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Introduzione

In applicazioni moderne come i videogiochi, le simulazioni virtuali o strumenti di
visualizzazione interattiva, & importante gestire efficacemente i dati relativi a cio che
viene mostrato. Le scene tridimensionali possono contenere un elevato numero di
oggetti, ciascun composto da molti punti da elaborare in tempo reale, e per questo
é necessario definire delle tecniche capaci di garantire un livello di qualita visiva
soddisfacente senza compromettere le prestazioni dell’applicazione. In particolare,
considerando che queste applicazioni sono ormai disponibili anche su calcolatori
con potenza limitata, diventa utile adottare strategie di progettazione e sviluppo
che permettano comunque di ottenere una buona qualita, ottimizzando il carico di
lavoro a cui viene sottoposto I’hardware.

Proprio in questo contesto si colloca 1'obiettivo principale di questa tesi, ovvero lo
sviluppo di un sistema avanzato di visualizzazione di dettagli grafici dinamici (Le-
vel of Detail dinamico, LOD) nel rendering 3D in tempo reale. Il sistema sfrutta
le potenzialita offerte dai Tessellation Shaders e dal Geometry Shader (componenti
programmabili che consentono ’esecuzione di algoritmi personalizzati sulle moder-
ne GPU), con l'intento di raggiungere un equilibrio ottimale tra qualita visiva e
prestazioni.

Accanto a questo nucleo centrale, un secondo obiettivo é I’analisi approfondita degli
aspetti tecnici dei due stadi della pipeline grafica appena menzionati. La tesi mira
infatti a comprenderne a fondo la struttura, il funzionamento, le variabili built-in e
le possibilita applicative, cosi da valutarne limiti e punti di forza in scenari real-time.

Per approfondire lo studio del LOD dinamico, in questa tesi € stata realizzata un’ap-
plicazione software in C/C++, basata sulle librerie di OpenGL 4.6 e sul linguaggio
GLSL per la programmazione degli shader. Questo sistema genera dinamicamente
diversi livelli di dettaglio (LOD) partendo da una geometria base, sfruttando tecni-
che avanzate come i Tessellation Shaders e il Geometry Shader. In particolare,
I’applicazione, a partire da una geometria semplice, elabora automaticamente ver-
sioni progressivamente pitt complesse in funzione della posizione della telecamera,
ottimizzando cosi il rendering in tempo reale e raggiungendo un elevato compro-
messo tra qualita grafica e performance computazionali. La presenza di un modello
animato con rig permette inoltre di valutare l'integrazione di personaggi interattivi
all’interno di scenari complessi, mentre la generazione di scene diversificate, compo-
ste sia da paesaggi naturali che da ambienti urbani, offre un valido terreno di test
per l'applicazione e verifica delle tecniche proposte. Un ulteriore punto di interesse
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riguarda la generazione procedurale dei dettagli (ad esempio vegetazione e ogget-
ti di scena), che arricchiscono visivamente I’ambiente senza incidere negativamente
sull’efficienza e sulla fluidita del rendering.

Le soluzioni implementate vengono inoltre analizzate sia dal punto di vista delle
prestazioni sia da quello della qualita visiva percepita, considerando differenti pro-
spettive (telecamera e punto di vista del giocatore) al fine di evidenziare I'impatto
reale delle tecniche di LOD sulla resa complessiva della scena.

La tesi risulta cosi organizzata:

Capitolo 1: descrizione della pipeline di rendering, intesa come la sequenza
di operazioni eseguite dalla CPU e dalla GPU necessarie per passare dalle
geometrie degli oggetti alla loro visualizzazione su schermo.

Capitolo 2 e 3: analisi dei Tessellation Shaders e Geometry Shader, ap-
profondendone la struttura, il funzionamento e le possibilita applicative, con
I’obiettivo di comprendere il ruolo dei due stadi nella realizzazione del LOD
dinamico.

Capitolo 4: richiamo di alcuni concetti di analisi e algebra, in modo da
predisporre una base concettuale per i capitoli successivi.

Capitolo 5: descrizione dell’applicazione software realizzata, evidenziando le
principali sfide incontrate e le soluzioni adottate.

Capitolo 6: presentazione dei risultati ottenuti e confronto con tecniche
alternative, per valutare in maniera chiara ’efficacia del sistema implementato.



Capitolo 1

Classic Rendering Graphic Pipeline

In generale una pipeline € una sequenza di unita di elaborazione dati, organizzate
in maniera simile ad una catena di montaggio, dove 'output di ogni unita diventa
I'input di quella successiva. Nella Pipeline Grafica, anche chiamata Pipeline di Ren-
dering, queste unita hanno il compito di processare una scena costituita da oggetti,
sorgenti luminose e una telecamera virtuale, convertendo il tutto in un’immagine
bidimensionale finale, visualizzabile sullo schermo.

Il compito principale di una Pipeline di Rendering classica é quindi di trasformare
una scena tridimensionale in una rappresentazione 2D, tenendo conto della geometria
degli oggetti, della posizione e orientamento della telecamera, delle fonti luminose (e
delle loro proprieta), delle caratteristiche dei materiali che compongono gli oggetti,
delle texture e delle equazioni di shading che definiscono l'illuminazione e ’aspetto
finale delle superfici [1].

1.1 Struttura generale

Una pipeline consiste in una sequenza ordinata di stage (o stadi), ciascuno dei quali
dipende dal risultato dello stage precedente. Sebbene le GPU moderne eseguano
molti stage in parallelo, le prestazioni complessive sono influenzate dallo stage pit
lento e questo determina i cosiddetti colli di bottiglia della pipeline.

Una pipeline di rendering in tempo reale (real-time graphics pipeline) si compone
dei seguenti quattro stadi principali, ognuno dei quali, come si chiarira in seguito,
puo essere ulteriormente suddiviso in sotto-unita di elaborazione:

1. Application Stage
2. Geometry Processing Stage
3. Rasterization Stage

4. Pixel Processing Stage



Figura 1.1: Schema della pipeline di rendering classica.

1.1.1 Application Stage

L’ Application Stage rappresenta la fase iniziale della pipeline grafica ed ¢ gestito
interamente dal software, tipicamente in esecuzione sulla CPU. A differenza degli
stadi successivi, non é strutturato come una sotto-pipeline, ma coincide con il co-
dice dell’applicazione sviluppata dal programmatore. In alcuni casi specifici, parte
delle sue operazioni possono essere demandate alla GPU tramite i Compute Shader,
ma ’approccio tradizionale ¢ quello che prevede 1'utilizzo primario del processore
centrale.

In questa fase il programmatore ha il pieno controllo del flusso, poiché qui risiedono
le logiche fondamentali dell’applicazione. Oltre alla definizione degli oggetti e dei
modelli che compongono la scena (tramite importazione da file esterni o mediante
definizione algoritmica) e l'organizzazione dei loro vertici secondo quanto richiesto
dai successivi stadi della pipeline, tra i compiti pitt comuni di questo stage si trovano:
la gestione degli input (tastiera, mouse, controller o altri dispositivi), la gestione della
logica applicativa e delle interazioni, il controllo degli eventi, il calcolo di collision
detection e altre operazioni legate alla fisica della scena, la definizione di animazioni
e trasformazioni globali degli oggetti. Inoltre, rientrano in questa fase tecniche di
culling (per determinare gli oggetti non visibili che quindi possono essere scartati) e
la gestione delle istanze (per ottimizzare il rendering di oggetti ripetuti nella scena).

L’output dell’Application Stage consiste in insiemi di vertici organizzati in modo da
essere interpretati come primitive geometriche (punti, linee, triangoli o patch (vedi
sezione ) dagli stadi successivi della pipeline. Queste primitive costituiscono
la base su cui si innestera l'intero processo di elaborazione grafica che portera al
risultato finale visibile sullo schermo.
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1.1.2 Geometry Processing Stage

Il Geometry Processing Stage rappresenta il cuore di una pipeline grafica classica,
in quanto gestisce la trasformazione e la preparazione della geometria della scena
per il successivo processo di rasterizzazione, convertendo le primitive in framment:
pronti per la visualizzazione sullo schermo. Questo insieme di operazioni viene
eseguito principalmente sulla GPU, che mette a disposizione sia unita hardware
programmabili (Shader Units), sia unita non programmabili (fized-function), le quali
forniscono funzionalita standardizzate per alcune operazioni fondamentali. Lo scopo
principale di questo stadio ¢ quello di ricevere in ingresso un insieme di primitive
grafiche (punti, linee, triangoli) provenienti dall’Application Stage e restituire in
uscita primitive trasformate e proiettate nello spazio dello schermo, pronte per essere
discretizzate in pixel.

Il Geometry Processing Stage é composto da una serie di sotto-stadi concatenati,
ognuno con dei compiti specifici: Vertex Shading, Clipping ¢ Screen Mapping.
Ciascuno di questi passaggi ¢ fondamentale per portare gli oggetti da una rappre-
sentazione tridimensionale e locale, rispetto al sistema di riferimento del modello, a
una rappresentazione bidimensionale coerente con la vista della telecamera.

1.1.2.1 Vertex Shading

Il Vertex Shading rappresenta il primo vero e proprio stadio programmabile della
pipeline. Qui ogni vertice della geometria viene processato in maniera indipendente
dagli altri e puo essere arricchito di informazioni utili per le fasi successive. Dal
punto di vista architetturale, la GPU esegue molteplici invocazioni del Vertex Shader
in parallelo, ma ciascuna di esse ha visibilita esclusivamente sui propri vertici. Il
Vertex Shader calcola la posizione finale del vertice rendendola utilizzabile dai
successivi stadi della pipeline, e puo inoltre fornire attributi aggiuntivi come normali,
coordinate di texture o colori, utili alle fasi di illuminazione e shading successive.

Per il calcolo della posizione finale del vertice, il Vertex Shader utilizza tre trasfor-
mazioni fondamentali: Model Transformation, View Transformation e Projection
Transformation.

Model Transformation

Le coordinate dei vertici di un modello sono inizialmente espresse nel Model Space
(o Object Space), il sistema di riferimento locale in cui il modello é stato definito
durante la fase di creazione. Questo non tiene conto della posizione e dell’orienta-
mento dell’oggetto all’interno della scena. Per posizionare correttamente l'oggetto
nella scena, le sue coordinate devono essere trasformate nel World Space tramite
la cosiddetta Model Transformation. Questa trasformazione permette di collocare
I'oggetto nello spazio globale e di orientarlo correttamente rispetto agli altri modelli
presenti nella stessa scena.
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View Transformation

Una volta che 'oggetto si trova posizionato nel World Space, entra in gioco la tele-
camera virtuale, poiché solamente cio che é visibile da essa puo essere mostrato a
schermo. La telecamera € definita da una posizione e da una direzione all’interno del
mondo (World Space). Per semplificare le operazioni successive, conviene riformula-
re la scena rispetto al sistema di riferimento della telecamera. Questa trasformazione
viene fatta tramite la View Transformation, che consiste in una traslazione e una
rotazione capaci di portare la telecamera all’origine del sistema di riferimento e di
orientarla in modo che guardi verso la direzione negativa dell’asse z, con 'asse y
positivo verso l'alto e I’asse x positivo verso destra. In questo modo, tutte le coordi-
nate della scena 3D vengono espresse nel cosiddetto View Space (anche chiamato
Camera Space o Eye Space), che ¢ il sistema di riferimento centrato e orientato sulla
telecamera.

Projection Transformation

La Projection Transformation ¢ una trasformazione omogenea (ottenuta tramite
moltiplicazione di una matrice), seguita da una divisione prospettica non lineare, che
inizialmente mappa il solo volume di vista della telecamera (detto View Volume) in
un cubo unitario chiamato Canonical View Volume (CVV), delimitato dai punti
(-1,-1,-1) e (1,1,1). Le stesse operazioni vengono applicate anche ai vertici dei modelli
dell’intera scena, che risultano cosi mappati nello stesso sistema di riferimento del
CVV. Tale normalizzazione ha I'obiettivo di semplificare notevolmente le operazioni
successive, in particolare il clipping e lo screen mapping, che mirano a rendere visibile
su schermo solo la parte di scena che ricade nel View Volume.

L’obiettivo principale della Projection Transformation é quello di uniformare i due
pitt comuni tipi di proiezione utilizzati nelle pipeline grafiche:

e Ortografica: le linee parallele rimangono invariate e la dimensione degli og-
getti non dipende dalla loro distanza dalla telecamera. Questa proprieta la
rende utile in contesti tecnici, come i sistemi CAD o le visualizzazioni inge-
gneristiche, dove ¢ fondamentale preservare le proporzioni reali senza defor-
mazioni prospettiche. In questo caso, il volume di vista assume la forma di un
parallelepipedo.

e Prospettica: riproduce il modo in cui 'occhio umano percepisce lo spazio.
Le linee parallele tendono a convergere verso un punto di fuga e gli oggetti
lontani appaiono piu piccoli rispetto a quelli vicini. In questo caso, il View
Volume assume la forma di un frustum, cioé un tronco di piramide a base
rettangolare.

La Projection Transformation mira a rettificare la forma del View Volume, in modo
da ottenere un risultato omogeneo e indipendente dal tipo di prospettiva utilizzata
per semplificare i calcoli successivi.

All’'inizio della fase di Projection Transformation, al View Volume viene applicata
una matrice di proiezione che la trasforma in un parallelepipedo centrato nell’origine
di un nuovo sistema di riferimento (il Clip Space). La stessa matrice di trasfor-
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mazione viene poi applicata anche a tutte le coordinate degli oggetti della scena,
le cui coordinate trasformate risulteranno riferite al nuovo sistema di riferimento
(Clip Space). Queste nuove coordinate sono tutte espresse in coordinate omogenee,
cioé con quattro componenti (x,y, z,w). La quarta componente (w) rappresenta il
parametro di prospettiva della scena.

Infine, per normalizzare ciascuna componente (z,y, z) nell'intervallo [—1, 1], si ap-
plica il cosiddetto Perspective Divide: ciascuna componente (x,y, z) viene divisa per
w, producendo le Normalized Device Coordinates (NDC). Con queste coordinate ri-
sultano quindi identificati i punti del CVV e i vari vertici della scena. E importante
notare che, nel caso di proiezione ortografica, w rimane costante e pari a 1 per tutti
i vertici; di conseguenza, la divisione non altera le coordinate e non introduce alcuna
scalatura prospettica.

Questa operazione ha due effetti fondamentali:

1. Nel caso di proiezione prospettica, gli oggetti lontani dalla telecamera vengono
scalati, apparendo piu piccoli rispetto a quelli vicini.

2. Le nuove coordinate dei vertici che si trovavano all’interno del View Volume
risultano comprese nell'intervallo [—1, 1] in tutte e tre le dimensioni, mentre
quelle dei vertici esterni cadono fuori da tale intervallo.

In questo modo i vertici sono standardizzati e pronti per le fasi successive della
pipeline: clipping semplificato e mappatura delle NDC sui pixel dello schermo.

1.1.2.2 Clipping

Una volta portate le primitive (gli oggetti della scena) nello spazio di clip ed aver
definito il volume di vista canonico (il CVV), & necessario verificare quali primitive
siano effettivamente visibili. Questo compito viene svolto dal Clipping, che ha il
ruolo di eliminare tutte le primitive che si trovano completamente al di fuori del Ca-
nonical View Volume e di tagliare (clip) quelle che lo attraversano solo parzialmente.
Solo le primitive intere o parzialmente interne vengono quindi trasmesse agli stadi
successivi. Il Clipping risulta fondamentale per garantire che le primitive passate
alla rasterizzazione siano limitate alla regione visibile, evitando sprechi di calcolo e
artefatti grafici.

1.1.2.3 Screen Mapping

Dopo la fase di Clipping, i vertici sopravvissuti si trovano nello spazio delle Normali-
zed Device Coordinates, cioé all’intero del Canonical View Volume. A questo punto,
la pipeline deve trasformare queste coordinate nello spazio dello schermo, cioé¢ nelle
cosiddette Window Coordinates.

Questa trasformazione, chiamata Screen Mapping o Window-Viewport Transfor-
mation, consiste nel riportare il cubo normalizzato all’interno del rettangolo della
viewport, cioé la regione della finestra di rendering destinata alla visualizzazione. La
viewport é definita da una posizione all’interno dello schermo, da una larghezza e
da un’altezza.

13



In pratica, le coordinate z e y vengono scalate in base alle dimensioni della viewport
e traslate per adattarsi alla sua posizione sullo schermo. Anche la coordinata di
profondita z viene adattata, in modo che i valori dei vertici siano compatibili con
I'intervallo utilizzato dal Depth Buffer durante la rasterizzazione ([0, 1]).

