze. Dopo aver ve-

rificato che non vi siano più utenti in situazioni di pericolo, il Position

Manager è responsabile della comunicazione di cessazione dell’aller-

ta, garantendo la conclusione del processo di evacuazione o gestione

dell’emergenza.

In stretta collaborazione con il Map Manager e il Notification Center, il

Position Manager gioca un ruolo centrale nell’assicurare che i dati relativi alle

posizioni siano costantemente aggiornati e coerenti, migliorando l’efficacia

complessiva delle operazioni di evacuazione e intervento.

2.3.5 Gestore della mappa

Il microservizio Gestore della mappa (Map Manager) è il componente

specializzato nella computazione distribuita di percorsi di evacuazione otti-

mizzati in tempo reale per rispondere a situazioni di emergenza. Esso integra

in modo fluido il sistema di gestione delle posizioni con la rete infrastrutturale

dell’edificio, elaborando informazioni geospaziali e aggiornamenti provenienti

20 2. Architettura del sistema

dalle fonti di localizzazione degli utenti per garantire un flusso continuo di

dati durante le fasi dell’evacuazione. Tale approccio permette al Map Ma-

nager di determinare dinamicamente i percorsi di evacuazione più sicuri e

rapidi, adattandosi continuamente alle condizioni mutevoli dell’edificio e alle

necessità operative.

A fronte di una segnalazione di emergenza, il modulo determina i per-

corsi personalizzati mediante l’integrazione con un sistema di gestione delle

posizioni, processando lo stato attuale della rete infrastrutturale e la loca-

lizzazione degli utenti coinvolti. Il servizio adotta un approccio data-driven:

integra feed di posizionamento in tempo reale con un grafo navigabile che

modella la rete di evacuazione, applicando algoritmi di pathfinding con vin-

coli dinamici. Tali vincoli includono metriche di capacità residua delle vie di

fuga e segnalazioni crowdsourced, che inducono una riconfigurazione adattiva

della topologia di evacuazione.

Le funzioni principali del Map Manager comprendono:

• Calcolo dinamico dei percorsi: il microservizio analizza costante-

mente lo stato della rete di evacuazione, calcolando i percorsi migliori

per l’esodo degli utenti, in base alla posizione attuale e alle condizioni

di rischio. Tali percorsi sono adattati in tempo reale per riflettere le

modifiche nei vincoli, come ostruzioni, alterazioni nei flussi di persone

o variazioni nella capacità di evacuazione.

• Integrazione con i dati di posizionamento: ilMap Manager riceve

in tempo reale i dati di localizzazione degli utenti e li utilizza per ag-

giornare il modello della mappa, ottimizzando i percorsi di evacuazione

in funzione della distribuzione spaziale degli stessi. Le informazioni re-

lative alla capacità delle vie di fuga e agli aggiornamenti degli utenti

sono determinanti per ricalcolare rapidamente le rotte più sicure.

• Adattamento in base a vincoli dinamici: i percorsi di evacuazione

sono costantemente aggiornati tenendo conto di molteplici fattori, quali

l’affollamento delle zone, i segnali di emergenza e gli aggiornamenti

2.3 Design dei microservizi 21

provenienti da altre fonti, come i dati crowdsourced. Questo approccio

adattivo consente di ottenere un modello di evacuazione flessibile e

reattivo alle mutate condizioni di emergenza.

Pertanto, il Map Manager rappresenta un elemento cruciale nella gestio-

ne delle risorse e nella pianificazione degli interventi di emergenza, poiché

integra i dati provenienti dal Position Manager con le informazioni sulla

rete infrastrutturale dell’edificio. Contribuisce in modo determinante alla

tempestività e all’efficacia delle operazioni di evacuazione, ottimizzando l’al-

locazione delle risorse e garantendo la sicurezza degli utenti in tutte le fasi

dell’emergenza.

I dettagli implementativi, incluse le strategie di ottimizzazione adottate

e le modalità di interazione con i servizi dipendenti, verranno approfonditi

nel Capitolo 6.

2.3.6 Visualizzatore della mappa

Il microservizio Visualizzatore della mappa (Map Viewer) è un compo-

nente software avanzato, progettato per la visualizzazione interattiva e dina-

mica delle posizioni degli utenti e dei percorsi di evacuazione all’interno di

un edificio. Il suo scopo principale risiede nel fornire una rappresentazione

visiva delle informazioni critiche, supportando gli operatori nel monitoraggio

continuo e nella gestione delle operazioni di evacuazione in tempo reale.

Le principali funzionalità del microservizio comprendono:

• Recupero e visualizzazione dei dati di localizzazione degli uten-

ti: ilMap Viewer acquisisce e visualizza in tempo reale le posizioni degli

utenti, mostrandole su una mappa digitale dell’edificio. Il microservizio

ottiene i dati di localizzazione degli utenti da una fonte dati esterna,

li elabora e li utilizza per la generazione di una rappresentazione visi-

va delle posizioni degli utenti sulla mappa. Tale funzionalità consente

di monitorare la distribuzione spaziale degli utenti, facilitando l’indi-

22 2. Architettura del sistema

viduazione tempestiva di aree congestionate o a rischio, cruciali per la

gestione efficace dell’emergenza.

• Aggiornamento dinamico: ilMap Viewer è progettato per aggiorna-

re costantemente la visualizzazione della mappa dell’edificio, sulla base

delle variazioni nei dati di posizionamento degli utenti e nelle condizioni

dei percorsi di evacuazione. Tale funzionalità garantisce una sincroniz-

zazione accurata e immediata della mappa con l’aggiornamento delle

posizioni degli utenti; ciò assicura che gli operatori abbiano sempre una

visione chiara, precisa e aggiornata della situazione in tempo reale.

• Interazione con la mappa: gli operatori possono interagire in modo

intuitivo con la mappa, aggiungendo e modificando i nodi e gli archi at-

traverso un’interfaccia grafica user-friendly. Tale funzionalità consente

di tracciare la planimetria dell’edificio in fase di configurazione iniziale.

In sintesi, il Map Viewer fornisce un supporto decisivo per gli operatori

di emergenza e per gli amministratori di sistema, offrendo loro una com-

prensione immediata e intuitiva della distribuzione spaziale degli utenti, dei

percorsi di evacuazione calcolati e delle zone interessate dagli eventi critici.

Tale funzionalità è determinante per garantire una gestione tempestiva ed

efficiente dell’emergenza, favorendo la sicurezza degli utenti e l’efficacia delle

operazioni di evacuazione.

I dettagli implementativi relativi alle tecnologie impiegate per la visua-

lizzazione della mappa e alle strategie di gestione dei dati di localizzazione

saranno trattati in maniera esaustiva nel Capitolo 5, dove verranno esplo-

rati i principi progettuali e le soluzioni tecniche adottate per realizzare il

microservizio.

2.4 Comunicazione tra microservizi: flusso dell’emergenza 23

2.4 Comunicazione tra microservizi: flusso del-

l’emergenza

Il sistema, strutturato secondo un’architettura distribuita a microservizi,

adotta un meccanismo sofisticato per orchestrare l’interazione tra i microser-

vizi nella gestione delle situazioni di emergenza. Fondato su un approccio

che integra la propagazione di eventi e la condivisione dello stato, il flusso

operativo si sviluppa attraverso una serie di scambi sincronizzati e coordinati

tra i componenti. Ogni microservizio opera autonomamente, con responsabi-

lità ben definite, assicurando cos̀ı un’architettura modulare ed efficiente, che

favorisce una gestione scalabile e flessibile del processo emergenziale.

2.4.1 Fase 0: configurazione del sistema

La fase di configurazione iniziale del sistema di gestione delle emergen-

ze riveste un ruolo fondamentale, pur non facendo parte del ciclo operativo

continuo. Questa fase preliminare è cruciale per predisporre l’ambiente e i

dati necessari al corretto funzionamento di tutti i componenti del sistema. In

particolare, si concentra sulla definizione delle informazioni relative alla strut-

tura dell’edificio, che sono imprescindibili per la simulazione delle posizioni

degli utenti e per il calcolo dei percorsi di evacuazione. La configurazione del

sistema si basa sulla creazione di una rappresentazione astratta dell’edificio

sotto forma di un grafo, composto da nodi e archi. I nodi corrispondono alle

stanze, classificate in base alla loro tipologia, mentre gli archi definiscono i

collegamenti tra di esse. Per effettuare questa operazione, viene utilizzata

un’interfaccia dedicata, che consente l’inserimento e la gestione di tali ele-

menti. La rappresentazione grafica dell’edificio è il fulcro su cui si fondano

diverse funzionalità del sistema. Nello specifico, il Map Manager si avvale

di tale mappa per determinare i percorsi di evacuazione ottimali, lo User

Simulator per simulare la presenza e il movimento degli utenti all’interno

della struttura, e il Position Manager per registrare le posizioni degli utenti

nel database e valutare eventuali situazioni di pericolo in base alla natura

24 2. Architettura del sistema

dell’emergenza in corso.

Il diagramma di sequenza mostrato in Figura 2.2 illustra in dettaglio le in-

terazioni principali di questa fase preparatoria, con particolare attenzione al

ruolo del Map Viewer e al sistema di archiviazione dei dati relativi alla map-

pa. Infatti, il microservizio Map Viewer si occupa della generazione della

mappa e della rete infrastrutturale dell’edificio, caricando e strutturando i

dati in un formato utilizzabile durante le fasi di gestione dell’emergenza.

Figura 2.2: Diagramma di sequenza: configurazione iniziale del sistema

2.4.2 Fase 1: gestione dell’allerta

Il processo di gestione dell’emergenza ha inizio con l’Alert Manager, che

genera e valida un potenziale evento critico, producendo un messaggio di

allerta conforme al formato CAP. Il messaggio viene sottoposto a filtri di

rilevanza basati su regole specifiche del dominio per valutarne la rilevanza. Se

ritenuto significativo, l’evento viene archiviato nel database dedicato e l’Alert

Manager trasmette al Notification Center l’identificativo univoco dell’alert e i

relativi metadati, avviando ufficialmente il protocollo di emergenza. Ricevuta

la segnalazione, il Notification Center accede al database delle sottoscrizioni

per recuperare l’elenco aggiornato degli utenti coinvolti e invia le notifiche

2.4 Comunicazione tra microservizi: flusso dell’emergenza 25

iniziali tramite i canali preconfigurati. Contemporaneamente, richiede allo

User Simulator i dati aggiornati sulle posizioni degli utenti, attivando cos̀ı

l’analisi geospaziale dell’evento. La sequenza delle interazioni tra i principali

microservizi durante questa fase iniziale è illustrata nel sequence diagram

riportato nella Figura 2.3.

Figura 2.3: Diagramma di sequenza: inizio dell’emergenza

2.4.3 Fase 2: gestione delle posizioni e rilevamento del

pericolo

Durante questa fase, lo User Simulator trasmette al Position Manager i

dettagli relativi alla collocazione di ciascun utente e alla tipologia di evento

in corso. Il Position Manager, una volta acquisite le informazioni di loca-

lizzazione, effettua un controllo topologico delle coordinate per determinare

quali utenti siano potenzialmente a rischio. I risultati di tale analisi vengo-

no condivisi simultaneamente con due moduli: il Notification Center riceve

l’identificativo univoco degli utenti in pericolo insieme al percorso di evacua-

26 2. Architettura del sistema

zione associato, mentre il Map Manager ottiene una panoramica aggregata

basata sui nodi topologici. Qualora non vengano rilevati utenti a rischio, il

Position Manager invia un segnale di “Stop” al Notification Center, indi-

cando la conclusione del processo di gestione dell’emergenza. Le interazioni

descritte sono rappresentate in dettaglio nel diagramma di sequenza riportato

nella Figura 2.4.

Figura 2.4: Diagramma di sequenza: gestione delle posizioni e rilevamento

del pericolo

2.4.4 Fase 3: risposta alle notifiche di evacuazione e

aggiornamento delle posizioni simulate

A questo punto della gestione del flusso emergenziale, il Notification Cen-

ter trasmette allo User Simulator i messaggi ottenuti dal Position Manager.

In base al contenuto del messaggio, che può indicare un percorso di eva-

cuazione o un segnale di “Stop”, lo User Simulator gestisce diversamente la

simulazione: segue il percorso indicato per simulare il movimento degli uten-

ti o termina l’elaborazione. Se la simulazione dell’emergenza continua, lo

User Simulator comunica al Position Manager le posizioni aggiornate degli

2.4 Comunicazione tra microservizi: flusso dell’emergenza 27

utenti. Questo processo di interazione è dettagliatamente rappresentato nel

diagramma di sequenza della Figura 2.5, che evidenzia chiaramente le diverse

reazioni dello User Simulator in funzione del tipo di messaggio ricevuto.

Figura 2.5: Diagramma di sequenza: risposta alle notifiche di evacuazione e

aggiornamento delle posizioni

2.4.5 Fase 4: aggiornamento della mappa e ricalcolo

dei percorsi

L’aggiornamento della visualizzazione del grafo astratto dell’edificio av-

viene tramite l’uso di trigger temporali, i quali vengono attivati dal Position

Manager in base alla frequenza degli aggiornamenti delle posizioni degli uten-

ti. Quando tali trigger si attivano, il Map Viewer acquisisce le informazioni

più recenti riguardanti le posizioni degli utenti e aggiorna dinamicamente la

visualizzazione del sistema. Questo garantisce che la mappa rifletta sempre

lo stato attuale delle localizzazioni all’interno dell’edificio. Contemporanea-

mente, il Map Manager, una volta ricevuti i dati dal Position Manager, avvia

il calcolo dei percorsi di evacuazione ottimizzati. Questo processo conside-

ra diversi fattori, come la capacità residua dei percorsi, eventuali ostacoli o

28 2. Architettura del sistema

interruzioni, e i vincoli strutturali presenti nell’ambiente. I percorsi generati

vengono successivamente memorizzati nel database condiviso delle posizioni

e della mappa.

Il sistema di aggiornamento è ciclico: ogni intervallo temporale determi-

nato dal trigger del Position Manager avvia un processo che aggiorna sia la

visualizzazione della mappa che i percorsi di evacuazione, garantendo una

visione in tempo reale della situazione e facilitando una gestione continua ed

efficace dell’emergenza.

Il diagramma di sequenza mostrato nella figura 2.6 illustra il flusso di

comunicazione tra i vari moduli in questa fase, evidenziando come l’aggior-

namento della mappa e il ricalcolo dei percorsi siano ripetuti durante tutta

la gestione dell’emergenza.

Figura 2.6: Diagramma di sequenza: aggiornamento della mappa e ricalcolo

dei percorsi

2.4.6 Fase 5: riassegnamento dei percorsi

Quando il Position Manager riceve la posizione di un utente, recupera

il percorso di evacuazione associato a quella specifica localizzazione. Tutta-

via, i percorsi di evacuazione non sono definitivi, ma vengono costantemente

2.4 Comunicazione tra microservizi: flusso dell’emergenza 29

aggiornati dal Map Manager, che si occupa di ricalcolare e ottimizzare le

rotte in tempo reale, tenendo conto delle norme di evacuazione e delle aree

eventualmente inaccessibili. Pertanto, il Position Manager attinge ai per-

corsi ricalcolati dal Map Manager e riassegna agli utenti i nuovi percorsi,

garantendo che ogni individuo sia indirizzato verso la via di fuga più sicura e

ottimale. Una volta completata questa operazione, le istruzioni per l’evacua-

zione vengono inviate al Notification Center, che provvede alla distribuzione

finale delle informazioni agli utenti interessati.

La Figura 2.7 illustra chiaramente come avviene il processo di aggiorna-

mento dinamico dei percorsi e il successivo riassegnamento degli stessi.

Figura 2.7: Diagramma di sequenza: aggiornamento e riassegnamento dei

percorsi di evacuazione

Capitolo 3

Tecnologie fondamentali del

sistema

Il presente capitolo illustra le scelte tecnologiche imprescindibili a fonda-

mento dell’architettura del sistema di gestione delle emergenze, selezionate

in coerenza con i requisiti funzionali e non funzionali delineati nel Capitolo

1. Verranno analizzati i principali elementi del framework tecnologico, dal

linguaggio di programmazione all’infrastruttura di comunicazione asincrona,

fino alla piattaforma di persistenza dati e ai formati di configurazione, evi-

denziando, per ciascuno, il contributo in termini di affidabilità, scalabilità e

adattabilità ai vincoli operativi degli scenari emergenziali.

3.1 Linguaggio di programmazione: Python

Il linguaggio di programmazione costituisce il nucleo dello sviluppo dei

microservizi del sistema. La scelta di Python è stata guidata dai requisiti

del sistema (Capitolo 1) e dalla necessità di integrazione con l’ecosistema

tecnologico adottato.

Dopo un’analisi comparativa con Node.js, Python è risultato la scelta

ottimale per la sua versatilità e robustezza.

31

32 3. Tecnologie fondamentali del sistema

3.1.1 Requisiti del linguaggio di programmazione

I requisiti, derivati dai vincoli del Capitolo 1 e dalle esigenze dei micro-

servizi (Sezione 2.3), includono:

• Analisi e calcolo avanzati: supporto per modellazione di grafi e

calcoli spaziali per ottimizzare rotte di evacuazione.

• Comunicazione asincrona: gestione di interazioni concorrenti con

RabbitMQ per notifiche in tempo reale.

• Produttività e manutenibilità: sintassi chiara e documentazione

estesa per sviluppo rapido e manutenzione semplice.

• Interoperabilità: integrazione con Docker, API (REST, gRPC) e

PostgreSQL/PostGIS.

3.1.2 Python

La selezione di Python come linguaggio di riferimento per i microservizi

si fonda sui requisiti specifici del sistema e sulla ricchezza del suo ecosistema

di librerie. In particolare, esso soddisfa:

• Analisi e calcolo avanzati: librerie mature come NetworkX consen-

tono di modellare la mappa dell’edificio come un grafo e di calcolare

percorsi minimi (shortest path) in modo efficiente. Queste funzionalità

sono centrali per l’ottimizzazione delle rotte di evacuazione senza dover

implementare ex novo complessi algoritmi di pathfinding [23]. Ana-

logamente, l’ecosistema Python include librerie GIS (es. GeoPandas,

Shapely) e il driver psycopg2 per PostgreSQL, che insieme a PostGIS

permettono di eseguire query spaziali e manipolare geodati direttamen-

te da Python [24, 25, 26]. Tale ricchezza di strumenti scientifici e di

calcolo non ha equivalenti altrettanto consolidati in altri ecosistemi,

rendendo Python più adatto per microservizi orientati all’analisi dei

dati e delle reti complesse [27].

3.1 Linguaggio di programmazione: Python 33

• Comunicazione asincrona ed event-driven: grazie al modulo asin-

crono asyncio e al client AMQP pika, Python gestisce interazioni con-

correnti e I/O non bloccante con RabbitMQ [28, 29], broker di messag-

gistica selezionato per la comunicazione inter-microservizi (cfr. Sezione

3.2), garantendo integrazione semplice con il sistema di messaggistica

[30]. Ciò consente al sistema di ricevere e propagare notifiche d’allerta

con bassa latenza. In questo modo, Python unisce la potenza del suo

stack scientifico con la reattività tipica di sistemi real-time.

• Produttività e manutenibilità: la sintassi chiara e concisa di Py-

thon, unita a una comunità estesa e a una vasta collezione di librerie

open-source, accelera lo sviluppo e facilita la scrittura di codice manu-

tenibile [27]. La presenza di framework maturi per il testing e di docu-

mentazione completa riduce il time-to-market e semplifica l’evoluzione

del sistema.

• Interoperabilità e approccio polyglot: l’architettura a microservizi

consente di scegliere il linguaggio più adatto per ogni componente senza

vincoli imposti dallo stack tecnologico complessivo. In questo contesto,

Python si integra nativamente con container Docker e con API esterne

(REST, gRPC), facilitando la comunicazione con componenti in altri

linguaggi e riducendo il lock-in tecnologico [23].

3.1.3 Analisi delle alternative: Node.js

Parallelamente a Python, si è valutata l’adozione di Node.js, un runtime

JavaScript, progettato per eseguire codice lato server con un event-loop non

bloccante. Tale architettura lo rende estremamente efficace in scenari I/O-

bound e real-time, dove occorre gestire un elevato numero di connessioni

concorrenti con bassa latenza[27, 31].

Nel contesto in analisi, tuttavia, il carico principale è di tipo compu-

tazionale (calcolo di percorsi ottimali, analisi di vicinanza spaziale) e data-

intensive più che puramente I/O. In tali circostanze, il modello single-threaded

34 3. Tecnologie fondamentali del sistema

di Node.js può diventare un collo di bottiglia: operazioni CPU-intensive

possono bloccare l’event loop, degradando le prestazioni globali del servizio

[27].

Inoltre, benché esistano librerie Node.js per la grafica e l’analisi dei gra-

fi, esse risultano meno consolidate e ottimizzate rispetto alle contropar-

ti Python, che beneficiano di anni di sviluppo in ambito scientifico. Ciò

implicherebbe maggiore lavoro di integrazione o performance inferiori.

Per quanto concerne la disponibilità di librerie per il messaging e il data

access, entrambi i linguaggi dispongono di client AMQP per RabbitMQ [32]

e driver per PostgreSQL. Ciononostante, Python vanta anche ORM e tool-

kit specifici per la geolocalizzazione che possono velocizzare lo sviluppo di

funzionalità geospaziali con poche linee di codice, mentre su Node.js molte

di queste integrazioni richiedono maggior lavoro manuale o l’uso di pacchetti

meno diffusi.

Dunque, la scelta di Python è confermata dal suo equilibrio tra capa-

cità di calcolo scientifico, supporto per messaggistica e facilità di sviluppo,

perfettamente allineato ai requisiti funzionali e non funzionali del sistema

(Capitolo 1).

3.2 Broker di messaggistica: RabbitMQ

In un’architettura a microservizi, il broker di messaggistica rappresenta il

fulcro della control plane: assicura la propagazione affidabile degli eventi, il

disaccoppiamento temporale fra processi e la resilienza ai guasti di rete. La

presente sezione motiva la scelta di RabbitMQ come broker di messaggistica,

analizzando i requisiti specifici del sistema e il contributo di RabbitMQ in ter-

mini di funzionalità, prestazioni e compatibilità con l’ecosistema tecnologico

adottato.

3.2 Broker di messaggistica: RabbitMQ 35

3.2.1 Requisiti del sistema di messaggistica

Il sistema in analisi richiede un’infrastruttura di messaggistica che soddisfi

i seguenti requisiti, derivati dai vincoli funzionali e non funzionali delineati

nel Capitolo 1:

• Bassa latenza nella propagazione degli eventi: i messaggi rela-

tivi agli alert di emergenza e ai percorsi di evacuazione devono essere

trasmessi in tempo reale o con latenza trascurabile per garantire una

risposta tempestiva in scenari critici.

• Flussi di dati non massivi: il sistema gestisce un volume di messaggi

relativamente contenuto. La priorità è quindi la reattività rispetto alla

capacità di gestire carichi estremi.

• Supporto per comunicazioni asincrone: l’architettura a microser-

vizi richiede un disaccoppiamento temporale tra produttori e consu-

matori, con pattern di messaggistica come publish/subscribe e point-to-

point, per consentire l’orchestrazione di flussi complessi come la gestione

degli alert e l’aggiornamento delle posizioni.

• Compatibilità con Python: il broker deve integrarsi nativamente

con Python, linguaggio scelto per i microservizi (cfr. Sezione 3.1),

attraverso client robusti e ben documentati, come pika per AMQP.

• Facilità di configurazione e manutenzione: il broker deve essere

configurabile senza complessità eccessive e supportare meccanismi di

monitoraggio e fault tolerance senza richiedere infrastrutture pesanti.

Sulla base di tali requisiti, sono stati valutati RabbitMQ e Apache Kafka,

due dei principali broker di messaggistica disponibili.

3.2.2 RabbitMQ

RabbitMQ è un broker di messaggistica open-source e general-purpose,

progettato per integrare e disaccoppiare microservizi, offrendo comunicazioni

36 3. Tecnologie fondamentali del sistema

asincrone stabili e affidabili [33]. La sua adozione è particolarmente adatta

a sistemi critici come quello proposto, dove la tempestività nella diffusione

degli allarmi e la garanzia di consegna sono requisiti fondamentali (cfr. Se-

zione 1.1).

RabbitMQ implementa il protocollo AMQP (Advanced Message Queuing

Protocol) e utilizza un modello push-based : i produttori inviano messaggi

a un exchange, che li instrada a una o più code secondo regole di bin-

ding definite, e i consumatori ricevono i messaggi direttamente dalle code

[34]. Questo approccio supporta pattern di messaggistica complessi, come

publish/subscribe, essenziali per orchestrare i flussi operativi descritti nel-

la Sezione 2.4.

Le principali caratteristiche di RabbitMQ che ne giustificano l’adozione in-

cludono:

• Flessibilità nei pattern di messaggistica: RabbitMQ supporta co-

de di messaggi configurabili e meccanismi avanzati di routing tramite

exchanges, che consentono di modellare flussi di comunicazione com-

plessi. Questo si adatta perfettamente alla necessità del sistema di

propagare alert CAP e di orchestrare aggiornamenti di posizione.

• Bassa latenza: RabbitMQ è ottimizzato per scenari in cui la reattività

è prioritaria, con tempi di consegna dei messaggi nell’ordine dei milli-

secondi, ideali per la trasmissione di notifiche di emergenza in tempo

reale [35].

• Supporto nativo per Python: il client pika offre un’integrazione

robusta e ben documentata con Python, consentendo la gestione asin-

crona dei messaggi tramite asyncio e garantendo compatibilità con il

framework tecnologico del sistema [36].

• Supporto per JSON: RabbitMQ consente di inviare messaggi in for-

mato JSON, che è il formato standard per i dati scambiati tra i micro-

servizi del sistema. Questo garantisce una serializzazione e deserializ-

zazione efficiente, fondamentale per l’interoperabilità tra i componenti

3.2 Broker di messaggistica: RabbitMQ 37

e per rappresentare informazioni complesse come coordinate spaziali o

istruzioni di emergenza.

• Fault tolerance e affidabilità: RabbitMQ supporta meccanismi di

persistenza dei messaggi per garantire la consegna dei messaggi anche

in caso di guasti parziali, soddisfacendo il requisito di resilienza del

sistema [37].

• Facilità di configurazione: RabbitMQ è leggero da configurare e

gestire, con un’interfaccia di amministrazione intuitiva e supporto per

containerizzazione, rendendolo ideale per ambienti con risorse limitate

[38].

Le suddette peculiarità rendono RabbitMQ particolarmente adatto a un

sistema che richiede comunicazioni rapide, affidabili e flessibili in un contesto

con flussi di dati non massivi.

3.2.3 Analisi delle alternative: Apache Kafka

Come alternativa a RabbitMQ si analizza Apache Kafka.

Si tratta di una piattaforma di streaming di eventi distribuita, progettata

per gestire volumi di dati massivi ad alta velocità, tipicamente utilizzata in

scenari di big data[39].

Differentemente da RabbitMQ, utilizza un modello pull-based : i produttori

scrivono messaggi in topic partizionati e i consumatori ne effettuano il pol-

ling.

Sebbene potente, grazie al suo throughput elevatissimo e alla capacità di sca-

lare orizzontalmente su più nodi [34], Kafka presenta alcune limitazioni nel

contesto del progetto:

• Orientamento a flussi massivi: Kafka eccelle nella gestione di throu-

ghput elevati (nell’ordine di milioni di eventi al secondo), ma il sistema

di implementato non richiede tale capacità. Pertanto, la complessità di

configurazione e gestione di Kafka risulta sovradimensionata[40].

38 3. Tecnologie fondamentali del sistema

• Latenza più elevata: Kafka è ottimizzato per il throughput e la per-

sistenza di grandi volumi di dati, ma introduce una latenza leggermente

superiore rispetto a RabbitMQ in scenari a bassa intensità, a causa del

suo modello basato su log strutturati e partizionamento [41].