Il risultato finale ¢ un insieme di vertici espressi nello spazio della finestra, pronti
per essere convertiti in frammenti dalla fase di Rasterization.

1.1.3 Rasterization Stage

Il Rasterization Stage, noto anche come Scan Conversion, € uno stadio eseguito su
GPU e rappresenta il momento in cui la pipeline grafica trasforma le primitive geo-
metriche in frammenti discreti destinati a diventare pixel. Fino a questo punto,
infatti, le informazioni gestite sono state di natura continua e astratta. La rasteriz-
zazione ha ora il compito di determinare quali pixel dello schermo saranno coinvolti
da ogni framento e quali attributi interpolati ciascun frammento dovra possedere.

E importante chiarire che un fragment (o frammento) non corrisponde ancora a
un pixel definitivo, ma una struttura temporanea che contiene tutte le informazioni
necessarie per calcolare il colore e la visibilita finale, come: coordinate nello spazio
della finestra (Window Space), depth value (la distanza dalla telecamera), normali
interpolate, colori e coordinate di texture. Solo dopo essere stato processato negli
stadi successivi, il frammento potra eventualmente diventare un pixel effettivo sullo
schermo, in base alle interdipendenze con altri fragment che insistono sullo stesso
pixel.

Il processo di rasterizzazione puo essere suddiviso in due fasi principali eseguite in
sequenza: Triangle Setup e Triangle Traversal.

1.1.3.1 Triangle Setup

In questa fase vengono preparati tutti i dati necessari per la rasterizzazione delle
primitive presenti in scena. Per ciascuna primitiva si calcolano le equazioni dei
bordi nello spazio dello schermo, in modo da poter determinare in seguito se un
pixel appartiene alla primitiva. Vengono inoltre predisposti i parametri necessari
per interpolare correttamente attributi come colore, coordinate di texture e altre
variabili, applicando la correzione prospettica per mantenere la coerenza geometrica
nello spazio 3D.

1.1.3.2 Triangle Traversal

Dopo il setup iniziale, la primitiva viene effettivamente rasterizzata e i suoi confini
vengono utilizzati per verificare se ciascun pixel ricade all’interno. Per ogni pixel
interno viene generato un frammento, al quale vengono assegnati gli attributi inter-
polati a partire dai vertici originali. Contemporaneamente, viene calcolato il valore
di profondita (depth value) per il depth testing, cosi da determinare se il frammento
sara visibile nella scena.
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1.1.4 Pixel Processing Stage

Il Pizel Processing Stage, stadio finale eseguito sulla GPU, si occupa di trasformare
i frammenti generati dallo stage precedente in valori finali da scrivere nel Frame
Buffer, ossia la memoria che conterra I'immagine finale. Questo stadio puo essere
concettualmente suddiviso in due fasi principali: Pixel Shading e Merging.

1.1.4.1 Pixel Shading

Il Pizel Shading ¢ la fase in cui viene calcolato il colore effettivo di ciascun frammen-
to. Questo compito & eseguito da unita programmabili della GPU chiamate Frag-
ment Shader (o Pizel Shader). 1l programmatore puo scrivere un programma che
definisce come il colore di ciascun frammento deve essere determinato, utilizzando
le informazioni interpolate dai vertici.

Il risultato di questa fase é un insieme di valori per ciascun frammento, tipicamente
rappresentati dai componenti RGB (rosso, verde, blu) e dal canale alpha, che indica
il grado di trasparenza del frammento. Queste informazioni sono pronte per essere
scritte nel Frame Buffer.

1.1.4.2 Merging
Le strutture principali coinvolte in questa fase sono:

e Color Buffer: array bidimensionale in cui ogni posizione di memoria indica
il colore di un pixel dello schermo. Poiché il colore dei pixel di un monitor si
forma per sintesi additiva dai tre valori primari RGB, ogni posizione contiene
tre componenti, corrispondenti ai canali rosso, verde e blu.

e Depth Buffer (o Z-Buffer): memorizza per ciascun pixel la distanza dalla
telecamera della primitiva pit vicina.

La fase di Merging si occupa di confrontare tutti i frammenti calcolati e di inserire
nei buffer della GPU i soli valori che garantiscono la corretta visibilita e la coerenza
dell’'immagine finale.

Quando un frammento viene generato, il suo depth value viene confrontato con il
valore memorizzato fino a quel momento nel Depth Buffer del pixel coinvolto. Poiché
i valori di profondita seguono la convenzione in cui z = 0 corrisponde alla massima
vicinanza alla telecamera e z = 1 alla massima lontananza, viene scelto il valore
minore tra quello corrente e quello gia presente. Il Color Buffer viene aggiornato con
il colore del frammento che ha superato il test di profondita. Questo meccanismo
permette alla pipeline di risolvere correttamente la visibilita, indipendentemente
dall’ordine con cui le primitive vengono inviate alla GPU, garantendo che 'immagine
finale rappresenti sempre la scena corretta.

Il Depth Buffer pudé memorizzare un solo valore per pixel, quindi non ¢ in grado
di gestire la trasparenza parziale in autonomia. Per gestire frammenti trasparenti
si utilizza il canale alpha (associato al Color Buffer) e algoritmi di alpha blending
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o ordinamento dei frammenti, che combinano i colori dei frammenti trasparenti
secondo il loro grado di opacita.

Tutti questi valori vengono infine combinati nel Frame Buffer, cioé¢ il contenitore fina-
le che rappresenta 'immagine completa pronta per essere visualizzata sullo schermo.
I1 Frame Buffer puo includere piu buffer (Color, Depth, Stencil) e viene inviato al
display alla fine della pipeline grafica. Altri buffer specializzati possono essere uti-
lizzati per effetti avanzati come rifrazioni, trasparenze multiple o accumulazioni di
valori intermedi per post-processing.

1.2 Stadi Programmabili della GPU

Come gia accennato nelle sezioni dedicate ai singoli stadi di una pipeline, una delle
innovazioni pit significative nell’evoluzione della grafica in tempo reale é stata 'in-
troduzione degli shader programmabili. In origine, infatti, la pipeline grafica era
quasi interamente di tipo fized-function: ogni fase eseguiva operazioni predetermi-
nate dall’hardware, con pochi parametri configurabili dal programmatore. Questa
rigidita era sufficiente per i primi sistemi di rendering, ma diventava un limite quando
si richiedeva maggiore qualita visiva o effetti personalizzati.

La svolta avvenne nei primi anni Duemila, con 'introduzione del concetto di Shader
Unat: piccoli programmi scritti dal programmatore, compilati ed eseguiti diretta-
mente dalla GPU su migliaia di dati in parallelo. Grazie a questi, il programmatore &
in grado di definire algoritmi personalizzati per calcolare trasformazioni geometriche,
illuminazione, gestione dei materiali e effetti visivi avanzati.

Come gia discusso nelle sezioni precedenti, i due stadi programmabili di base sono il
Vertex Shader, che elabora i vertici della geometria, e il Fragment Shader, che
determina il colore dei frammenti dopo la rasterizzazione.

1.2.1 Vertex Shader

Il Vertex Shader rappresenta il primo stadio programmabile della pipeline grafica.
Ogni vertice di un oggetto viene elaborato in maniera indipendente dagli altri, con-
sentendo di applicare trasformazioni geometriche e di calcolare attributi utili per le
fasi successive, come normali trasformate, coordinate di texture o colori.

La sua funzione principale é quella di convertire le coordinate dei vertici dai diversi
spazi di rappresentazione (Model Space, World Space, View Space) fino al Clip Space,
in modo che possano essere correttamente proiettate sul piano dello schermo.

Il Vertex Shader puo generare informazioni aggiuntive come normali trasformate,
coordinate di texture, colori, tangenti o valori definiti dal programmatore. Questi
attributi vengono poi interpolati tra i vertici durante la rasterizzazione, fornendo
dati continui al Fragment Shader.

Storicamente, il Vertex Shader veniva anche usato per calcolare I'illuminazione a
livello di vertici (per-vertez lighting). La luce veniva determinata sulla base della

16



posizione e della normale di ciascun vertice, e il colore risultante veniva poi in-
terpolato lungo le superfici. Sebbene molto efficiente, questo approccio produceva
risultati approssimativi in presenza di geometrie complesse o variazioni luminose
significative. Con l'introduzione dei Fragment Shader, i calcoli di illuminazione sono
stati spostati a livello di frammento, ottenendo un realismo maggiore.

Oggi, il Vertex Shader non € pit vincolato al solo calcolo dell’illuminazione, ma
é diventato una vera e propria unita di calcolo flessibile. Puo essere utilizzato,
ad esempio, per la gestione delle animazioni scheletriche (skeletal animation), per
la manipolazione procedurale della geometria (come la deformazione di superfici o
I'applicazione di onde), o per la generazione di attributi personalizzati definiti dal
programmatore.

1.2.2 Fragment Shader

Il Fragment Shader, chiamato anche Pizel Shader, € lo stadio programmabile che
opera dopo la rasterizzazione, quando la geometria ¢ stata convertita in frammenti
(potenziali pixel). Per ogni frammento, il Fragment Shader riceve in input i dati
interpolati dai vertici e calcola il colore finale e altri valori utili.

Le operazioni pitt comuni includono:

e Texturing: applicazione di immagini sulle superfici dei modelli per
aumentarne il dettaglio visivo.

e Illuminazione avanzata: ad esempio tramite shading Phong, Blinn-Phong
o il pit moderno Physically Based Rendering (PBR), che simula in maniera
realistica riflessioni, rifrazioni e interazioni con i materiali.

e Effetti visivi: trasparenza, occlusione ambientale, bump mapping (simula
rilievi sulla superficie senza modificare la geometria), normal mapping (alte-
razione precisa delle normali per dettagli realistici) e la generazione di valori
intermedi per il successivo post-processing.

I1 risultato del Fragment Shader ¢ un insieme di valori di colore (tipicamente com-
ponenti RGBA, composto dai tre colori principali e dal canale alpha) che vengono
inviati al Frame Buffer. Grazie alla flessibilita del Fragment Shader, oggi € possibile
ottenere effetti grafici estremamente realistici, che spaziano dalla resa fisica accurata
dei materiali fino a stili visivi complessi e artistici.

1.2.3 OpenGL

OpenGL (Open Graphics Library) & una libreria standard open source e multipiat-
taforma utilizzata per sviluppare applicazioni grafiche interattive in tempo reale.
Questa libreria mette a disposizione funzioni che permettono di sfruttare diretta-
mente la potenza di calcolo delle GPU e consentono quindi di eseguire operazioni
complesse come la gestione delle geometrie, la trasformazione degli oggetti e la resa
dei materiali, con tempi compatibili con il real-time.
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La pipeline grafica di OpenGL ¢é organizzata in stadi, ciascuno dei quali elabora un
tipo specifico di dati in sequenza. Con l'introduzione degli shader programmabili,
alcune fasi predefinite possono essere sostituite da programmi personalizzati, per-
mettendo di ottenere effetti visivi piti avanzati e un controllo pit preciso sul processo
di rendering.

1.2.4 GLSL

Gli shader in OpenGL sono scritti in GLSL (OpenGL Shading Language), un lin-
guaggio pensato per operazioni parallele su grandi quantita di dati grafici. La sua
sintassi, simile al C, include estensioni per gestire vettori, matrici e texture, ren-
dendolo particolarmente adatto alla grafica in tempo reale. Gli shader in GLSL
vengono compilati ed eseguiti direttamente sulla GPU, garantendo un collegamento
quasi diretto tra il codice e le unita di calcolo hardware.

1.2.5 GPU

Le capacita degli shader dipendono strettamente dall’architettura delle GPU, pro-
gettate per un’esecuzione altamente parallela. A differenza delle CPU, ottimizzate
per gestire poche istruzioni complesse in sequenza, le GPU possono applicare lo
stesso insieme di istruzioni a migliaia di dati contemporaneamente, secondo il mo-
dello SIMD (Single Instruction, Multiple Data). Questo tipo di architettura risulta
particolarmente efficace nella grafica 3D, dove operazioni identiche devono essere
applicate simultaneamente a migliaia di vertici.
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Capitolo 2

Tessellation Shaders

In questo capitolo vengono analizzati i Tessellation Shaders, un blocco opzio-
nale delle Pipeline moderne, composto da pit unita, che consente di suddividere
dinamicamente le primitive e ottenere superfici pit dettagliate rispetto alla Pipeline
standard descritta nel capitolo [I}

2.1 Introduzione

I Tessellation Shaders costituiscono uno stadio opzionale, ma fondamentale, della
pipeline grafica programmabile, introdotto a partire da OpenGL 4.0 e ampiamente
utilizzati nelle versioni successive. Il loro scopo principale & quello di permettere la
suddivisione dinamica di una primitiva in tasselli piu piccoli e dettagliati, evitan-
do cosi la necessita di definire manualmente tali dettagli a livello di CPU. Questa
capacita di suddivisione adattiva consente di ottenere superfici piu dettagliate e di
controllare in modo dinamico il livello di dettaglio (LOD), ad esempio in funzio-
ne della distanza dalla telecamera virtuale o di altri criteri, migliorando I'efficienza
computazionale e la qualita visiva.

I Tessellation Shaders si collocano nella pipeline grafica tra il Vertex Shader e il
Geometry Shader (se presente) e si articolano in tre componenti distinti che ope-
rano in sequenza, ciascuno con un ruolo complementare nella trasformazione delle
primitive. Il Tessellation Control Shader (TCS) gestisce i parametri di suddi-
visione delle geometrie originali, definendo come queste dovranno essere raffinate.
A seguire, il Tessellation Primitive Generator (componente fisso, non modifi-
cabile dal programmatore), noto anche come Tessellator, realizza effettivamente la
suddivisione delle geometrie originali in nuovi vertici secondo le indicazioni ricevute
dal TCS. Infine, il Tessellation Evaluation Shader (TES) calcola le posizioni
finali dei vertici generati e i relativi attributi, come normali e coordinate di texture,
preparando cosi la geometria per gli stadi successivi della pipeline.

Questa struttura modulare consente di separare chiaramente la fase di controllo,
quella di generazione e quella di valutazione, offrendo al programmatore la flessibilita
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di intervenire solo dove necessario e lasciando alla GPU il compito di produrre una
geometria densa e coerente in maniera efficiente [2], [6], [§]. [9]. [19]-

Figura 2.1: Schema della pipeline di rendering con i Tessellation Shaders.

2.2 Concetti Fondamentali

2.2.1 Tessellation

Con il termine tessellation (tessellazione) si intende il meccanismo che consente al-
la GPU di suddividere automaticamente una primitiva di partenza in elementi pit
piccoli e poi valutarne la forma con precisione, mantenendo la coerenza geometri-
ca con quella originale. In pratica, la tessellazione serve ad aggiungere vertici ad
un oggetto in modo controllato e coerente con la forma originale, consentendo di
ottenere superfici piu definite, curvature piu fedeli e rilievi geometrici pitt accurati,
senza dover cambiare il modello sorgente.

Il processo avviene in due fasi principali:

1. Suddivisione della geometria originale: la primitiva di input viene scom-
posta in sotto-primitive (triangoli, quadrilateri o isolinee) in base ai fattori di
tessellazione specificati.

2. Calcolo dei nuovi vertici: per ogni nuovo vertice generato, la pipeline
valuta posizione, normali, coordinate di texture e altri attributi interpolati.
Questo permette di ottenere superfici molto piu dettagliate, mantenendo pero
I'ingombro del modello originale.
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L’aspetto essenziale della tessellation ¢ la possibilita di generare dinamicamente,
direttamente in GPU, un numero elevato di vertici interni alla primitiva originale,
evitando di definirli manualmente in fase di modellazione. Questo permette di arric-
chire la geometria in maniera adattiva e controllata, fornendo una base pit densa e
precisa su cui applicare calcoli successivi. In altre parole, la tessellation consente di
partire da primitive relativamente semplici e trasformarle, solo quando necessario,
in rappresentazioni piu dettagliate, mantenendo un controllo diretto sul livello di
complessita geometrica.

Ad esempio, un terreno puod essere raffinato dinamicamente nelle aree vicine alla
telecamera per mostrare maggiori dettagli, riducendo invece la densita geometrica
nelle zone lontane e meno visibili per risparmiare risorse computazionali. Analoga-
mente, una superficie curva puod essere approssimata in maniera sempre piu fedele
aumentando il livello di tessellazione, migliorando cosi la resa visiva senza dover
aumentare a priori il numero di vertici del modello originale.

2.2.2 Patch

La tessellazione opera su primitive generalizzate chiamate patch e definite a livello
di Application Stage. Una patch é un sottoinsieme arbitrario dei vertici che com-
pongono la primitiva di partenza da suddividere durante lo stadio di tessellazione. A
differenza di triangoli o linee tradizionali, il numero di vertici che costituiscono una
patch non é fisso, ma deve essere esplicitamente dichiarato dall’applicazione tramite
la funzione:

glPatchParameteri (GL_PATCH_VERTICES, n);

dove n indica quanti vertici compongono ciascuna patch.