• Complessità operativa: la configurazione di Kafka richiede un’in-

frastruttura distribuita più complessa, con nodi multipli e dipendenze

esterne, aumentando il carico operativo rispetto a RabbitMQ, che può

essere deployato come un singolo nodo o in un cluster leggero [39].

• Supporto Python: sebbene Kafka disponga di client Python, l’ecosi-

stema AMQP di RabbitMQ è più maturo e integrato con Python trami-

te pika, offrendo una gestione più semplice delle connessioni asincrone

[36, 42].

La Tabella 3.1 sintetizza le principali differenze tra RabbitMQ e Kafka in

relazione ai requisiti del sistema.

3.3 Database di persistenza: PostgreSQL 39

Caratteristica RabbitMQ Apache Kafka

Pattern di mes-

saggistica

Pub/sub tramite AMQP;

exchanges per routing

flessibile; modello push-

based [43]

Pub/sub su topic partizio-

nati; modello pull-based

meno flessibile[39]

Latenza Bassa, ottimizzata per

real-time [35]

Più alta in scenari a bas-

sa intensità, dovuta a log

strutturati e partiziona-

mento [41]

Throughput Adatto a flussi moderati

[35]

Ideale per flussi massivi

(milioni di eventi/s) [39]

Integrazione Py-

thon

pika con supporto

asyncio, maturo e ben

documentato [36]

Client meno maturi e

complessi per connessioni

asincrone [42]

Formato dati Supporto nativo per

JSON, ideale per intero-

perabilità [43]

Supporto per JSON, ma

ottimizzato per log strut-

turati [39]

Complessità ope-

rativa

Configurazione leggera,

deploy singolo o cluster;

interfaccia di amministra-

zione intuitiva [38]

Richiede infrastruttura

distribuita complessa con

dipendenze[39]

Tabella 3.1: Confronto tra RabbitMQ e Apache Kafka per il sistema di

gestione delle emergenze.

3.3 Database di persistenza: PostgreSQL

Il database di persistenza deve garantire la gestione efficiente dei dati spa-

ziali, il supporto a notifiche in tempo reale e l’integrazione con l’ecosistema

tecnologico basato su Python (Sezione 3.1).

Dopo un’analisi comparativa tra PostgreSQL con l’estensione PostGIS e Re-

40 3. Tecnologie fondamentali del sistema

thinkDB, PostgreSQL è stato scelto come soluzione ottimale. La presente

sezione motiva tale decisione, descrivendo i requisiti del sistema, le caratteri-

stiche di entrambe le soluzioni e i motivi che rendono PostgreSQL più adatto

al contesto applicativo.

3.3.1 Requisiti del sistema di persistenza

I requisiti per il database di persistenza derivano dai vincoli funziona-

li e non funzionali delineati nel Capitolo 1 e dalle esigenze operative dei

microservizi descritti nella Sezione 2.3:

• Gestione di dati spaziali: il database deve supportare l’analisi spa-

ziale avanzata, come il calcolo di percorsi minimi (shortest path) su

un grafo rappresentante l’edificio, e la manipolazione di geodati per il

tracciamento in tempo reale degli utenti.

• Notifiche in tempo reale: il sistema deve evitare meccanismi di

polling inefficienti, favorendo notifiche immediate in caso di variazioni

nei dati (es. nuovi alert o aggiornamenti delle posizioni).

• Flessibilità nella gestione dei dati: il database deve supportare sia

dati strutturati (per analisi statistiche e query per chiavi primarie) sia

dati destrutturati (es. JSON per rappresentare informazioni complesse

come coordinate o metadati degli alert).

• Rappresentazione geometrica dell’edificio: occorre memorizzare

coordinate geografiche/cartesiane e topologie con precisione metrica,

cos̀ı da interrogarle con operatori geometrici e algoritmi di path-finding.

• Efficienza e scalabilità: il database deve gestire un volume mode-

rato di dati con prestazioni elevate, supportando query complesse e

garantendo scalabilità per futuri ampliamenti.

Oltre ai requisiti elencati, era essenziale che il DBMS disponesse di no-

tifiche push native, cos̀ı da evitare un ipotetico polling continuo da parte

3.3 Database di persistenza: PostgreSQL 41

dell’Alert Manager in fase di gestione iniziale dell’emergenza (cfr. Sezione

2.4.2). Infatti, durante l’analisi preliminare, era stata ipotizzata una strate-

gia di polling periodico per intercettare nuovi eventi critici; questa soluzione,

però, avrebbe generato query superflue e latenza aggiuntiva, comprometten-

do la tempestività del sistema. Si è dunque limitata la valutazione a motori

che offrono meccanismi di pubblicazione immediata delle variazioni. Alla lu-

ce di tali criteri, il confronto si è concentrato su PostgreSQL + PostGIS e

RethinkDB.

3.3.2 PostgreSQL con PostGIS

PostgreSQL è un database relazionale open-source noto per la sua robu-

stezza, flessibilità e supporto per estensioni avanzate come PostGIS, che lo

rende ideale per la gestione di dati spaziali [44].

Le principali caratteristiche che giustificano l’adozione di PostgreSQL con

PostGIS nel sistema includono:

• Supporto per analisi spaziale avanzata: l’estensione PostGIS con-

sente di modellare la mappa dell’edificio come un grafo navigabile e di

eseguire query spaziali complesse, come il calcolo di percorsi minimi

(shortest path) utilizzando algoritmi ottimizzati[45]. Ciò è fondamen-

tale per il Map Manager, che calcola percorsi di evacuazione in tempo

reale.

• Meccanismi di notifica in tempo reale: PostgreSQL offre il sistema

LISTEN/NOTIFY, che permette ai microservizi di iscriversi a canali di

notifica e ricevere aggiornamenti immediati in caso di variazioni nei

dati (es. nuovi alert CAP o cambiamenti nelle posizioni degli utenti)

[46]. Questo elimina la necessità di polling periodico, riducendo il carico

sul database e garantendo una reattività adeguata ai requisiti di bassa

latenza.

• Gestione ibrida dei dati: PostgreSQL supporta sia dati struttura-

ti, organizzati in tabelle relazionali per analisi statistiche e query per

42 3. Tecnologie fondamentali del sistema

chiavi primarie, sia dati destrutturati tramite il tipo JSONB, che con-

sente di memorizzare e interrogare documenti JSON in modo efficiente

[47]. Questo è ideale per rappresentare informazioni complesse come

coordinate spaziali o metadati degli alert.

• Primitive geometriche native: PostGIS estende PostgreSQL con

tipi POINT, LINESTRING, POLYGON e funzioni di topologia; ciò permet-

te di rappresentare accuratamente la pianta dell’edificio e di eseguire

query metriche fondamentali per il tracciamento delle posizioni degli

utenti.

• Integrazione con Python: il driver psycopg2 offre un’integrazio-

ne robusta e ben documentata con Python, supportando operazioni

asincrone tramite asyncio e garantendo compatibilità con l’ecosistema

tecnologico del sistema [26].

• Scalabilità e affidabilità: PostgreSQL è progettato per gestire carichi

moderati con alte prestazioni, supportando indici spaziali (es. GiST

per PostGIS) e meccanismi di replica per garantire disponibilità e fault

tolerance [48]. La sua maturità e il supporto per transazioni ACID lo

rendono adatto a scenari critici come la gestione delle emergenze.

Queste caratteristiche rendono PostgreSQL con PostGIS una scelta otti-

male per un sistema che richiede analisi spaziale avanzata, notifiche in tempo

reale e flessibilità nella gestione dei dati.

3.3.3 Analisi delle alternative: RethinkDB

RethinkDB è un database NoSQL documentale progettato per applica-

zioni in tempo reale, con un focus su semplicità e reattività [49]. Sebbene

offra alcune caratteristiche interessanti, presenta limitazioni nel contesto del

progetto:

• Supporto per notifiche in tempo reale: RethinkDB utilizza i

Changefeeds, un meccanismo che consente ai client di ricevere aggior-

3.3 Database di persistenza: PostgreSQL 43

namenti automatici in caso di modifiche ai dati[50]. Questo elimina

la necessità di polling, rendendo RethinkDB competitivo in scenari

real-time.

• Flessibilità dei dati: come database schema-less, RethinkDB utilizza

JSON come formato nativo, semplificando la gestione di dati destruttu-

rati e consentendo query flessibili tramite ReQL, un linguaggio dichia-

rativo simile a Python e JavaScript [51]. Tuttavia, le query complesse

possono essere meno efficienti rispetto a un database relazionale come

PostgreSQL [52].

• Limitazioni per analisi spaziale: RethinkDB offre funzionalità di

geolocalizzazione di base, ma non supporta analisi spaziali avanzate

come il calcolo di percorsi minimi su grafi complessi, a differenza di

PostGIS [53].

• Integrazione con Python: RethinkDB dispone di un driver Py-

thon ufficiale, ma la sua comunità è meno attiva rispetto a quella di

PostgreSQL, e il supporto per operazioni spaziali è limitato [54].

La Tabella 3.2 sintetizza il confronto tra PostgreSQL con PostGIS e

RethinkDB in relazione ai requisiti del sistema.

44 3. Tecnologie fondamentali del sistema

Caratteristica PostgreSQL con Post-

GIS

RethinkDB

Analisi spaziale Supporto avanzato trami-

te PostGIS (shortest path,

query spaziali) [45]

Funzionalità geospaziali

di base[53]

Notifiche real-

time

LISTEN/NOTIFY per ag-

giornamenti immediati

[46]

Changefeeds per notifiche

automatiche [50]

Gestione dati Ibrida: tabelle relazionali

e JSONB [47]

Schema-less con JSON

nativo [51]

Prestazioni query

complesse

Ottimizzate per join, ag-

gregazioni e query spaziali

[48]

Meno efficienti per query

complesse [52]

Tabella 3.2: Confronto tra PostgreSQL con PostGIS e RethinkDB per il

sistema di evacuazione indoor.

In conclusione, PostgreSQL con PostGIS è stato scelto per il supporto

avanzato all’analisi spaziale tramite PostGIS, notifiche in tempo reale con

LISTEN/NOTIFY, gestione ibrida di dati strutturati e destrutturati tramite

JSONB, e integrazione robusta con Python tramite psycopg2, garantendo

prestazioni, affidabilità e allineamento con i requisiti del sistema [26, 45, 46,

47].

3.4 File di configurazione

I file di configurazione sono un componente fondamentale per la gestione

parametrica del sistema, poiché consentono di definire in modo modulare e

flessibile le impostazioni operative dei microservizi e dei componenti infra-

strutturali senza alterare il codice sorgente. La scelta dei formati di confi-

gurazione è stata guidata dai requisiti del sistema (cfr. Capitolo 1) e dalle

esigenze di integrazione con l’ecosistema tecnologico basato su Python, Rab-

3.4 File di configurazione 45

bitMQ e PostgreSQL (cfr. Sezioni 3.1, 3.2, 3.3).

Dopo un’attenta analisi comparativa, riassunta nella Tabella 3.3, si è optato

per un approccio ibrido che combina YAML, JSON e file Python.

3.4.1 Requisiti dei file di configurazione

I requisiti per i file di configurazione, derivanti dai vincoli del Capitolo 1

e dalle esigenze dei microservizi (Sezione 2.3), includono:

• Elevata leggibilità per semplificare modifiche da parte di sviluppatori

e amministratori.

• Supporto a strutture gerarchiche per dati complessi (quali parametri

di RabbitMQ o PostgreSQL).

• Integrazione fluida con Python per il parsing.

• Interoperabilità con strumenti come Docker e RabbitMQ.

3.4.2 Caratteristiche e casi d’uso

• YAML: con una sintassi chiara e indentata, è ideale per configurazioni

infrastrutturali, come Docker Compose o connessioni a RabbitMQ e

PostgreSQL. È facilmente parsabile con pyyaml [55, 56].

• JSON: leggero e standard, si usa per messaggi in RabbitMQ e configu-

razioni interne ai microservizi. La libreria json di Python ne garantisce

un parsing rapido [57].

• Python (.py): offre flessibilità per configurazioni dinamiche grazie alla

logica programmabile. È nativo in Python, ma il suo uso è limitato per

ridurre rischi di sicurezza [58].

46 3. Tecnologie fondamentali del sistema

Caratteristica YAML JSON Python

Leggibilità Elevata [59] Buona [57] Limitata

Parsing in Python pyyaml [56] json [60] Nativo

Uso tipico Infrastruttura Messaggi Logica dinamica

Tabella 3.3: Confronto tra formati di configurazione.

L’approccio ibrido adottato gode dei punti di forza dei tre formati:

1. YAML assicura leggibilità e compatibilità con strumenti di orchestra-

zione come Docker [61].

2. JSON garantisce interoperabilità per i messaggi scambiati tramite

RabbitMQ [60].

3. Python offre flessibilità per configurazioni complesse, con un uso con-

trollato per minimizzare vulnerabilità [62].

Questa combinazione ottimizza leggibilità, interoperabilità e funziona-

lità, adattandosi alle diverse esigenze del sistema e supportando una gestione

efficiente delle configurazioni.

Capitolo 4

Implementazione: microservizio

Centro Notifiche

Il Centro Notifiche (o Notification Center) è il microservizio deputa-

to alla gestione e distribuzione delle notifiche di emergenza all’interno del

sistema (cfr. Sezione 2.3.2). Esso funge da hub centrale, orchestrando la co-

municazione tra i componenti del software: riceve allerte dall’Alert Manager,

elabora dati sugli utenti a rischio dal Position Manager e inoltra istruzioni

personalizzate allo User Simulator, che in fase di test emula i client finali.

In un contesto reale, il Notification Center dovrà gestire notifiche push

dirette agli utenti finali, utilizzando i dati di sottoscrizione memorizzati in

un apposito database. Nel prototipo attuale, invece, tale funzionalità è so-

stituita da un meccanismo di inoltro verso lo User Simulator via RabbitMQ:

gli utenti e i dispositivi reali sono simulati, ma il sistema è già predisposto

per l’integrazione futura del servizio di push.

Il Notification Center opera in modalità fortemente disaccoppiata e asin-

crona, avvalendosi di code di messaggistica per ricevere gli avvisi di emer-

genza e propagare le notifiche. Ciò consente di ottenere un’elevata resilienza

e scalabilità: i componenti produttori e consumatori di messaggi non sono

vincolati temporalmente tra loro, potendo operare a velocità indipendenti

senza perdere dati. Come descritto nel Capitolo 3.2, adottando un’architet-

47

48 4. Implementazione: microservizio Centro Notifiche

tura event-driven basata su RabbitMQ, il Notification Center implementa il

pattern publish/subscribe, nel quale i mittenti (publisher) pubblicano eventi

su un canale logico e tutti i servizi sottoscritti (subscriber) ricevono una co-

pia del messaggio. Per mezzo di questo approccio, l’emissione di un’allerta

è immediatamente notificata agli utenti interessati senza che il servizio pro-

duttore debba conoscerne i dettagli o gestire direttamente le connessioni ai

client. Di conseguenza, il microservizio può concentrarsi esclusivamente sulla

logica di smistamento e traduzione dei messaggi.

Le funzionalità principali del Notification Center includono:

• Ricezione ed elaborazione delle allerte: gestione dei messaggi di

allerta in base alla tipologia (Alert, Update o Cancel).

• Distribuzione delle notifiche: inoltro di allerte e percorsi di evacua-

zione personalizzati per la successiva trasmissione ai client finali.

• Coordinamento tra microservizi: interazione dinamica con i mo-

duli del sistema per garantire un flusso di informazioni in tempo reale.

In sintesi, il Notification Center agisce come punto centrale di smistamen-

to delle notifiche nell’architettura a microservizi dell’applicazione, gestendo

il ciclo di vita delle notifiche attraverso tre fasi principali:

1. Ascolto delle code di input per nuovi eventi di allerta.

2. Processamento di ciascun messaggio in base alla tipologia.

3. Inoltro dei messaggi gestiti verso le code di output appropriate.

Le sezioni successive approfondiscono lo stato dell’arte, le scelte tecnolo-

giche e i dettagli implementativi, con particolare attenzione all’integrazione

con l’ecosistema tecnologico descritto nel Capitolo 3.

4.1 Analisi dello stato dell’arte 49

4.1 Analisi dello stato dell’arte

Il problema della notifica tempestiva e affidabile delle allerte verso la po-

polazione è stato affrontato in numerosi sistemi reali su larga scala, e diver-

si pattern architetturali sono emersi come soluzioni consolidate. In questa

sezione si confronterà la soluzione implementata con sistemi analoghi e si

richiameranno i principi tecnologici di riferimento.

Dal punto di vista dei sistemi di allerta pubblica, un primo riferimento è

IPAWS, il sistema nazionale statunitense.

IPAWS, analizzato e descritto nel Capitolo 1.2.2, costituisce un’architettu-

ra unificata che aggrega diversi canali di allarme sotto un’unica piattaforma

federata. Un messaggio di allerta originato da un’autorità autorizzata viene

inserito nel sistema, il quale provvede a smistarne la distribuzione simultanea

su tutti i canali appropriati, garantendo un’ampia diffusione alla popolazio-

ne. Il Centro Notifiche sviluppato presenta analogie concettuali con IPAWS,

in quanto funge da nodo di aggregazione e ridistribuzione: in miniatura, es-

so riceve l’allerta da una sorgente centralizzata e la ridirige verso un canale

di notifica agli utenti. Tuttavia, a differenza di IPAWS, che opera a livello

nazionale e multi-canale, il microservizio implementato si limita a un singolo

canale simulato e a scala locale.

Inoltre, IPAWS utilizza in gran parte infrastrutture broadcast e sistemi ete-

rogenei integrati via server CAP, mentre il Notification Center adotta un

broker AMQP per inoltrare messaggi in una rete chiusa di microservizi. Si

noti che entrambi gli approcci perseguono obiettivi comuni di affidabilità e

tempestività: IPAWS garantisce la distribuzione contemporanea su multipli

canali per massimizzare la copertura, mentre il Notification Center garantisce

la consegna attraverso meccanismi di acknowledgment propri di RabbitMQ

per assicurare che ogni messaggio raggiunga lo User Simulator.

Un secondo sistema rilevante è IT-Alert, la piattaforma di allerta pub-

blica italiana. Anch’esso, come esplicitato nel Capitolo 1.2.1, impiega la

tecnologia cell broadcast per inviare messaggi di allarme a tutti i telefoni cel-

lulari presenti in una determinata area geografica in caso di emergenze gravi

50 4. Implementazione: microservizio Centro Notifiche

o disastri imminenti. Il Centro Notifiche implementato, pur non utilizzando

cell broadcast, realizza una forma di notifica push analoga in ambito simula-

tivo: infatti, il messaggio viene inoltrato verso lo User Simulator non appena

disponibile, senza che i client debbano interrogare attivamente il server. Nel

sistema in analisi, il ruolo di broadcast è svolto da RabbitMQ: il messaggio di

allerta viene inserito in una coda a cui il consumer (simulatore) è collegato,

e quindi consegnato immediatamente.

Un’ulteriore soluzione di riferimento nel panorama delle notifiche di emer-

genza è la piattaforma commerciale Alertus. Essa offre un sistema di mass

notification unificato, pensato per contesti indoor, che permette di attiva-

re con un solo gesto una molteplicità di dispositivi di allarme fisici [63].

L’architettura Alertus prevede un server centrale che, ricevuta un’allerta da

una console o fonte esterna, provvede a smistare l’allarme su tutti i canali

configurati. In termini architetturali, Alertus adotta un modello simile al

publish/subscribe: l’evento di allarme attiva una serie di notifiche verso N

endpoint differenti, il tutto orchestrato dal server centrale. Il Notification

Center può essere paragonato, in miniatura, al server Alertus: anch’esso ri-

ceve un input (l’alert) e lo ridistribuisce verso i suoi endpoint. La differenza

principale sta nell’ambito di applicazione: Alertus è pensato per reti loca-

li e usa protocolli eterogenei, mentre il Centro Notifiche lavora interamente

su messaggistica AMQP interna al sistema software. Entrambi, comunque,

beneficiano del decoupling: l’attivazione è single-point e la distribuzione è af-

fidata a meccanismi asincroni ai vari subscriber. Questo elimina la necessità

di chiamate dirette a ciascun dispositivo e consente di aggiungere/rimuovere

canali di notifica senza modificare il produttore dell’alert.

4.1.1 Innovazioni introdotte dal Centro Notifiche

Rispetto allo stato dell’arte, il microservizio Notification Center si distin-

gue per:

4.2 Analisi delle alternative: motivazioni delle scelte 51

1. Architettura publish/subscribe AMQP personalizzata: si è im-

plementato un sistema di code RabbitMQ dedicato alle diverse tipo-

logie di messaggi di emergenza (Alert, Evacuation, Update e Stop),

realizzando un disaccoppiamento completo tra i produttori di eventi e

i consumatori. Ciò consente una scalabilità fine-grained: più istanze

del servizio di simulazione utente possono sottoscriversi alle medesime

code per gestire un numero elevato di dispositivi in parallelo, senza

interferire con la generazione delle allerte.

2. Notifiche geolocalizzate indoor: il Centro Notifiche inoltra agli

utenti non solo l’allarme generico, ma anche istruzioni personalizza-

te sotto forma di percorso di evacuazione calcolato in tempo reale dal

Map Manager. La capacità di tradurre un alert globale in indicazioni

specifiche per ciascun individuo all’interno di un edificio, tenendo conto

della posizione corrente e delle vie di fuga disponibili, è un elemento

innovativo rispetto ai sistemi di allerta esistenti.

4.2 Analisi delle alternative: motivazioni del-

le scelte

La progettazione del microservizio Notification Center ha richiesto la va-

lutazione di diverse alternative tecnologiche per il meccanismo di distribu-

zione delle notifiche verso gli utenti e per la gestione della comunicazione

inter-microservizi. Di seguito si analizzano le principali opzioni considerate

e le motivazioni che hanno guidato le scelte implementative finali.

Un primo aspetto valutato è stato come far pervenire le allerte ai di-

spositivi utente. In un sistema reale, esistono essenzialmente due modelli:

1. Modello push: utilizzato nelle notifiche push di smartphone attraver-

so servizi come Firebase Cloud Messaging.

52 4. Implementazione: microservizio Centro Notifiche

2. Modello pull: i client effettuano periodicamente richieste a un server

per verificare la presenza di nuove allerte, come avviene in semplici

sistemi basati su polling HTTP.

Per un sistema di allerta tempestiva, il modello push risulta nettamente pre-

feribile, poiché consente di ridurre al minimo la latenza di consegna e garan-

tisce che l’utente riceva l’avviso anche fuori da un contesto di applicazione

attiva. Nel nostro progetto, la scelta di utilizzare RabbitMQ come inter-

mediario ha permesso di implementare un sistema push efficiente all’interno

dell’ecosistema dei microservizi: il Centro Notifiche pubblica sulle code a cui

lo User Simulator è iscritto, “spingendo” cos̀ı le notifiche verso i consumer.

Un’alternativa inizialmente considerata era l’uso di semplici richieste HTTP

dal Centro Notifiche verso il servizio utente (ad esempio tramite una chiama-

ta REST POST contenente l’allerta). Tale approccio, sebbene più semplice

da implementare in assenza di un broker, avrebbe comportato una forte ac-

coppiamento tra i servizi e una minore robustezza: in caso di indisponibilità

temporanea del Simulatore Utenti, la richiesta HTTP sarebbe fallita e l’aller-

ta poteva andare persa, a meno di implementare manualmente meccanismi

di riprova e queueing nel codice. L’uso di RabbitMQ fornisce questi mecca-

nismi out-of-the-box : il messaggio rimane in coda finché il consumer non lo

riceve con successo, grazie al sistema di ACK, e il Centro Notifiche non deve

conoscere l’indirizzo o lo stato del servizio utente, riducendo l’accoppiamen-

to. Pertanto, l’alternativa RESTful-polling è stata scartata in favore della

soluzione attuale basata su message broker.

Nel prototipo, lo User Simulator funge da consumer temporaneo. In un am-

biente di produzione, può essere sostituito da un Notification Gateway,

un servizio specializzato che consuma i messaggi da RabbitMQ e li recapita

ai dispositivi reali degli utenti. Esso può gestire:

• Un registro delle sottoscrizioni: un database che associa gli utenti

ai loro token di notifica, permettendo al gateway di sapere a chi inviare

ogni allerta.

4.3 Sviluppo operativo del microservizio 53

• L’idempotenza lato client: un meccanismo per prevenire che l’uten-

te riceva notifiche duplicate, un aspetto fondamentale per garantire una

buona esperienza utente, specialmente in caso di tentativi di consegna

falliti e successivi riavvii.

Il message broker (RabbitMQ) mantiene il suo ruolo cruciale, garantendo il

disaccoppiamento e l’affidabilità del sistema: agisce come un punto di smi-

stamento robusto, permettendo al Centro Notifiche di inviare messaggi senza

conoscere lo stato o l’indirizzo del destinatario finale.

Inoltre, all’interno dell’ecosistema di microservizi, era necessario scegliere

come orchestrare lo scambio di dati tra i vari moduli. L’analisi delle

alternative considerate è già stata affrontata e approfondita nel Capitolo 3.2.

Dal punto di vista della struttura interna del microservizio, un’alter-

nativa discussa riguardava l’uso di un meccanismo di notifiche asincrone da

database, invece del broker per alcuni tipi di messaggi di feedback. In parti-

colare, avendo a disposizione un database PostgreSQL come componente con-

diviso del sistema, si sarebbe potuto sfruttare la funzionalità LISTEN/NOTIFY

di Postgres per ricevere eventi e far s̀ı che il Notification Center vi reagisse.

Questa strada, tuttavia, è stata abbandonata per privilegiare un design più

coerente centrato su RabbitMQ: introdurre anche il database come bus di

messaggi avrebbe aumentato la complessità e creato duplicazione di logica

(due canali differenti di notifica). Si è preferito utilizzare il database solo per

l’archiviazione di dati persistenti, mentre tutte le notifiche in tempo reale

viaggiano sul broker AMQP.

4.3 Sviluppo operativo del microservizio

Lo sviluppo del microservizio Notification Center è stato realizzato in

Python, sfruttando le tecnologie selezionate nel Capitolo 3. Il microservizio

è strutturato per gestire due flussi principali:

54 4. Implementazione: microservizio Centro Notifiche

1. Ricezione e processamento delle allerte provenienti dall’Alert Manager,

con successiva notifica immediata agli utenti.

2. Ricezione dei dati sugli utenti in pericolo dal Position Manager e dei

percorsi di evacuazione calcolati dal Map Manager, con inoltro di tali

informazioni agli utenti interessati

Di seguito si descrivono i dettagli implementativi e la logica di funziona-

mento, supportati da diagrammi e frammenti di codice significativi.

4.3.1 Struttura dei componenti e classi principali

Il microservizio è organizzato in moduli distinti, ciascuno con responsabi-

lità specifiche, seguendo il principio di single responsibility dell’architettura

a microservizi, con classi che gestiscono rispettivamente la connessione al

broker, il consumo dei messaggi e l’inoltro ai destinatari.

Le componenti principali del microservizio includono:

• Main (main.py): punto di ingresso del microservizio, responsabile del-

l’inizializzazione del RabbitMQHandler e della configurazione delle co-

de necessarie. Gestisce anche l’avvio del consumatore dei messaggi di

allerta e la chiusura pulita del sistema tramite segnali di sistema.

• Handler RabbitMQ (rabbitmq handler.py:) implementa la clas-

se RabbitMQHandler, che incapsula la logica di connessione al broker

RabbitMQ e fornisce metodi per dichiarare code, inviare messaggi e

avviare la consumazione di messaggi in arrivo in formato JSON. Que-

sta classe gestisce automaticamente riconnessioni in caso di drop della

connessione, garantendo la resilienza del collegamento al broker.

• Consumer di allerte (alert consumer.py): definisce la classe AlertConsumer,

che si occupa di consumare i messaggi dalla coda alert queue. Quan-

do un nuovo messaggio di allerta viene ricevuto, l’AlertConsumer lo

processa in base alla tipologia (msgType) e intraprende le azioni appro-

priate:

4.3 Sviluppo operativo del microservizio 55

– Se msgType = Alert o Update, la notifica viene inoltrata imme-

diatamente agli utenti.

– Se msgType = Cancel, viene creata una notifica di stop.

• Consumer dei percorsi di evacuazione (alerted users consumer.py):

implementa la classe AlertedUsersConsumer, incaricata di consuma-

re i messaggi dalla coda alerted users queue. Processa i percorsi di

evacuazione o i segnali di stop ricevuti dal Position Manager e li inoltra

allo User Simulator.

• Modulo di inoltro (alert smister to user simulator.py): forni-

sce funzioni di utility per l’inoltro delle allerte e dei percorsi di eva-

cuazione sul broker verso le code di output user simulator queue e

evacuation paths queue.

• Handler del database (database handler.py): incapsula la gestio-

ne della connessione a PostgreSQL, destinato a ospitare la tabella

delle sottoscrizioni degli utenti alle notifiche push, tramite il driver

psycopg2. L’handler configura il livello di isolamento AUTOCOMMIT e

abilita il meccanismo LISTEN/NOTIFY, permettendo al microservizio di

ricevere eventi push direttamente dal DBMS senza ricorrere a polling.

Al momento della stesura, la base dati è stata predisposta ma non anco-

ra popolata: la struttura è pronta per registrare, in una fase successiva,

i token/device–id degli utenti che desiderano ricevere le notifiche push

in tempo reale.

• Configurazione e logging (settings.py e logging.py): il file settings.py

contiene tutte le configurazioni centralizzate, quali i nomi delle code

RabbitMQ, le credenziali di connessione e i parametri di connessione

al database. Questo approccio consente di modificare facilmente tali

parametri senza modificare il codice logico. Il modulo logging.py de-

finisce la configurazione del logging applicativo: si utilizza il modulo

standard logging di Python con un formato uniforme dei messaggi

56 4. Implementazione: microservizio Centro Notifiche

e gestori che scrivono su file separati per ogni componente. Questo

facilita il debugging, poiché i file di log possono essere consultati per

monitorare il flusso delle operazioni di ogni singolo componente in ese-

cuzione.

La struttura di classi e interazioni del Notification Center è riassunta nel

diagramma UML in Figura 4.1. Si noti che AlertConsumer e AlertedUsersConsumer

utilizzano la medesima istanza di RabbitMQHandler per accedere al broker.

Il modulo principale inizializza questi oggetti e avvia il ciclo di consumo dei

messaggi. Il DatabaseHandler è separato in quanto potenzialmente utilizza-

bile per sincronizzare informazioni di sottoscrizione in tempo reale (anche se,

nel prototipo corrente, il suo utilizzo è limitato).

Figura 4.1: Diagramma delle classi: Notification Center

4.3.2 Flusso operativo

Il flusso operativo del Notification Center può essere suddiviso in tre fasi

principali (cfr. Sezione 2.4):

4.3 Sviluppo operativo del microservizio 57

1. Ascolto: il microservizio rimane in attesa di nuovi eventi sulle code

di input: in particolare, AlertConsumer è in ascolto su ALERT QUEUE

per ricevere allerte dall’Alert Manager, mentre AlertedUsersConsumer

è in ascolto su ALERTED USERS QUEUE per ricevere dati dal Position

Manager.

2. Elaborazione: all’arrivo di un messaggio, il rispettivo consumer ese-

gue la logica di business: interpreta il messaggio, logga l’evento, e decide

come reagire (inoltro, trasformazione o generazione di nuovi messaggi).

3. Inoltro: se previsto, il Centro Notifiche produce a sua volta messaggi

in uscita verso le code di output appropriate: tipicamente, le code

destinate allo User Simulator (USER SIMULATOR QUEUE per le notifiche

generiche e EVACUATION PATHS QUEUE per i percorsi di evacuazione).

Di seguito, si descrive un tipico scenario end-to-end di gestione di un’e-

mergenza, con focus specifico sul ruolo del microservizio in analisi:

1. Generazione dell’allerta: l’Alert Manager rileva o riceve una condi-

zione di emergenza e genera un messaggio di allerta in formato CAP, che

pubblica, in formato JSON, sulla coda ALERT QUEUE di RabbitMQ. Il

messaggio include un identificativo univoco, il tipo di messaggio (Alert

se è una nuova emergenza, Update se è un aggiornamento relativo a

un’allerta esistente, oppure Cancel per segnalare la fine dell’emergen-

za), una descrizione testuale ed eventualmente informazioni geografiche

sull’area coinvolta.

2. Notifica immediata agli utenti: il Notification Center (istanza

AlertConsumer) riceve dalla coda il messaggio di allerta, riconosce il ti-

po di allerta e inoltra immediatamente il messaggio allo User Simulator

tramite la coda USER SIMULATOR QUEUE. In questo modo, ogni utente

(simulato) riceve una notifica con il testo dell’allarme e le informazioni

base. In un’implementazione futura, questa stessa logica di smistamen-

to potrà essere estesa per inviare direttamente notifiche push agli uten-

ti reali, recuperando i dati di sottoscrizione dal database predisposto.

58 4. Implementazione: microservizio Centro Notifiche

Contestualmente, il Notification Center inoltra lo stesso messaggio di

allerta al Position Manager, responsabile dell’intercettazione delle aree

o utenti coinvolti nell’allerta.

3. Calcolo dei percorsi di evacuazione: il microservizioMap Manager,

una volta informato dell’emergenza, calcola in tempo reale i percorsi

di evacuazione ottimali per gli utenti presenti nelle aree a rischio, i

cui dati sono inviatogli dal Position Manager. Quest’ultimo, leggendo

i percorsi di evacuazione aggiornati dal Map Manager dal database

dedicato, genera un messaggio contenente tali dati e lo pubblica sulla

ALERTED USERS QUEUE. Nel design del sistema, ALERTED USERS QUEUE

può veicolare sia informazioni di evacuazione sia un segnale di stop

quando tutti gli utenti sono in salvo o l’emergenza è rientrata.

4. Inoltro dei percorsi di evacuazione: il Notification Center (istanza

AlertedUsersConsumer) riceve il messaggio dalla coda ALERTED USERS QUEUE.

Se il messaggio contiene dei percorsi di evacuazione, modifica il campo

msgType in "Evacuation" per differenziarlo da una normale notifica

di allerta, e lo inoltra sulla coda EVACUATION PATHS QUEUE diretta al-

lo User Simulator. Se invece il messaggio è di tipo Stop, indicante

che l’emergenza è terminata, allora AlertedUsersConsumer instrada

direttamente questo segnale agli utenti.

5. Chiusura del ciclo di emergenza: una volta inviati tutti i percorsi

di evacuazione e/o il segnale di fine emergenza, il ruolo del Notification

Center si conclude. Gli utenti avranno ricevuto prima l’allarme, poi

eventualmente le istruzioni di evacuazione, ed infine la comunicazione

di fine allarme. Il sistema rimane comunque in ascolto di eventuali

ulteriori messaggi.

4.3.3 Tecnologie e implementazione

Il microservizio è implementato in Python, sfruttando le librerie descritte

nella Sezione 3.1. In particolare:

4.3 Sviluppo operativo del microservizio 59

• RabbitMQ e pika: la classe RabbitMQHandler utilizza pika per gesti-

re connessioni, code e messaggi JSON. La configurazione (settings.py)

include parametri come RABBITMQ HOST, RABBITMQ PORT, RABBITMQ USERNAME

e RABBITMQ PASSWORD, con supporto per riconnessione automatica (reconnect)

e gestione degli errori.

• PostgreSQL e psycopg2: il modulo database handler.py utilizza

psycopg2 per connettersi al database subscription db, che memoriz-

za le sottoscrizioni degli utenti. Il livello di isolamento AUTOCOMMIT sup-

porta il sistema LISTEN/NOTIFY, essenziale per ricevere aggiornamenti

in tempo reale senza polling, come descritto nella Sezione 3.3.2.

• Logging: il modulo logging.py configura un sistema di logging cen-

tralizzato, con file di log separati per ciascun componente (es. alertConsumer.log,

alertedUsersConsumer.log). Il formato include timestamp, livello di

log e messaggio, garantendo tracciabilità e facilitando il debug.

4.3.4 Gestione degli errori e resilienza

Il microservizio implementa meccanismi robusti per la gestione degli er-

rori:

• Riconnessione a RabbitMQ: la classe RabbitMQHandler include lo-

gica di riconnessione con exponential backoff (reconnect), che tenta

fino a tre connessioni in caso di fallimento, con ritardi crescenti.

• Acknowledgement dei messaggi: i consumatori (AlertConsumer

e AlertedUsersConsumer) utilizzano basic ack per confermare la ri-

cezione dei messaggi e basic nack per gestire errori, come messaggi

JSON non validi, con possibilità di reinserimento in coda.

• Chiusura pulita: il modulo main.py gestisce segnali di sistema per

garantire una chiusura ordinata, svuotando le code e chiudendo le

connessioni a RabbitMQ e PostgreSQL.

60 4. Implementazione: microservizio Centro Notifiche

In conclusione, il microservizio Centro Notifiche è stato implementato

con successo, rispettando i requisiti di modularità, scalabilità e resilienza

definiti nel Capitolo 1. L’uso di Python, RabbitMQ e PostgreSQL garantisce

un’integrazione fluida con l’ecosistema complessivo, mentre i meccanismi di

gestione degli errori e logging assicurano affidabilità e tracciabilità.

Capitolo 5

Implementazione: microservizio

Visualizzatore della Mappa

IlMapViewer è il microservizio incaricato della visualizzazione dinamica e

interattiva della planimetria di un edificio multi-piano. Integra il monitorag-

gio in tempo reale della posizione degli utenti e l’interazione con la struttura

topologica del grafo di navigazione interno. Espone API REST lato backend

per interrogare e aggiornare lo stato del grafo e offre un frontend web per il

rendering su immagini raster. Il grafo è mantenuto coerente sia in memoria,

per reattività, sia su database relazionale, per persistenza e auditing.

Le sue funzionalità principali includono: (i) visualizzazione della pianta per

piano con overlay dei nodi e degli archi; (ii) aggiornamento dello stato del

grafo e riflessione immediata in UI; (iii) tracciamento periodico delle posizioni

utente; (iv) gestione di un sistema di coordinate locale pixel-based coerente

con l’immagine di planimetria.

Il presente capitolo illustra lo sviluppo del microservizio: la Sezione 5.1

analizza lo stato dell’arte; la Sezione 5.2 confronta le alternative e motiva le

scelte progettuali; infine, la Sezione 5.3 documenta nel dettaglio lo sviluppo

operativo.

61

62 5. Implementazione: microservizio Visualizzatore della Mappa

5.1 Analisi dello stato dell’arte

La visualizzazione di mappe indoor e la gestione di dati spaziali per la

navigazione in ambienti interni sono ambiti in rapida evoluzione, con appli-

cazioni che spaziano dalla gestione delle emergenze alla logistica in edifici

complessi. Le tecnologie adottate nel microservizio Map Viewer si collocano

in un panorama tecnologico che include strumenti di visualizzazione cartogra-

fica, database spaziali, framework per microservizi e librerie per la gestione

di grafi.

Di seguito si inquadrano le soluzioni principali, con attenzione al rapporto

con le scelte progettuali del sistema.

5.1.1 Visualizzazione indoor e cartografia dedicata

La cartografia indoor presenta esigenze differenti rispetto alla mappa-

tura tradizionale outdoor, richiedendo strategie di visualizzazione e modelli

concettuali specifici[64]. In letteratura, infatti, si distinguono vari tipologie

di mappe per interni: dalle planimetrie architettoniche dettagliate, ideate

per progettazione e manutenzione edilizia, a rappresentazioni semplificate

orientate alla navigazione degli utenti, fino ad approcci in realtà aumenta-

ta. Nello specifico, le floor plan maps, piante bidimensionali semplificate per

ciascun piano, risultano efficaci nei compiti di wayfinding, poiché omettono

dettagli superflui privilegiando informazioni pertinenti al percorso e all’orien-

tamento umano. Questo approccio, adottato anche dal Map Viewer, rende

l’interfaccia chiara e meno appesantita da elementi accessori. In scenari che

richiedono maggiore immersività, la letteratura propone visualizzazioni 3D o

in realtà aumentata, evidenziando benefici nella comprensione spaziale e nei

tempi di navigazione[65]. Tuttavia, tali soluzioni impongono requisiti hard-

ware/software più elevati. Di conseguenza, la rappresentazione 2D per piano

rimane uno standard de facto per molte applicazioni indoor: nel contesto del

Map Viewer, si adotta deliberatamente una resa 2D per piano, privilegiando

semplicità e facilità di interpretazione.

5.1 Analisi dello stato dell’arte 63

5.1.2 Modelli spaziali indoor e grafi di navigazione

Per la modellazione formale degli spazi interni e delle loro relazioni topolo-

giche, lo standard IndoorGML dell’OGC rappresenta lo stato dell’arte: de-

scrive gli ambienti indoor come un grafo di spazi (nodi) e connessioni (archi)

con informazioni semantiche dettagliate[65]. IndoorGML adotta il concetto

di Cellular Space, in cui ogni spazio navigabile è una CellSpace e ogni collega-

mento è modellato come State e Transition nella rete di navigazione. Questo

standard fornisce uno schema concettuale unificato per scambiare informa-

zioni in modo interoperabile[66]. Accanto a IndoorGML, formati industriali

mirano a una integrazione applicativa diretta: è il caso di Indoor Mapping

Data Format (IMDF) di Apple, il quale fornisce un modello per descrivere

feature indoor georeferenziate sul piano globale, consentendo calcolo di per-

corsi all’interno di mappe di edifici. A differenza di IndoorGML, focalizzato

su una rappresentazione generalizzata del grafo navigabile indipendente dal-

l’applicazione, IMDF presenta un network pathfinding incorporato, ma meno

flessibile ad utilizzi generici[66].

In sintesi, lo stato dell’arte mostra, da un lato, modelli dati indoor forma-

lizzati, dall’altro la prassi diffusa di utilizzare schemi semplificati a seconda

dell’ecosistema. Nel sistema di evacuazione implementato, si è optato per un

modello leggero orientato al grafo di navigazione, che mantiene compatibilità

concettuale con tali standard, senza implementarne l’intero schema formale:

i nodi del grafo corrispondono alle unità spaziali navigabili (simili alle Cell-

Space di IndoorGML) e gli archi rappresentano connessioni fisiche (analoghe

alle Transition).

5.1.3 Estrazione automatica e modellazione manuale

del grafo indoor

Nell’ambito della rappresentazione astratta della planimetria di un edi-

ficio, la principale sfida consiste nella modalità di ottenimento del grafo di

navigazione. La letteratura propone approcci automatici che sfruttano i dati

64 5. Implementazione: microservizio Visualizzatore della Mappa

disponibili: piante architettoniche 2D, modelli BIM 3D o scansioni laser degli

interni. Alcune ricerche mirano a estrarre il grafo direttamente da planime-

trie esistenti tramite algoritmi di visione e di riconoscimento delle strutture.

Progetti basati su floor plan digitali applicano tecniche di segmentazione delle

immagini per riconoscere stanze e corridoi; alcuni studi hanno sperimenta-

to reti neurali profonde per estrarre elementi strutturali da mappe raster,

con risultati promettenti in casi controllati[67]. Tuttavia, tali approcci auto-

matici soffrono di limitazioni significative nel caso di edifici complessi o dati

eterogenei: le planimetrie “as-built” spesso differiscono dai disegni originali e

richiederebbero continui aggiornamenti manuali, mentre i metodi puramente

automatici faticano in presenza di rumore, occlusioni o simboli non standard

[68]. In pratica, l’estrazione affidabile richiede un compromesso tra automa-

zione e intervento manuale: per questo motivo, diverse soluzioni industriali

adottano workflow semi-automatici, in cui la maggior parte del grafo è gene-

rato algoritmicamente, ma l’operatore valida e corregge i risultati.

Coerentemente, dopo tentativi di estrazione completamente automatica via

OpenCV sulla pianta raster, il sistema ha adottato una modellazione manua-

le assistita, che garantisce piena corrispondenza con l’ambiente reale e una

semantica corretta (cfr. Sezione 5.2.1). Tale approccio garantisce elevata

accuratezza, a scapito di maggiore sforzo iniziale di configurazione, mitigato

però dalla persistenza su database e riuso del grafo.

5.1.4 Basi di dati spaziali e gestione del grafo

Nel panorama delle soluzioni per il mapping indoor emergono principal-

mente due strategie per le modalità di memorizzazione e interrogazione dei

dati relativi al grafo di navigazione:

1. Database relazionali spaziali (PostgreSQL/PostGIS): la combi-

nazione di PostgreSQL con l’estensione spaziale PostGIS fornisce tipi di

dati geometrici e query efficienti per la gestione di coordinate, distanze

e intersezioni, e viene frequentemente associata a librerie per il calcolo

di percorsi sul grafo archiviato in tabelle relazionali[69]. Ad esempio,

5.1 Analisi dello stato dell’arte 65

vari modelli di database indoor ibridi (geometrici e simbolici) sono im-

plementati su PostGIS, in cui le connessioni verticali e orizzontali sono

memorizzate in tabelle relazionali e algoritmi di pathfinding basati su

varianti estese di Dijkstra gestiscono il routing multi-piano[70]. Tale

approccio sfrutta la maturità dell’ecosistema SQL e la disponibilità di

operatori spaziali standard.

2. Database a grafo (Neo4j): Neo4j permette di rappresentare natural-

mente stanze e corridoi come nodi collegati da archi e di eseguire query

di percorso con algoritmi di graph traversal. Ad esempio, il sistema

NaviSecure implementa il modulo di pathfinding su Neo4j, sfruttando

il linguaggio Cypher per ottenere il cammino più breve all’interno del

grafo indoor e aggiornando dinamicamente i pesi degli archi in base

a condizioni di sicurezza[71]. L’adozione di un grafo nativo elimina

la necessità di tradurre le relazioni spaziali in chiavi esterne e consen-

te interrogazioni dichiarative, come l’identificazione di tutti i percorsi

alternativi in caso di inaccessibilità di un nodo.

Tuttavia, la mancanza di funzioni GIS avanzate nei database a grafo e

la necessità di integrare i risultati con coordinate metriche può complicarne

l’adozione diretta per applicazioni indoor. Inoltre, in scenari di piccola sca-

la, mantenere il grafo in memoria nell’applicativo backend può risultare più

efficiente rispetto alla delega di ogni richiesta a un database esterno. Que-

sta è la scelta operata in Map Viewer, dove NetworkX in Python gestisce

il grafo di ogni piano in RAM, garantendo una rapida risposta alle API,

mentre il database relazionale viene utilizzato principalmente per assicurare

persistenza e consistenza globale (cfr. Sezione 5.2.2). Tale architettura ibri-

da coniuga i vantaggi dei grafi in-memory con la robustezza di un datastore

spaziale affidabile per backup, analisi ad-hoc e integrazione futura con dati

georeferenziati esterni.

66 5. Implementazione: microservizio Visualizzatore della Mappa

5.1.5 Frontend e librerie di mappatura web

Nell’ambito della mappatura interattiva 2D, le librerie JavaScript più dif-

fuse includono Leaflet.js e OpenLayers, entrambe in grado di supportare

overlay di dati vettoriali e raster, funzionalità di zoom e pan fluidi, nonché

componenti di interfaccia utente per l’interazione con la mappa.

OpenLayers si distingue per la sua completezza e flessibilità, caratteri-

stiche che lo rendono ideale per applicazioni GIS complesse e ad alte presta-

zioni, sebbene a scapito di una maggiore complessità di configurazione e di

un pacchetto più corposo.

Leaflet, d’altro canto, privilegia la semplicità e la leggerezza, consenten-

do di ottenere risultati rapidi con un codice conciso, particolarmente adatto

a contesti applicativi più mirati [72].

Confronti indipendenti evidenziano che OpenLayers è preferibile per progetti

GIS articolati, mentre Leaflet eccelle in soluzioni intuitive e di facile imple-

mentazione. Nel dominio della mappatura indoor, l’utilizzo di un overlay

statico di planimetria può essere gestito efficacemente con Leaflet, grazie alla

proiezione cartesiana semplice (CRS.Simple), che tratta i pixel dell’immagine

come coordinate piane senza distorsioni, eliminando la necessità di proiezioni

geografiche [73]. Ciò elimina la dipendenza da servizi esterni, permettendo

piena funzionalità offline, vantaggio cruciale in ambienti con connettività li-

mitata o assente.

In alternativa, librerie orientate alla gestione di mappe vettoriali e 3D,

come Mapbox GL JS, offrono funzionalità avanzate, tra cui rendering sofi-

sticato, stilizzazione dinamica e supporto per visualizzazioni tridimensionali.

Tuttavia, tali soluzioni presentano vincoli significativi: l’utilizzo di Mapbox

richiede un account attivo, l’inclusione di un token API e l’accettazione di

restrizioni d’uso e costi legati al traffico dati [74, 75]. Questi requisiti rendo-

no Mapbox meno idoneo per contesti self-hosted e chiusi, come il sistema in

5.1 Analisi dello stato dell’arte 67

esame.

Alla luce di tali considerazioni, la scelta di Leaflet per il Map Viewer

si rivela pienamente conforme alle best practice evidenziate. Tale libreria,

completamente open-source, leggera ed estensibile tramite plugin, si distin-

gue per la sua immediatezza nell’utilizzo con immagini statiche e coordinate

personalizzate. Consente di caricare planimetrie come Image Overlay a piena

risoluzione, sovrapponendo marker e polilinee tramite layer vettoriali, senza

richiedere proiezioni geografiche grazie all’opzione CRS.Simple, specificamen-

te indicata per mappe indoor non georeferenziate [73]. Tale configurazione

garantisce robustezza, semplicità e adattabilità, rendendo Leaflet una solu-

zione ottimale per il caso d’uso considerato.

In conclusione, il microservizioVisualizzatore della Mappa si inserisce

con coerenza nel panorama delle soluzioni avanzate per la rappresentazione

e la gestione delle mappe indoor, integrando in modo strategico tecnologie

consolidate con adattamenti mirati alle specificità del caso d’uso. L’adozione

di immagini raster di pianta arricchite con overlay interattivi segue un para-

digma ampiamente riconosciuto in letteratura per favorire una navigazione

indoor intuitiva e user-friendly [64]. Sul versante backend, l’architettura ba-

sata su microservizi, unitamente all’impiego di PostGIS e NetworkX, assicura

conformità alle migliori pratiche industriali, garantendo elevati standard di

scalabilità, affidabilità e prestazioni [70].

Pur senza implementare uno standard formale come IndoorGML, la soluzione

conserva una congruenza concettuale con esso, in particolare per quanto con-

cerne la rappresentazione del grafo di spazi connessi, aprendo la possibilità

di un’evoluzione futura in tale direzione. In definitiva, lo stato dell’arte con-

ferma la validità delle scelte progettuali: un approccio pragmatico, modulare

e open-source, in cui ogni componente è selezionato per massimizzare robu-

stezza e usabilità, risulta perfettamente in linea con quanto raccomandato da

letteratura e standard per le applicazioni di indoor mapping e navigazione

68 5. Implementazione: microservizio Visualizzatore della Mappa

negli edifici.

5.2 Analisi delle alternative: motivazioni del-

le scelte

In fase di progettazione e prototipazione del microservizio Map Viewer,

sono state valutate più tecnologie per la visualizzazione della mappa e la

gestione del grafo di navigazione.

La presente sezione, in continuità con l’analisi dello stato dell’arte (Sezione

5.1), confronta la soluzione adottata con la versione iniziale del sistema e

con alternative presenti in letteratura, illustrando le motivazioni che han-

no condotto all’implementazione finale. Nello specifico: la Sezione 5.2.1

analizza l’impiego di OpenCV per l’estrazione automatica del grafo dalla

planimetria; la Sezione 5.2.2 discute la scelta del database e del sistema di

coordinate (PostgreSQL/PostGIS) rispetto a un database a grafo (Neo4j); la

Sezione 5.2.3 motiva l’adozione di Leaflet come libreria frontend rispetto a

OpenLayers e Mapbox GL JS.

5.2.1 Estrazione automatica del grafo con OpenCV

In linea con i tentativi di estrazione automatica discussi nella Sezione

5.1.3, nella prima versione del sistema si è tentato di derivare automatica-

mente il grafo di navigazione dalla rappresentazione raster della planimetria

tramite tecniche di computer vision, al fine di ridurre o eliminare la con-

figurazione manuale di nodi e archi. In particolare, l’estrazione del grafo

era effettuata utilizzando la libreria OpenCV per analizzare un’immagine

statica della planimetria dell’edificio [76]. Infatti, OpenCV è una libreria

open-source per la visione computazionale, che offre funzionalità avanzate

per l’elaborazione di immagini e la creazione di visualizzazioni statiche, tra

cui il pre-filtraggio Gaussiano e l’algoritmo di Canny impiegati nel pipeline

sperimentale [77].

5.2 Analisi delle alternative: motivazioni delle scelte 69

Il processo comprendenva le seguenti fasi:

• Elaborazione dell’immagine: l’immagine della planimetria veniva

caricata e convertita in scala di grigi, applicando un filtro di sfocatu-

ra Gaussiana e l’algoritmo Canny per il rilevamento dei contorni. I

contorni identificati rappresentavano potenziali nodi del grafo [76, 77].

• Identificazione dei nodi: i contorni rilevati venivano filtrati in base

a un’area minima (MIN AREA PX) e convertiti in nodi, calcolando coor-

dinate e proprietà, quali capacità e tipologia. Le coordinate venivano

trasformate da pixel a unità del modello utilizzando un fattore di scala.

• Creazione degli archi: gli archi venivano generati collegando i cen-

troidi dei nodi vicini, con una distanza massima definita (THRESHOLD DIST CM).

Anch’essi erano arricchiti con attributi, quali capacità e tempo di at-

traversamento.

• Inserimento nel database: i nodi e gli archi estratti venivano salvati

nel database PostgreSQL, utilizzando query SQL per popolare le tabelle

nodes e arcs.

Sebbene tale approccio offrisse un potenziale di automazione, presentava

limitazioni significative:

• Imprecisione topologica su planimetrie reali complesse: l’al-

goritmo di rilevamento dei contorni di OpenCV non era in grado di

interpretare correttamente la semantica della planimetria. Ad esem-

pio, spessori non uniformi delle pareti, corridoi stretti o aree comples-

se (come scale o ascensori) venivano spesso ignorati o rappresentati

erroneamente, portando a un grafo di navigazione incoerente con la

struttura reale dell’edificio. Inoltre, la dipendenza da parametri come

MIN AREA PX e THRESHOLD DIST CM richiedeva una calibrazione manuale

per ogni planimetria, riducendo la generalizzabilità del sistema[76, 77].

70 5. Implementazione: microservizio Visualizzatore della Mappa

• Mancanza di interpretazione semantica: i soli contorni rilevati

non distinguono porte, muri e passaggi; sono necessarie euristiche o

modelli addestrati, con costi di manutenzione elevati [76].

• Limitata interattività: OpenCV, orientato principalmente all’elabo-

razione di immagini statiche, non supporta nativamente la visualizza-

zione interattiva web-based. La rappresentazione del grafo richiedeva

un’integrazione aggiuntiva con un frontend dedicato, aumentando la

complessità architetturale.

• Prestazioni computazionali onerose: l’elaborazione delle immagini

con OpenCV, specialmente per planimetrie ad alta risoluzione, risultava

computazionalmente costosa, con tempi di processamento significativi

per l’estrazione dei contorni e la generazione del grafo [77].

I test condotti sul caso reale hanno evidenziato, dunque, i limiti pratici

già noti in letteratura (cfr. Sezione 5.1.3): la necessità di fine tuning e di cor-

rezioni manuali ha annullato il vantaggio di automazione. Pertanto, per ga-

rantire accuratezza topologica e semantica, si è adottata una modellazione

manuale assistita del grafo.