L’input alla pipeline non € quindi pitt una semplice sequenza di primitive standard
(punti, linee o triangoli), ma una sequenza di gruppi di n vertici, ciascuno considerato
come una patch indipendente. Questi vertici verranno elaborati in modo coerente
dallo stadio di tessellazione.

In questo modo, le patch forniscono una struttura flessibile e controllabile su cui
la tessellazione puo operare, permettendo di aumentare dinamicamente il numero
di vertici interni e, di conseguenza, il dettaglio della superficie senza modificare il
modello sorgente.

2.3 Tessellation Control Shader (TCS)

I Tessellation Control Shader (TCS) ¢ il primo stadio programmabile all’interno del
blocco dei Tessellation Shaders e rappresenta il punto in cui il programmatore puo
intervenire direttamente sul livello di dettaglio della geometria. Questo shader riceve
in ingresso le patch elaborate dagli stadi precedenti e ha il compito di definire come
e quanto ciascuna patch dovra essere suddivisa, determinando quindi i cosiddetti
livelli di tessellazione (Tessellation Levels).
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I1 TCS viene eseguito una volta per ogni vertice della patch, ma ogni invocazione
ha accesso alle informazioni di tutti i vertici che compongono l'intera patch. Questo
significa che, pur lavorando in modalita per-vertez (un vertice alla volta), il TCS
puo prendere decisioni basate sull’intera patch, rendendo possibile ottenere effetti
di dettaglio variabile all’interno della stessa.

Tra le principali operazioni svolte dal TCS vi ¢ innanzitutto la gestione dei vertici
della patch, applicando eventuali trasformazioni e preparando i dati per la fase di
tessellazione vera e propria. In secondo luogo, lo shader calcola i parametri che de-
finiranno i livelli di suddivisione da applicare, ad esempio in funzione della distanza
dalla telecamera o della complessita della superficie. Infine, il TCS passa al Tessel-
lator i vertici trasformati, insieme ai livelli di tessellazione calcolati, fornendo tutto
il necessario affinché il componente fisso della pipeline possa generare la geometria
aggiuntiva in modo coerente ed efficiente.

In sintesi, il Tessellation Control Shader funge da regista della suddivisione: riceve
le primitive, decide come saranno suddivise e prepara i dati necessari affinché il
Tessellator possa produrre nuovi vertici senza richiedere interventi manuali da parte

del programmatore [4], [16].

2.3.1 Creazione e distruzione

La creazione di un Tessellation Control Shader in OpenGL segue un processo analogo
a quello previsto per gli altri tipi di shader (come il Vertex Shader o il Fragment
Shader). La differenza principale consiste nel tipo da specificare nella funzione
glCreateShader, che in questo caso ¢ GL_TESS_CONTROL_SHADER.

In generale, una volta creato 1'oggetto shader, ¢ necessario associargli il codice sor-
gente tramite glShaderSource, compilarlo con glCompileShader, e infine collegarlo
a uno shader program, un programma eseguibile sulla GPU composto da piu stadi
della pipeline grafica. Per farlo, si utilizza la funzione glAttachShader, seguita da
glLinkProgram, che completa il collegamento tra tutti gli shader presenti.

Al termine della fase di collegamento, é possibile eliminare lo shader con la funzione
glDeleteShader, poiché il suo contenuto € stato gia incorporato nel programma
OpenGL. Questa operazione consente di liberare memoria senza compromettere il
funzionamento del rendering.

E importante sottolineare che, per essere considerato valido, uno shader program
deve includere almeno gli stadi minimi richiesti dal contesto di utilizzo. Nella mag-
gior parte dei casi, cido implica la presenza di un Verter Shader e di un Fragment
Shader. Tuttavia, in particolari casi d’uso, come nel Transform Feedback, lo shader
program pud omettere il Fragment Shader, poiché i dati vengono intercettati pri-
ma della rasterizzazione, direttamente all’'uscita del Vertex Shader o del Geometry
Shader.

Di seguito ¢ riportato un esempio di codice C++ che mostra i passaggi fondamentali
per caricare, compilare e collegare un Geometry Shader. Si noti che la funzione
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loadShaderSource, utilizzata per leggere il contenuto del file sorgente, non é parte
della libreria OpenGL, ma é stata definita dall’autore.

// Carica il contenuto del file shader
string source = loadShaderSource(path);

// Converte la stringa in formato C-style
const char* src = source.c_str();

// Crea lo shader specificato (es. GL_TESS_CONTROL_SHADER)
unsigned int shader = glCreateShader(type);

// Associa il codice sorgente allo shader
glShaderSource(shader, 1, &src, nullptr);

// Compila il codice sorgente nello shader
glCompileShader (shader) ;

// Crea un nuovo shader program
unsigned int program = glCreateProgram();

// Aggiunge lo shader compilato al programma
glAttachShader (program, geometry) ;

// Collega tutti gli shader nel programma finale
glLinkProgram(program) ;

// Elimina 1’oggetto shader per liberare memoria
glDeleteShader (geometry) ;

2.3.2 Input

Il Tessellation Control Shader riceve in ingresso le patch definite dalla chiamata a
glPatchParameteri (GL_PATCH_VERTICES, n) (come descritto nella sezione [2.2.2)),
la quale stabilisce il numero di vertici che compongono ciascuna patch.

E importante sottolineare che il TCS non interpreta la natura geometrica della patch
(che sia linea, triangolo o quadrilatero), ma lavora in modo astratto su insiemi di
vertici. Il suo compito € elaborare tali vertici e stabilire i livelli di tessellazione da
fornire al Tessellator, senza la necessita di dover conoscere a priori la tipologia della
primitiva.

L’esecuzione del TCS avviene una volta per ciascun vertice della patch. Tuttavia,
ogni invocazione pud accedere ai dati di tutti i vertici della patch, grazie a va-
riabili built-in messe a disposizione dal linguaggio OpenGL. La prima di queste &
gl_InvocationID, che rappresenta l'indice dell’invocazione corrente, ovvero il verti-
ce della patch a cui fa riferimento la specifica esecuzione dello shader. Essa permette
di distinguere i diversi vertici e gestirne i dati in maniera ordinata.
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Un’altra variabile fondamentale ¢ gl _PatchVerticesIn, che contiene il numero to-
tale dei vertici della patch in ingresso. Questa informazione é indispensabile per
gestire correttamente i dati, ad esempio quando ¢ necessario iterare su tutti i vertici
per calcolare valori globali (come i livelli di tessellazione basati sulla posizione media
o sulla distanza minima dei vertici dalla telecamera).

Di particolare importanza é anche ’array gl_in[], che contiene, per ciascun vertice
della primitiva in ingresso, un insieme di informazioni geometriche di base. Ogni
elemento dell’array ¢ di tipo gl_PerVertex, una struttura definita dal linguaggio
GLSL che contiene al suo interno variabili built-in comuni a piu stadi della pipeline.
Il numero totale di elementi dell’array dipende direttamente dal layout di input
dichiarato nello shader.

La struttura gl_PerVertex é organizzata come segue:

in gl_PerVertex {
vec4 gl_Position;
float gl_PointSize;
float gl_ClipDistancel[];
float gl_CullDistancel[];
} gl_in(];

I campi principali sono:

e gl _Position: contiene la posizione del vertice nello spazio clip (coordinate
omogenee), cosi come calcolata dal Vertex Shader. E la variabile principale uti-
lizzata per calcolare medie, distanze o altri parametri necessari alla definizione
dei livelli di tessellazione.

e gl _PointSize: rappresenta la dimensione del punto, nel caso in cui la pri-
mitiva in ingresso fosse un singolo punto. Pur essendo raramente utilizzata
in un contesto di tessellazione, ¢ comunque parte della struttura e puo essere
propagata per scopi specifici.

e gl _ClipDistance[]: array che memorizza le distanze dai piani di clipping
definiti dall’applicazione. Puo essere sfruttato nel TCS per prendere decisioni
in base alla visibilita parziale della patch, ad esempio evitando di tessellare
ulteriormente porzioni che verrebbero scartate.

e gl _CullDistance[]: concettualmente simile a gl_ClipDistance[], ma pen-
sata per operazioni di culling personalizzato, cioé 1’eliminazione condiziona-
le di primitive non necessarie. Questa funzionalitd permette di scartare an-
ticipatamente geometrie irrilevanti, migliorando 1'efficienza della pipeline di
rendering.

L’accesso a gl_in[] rende possibile basare i calcoli non sul singolo vertice, ma
sull’intera patch. In questo modo il TCS puo stabilire livelli di tessellazione coerenti
con proprieta globali, come la posizione media dei vertici o la distanza minima dalla
camera. L’indicizzazione avviene tramite 'indice del vertice all’interno della patch,
consentendo accesso diretto a qualsiasi dato dei vertici.
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Infine, va ricordato che, oltre alle variabili built-in, il TCS riceve come input anche
tutte le variabili di output del Vertex Shader, organizzate in array e indicizzate
rispetto al numero di vertici della patch.

2.3.3 Output

Se I'input del TCS é principalmente costituito dai dati dei vertici e dalle variabili
built-in che descrivono lo stato corrente della patch, I'output é invece cio che definisce
il comportamento della tessellazione vera e propria.

Ogni invocazione del TCS pud produrre nuovi dati associati ai vertici, che saran-
no poi accessibili al Tessellation Fvaluation Shader. Questi dati vengono dichiarati
come variabili di output dello shader e, come accade per il Vertex Shader, posso-
no essere strutturate in array in modo che ogni invocazione scriva i valori relativi
al proprio vertice. In questo modo, ad esempio, si possono passare coordinate di
texture, normali o qualsiasi altro attributo necessario per la successiva elaborazione.

A tale scopo il linguaggio GLSL mette a disposizione I'array gl_out [], il cui numero
di elementi corrisponde al numero di vertici specificato dalla direttiva di layout. Ogni
elemento dell’array & di tipo gl_PerVertex, la stessa struttura introdotta nella
sezione a proposito dell’array gl_in[], e contiene quindi le stesse variabili
built-in comuni a pit stadi della pipeline. Lo schema ¢ il seguente:

out gl_PerVertex {
vec4 gl_Position;
float gl_PointSize;
float gl_ClipDistancel];
float gl_CullDistancel[];
} gl out([];

In questo modo ogni invocazione del TCS puo scrivere, all’interno della propria cella
di gl_out[gl_InvocationID], i valori che saranno letti successivamente dal TES
attraverso il corrispondente array gl_in[].

Ma I’aspetto piu caratteristico e rilevante dell’output del TCS riguarda la definizione
dei livelli di tessellazione. OpenGL mette infatti a disposizione delle variabili built-in
speciali che devono essere scritte dal TCS:

e gl _TessLevelOuter[4]: un array di quattro valori in virgola mobile che defi-
niscono i livelli di tessellazione per i lati esterni della patch. Il numero di
elementi effettivamente utilizzati dipende dal tipo di primitiva (vedi la sezione
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e gl _TessLevelInner[2]: un array che definisce i livelli di tessellazione in-
terna, ovvero quanti suddivisori aggiuntivi verranno inseriti all’interno della
patch. Anche in questo caso, il numero di componenti effettivamente utilizzate
dipende dalla tipologia di primitiva.

Queste variabili rappresentano I’elemento chiave con cui il programmatore stabilisce
la densita della geometria che verra generata dal Tessellator. Valori piu alti produ-
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cono un maggior numero di sotto-primitive geometriche e quindi una superficie pit
dettagliata, mentre valori piti bassi portano a una geometria pitt semplice e meno
costosa da elaborare. E proprio attraverso queste variabili che il TCS abilita il co-
siddetto controllo adattivo del livello di dettaglio, rendendo possibile, ad esempio,
incrementare la suddivisione per le porzioni di superficie vicine alla telecamera e
ridurla per quelle piu lontane.

L’output del TCS é inoltre governato dalla direttiva

{layout (vertices = n) out;

dove il valore n specifica il numero di vertici che la patch dovra avere in uscita.
Tale valore non deve necessariamente coincidere con il numero di vertici in ingres-
so: & infatti possibile generare un numero differente di vertici, permettendo cosi
al programmatore di rimodellare la patch e prepararla in modo mirato per la fase
successiva di tessellazione e valutazione.

2.4 Tessellation Primitive Generator (Tessellator)

Il Tessellation Primitive Generator, comunemente chiamato Tessellator, rappresenta
I’elemento del blocco dei Tessellation Shaders che si colloca tra il Tessellation Control
Shader e il Tessellation Evaluation Shader. A differenza dei due shader, non si tratta
di uno stadio programmabile, ma di una fixed-function: il suo comportamento &
determinato unicamente dai parametri calcolati e scritti dal TCS e dalle direttive di
ingresso dichiarate dal TES.

Il compito del Tessellator ¢ quello di suddividere le patch ricevute dal TCS in un
insieme di primitive geometriche elementari. La suddivisione generata dipende sia
dai valori dei livelli di tessellazione impostati dal TCS, che stabiliscono il grado di
suddivisione della patch, sia dalle informazioni contenute nel layout di input del
TES, il quale definisce il tipo di primitiva, le modalita di distribuzione dei punti
(spacing) e il tipo di orientamento. La combinazione di questi elementi determina
non solo la densita della griglia generata, ma anche la sua regolarita e coerenza,
garantendo che la superficie tessellata risulti continua e priva di disallineamenti.

Un aspetto fondamentale da sottolineare € che il Tessellator non interpreta la geo-
metria originaria della patch: la sua funzione ¢ esclusivamente quella di produrre
una griglia di campionamento. L’output é costituito da un insieme di coordinate
parametriche normalizzate, generate nello spazio del dominio della primitiva. Que-
ste non sono coordinate spaziali, ma valori normalizzati che identificano la posizione
relativa di un punto all’interno della patch tessellata. Tali coordinate vengono resti-
tuite come output per il Tessellation Evaluation Shader tramite la variabile built-in
gl_TessCoord (vedi sezione [2.5]). Sara poi il TES, utilizzando tali coordinate insie-
me ai dati della patch provenienti dal TCS, a determinare la posizione geometrica
effettiva di ciascun punto nello spazio tridimensionale.
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2.4.1 Tipi di primitive

Il Tessellation Evaluation Shader supporta diverse tipologie di primitive, le qua-
li influenzano direttamente il comportamento del Tessellator nella generazione dei
vertici tessellati. Le principali tipologie sono:

e Triangles (triangles): la patch originale elaborata dal Tessellator ¢ trian-
golare e viene suddivisa in triangoli piu piccoli. La suddivisione segue le regole
definite dai livelli di tessellazione esterni e interni, determinando sia il nu-
mero di segmenti lungo i lati del triangolo sia la densita dei triangoli interni
concentrici.

e Quads (quads): la patch originale elaborata dal Tessellator & quadrangolare
e viene suddivisa in un reticolo regolare di triangoli. I valori dei livelli di
tessellazione esterni controllano la densita dei segmenti lungo le due direzioni
principali della patch, mentre eventuali livelli interni possono definire ulteriori
suddivisioni interne.

e Isolines (isolines): la patch originale elaborata dal Tessellator puo avere un
numero variabile di vertici, anche se pit comunemente lavora con patch da 4
vertici. In questo caso, pero, la tessellazione genera linee parallele (isolinee)
alllinterno della patch. I livelli di tessellazione controllano il numero di linee
create e la loro densita all’interno della patch.