5.2.2 Database e sistema di coordinate

La combinazione di un database relazionale spaziale e di un grafo in me-

moria, già evidenziata come soluzione efficace nella Sezione 5.1.4, è stata

adottata per la persistenza di nodi, archi, posizioni correnti e storico. In

particolare, si è scelto PostgreSQL con estensione PostGIS, mentre i grafi

operativi, distinti per piano, sono mantenuti in memoria tramite NetworkX

con gestione thread–safe [23, 44, 45, 78]. Questa soluzione ibrida combina la

solidità e le capacità GIS del database relazionale con la velocità di accesso

della cache in memoria.

Benché PostGIS abiliti georeferenziazione e funzioni GIS [45], il sistema di

coordinate adotta deliberatamente un Coordinate Reference System (CRS)

5.2 Analisi delle alternative: motivazioni delle scelte 71

locale pixel–based ancorato all’immagine di planimetria, giustificato dalle mo-

tivazioni cartografiche e frontend presentate rispettivamente nelle Sezioni

5.1.1 e 5.1.5):

• L’origine (0, 0) ricade sull’angolo superiore sinistro dell’immagine del

piano; le coordinate di nodi e archi sono espresse in pixel rispetto a tale

punto.

• Nel frontend, le coordinate immagine sono mappate invertendo l’asse

y nella costruzione dei LatLng per l’image overlay[79, 80, 81, 82].

• La conversione pixel ↔ unità di modello ↔ metri è centralizzata nella

componente HeightMapper, parametrizzata tramite un file di configu-

razione (settings.py), per stimare lunghezze, tempi di attraversamen-

to e capacità in modo coerente.

Sebbene al momento si utilizzino coordinate locali, mantenere PostGIS

disponibile con un sistema di riferimento spaziale reale (SRID) è strategico

per:

• Possibile georeferenziazione futura e integrazione con servizi GIS

esterni.

• Accesso a operatori spaziali affidabili senza necessità di reimple-

mentazioni.

• Utilizzo di un ecosistema SQL maturo e consolidato, che facilita

tooling, backup e migrazioni [44, 45].

In alternativa, analogamente a quanto analizzato nella Sezione 5.1.4, è

stato considerato Neo4j per una persistenza nativa a grafo. Si tratta di un

DBMS a grafo con linguaggio Cypher e algoritmi integrati per l’analisi di

rete, ideali per grafi di grandi dimensioni[83].

Tuttavia, nel contesto in analisi: (i) il grafo indoor è compatto e le traversate

sono servite efficacemente in memoria da NetworkX, evitando round-trip al

72 5. Implementazione: microservizio Visualizzatore della Mappa

database; (ii) la componente spaziale è più matura nell’ecosistema PostGIS,

cruciale per le operazioni di overlay pixel-based e conversione di coordina-

te; (iii) l’adozione di Neo4j introdurrebbe un doppio store o una migrazione

completa, con maggiore complessità operativa e competenze specifiche non

necessarie; (iv) l’attuale logica di tracciamento dello stato degli archi si basa

su trigger e log di PostgreSQL, che dovrebbero essere replicati in Neo4j con

nuove procedure [84, 85].

Pertanto, alla scala e ai requisiti del Map Viewer, la combinazione Post-

greSQL con PostGIS per persistenza e auditing, abbinata a NetworkX

per la gestione operativa del grafo in memoria, bilancia semplicità operativa,

integrazione GIS e flessibilità evolutiva, in linea con le evidenze e le best

practice presentate dallo stato dell’arte [44, 45, 78].

5.2.3 Libreria di visualizzazione: Leaflet, OpenLayers

e Mapbox

Per la visualizzazione operativa del sistema è stata adottata la libreria

Leaflet.js quale strumento principale per la gestione della planimetria di ba-

se e dei layer dinamici contenenti nodi e archi, forniti dal backend in formato

JSON. Oltre a tale libreria, sono state confrontate altre soluzioni nella Sezio-

ne 5.1.5); ciononostante, la scelta di Leaflet è stata confermata da molteplici

considerazioni di natura tecnica e architetturale:

1. Semplicità e leggerezza: Leaflet è una libreria open-source leggera,

progettata per mappe interattive mobile-friendly, la cui API, intuitiva e

priva di dipendenze, risulta ideale per overlay raster indoor e coordinate

locali [79, 80, 81, 86].

2. Interattività: Leaflet fornisce un set esaustivo di funzionalità interat-

tive essenziali, abilitando una fruizione fluida e reattiva della mappa

indoor. Il supporto diretto per layer vettoriali dinamici e overlay di

5.3 Sviluppo operativo del microservizio 73

immagini si rivela pienamente adeguato per sovrapporre i dati di na-

vigazione del grafo in tempo reale, garantendo un’interfaccia utente

intuitiva e responsiva [80, 86].

3. Neutralità di vendor: Leaflet è completamente open-source e priva

di dipendenze da servizi proprietari. Non richiede l’impiego di chia-

vi API, token di accesso o infrastrutture esterne, offrendo cos̀ı piena

autonomia operativa e portabilità del microservizio anche in scenari

offline o ambienti chiusi, requisito chiave già evidenziato nella Sezione

5.1.5, senza vincoli contrattuali o restrizioni d’uso imposte da provider

terzi[79].

In fase di valutazione, sono state considerate anche le librerie Open-

Layers e Mapbox GL JS, anch’esse consolidate soluzioni per cartografia

web.

Come descritto nella Sezione 5.1.5, OpenLayers è stato scartato poiché la

potenza e la ricchezza di funzionalità avanzate si traducono in una comples-

sità maggiore, non giustificata per mappe indoor semplici.

Analogamente, Mapbox GL JS, seppur efficiente nel rendering vettoriale,

richiede un account e token Mapbox e introduce un modello tile-first non per-

fettamente allineato a una planimetria locale non georeferenziata, risultando

meno adatto al contesto in analisi [74, 75, 87]).

5.3 Sviluppo operativo del microservizio

La presente sezione funge da documentazione operativa del microservizio

Map Viewer. Ne descrive avvio e configurazione, API esposte, funzionamento

dell’interfaccia web, responsabilità dei moduli e gestione dei dati tra memoria

e database, in maniera tale da costituire una guida all’uso e alla manutenzione

del software.

Il microservizio offre:

74 5. Implementazione: microservizio Visualizzatore della Mappa

• Una web-app per visualizzare le planimetrie e il grafo di navigazione

di ogni piano, con funzioni di editing leggero e visualizzazione delle

posizioni utente.

• Una API REST per elencare le planimetrie, esportare e ricaricare il

grafo, creare nodi e archi, disabilitare archi e mostrare le posizioni degli

utenti, aggiornate in near real-time.

• Una cache in memoria del grafo per piano, allineata alla persistenza

su PostgreSQL e gestita da un componente dedicato.

In sintesi, Map Viewer consente di: (i) elencare le planimetrie disponibili

e caricarne il grafo; (ii) aggiungere nodi e archi direttamente dalla UI con

persistenza immediata; (iii) disabilitare archi non praticabili con audit auto-

matico; (iv) visualizzare le posizioni utente aggiornate a intervalli regolari.

La soluzione è costruita su FastAPI (backend), Leaflet (frontend), Networ-

kX (grafi in memoria) e PostgreSQL (persistence), con un modulo di height

mapping per la conversione coerente tra pixel, unità di modello e metri reali.

5.3.1 Progettazione dell’architettura

Il microservizio è stato progettato come componente indipendente che

dialoga con altri servizi tramite API RESTful; tale architettura separa re-

sponsabilità e cicli di vita. Il backend, implementato in Python con il

framework FastAPI, si occupa di elaborare i dati del grafo di navigazione

generato con NetworkX, di fornire endpoint per la trasmissione dei dati al

frontend e di coordinare letture/scritture su database. Il frontend è una

single-page basata su JavaScript e Leaflet, che gestisce la visualizzazione in-

terattiva della mappa e l’aggiornamento in tempo reale delle posizioni degli

utenti. La persistenza è affidata a PostgreSQL con schema e trigger per

occupazione nodi e audit. Le costanti di configurazione (DB, tipi di nodo,

fattori di scala) sono centralizzate.

Questa impostazione facilita l’evoluzione indipendente dei componenti e con-

sente di bilanciare reattività (cache) e consistenza (DB).

5.3 Sviluppo operativo del microservizio 75

5.3.2 Implementazione del backend

Il backend è implementato in Python con FastAPI e utilizza NetworkX

per rappresentare, in memoria, il grafo di navigazione per ciascun piano. I

nodi corrispondono a aree funzionali abitabili, mentre gli archi modellano

i collegamenti fisici; per ciascun arco vengono stimati capacità e tempo di

percorrenza a partire dalle distanze su mappa, convertite in metri tramite una

componente di height/scale mapping. La serializzazione verso il frontend

avviene in un JSON ad hoc pensato per la UI, che include immagine di

riferimento, dimensioni e liste di nodi/archi filtrate per piano. Inoltre, il

backend integra un sistema di localizzazione, che aggiorna dinamicamente le

posizioni degli utenti sul grafo.

A livello concettuale, il backend realizza tre responsabilità principali:

1. Esposizione di risorse applicative: l’API pubblica risorse per:

• scoprire le planimetrie disponibili;

• ottenere lo stato del grafo per un piano (nodi e archi attivi) in un

JSON pronto all’uso per il frontend;

• apportare modifiche mirate: creare nodi, collegare nodi con archi,

disabilitare un arco non praticabile;

• recuperare le posizioni utente da un servizio esterno e arricchir-

le con una stima del piano, in modo che la UI possa filtrare e

rappresentare correttamente i marker.

2. Gestione del grafo in memoria: per ogni piano è mantenuta una

rappresentazione in memoria del grafo di navigazione. Ciò consente:

• tempi di risposta prevedibili nella consultazione del grafo;

• applicazione immediata delle modifiche (aggiunta di nodi/archi,

cambio di stato) senza dover ricaricare l’intero dataset;

• ricarico controllato su richiesta, per riallineare la cache dopo ope-

razioni massicce lato database.

76 5. Implementazione: microservizio Visualizzatore della Mappa

In particolare, è il Graph Manager il modulo responsabile della ge-

stione della rappresentazione astratta dell’edificio. Infatti, costruisce e

mantiene in memoria, per ciascun piano, il grafo operativo caricando

dal database i nodi e gli archi correlati; a ciascun elemento associa gli

attributi utili alla logica e al rendering (tipologia, capacità e occupazio-

ne per i nodi; stato di attività e tempo di attraversamento per gli archi),

cosicchè le interrogazioni della UI trovino già tutto pronto e coerente.

Quando si aggiunge un nodo dalla UI, il servizio verifica innanzitutto

che non esistano duplicati troppo vicini, quindi determina l’intervallo

verticale [z1, z2] del piano in centimetri di modello, persiste il nuovo

record in tabella e aggiorna contestualmente la cache in memoria. L’ag-

giunta di un arco segue la stessa filosofia: il sistema misura la distanza

in pixel tra i centri dei due nodi, la converte in metri e, sulla base di

semplici ipotesi di attraversabilità, stima una capacità indicativa e il

relativo tempo di percorrenza; dopodiché registra l’arco nel database e

lo inserisce nel grafo in memoria. A garantire coerenza tra rappresen-

tazione grafica e grandezze fisiche interviene l’utility HeightMapper,

che centralizza tutte le conversioni: dai pixel ai centimetri di modello

e quindi ai metri reali, nonché il mapping tra numero di piano e in-

tervallo di quota. In questo modo, ogni calcolo si appoggia a un’unica

sorgente di verità metrica, evitando discrepanze tra componenti diverse

del sistema.

3. Ciclo di vita e coerenza dati: all’avvio, il servizio prepara lo sche-

ma dati e popola la cache con i grafi presenti, garantendo che la UI,

al primo caricamento, possa mostrare un quadro completo. Operazioni

potenzialmente ad alta frequenza e ad elevato volume, come la gestio-

ne dello storico posizioni, sono normalizzate in fase di bootstrap per

partire da uno stato pulito; in esercizio, gli aggiornamenti di occupa-

zione e l’audit degli archi sono demandati al database per affidabilità

e tracciabilità.

5.3 Sviluppo operativo del microservizio 77

Figura 5.1: Diagramma UML dei componenti del backend di Map Viewer.

Il diagramma in Figura 5.1 illustra le componenti backend delMap Viewer,

le loro interfacce fornite/richieste e le dipendenze applicative.

FastAPI App (main.py): è il punto d’ingresso del servizio. Espo-

ne l’interfaccia REST API per la UI e l’endpoint di serving dei contenuti

statici. Orchestra le operazioni ad alto livello delegando la logica di grafo

al GraphManager, l’esportazione dei dati al GraphExporter, l’inizializzazione

dello schema a DB Setup e attingendo a Settings e Logging per configurazione

e osservabilità.

GraphManager (graph manager.py): mantiene in memoria (per pia-

no) il grafo di navigazione basato su NetworkX. Carica nodi e archi dal da-

tabase, applica mutazioni incrementali (creazione nodi/archi, disattivazioni)

e tiene allineata la cache con la persistenza. Per stime coerenti di distanza,

capacità e tempi di percorrenza dipende da HeightMapper e dai parametri in

Settings. Registra eventi e anomalie tramite Logging.

GraphExporter (graph exporter.py): fornisce un servizio di lettura

78 5. Implementazione: microservizio Visualizzatore della Mappa

ed esportazione del grafo di un piano in un JSON semplice e direttamente con-

sumabile dalla UI. Interroga il database attraverso DB Connection e utilizza

Settings per i metadati necessari (immagini, dimensioni, configurazioni).

HeightMapper (height mapper.py): è il punto unico per le conver-

sioni fisiche: pixel → centimetri di modello → metri, e mappatura piano

→ intervallo di quota. Garantisce che tempi di attraversamento, capacità e

stima del piano per le posizioni utente siano calcolati con criteri uniformi in

tutto il sistema.

DB Setup (db setup.py): inizializza e mantiene lo schema del database

(tabelle per nodi, archi, posizioni, audit) e i trigger/funzioni per audit e

aggiornamenti incrementali dell’occupazione. Si appoggia a DB Connection

per l’accesso transazionale.

DB Connection (db connection.py): incapsula la creazione e la ge-

stione delle connessioni a PostgreSQL, fornendo un punto di accesso stabile

e centralizzato ai dati per le componenti che leggono e scrivono su DB.

Settings (settings.py): raccoglie la configurazione centrale, cioè para-

metri di connessione al DB, tipi di nodo e capacità di default, fattori di scala

e mappatura verticale (altezza per piano). È la fonte di verità per i moduli

che necessitano di valori operativi condivisi.

Logging (logging.py): fornisce la strumentazione di log per modulo,

con gestione di handler e formattazione coerente, utile alla diagnostica e al

monitoraggio in esercizio.

GraphExtractor (graph extractor.py): strumento di bootstrap/im-

port. Consente l’inserimento di nodi e archi nel DB, includendo la gestione

di nodi multi–piano. Dipende da DB Connection, HeightMapper e Settings.

La progettazione aderisce al Single Responsibility Principle: ogni com-

ponente ha una responsabilità ben delimitata, cos̀ı da favorire riuso ed evo-

luzione indipendente. L’obiettivo è chiarire i confini di responsabilità e de-

finire i contratti d’interfaccia espliciti tra i moduli, mantenendo una vista

architetturale stabile e indipendente dai dettagli di implementazione.

5.3 Sviluppo operativo del microservizio 79

5.3.3 Sviluppo del frontend

Il frontend è stato implementato utilizzando Leaflet.js per caricare la pla-

nimetria dell’edificio come immagine statica, sulla quale vengono sovrapposti

i nodi e gli archi del grafo. Un layer interattivo consente agli utenti di inte-

ragire con la mappa tramite zoom e pan. La comunicazione con il backend

avviene tramite chiamate AJAX per aggiornare i dati in tempo reale, garan-

tendo una visualizzazione fluida anche in presenza di un elevato numero di

utenti.

Il front-end adotta un modello semplice e robusto:

• Rendering per piani: per ciascuna immagine di planimetria viene

istanziata una mappa 2D in cui i pixel dell’immagine fungono da si-

stema di riferimento: la sovrapposizione di nodi e archi risulta cos̀ı

intuitiva e fedele alla pianta.

• Strati funzionali: nodi, archi e utenti sono resi su layer separati per

aggiornamenti indipendenti, quale il refresh frequente dei soli utenti.

• Editing guidato: l’utente può:

– Collegare due nodi per creare un arco.

– Selezionare un arco per disabilitarlo, simulando un passaggio ina-

gibile.

• Aggiornamenti frequenti ma controllati: le posizioni degli utenti

vengono richieste periodicamente. Il ritmo di aggiornamento è configu-

rato per bilanciare reattività e carico, mantenendo fluida la rappresen-

tazione.

• Feedback visivo: i nodi cambiano dimensione e colore in funzione

del rapporto occupazione/capacità, fornendo una percezione immedia-

ta dello stato, mentre gli archi disabilitati scompaiono dal tracciato

praticabile.

80 5. Implementazione: microservizio Visualizzatore della Mappa

In conclusione, il frontend realizza una vista fedele e reattiva dell’edificio:

immagini di piano come base, un grafo reso e modificabile in modo controllato

e posizioni utente aggiornate periodicamente. La progettazione privilegia

semplicità, separazione delle responsabilità tra layer e un contratto chiaro

con le API del backend, facilitando manutenzione ed estensioni future.

5.3.4 Flusso dei dati

Il flusso operativo del Map Viewer descrive come i dati scorrono tra UI,

API, cache in memoria e database lungo l’intero ciclo di vita del servizio.

1. Bootstrap e preload: all’avvio, il backend crea o aggiorna lo schema

dati, inizializza tabelle e trigger, quindi procede a precaricare in me-

moria i grafi per piano a partire dal database. Per garantire uno stato

iniziale consistente, il microservizio scarica lo storico delle posizioni su

file, azzera le tabelle relative alle posizioni correnti e storiche e ripristina

le occupazioni dei nodi. Il processo di inizializzazione e precaricamento

descritto è rappresentato nel diagramma di sequenza in Figura 5.2, che

illustra le azioni orchestrate tra backend e database.

5.3 Sviluppo operativo del microservizio 81

Figura 5.2: Diagramma di sequenza — (1) Inizializzazione e precaricamento;

(2) Scoperta e caricamento.

2. Ricerca e caricamento di mappe e grafi: l’interfaccia utente in-

terroga le API per ottenere l’elenco delle planimetrie disponibili. Per

ciascun piano, viene richiesto un file JSON contenente i metadati del-

l’immagine, i nodi e gli archi attivi. Sul client, la planimetria è resa

come image overlay, con i layer vettoriali (nodi/archi) sovrapposti nel

sistema di coordinate locale. Le sequenze di richieste e risposte che con-

sentono il caricamento e la composizione della vista sono dettagliate in

Figura 5.2.

3. Aggiornamento delle posizioni (near real-time): a intervalli rego-

lari, la UI richiede gli aggiornamenti delle posizioni. Il backend integra

i dati esterni, stima il piano di appartenenza attraverso conversioni

pixel→metri→piano e restituisce i dati aggiornati. L’interfaccia utente

aggiorna esclusivamente il layer dei marker, preservando la stabilità del-

82 5. Implementazione: microservizio Visualizzatore della Mappa

la scena grafica. Il ciclo di aggiornamento e refresh dei dati di posizione

è rappresentato nel diagramma di sequenza in Figura 5.3.

Figura 5.3: Diagramma di sequenza — (3) Aggiornamento periodico delle

posizioni.

4. Modifica del grafo con persistenza immediata:

• Aggiunta di un nodo: l’interfaccia utente trasmette posizione e

tipo del nodo; il backend valida i dati per prevenire duplicati,

calcola le grandezze metriche, aggiorna il database e la cache,

quindi restituisce il nodo all’interfaccia utente per il rendering.

• Aggiunta di un arco: l’interfaccia utente seleziona due nodi; il

backend calcola distanza e tempi di percorrenza, persiste l’arco nel

database, aggiorna la cache e notifica l’esito all’interfaccia utente,

che rende visibile la polilinea.

5.3 Sviluppo operativo del microservizio 83

• Disabilitazione di un arco: l’interfaccia utente richiede la disat-

tivazione; il backend aggiorna lo stato nel database, e l’interfaccia

utente rilegge il grafo del piano per riflettere la modifica.

L’intero processo di modifica interattiva del grafo, con la sincroniz-

zazione immediata tra UI, backend, cache e database, è descritto nel

dettaglio dal diagramma di sequenza in Figura 5.4.

Figura 5.4: Diagramma di sequenza — (4) Modifica del grafo.

5. Riallineamento cache–database: su richiesta, le API ricostruiscono

la cache in memoria a partire dai dati persistenti nel database, garan-

tendo la coerenza dello stato. Le interazioni e i passaggi di questa

procedura sono rappresentati nella Figura 5.5.

84 5. Implementazione: microservizio Visualizzatore della Mappa

Figura 5.5: Diagramma di sequenza — (5) Riallineamento della cache.

In sintesi, il Map Viewer realizza un’architettura integrata e coerente

tra interfaccia utente, API e database per la gestione di planimetrie e grafi

indoor. L’utente beneficia di un’esperienza di consultazione e modifica fluida

e immediata, mentre la coerenza dello stato è assicurata dalla combinazione

di cache per piano e persistenza transazionale, supportata da meccanismi

reattivi lato database che garantiscono affidabilità e tracciabilità.

Capitolo 6

Implementazione: microservizio

Gestore della Mappa

La gestione ottimale delle vie di evacuazione in un edificio richiede un

sistema altamente adattivo, capace di reagire in tempo reale a condizioni in

continua evoluzione. In questo scenario, il microservizio Map Manager si

posiziona come un componente strategico all’interno della pipeline di eva-

cuazione, responsabile del calcolo dinamico e reattivo dei percorsi di fuga.

Nello specifico, il Gestore della Mappa elabora itinerari di evacuazione

ottimali in risposta a eventi di emergenza, integrando variabili critiche quali

la capacità dei nodi e la disponibilità degli archi. Pertanto, anziché affi-

darsi a percorsi predefiniti, il sistema genera dinamicamente vie di fuga che

riflettono la topologia attuale e le condizioni contingenti dell’edificio. Ciò ga-

rantisce soluzioni di evacuazione pertinenti e resilienti, in grado di adattarsi

con efficacia all’evoluzione delle circostanze durante un’emergenza.

Le sezioni successive approfondiscono lo stato dell’arte, le scelte tecnolo-

giche e i dettagli implementativi, con un’attenzione specifica all’integrazione

con l’ecosistema tecnologico discusso nel Capitolo 3.

85

86 6. Implementazione: microservizio Gestore della Mappa

6.1 Analisi dello stato dell’arte

La gestione delle evacuazioni in scenari di emergenza si configura come

un problema complesso che si colloca all’intersezione di diverse discipline: la

teoria dei grafi per la modellazione spaziale, i sistemi real-time per l’acquisi-

zione di dati e l’ottimizzazione combinatoria per la pianificazione dei flussi.

L’approccio adottato dalMap Manager è il risultato di un’analisi critica delle

principali metodologie esistenti, posizionandosi come una soluzione pragma-

tica che bilancia l’ottimalità teorica con i requisiti di reattività e affidabilità

propri di un sistema critico.

6.1.1 Approcci basati su ricalcolo reattivo su grafo

Il paradigma più diffuso per il pathfinding dinamico in ambienti indoor

si fonda sulla modellazione dell’edificio come un grafo, dove i nodi rappre-

sentano luoghi significativi e gli archi le connessioni percorribili. In questo

contesto, un’emergenza viene tradotta in una modifica dinamica della topo-

logia o dei pesi del grafo: percorsi precedentemente validi possono diventare

inagibili (rimozione di nodi o archi) o più lenti (aumento del peso degli archi).

Questa è la filosofia operativa adottata dal Gestore della Mappa. Il sistema

risponde agli eventi in modo reattivo:

1. Ricezione dell’evento: il sistema riceve una notifica di allerta.

2. Modifica dello stato del grafo: sulla base di regole predefinite, il

sistema aggiorna lo stato dei componenti nel database, contrassegnando

nodi come sicuri o non sicuri e disattivando archi.

3. Ricalcolo del percorso: quando viene richiesta un’evacuazione, l’al-

goritmo di pathfinding opera sul grafo filtrato, escludendo gli elementi

non sicuri o inattivi e ricalcolando il cammino minimo.

Questo approccio, sebbene computazionalmente intensivo se ripetuto con al-

ta frequenza, garantisce prevedibilità e affidabilità, poiché ogni calcolo si basa

6.1 Analisi dello stato dell’arte 87

sullo stato più aggiornato del sistema. La sua efficacia è massima in contesti

con grafi di dimensioni contenute, come un singolo edificio, dove un ricalcolo

completo può essere eseguito in frazioni di secondo. Un esempio di riferi-

mento in questo ambito è MazeMap [88], una piattaforma commerciale di

mappatura e navigazione indoor che fornisce mappe interattive e servizi di

wayfinding per grandi complessi. La tecnologia adottata si basa sulla rappre-

sentazione a grafo degli edifici per calcolare percorsi dinamici, che possono

essere aggiornati in tempo reale per riflettere chiusure o eventi temporanei.

Applicativi come MazeMap utilizzano un principio simile al Map Manager,

ma con un focus differente: MazeMap è una soluzione user-facing che gui-

da l’individuo tramite un’applicazione. Il Map Manager, al contrario, agisce

come un servizio di backend orchestratore: non interagisce direttamente con

l’utente finale, ma fornisce i percorsi ottimizzati come dato grezzo ad altri

microservizi, che si occuperanno della loro diffusione collettiva.

6.1.2 Approcci basati su apprendimento e ottimizza-

zione globale

L’evacuazione può essere modellata come un problema di flusso dinamico

su rete con capacità, un classico campo della ricerca operativa. In questo ap-

proccio, l’obiettivo non è semplicemente trovare il percorso più breve per un

singolo individuo, ma minimizzare il tempo totale di evacuazione per l’intera

popolazione, tenendo conto della capacità di archi e nodi per evitare con-

gestioni. Questi modelli, spesso risolti con algoritmi complessi, offrono una

soluzione teoricamente ottimale per la gestione della folla. Il Map Manager

non implementa un risolutore di flusso globale, una scelta motivata dalla

necessità di privilegiare la semplicità implementativa e la rapidità di calco-

lo in tempo reale. Tuttavia, ne recepisce i principi fondamentali in forma

semplificata:

• Capacità dei nodi: il concetto di capacità non viene usato per otti-

mizzare un flusso, ma come vincolo rigido. I nodi che superano la ca-

88 6. Implementazione: microservizio Gestore della Mappa

pacità massima prestabilita vengono considerati sovraffollati e tempo-

raneamente rimossi dal grafo prima del calcolo del percorso, simulando

un blocco dovuto a congestione.

• Capacità degli archi: analogamente, la capacità di un arco è ridotta

a uno stato binario: attivo o inattivo. Un arco non viene rallentato a

causa del traffico, ma viene direttamente disattivato se le condizioni lo

rendono impercorribile.

In questo modo, il Map Manager adotta un’euristica efficace che approssima

il comportamento di un sistema a capacità limitata senza incorrere nell’onere

computazionale dei modelli di flusso completi.

Inoltre, un filone di ricerca emergente utilizza tecniche di Deep Reinfor-

cement Learning (DRL). Un esempio è EvacuAI[89], un sistema basato su

apprendimento per rinforzo in cui un agente software impara la politica di

evacuazione ottimale interagendo con un ambiente simulato. Attraverso un

processo di ”trial and error”, l’agente viene premiato o penalizzato in base

all’efficacia delle sue scelte, permettendogli di sviluppare strategie complesse

che tengono conto di molteplici fattori senza essere esplicitamente program-

mate. Soluzioni come EvacuAI imparano attraverso migliaia di simulazioni,

sviluppando policy complesse che possono superare le euristiche umane, spe-

cialmente in scenari con molteplici variabili interdipendenti. Sebbene pro-

mettente, questo approccio è stato scartato per il Map Manager per diverse

ragioni strategiche:

1. Complessità e addestramento: i modelli DRL richiedono un am-

biente di simulazione accurato e una fase di addestramento lunga e

computazionalmente costosa.

2. Interpretabilità: le decisioni prese da un agente DRL possono essere

difficili da interpretare, aspetto critico in un sistema di sicurezza dove

la prevedibilità e la giustificazione di un percorso sono fondamentali.

3. Adattabilità al contesto: il sistema è progettato per operare su

una topologia di edificio caricata dinamicamente all’avvio. Un modello

6.2 Analisi delle alternative: motivazioni delle scelte 89

pre-addestrato potrebbe non generalizzare correttamente a una nuova

planimetria senza un riaddestramento specifico.

In sintesi, il Map Manager si posiziona deliberatamente come un sistema

deterministico e reattivo. Utilizza un algoritmo di pathfinding classico e

ben compreso (Dijkstra) su un grafo che viene dinamicamente alterato per

riflettere lo stato dell’emergenza. Questa scelta sacrifica l’ottimalità globale

dei modelli di flusso e l’adattabilità avanzata dei sistemi di apprendimento in

favore di velocità, affidabilità e trasparenza, qualità ritenute prioritarie per

un microservizio il cui scopo è fornire risposte rapide e sicure in condizioni

critiche.

6.2 Analisi delle alternative: motivazioni del-

le scelte

La fase di progettazione del Gestore della Mappa ha richiesto un’analisi

critica di molteplici soluzioni, le cui alternative sono state ponderate e di-

scusse prima di definire l’implementazione definitiva. Le sezioni successive

illustrano nel dettaglio le ragioni che hanno guidato tali decisioni.

6.2.1 Modellazione dei nodi stairs

Per una corretta rappresentazione della connettività verticale all’interno

del grafo, è stata scartata l’ipotesi preliminare di modellare i vani scala multi-

piano tramite un singolo nodo aggregatore. Sebbene concettualmente com-

patta, tale soluzione introduceva artefatti topologici, generando archi spuri

che collegavano direttamente anche piani non contigui e compromettendo

cos̀ı l’accuratezza del calcolo dei percorsi.

Si è quindi implementato un modello più rigoroso, in cui ogni vano scala

viene discretizzato in un nodo specifico per piano. La continuità verticale è

garantita da archi che collegano esclusivamente coppie di nodi corrisponden-

ti a piani fisicamente adiacenti. Tale rappresentazione assicura che qualsia-

90 6. Implementazione: microservizio Gestore della Mappa

si percorso calcolato dal pathfinding rifletta fedelmente la sequenzialità dei

collegamenti reali, escludendo a priori la possibilità di scorciatoie verticali

anomale.

6.2.2 Funzionalità GIS integrate nel database

In fase di prototipazione, è stata analizzata la possibilità di sfruttare

le funzionalità geospaziali offerte da PostgreSQL/PostGIS per il calcolo dei

percorsi di evacuazione, delegando tale logica direttamente al database. Que-

sta soluzione, sebbene tecnicamente interessante, è stata scartata a favore di

un’implementazione in Python, guidata dalle seguenti considerazioni pratiche

e architetturali.

1. Sistema di coordinate non georeferenziato: l’ambiente di svilup-

po utilizza un sistema di coordinate locale e astratto per la mappa

interna dell’edificio, non riferito a coordinate geografiche reali, per le

quali le funzionalità GIS sono ottimizzate.

2. Complessità architetturale: delegare il calcolo dei percorsi al livello

dati avrebbe introdotto una complessità non necessaria all’architettura

complessiva del sistema. Inoltre, avrebbe potuto comportare potenziali

problematiche di performance sotto carico elevato.

3. Maggiore controllo e flessibilità: l’implementazione di un algorit-

mo di pathfinding nell’applicativo Python ha garantito un controllo

superiore sulle ottimizzazioni specifiche del dominio, come l’esclusione

di nodi sovraffollati o la gestione di archi temporaneamente disattivati.

L’integrazione di queste logiche personalizzate in query SQL/GIS sa-

rebbe risultata macchinosa, mentre un algoritmo ad hoc in Python ha

consentito l’applicazione di filtri e criteri aggiuntivi in modo più agevole

prima e durante il calcolo del percorso. Infatti, caricando il grafo una

sola volta dal database nella memoria, si eliminano i frequenti accessi

al disco che sono molto lenti. Ogni volta che l’algoritmo deve attraver-

sare un nodo o un arco per calcolare il percorso, l’informazione è già

6.2 Analisi delle alternative: motivazioni delle scelte 91

pronta e disponibile per l’uso immediato, il che accelera drasticamente

il processo di ricerca.

6.2.3 Percorsi di evacuazione predefiniti

A differenza dei sistemi tradizionali che si appoggiano su itinerari fissi,

il Gestore della Mappa abbandona l’approccio convenzionale di percorsi di

evacuazione pre-calcolati e archiviati in file di configurazione statici. Questa

decisione progettuale non è arbitraria, ma costituisce una diretta conseguenza

della filosofia di design del sistema stesso. Infatti, il grafo su cui il microser-

vizio opera non è un insieme di dati predeterminato, bens̀ı viene costruito

dinamicamente al primo avvio del sistema. Questa metodologia si discosta

marcatamente dalle soluzioni tradizionali, che si appoggiano su itinerari fissi

definiti a priori in planimetrie statiche. Poiché la struttura topologica del-

l’edificio, modellata tramite nodi e archi, non è nota in fase di sviluppo, ma

viene definita solo durante l’inizializzazione, risulta impraticabile preimposta-

re e memorizzare percorsi standard. Di conseguenza, il sistema è progettato

per generare i percorsi di evacuazione on-demand: al primo avvio, il micro-

servizio calcola un insieme di percorsi di evacuazione standard basati sulla

topologia iniziale del grafo. In caso di emergenza, l’algoritmo di pathfinding

non si limita a richiamare tale percorsi precalcolati, ma computa l’itinerario

in tempo reale, tenendo conto sia della topologia costruita dinamicamente

che delle condizioni attuali dell’edificio. Questa notevole flessibilità assicura

che i percorsi individuati siano sempre ottimizzati e adattati alla situazio-

ne contingente, conferendo al sistema una superiore resilienza e un maggior

grado di sicurezza in situazioni di emergenza.

6.2.4 Coordinamento tra microservizi: gestione della

race condition

Un’architettura a microservizi basata su messaggistica asincrona richiede

particolare attenzione al coordinamento temporale delle operazioni per evi-

92 6. Implementazione: microservizio Gestore della Mappa

tare condizioni di race. Nel contesto del Map Manager, si è individuato un

potenziale problema di concorrenza: il rischio che il Position Manager leg-

ga dal database percorsi di evacuazione non ancora aggiornati, utilizzando

itinerari obsoleti mentre il Map Manager sta ancora calcolando quelli nuovi.

Questo scenario può verificarsi a causa della natura asincrona del flusso di

eventi tra microservizi nella pipeline di emergenza.

Per garantire che il Position Manager utilizzi percorsi aggiornati, è sta-

to implementato un meccanismo di handshake esplicito tramite RabbitMQ.

Nello specifico, al termine del calcolo, il Map Manager pubblica un messag-

gio di conferma su una coda dedicata. Tale messaggio funge da segnale di

completamento: il Position Manager si pone in ascolto su tale coda e, solo

dopo aver ricevuto la notifica, procede a leggere i percorsi dal database per

inoltrarli. Questo approccio garantisce un allineamento temporale tra i mi-

croservizi, in cui il Position Manager non può precedere il Map Manager, ma

al contrario reagisce al suo segnale, assicurandosi di operare su dati consi-

stenti e aggiornati. La scelta di implementare questo coordinamento tramite

un messaggio di acknowledgment su coda RabbitMQ è motivata da esigenze

di coerenza e affidabilità, in quanto le soluzioni alternative sarebbero risulta-

te fragili e inefficienti. Un ritardo arbitrario, ad esempio, non garantirebbe il

corretto funzionamento sotto carichi variabili, mentre un intenso polling gra-

verebbe inutilmente sul database, con il rischio di leggere comunque dati non

ancora consistenti. Inoltre, un approccio sincrono con chiamate dirette tra

microservizi sarebbe in contrasto con il principio di disaccoppiamento dell’ar-

chitettura, introducendo potenziali colli di bottiglia. L’handshake basato su

eventi, invece, mantiene i servizi loosely coupled e reattivi, orchestrandoli in

modo da prevenire le condizioni di race e rafforzare l’affidabilità complessiva

del sistema di evacuazione.

Il corretto flusso operativo del meccanismo implementato è illustrato in det-

taglio dal diagramma di sequenza in Figura 6.1:

6.3 Sviluppo operativo del microservizio 93

Figura 6.1: Diagramma di sequenza: meccanismo di handshake tra Map

Manager e Position Manager

6.3 Sviluppo operativo del microservizio

Il microservizio Map Manager è stato sviluppato in Python seguendo i

principi architetturali a microservizi, garantendo modularità, indipendenza

e scalabilità. Ogni componente interno svolge una funzione specifica, facili-

tando la manutenzione e l’evoluzione del sistema.

6.3.1 Flusso operativo

Il flusso operativo del microservizio può essere descritto come segue:

1. Ricezione dati: il sistema riceve informazioni in tempo reale sulla

posizione degli occupanti, sullo stato delle vie di fuga e sulla capacità

dei nodi.

94 6. Implementazione: microservizio Gestore della Mappa

2. Analisi del grafo: si determinano quali nodi e archi sono disponibili

e sicuri.

3. Calcolo dei percorsi: utilizzando algoritmi di pathfinding, il micro-

servizio calcola i percorsi di evacuazione ottimali che conducono gli

occupanti verso nodi sicuri, tenendo conto delle condizioni correnti.

4. Aggiornamento dinamico: il sistema continua a monitorare l’evo-

luzione dell’emergenza e aggiorna dinamicamente i percorsi calcolati

qualora le condizioni mutino.

5. Comunicazione: i percorsi calcolati vengono persistiti sul database.

Ogni modulo del Gestore della Mappa è progettato per avere una singola

responsabilità ben definita, in linea con i principi SOLID:

• Modulo di acquisizione dati: raccoglie informazioni in tempo reale

sulla posizione degli occupanti e sullo stato delle vie di fuga.

• Modulo di gestione del grafo: si occupa di impostare gli attributi,

quali flag safe/non safe per i nodi, stato attivo/inattivo per gli archi e

tempi di attraversamento di una via di fuga.

• Modulo di calcolo dei percorsi: implementa l’algoritmo di path-

finding Dijkstra per determinare il percorso di evacuazione ottimale da

ciascun nodo occupato verso un’uscita sicura.

• Modulo di aggiornamento dinamico: gestisce le modifiche in tem-

po reale: disattiva archi qualora diventino impraticabili, aggiorna i pesi

degli archi se mutano le condizioni e innesca un ricalcolo immediato dei

percorsi se necessario.

6.3.2 Consumatori di messaggi e architettura

Il Map Manager utilizza due principali consumer di messaggi RabbitMQ,

ciascuno dedicato a un flusso di input:

6.3 Sviluppo operativo del microservizio 95

1. Alert di emergenza: riceve notifiche di allarme. Le allerte e le rela-

tive regole di evacuazione sono configurate in un file YAML dedicato,

che definisce per ogni tipologia di evento le azioni da compiere sulla

mappa:

• Flood: in caso di allagamento, l’evacuazione è verticale, privile-

giando lo spostamento verso piani superiori qualora i livelli bassi

risultino allagati o impraticabili. Il sistema contrassegna come non

sicuri tutti i nodi situati nelle zone a quota inferiore potenzialmen-

te esposte all’acqua, e designa come sicuri i nodi che consentono

di transitare ai piani più alti.

• Earthquake: in caso di terremoto, la strategia di evacuazione

orizzontale verso l’esterno è prioritaria. Il sistema marca come

non sicuri tutti i nodi interni all’edificio, data la potenziale insta-

bilità strutturale, e considera sicuri i nodi di tipo outdoor (uscite

verso spazi aperti).

• Fire: in caso di incendio, l’evacuazione segue un modello orizzon-

tale verso aree non coinvolte dal fuoco. Il sistema identifica una

danger zone sulla base dei dati dell’allarme antincendio e imposta

tutti i nodi in tale area come non sicuri. Vengono contestualmen-

te marcati come sicuri tutti i nodi di tipo outdoor, assicurando

che le uscite di emergenza all’esterno siano le destinazioni finali.

Inoltre, tutti gli archi che attraversano la zona di pericolo vengono

temporaneamente disattivati, cosicché l’algoritmo di pathfinding

possa dirottare gli occupanti lungo vie alternative prive di fumo o

fiamme.

Quando il consumer di allerte riceve un messaggio di allarme con la ti-

pologia di emergenza applica immediatamente le conseguenti restrizioni

sulla mappa.

2. Segnalazione di nodi pericolosi: riceve messaggi contenenti elenchi

aggregati di nodi pericolosi, prodotti dal microservizio Position Mana-

96 6. Implementazione: microservizio Gestore della Mappa

ger : quest’ultimo monitora la posizione degli occupanti e identifica, in

seguito al rilevamento dell’allerta in corso, gli utenti in pericolo. Al-

la ricezione di tale messaggio, il consumer specifico raggruppa i nodi

pericolosi per piano e avvia il calcolo dei percorsi di evacuazione per cia-

scun gruppo. Ciò innesca la logica di pathfinding per trovare il miglior

itinerario di fuga da ogni nodo segnalato verso un’uscita sicura.

In un’architettura in cui due consumer elaborano flussi di dati distinti ma

logicamente correlati, la preservazione di uno stato globale coerente dell’e-

vento di emergenza assume un’importanza cruciale. La classe EventState

assolve a tale funzione, agendo quale repository centralizzato e sincronizzato

per lo stato dell’evento. La concorrenza degli accessi è regolata da un mecca-

nismo di locking interno, concepito per prevenire fenomeni di race condition.

Tale meccanismo garantisce l’atomicità delle operazioni di lettura e scrittu-

ra, evitando che un processo possa operare su dati inconsistenti durante la

transizione di stato indotta da un altro processo. Pertanto, tale classe funge

da unica fonte di verità (Single Source of Truth) per lo stato dell’emergenza

all’interno del microservizio. Ciò garantisce la coerenza decisionale tra le

varie componenti, scongiurando il rischio che un modulo operi sulla base di

informazioni obsolete o parziali.

6.3.3 Calcolo dei percorsi di evacuazione

Il cuore del Gestore della Mappa risiede nell’algoritmo di calcolo dei per-

corsi ottimali verso l’uscita in condizioni di emergenza. Nell’implementazione

corrente, si è scelto di utilizzare l’algoritmo di Dijkstra per trovare il per-

corso più breve da ciascun nodo occupato a un nodo di uscita sicuro. La

procedura è la seguente:

1. Viene costruito dinamicamente un grafo combinato multi-piano,

partendo dal grafo di ogni piano caricato in memoria ed aggiungen-

do anche gli archi inter-floor, cioè quelli che collegano tra loro i nodi

di tipo stairs di piani adiacenti. Questo grafo combinato rappresenta

6.3 Sviluppo operativo del microservizio 97

tutte le possibili connessioni percorribili nell’intero edificio al momento

corrente.

2. Il grafo viene ottimizzato con l’esclusione temporanea dei nodi non

sicuri o sovraffollati e degli archi inattivi, per assicurare che l’algoritmo

operi solo su percorsi validi e sicuri.

3. Per ciascun nodo di partenza, l’algoritmo cerca il cammino minimo

verso uno qualsiasi dei nodi marcati come sicuri. Se esistono più pos-

sibili uscite, l’algoritmo seleziona automaticamente quella che produce

il percorso complessivamente più veloce o più breve in termini di peso,

dove il peso di un percorso dipende dal tempo di percorrenza di un

arco.

4. Il risultato del calcolo per ogni nodo in pericolo è un elenco ordinato di

archi che costituiscono il percorso di evacuazione dal nodo fino a una

uscita. Questi percorsi vengono quindi scritti nel database, associandoli

ai rispettivi nodi di partenza.

L’utilizzo dell’algoritmo di Dijkstra è motivato dalla natura relativamen-

te ridotta del grafo in confronto a grafi stradali su scala cittadina e dalla

necessità di ricalcolare frequentemente i percorsi in tempo reale. Infatti, Di-

jkstra è semplice da implementare e, operando su grafi di poche migliaia di

nodi, fornisce risultati in tempi molto brevi. Va sottolineato che, durante

l’emergenza, l’aggiornamento dei percorsi può avvenire ripetutamente; il si-

stema è stato progettato per eseguire il ricalcolo in background in maniera

concorrente senza bloccare la ricezione di nuovi eventi.

La pipeline di evacuazione è rappresentata dal diagramma in Figura 6.2:

98 6. Implementazione: microservizio Gestore della Mappa

Figura 6.2: Flowchart: Pipeline di pathfinding

6.3 Sviluppo operativo del microservizio 99

6.3.4 Inizializzazione e notifiche

All’avvio del microservizio, il Map Manager predispone una condizione

di percorso di evacuazione per ogni nodo dell’edificio, anche in assenza di

un’emergenza attiva, al fine di avere uno stato consistente. A causa dell’im-

possibilità di utilizzare percorsi di evacuazione standard basati sull’immagine

della planimetria dell’edificio, dal momento che se ne utilizza una rappre-

sentazione astratta semplificata tramite grafo, i percorsi di evacuazione di

default vengono calcolati dal microservizio: questi vengono calcolati utiliz-

zando come nodo di tipo safe un nodo all’esterno (tipo = outdoor). Per i nodi

esterni, il Gestore della Mappa imposta un percorso di evacuazione vuoto a

indicare che si è già in un luogo sicuro. Questo calcolo iniziale dei percorsi

di default multi-piano viene effettuato sfruttando la stessa logica di path-

finding descritta precedentemente ed è utile perché fornisce immediatamente

un riferimento di evacuazione qualora un’emergenza partisse senza preavviso.

In conclusione, l’implementazione del Gestore della Mappa rappresenta

una soluzione ingegneristica robusta e reattiva per il calcolo dinamico dei

percorsi di evacuazione. Il suo design, basato su un approccio determini-

stico e una modellazione a grafo dell’edificio, offre un equilibrio ottimale

tra prestazioni, affidabilità e trasparenza, qualità imprescindibili per un si-

stema di sicurezza. La scelta di non affidarsi a percorsi predefiniti, ma di

generarli in tempo reale in base alle condizioni contingenti, conferisce al si-

stema una notevole flessibilità e resilienza. L’integrazione con l’architettura

a microservizi, mediata da RabbitMQ, e l’adozione di meccanismi di coordi-

namento come l’handshake garantiscono che il Map Manager operi in modo

sinergico con l’intero ecosistema tecnologico, fornendo percorsi di evacuazio-

ne tempestivi e sicuri. Questo microservizio si configura, quindi, come un

pilastro fondamentale per la sicurezza degli occupanti durante situazioni di

emergenza.

Capitolo 7

Risultati sperimentali

Il presente capitolo è dedicato all’esposizione e all’analisi critica dei risul-

tati della validazione sperimentale, intrapresa al fine di verificare l’efficacia e

la robustezza delle soluzioni architetturali e implementative descritte nei Ca-

pitoli 2–6. La campagna di test è stata concepita con l’obiettivo primario di

quantificare le prestazioni della piattaforma rispetto a un insieme definito di

metriche e obiettivi qualitativi cardine. I parametri di valutazione prioritari

sono stati i seguenti:

• Tempestività end-to-end: quantificazione della latenza complessiva

della pipeline di elaborazione, definita come l’intervallo temporale che

intercorre tra l’acquisizione di un evento di allerta e la conseguente

consegna della notifica di evacuazione all’utente finale.

• Correttezza e sicurezza: validazione della coerenza topologica e del-

la sicurezza intrinseca dei percorsi di evacuazione generati, garantendo

che questi escludano sistematicamente le zone identificate come inagibili

o pericolose.

• Robustezza: analisi della resilienza della soluzione implementata e

della sua capacità di adattamento a diverse tipologie di eventi emer-

genziali e a condizioni ambientali dinamiche, assicurando la generazione

di strategie di evacuazione pertinenti e ottimali.

101

102 7. Risultati sperimentali

• Coerenza dei dati: verifica della sincronizzazione e dell’integrità dei

dati tra lo stato persistente, mantenuto sul database, e la sua rappre-

sentazione in-memory, cruciale per l’affidabilità delle decisioni in tempo

reale.

• Osservabilità: valutazione dell’efficacia degli strumenti di monitorag-

gio nel fornire una chiara interpretabilità del comportamento dell’archi-

tettura in scenari operativi simulati, al fine di diagnosticarne lo stato

e le prestazioni.

L’impianto sperimentale si fonda sulle seguenti assunzioni chiave: (i) l’a-

dozione di un modello a grafo pre-validato, rappresentativo della topologia

reale dell’edificio in esame; (ii) l’impiego di parametri di capacità dei per-

corsi e tempi di percorrenza coerenti con la scala metrica e le caratteristiche

dell’ambiente; (iii) la generazione di stream di posizionamento con densità e

dinamiche rappresentative di scenari di occupazione realistici.

7.1 Analisi del caso di studio

Il dominio applicativo selezionato per la validazione sperimentale è il

Campus di Cesena dell’Università di Bologna. La complessa topologia

dell’edificio è stata formalizzata mediante un grafo orientato e multi-piano,

una struttura dati che permette una rappresentazione computazionalmente

efficiente degli spazi interni e delle relative interconnessioni. Le planimetrie

dei livelli che costituiscono l’edificio, su cui si basa la modellazione, sono il-

lustrate nelle Figure 7.1, 7.2 e 7.3. Il grafo risultante si compone di un totale

di 148 nodi e 343 archi.

7.1 Analisi del caso di studio 103

Figura 7.1: Piano 0 del Campus di Cesena

Figura 7.2: Piano 1 del Campus di Cesena

104 7. Risultati sperimentali

Figura 7.3: Piano 2 del Campus di Cesena

Il nucleo logico della soluzione implementata risiede nella sua capacità di

applicare dinamicamente politiche di evacuazione specifiche per la tipologia

di emergenza in corso. Tali politiche sono state classificate in base alla loro

estensione e alla natura della minaccia:

Allerte a evacuazione totale: impongono l’evacuazione completa dell’e-

dificio da parte di tutti gli occupanti. La strategia associata persegue

l’obiettivo di minimizzare il tempo complessivo di sfollamento, guidan-

do gli individui verso punti di raccolta esterni predefiniti. Il calcolo dei

percorsi privilegia gli itinerari a costo minimo diretti verso le uscite di

sicurezza.

Allerte a evacuazione parziale: interessano unicamente sottoinsiemi spe-

cifici della struttura. In questo caso, il piano di evacuazione mira a

delocalizzare gli occupanti dalle aree a rischio verso zone sicure interne

all’edificio stesso.

Le sezioni successive forniscono una disamina dettagliata dei dataset im-

piegati, degli scenari di simulazione implementati e dei protocolli di mi-

7.2 Descrizione dei dati 105

surazione adottati per la raccolta dei dati quantitativi, culminando nella

discussione e interpretazione dei risultati ottenuti.

7.2 Descrizione dei dati

La validazione dell’efficacia del progetto è stata condotta mediante una

rigorosa campagna sperimentale, articolata su due direttrici di analisi: una

qualitativa e una quantitativa.

L’analisi qualitativa si è focalizzata sull’esame approfondito di scenari

operativi specifici. Per un campione rappresentativo di 25 utenti, sono state

acquisite e analizzate metriche fondamentali per la convalida funzionale del

sistema, tra cui la latenza di notifica dell’allerta, la posizione iniziale degli

utenti, i percorsi di evacuazione generati e l’esito del raggiungimento della

destinazione sicura. Tale approccio ha permesso di verificare la coerenza

topologica e la sicurezza intrinseca delle soluzioni di routing proposte.

L’analisi quantitativa, invece, ha avuto come obiettivo la misurazione del-

le prestazioni dell’applicazione al variare del carico, inteso come numero di

utenti concorrenti. Sono state eseguiti test con diverse densità di occupazio-

ne simulata, raccogliendo dati sulle performance temporali e sull’efficienza

complessiva del processo di evacuazione.

7.3 Validazione qualitativa: terremoto

Per valutare la capacità del sistema di gestire scenari di emergenza su

larga scala, è stata condotta una simulazione dettagliata di un terremoto:

esso impone un’evacuazione totale, che richiede a tutti gli occupanti del-

l’edificio di lasciare la struttura e dirigersi verso punti di raccolta esterni.

L’obiettivo era verificare l’efficacia nella generazione di percorsi di fuga sicuri

in un contesto di rischio strutturale diffuso.

Per una valutazione puntuale e rigorosa, la presente trattazione si concentrerà

sull’analisi di un sottoinsieme rappresentativo di 5 utenti.

106 7. Risultati sperimentali

7.3.1 Posizioni iniziali e rilevamento del pericolo

La simulazione di un evento sismico ha attivato una politica di evacua-

zione globale, estesa a tutti gli utenti presenti, indipendentemente dalla lo-

ro posizione iniziale. Il sistema ha risposto all’allerta classificando come in

pericolo tutti gli occupanti dell’edificio. Questa risposta su vasta scala ne

dimostra la capacità di applicare politiche di emergenza non circoscritte a

una specifica area, ma che coinvolgono l’intera topologia del grafo.

Come illustrato nelle Figure 7.4, 7.5 e 7.6, le posizioni iniziali degli utenti

sono distribuite su tutti i livelli del campus.

Figura 7.4: Posizioni iniziali prima dell’allerta: piano 0

7.3 Validazione qualitativa: terremoto 107

Figura 7.5: Posizioni iniziali prima dell’allerta: piano 1

Figura 7.6: Posizioni iniziali prima dell’allerta: piano 2

A seguito dell’allerta, l’infrastruttura software ha notificato simultanea-

mente tutti gli utenti, confermando la sua capacità di discernere e gestire

una minaccia su scala totale. In Figura 7.7 è riportato l’elenco dei nodi che

presentano almeno un utente e i relativi percorsi di evacuazione. Tutti i nodi

108 7. Risultati sperimentali

interni, trattandosi di un’allerta terremoto, sono stati contrassegnati come

non sicuri, indipendentemente dalla loro posizione all’interno dell’edificio.

Figura 7.7: Nodi in pericolo durante l’allerta di tipo terremoto

7.3.2 Generazione dei percorsi di evacuazione

A seguito dell’identificazione dei nodi in pericolo, il motore di routing

ha computato per ciascun nodo un percorso di evacuazione ottimale verso

l’esterno: la strategia implementata ha privilegiato itinerari che minimizzano

il tempo di permanenza all’interno della struttura, dimostrando la robustezza

dell’algoritmo nel rispondere a una minaccia complessa e diffusa.

L’efficacia di tale strategia è stata confermata analizzando il flusso di spo-

stamento degli utenti, come visualizzato per ogni piano nelle Figure 7.8, 7.9 e

7.10. A livello grafico, queste immagini offrono una rappresentazione chiara

del processo, mostrando un movimento coordinato e convergente verso le usci-

te. Ciò comprova la validità dell’implementazione nel gestire un’evacuazione

di massa e la corretta aderenza degli utenti alle direttive fornite.

7.3 Validazione qualitativa: terremoto 109

Figura 7.8: Flusso degli utenti in evacuazione: piano 0

Figura 7.9: Flusso degli utenti in evacuazione: piano 1

110 7. Risultati sperimentali

Figura 7.10: Flusso degli utenti in evacuazione: piano 2

7.3.3 Validazione dell’arrivo e visualizzazione del flus-

so

L’analisi del flusso degli utenti, presentata nelle sezioni precedenti, costi-

tuisce la prova conclusiva del successo dell’evacuazione. Il movimento coor-

dinato e diretto verso le uscite di sicurezza, come documentato nelle mappe

di flusso (Figure 7.8, 7.9 e 7.10), conferma che tutti gli occupanti in pericolo

hanno seguito con successo i percorsi designati, raggiungendo le aree sicure

all’esterno della struttura. Questo risultato convalida l’efficacia dell’intero

sistema di evacuazione, dalla generazione dei percorsi alla guida in tempo

reale degli utenti.