2.4.2 Modalita di spaziatura

La distribuzione dei punti lungo i lati della patch (modalita di spaziatura) pud essere
regolata tramite il parametro di spacing, definito nel layout del TES. Questo pa-
rametro influenza perd anche la posizione dei vertici generati dal Tessellator lungo
ciascun lato della patch, influenzando quindi sia la densita sia la regolarita della
griglia tessellata. Le principali modalita di spaziatura sono:

e Equal spacing (equal_spacing): in questa configurazione, il Tessellator ge-
nera una suddivisione uniforme dei segmenti. Il valore in virgola mobile del
livello di tessellazione viene prima di tutto normalizzato all’intervallo [1, maz]
(dove max é il valore massimo supportato dall’implementazione). Il valore
risultante & successivamente arrotondato per eccesso all” intero n piu vicino. Il
lato corrispondente della patch viene quindi suddiviso in n segmenti di ugua-
le lunghezza, assicurando una distribuzione regolare dei punti lungo tutto il
bordo.

e Fractional even spacing (fractional_even_spacing): questa modalita ge-
nera sempre un numero pari di segmenti, consentendo una suddivisione fra-
zionaria. Il valore del livello di tessellazione viene normalizzato nell’intervallo
[2, maz] e arrotondato per eccesso all’intero pari piu vicino, indicato con n. Il
lato della patch viene suddiviso in n segmenti, di cui gli n —2 segmenti centrali
hanno lunghezza identica, mentre i due segmenti agli estremi possono avere
lunghezza diversa, regolata dalla parte frazionaria del livello di tessellazione
originale. Quando il valore frazionario é vicino a 0, i segmenti agli estremi
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hanno lunghezza simile a quella dei segmenti centrali; all’aumentare della par-
te frazionaria, la lunghezza dei segmenti estremi diminuisce progressivamente,
mantenendo sempre una disposizione simmetrica rispetto ai due estremi del
lato.

e Fractional odd spacing (fractional_odd_spacing): in questa modalita il
Tessellator genera sempre un numero dispari di segmenti, mantenendo un
comportamento frazionario. Il livello di tessellazione viene limitato all’inter-
vallo [1, max — 1] e poi arrotondato per eccesso all'intero dispari piu vicino,
indicato con n. Se n = 1, non viene effettuata alcuna suddivisione, in caso
contrario, il lato viene suddiviso in n segmenti, di cui gli n — 2 centrali hanno
lunghezza uguale, mentre i due segmenti agli estremi hanno lunghezza leg-
germente differente, regolata dalla parte frazionaria del livello di tessellazione
originale, allo stesso modo del fractional even spacing.

2.4.3 Orientamento

Tra i parametri definiti nel TES ma che influenzano i calcoli del Tessellator, ¢ im-
portante menzionare anche 1'orientamento dei triangoli generati, ovvero 1’ordine in
cui i vertici vengono interpretati. Questo parametro é fondamentale per garantire la
corretta determinazione delle normali e la coerenza geometrica della patch tessellata.
Le opzioni disponibili nel TES sono:

e cw: 1 vertici di tutti i triangoli generati sono analizzati in senso orario
(clockwise).

e ccw: i vertici di tutti i triangoli generati sono analizzati in senso antiorario
(counter-clockwise).

2.4.4 Primitive Tessellation

Prima di analizzare come vengono tessellate le diverse tipologie di patch all’interno
del Tessellator, é importante soffermarsi sul significato dei valori dei livelli di tes-
sellazione definiti dal TCS. Questi valori sono specificati in virgola mobile, ma il
Tessellator non li utilizza come numeri reali continui. Essi vengono approssimati a
numeri interi, in modo da determinare il numero effettivo di segmenti da generare.
La parte decimale, tuttavia, non ¢ del tutto ignorata, ma viene trattata diversamente
in base alla modalita di spacing definita (vedi sezione [15].

Triangle Tessellation

Quando il tipo di primitiva specificato dal TES ¢ impostato su triangles, una
patch triangolare viene suddivisa in un insieme di triangoli pit piccoli che coprono
interamente 1’area originale.

In questa modalita, il processo di suddivisione dipende unicamente dai primi tre
valori della variabile built-in gl _TessLevelOuter (cioé gli elementi con indici nel-
I'intervallo [0,2]) e dal primo valore di gl_TessLevellInner (cio¢ l’elemento con
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indice 0). Il primo valore interno determina il numero di triangoli concentrici gene-
rati all'interno della patch: piu alto € il valore, maggiore sara il numero di triangoli
interni e piu fine sara la tessellazione. I tre valori esterni definiscono invece il numero
di segmenti lungo ciascun lato del triangolo originale, creando vertici intermedi che
saranno collegati ai punti generati dai livelli interni per formare triangoli pitt piccoli.
I valori di tessellazione vengono applicati ai lati della patch nell’ordine stabilito dalla
figura seguente.

Figura 2.2: Schema di corrispondenza dei valori di tessellazione ai lati della patch triangolare.

In base al valore di questi livelli, possono presentarsi alcuni casi limite: se il livello
interno e tutti e tre i livelli esterni sono impostati a 1, il triangolo originale rimane
invariato. Se il livello interno ¢ 1, ma almeno uno dei livelli esterni ¢ maggiore di
1, il valore interno viene considerato leggermente superiore ad 1 (1 + €), in mo-
do da garantire la generazione di almeno un vertice interno e prevenire geometrie
degenerate.

Quando almeno un livello ¢ maggiore di 1, il Tessellator passa alla generazione vera
e propria dei triangoli interni, calcolando progressivamente le posizioni dei vertici
concentrici a partire dai lati della patch originale.

Figura 2.3: Schema di tessellazione di una primitiva triangles, con lati esterni suddivisi in base
al livello di tessellazione interna: (3) nel primo caso e (4) nel secondo.

In questa fase, il triangolo esterno funge da riferimento per determinare le sud-
divisioni ricorsive successive: i suoi lati vengono temporaneamente suddivisi in
segmenti in base al livello di tessellazione interna (arrotondato) e allo spacing sele-
zionato, generando n segmenti. A seconda del valore di n, la ricorsione termina con
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un triangolo interno degenere, cio¢ ridotto a un singolo punto, se n = 2, oppure il
triangolo rappresentante 1'ultimo della serie se n = 3.

In caso di n > 3, ciascun vertice del triangolo esterno determina la posizione del
corrispondente vertice del triangolo interno successivo della ricorsione. La posizione
di questo vertice interno non ¢ arbitraria, ma calcolata considerando i segmenti gia
generati lungo i lati del triangolo esterno preso a riferimento. Per ciascun vertice
esterno si tracciano due linee immaginarie, ciascuna perpendicolare a uno dei due
estremi dei segmenti adiacenti al vertice stesso e l'intersezione di queste due linee
definisce il vertice interno, garantendo proporzioni regolari e simmetria rispetto al
triangolo esterno.

Una volta stabiliti i tre vertici iniziali del triangolo interno, ciascun lato del triangolo
viene a sua volta suddiviso in n — 2 segmenti. I vertici generati lungo i lati interni si
calcolano come intersezione tra linee perpendicolari ai segmenti del triangolo esterno
(passanti per i vertici ottenuti dalla sua suddivisione iniziale) e i lati del triangolo
interno appena formato. Questo assicura che ogni nuovo vertice interno mantenga
connessioni coerenti con i vertici gia generati nei livelli precedenti.

Figura 2.4: Esempio di geometria finale ottenuta dalla tessellazione di una primitiva triangles,
con valori (4,1,6) per la tessellazione esterna e (5) per quella interna.

A questo punto, si sostituiscono le suddivisioni temporanee dei lati esterni della
patch con quelle definite dai parametri outer e si comincia un secondo processo
ricorsivo, che parte dal collegare tra loro tutti i punti dei lati della patch con quelli
del primo triangolo interno. In questo modo si formano tanti triangoli piu piccoli,
ciascuno dei quali condivide due vertici con un triangolo adiacente, mentre il terzo
vertice coincide con uno dei vertici piu vicini della patch esterna, garantendo cosi
una griglia continua di triangoli non sovrapposti.

Dopo aver completato questa prima suddivisione, il triangolo interno diventa il nuo-
vo triangolo esterno di riferimento per i calcoli successivi. L’intero processo viene
ripetuto ricorsivamente, generando triangoli concentrici che si avvicinano progressi-
vamente al centro della patch, fino a riempire completamente l’area originale. Nel
caso in cui il triangolo piu interno risulti degenere, cioé¢ ridotto a un punto centrale,
il triangolo che lo racchiude viene suddiviso in triangoli che convergono tutti verso
tale punto, mantenendo una connessione coerente con i triangoli precedenti.
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La specifica garantisce la presenza di connessioni tra vertici corrispondenti dei trian-
goli concentrici e tra i vertici sui bordi; tutte le altre connessioni sono lasciate alla
discrezione dell’implementazione, che puo ad esempio preferire di collegare i vertici
adiacenti piu vicini per ottenere una tessellazione regolare e continua su tutta la
patch.

Di seguito viene mostrato uno pseudocodice che riassume le fasi appena descritte,
evidenziando il flusso delle operazioni e semplificando la comprensione del processo
di tessellazione dei triangoli.

1) Calcola il numero di segmenti esterni per ciascun lato della patch
usando gl_TessLevelOuter

2) SE livello interno = 1 e tutti i livelli esterni = 1:
Restituisci la patch senza modifiche
ALTRIMENTI se livello interno = 1 e almeno un livello esterno > 1:
Imposta livello interno = 1 + epsilon

3) Suddividi i lati esterni della patch in base al livello interno e allo
spacing selezionato

4) PER OGNI nuovo triangolo esterno di riferimento:
a. Determina i vertici del triangolo interno come intersezione di
linee perpendicolari dai segmenti dei lati esterni
Suddividi i lati del triangolo interno in n-2 segmenti
c. SE numero di vertici del triangolo interno = 2:
Triangolo interno degenere in un punto
Passa a operazione 6)
ALTRIMENTI se numero di vertici del triangolo interno = 3:
Ultimo triangolo interno
Passa a operazione 6)
ALTRIMENTI:
Imposta triangolo interno come nuovo triangolo esterno di
riferimento

5) Suddividi i lati esterni della patch in base ai livelli esterni e allo
spacing selezionato

6) PER OGNI triangolo esterno di riferimento:
a. SE triangolo interno degenere in un punto:
connettere tutti i vertici del triangolo esterno al punto
centrale
ALTRIMENTI:
connetti ogni vertice del triangolo esterno con almeno un
vertice del triangolo interno, senza generare triangoli
sovrapposti
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Quad Tessellation

Quando il tipo di primitiva specificato dal TES € impostato su quads, una patch
quadrilaterale viene suddivisa in una griglia regolare di triangoli piti piccoli che copre
interamente 1’area originale.

In questa modalita, il processo di suddivisione dipende dai due valori della variabile
built-in gl_TessLevellInner (uno per ciascuna coppia di lati opposti) e dai quattro
valori di g1 _TessLevelOuter (uno per ciascun lato del quadrilatero). I valori interni
determinano il numero di divisioni lungo le direzioni principali della patch, definendo
cosi la griglia interna di vertici, mentre i valori esterni definiscono il numero di
segmenti lungo ciascun lato del quadrilatero originale, creando vertici intermedi che
saranno poi collegati ai punti generati dalla griglia interna per formare triangoli
piu piccoli. I valori di tessellazione vengono applicati ai lati della patch nell’ordine
stabilito dalla figura seguente.

Figura 2.5: Schema di corrispondenza dei valori di tessellazione ai lati della patch quadrilaterale.

In base ai valori di questi livelli, possono presentarsi casi limite: se tutti i livelli
interni ed esterni sono impostati a 1, il quadrilatero viene suddiviso in una sola
coppia di triangoli che ricopre 'intera area della patch. Se uno dei due livelli interni
¢ esattamente 1, viene considerato leggermente superiore a 1 (1 + €) per evitare
geometrie degenerate e garantire la presenza di almeno un vertice interno; a seconda
dello spacing selezionato, questo pud generare vertici molto vicini ai bordi, con
possibile distorsione della griglia interna.

Quando almeno un livello di tessellazione ¢ maggiore di 1, il Tessellator genera
effettivamente la griglia interna dei vertici.

Figura 2.6: Schema di tessellazione di una primitiva quads, con lati esterni suddivisi in base al
livello di tessellazione interna: (5,5) nel primo caso, (6,4) nel secondo e (4, 4) nel terzo.
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I lati del quadrilatero vengono suddivisi in segmenti in base ai livelli interni, produ-
cendo m suddivisioni lungo una direzione e n lungo l'altra. I punti di ciascun lato
vengono connessi ai punti corrispondenti sul lato opposto, formando cosi una griglia
regolare di celle quadrilaterali. Se m = 2 o n = 2, le celle piu interne risultano
degeneri, riducendosi a linee o punti.

Figura 2.7: Esempio di geometria finale ottenuta dalla tessellazione di una primitiva quads, con
valori (4,2,9,3) per la tessellazione esterna e (6,7) per quella interna.

Nella seconda fase si realizzano le suddivisioni dei lati della patch esterna secondo
i valori outer e si procede quindi a suddividere ciascuna cella interna della griglia
in coppie di triangoli. I vertici generati vengono poi collegati tra loro per creare
triangoli non sovrapposti, garantendo che ogni triangolo condivida due vertici con i
triangoli adiacenti e il terzo vertice con un vertice della griglia interna o della patch
esterna, ottenendo una connessione coerente su tutta la superficie.

La specifica garantisce la presenza di connessioni tra vertici corrispondenti sulla
griglia interna e lungo i lati esterni; tutte le altre connessioni sono legate all’imple-
mentazione e possono, ad esempio, essere scelte collegando i vertici adiacenti piu
vicini per ridurre distorsioni, ottenendo cosi una tessellazione regolare e continua su
tutta la patch.

Nel caso in cui una delle dimensioni della griglia interna fosse degenere (ad esempio
se m =2 omn = 2),i triangoli generati si adattano alla forma ridotta della cella
interna, riducendosi a linee o triangoli convergenti verso un punto centrale, senza
interrompere la continuita della mesh complessiva. In questo modo, il Tessellator
garantisce una tessellazione regolare, continua e coerente con i livelli di tessellazione
specificati su tutta la patch quadrilaterale.

Di seguito viene mostrato uno pseudocodice che riassume le fasi appena descritte,
evidenziando il flusso delle operazioni e semplificando la comprensione del processo
di tessellazione dei quadrilateri.

1) Calcola il numero di segmenti esterni per ciascun lato della patch
usando gl_TessLevelOuter

2) SE tutti i livelli interni = 1 e tutti i livelli esterni = 1:
Restituisci patch suddivisa in due triangoli non sovrapposti
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ALTRIMENTI se uno dei livelli interni = 1:
Imposta livello interno = 1 + epsilon

3) Suddividi i lati esterni della patch in base ai livelli interni e allo
spacing selezionato

4) Genera griglia ottenuta congiungendo i punti di suddivisione del lato
opposto

5) Definisci quadrilateri concentrici interni sulla griglia

6) SE in entrambe le dimensioni il numero di celle interne ad un
quadrilatero interno = 2:
Imposta quadrilatero interno come degenere in un punto
ALTRIMENTI se numero di celle = 2 in una sola dimensione:
Imposta quadrilatero interno come degenere in una linea

6) Partendo dal quadrilatero relativo alla patch originale, PER OGNI
quadrilatero esterno:
a. SE quadrilatero interno degenere in un punto:
Connetti tutti i vertici del quadrilatero esterno col
vertice interno
ALTRIMENTI:
Connetti ogni vertice del quadrilatero esterno con almeno
un vertice del quadrilatero concentrico interno, definendo
triangoli non sovrapposti

Isoline Tessellation

Quando il tipo di primitiva specificato dal TES é impostato su isolines, una patch
quadrilaterale viene suddivisa in una serie di linee indipendenti, chiamate isolines,
ciascuna formata da segmenti lineari.

In questa modalita, il processo di suddivisione dipende unicamente dai primi due
valori della variabile built-in gl_TessLevelOuter. Il primo valore determina il nu-
mero totale di isolines generate, mentre il secondo specifica il numero di segmenti in
cui ciascuna isoline viene suddivisa.

Il processo inizia considerando i due lati verticali del quadrilatero originale deter-
minati in base all’'ordine sequenziale dei suoi vertici, che vengono suddivisi in punti
equispaziati in base al primo livello di tassellazione esterna. Ciascun punto su un
lato verticale, ad esclusione del vertice pitt alto, viene quindi collegato al punto cor-
rispondente sul lato opposto, generando le linee orizzontali che costituiscono le isoli-
nes. Questo posizionamento garantisce che le linee siano uniformemente distribuite,
mantenendo regolarita e proporzioni coerenti con la patch originale.

Successivamente, ogni isoline viene suddivisa in segmenti lineari in base al secondo
valore di tessellazione esterna. In pratica, i punti intermedi lungo la linea orizzontale
sono generati in modo uniforme tra i due vertici estremi, creando segmenti lineari
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connessi fra loro senza sovrapposizioni. La suddivisione garantisce che ogni isoline
abbia lo stesso numero di segmenti, creando una griglia ordinata di linee parallele
che coprono interamente la patch.

In base ai valori di tessellazione, possono presentarsi alcuni casi limite: se entrambi i
livelli esterni sono impostati a 1, viene generata una singola isoline composta da un
solo segmento. Se il primo livello esterno ¢ 1 e il secondo ¢ maggiore di 1, la singola
isoline viene suddivisa in segmenti multipli, con punti equispaziati lungo la linea. In
tutti i casi, i segmenti sono collegati in modo da garantire un insieme continuo di
linee, senza gap né sovrapposizioni.