7.4 Validazione qualitativa: alluvione

Al fine di dimostrare l’efficacia del sistema in uno scenario di evacuazione

parziale, è stata effettuata un’analisi di caso su una simulazione di alluvione,

coinvolgendo un campione di 25 utenti. Per una valutazione puntuale e

rigorosa, la presente trattazione si concentrerà sull’analisi di un sottoinsieme

7.4 Validazione qualitativa: alluvione 111

rappresentativo di 5 utenti. L’obiettivo primario consisteva nel verificare la

capacità del’implementazione di identificare correttamente l’area di pericolo

e di generare percorsi di evacuazione coerenti ed efficaci, guidando gli utenti

dalle zone a rischio verso i punti di raccolta sicuri designati.

7.4.1 Posizioni iniziali e rilevamento del pericolo

La simulazione di un alluvione ha permesso di testare una funzionalità

cruciale dell’implementazione: l’identificazione selettiva degli utenti in

pericolo. Data la natura della minaccia, circoscritta al livello inferiore del-

l’edificio, unicamente gli utenti localizzati al piano 0 sono stati correttamente

classificati come in pericolo. Questo approccio ha correttamente inibito la

propagazione dell’allerta di evacuazione agli utenti situati ai piani superio-

ri, dimostrando l’efficacia del progetto nel contestualizzare la minaccia in

base alla sua origine e diffusione. Come illustrato nelle Figure 7.11, 7.12,

7.13, le posizioni iniziali dei cinque utenti di riferimento sono distribuite su

tutti i livelli del campus: la soluzione implementata ha risposto con la pre-

cisione attesa, notificando esclusivamente gli utenti sul piano interessato e

confermando la sua capacità di discernere con accuratezza le aree di rischio.

Figura 7.11: Posizioni iniziali: piano 0

112 7. Risultati sperimentali

Figura 7.12: Posizioni iniziali: piano 1

Figura 7.13: Posizioni iniziali: piano 2

Successivamente, l’analisi ha confermato che i nodi sul piano terra sono

stati correttamente classificati come pericolosi, attivando la fase successiva

di calcolo dei percorsi di evacuazione.

7.4 Validazione qualitativa: alluvione 113

7.4.2 Generazione dei percorsi di evacuazione

A seguito dell’identificazione dei nodi in pericolo, l’infrastruttura ha evi-

denziato efficacia nell’elaborazione di percorsi di evacuazione sicuri e topo-

logicamente validi. Il componente Map Manager ha generato dinamicamen-

te tali itinerari, definiti come una sequenza ordinata di archi che collegano

la posizione corrente dell’utente a un punto di raccolta sicuro, escludendo

proattivamente i nodi e gli archi che simulavano le aree allagate.

La correttezza di questa fase è stata validata tramite l’analisi del per-

corso generato. In Figura 7.14 viene mostrato come, a partire da un nodo

classificato come pericoloso, il microservizio dedicato associ una lista di archi

che costituiscono l’itinerario di evacuazione. Ciascun percorso è composto

da una lista ordinata di archi che l’utente deve attraversare in sequenza.

Figura 7.14: Nodi al piano 0 in pericolo: la colonna evacuation path con-

tiene la sequenza di archi computata per la fuga.

La validazione dell’aderenza a tali percorsi è confermata dal flusso di

spostamento, illustrato graficamente in Figura 7.15. L’immagine offre una

rappresentazione visuale immediata del processo, mostrando la traiettoria

completa degli utenti in pericolo, dalle loro posizioni iniziali fino ai punti

sicuri. L’analisi del flusso dimostra in modo inequivocabile come gli utenti

abbiano seguito con precisione i percorsi calcolati, spostandosi dalle aree

allagate del piano 0 verso i vani scala per raggiungere un piano superiore e,

di conseguenza, sicuro.

114 7. Risultati sperimentali

Figura 7.15: Flusso degli utenti in evacuazione

La tracciabilità dei movimenti ha mostrato in modo inequivocabile come

gli utenti in pericolo abbiano seguito con precisione i percorsi calcolati. Il

movimento si è sviluppato dalle aree allagate del piano 0 verso i vani scala,

che hanno consentito il raggiungimento di un piano superiore e, di conse-

guenza, sicuro. Ciò ha confermato non solo la correttezza algoritmica del

calcolo dei percorsi, ma anche l’integrità del processo di tracciamento e della

visualizzazione delle strategie di evacuazione.

7.4.3 Validazione dell’arrivo e visualizzazione del flus-

so

L’analisi del flusso degli utenti costituisce la prova conclusiva del successo

dell’evacuazione parziale. Il movimento, tracciato dalle aree di pericolo fino ai

punti di raccolta sicuri, conferma che tutti gli occupanti a rischio hanno com-

pletato con successo i loro percorsi. Questo risultato attesta l’efficacia della

piattaforma nel gestire una minaccia localizzata, guidando selettivamente gli

individui al di fuori della zona di pericolo.

7.5 Validazione quantitativa 115

7.5 Validazione quantitativa

La presente sezione è dedicata alla validazione quantitativa della piatta-

forma, con l’obiettivo di valutarne sistematicamente le prestazioni, la scala-

bilità e la robustezza al variare delle condizioni operative. A tal fine, è stato

implementato un framework sperimentale basato su un’analisi di sensiti-

vità univariata. Tale approccio metodologico prevede la definizione di uno

scenario di baseline, rispetto al quale viene variato un singolo fattore speri-

mentale alla volta, mantenendo costanti gli altri. Questa tecnica permette di

isolare e quantificare con precisione l’impatto di ciascun fattore sugli indicato-

ri chiave di prestazione (Key Performance Indicator, KPI) della piattaforma.

Sono stati definiti due KPI primari: efficacia ed efficienza. L’efficienza del

sistema è misurata dal tempo totale di evacuazione, definito come l’intervallo

temporale che intercorre tra l’istante di emissione dell’allerta e il momento

in cui l’ultimo utente raggiunge un punto di raccolta sicuro.

L’efficacia, invece, è quantificata dal numero di utenti salvati, ovvero il to-

tale degli occupanti che completano con successo il percorso di evacuazione

designato. Questo indicatore misura la capacità del sistema di garantire il

raggiungimento degli obiettivi di sicurezza per la totalità della popolazione

coinvolta.

L’analisi è stata strutturata modulando quattro fattori sperimentali pri-

mari, ciascuno rappresentativo di una diversa dimensione del problema:

1. Carico del sistema: misura la scalabilità dell’architettura al variare

della densità di occupazione. Sono stati definiti cinque livelli di cari-

co, corrispondenti alla simulazione di 100, 300, 500, 750 e 1000 utenti

concorrenti, per analizzare il comportamento del sistema sotto stress

crescente.

2. Contesto temporale e spaziale: determina la distribuzione spaziale

iniziale della popolazione simulata. Sono state modellate tre fasce ora-

116 7. Risultati sperimentali

rie rappresentative, volte a emulare profili di occupazione eterogenei e

valutare la resilienza del sistema a diverse configurazioni di partenza.

3. Tipologia di allerta: definisce la natura dello scenario emergenzia-

le. Sono state investigate due tipologie di emergenza - Terremoto e

Alluvione - per investigare la capacità del sistema di adattare la strate-

gia di evacuazione (rispettivamente totale o parziale) alla natura della

minaccia.

4. Capacità del grafo topologico: modella i vincoli fisici dell’infra-

struttura. Sono state confrontate due configurazioni – a capacità infi-

nita e a capacità reale – al fine di comparare le prestazioni algoritmiche

ideali con scenari realistici in cui emergono colli di bottiglia e fenomeni

di congestione.

L’adozione di un approccio univariato offre il vantaggio di una chiara attribui-

bilità causale. Ciò permette di derivare conclusioni robuste e interpretabili

sull’impatto di ciascuna variabile sull’efficienza e la reattività del processo di

evacuazione.

Per ogni scenario, l’evento di allerta definisce t0 = 0; tutti i tempi sono

riportati come ∆t rispetto a t0. Per ciascun livello del fattore variato sono

state eseguite repliche indipendenti.

Le misure elementari raccolte in ogni esecuzione sono:

1. Ricezione primo path ∆tFirst: istante di consegna del primo percorso

allo User Simulator.

2. Ricezione ultimo path ∆tLast: istante di consegna dell’ultimo per-

corso allo User Simulator.

3. Ricezione Stop ∆tStop: istante della notifica di termine emergenza,

che attesta che tutti gli utenti simulati a rischio sono in sicurezza,

rappresenta il tempo totale di evacuazione.

7.5 Validazione quantitativa 117

Da tali misure derivano le metriche operative:

• Throughput (utenti/s): è definito come il numero di utenti evacuati

per unità di tempo, calcolato come N/∆tStop, dove N è la popolazione

simulata. Misura l’efficienza del flusso di evacuazione: s= ∆tFirst-∆tFirst

• Latency gap (s): rappresenta il ritardo introdotto dalla pipeline di

elaborazione. Misura l’intervallo temporale tra la consegna del primo

percorso di evacuazione e la notifica dell’ultimo percorso di evacuazione.

La mappatura con i KPI è diretta: l’efficienza coincide con ∆tStop (tempo

totale di evacuazione), mentre l’efficacia coincide con il numero di utenti

salvati (N).

Per l’interpretazione dei risultati sono state adottate metriche statistiche

specifiche. I dati sono stati raccolti attraverso cinque esecuzioni indipendenti

per ogni scenario, al fine di garantire l’affidabilità delle misurazioni. Essi sono

stati aggregati calcolando la media (µ) come indicatore di tendenza centrale

e la deviazione standard (σ) per quantificare la variabilità e la stabilità

delle misurazioni. Infatti, la deviazione standard misura la dispersione con

cui i valori in un campione di dati si discostano dalla media campionaria.

La media campionaria è definita matematicamente come:

x̄ =
1

n

n∑
i=1

xi, (7.1)

La deviazione standard campionaria (s) è definita matematicamente come:

s =

√√√√ 1

n− 1

n∑
i=1

(
xi − x̄

)2
. (7.2)

dove n è il numero di osservazioni, xi è la i-esima osservazione e x̄ è la media

campionaria. I risultati sono presentati nella notazione compatta µ± σ.

L’analisi dei dati raccolti è articolata nelle sezioni successive, ciascuno

dedicata a un assetto sperimentale specifico. Si esaminerà l’impatto del carico

118 7. Risultati sperimentali

di sistema (Sezione 7.5.1) e del contesto temporale (Sezione 7.5.2), per poi

procedere con il confronto tra le diverse tipologie di allerta (Sezione 7.5.3) e

le configurazioni di capacità del grafo (Sezione 7.5.4).

7.5.1 Analisi della scalabilità del sistema in funzione

del carico utenti

La presente sezione è dedicata all’esposizione del setting sperimentale e

dei parametri di simulazione impiegati per la valutazione quantitativa della

scalabilità della piattaforma. L’indagine si concentra sull’impatto dell’in-

cremento del carico di utenti sulle performance del sistema in un contesto di

emergenza simulata. L’approccio metodologico adottato, in linea con i prin-

cipi dell’analisi di sensitività univariata, prevede la variazione esclusiva del

numero di utenti, consentendo di isolare e misurare con precisione l’effetto di

tale variabile sulle metriche di performance. Tale valutazione è fondamentale

per comprendere la scalabilità dei microservizi dedicati alla simulazione del

movimento, alla gestione delle posizioni degli utenti e del calcolo dei percorsi

di evacuazione.

Le condizioni operative mantenute invariate per l’intera serie di esperimenti,

al fine di garantire la validità e la comparabilità dei risultati, sono le seguenti:

• Tipologia di allerta: la simulazione è stata condotta in uno scenario

di terremoto, che richiede un’evacuazione totale dell’edificio.

• Configurazione del grafo topologico: il sistema è stato configu-

rato per operare con una capacità reale su archi e nodi. Questa scel-

ta consente di emulare i vincoli fisici e i fenomeni di congestione che

caratterizzano gli scenari di evacuazione reali.

• Contesto temporale e spaziale: le simulazioni sono state avviate

alle ore 10:00, un orario rappresentativo di una tipica e significativa

densità di occupazione, che definisce la distribuzione spaziale iniziale

della popolazione.

7.5 Validazione quantitativa 119

La Tabella 7.1 e l’istogramma in Figura 7.17 presentano le metriche tem-

porali chiave e la deviazione standard al variare del numero di utenti. In

particolare, mostrano che i tempi di ricezione del primo percorso rimangono

consistenti fino a 750 utenti, evidenziando la capacità del sistema di avviare

l’evacuazione in modo rapido e affidabile anche con un numero elevato di

richieste simultanee. A un carico di 1000 utenti, si osserva un incremento del

tempo medio e della sua variabilità, indicando una minore uniformità nella

gestione delle richieste in condizioni di stress estremo.

I tempi di completamento dell’evacuazione, misurati dalla ricezione dell’ul-

timo percorso e del segnale di Stop, aumentano proporzionalmente all’in-

cremento degli utenti, con un’accelerazione più marcata oltre i 750 utenti.

Questo andamento è prevedibile e non compromette la funzionalità del siste-

ma. La piattaforma dimostra di mantenere la sua operatività anche con un

carico massiccio, completando l’evacuazione di tutti gli utenti, sebbene in un

lasso di tempo più esteso.

Terremoto con capacità archi e nodi limitata simulata alle ore 10

Utenti simulati Ricezione primo path (∆t) Ricezione ultimo path (∆t) Ricezione Stop (∆t)

100 25.0± 7.4 33.2± 7.1 37.8± 6.7

300 18.0± 24.8 33.8± 17.6 35.2± 17.4

500 16.8± 4.6 23.6± 14.7 44.0± 10.2

750 16.0± 2.9 61.4± 14.4 91.8± 13.0

1000 38.6± 45.2 154.0± 38.7 165.0± 43.1

Tabella 7.1: Dati raccolti per allerta Terremoto con capacità di archi e nodi

limitata, simulata alle ore 10

120 7. Risultati sperimentali

100 300 500 750 1000
0

50

100

150

200

Numero utenti simulati

T
em

p
o
(s
)

Primo percorso Ultimo percorso Stop

Figura 7.16: Confronto variazione tempi di ricezione al variare del numero

di utenti simulati

La Figura 7.17 illustra le dinamiche di evacuazione attraverso le curve

cumulative degli utenti salvati nel tempo.

• Con carichi fino a 500 utenti, le curve mostrano una crescita vertiginosa,

indicativa di un’efficienza ottimale. L’andamento, quasi verticale, della

curva attesta l’efficacia del sistema nel gestire un elevato volume di

utenti con notevole rapidità, mantenendo costantemente aggiornato il

loro stato in tempo reale.

• Con l’aumento del carico a 750 e 1000 utenti, le curve diventano pro-

gressivamente meno ripide. Questa variazione di pendenza è un segnale

di saturazione, ma non di mancata efficienza. I microservizi continuano

a gestire le interazioni e il flusso di dati intensi, garantendo che tutti

gli utenti raggiungano la destinazione finale sicura.

7.5 Validazione quantitativa 121

In conclusione, l’analisi della distribuzione cumulativa conferma la resilienza

del sistema: anche in condizioni estreme che superano la soglia di perfor-

mance ideale, la piattaforma assicura il successo dell’evacuazione per l’intera

popolazione, bilanciando la rapidità con la robustezza.

15 30 45 60 75 90 10
5
12
0
13
5
15
0
16
5
18
0
19
5
21
0
22
5
24
0
25
5
27
0
28
5
30
0

0

100

300

500

750

1,000

Tempo (s)

U
te
n
ti
sa
lv
at
i
(n
)

100 utenti 300 utenti 500 utenti
750 utenti 1000 utenti

Figura 7.17: Utenti salvati nel tempo — Terremoto, capacità limitata, ore

10.

La Tabella 7.2 e la Figura 7.18 forniscono una prospettiva quantitativa,

con focus su throughput e latency gap:

• Il throughput raggiunge un picco a 500 utenti, suggerendo un’ottimizza-

zione intrinseca dei microservizi per carichi intermedi. Successivamen-

te, il valore si riduce, ma non in modo drastico, riflettendo la gestione

adattiva di collisioni e ritardi in un ambiente congestionato.

• Il latency gap mostra una crescita notevole e non lineare oltre i 500

utenti. Questo aumento dimostra che il tempo necessario per elabo-

122 7. Risultati sperimentali

rare tutti i percorsi si estende significativamente in condizioni di ca-

rico elevato, ma il sistema continua a funzionare, confermando la sua

resilienza.

Utenti simulati Evacuazione totale (s) Throughput (utenti/s) Latency Gap (s) Successo (%)

100 37.8 2.6 8.2 100

300 35.2 8.5 15.8 100

500 44.0 11.1 6.8 100

750 142.8 8.2 45.4 100

1000 73.8 6.1 115.6 100

Tabella 7.2: Riepilogo delle metriche di performance nello scenario Terremoto

con capacità limitata e simulazione alle ore 10

100 300 500 750 1,000
0

2

4

6

8

10

12

Numero di utenti simulati

T
h
ro
u
gh

p
u
t
(u
te
n
ti
/s
)

Relazione tra Utenti, Throughput e Latency Gap

Throughput (utenti/s) Latency Gap (s)

0

20

40

60

80

100

120

L
at
en
cy

G
ap

(s
)

Figura 7.18: Confronto tra Throughput e Latency Gap al variare del numero

di utenti a rischio nello scenario Terremoto con capacità archi e nodi limitata

e simulazione alle ore 10.

7.5 Validazione quantitativa 123

In conclusione, questa analisi dimostra che la piattaforma è altamente

scalabile fino a 500 utenti, raggiungendo la sua massima efficienza. Oltre

tale limite, il sistema non collassa, ma si adatta per garantire la completa

evacuazione di tutti gli utenti, anche a scapito della velocità. Questo com-

portamento adattivo è una prova della solidità dei microservizi di simulazio-

ne, gestione delle posizioni e di calcolo dei percorsi, progettati per superare

le sfide del carico computazionale e salvaguardare l’obiettivo primario del

progetto.

7.5.2 Analisi della resilienza in funzione della fascia

oraria

La presente sezione è dedicata all’esposizione del setting sperimentale e

dei parametri di simulazione impiegati per la valutazione quantitativa del-

la resilienza della piattaforma al variare della distribuzione iniziale della

popolazione. L’indagine si concentra sull’impatto del contesto temporale e

spaziale sulle performance del sistema in un contesto di emergenza simulata.

L’approccio metodologico adottato, in linea con i principi dell’analisi di sen-

sitività univariata, prevede la variazione esclusiva della fascia oraria di si-

mulazione, consentendo di isolare e misurare con precisione l’effetto di tale

variabile sulle metriche di performance. Le distribuzioni degli utenti simulate

riflettono lo scenario tipico di un campus universitario:

• Fascia 8:30-10:30 e 16:00-18:00 (orario di lezione): la maggior parte

degli utenti si trova nelle aule, con una minore percentuale distribuita

in uffici e corridoi. Questa concentrazione iniziale in spazi chiusi e

ristretti può generare un’evacuazione più complessa.

• Fascia 13:00-14:00 (pausa pranzo): gli utenti sono prevalentemente di-

stribuiti in aree comuni, con una percentuale minore in corridoi e bagni.

Questa distribuzione in aree più ampie e vicine alle uscite può favorire

un’evacuazione più rapida.

124 7. Risultati sperimentali

• Fascia 15:15-16:00 (Pausa tra Lezioni): Gli utenti si distribuiscono prin-

cipalmente in aree di socializzazione. Questa configurazione, meno con-

centrata rispetto alle fasce orarie di lezione, tende a ridurre i fenomeni

di congestione.

Le condizioni operative mantenute invariate per l’intera serie di esperi-

menti, al fine di garantire la validità e la comparabilità dei risultati, sono le

seguenti:

• Tipologia di allerta: la simulazione è stata condotta in uno scenario

di terremoto, che richiede un’evacuazione totale dell’edificio.

• Configurazione del grafo topologico: il sistema è stato configu-

rato per operare con una capacità reale su archi e nodi. Questa scel-

ta consente di emulare i vincoli fisici e i fenomeni di congestione che

caratterizzano gli scenari di evacuazione reali.

• Carico del sistema: il numero di utenti simulati è stato mantenu-

to costante a 1000 occupanti, un valore rappresentativo di un carico

significativo.

L’analisi della Tabella 7.3 rivela come la distribuzione iniziale della po-

polazione, che varia a seconda della fascia oraria, influenzi significativamente

le metriche di evacuazione per un carico fisso di 1000 utenti. I dati mostrano

che la piattaforma dimostra una notevole resilienza, pur in condizioni di ca-

rico elevato, ma le performance variano in base alla configurazione spaziale

iniziale degli utenti.

I tempi di ricezione del primo percorso di evacuazione rimangono relativa-

mente stabili in tutte le fasce orarie. Questo dato evidenzia che il microservi-

zio deputato al calcolo dei percorsi è sempre in grado di avviare il processo di

evacuazione in modo tempestivo, indipendentemente dalla distribuzione degli

utenti. Le variazioni più significative, in particolare la deviazione standard

molto alta nelle fasce 8:30-10:30 e 16:00-18:00, come mostrato nella Figura

7.19, suggeriscono una minore uniformità nella risposta iniziale in orari di

7.5 Validazione quantitativa 125

punta, con alcune richieste che potrebbero essere elaborate più lentamente a

causa di una distribuzione iniziale sfavorevole.

I tempi di completamento dell’evacuazione (ricezione dell’ultimo percorso

e segnale di Stop) mostrano una forte correlazione con la fascia oraria. La

performance migliore si registra nella fascia 15:15-16:00: in questo orario,

l’evacuazione è molto più rapida e stabile rispetto alle altre fasce orarie. Al

contrario, le fasce 13:00-14:00 e 16:00-18:00 mostrano tempi di evacuazione

notevolmente più lunghi e un’elevata variabilità (come indicato dalle alte de-

viazioni standard), suggerendo che la distribuzione degli utenti in questi mo-

menti genera una congestione più significativa, rallentando l’intero processo

di evacuazione.

Terremoto con capacità archi e nodi limitata simulata per 1000 utenti

Fascia oraria Ricezione primo path (∆t) Ricezione ultimo path (∆t) Ricezione Stop (∆t)

8:30-10:30 38.6± 45.2 154.0± 38.7 165.0± 43.1

13:00-14:00 17.4± 6.2 173.2± 131.4 182.0± 132.1

15:15-16:00 22.6± 23.0 79.8± 18.3 88.8± 14.2

16:00-18:00 36.8± 44.3 181.6± 110.3 189.6± 108.1

Tabella 7.3: Dati raccolti per allerta Terremoto con capacità di archi e nodi

limitata, simulata per 1000 utenti

L’analisi della Figura 7.20 rivela che le dinamiche di evacuazione di un’in-

tera popolazione di 1000 utenti sono fortemente influenzate dalla loro distri-

buzione iniziale dipendente dalla fascia oraria. Il grafico delle curve cumu-

lative degli utenti salvati mostra un’ampia variabilità nella rapidità con cui

l’evacuazione viene completata.

• Le curve relative alle fasce orarie 13:00-14:00 (Pausa Pranzo) e 15:15-

16:00 (Pausa tra Lezioni) mostrano un’evacuazione estremamente ra-

pida, in linea con una distribuzione della popolazione in aree comuni e

corridoi che riduce la congestione. La crescita quasi verticale della pri-

ma curva evidenzia l’efficienza del sistema in una configurazione spazia-

le ottimale: la maggior parte della popolazione si trova in aree comuni

126 7. Risultati sperimentali

e corridoi, che rappresentano posizioni strategiche per un’evacuazione

rapida e tendono a generare meno colli di bottiglia.

• Le curve delle fasce 8:30-10:30 (Lezione Mattina) e 16:00-18:00 (Le-

zione Pomeriggio) sono notevolmente meno ripide e si estendono per

un periodo di tempo più lungo. Questo suggerisce un comportamento

di saturazione, dove la distribuzione degli utenti in aula genera colli

di bottiglia e rallentamenti a causa delle capacità limitate di porte e

corridoi. Nonostante ciò, il sistema continua a garantire che tutti gli

utenti raggiungano la sicurezza.

In sintesi, il grafico dimostra la resilienza del sistema: sebbene l’efficienza

vari a seconda della distribuzione spaziale degli utenti, la piattaforma assi-

cura sempre il successo dell’evacuazione totale, bilanciando la rapidità con

la robustezza anche in condizioni di forte stress.

7.5 Validazione quantitativa 127

8:30–10:30 13:00–14:00 15:15–16:00 16:00–18:00

30

60

90

120

150

180

210

240

270

300

330

Fascia oraria

T
em

p
o
d
i
ev
ac
u
az
io
n
e
(s
)

Primo percorso Ultimo percorso Stop

Figura 7.19: Confronto variazione tempi di ricezione al variare della fascia

oraria di simulazione

128 7. Risultati sperimentali

15 30 45 60 75 90 10
5
12
0
13
5
15
0
16
5
18
0
19
5
21
0
22
5
24
0
25
5
27
0
28
5
30
0

0

100

300

500

750

1,000

Tempo (s)

U
te
n
ti
sa
lv
at
i
(n
)

Lezione Mattina Pausa Pranzo Pausa tra Lezioni
Lezione Pomeriggio

Figura 7.20: Utenti salvati nel tempo — Terremoto, capacità limitata, 1000

utenti; confronto tra quattro fasce orarie.

L’analisi combinata della Tabella 7.4 e della Figura 7.21 fornisce una

prospettiva quantitativa chiara della resilienza del sistema in un contesto di

carico elevato (1000 utenti) e con distribuzioni spaziali variabili.

• Il throughput mostra un comportamento non uniforme: raggiunge il

suo valore massimo, indicando la massima efficienza, nella fascia oraria

15:15-16:00, mentre nelle altre fasce orarie si riduce significativamente.

Questo suggerisce che la distribuzione spaziale della popolazione nella

fascia pomeridiana è intrinsecamente più favorevole a un’evacuazione

rapida, probabilmente a causa di un minor numero di percorsi che si

intersecano e una minore congestione complessiva.

• Il latency gap correla inversamente con il throughput. Il valore minimo,

e quindi la migliore efficienza della pipeline di calcolo, si riscontra nella

7.5 Validazione quantitativa 129

fascia 15:15-16:00, che coincide con il picco di throughput. Al contrario,

il latency gap raggiunge i suoi valori massimi nelle fasce orarie in cui

il throughput è più basso. Questo aumento esponenziale del latency

gap conferma che in orari di forte congestione, l’algoritmo impiega un

tempo notevolmente maggiore per risolvere le interazioni tra gli agenti

e completare l’elaborazione dei percorsi per tutti gli utenti.

In conclusione, l’analisi dei dati di throughput e latency gap dimostra che

la distribuzione spaziale degli utenti, che varia in base alla fascia oraria,

è un fattore critico per le performance del sistema. Il sistema si adatta

in modo resiliente ai diversi scenari, ma le performance di evacuazione sono

ottimizzate quando la disposizione iniziale della popolazione riduce al minimo

la potenziale congestione.

Fascia oraria Evacuazione totale (s) Throughput (utenti/s) Latency Gap (s) Successo (%)

8:30-10:30 165.0 6.1 115.4 100

13:00-14:00 182.0 5.5 155.8 100

15:15-16:00 88.8 11.3 57.2 100

16:00-18:00 189.6 5.3 144.8 100

Tabella 7.4: Riepilogo delle metriche di performance nello scenario Terremoto

con capacità limitata e numero utenti a 1000

130 7. Risultati sperimentali

8:3
0–1

0:3
0

13:
00–

14:
00

15:
15–

16:
00

16:
00–

18:
00

0

2

4

6

8

10

12

Fascia oraria

T
h
ro
u
gh

p
u
t
(u
te
n
ti
/s
)

Relazione tra fasce oraire, Throughput e Latency Gap

Throughput (utenti/s) Latency Gap (s)

0

50

100

150

200

L
at
en
cy

G
ap

(s
)

Figura 7.21: Confronto tra Throughput e Latency Gap nelle diverse fasce

orarie (scenario Terremoto, capacità limitata, 1000 utenti).

In conclusione, l’analisi sperimentale ha dimostrato che la piattaforma

non solo è scalabile, ma anche altamente resiliente alle variazioni della di-

stribuzione spaziale degli utenti. Sebbene la piattaforma garantisca sempre

il successo dell’evacuazione totale, le performance operative, misurate in ter-

mini di tempo di evacuazione, throughput e latency gap, sono strettamente

dipendenti dalla configurazione iniziale della popolazione. In particolare,

il sistema raggiunge la sua massima efficienza in scenari in cui si ha una

distribuzione più dispersa degli utenti in aree di passaggio, che riduce la

congestione.

7.5 Validazione quantitativa 131

7.5.3 Analisi della reattività in funzione della tipologia

di allerta

La presente sezione è dedicata all’esposizione del setting sperimentale e

dei parametri di simulazione impiegati per la valutazione quantitativa del-

la reattività della piattaforma. L’indagine si concentra sulla capacità del

sistema di adattare la strategia di evacuazione alla natura dell’evento emer-

genziale, confrontando scenari di evacuazione totale e parziale. L’approccio

metodologico adottato, in linea con i principi dell’analisi di sensitività uni-

variata, prevede la variazione esclusiva della tipologia di allerta, consentendo

di isolare e misurare con precisione l’effetto di tale variabile sulle metriche di

performance. Le condizioni operative mantenute invariate per l’intera serie

di esperimenti, al fine di garantire la validità e la comparabilità dei risultati,

sono le seguenti:

• Configurazione del grafo topologico: il sistema è stato configu-

rato per operare con una capacità reale su archi e nodi. Questa scel-

ta consente di emulare i vincoli fisici e i fenomeni di congestione che

caratterizzano gli scenari di evacuazione reali.

• Contesto temporale e spaziale: le simulazioni sono state avviate

alle ore 10:00, un orario rappresentativo di una tipica e significativa

densità di occupazione, che definisce la distribuzione spaziale iniziale

della popolazione.

• Carico del sistema: il numero di utenti simulati è stato mantenu-

to costante a 1000 occupanti, un valore rappresentativo di un carico

significativo.

La Tabella 7.5 e l’istogramma in Figura 7.22 forniscono un’analisi com-

parativa delle metriche di evacuazione per le due diverse tipologie di allerta

studiate: i dati rivelano che il tipo di allerta ha un impatto significativo sulla

dinamica dell’evacuazione. Il tempo di ricezione del primo percorso è note-

volmente più basso e con una variabilità minore in caso di Alluvione: ciò

132 7. Risultati sperimentali

suggerisce che il sistema avvia l’evacuazione più rapidamente in uno scenario

di evacuazione parziale, poiché l’algoritmo di calcolo dei percorsi opera su un

grafo topologico ridotto (escludendo i piani superiori).

Al contrario, i tempi di completamento dell’evacuazione, misurati dalla ri-

cezione dell’ultimo percorso e del segnale di Stop, sono più lunghi in caso

di Alluvione rispetto al Terremoto. Sebbene l’allerta Alluvione permetta un

avvio più rapido, il processo di evacuazione nel suo complesso richiede più

tempo, poiché il numero limitato di percorsi e uscite disponibili verso i piani

superiori causa una maggiore congestione e rallenta l’evacuazione finale degli

utenti.

Simulazione ore 10 con capacità archi e nodi limitata e 1000 utenti

Tipologia allerta Ricezione primo path (∆t) Ricezione ultimo path (∆t) Ricezione Stop (∆t)

Terremoto 38.6± 45.2 154.0± 38.7 165.0± 43.1

Alluvione 21.2± 7.5 191.0± 61.5 202.8± 60.2

Tabella 7.5: Dati raccolti per simulazioni alle ore 10 con capacità di archi e

nodi limitata e 1000 utenti simulati

7.5 Validazione quantitativa 133

Terremoto Alluvione

30

60

90

120

150

180

210

240

270

300

Tipologia di allerta

T
em

p
o
d
i
ev
ac
u
az
io
n
e
(s
)

Primo percorso Ultimo percorso Stop

Figura 7.22: Confronto variazione tempi di ricezione al variare della tipologia

di allerta

La Figura 7.23 illustra le dinamiche di evacuazione attraverso le curve cu-

mulative degli utenti salvati nel tempo, confrontando i due scenari di allerta.

L’analisi di tale distribuzione rivela chiaramente come la tipologia di allerta

impatti la velocità di evacuazione.

• La curva dell’Alluvione, nonostante un avvio più rapido, mostra una

crescita meno ripida rispetto a quella del Terremoto. Questo compor-

tamento suggerisce che la strategia di evacuazione per l’Alluvione, che

esclude i piani inferiori e le uscite a rischio, crea un’inevitabile conge-

stione lungo i percorsi rimanenti. La minore pendenza indica un ral-

lentamento del flusso di utenti, che il sistema gestisce in modo efficace

per prevenire il collasso, ma a scapito della velocità complessiva.

134 7. Risultati sperimentali

• La curva del Terremoto, pur partendo con un leggero ritardo, mostra

una crescita più costante e sostenuta, raggiungendo una performance

cumulativa superiore nei primi 150 secondi. Questo è dovuto alla di-

sponibilità di più percorsi e uscite, che distribuiscono il carico di utenti

e riducono i colli di bottiglia, permettendo un flusso più efficiente e una

minor frizione tra gli agenti.

In sintesi, il grafico conferma che il sistema si adatta in modo resiliente ai

diversi scenari, bilanciando la rapidità di evacuazione con la sicurezza.

15 30 45 60 75 90 10
5
12
0
13
5
15
0
16
5
18
0
19
5
21
0
22
5
24
0
25
5
27
0
28
5
30
0

0

100

300

500

750

1,000

Tempo (s)

U
te
n
ti
sa
lv
at
i
(n
)

Terremoto Alluvione

Figura 7.23: Utenti salvati nel tempo — Ore 10, capacità limitata, utenti

fissi; confronto tra allerta terremoto e alluvione.

L’analisi combinata della Tabella 7.6 e della Figura 7.24 fornisce una

chiara prospettiva quantitativa delle performance del sistema in base alla

tipologia di allerta.

• Il throughput è notevolmente superiore nello scenario Terremoto rispet-

to a quello Alluvione: questa differenza è un indicatore diretto dell’ef-

7.5 Validazione quantitativa 135

ficienza dei percorsi disponibili. Nello scenario Terremoto, la rete di

percorsi completa consente un flusso di utenti più elevato e distribuito,

riducendo la congestione. Al contrario, l’allerta Alluvione, limitando

l’accesso a porzioni dell’edificio, forza gli utenti a convergere su un nu-

mero ridotto di vie di fuga, creando colli di bottiglia e rallentando il

flusso complessivo.

• Il latency gap, che riflette il ritardo nell’elaborazione dei percorsi, è

significativamente più alto in caso di Alluvione rispetto al Terremoto.

Questo dato conferma l’osservazione precedente: la ridotta disponibi-

lità di percorsi nello scenario di Alluvione aumenta la complessità del

calcolo, poiché il Map Manager deve risolvere un maggior numero di

conflitti e ricalcolare i percorsi in tempo reale per un numero elevato di

utenti che si muovono in spazi limitati. L’algoritmo impiega più tempo

per garantire che ogni utente raggiunga la sicurezza, come dimostra

l’aumento del tempo totale di evacuazione.

Tipologia allerta Evacuazione totale (s) Throughput (utenti/s) Latency Gap (s) Successo (%)

Terremoto 165.0 6.1 115.4 100

Alluvione 202.8 4.9 169.8 100

Tabella 7.6: Riepilogo delle metriche di performance con capacità archi e

nodi limitata, simulazione di 1000 utenti alle ore 10

136 7. Risultati sperimentali

Terremoto Alluvione
0

2

4

6

Tipologia allerta

T
h
ro
u
gh

p
u
t
(u
te
n
ti
/s
)

Relazione tra tipologia di allerta, Throughput e Latency Gap

Throughput (utenti/s) Latency Gap (s)

0

50

100

150

200

L
at
en
cy

G
ap

(s
)

Figura 7.24: Confronto tra Throughput e Latency Gap negli scenari Terre-

moto e Alluvione con capacità archi e nodi limitata e 1000 utenti.

In conclusione, l’analisi ha dimostrato che la tipologia di allerta non solo

influenza la strategia di evacuazione, ma ha anche un impatto diretto sulle

metriche di performance chiave del sistema. Sebbene un’evacuazione parziale

possa consentire un avvio più rapido, la sua natura restrittiva sui percorsi

porta a un’evacuazione complessivamente più lunga e meno efficiente in ter-

mini di throughput e latency. La piattaforma gestisce con successo entrambi

gli scenari, adattando i percorsi e garantendo il successo dell’evacuazione per

tutti gli utenti. Questo comportamento conferma la sua resilienza e la sua

capacità di operare in modo affidabile anche in condizioni di elevata criticità

e con vincoli complessi.

7.5 Validazione quantitativa 137

7.5.4 Analisi della robustezza in funzione della capa-

cità di archi e nodi

La presente sezione è dedicata all’esposizione del setting sperimentale e

dei parametri di simulazione impiegati per la valutazione quantitativa della

robustezza della piattaforma. L’indagine si concentra sull’impatto dei vin-

coli fisici del grafo topologico sulle performance del sistema.

L’approccio metodologico adottato, in linea con i principi dell’analisi di sen-

sitività univariata, prevede la variazione esclusiva della configurazione del

grafo, confrontando uno scenario ideale con uno realistico. Le condizioni ope-

rative mantenute invariate per l’intera serie di esperimenti, al fine di garantire

la validità e la comparabilità dei risultati, sono le seguenti:

• Tipologia di allerta: la simulazione è stata condotta in uno scenario

di terremoto, che richiede un’evacuazione totale dell’edificio.

• Contesto temporale e spaziale: le simulazioni sono state avviate

alle ore 10:00, un orario rappresentativo di una tipica e significativa

densità di occupazione, che definisce la distribuzione spaziale iniziale

della popolazione.

• Carico del sistema: il numero di utenti simulati è stato mantenu-

to costante a 1000 occupanti, un valore rappresentativo di un carico

significativo.

L’analisi della Tabella 7.7 e della Figura 7.25 confronta le performance

del sistema in due scenari distinti: uno in cui la capacità di archi e nodi

è limitata (simulando vincoli fisici e congestione) e uno in cui la capacità è

infinita. I dati, raccolti per un’allerta Terremoto con 1000 utenti simulati alle

10 del mattino, evidenziano il ruolo cruciale dei vincoli fisici sull’efficienza

dell’evacuazione.

• Il tempo di ricezione del primo percorso si riduce significativamente nel-

lo scenario con capacità infinita rispetto a quello con capacità limitata:

138 7. Risultati sperimentali

ciò indica che, in assenza di vincoli, l’algoritmo di calcolo dei percorsi

opera in modo più rapido e prevedibile, senza i rallentamenti causati

dalla necessità di gestire le collisioni e la congestione in tempo reale.

• I tempi di completamento dell’evacuazione mostrano un miglioramen-

to ancora più marcato. Nello scenario con capacità infinita, il tempo

di Stop si riduce di oltre la metà rispetto a quello con capacità li-

mitata. Tale risultato sottolinea come la gestione dei vincoli fisici e

della congestione rappresenti il principale fattore di rallentamento in

un’evacuazione reale.

L’elevata deviazione standard del tempo di ricezione del primo percorso nel-

lo scenario a capacità limitata indica una minore uniformità nella risposta

del sistema, probabilmente a causa di un numero maggiore di ricalcoli e ag-

giustamenti di percorso necessari per far fronte alle collisioni tra gli utenti.

Al contrario, nello scenario a capacità infinita, la bassa deviazione standard

dimostra una risposta molto più stabile e prevedibile.

Terremoto con 1000 utenti simulata alle ore 10

Capacità archi e nodi Ricezione primo path (∆t) Ricezione ultimo path (∆t) Ricezione Stop (∆t)

Limitata 38.6± 45.2 154.0± 38.7 165.0± 43.1

Infinita 21.6± 5.7 72.0± 5.9 77.0± 6.1

Tabella 7.7: Dati raccolti per allerta Terremoto, simulazioni alle ore 10 con

1000 utenti simulati

La Figura 7.25 fornisce una chiara rappresentazione visiva dell’impatto

della capacità degli archi e dei nodi sui tempi di evacuazione. I dati mostrano

in modo evidente che, in uno scenario con capacità illimitata, il sistema di

evacuazione è significativamente più rapido e prevedibile rispetto a uno in

cui la capacità è limitata, un fattore che riflette vincoli e la congestione del

mondo reale. Nello specifico, la deviazione standard molto più bassa nello

scenario a capacità illimitata (le barre di errore sono quasi inesistenti) indica

un’altissima prevedibilità e stabilità del sistema, a differenza della grande

variabilità osservata con la capacità limitata.

7.5 Validazione quantitativa 139

Capacità limitata Capacità illimitata

30

60

90

120

150

180

210

240

Capacità archi e nodi

T
em

p
o
d
i
ev
ac
u
az
io
n
e
(s
)

Primo percorso Ultimo percorso Stop

Figura 7.25: Confronto variazione tempi di ricezione al variare della capacità

degli archi e dei nodi

La Figura 7.26 illustra l’analisi della distribuzione cumulativa. Essa con-

ferma le osservazioni delineate in precedenza: la curva dello scenario con

capacità infinita mostra una crescita notevolmente più ripida e completa l’e-

vacuazione di 1000 utenti in un tempo significativamente minore rispetto alla

curva a capacità limitata. Questo andamento, che si avvicina a una crescita

verticale, dimostra l’efficienza ottimale del sistema quando la congestione e i

colli di bottiglia fisici non rappresentano un ostacolo.

La curva a capacità limitata, pur garantendo il successo dell’evacuazione

totale, ha una pendenza più graduale e richiede più tempo per raggiungere

il completamento.

140 7. Risultati sperimentali

15 30 45 60 75 90 10
5
12
0
13
5
15
0
16
5
18
0
19
5
21
0
22
5
24
0
25
5
27
0
28
5
30
0

0

100

300

500

750

1,000

Tempo (s)

U
te
n
ti
sa
lv
at
i
(n
)

Capacità limitata Capacità infinita

Figura 7.26: Utenti salvati nel tempo — Terremoto, ore 10, 1000 utenti;

confronto tra capacità limitata e infinita.

L’analisi combinata della Tabella 7.8 e della Figura 7.27 fornisce una

chiara prospettiva quantitativa dell’impatto dei vincoli di capacità sulla per-

formance del sistema di evacuazione. I dati dimostrano che il throughput e

il latency gap migliorano drasticamente quando i vincoli fisici del grafo sono

rimossi.

• Il throughput nello scenario a capacità illimitata è più che raddoppiato

rispetto allo scenario a capacità limitata: l’assenza di congestione fisi-

ca e colli di bottiglia permette al sistema di calcolare i percorsi e far

defluire gli utenti a un ritmo notevolmente più veloce.

• Il latency gap si riduce di oltre la metà: indica che il tempo necessario

per calcolare il primo e l’ultimo percorso è molto più breve, dimostrando

una notevole efficienza computazionale.

7.5 Validazione quantitativa 141

Capacità archi e nodi Evacuazione totale (s) Throughput (utenti/s) Latency Gap (s) Successo (%)

Limitata 165.0 6.1 115.4 100

Illimitata 77.0 13.0 50.4 100

Tabella 7.8: Riepilogo delle metriche di performance per allerta di tipo Ter-

remoto, simulazione di 1000 utenti alle ore 10

Limitata Infinita
0

5

10

Capacità archi e nodi

T
h
ro
u
gh

p
u
t
(u
te
n
ti
/s
)

Relazione tra capcità di archi e nodi, Throughput e Latency Gap

Throughput (utenti/s) Latency Gap (s)

0

50

100

150

200

L
at
en
cy

G
ap

(s
)

Figura 7.27: Confronto tra Throughput e Latency Gap per allerta Terremoto

e simulazione di 1000 utenti alle ore 10

In sintesi, l’analisi conferma che la performance ottimale del sistema si

raggiunge in assenza di vincoli fisici. La differenza tra i due scenari evidenzia

che i microservizi sono estremamente efficienti nel calcolo dei percorsi, ma

le sfide principali nella simulazione e nell’evacuazione reale risiedono nella

gestione della congestione e delle interazioni tra gli agenti.

Conclusioni

Il presente lavoro di tesi ha affrontato e risolto la critica discontinuità

esistente tra i sistemi di allerta pubblica su scala macro-geografica e la ge-

stione delle emergenze in ambienti indoor, un dominio dove la granularità

spaziale, le dinamiche di folla e i vincoli topologici impongono l’adozione di

paradigmi radicalmente nuovi. Attraverso l’impiego del Campus di Cesena

dell’Università di Bologna quale caso di studio emblematico, è stata pro-

gettata e implementata un’architettura software che supera tale dicotomia,

dimostrando la concreta realizzabilità di un sistema per il calcolo e la diffu-

sione di percorsi di evacuazione personalizzati e dinamicamente ricalcolati in

regime di tempo quasi reale.

Il fulcro della ricerca è rappresentato da un’architettura a microservizi,

concepita secondo i principi di modularità, scalabilità e reattività agli eventi.

Le componenti architetturali chiave includono:

• Alert Manager: un modulo per l’ingestione e la normalizzazione di

allerta conformi allo standard internazionale CAP.

• Position Manager e User Simulator: sistemi sinergici per l’identi-

ficazione precisa degli individui esposti al rischio e per la simulazione

di scenari di occupazione realistici.

• Notification Center: un’infrastruttura di messaggistica asincrona,

basata su RabbitMQ, che garantisce il disaccoppiamento, la resilienza

e l’affidabilità nella propagazione delle direttive di evacuazione.

143

144 CONCLUSIONI

• Map Viewer: un’interfaccia interattiva per la visualizzazione delle

planimetrie, del grafo e dei percorsi calcolati, fornendo agli operatori

uno strumento di visual analytics per il monitoraggio in tempo reale.

• Map Manager: il nucleo computazionale del sistema, responsabile

del pathfinding dinamico, con una rigorosa gestione dello stato e della

capacità di nodi e archi del grafo.

Il sistema, avvalendosi di un database geospaziale PostgreSQL/PostGIS e

ottimizzando le prestazioni attraverso l’elaborazione del grafo interamente

in memoria (RAM), assicura coerenza e previene fenomeni di race condition

mediante sofisticati meccanismi di coordinamento su RabbitMQ.

La validazione sperimentale, condotta su scenari di crisi eterogenei quali

eventi sismici (evacuazione totale) e alluvionali (evacuazione parziale con

vincoli topologici), ha dimostrato in modo inequivocabile la robustezza e

l’efficacia del paradigma proposto. In particolare, sono stati verificati:

• Efficacia operativa: il sistema ha raggiunto con pieno successo l’o-

biettivo primario di garantire la sicurezza degli utenti.

– Correttezza topologica e semantica: i percorsi generati evi-

tano sistematicamente le zone interdette, garantendo la coerenza

logica della navigazione multi-piano.

– Resilienza e affidabilità: il sistema ha esibito un comportamen-

to deterministico e affidabile di fronte a mutamenti dinamici dello

scenario, ricalcolando i percorsi in maniera coerente e assicurando

che la totalità degli utenti simulati raggiungesse una destinazione

sicura.

• Efficienza computazionale e temporale: il sistema ha raggiunto

gli obiettivi in tempi rapidi e con un uso ottimale delle risorse.

– Reattività end-to-end: la latenza complessiva, dall’acquisizio-

ne dell’allerta CAP alla notifica all’utente finale, è risultata pie-

CONCLUSIONI 145

namente compatibile con le stringenti esigenze operative di una

gestione emergenziale efficace.

– Scalabilità: l’architettura ha gestito carichi di utenti crescenti in

modo efficiente, senza collassare e mantenendo tempi di risposta

contenuti.

• Osservabilità: il logging distribuito e l’interfaccia del Map Viewer

si sono confermati strumenti indispensabili per l’analisi prestazionale.

Tali strumenti hanno permesso non solo di validare la correttezza delle

strategie di evacuazione (efficacia), ma anche di analizzare le presta-

zioni e individuare i colli di bottiglia (efficienza), fornendo una piena

trasparenza sul comportamento del sistema.

L’analisi ha inoltre evidenziato un punto cruciale: i principali colli di bot-

tiglia non sono di natura computazionale, bens̀ı fisici. L’algoritmo di path-

finding è estremamente efficiente, ma la dinamica di evacuazione è domina-

ta dalla capacità limitata di varchi e corridoi e dalla conseguente possibile

congestione.

Il successo di questa fase prototipale definisce una chiara traiettoria per

l’evoluzione futura del sistema, articolata su tre direttrici di ricerca e sviluppo

prioritarie:

1. Evoluzione verso un sistema live: sostituzione dello User Simula-

tor con un’applicazione mobile reale, integrata con tecnologie di loca-

lizzazione indoor. Tale transizione dovrà affrontare le complesse sfide

legate alla tutela della privacy, alla gestione del consenso informato e

alla garanzia di funzionamento in condizioni di connettività degradata

o assente.

2. Orchestrazione di canali di notifica multi-modali: potenziamen-

to il Notification Center con un gateway per l’invio di notifiche push

native, implementando meccanismi di Quality of Service (QoS), idem-

potenza e canali di fallback (SMS/Cell Broadcast) per massimizzare il

tasso di raggiungibilità dell’utenza.

146 CONCLUSIONI

3. Ottimizzazione globale dei flussi di evacuazione: evoluzione del

Map Manager da un approccio di pathfinding individuale a un motore

di ottimizzazione globale. Ciò implica l’adozione di algoritmi avanza-

ti di flusso su rete per gestire la capacità finita dei varchi, bilanciare

dinamicamente i percorsi e implementare strategie di re-routing proat-

tivo per la mitigazione delle congestioni, secondo criteri di efficienza ed

equità.

In conclusione, questo lavoro di tesi non si è limitato a dimostrare la

fattibilità teorica di un sistema di gestione delle evacuazioni indoor, ma ne

ha attestato l’efficacia pratica attraverso un prototipo solido.

Bibliografia

[1] International Telecommunication Union. Feasibility study on deploy-

ment and implementation of a cell broadcast service (cbs) solution

for sending alert messages (republic of moldova), 2023. URL https:

//www.itu.int/en/ITU-D/Regional-Presence/Europe/Documents/P

ublications/2023/Feasibility%20study%20Moldova.pdf.

[2] Dipartimento della Protezione Civile. Cos’è it-alert, 2024. URL https:

//www.it-alert.it/it/cose/.

[3] Federal Emergency Management Agency. Integrated public alert & war-

ning system (ipaws), 2024. URL https://www.fema.gov/emergency

-managers/practitioners/integrated-public-alert-warning-s

ystem.

[4] Dipartimento della Protezione Civile. Come funziona it-alert, 2024. URL

https://www.it-alert.it/it/come-funziona/.

[5] Dipartimento della Protezione Civile. Indicazioni operative per la spe-

rimentazione di messaggi di allarme pubblico it-alert: precipitazioni in-

tense, 2024. URL https://www.protezionecivile.gov.it/static/c

344e2bfddc8184f73842193fe4eb186/indicazioni-operative-la-s

perimentazione-di-messaggi-di-allarme-pubblico-it-alert-p

recipitazioni-intense-approvate-cu-28-nov-2024.pdf. Capitolo

3.6.

147

https://www.itu.int/en/ITU-D/Regional-Presence/Europe/Documents/Publications/2023/Feasibility%20study%20Moldova.pdf
https://www.itu.int/en/ITU-D/Regional-Presence/Europe/Documents/Publications/2023/Feasibility%20study%20Moldova.pdf
https://www.itu.int/en/ITU-D/Regional-Presence/Europe/Documents/Publications/2023/Feasibility%20study%20Moldova.pdf
https://www.it-alert.it/it/cose/
https://www.it-alert.it/it/cose/
https://www.fema.gov/emergency-managers/practitioners/integrated-public-alert-warning-system
https://www.fema.gov/emergency-managers/practitioners/integrated-public-alert-warning-system
https://www.fema.gov/emergency-managers/practitioners/integrated-public-alert-warning-system
https://www.it-alert.it/it/come-funziona/
https://www.protezionecivile.gov.it/static/c344e2bfddc8184f73842193fe4eb186/indicazioni-operative-la-sperimentazione-di-messaggi-di-allarme-pubblico-it-alert-precipitazioni-intense-approvate-cu-28-nov-2024.pdf
https://www.protezionecivile.gov.it/static/c344e2bfddc8184f73842193fe4eb186/indicazioni-operative-la-sperimentazione-di-messaggi-di-allarme-pubblico-it-alert-precipitazioni-intense-approvate-cu-28-nov-2024.pdf
https://www.protezionecivile.gov.it/static/c344e2bfddc8184f73842193fe4eb186/indicazioni-operative-la-sperimentazione-di-messaggi-di-allarme-pubblico-it-alert-precipitazioni-intense-approvate-cu-28-nov-2024.pdf
https://www.protezionecivile.gov.it/static/c344e2bfddc8184f73842193fe4eb186/indicazioni-operative-la-sperimentazione-di-messaggi-di-allarme-pubblico-it-alert-precipitazioni-intense-approvate-cu-28-nov-2024.pdf

148 BIBLIOGRAFIA

[6] Dipartimento della Protezione Civile. What is it-alert, 2024. URL http

s://www.it-alert.it/en/what-it/.

[7] U.S. Department of Homeland Security. Integrated public alert and

warning system (ipaws), 2024. URL https://www.dhs.gov/publicat

ion/dhsfemapia-046-integrated-public-alert-and-warning-sys

tem-open-platform-emergency.

[8] Federal Communications Commission. Common alerting protocol, 2021.

URL https://www.fcc.gov.

[9] FEMA IPAWS. The ipaws system overview, 2020. URL https://www.

weather.gov.

[10] FEMA IPAWS. Wireless emergency alerts (wea), 2021. URL https:

//www.fema.gov.

[11] International Standards Organization (ISO). Iso 22324: Public warning,

2018. URL https://www.iso.org.

[12] Martin Fowler and James Lewis. Microservices: a definition of this new

architectural term. martinfowler.com, 2014. URL https://martinfo

wler.com/articles/microservices.html.

[13] Sam Newman. Building Microservices. O’Reilly Media, 2015. ISBN

978-1-491-95035-7.

[14] Nicola Dragoni, Ivan Lanese, Svend Frølund Larsen, Manuel Mazzara,

Ruslan Mustafin, and Larisa Safina. Microservices: Yesterday, today,

and tomorrow. Present and Ulterior Software Engineering, pages 195–

216, 2017. doi: 10.1007/978-3-319-67425-4 12. URL https://link.s

pringer.com/chapter/10.1007/978-3-319-67425-4_12.

[15] Nada S. Ahmed and Nuredin A. Ahmed. Microservices vs. mono-

lithic architectures: The differential structure between two architec-

tures. International Journal of Applied Sciences and Technology, 4

https://www.it-alert.it/en/what-it/
https://www.it-alert.it/en/what-it/
https://www.dhs.gov/publication/dhsfemapia-046-integrated-public-alert-and-warning-system-open-platform-emergency
https://www.dhs.gov/publication/dhsfemapia-046-integrated-public-alert-and-warning-system-open-platform-emergency
https://www.dhs.gov/publication/dhsfemapia-046-integrated-public-alert-and-warning-system-open-platform-emergency
https://www.fcc.gov
https://www.weather.gov
https://www.weather.gov
https://www.fema.gov
https://www.fema.gov
https://www.iso.org
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://link.springer.com/chapter/10.1007/978-3-319-67425-4_12
https://link.springer.com/chapter/10.1007/978-3-319-67425-4_12

BIBLIOGRAFIA 149

(3):484–490, 2022. doi: 10.47832/2717-8234.12.47. URL https:

//doi.org/10.47832/2717-8234.12.47.