E importante notare che nonostante il dominio iniziale sia quasi sempre rappresen-
tato da una patch quadrilaterale, la modalita isolines puo essere utilizzata anche con
patch costituite da un numero diverso di vertici. Un caso frequente é quello con due
soli vertici, che definiscono un semplice segmento di riferimento. In questo scenario,
il Tessellator genera pit isolines del segmento (il cui numero & determinato dal primo
livello di tessellazione esterna) utilizzando gli stessi metodi di calcolo di un generico
quadrilatero. In base all’orientamento di valutazione dei vertici (cw o ccw) definito
nel TES, i due vertici del segmento sono mappati come lato verticale o orizzontale di
un quadrilatero degenere e tassellati di conseguenza. A livello di TES, si otterra una
serie di isoline segmentate, parallele e coincidenti col segmento (in caso di segmento
considerato lato orizzontale), oppure una serie di isoline collassate nel loro punto di
origine lungo il segmento e distanziate secondo il parallelismo previsto (in caso di
segmento considerato lato verticale).

(0,1) (1,1)|(0,1) [ty
:---[_no edge for isolines |- --. :---[_no edge for isolines |- --.
s ¢ . ’
— o s+ o+ . . .

(0,0) (1,0)| (0,0) j 7(1,0)

Figura 2.8: Esempio di geometria finale ottenuta dalla tessellazione di due primitive isolines,
con valori di tessellazione: (3,4) per la prima e (6,2) per la seconda.

Di seguito viene mostrato uno pseudocodice che riassume le fasi appena descritte,
evidenziando il flusso delle operazioni e semplificando la comprensione del processo
di tessellazione delle isoline.

1) Determina i vertici corrispondenti alle suddivisioni esterne dei lati
verticali della patch usando gl_TessLevelOuter corrispondente e lo
spacing selezionato
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2) Partendo dal vertice successivo a quello in alto, PER OGNI punto di
suddivisione:
Connetti il punto con quello corrispondente sul lato opposto

3) PER OGNI connessione:
Suddividi la linea in segmenti usando gl_TessLevelOuter
corrispondente

4) Gestisci i casi limite:
a. SE entrambi i livelli esterni = 1:
Genera una singola isoline con un solo segmento
b. SE primo livello esterno = 1 e secondo > 1:
Genera una singola isoline suddivisa in piu segmenti
c. SE la patch ha solo due vertici:
Tratta il segmento come patch degenere e riapplica il
processo da capo

2.5 Tessellation Evaluation Shader (TES)

Il Tessellation Fvaluation Shader rappresenta 'ultimo stadio programmabile all’in-
terno del blocco dei Tessellation Shaders, situato subito dopo il Tessellation Primi-
tive Generator. Il TES viene eseguito una volta per ciascun vertice generato dalla
tessellazione e ha il compito di determinare le coordinate spaziali finali dei punti
intermedi della superficie.

I TES utilizza le informazioni calcolate dal TCS e le coordinate parametriche for-
nite dal Tessellator per interpolare in modo accurato la geometria della patch. In
questa fase € possibile applicare trasformazioni geometriche di vario tipo, tra cui la
semplice interpolazione dei vertici originali o il displacement mapping. Quest’ultima
¢ una tecnica che sfrutta una mappa di valori (ad esempio una scala di grigi), per
stabilire di quanto devono essere spostati i vertici lungo la direzione della normale,
introducendo variazioni realistiche nella geometria.

Mentre il TCS definisce quanto e come suddividere una patch e il Tessellator genera
i punti nel dominio parametrico, il TES determina dove, all’interno dello spazio
3D, questi punti devono essere collocati, preparandoli per gli stadi successivi della
pipeline di rendering .

2.5.1 Creazione e distruzione

La procedura di creazione e distruzione di un Tessellation Evaluation Shader segue
gli stessi passaggi descritti nella sezione [2.3.1] L’unica differenza rispetto agli altri
tipi di shader riguarda il parametro passato alla funzione glCreateShader, che in
questo caso deve essere GL_TESS_EVALUATION_SHADER. Questo valore identifica lo
shader come Tessellation Evaluation, consentendo cosi a OpenGL di compilarlo e
gestirlo correttamente.
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2.5.2 Input

Il Tessellation Evaluation Shader riceve le patch generate dal Tessellator secondo
un layout di input che ne definisce il tipo di primitiva, la modalita di spaziatura
dei vertici e I'orientamento dei triangoli. Tale layout viene specificato direttamente
all’inizio del codice dello shader tramite la sintassi:

layout(primitive, spacing, orientation) in;

In questa funzione, al posto di primitive si puo inserire un valore fra triangles,
quads e isolines. Al posto di spacing, un valore fra equal_spacing, fractiona
1_even_spacing o fractional_odd_spacing e infine, al posto di orientation, un
valore fra cw e ccw. I dettagli sul significato e 'effetto di questi valori sono spiegati

nella sezione .

Le informazioni specifiche definite dal layout vengono poi rese disponibili nel TES
tramite un insieme di variabili built-in, che contengono tutti i dati necessari per
calcolare la posizione finale dei vertici tessellati. Tra queste:

e gl_in[]: se il TCS ¢ attivo, contiene i valori restituiti da esso, altrimenti
quelli restituiti dal Vertex Shader. Come gia visto nella sezione [2.3.2], ogni
elemento dell’array rappresenta un singolo vertice della patch di input ed ¢
una struttura che presenta i seguenti campi: gl_Position, gl_PointSize,
gl_ClipDistance ¢ gl_CullDistance.

e gl _PatchVerticesIn: indica il numero di vertici appartenenti alla patch
corrente.

e gl _PrimitiveID: contiene l'identificatore univoco della patch corrente, utile
per distinguere le primitive in operazioni successive.

e gl _TessCoord: vettore a tre componenti che descrive la posizione del vertice
generato nel dominio parametrico della patch. Per le patch triangolari, le
coordinate assumono la forma baricentrica (u,v,w), con u +v +w = 1, in
modo che ciascuna componente rappresenti I'influenza di un vertice originale
sulla posizione finale. Per i quadrilateri e per le isolines, sono significative
solo le componenti (u,v), che indicano la posizione relativa lungo le direzioni
orizzontale e verticale della patch, mentre la terza componente viene impostata
a 0. Tutti i valori sono normalizzati nell’intervallo [0, 1].

e gl _TessLevelOuter: array contenente i livelli di tessellazione esterni della
patch, che determinano la densita dei vertici lungo i bordi.

e gl _TessLevellnner: array contenente i livelli di tessellazione interni della
patch, che regolano la distribuzione dei vertici all’interno della patch stessa.

2.5.3 Output

Il Tessellation Evaluation Shader, oltre a calcolare la posizione dei vertici generati
dalla tessellazione, puo produrre variabili di output da inviare allo stadio successivo
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della pipeline, proprio come avviene negli altri shader programmabili.

Oltre alle variabili personalizzate definite dallo sviluppatore, il TES puo gestire al-
cune variabili built-in, tra cui gl_Position, che rappresenta la posizione del vertice
nello spazio clip, gl_PointSize, che definisce la dimensione di eventuali primitive
puntiformi, e gli array gl_ClipDistance[] e gl_CullDistance[], utilizzati rispet-
tivamente per operazioni di clipping e di culling personalizzato (per maggiori dettagli
consultare la sezione [2.3.2)).

Queste variabili possono essere modificate dal TES e, insieme a eventuali variabili
definite dall’utente, costituiscono l'output dello shader che verra letto dagli stadi
successivi della pipeline. Va sottolineato che, a differenza del Tessellation Con-
trol Shader, il TES non possiede un array gl_out[]. Ogni invocazione produce
direttamente il vertice finale e le variabili di output corrispondenti.

2.6 Query e misurazioni

OpenGL fornisce un meccanismo avanzato di query statistiche che permette di racco-
gliere informazioni dettagliate sull’esecuzione della pipeline grafica. Questi strumen-
ti sono estremamente utili per operazioni di profiling, debugging e ottimizzazione
delle prestazioni.

Le query si basano su oggetti OpenGL appositi, inizializzabili e gestibili con le
seguenti funzioni:

GLuint query;

glGenQueries (1, &query);

glBeginQuery(target, query);

// ... codice di rendering ...

glEndQuery(target) ;

GLuint response;

glGetQueryObjectuiv(query, GL_QUERY_RESULT, &response);

Il parametro target definisce il tipo di statistica che si intende misurare. Per i
Tessellation Shaders, OpenGL supporta due tipi principali di query:

e GL_TESS_CONTROL_SHADER_PATCHES: misura il numero totale di invocazioni del
Tessellation Control Shader. Ogni patch in ingresso al TCS genera un’invoca-
zione separata, fornendo informazioni sul carico computazionale dello stadio
di controllo della tessellazione.

e GL_TESS_EVALUATION_SHADER_PATCHES: rileva il numero totale di invocazio-
ni del Tessellation Evaluation Shader. Ogni patch elaborata dal TES cor-
risponde a un’invocazione, permettendo di valutare quante patch vengono
effettivamente processate dal Tessellator e dallo shader di valutazione.

E possibile effettuare query multiple in parallelo, a patto che ciascuna utilizzi un
target diverso oppure oggetti di query distinti. Tuttavia, nonostante i vantaggi
offerti, le query possono introdurre un certo overhead prestazionale, specialmente
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se impiegate in modo sincrono o con eccessiva frequenza. In questi casi, per evitare
stalli della CPU e mantenere elevata la fluidita del rendering, é consigliabile utilizzare
I'opzione GL_QUERY_RESULT_NO_WAIT, che consente di recuperare i risultati in modo
asincrono, senza bloccare 1’esecuzione del programma.

In generale, I'utilizzo delle query statistiche in OpenGL rappresenta uno strumento
fondamentale per comprendere a fondo l'effettivo impatto degli shaders sulla pipeli-
ne. Monitorando il numero di invocazioni del TCS e del TES, é possibile effettuare
scelte pitl consapevoli in fase di sviluppo, migliorare le prestazioni e ridurre i colli
di bottiglia legati alla tessellazione.
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Capitolo 3

Geometry Shader

In questo capitolo viene analizzato in dettaglio un secondo shader che puo essere
aggiunto nella Pipeline standard, descritta nel capitolo [1, al fine di arricchire le
funzioni offerte e migliorare i risultati finali.

3.1 Introduzione

I1 Geometry Shader rappresenta uno stadio opzionale della pipeline grafica di Open-
GL, introdotto a partire dalla versione 3.2 e ampiamente utilizzato nelle specifiche
Core 4.6. Esso si colloca immediatamente dopo il Vertex Shader (oppure, se attivi,
dopo i Tessellation Shaders) e prima del Rasterizer. La sua funzione principale é
quella di elaborare primitive geometriche complete, generando nuove primitive da

inviare agli stadi successivi della pipeline [2], [6], [7. [14], [18].

Figura 3.1: Schema della pipeline di rendering con il Geometry Shader.
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3.2 Caratteristiche generali

Una delle principali peculiarita del Geometry Shader é la possibilita di accedere
simultaneamente a tutti i vertici che compongono una primitiva, a differenza del
Vertex Shader che opera su singoli vertici in modo indipendente. Questo lo rende
adatto a operazioni che richiedono la conoscenza della struttura geometrica com-
plessiva della primitiva, come la generazione di nuove primitive o I’eliminazione
condizionata di quelle in ingresso.

Le due operazioni principali che il Geometry Shader consente di eseguire sono il
culling e I’'amplifying. La prima consiste nello scartare primitive in base a criteri
specifici, evitando di emettere vertici verso gli stadi successivi della pipeline. Questo
permette di ridurre il carico computazionale complessivo e ottimizzare il rendering.
Se il processo di scarto coinvolge solo un sottoinsieme limitato e selezionato delle
primitive, si parla di selective culling. La seconda operazione invece, indica la
generazione dinamica di una o piul primitive di output a partire da ciascuna primitiva
in ingresso. Le primitive emesse devono appartenere a un solo tipo, che puo anche
essere differente rispetto a quello della primitiva originale. Questa tecnica € utile per
implementare algoritmi che richiedono 'aggiunta di dettaglio geometrico in modo
dinamico, come ’espansione di mesh, la generazione di silhouette o I'estrusione di
superfici.

3.3 Creazione e distruzione

Per quanto riguarda il Geometry Shader, la procedura di creazione e distruzione
non si discosta da quella generale illustrata nella sezione 2.3.1] La differenza risiede
esclusivamente nel parametro passato alla funzione glCreateShader, che in que-
sto caso € GL_GEOMETRY_SHADER. In questo modo lo shader viene riconosciuto da
OpenGL come Geometry Shader, rendendone possibile la compilazione e 1'utilizzo
all’interno della pipeline grafica.

3.4 Primitive di adiacenza

Con l'introduzione del Geometry Shader in OpenGL é stata ampliata la tipologia
di primitive grafiche disponibili, includendo anche primitive arricchite da vertici di
adiacenza (adjacency vertices). Questi vertici aggiuntivi non fanno parte della pri-
mitiva principale da renderizzare, ma forniscono informazioni sui poligoni o segmenti
adiacenti. Cio risulta particolarmente utile in algoritmi che richiedono consapevo-
lezza della topologia locale della mesh, come nel caso di rilevamento dei bordi (edge
detection), shadow volumes (tecnica per generare ombre basata sulle silhouette degli
oggetti) o smussatura geometrica (smooth shading).

Di seguito si riportano le principali primitive con adiacenze supportate da OpenGL:

e GL_LINES ADJACENCY (Figura [3.2): questa modalita definisce seg-
menti con adiacenza laterale. Ogni geometria ¢ caratterizzata da 4 vertici. I
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vertici v; e vy sono utilizzati per costruire il segmento, mentre i vertici vg e v3
forniscono informazioni topologiche sulle connessioni precedenti e successive.

Figura 3.2: Rappresentazione di una primitiva GL_LINES_ADJACENCY.

e GL LINE STRIP ADJACENCY (Figura : ogni primitiva € costi-
tuita da IV 4 3 vertici, collegati in modo da formare una sequenza di segmenti
adiacenti (dove N indica il numero di segmenti che si andranno a generare),
comprensiva delle informazioni sui vertici adiacenti alla sequenza stessa. I seg-
menti sono ottenuti collegando ogni coppia di vertici successivi, da v; a vyy1.
I vertici vg e vy invece, fanno riferimento ai vertici adiacenti rspettivamente
all’inizio e alla fine della sequenza.

Figura 3.3: Rappresentazione di una primitiva GL_LINE_STRIP_ADJACENCY.

e GL TRIANGLES ADJACENCY (Figura : consente di specificare
un triangolo insieme ai vertici adiacenti ai suoi lati. Ogni primitiva ¢ caratte-
rizzata da 6 vertici. Il triangolo vero e proprio viene costruito utilizzando i tre
vertici vy, v e vg. Gli altri vertici si riferiscono ai punti adiacenti relativi ai
vari lati del triangolo: il vertice vy ¢ adiacente al lato (vg, vs), v3 ¢ adiacente
a (vg, v4) € vs & adiacente a (vy, vp).

Figura 3.4: Rappresentazione di una primitiva GL_TRIANGLES_ADJACENCY.

e GL _TRIANGLE STRIP ADJACENCY (Figura|3.5): ogni primitiva
utilizza 4 + 2N vertici, definendo una sequenza di triangoli con adiacenze
(dove N ¢ il numero di triangoli che si andranno a generare). Partendo dal
vertice vy, tutti i vertici con indice pari (vg, vg, vy, ... ) costituiscono i triangoli
principali, mentre quelli con indice dispari (vy, vs, vs, ...) rappresentano i
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vertici adiacenti ai rispettivi lati del triangolo. Ogni triangolo viene costruito
facendo scorrere una finestra di tre vertici pari consecutivi (es. vy, va, v4 poi
Vg, V4, Ug, € COSl via), associati ai rispettivi vertici di adiacenza. Per ciascun
lato del triangolo ¢ fornito un vertice adiacente, che permette di accedere alla
geometria confinante.

Figura 3.5: Rappresentazione di una primitiva GL_TRIANGLE_STRIP_ADJACENCY.

3.5 Input

Nonostante OpenGL supporti una vasta gamma di primitive geometriche nei vari
stadi della pipeline di rendering, il Geometry Shader puo accettare in ingresso solo
un sottoinsieme ristretto di queste. Ciascuna primitiva ammessa rappresenta una
singola entita geometrica composta da un numero fisso di vertici, che il Geometry
Shader elabora come unita.

All’ingresso del Geometry Shader é necessario specificare il tipo di primitiva che esso
ricevera in input, utilizzando la seguente sintassi:

layout (type) in;

dove type rappresenta una delle primitive geometriche supportate, elencate di se-
guito. Questa dichiarazione é obbligatoria, poiché informa il compilatore su come
interpretare i dati dei vertici provenienti dallo stadio precedente della pipeline, ed é
fondamentale affinché lo shader possa accedere ai vertici in modo coerente.