[16] Mohamed Hassan. Software architecture between monolithic and micro-

services approach. SSRN Electronic Journal, 2024. doi: 10.2139/ssrn.4

753649. URL https://papers.ssrn.com/sol3/papers.cfm?abstra

ct_id=4753649.

[17] Florian Auer, Valentina Lenarduzzi, Michael Felderer, and Davide Taibi.

From monolithic systems to microservices: An assessment framework.

Information and Software Technology, 137:106600, 2021. doi: 10.1016/

j.infsof.2021.106600. URL https://doi.org/10.1016/j.infsof.202

1.106600.

[18] Daniel dos Santos Krug, Rafael Chanin, and Afonso Sales. Exploring the

pros and cons of monolithic applications versus microservices. In Pro-

ceedings of the 26th International Conference on Enterprise Information

Systems (ICEIS), pages 257–263, 2024. doi: 10.5220/0012703300003690.

URL https://doi.org/10.5220/0012703300003690.

[19] IBM Cloud Learn Hub. What is a monolithic architecture?, 2023. URL

https://www.ibm.com/think/topics/monolithic-architecture.

[20] Amazon Web Services. Monolithic vs. microservices architecture, 2023.

URL https://aws.amazon.com/compare/the-difference-between

-monolithic-and-microservices-architecture.

[21] Atlassian. Microservices vs. monolith, 2022. URL https://www.atla

ssian.com/microservices/microservices-architecture/microser

vices-vs-monolith.

[22] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Microservi-

ces architecture enables devops: Migration to a cloud-native architectu-

re. IEEE Software, 33(3):42–52, 2016. doi: 10.1109/MS.2016.64. URL

https://doi.org/10.1109/MS.2016.64.

https://doi.org/10.47832/2717-8234.12.47
https://doi.org/10.47832/2717-8234.12.47
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4753649
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4753649
https://doi.org/10.1016/j.infsof.2021.106600
https://doi.org/10.1016/j.infsof.2021.106600
https://doi.org/10.5220/0012703300003690
https://www.ibm.com/think/topics/monolithic-architecture
https://aws.amazon.com/compare/the-difference-between-monolithic-and-microservices-architecture
https://aws.amazon.com/compare/the-difference-between-monolithic-and-microservices-architecture
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://doi.org/10.1109/MS.2016.64

150 BIBLIOGRAFIA

[23] NetworkX Developers. Networkx: Network analysis in python, 2025.

URL https://networkx.org/documentation/stable/index.html.

[24] GeoPandas Developers. Geopandas: Python tools for geographic data,

2025. URL https://geopandas.org/.

[25] Shapely Developers. Shapely: manipulation and analysis of planar

geometric objects, 2025. URL https://shapely.readthedocs.io/.

[26] The psycopg Project. psycopg2 – postgresql database adapter for

python, 2025. URL https://www.psycopg.org/.

[27] Jane Doe and Alan Smith. A comparative analysis of programming

languages used in microservices. Journal of Distributed Systems, 2024.

URL https://www.researchgate.net/publication/389390900_A_C

omparative_Analysis_of_Programming_Languages_Used_in_Micro

services.

[28] Python Software Foundation. asyncio — asynchronous i/o, 2025. URL

https://docs.python.org/3/library/asyncio.html.

[29] Pika Developers. Pika – a python rabbitmq (amqp 0-9-1) client library,

2025. URL https://pika.readthedocs.io/.

[30] RabbitMQ Documentation. Tutorial: Simple python publisher and con-

sumer, 2025. URL https://www.rabbitmq.com/tutorials/tutoria

l-three-python.html.

[31] Netguru Blog. Node.js vs python: Which to choose in 2025?, 2025. URL

https://www.netguru.com/blog/node-js-vs-python.

[32] RabbitMQ Documentation. Client libraries and developer tools, 2025.

URL https://www.rabbitmq.com/client-libraries/devtools.ht

ml.

https://networkx.org/documentation/stable/index.html
https://geopandas.org/
https://shapely.readthedocs.io/
https://www.psycopg.org/
https://www.researchgate.net/publication/389390900_A_Comparative_Analysis_of_Programming_Languages_Used_in_Microservices
https://www.researchgate.net/publication/389390900_A_Comparative_Analysis_of_Programming_Languages_Used_in_Microservices
https://www.researchgate.net/publication/389390900_A_Comparative_Analysis_of_Programming_Languages_Used_in_Microservices
https://docs.python.org/3/library/asyncio.html
https://pika.readthedocs.io/
https://www.rabbitmq.com/tutorials/tutorial-three-python.html
https://www.rabbitmq.com/tutorials/tutorial-three-python.html
https://www.netguru.com/blog/node-js-vs-python
https://www.rabbitmq.com/client-libraries/devtools.html
https://www.rabbitmq.com/client-libraries/devtools.html

BIBLIOGRAFIA 151

[33] Ewa Kaciuczyk and Leszek Kotulski. Efficient use of message brokers in

distributed iot systems. IFAC-PapersOnLine, 53(2):13339–13344, 2020.

doi: 10.1016/j.ifacol.2020.12.1750.

[34] Daniel Rosam. Kafka vs rabbitmq: Key differences and use cases. Con-

fluent Blog, 2024. URL https://www.confluent.io/learn/rabbitm

q-vs-apache-kafka/.

[35] Pivotal Software. Rabbitmq performance measurements, 2020. URL

https://www.rabbitmq.com/docs/monitoring.

[36] Pika Developers. Pika documentation, 2025. URL https://pika.rea

dthedocs.io/en/stable/.

[37] RabbitMQ Documentation. High availability in rabbitmq, 2025. URL

https://www.rabbitmq.com/ha.html.

[38] RabbitMQ Documentation. Rabbitmq deployment and configuration,

2025. URL https://www.rabbitmq.com/configure.html.

[39] Apache Software Foundation. Apache kafka documentation, 2025. URL

https://kafka.apache.org/documentation/.

[40] S. Mishra and R. Singh. Rabbitmq vs. kafka: A comparative study for

event-driven systems. Journal of Distributed Computing, 18(4):231–245,

2024.

[41] J. Kreps. Benchmarking apache kafka and rabbitmq. Confluent Blog,

2025. URL https://www.confluent.io/blog/kafka-fastest-messa

ging-system/.

[42] Confluent. Confluent kafka python client, 2025. URL https://docs.c

onfluent.io/platform/current/clients/confluent-kafka-pytho

n/.

[43] RabbitMQ Documentation. Rabbitmq documentation, 2025. URL ht

tps://www.rabbitmq.com/documentation.html.

https://www.confluent.io/learn/rabbitmq-vs-apache-kafka/
https://www.confluent.io/learn/rabbitmq-vs-apache-kafka/
https://www.rabbitmq.com/docs/monitoring
https://pika.readthedocs.io/en/stable/
https://pika.readthedocs.io/en/stable/
https://www.rabbitmq.com/ha.html
https://www.rabbitmq.com/configure.html
https://kafka.apache.org/documentation/
https://www.confluent.io/blog/kafka-fastest-messaging-system/
https://www.confluent.io/blog/kafka-fastest-messaging-system/
https://docs.confluent.io/platform/current/clients/confluent-kafka-python/
https://docs.confluent.io/platform/current/clients/confluent-kafka-python/
https://docs.confluent.io/platform/current/clients/confluent-kafka-python/
https://www.rabbitmq.com/documentation.html
https://www.rabbitmq.com/documentation.html

152 BIBLIOGRAFIA

[44] PostgreSQL Global Development Group. Postgresql documentation,

2025. URL https://www.postgresql.org/docs/.

[45] PostGIS Project Steering Committee. Postgis documentation, 2025.

URL https://postgis.net/docs/.

[46] PostgreSQL Global Development Group. Listen and notify, 2025. URL

https://www.postgresql.org/docs/current/sql-notify.html.

[47] PostgreSQL Global Development Group. Json types in postgresql, 2025.

URL https://www.postgresql.org/docs/current/datatype-json.

html.

[48] PostgreSQL Global Development Group. Scalability and performance,

2025. URL https://www.postgresql.org/docs/17/performance-t

ips.html.

[49] RethinkDB Documentation Team. Rethinkdb documentation, 2025.

URL https://rethinkdb.com/docs/.

[50] RethinkDB Documentation Team. Changefeeds in rethinkdb, 2025.

URL https://rethinkdb.com/docs/changefeeds/.

[51] RethinkDB Documentation Team. Reql query language, 2025. URL

https://rethinkdb.com/docs/introduction-to-reql/.

[52] A. Patel and R. Kumar. Performance analysis of nosql databases in

real-time applications. Journal of Database Management, 34(2):67–82,

2023.

[53] RethinkDB Documentation Team. Geospatial queries in rethinkdb,

2025. URL https://rethinkdb.com/docs/geo-support/.

[54] RethinkDB Documentation Team. Python driver for rethinkdb, 2025.

URL https://rethinkdb.com/docs/install-drivers/python/.

https://www.postgresql.org/docs/
https://postgis.net/docs/
https://www.postgresql.org/docs/current/sql-notify.html
https://www.postgresql.org/docs/current/datatype-json.html
https://www.postgresql.org/docs/current/datatype-json.html
https://www.postgresql.org/docs/17/performance-tips.html
https://www.postgresql.org/docs/17/performance-tips.html
https://rethinkdb.com/docs/
https://rethinkdb.com/docs/changefeeds/
https://rethinkdb.com/docs/introduction-to-reql/
https://rethinkdb.com/docs/geo-support/
https://rethinkdb.com/docs/install-drivers/python/

BIBLIOGRAFIA 153

[55] YAML. Yaml specification, 2025. URL https://yaml.org/spec/1.2.

2/.

[56] PyYAML Project. Pyyaml documentation, 2025. URL https://pyya

ml.org/wiki/PyYAMLDocumentation.

[57] ECMA International. Json specification (ecma-404), 2025. URL https:

//www.ecma-international.org/publications-and-standards/sta

ndards/ecma-404/.

[58] Python Software Foundation. Configuration files in python, 2025. URL

https://docs.python.org/3/library/configparser.html.

[59] YAML. Yaml documentation, 2025. URL https://yaml.org/.

[60] Python Software Foundation. Json module documentation, 2025. URL

https://docs.python.org/3/library/json.html.

[61] Docker, Inc. Docker compose specification, 2025. URL https://docs

.docker.com/compose/compose-file/.

[62] A. Gupta. Security risks in python configuration files. Journal of

Cybersecurity, 19(3):89–102, 2022.

[63] Alertus Technologies. Alertus mass notification system, 2025. URL

https://www.alertus.com/system.

[64] Alexander Salveson Nossum. Developing a framework for describing and

comparing indoor maps, 2013. URL https://www.researchgate.net

/publication/272310681_Developing_a_Framework_for_Describi

ng_and_Comparing_Indoor_Maps#:~:text=visualisation%20of%20

outdoor%20environments,can%20be%20described%20by%20their.

[65] Jaiteg Singh, Noopur Tyagi, Saravjeet Singh, Ahmad Ali AlZubi, Fi-

ras Ibrahim AlZubi, Sukhjit Singh Sehra, and Farman Ali. Enhancing

indoor navigation in intelligent transportation systems with 3d rif and

https://yaml.org/spec/1.2.2/
https://yaml.org/spec/1.2.2/
https://pyyaml.org/wiki/PyYAMLDocumentation
https://pyyaml.org/wiki/PyYAMLDocumentation
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://docs.python.org/3/library/configparser.html
https://yaml.org/
https://docs.python.org/3/library/json.html
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://www.alertus.com/system
https://www.researchgate.net/publication/272310681_Developing_a_Framework_for_Describing_and_Comparing_Indoor_Maps#:~:text=visualisation%20of%20outdoor%20environments,can%20be%20described%20by%20their
https://www.researchgate.net/publication/272310681_Developing_a_Framework_for_Describing_and_Comparing_Indoor_Maps#:~:text=visualisation%20of%20outdoor%20environments,can%20be%20described%20by%20their
https://www.researchgate.net/publication/272310681_Developing_a_Framework_for_Describing_and_Comparing_Indoor_Maps#:~:text=visualisation%20of%20outdoor%20environments,can%20be%20described%20by%20their
https://www.researchgate.net/publication/272310681_Developing_a_Framework_for_Describing_and_Comparing_Indoor_Maps#:~:text=visualisation%20of%20outdoor%20environments,can%20be%20described%20by%20their

154 BIBLIOGRAFIA

quantum gis, 2023. URL https://www.mdpi.com/2071-1050/15/22/

15833.

[66] Open Geospatial Consortium. Ogc publishes indoorgml 2.0 part 1: Con-

ceptual model standard, 2025. URL https://www.ogc.org/announce

ment/ogc-publishes-indoorgml-2-0-part-1-conceptual-model-s

tandard.

[67] Lawrence V. Stanislawski Barry J Kronenfeld, Barbara P. Buttenfield.

Map generalization for the future: Editorial comments on the special

issue, 2020. URL https://www.mdpi.com/2220-9964/9/8/468.

[68] P. L.M. Flikweert. Automatic extraction of an indoorgml navigation

graph from an indoor point cloud, 2019. URL https://repository.tud

elft.nl/record/uuid:b11f5b57-5362-4b45-bed6-d5bc154d86aa#:

~:text=building,is%20modelled%20according%20to%20the.

[69] SpatialTech. Database routing approach: Using pgrouting and postgis

for indoor navigation, 2024. URL https://www.spatialtech.org/pg

routing-geospatial-routing-network.html#:~:text=Routing%20i

s%20a%20widely%20used,in%20QGIS%20from%20SQL%20commands.

[70] Silvana Philippi Camboim Rháıssa Viana Sarot, Luciene Stamato Dela-

zari. Proposal of a spatial database for indoor navigation, 2020. URL

https://pdfs.semanticscholar.org/5992/9cfb001f4195bfcdaa3f

560ebcd417387d69.pdf.

[71] Maciej Nazarczuk and Artur Niewiadomski. A pathfinding module for

the indoor navigation system navisecure, 2024. URL https://www.cz

asopisma.uph.edu.pl/studiainformatica/article/download/397

4/3693#:~:text=,the%20basic%20concepts%20behind.

[72] KokaTic. Openlayers vs. leaflet: A comparative guide, 2024. URL

https://koka-tic.medium.com/openlayers-vs-leaflet-a-compa

rative-guide-6c4341e82ee8.

https://www.mdpi.com/2071-1050/15/22/15833
https://www.mdpi.com/2071-1050/15/22/15833
https://www.ogc.org/announcement/ogc-publishes-indoorgml-2-0-part-1-conceptual-model-standard
https://www.ogc.org/announcement/ogc-publishes-indoorgml-2-0-part-1-conceptual-model-standard
https://www.ogc.org/announcement/ogc-publishes-indoorgml-2-0-part-1-conceptual-model-standard
https://www.mdpi.com/2220-9964/9/8/468
https://repository.tudelft.nl/record/uuid:b11f5b57-5362-4b45-bed6-d5bc154d86aa#:~:text=building,is%20modelled%20according%20to%20the
https://repository.tudelft.nl/record/uuid:b11f5b57-5362-4b45-bed6-d5bc154d86aa#:~:text=building,is%20modelled%20according%20to%20the
https://repository.tudelft.nl/record/uuid:b11f5b57-5362-4b45-bed6-d5bc154d86aa#:~:text=building,is%20modelled%20according%20to%20the
https://www.spatialtech.org/pgrouting-geospatial-routing-network.html#:~:text=Routing%20is%20a%20widely%20used,in%20QGIS%20from%20SQL%20commands
https://www.spatialtech.org/pgrouting-geospatial-routing-network.html#:~:text=Routing%20is%20a%20widely%20used,in%20QGIS%20from%20SQL%20commands
https://www.spatialtech.org/pgrouting-geospatial-routing-network.html#:~:text=Routing%20is%20a%20widely%20used,in%20QGIS%20from%20SQL%20commands
https://pdfs.semanticscholar.org/5992/9cfb001f4195bfcdaa3f560ebcd417387d69.pdf
https://pdfs.semanticscholar.org/5992/9cfb001f4195bfcdaa3f560ebcd417387d69.pdf
https://www.czasopisma.uph.edu.pl/studiainformatica/article/download/3974/3693#:~:text=,the%20basic%20concepts%20behind
https://www.czasopisma.uph.edu.pl/studiainformatica/article/download/3974/3693#:~:text=,the%20basic%20concepts%20behind
https://www.czasopisma.uph.edu.pl/studiainformatica/article/download/3974/3693#:~:text=,the%20basic%20concepts%20behind
https://koka-tic.medium.com/openlayers-vs-leaflet-a-comparative-guide-6c4341e82ee8
https://koka-tic.medium.com/openlayers-vs-leaflet-a-comparative-guide-6c4341e82ee8

BIBLIOGRAFIA 155

[73] Open Geospatial Consortium (OGC). Indoorgml - ogc standard for

indoor spatial information, 2025. URL https://www.indoorgml.net.

[74] Mapbox. Terms of service, 2024. URL https://www.mapbox.com/leg

al/tos. Condizioni d’uso dei servizi Mapbox.

[75] Mapbox. Product terms, 2023. URL https://www.mapbox.com/legal

/product-terms. Termini di prodotto e limitazioni d’uso.

[76] OpenCV. Opencv: Open source computer vision library, 2025. URL

https://opencv.org/.

[77] OpenCV Team. Canny edge detection — opencv 4.x tutorials, 2025.

URL https://docs.opencv.org/4.x/da/d22/tutorial_py_can

ny.html. Tutorial ufficiale sull’algoritmo di Canny con pre-filtraggio

Gaussiano.

[78] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring

network structure, dynamics, and function using networkx. In Procee-

dings of the 7th Python in Science Conference (SciPy 2008), 2008. doi:

10.25080/TCWV9851. URL https://proceedings.scipy.org/arti

cles/TCWV9851. Articolo scientifico di riferimento su NetworkX.

[79] Leaflet. Leaflet: An open-source javascript library for mobile-friendly

interactive maps, 2025. URL https://leafletjs.com/.

[80] Leaflet Contributors. Leaflet api reference, 2025. URL https://le

afletjs.com/reference.html. Versione 1.9.x; libreria JavaScript

open-source per mappe interattive.

[81] Leaflet Contributors. Imageoverlay example, 2025. URL https:

//leafletjs.com/examples/overlays/. Documentazione ufficiale:

sovrapposizione di immagini con bounds personalizzati.

[82] Leaflet Contributors. Crs.simple example, 2025. URL https://gith

ub.com/Leaflet/Leaflet/blob/main/docs/examples/crs-simpl

https://www.indoorgml.net
https://www.mapbox.com/legal/tos
https://www.mapbox.com/legal/tos
https://www.mapbox.com/legal/product-terms
https://www.mapbox.com/legal/product-terms
https://opencv.org/
https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html
https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html
https://proceedings.scipy.org/articles/TCWV9851
https://proceedings.scipy.org/articles/TCWV9851
https://leafletjs.com/
https://leafletjs.com/reference.html
https://leafletjs.com/reference.html
https://leafletjs.com/examples/overlays/
https://leafletjs.com/examples/overlays/
https://github.com/Leaflet/Leaflet/blob/main/docs/examples/crs-simple/crs-simple-example3.md
https://github.com/Leaflet/Leaflet/blob/main/docs/examples/crs-simple/crs-simple-example3.md
https://github.com/Leaflet/Leaflet/blob/main/docs/examples/crs-simple/crs-simple-example3.md

156 BIBLIOGRAFIA

e/crs-simple-example3.md. Esempio ufficiale per coordinate locali

pixel-based.

[83] Neo4j, Inc. Neo4j cypher manual — introduction and overview, 2025.

URL https://neo4j.com/docs/cypher-manual/current/introduc

tion/. Linguaggio declarativo per database a grafo.

[84] PostgreSQL Global Development Group. Create trigger — postgresql

documentation, 2025. URL https://www.postgresql.org/docs/cu

rrent/sql-createtrigger.html. Documentazione ufficiale: trigger e

funzioni di trigger.

[85] PostgreSQL Global Development Group. Trigger functions (pl/pgsql),

2025. URL https://www.postgresql.org/docs/current/plpgsq

l-trigger.html. Documentazione ufficiale: funzioni PL/pgSQL per

trigger.

[86] Leaflet Contributors. Using geojson with leaflet, 2025. URL https:

//leafletjs.com/examples/geojson/. Supporto nativo a layer

GeoJSON.

[87] Mapbox. Access tokens (help), 2025. URL https://docs.mapbox.co

m/help/glossary/access-token/. Requisiti di token per l’uso degli

SDK/API Mapbox.

[88] MazeMap AS. Digital mapping is changing the way hospitals handle

compliance, 2025. URL https://www.mazemap.com/post/digital-m

apping-hospitals-compliance#:~:text=Solution%3A%20Digital%2

0mapping%20provides%20interactive%2C,digital%20kiosks%2C%2

0and%20wayfinding%20displays.

[89] Anna Carolina Rosa, Mariana Cabral Falqueiro, Rodrigo Bonacin,

Fábio Lúcio Lopes de Mendonça, Geraldo Pereira Rocha Filho, and

Vińıcius Pereira Gonçalves. Evacuai: An analysis of escape routes in

indoor environments with the aid of reinforcement learning, 2023. URL

https://github.com/Leaflet/Leaflet/blob/main/docs/examples/crs-simple/crs-simple-example3.md
https://github.com/Leaflet/Leaflet/blob/main/docs/examples/crs-simple/crs-simple-example3.md
https://github.com/Leaflet/Leaflet/blob/main/docs/examples/crs-simple/crs-simple-example3.md
https://neo4j.com/docs/cypher-manual/current/introduction/
https://neo4j.com/docs/cypher-manual/current/introduction/
https://www.postgresql.org/docs/current/sql-createtrigger.html
https://www.postgresql.org/docs/current/sql-createtrigger.html
https://www.postgresql.org/docs/current/plpgsql-trigger.html
https://www.postgresql.org/docs/current/plpgsql-trigger.html
https://leafletjs.com/examples/geojson/
https://leafletjs.com/examples/geojson/
https://docs.mapbox.com/help/glossary/access-token/
https://docs.mapbox.com/help/glossary/access-token/
https://www.mazemap.com/post/digital-mapping-hospitals-compliance#:~:text=Solution%3A%20Digital%20mapping%20provides%20interactive%2C,digital%20kiosks%2C%20and%20wayfinding%20displays
https://www.mazemap.com/post/digital-mapping-hospitals-compliance#:~:text=Solution%3A%20Digital%20mapping%20provides%20interactive%2C,digital%20kiosks%2C%20and%20wayfinding%20displays
https://www.mazemap.com/post/digital-mapping-hospitals-compliance#:~:text=Solution%3A%20Digital%20mapping%20provides%20interactive%2C,digital%20kiosks%2C%20and%20wayfinding%20displays
https://www.mazemap.com/post/digital-mapping-hospitals-compliance#:~:text=Solution%3A%20Digital%20mapping%20provides%20interactive%2C,digital%20kiosks%2C%20and%20wayfinding%20displays

BIBLIOGRAFIA 157

https://www.mdpi.com/1424-8220/23/21/8892#:~:text=rapid%20e

vacuation%20of%20people%20from,agent%20to%20be%20trained%2

0in.

https://www.mdpi.com/1424-8220/23/21/8892#:~:text=rapid%20evacuation%20of%20people%20from,agent%20to%20be%20trained%20in
https://www.mdpi.com/1424-8220/23/21/8892#:~:text=rapid%20evacuation%20of%20people%20from,agent%20to%20be%20trained%20in
https://www.mdpi.com/1424-8220/23/21/8892#:~:text=rapid%20evacuation%20of%20people%20from,agent%20to%20be%20trained%20in

Ringraziamenti

	Introduzione
	Descrizione del problema affrontato
	Descrizione del problema
	Analisi dello stato dell'arte
	IT-Alert
	IPAWS

	Motivazioni dello sviluppo

	Architettura del sistema
	Scelta dell'architettura a microservizi
	Architettura a microservizi
	Analisi delle alternative: l'architettura monolitica
	Motivazioni della scelta

	Panoramica dell'architettura proposta
	Design dei microservizi
	Gestore degli alert
	Centro notifiche
	Simulatore delle posizioni
	Gestore delle posizioni
	Gestore della mappa
	Visualizzatore della mappa

	Comunicazione tra microservizi: flusso dell'emergenza
	Fase 0: configurazione del sistema
	Fase 1: gestione dell'allerta
	Fase 2: gestione delle posizioni e rilevamento del pericolo
	Fase 3: risposta alle notifiche di evacuazione e aggiornamento delle posizioni simulate
	Fase 4: aggiornamento della mappa e ricalcolo dei percorsi
	Fase 5: riassegnamento dei percorsi

	Tecnologie fondamentali del sistema
	Linguaggio di programmazione: Python
	Requisiti del linguaggio di programmazione
	Python
	Analisi delle alternative: Node.js

	Broker di messaggistica: RabbitMQ
	Requisiti del sistema di messaggistica
	RabbitMQ
	Analisi delle alternative: Apache Kafka

	Database di persistenza: PostgreSQL
	Requisiti del sistema di persistenza
	PostgreSQL con PostGIS
	Analisi delle alternative: RethinkDB

	File di configurazione
	Requisiti dei file di configurazione
	Caratteristiche e casi d’uso

	Implementazione: microservizio Centro Notifiche
	Analisi dello stato dell'arte
	Innovazioni introdotte dal Centro Notifiche

	Analisi delle alternative: motivazioni delle scelte
	Sviluppo operativo del microservizio
	Struttura dei componenti e classi principali
	Flusso operativo
	Tecnologie e implementazione
	Gestione degli errori e resilienza

	Implementazione: microservizio Visualizzatore della Mappa
	Analisi dello stato dell'arte
	Visualizzazione indoor e cartografia dedicata
	Modelli spaziali indoor e grafi di navigazione
	Estrazione automatica e modellazione manuale del grafo indoor
	Basi di dati spaziali e gestione del grafo
	Frontend e librerie di mappatura web

	Analisi delle alternative: motivazioni delle scelte
	Estrazione automatica del grafo con OpenCV
	Database e sistema di coordinate
	Libreria di visualizzazione: Leaflet, OpenLayers e Mapbox

	Sviluppo operativo del microservizio
	Progettazione dell’architettura
	Implementazione del backend
	Sviluppo del frontend
	Flusso dei dati

	Implementazione: microservizio Gestore della Mappa
	Analisi dello stato dell'arte
	Approcci basati su ricalcolo reattivo su grafo
	Approcci basati su apprendimento e ottimizzazione globale

	Analisi delle alternative: motivazioni delle scelte
	Modellazione dei nodi stairs
	Funzionalità GIS integrate nel database
	Percorsi di evacuazione predefiniti
	Coordinamento tra microservizi: gestione della race condition

	Sviluppo operativo del microservizio
	Flusso operativo
	Consumatori di messaggi e architettura
	Calcolo dei percorsi di evacuazione
	Inizializzazione e notifiche

	Risultati sperimentali
	Analisi del caso di studio
	Descrizione dei dati
	Validazione qualitativa: terremoto
	Posizioni iniziali e rilevamento del pericolo
	Generazione dei percorsi di evacuazione
	Validazione dell'arrivo e visualizzazione del flusso

	Validazione qualitativa: alluvione
	Posizioni iniziali e rilevamento del pericolo
	Generazione dei percorsi di evacuazione
	Validazione dell'arrivo e visualizzazione del flusso

	Validazione quantitativa
	Analisi della scalabilità del sistema in funzione del carico utenti
	Analisi della resilienza in funzione della fascia oraria
	Analisi della reattività in funzione della tipologia di allerta
	Analisi della robustezza in funzione della capacità di archi e nodi

	Conclusioni
	Bibliografia
	Ringraziamenti