Il tipo di primitiva specificato deve essere compatibile con 'output del Vertex Shader
oppure, se presente, con quello del Tessellation Evaluation Shader. In particolare, se
il Tessellation Shader & attivo, il tipo di primitiva deve corrispondere al dominio di
output dichiarato nel Tessellation Evaluation Shader; altrimenti, deve essere coeren-
te con la primitiva utilizzata a livello applicativo (Application Stage) nella chiamata
a glDrawArrays o glDrawElements, cosi come € coerente a queste il Vertex Shader.

Di seguito vengono elencate le primitive geometriche utilizzabili come input per un
Geometry Shader, con il valore da sostituire a type indicato tra parentesi:
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e points (points): ogni invocazione dello shader riceve un singolo vertice. Uti-
lizzato per operazioni puntuali come la generazione di particelle. E valido
in combinazione con le primitive GL_POINTS (in caso di Vertex Shader) o in
modalitad point_mode (in caso di Tessellation Shaders).

e lines (lines): ogni invocazione riceve due vertici, che rappresentano l'inizio
e la fine di un segmento. Utilizzato per primitive di tipo GL_LINES (in caso di
Vertex Shader) o per il dominio isolines (in caso di Tessellation Shaders).

e lines with adjacency (lines_adjacency): ogni invocazione riceve quattro
vertici. I vertici v e v, formano la linea principale, mentre vy e v3 sono vertici
adiacenti alle estremita della linea. Questa configurazione fornisce informa-
zioni topologiche locali ed ¢ usata con le primitive GL_LINES_ADJACENCY e
GL_LINE_STRIP_ADJACENCY (in caso di Vertex Shader). Questa primitiva non
& compatibile con i domini dei Tessellation Shaders, risultando quindi dispo-
nibile solamente per i parametri della funzione glDrawArrays specificati in
precedenza.

e triangles (triangles): ogni invocazione riceve tre vertici, che definiscono
un triangolo. E la primitiva pitt comune per rappresentare superfici e viene
utilizzata in presenza di GL_TRIANGLES (in caso di Vertex Shader) oppure con
i domini triangles e quads del Tessellation Shaders (in quest’ultimo caso, i
quadrilateri vengono suddivisi in triangoli).

e triangles with adjacency (triangles_adjacency): ogni invocazione riceve
sei vertici. I vertici vy, vy e vy definiscono il triangolo principale, mentre vy,
v3 € v5 sono vertici adiacenti ai lati opposti di ciascun vertice del triangolo.
Utilizzato con GL_TRIANGLES_ADJACENCY e GL_TRIANGLE_STRIP_ADJACENCY
(in caso di Vertex Shader). Questa primitiva non ¢ compatibile con i domini dei
Tessellation Shaders, risultando quindi disponibile solamente per i parametri
della funzione glDrawArrays specificati in precedenza.

3.6 Output

Analogamente all’input, anche per 'output i tipi di primitiva che un Geometry Sha-
der puo generare costituiscono un sottoinsieme limitato rispetto all’intero set dispo-
nibile in OpenGL. In questo caso, il tipo di primitiva emessa deve essere dichiarato
esplicitamente tramite l'istruzione:

layout (type, max_vertices = N) out;

dove il parametro type specifica la tipologia di primitiva prodotta dallo shader,
mentre max_vertices indica il numero massimo di vertici che possono essere gene-
rati per ciascuna invocazione dello shader. Eventuali vertici generati oltre questo
limite verranno ignorati. La specifica di max_vertices € obbligatoria e permette al
compilatore di ottimizzare ’allocazione delle risorse durante il rendering.

I vertici emessi dal Geometry Shader vengono assemblati nella primitiva indicata
dalla dichiarazione. Le tipologie di output supportate sono:
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e points (points): ogni vertice emesso viene interpretato come una primitiva
puntiforme indipendente.

e line strip (line_strip): viene generata una sequenza di segmenti collegati.
E necessario emettere almeno due vertici per costruire la prima linea; ogni
vertice successivo estende la striscia aggiungendo un nuovo segmento connesso
all’ultimo vertice emesso.

e triangle strip (triangle_strip): ¢ necessario emettere almeno tre vertici
per iniziare la costruzione. Ogni nuovo vertice, a partire dal terzo, genera
un nuovo triangolo insieme ai due vertici precedenti. Con N vertici emessi, €
possibile generare fino a N — 2 triangoli. Ad esempio, con N = 6, i triangoli
generati saranno: (vy, va,v3), (g, v3,vs), (U3, 04, 05) € (v4, V5, Vg)-

Questi tre tipi di output permettono di creare sia forme geometriche complesse sia
quelle pit semplici. Ad esempio, per generare un singolo triangolo ¢ sufficiente
specificare triangle_strip e restituire esattamente tre vertici.

E importante sottolineare che il valore assegnato a max_vertices non & puramente
formale: questo parametro influenza direttamente 1’allocazione delle risorse interne
durante ’esecuzione del Geometry Shader. Se impostato troppo alto, senza una
reale necessita basata sul numero di vertici generati, puo causare uno spreco di me-
moria e ridure l'efficienza del rendering. Al contrario, se é troppo basso, si rischia di
non riuscire a generare tutte le primitive desiderate. Per questo motivo, é consiglia-
bile stimare con cura il numero massimo di vertici realmente necessari in ciascuna
invocazione dello shader, e fornire un valore di max_vertices il piu preciso possi-
bile, lasciando eventualmente un piccolo margine di sicurezza. In questo modo si
ottimizza I'uso delle risorse e si migliora la performance complessiva.

3.7 Variabili built-in e funzionamento interno

3.7.1 Gestione dei dati in ingresso

Il Geometry Shader viene invocato una volta per ciascuna primitiva in ingresso,
emessa dallo stadio precedente della pipeline (il Tessellation Evaluation Shader o il
Vertex Shader). Durante ogni invocazione, il Geometry Shader ha accesso ai dati
relativi ai vertici della primitiva in ingresso attraverso l'array built-in gl_in[] (vedi
sezione [2.3.2)).

Oltre a questo, esistono anche altre variabili built-in globali di input a cui il
Geometry Shader puo accedere. Fra queste, alcune delle piu importanti sono:

e gl PrimitiveIDIn (int): identificatore della primitiva in ingresso. Viene as-
segnato automaticamente dal sistema, incrementato per ogni primitiva elabo-
rata. E utile in contesti dove ¢ necessario distinguere tra primitive individuali
per applicare effetti specifici, oppure per indicizzare buffer o array uniform.

e gl_InvocationID (int): se & stata abilitata I’esecuzione multipla per primi-
tiva tramite la direttiva layout (invocations = N), questa variabile contiene
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I'indice dell'invocazione corrente (da 0 a N — 1). Ogni invocazione riceve gli
stessi dati in input, ma pud produrre output indipendenti, rendendo possibile
il rendering parallelo di piu varianti geometriche della stessa primitiva.

3.7.2 Emissione di vertici

Una delle peculiarita piu potenti del Geometry Shader rispetto agli stadi precedenti
della pipeline grafica € la capacita di generare dinamicamente nuove primitive par-
tendo da quelle in ingresso. Questa funzionalita é abilitata attraverso due funzioni
fondamentali fornite da GLSL:

e EmitVertex(): emette un singolo vertice verso lo stream di output. I dati as-
sociati al vertice (posizione, attributi, layer, ecc.) sono determinati dal valore
corrente delle variabili di output, siano esse built-in o definite dall'utente. La
funzione memorizza i valori attuali delle variabili e li copia nello stream. Il
vertice emesso contribuisce alla costruzione della primitiva definita nel layout
di output dello shader. Dopo ogni chiamata a EmitVertex (), le variabili di
output assumono valore undefined, a meno che siano dichiarate con il quali-
ficatore flat. In tal caso, il loro valore viene mantenuto invariato anche nei
vertici successivi, evitando la necessita di riassegnarle esplicitamente. Questo
comportamento ¢ utile per trasmettere informazioni discrete o costanti, senza
rischio di inconsistenza.

e EndPrimitive(): termina l’assemblaggio della primitiva corrente, combinan-
do i vertici presenti nel buffer per formare la primitiva specificata dal tipo
di output specificato. Dopo aver terminato la primitiva, avvia implicitamente
I’assemblaggio di una nuova primitiva a partire dai successivi vertici emessi. E’
indispensabile quando si stanno emettendo piu primitive distinte nella stessa
invocazione. Se non viene chiamata esplicitamente, OpenGL la invoca auto-
maticamente alla fine dell’invocazione dello shader, concludendo la primitiva
corrente con tutti i vertici emessi fino a quel momento.

Il numero massimo di vertici che si possono emettere ¢ limitato dal parametro
max_vertices dichiarato nel layout dello shader. E fondamentale non superare
questo limite, pena comportamenti indefiniti o errori di validazione.

Se si utilizza il Transform Feedback, ogni vertice emesso tramite EmitVertex() puo
essere catturato in un buffer sul lato CPU/GPU. In questo contesto, la distinzione
tra EmitVertex() e EndPrimitive() diventa rilevante anche per la segmentazione
logica dei dati.

Il comportamento delle variabili flat fa riferimento al provoking vertex, ossia il
primo vertice della primitiva per default (modificabile con glProvokingVertex).
Questo meccanismo ¢ utile per codificare ID di istanza, etichette di segmentazione
o altre informazioni discrete che non devono essere interpolate.
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3.7.3 Gestione dei dati in uscita

Nel Geometry Shader, ’emissione di vertici verso lo stadio successivo della pipeline
avviene attraverso un insieme di variabili di output, sia definite dall’utente sia fornite
come built-in dal linguaggio GLSL. Le variabili built-in di output sono fondamen-
tali per controllare il comportamento della rasterizzazione, I'identita delle primitive
emesse e la destinazione del rendering nel framebuffer.

Queste variabili devono essere valorizzate esplicitamente prima di ogni chiamata a
EmitVertex(), poiché il loro stato viene invalidato dopo ciascuna emissione. In caso
contrario, i vertici successivi potrebbero contenere dati incoerenti o non definiti.

Le principali variabili built-in di output sono:

gl_Position (vecd): rappresenta la posizione nello spazio clip (spazio omoge-
neo) del vertice emesso. E’ la variabile pit importante, in quanto determina do-
ve la geometria verra proiettata all’interno dello spazio clip e, successivamente,
visualizzato a schermo.

gl_PointSize (float): specifica la dimensione in pixel del punto da rasteriz-
zare. B usata solo se il tipo di primitiva di output ¢ points. Valori troppo
piccoli possono rendere il punto invisibile, mentre valori troppo grandi possono
causare artefatti o clipping.

gl_ClipDistance[] e gl_CullDistance[] (float[]): permettono di definire
piani di clipping e culling personalizzati. Ogni elemento rappresenta la distan-
za del vertice da un piano implicito. Se tutti i vertici di una primitiva hanno
valori negativi per un determinato piano, la primitiva viene completamente
scartata.

gl_PrimitiveID (int): identifica la primitiva emessa dal Geometry Shader.
Puo essere usato per distinguere e marcare le primitive nell’output finale. Men-
tre gl_PrimitiveIDIn € asseghato automaticamente alla primitiva in ingres-
so, gl_PrimitiveID puo essere impostato manualmente e indipendentemente
per ciascuna primitiva emessa. Questa flessibilitd consente, ad esempio, di
duplicare primitive assegnando loro ID distinti.

gl_Layer (int): specifica il layer del framebuffer verso cui la primitiva sara
rasterizzata. E utilizzato nei contesti di layered rendering (generazione dina-
mica di ogni faccia di una cubemap, shadow map array, rendering simultaneo
su pin texture 2D-array, ... ). Se omesso, la primitiva viene scritta nel layer 0

di default.

gl_ViewportIndex (int): determina 'indice della viewport attiva su cui raste-
rizzare la primitiva. Usato in combinazione con pit viewport definite tramite
glViewportArrayv (utile per scenari di rendering stereoscopico, split-screen o
visualizzazione simultanea da angolazioni diverse).

Tutte queste variabili, se utilizzate, devono essere coerenti con il tipo di output
dichiarato nel layout dello shader e con il contesto di rendering.
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3.7.4 Gestione di piu stream di output

Il Geometry Shader offre una funzionalita avanzata poco utilizzata ma molto po-
tente: la gestione simultanea di stream multipli di output. Questa capacita & stata
introdotta con l'obiettivo di rendere piu flessibile e modulare il processo di Tran-
sform Feedback, permettendo a uno stesso shader di scrivere simultaneamente su
pit flussi distinti di dati.

In questo contesto, uno stream rappresenta un canale logico distinto attraver-
so cui lo shader pud emettere vertici. Ogni stream ¢ identificato da un inte-
ro (0,1,2,...), e pud essere utilizzato per generare e differenziare pit insiemi di
geometrie simultaneamente.

Per specificare a quale stream indirizzare un blocco di output o una singola emissione,
si usa il qualificatore: layout(stream = i).

Quando si lavora con stream multipli, non ¢ possibile utilizzare EmitVertex() e
EndPrimitive (), poiché queste funzioni operano implicitamente sullo stream 0. In
alternativa, si ricorre alle versioni esplicite:

e EmitStreamVertex (i), per emettere un vertice verso lo stream i, utilizzando
i valori correnti delle variabili di output dichiarate con stream = i.

e EndStreamPrimitive(i), per terminare la primitiva sullo stream i,
analogamente a EndPrimitive() ma per lo stream specificato.

Tuttavia, solo il flusso con stream = 0 puo essere effettivamente rasterizzato. Gli
stream con ID maggiore di zero non vengono rasterizzati, ma possono essere catturati
tramite Transform Feedback, rendendoli utili per operazioni come la generazione
dinamica di geometrie, simulazioni, oppure deferred rendering multi-pass.

Inoltre, I'utilizzo del multi-stream é limitato al tipo di primitiva points. Non &
consentito emettere linee o triangoli su stream diversi da zero.

3.7.5 Uso e sincronizzazione delle variabili in e out

Nel contesto della pipeline programmabile di OpenGL, lo scambio di dati tra gli
stadi avviene attraverso l'utilizzo di variabili qualificabili come in (input) e out
(output), i cui valori vengono interpolati, propagati o semplicemente trasmessi da
uno stadio all’altro.

Nel caso specifico del Geometry Shader, tale comunicazione presenta delle partico-
larita uniche, dovute al fatto che questo stadio opera sull’intera primitiva, e non su
singoli vertici come accade nel Vertex Shader.

Quando un Vertex Shader emette una variabile di output, il Geometry Shader riceve
i valori per ciascun vertice della primitiva in ingresso. Per questo motivo, ogni
variabile in nello shader di geometria deve essere dichiarata come array, contenente
tanti elementi quanti sono i vertici della primitiva.

Le variabili di output del Geometry Shader vengono dichiarate con il qualificato-
re out, analogamente agli altri stadi. Tuttavia, a differenza del Vertex Shader,
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dove ciascun out ¢ automaticamente associato al vertice corrente, nel Geometry
Shader € necessario assegnare esplicitamente tali valori prima di ogni chiamata a
EmitVertex().

E fondamentale che le variabili out di uno stadio corrispondano esattamente, per
nome e tipo, alle variabili in dello stadio successivo. In caso contrario, OpenGL
potrebbe generare errori di link durante la compilazione del programma shader,
oppure comportamenti indefiniti in fase di esecuzione.

3.8 Layered Rendering

3.8.1 Render to screen e render to texture

Nel contesto della grafica in tempo reale, ¢ fondamentale distinguere tra due
modalita principali di rendering:

e Render to screen: ¢ la modalita predefinita, in cui 'output finale della pi-
peline grafica viene visualizzato direttamente sullo schermo, tramite il default
framebuffer, fornito dal sistema operativo o dalla libreria grafica (come GL-
FW). Questa modalita consente di scrivere su una sola superficie alla volta e
non € adatta a tecniche avanzate che richiedono pit destinazioni di output.

e Render to Texture: conosciuto anche come off-screen rendering, consiste nel
disegnare il risultato della pipeline su una texture invece che sullo schermo.
Questa texture puod poi essere riutilizzata in passaggi successivi della pipeline
grafica, per effetti come shadow mapping, riflessi e rifrazioni, deferred shading,
post-processing, o rendering multi-vista.

3.8.2 Caratteristiche generali

Il layered rendering ¢ una tecnica di render to texture migliorata per permettere
di scrivere simultaneamente su piu layer di una texture complessa all’interno di
un’unica draw call.

In OpenGL, questa tecnica ¢ abilitata tramite la variabile built-in gl_Layer nel
Geometry Shader (o in altri stadi avanzati tramite estensioni). Ogni primitiva gene-
rata dallo shader puo essere indirizzata verso un layer specifico della texture, senza
dover effettuare piu passaggi di rendering separati.

Il layered rendering puo essere applicato ai seguenti tipi di texture:

e Texture 3D: si tratta di texture organizzate come un insieme di slice bidi-
mensionali lungo 'asse della profondita. Ogni slice rappresenta uno strato
della struttura tridimensionale. Queste texture sono particolarmente utili per
effetti volumetrici (come nebbia, fumo o materiali traslucidi) e simulazioni
tridimensionali, dove & necessario campionare dati in tutto il volume.

e Texture Array 2D: collezioni di texture 2D indipendenti ma tutte della
stessa dimensione. Ogni layer dell’array rappresenta una singola immagine.
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Questa struttura consente di accedere a piu texture nello stesso shader senza
dover cambiare binding, risultando efficiente per scenari come il rendering si-
multaneo di ombre generate da piu luci (cascaded shadow maps, ossia mappe
d’ombra generate a piu distanze per luci direzionali) o per il multiview ren-
dering, dove la stessa scena viene renderizzata da piu angolazioni in un unico
passaggio.

e Cube Map: composte da sei facce quadrate che rappresentano le sei direzioni
dello spazio tridimensionale (£ X, + Y, + Z). Queste texture vengono spesso
utilizzate per creare riflessioni ambientali e per lo shadow mapping omnidire-
zionale, tipico di luci puntiformi, dove é necessario calcolare ombre in tutte le
direzioni a partire da una singola sorgente luminosa.

3.8.3 Funzionamento

Il layered rendering sfrutta la variabile built-in gl_Layer all’interno del Geometry
Shader, per indirizzare ciascuna primitiva generata verso un layer specifico di una
texture complessa, come una 3D, una 2D array o una cube map. Questo consente
di aggiornare piu layer contemporaneamente all’interno di una singola draw call,
evitando la necessita di effettuare piu passaggi di rendering separati.

Dal punto di vista della CPU, il processo richiede alcuni passaggi preparatori fonda-
mentali. Innanzitutto, € necessario creare la texture di destinazione, allocando tutti
i layer desiderati direttamente in memoria GPU. Questa texture viene poi collegata
a un Framebuffer Object tramite gli attachment appropriati. Spesso viene allocato
anche un depth buffer condiviso, in modo che tutte le primitive scritte nei vari layer
possano essere testate correttamente. Parallelamente, si preparano gli shader che
utilizzeranno gl_Layer, assicurandosi che siano compilati e pronti per la pipeline.

Durante il rendering, le primitive generate in un’unica draw call possono essere
distribuite tra i diversi layer in base a logiche definite nello shader, come l'indice
della luce, la slice di un volume o la faccia di una cube map. Lato CPU, é importante
avere una corrispondenza chiara tra layer e significato applicativo. Questo consente
di controllare e prevedere correttamente il contenuto di ciascun layer.

Al termine del rendering, la texture ottenuta puo essere riutilizzata in passaggi suc-
cessivi della pipeline grafica quali: shadow mapping (calcolo delle ombre proiettate
dagli oggetti rispetto a una sorgente luminosa), deferred shading (tecnica in cui le
informazioni geometriche e di materiale vengono prima memorizzate in buffer sepa-
rati e poi usate per calcolare I'illuminazione), post-processing (applicazione di effetti
visivi sull'immagine finale) e multiview rendering (rendering simultaneo della stessa
scena da pit angolazioni).

Infine, i risultati di questi passaggi vengono memorizzati in appositi buffer o texture,
che possono essere poi combinati, filtrati o campionati negli stadi successivi della
pipeline per generare 'immagine finale da visualizzare sullo schermo o da riutilizzare
in effetti grafici pit complessi. In questo modo, ogni passaggio contribuisce alla
costruzione dell'immagine finale senza dover riscrivere nuovamente tutta la scena.
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3.8.4 Considerazione sulle prestazioni

Il layered rendering permette di ridurre drasticamente il numero di passaggi di ren-
dering richiesti per aggiornare pit superfici, con notevoli benefici in termini di per-
formance, soprattutto su GPU moderne. Tuttavia, deve essere usato con attenzione
poiché puo aumentare la complessita degli shader e incrementare 1'utilizzo di risorse
di memoria.

3.9 Query e misurazioni

Come gia visto nel capitolo precedente (vedi sezione , OpenGL mette a dispo-
sizione meccanismi di query statistiche per valutare le prestazioni e I’esecuzione dei
Tessellation Shaders. Analogamente, questi strumenti possono essere utilizzati an-
che per monitorare vari aspetti del Geometry Shader, fornendo informazioni precise
sul suo comportamento all’interno della pipeline grafica.

Per il Geometry Shader, OpenGL supporta due tipi principali di query:

e GEOMETRY_SHADER_INVOCATIONS: conta il numero totale di invocazioni del
Geometry Shader effettuate durante il rendering. Ogni primitiva in ingres-
so allo shader (es. un triangolo o una linea) genera un’invocazione distinta.
Questo valore ¢ utile per verificare il corretto comportamento della pipeline e
per valutare il carico computazionale effettivo sul Geometry Shader.

e GEOMETRY_SHADER_PRIMITIVES_EMITTED: rileva il numero complessivo di pri-
mitive effettivamente emesse dallo shader. Questo dato tiene conto delle chia-
mate a EmitVertex() e EndPrimitive(), e puo risultare diverso dal numero
di primitive in ingresso, specialmente nei casi di generazione o filtraggio pro-
cedurale. E’ uno strumento chiave per comprendere l'efficienza e 'utilizzo
dello stadio, soprattutto in applicazioni che sfruttano il Geometry Shader per
amplificare o ridurre dinamicamente la geometria.

Anche per il Geometry Shader, come per i Tessellation Shaders, ¢ possibile ese-
guire query multiple in parallelo e leggere i risultati in modalita asincrona tramite
GL_QUERY_RESULT_NO_WAIT, riducendo cosi l’eventuale overhead prestazionale.

In generale, I'utilizzo delle query statistiche permette di ottenere una visione chiara
del comportamento del Geometry Shader, aiutando a ottimizzare le prestazioni e a
individuare eventuali colli di bottiglia nella pipeline grafica.

3.10 Geometry Shader Instancing

I Geometry Shader Instancing ¢ una funzionalita avanzata del linguaggio GLSL
che consente l'esecuzione parallela e indipendente di piu istanze dello shader per
ciascuna primitiva in ingresso. In altre parole, per ogni primitiva ricevuta dallo
stadio precedente (il Tessellation Evaluation Shader o il Vertex Shader), ¢ possibile
avviare pitl invocazioni dello stesso Geometry Shader, ognuna delle quali lavora in
modo autonomo ma condividendo gli stessi dati di input.
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L’instancing si abilita dichiarando nel layout di ingresso del Geometry Shader il
numero di invocazioni desiderato tramite il qualificatore: layout(invocations =
N) in, dove N é un intero positivo che specifica quante istanze dello shader verran-
no eseguite per ogni primitiva. Il valore di N non puo superare il limite imposto
dall’hardware, accessibile tramite la costante MAX_GEOMETRY_SHADER_INVOCATIONS,
ovvero il valore massimo stabilito dal linguaggio per il Geometry Shader.

All’interno del codice GLSL dello shader, ogni invocazione puo distinguersi mediante
la variabile built-in: in int gl_InvocationID. Questa variabile assume un valore
intero compreso nell'intervallo [0, N — 1] e identifica univocamente ciascuna istanza.
In questo modo, é possibile differenziare il comportamento delle invocazioni sulla
base del loro ID, pur partendo dallo stesso input.

Ogni invocazione € libera di emettere vertici e primitive separatamente dalle al-
tre, utilizzando le normali funzioni EmitVertex() ed EndPrimitive(). Tutta-
via, tutte le invocazioni devono rispettare il limite massimo dichiarato tramite:
layout (max_vertices = M) out.

Sebbene 'instancing offra una grande flessibilita, ¢ importante tenere conto del costo
computazionale: ogni invocazione introduce un overhead aggiuntivo. E consigliabile:
limitare il numero di invocazioni, evitare duplicazioni di lavoro tra invocazioni e
sfruttare il parallelismo solo quando necessario, per evitare sprechi di risorse GPU.
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Capitolo 4

Fondamenti Matematici

La matematica costituisce la base teorica indispensabile per lo studio e lo sviluppo
delle tecniche di computer grafica affrontate in questa tesi, sia da un punto di vista
teorico, sia da un punto di vista pratico attraverso il progetto. In particolare, la
descrizione di superfici, la manipolazione di dati geometrici e la definizione di alcuni
algoritmi di rendering richiedono la conoscenza di alcuni concetti fondamentali di
analisi matematica e algebra vettoriale [17].

Questo capitolo ha lo scopo di presentare una panoramica degli strumenti matematici
di riferimento, in modo da costruire una base solida che permetta di comprendere e
giustificare i passaggi che, nei capitoli successivi, verranno assunti come gia acquisiti.

4.1 Spazi vettoriali e operazioni sui vettori

Gli spazi vettoriali forniscono la struttura matematica fondamentale per rappre-
sentare punti, vettori e direzioni nello spazio. La comprensione di concetti come
combinazioni lineari, basi, norme e prodotti scalari o vettoriali ¢ indispensabile per
descrivere concetti geometrici alla base di molte operazioni di computer grafica.

4.1.1 Concetti fondamentali

Spazio vettoriale

Sia dato un generico campo K (ad esempio R, C o Q). Gli elementi di K sono
detti scalari. Uno spazio vettoriale su K & un insieme V' di elementi, detti vettori,
che possono essere rappresentati, nel caso particolare di K", tramite una tupla di
n componenti scalari. Geometricamente, in questo caso, ciascun vettore puod essere
interpretato come un segmento orientato che parte dall’origine e termina nel punto
definito dalle sue componenti, definendone modulo, direzione e verso. Uno spazio
vettoriale ¢ poi dotato di due operazioni:

e Una operazione detta somma (V+V — V), che associa a due vettori v, w € V
un terzo vettore v +w € V.
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e Una operazione detta prodotto per scalare (K x V' — V'), che associa ad un
vettore v € V e ad uno scalare A € K un vettore \v € V.

Queste due operazioni soddisfano le seguenti proprieta:
evtw=w+v VoweV
e (v+w)tu=v+(w+u) VowueV
a(bv) = (ab)v YveV Va,beK
(a+bv=av+bv YveV VabekK

av+w)=av+aw VovweV VaekK
J(—v)|v+(-v)=0 VveV

e 0t+tv=v VoveV
e luv=v VoeV

Combinazione lineare

Siano vy, v, . .., v, vettori appartenenti a uno spazio vettoriale V. Un vettore v € V
¢ una combinazione lineare di questi vettori, se esistono degli scalari A\, Ao, ..., A\, €
K tali che:

U:)\1U1+>\2U2+"'+/\nvn

In altre parole, un vettore ¢ combinazione lineare di altri vettori di partenza se puo
essere scritto come somma pesata dei vettori di partenza con coefficienti scalari.

Inoltre, i vettori vy, ..., v, sono detti linearmente indipendenti se nessuno di questi
vettori € combinazione lineare degli altri, cioé se 'unica combinazione lineare che
produce il vettore nullo & quella in cui tutti i coefficienti sono nulli:

AU+ Ao+ -+ A\, =0 — AM=X=--=X,=0

Se esiste una combinazione non banale (con almeno un coefficiente diverso da zero)
che da il vettore nullo, i vettori sono invece detti linearmente dipendent:.

Base

Sia V' uno spazio vettoriale definito su un campo K. Una base di V & un insieme
di vettori linearmente indipendenti {vy,...,v,}, tale che ogni vettore v € V possa
essere scritto come combinazione lineare di essi:

V=AU F o+ AU, A EK

Base canonica in R"

In uno spazio vettoriale R", la base canonica é U'insieme di vettori {eq,es, ..., e,}
definiti come:
e1=(1,0,0,...,0), es=(0,1,0,....0), ..., en=1(0,0,...,1)
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Ogni vettore della base canonica ha infatti tutte le componenti nulle eccetto una
componente pari a 1, corrispondente alla posizione del vettore nella base.

Questo particolare tipo di base permette di esprimere in modo diretto ogni vettore
r € R™, con componenti z = (x,2s,...,2,), come combinazione lineare dei suoi
vettori:

T = x1€1 + Loty + -+ xp€,

4.1.2 Operazioni fondamentali

Somma di vettori

Data una coppia di vettori a,b € R", la loro somma ¢ definita componente per
componente:

a+b:(a1+b1, CL2+62, cey CLn+bn)

Geometricamente, questa operazione viene eseguita secondo il metodo del parallelo-
gramma: si pongono a e b con origine comune, costruendo, a partire da questi, il
parallelogramma relativo. La diagonale del parallelogramma formato rappresenta il
risultato della somma a + b.

Prodotto per scalare
Dato un vettore a € R™ e uno scalare A € K, il loro prodotto € definito come:

Aa = (Aay, Aag, ..., Aay)
Geometricamente, A agisce come un fattore di scala. Se A > 1 il vettore viene
allungato, se 0 < A < 1 viene accorciato, mentre se A < 0 viene anche invertito di
direzione.

Norma di un vettore

La norma (detta anche lunghezza o modulo) di un vettore a € R™ ¢ definita come:

lall = \Ja? + a3+ + a2

Questa rappresenta la distanza del punto identificato da a dall’origine. Geome-
tricamente, ¢ la lunghezza del segmento che va dall’origine all’estremo finale del
vettore.

Proiezione di vettori

Data una coppia di vettori a,b € R™ con b # 0, la proiezione di a sulla direzione di
b é definita come:

) a-b
proj,(a) = W b

Si tratta quindi di un vettore, parallelo a b, che rappresenta la componente di a
lungo la direzione individuata da b.
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La lunghezza di tale proiezione, ossia il modulo della componente di a lungo b, é:

] la - b
|proj,(a)| =
’ [10]]

Geometricamente, la proiezione rappresenta ’ombra che il vettore a getta sulla retta
generata da b, se la luce ¢ ortogonale a b.

4.1.3 Prodotto scalare tra vettori

Definizione formale

Siano a,b € R™ due vettori con componenti a = (ay, as, . ..,a,) € b= (b1, by, ..., b,).
11 prodotto scalare canonico (o prodotto interno) tra a e b, indicato con a - b (o con
(a,b)), ¢ definito come la somma dei prodotti delle componenti corrispondenti dei
due vettori:

a-b=aby+aby+ -+ anby = Y _aib; (a-bER)
=1

Proprieta

In generale, un prodotto scalare definito sullo spazio vettoriale R™ ¢ un’applicazione
R™ x R® — R che gode delle seguenti proprieta:

o Simmetria: a-b=>b-a Va,beR"
o Distributivita rispetto alla somma: a-(b+c¢)=a-b+a-c Va,b,ceR"
e Linearita rispetto a valori scalari: a - (Ab) = A(a-b) Va,b e R" VA eR

e Positivita definita: a-a>0 e a-a=0 <= a=0

Norma secondo il prodotto scalare

Per comprendere il significato geometrico del prodotto scalare, ¢ utile ridefinire il
concetto di morma, sulla base di quanto appena detto. La norma di un vettore
a € R™ puo infatti essere espressa in termini di prodotto scalare come la radice
quadrata del prodotto del vettore con se stesso:

Questa formulazione é resa possibile dalla proprieta di positivita definita del prodotto
scalare, che garantisce che a - a > 0, rendendo ben definita la radice quadrata.

Significato geometrico

Il prodotto scalare tra due vettori puo essere espresso in termini della loro norma e
dell’angolo # compreso tra essi. Dati due vettori a,b € R™, vale la relazione:

a-b=lall bl cos®
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Questa formula permette di interpretare il prodotto scalare come una misura di
quanto un vettore si proietta nella direzione dell’altro e di stabilire la relazione
angolare tra essi:

e Se § = 0, i vettori sono paralleli e il prodotto scalare & massimo e positivo
(a- b= [lal/l|o]])-

e Se 6 = 7, i vettori sono ortogonali e il prodotto scalare ¢ nullo (a-b = 0).

e Se = m, i vettori sono antiparalleli e il prodotto scalare € massimo in valore
assoluto ma negativo (a - b= —||a||||b])-

4.1.4 Prodotto Vettoriale

Definizione
Siano a,b € R3. Si indichi con ey, eq, €3 la base canonica di R?, dove:
€1 = (1,0,0), €y = (0,1,0), €3 = (0,0,1)

Ogni vettore x € R3 puo essere scritto come combinazione lineare dei vettori della
base canonica. In particolare, a e b si potranno esprimere come:

a = aje; + azez + azes b = bie; + byes + bses

I1 prodotto wvettoriale (anche detto cross product o prodotto esterno), indicato con
a X b, & definito come un nuovo vettore ottenuto dalla seguente formula:

€1 €2 ¢€3
axb= a; a9 as| = (CLng — a3b2)61 — (Cleg — a3b1>€2 + (a1b2 - a2b1)63
by by b3

Proprieta principali

Il prodotto vettoriale gode delle seguenti proprieta fondamentali:
o Antisimmetria: a X b= —(b X a)
e Linearita: (Aa) X b= A(a x b) per ogni A € R

e Ortogonalita: a xb L aeaxb L b

Significato geometrico

Il vettore a x b rappresenta il vettore ortogonale al piano individuato da a e b. Il suo
verso € determinato dalla regola della mano destra: si dispongono pollice, indice e
medio in modo che il pollice indichi la direzione di a, I'indice quella di b, e il medio
(perpendicolare al palmo) fornisce il verso del prodotto a x b.

Il modulo del prodotto vettoriale & dato dalla formula:

la > bl = [lall[|b]] sin(6)
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che, geometricamente, corrisponde all’area del parallelogramma costruito sui vettori
a e b, dove 0 & 'angolo tra questi due vettori. Da questa proprieta derivano alcune
conseguenze:

e |la x b|| =0 <= a e b sono vettori paralleli.

e |la x b|| ha valore massimo quando a e b sono ortogonali (||a||||0]])-

4.2 Sistemi di riferimento e coordinate omogenee

Le coordinate omogenee estendono la rappresentazione dei punti e dei vettori nello
spazio, consentendo di trattare traslazioni e proiezioni come trasformazioni lineari
mediante matrici 4x4. Questa formalizzazione & essenziale per la gestione delle
trasformazioni geometriche nelle pipeline di rendering.

4.2.1 Sistema di riferimento

La sola specifica di una base non é sufficiente per determinare la posizione di un
punto, ma occorre individuare anche un punto di riferimento. Il concetto di ba-
se vettoriale viene quindi esteso a quello di riferimento (o frame), definito come
una quaterna F' = (eq, eq, €3, ), dove e, e, e3 rappresenta la base e Py un punto,
chiamato origine del sistema di riferimento.

Dato quindi un riferimento F' e un punto P € R?, quest’ultimo puo essere espresso
come:

P:P0+U:p0+U1€1+0262+’U363

dove v = v1e1 + vaes + v3e3 € il vettore che collega Py a P e dove gli scalari vy, vg, v3
rappresentano le coordinate del punto P rispetto al riferimento F.

4.2.2 Coordinate omogenee

Nella rappresentazione classica, vettori e punti possiedono lo stesso numero di com-
ponenti, ma vengono rappresentate in maniera differente (v = vie; + voes + vses
e P = vie; + vgeq + v3e3 + By). Per evitare tale ambiguita, si introduce una
rappresentazione univoca dei due elementi, nota con il nome di coordinate omogenee.

L’idea consiste nell’associare a ciascun elemento un vettore a quattro componenti,
in cui I'ultima assume valore 0 per i vettori e 1 per i punti:

U:U161+U262+U363+0‘P0 P:U1€1+’U2€2+U3€3+1'P0

In questo modo punti e vettori vengono trattati e rappresentati in maniera uniforme:
(v1,v9,v3,0)T per i vettori e (vy, vy, v3,1)T per i punti. Cio rende possibile 1'utilizzo
di un unico formalismo matriciale per descrivere le varie trasformazioni geometriche.
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4.2.3 Cambio di sistema di riferimento

Si considerino due riferimenti F} = (x,y,2,0) e F» = (u,v,w,E). Un punto P
espresso in riferimento ad Fj, avra coordinate omogenee P = (x,,,, zp, 1)’ e si
esprimera come:

P=zyx+yy+22+1-0

Lo stesso punto P, espresso in riferimento ad F3, avra coordinate omogenee P =
(tp, vy, wp, 1)T € si esprimera come:

P=uwu+vv+ww+1-FE

La relazione che lega le coordinate di P nei due riferimenti puo essere espressa
tramite una matrice di cambiamento di base:

:L‘p Ly Ty Tw TE Up

yp — Yu Yo Yw YE Up

Zp Zu Rv Rw RE wp
1 0O 0 0 1 1

dove (x4, Yu, 2z,) rappresentano le coordinate del vettore u rispetto a Fi, (2, Yy, 2y)
sono le coordinate di v e (4, Yu, 2w) quelle di w. La colonna (zg, yg, zg) corrisponde
invece alle coordinate del nuovo punto di origine E espresse nel sistema F}.

4.3 Trasformazioni affini

Le trasformazioni affini rappresentano uno strumento centrale nella geometria com-
putazionale e nella computer grafica, in quanto consentono di collocare gli oggetti
all’interno della scena tridimensionale, modificarne la forma, generarne copie e sup-
portare la realizzazione di animazioni basate su variazioni temporali delle trasfor-
magzioni stesse. Inoltre, le trasformazioni affini costituiscono la base delle operazioni
di trasformazione dei vertici nella pipeline di rendering 3D.

4.3.1 Definizione

Una trasformazione geometrica lineare f : R” — R” si dice affine se pud essere
espressa come:
f(x)=Ax+b conxeR"

dove A € R"™" ¢ una matrice che rappresenta la componente lineare della
trasformazione e b € R™ ¢ un vettore che rappresenta la traslazione.

Tale tipo di trasformazione presenta alcune proprieta fondamentali:

o (Collinearita: 1 punti di una linea giacciono ancora sulla linea dopo la
trasformazione.

e Rapporto tra le distanze: il punto medio di un segmento rimane tale anche
dopo la trasformazione.
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Per rappresentare le trasformazioni affini in maniera compatta, ¢ conveniente usare le
coordinate omogenee. Questo permette di ridurre tutte le trasformazioni (comprese
le traslazioni) a una singola moltiplicazione matriciale, come avviene per le trasfor-
mazioni lineari. In pratica, utilizzando le coordinate omogenee, ogni trasformazione
affine puo essere riscritta come:

£y

A b
f(x)h:[OT 1] X; Con X) = .
1

dove A rappresenta la componente lineare, 07 un vettore riga nullo di lunghezza n e
b la traslazione. In questo modo, anche la traslazione, che non é una trasformazione
lineare pura, ¢ inglobata nella matrice.

4.3.2 Traslazione

Traslare una primitiva geometrica nello spazio, significa spostare tutti i sui punti
P = (z,y,%z) di uno stesso vettore ' = (d,,d,,d,), fino a raggiungere la nuova
posizione P’ = (2/,y/, 2’), dove:

¥=x+d, Yy =y+d, Z=z+d,
In notazione matriciale, questa trasformazione puo essere espressa come:

xl

N
Y =
Z/

xT

<

d
+ |d
d

IS IS

w

Nella notazione in coordinate omogenee ¢ possibile riscrivere la trasformazione come:

x! 1 0 0 d, x
y| |0 1 0 d, Y
110 01 d, z
1 00 0 1 1

4.3.3 Scalatura

Scelto un punto C' di riferimento (punto fisso), scalare una primitiva geometrica
significa riposizionare tutti i suoi punti P = (z,v, 2), rispetto a C, in accordo ai
fattori di scala s = (54, Sy, Sz).

In base ai valori assegnati ai fattori di scala, se s; < 1 le coordinate dei punti del-
I'oggetto lungo I’asse ¢ vengono avvicinate al punto di riferimento, se s; > 1 vengono
invece allontanate. Inoltre, se i fattori di scala non sono uguali, le proporzioni dell’og-
getto non sono mantenute e I'operazione prende il nome di scalatura non uniforme,
altrimenti, se le proporzioni sono mantenute, si parla di scalatura uniforme.
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Supponendo che il punto fisso sia lorigine O = (0,0,0), la scalatura puo essere
espressa in forma matriciale come:

x’ s, 0 0 x
vyl =10 s, 0]-|y
Z 0 0 s, z

Nella notazione in coordinate omogenee é possibile riscrivere la trasformazione come:

x s, 0 0 0 x
vl 10 s, 0 O Yy
110 0 s, 0 z
1 0O 0 0 1 1

4.3.4 Rotazione

Fissato un punto C' di riferimento (detto pivot) e un verso di rotazione (orario o
antiorario), ruotare una primitiva geometrica attorno a C' significa spostare di un
angolo # tutti i suoi punti nel verso assegnato, in maniera che per ognuno di essi si
conservi la distanza da C.

Le rotazioni tridimensionali attorno ai tre assi cartesiani possono essere espresse
nella forma generale:

dove la matrice R(f) varia a seconda dell’asse attorno al quale viene effettuata la
rotazione:

1 0 0 cosfd 0 sinf cosf —sinf O

0 cosf) —sinf 0 1 0 sinf cosf O

0 sinf cosf —sinf 0 cos6 0 0 1
(asse ) (asse y) (asse z)

Come per le altre trasformazioni, anche le rotazioni possono essere espresse in
coordinate omogenee, assumendo la forma:

1 0 0 0 cosf 0 sinf 0 cosf —sinf 0 0

0 cosf@ —sinf 0 0 1 0 0 sinf cosf# 0 O

0 sinf cosf O —sinfd 0 cosf 0 0 0 10

0 0 0 1 0 0o 0 1 0 0 0 1
(asse x) (asse y) (asse z)
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4.3.5 Composizione di trasformazioni

Una delle principali potenzialita della rappresentazione in coordinate omogenee ¢ la
possibilita di comporre trasformazioni mediante la moltiplicazione di matrici. Se f;
e fy sono due trasformazioni affini con matrici M; e M,, allora la trasformazione
composta e:

f(X) = M2M1X

E importante notare che l'ordine di applicazione delle trasformazioni influisce sul
risultato finale, poiché la moltiplicazione di matrici non é commutativa. In partico-
lare, 'ordine di applicazione ¢ determinato dalla vicinanza della matrice al vettore:
la matrice piu vicina al vettore viene applicata per prima.

4.4 Interpolazione

L’interpolazione é una tecnica matematica che, per una funzione discreta, consente
di stimare valori intermedi non definiti dalla funzione a partire da un insieme finito
di valori noti definiti dalla funzione. Questo processo € cruciale in computer grafica,
dove molte proprieta (colori, texture, normali) sono definite solo in punti discreti e
devono invece essere calcolate per ogni punto del rendering.

4.4.1 Interpolazione lineare

Sia data una funzione f : [zg,x1] — R definita in due punti zy e x1, con valori
f(zo) = yo e f(z1) = y1. Linterpolazione lineare permette di calcolare un valore
approssimato f(x) per x € [x¢,x;] tramite la formula:

Definendo il parametro adimensionale ¢ = *=2 € [0, 1], la formula si riscrive nella
forma compatta:

lerp(yo, y1,t) = (1 — t)yo + tyn

4.4.2 Interpolazione bilineare

Per funzioni di due variabili, 'interpolazione bilineare estende la linearita su due
dimensioni. Siano dati quattro punti (zo,vo), (1, %), (o, ¥1), (1,¥1), con valori
corrispondenti foo, fi0, fo1, f11- Il valore interpolato in un punto interno (x,y) é:

flzyy) =1 —=t)(1 =) foo +t(1 =) fro+ (1 —t)sfor + tsfn

dove:
T — I Y—Y
t — S =
L1 — Zo Y1 — Yo
(interpolazione orizzontale) (interpolazione verticale)
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4.4.3 Interpolazione baricentrica

L’interpolazione baricentrica € utilizzata per stimare valori all’interno di un trian-
golo in R? a partire dai valori noti nei suoi vertici. Sia dato un triangolo con
vertici Vg, V4, Vo e valori associati fy, f1, fo. Per un punto P interno al triangolo, si
definiscono le coordinate baricentriche (u,v,w) rispetto ai vertici tali che:

P=uVy+ovVi+wVy, con u+v+w=1 wu,v,w>0

Il valore interpolato f(P) ¢ allora espresso come combinazione lineare dei valori dei
vertici pesata dalle coordinate baricentriche:

f(P)=ufo+vfi+twf

4.5 Derivate e gradiente

Le derivate e il gradiente sono strumenti chiave in computer grafica per analizzare
variazioni locali di funzioni scalari, come intensita di colore, altezza di un terreno o
valori di rumore procedurale. Conoscere la direzione e il tasso massimo di variazione
permette di calcolare pendenze, normali e ottimizzare 'interpolazione nelle superfici
3D.

4.5.1 Derivata in una dimensione

Si consideri una funzione scalare f : R — R definita su un intervallo reale. La
derivata di f in un punto x € R, indicata con f’(z), misura la variazione istantanea
del valore della funzione al variare della variabile indipendente x:

o) — i T AT~ @)

Az—0 Ax

Dal punto di vista geometrico, f'(x) rappresenta la pendenza della retta tangente
al grafico di f nel punto (z, f(z)), ossia la velocita con cui f cresce o decresce
localmente.

4.5.2 Derivate parziali in pitt dimensioni

Si consideri ora una funzione scalare f : R — R, che associa a ogni punto x € R"
un valore reale f(x) € R. Per funzioni di piu variabili, ad esempio f : R? — R,
il concetto di derivata in una dimensione va estesa alle derivate parziali. Queste
descrivono la variazione di f rispetto a una singola variabile, mantenendo costanti
le altre. In un punto (z,y) si definiscono:

0 o flathy) - flry)  Of _ o Sy +k) = fz,y)
In generale, per f: R" - R e x = (x1,...,x,), si ha che:
of o fla, o mi by a) — f(X)
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Se tutte le derivate parziali esistono e variano in modo continuo, la funzione f é detta
differenziabile. In tal caso, ad esempio con n = 2, il suo grafico risulta localmente
approssimabile da un piano tangente (o un iperpiano, in caso di n > 2) alla superficie
di equazione z = f(z,y). Le derivate parziali forniscono le pendenze di questo piano
lungo le direzioni degli assi x e .

4.5.3 Gradiente

Definizione

Il gradiente di una funzione f : R” — R in un punto x € R" ¢é il vettore in R"
formato da tutte le sue derivate parziali:

Vi) = (G, G

In generale, per una data dimensione n > 2 il gradiente si estende a:

V160 = (560, 09 0

Proprieta
Il gradiente possiede proprieta geometriche di grande rilevanza:

e Direzione di massima crescita: il vettore V f(x) indica la direzione lungo la
quale la funzione f cresce piil rapidamente nel punto x.

e Modulo: la norma ||V f(x)| rappresenta la massima velocita di variazione
della funzione. Cio significa che spostandosi dal punto x nella direzione del
gradiente, f aumenta pit rapidamente che in qualsiasi altra direzione.

e Ortogonalita alle curve di livello: il gradiente é perpendicolare alle curve di
livello {(x,y) : f(x,y) = c} in R? e, piu in generale, alle superfici di livello
{x € R": f(x) = ¢} (che costituiscono le regioni geometriche dove la funzione
risulta costante).

4.6 Curve parametriche

Le curve parametriche forniscono una descrizione continua di percorsi e superfici
nello spazio e sono utilizzate per modellare geometrie fluide e animazioni. Spline
come Catmull-Rom o B-spline permettono di generare forme lisce e controllabili,
fondamentali per funzioni grafiche quali tessellazione, LOD e geometria procedurale.

4.6.1 Definizione

In geometria, una curva parametrica nello spazio tridimensionale ¢ una funzione
vettoriale che associa a un parametro reale ¢, appartenente a un intervallo [a, ] C R,
un punto nello spazio euclideo R3. Formalmente, si definisce come:
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C(t) = (z(t),y(t),2(t)) cont € |a,b

dove x(t),y(t), z(t) (le componenti parametriche della curva) sono funzioni reali con-
tinue che descrivono le coordinate cartesiane del punto al variare di ¢. Il parametro
t rappresenta ’andamento della curva e consente di descrivere forme che non sa-
rebbero rappresentabili come funzioni cartesiane tradizionali (come cerchi, spirali o
curve complesse).

4.6.2 Continuita

Quando due segmenti di curva si incontrano in un punto (detto punto di contatto),
si parla di continuita per indicare quanto il passaggio da un segmento all’altro sia
regolare. La continuita puo essere classificata in diversi livelli:

e Continuita C°: si dice che due segmenti di curva hanno continuita C° quando
si uniscono ad un estremo senza alcun salto. In altre parole, le due curve
condividono il punto di contatto F,, garantendo che la curva risultante sia
connessa.

o Continuita parametrica C': considerando il punto di contatto P, e denotando
con vy € vs le derivate prime dei due segmenti di curva nel punto Fy, si dice che
la curva ha continuita parametrica C! se la direzione e il modulo dei vettori
tangenti sono uguali. Questo assicura che la curva sia liscia, senza la presenza
di cambiamenti improvvisi della tangente lungo la curva.

e Continuita geometrica G': due segmenti di curva hanno continuita geometrica
G! se le direzioni dei vettori tangenti coincidono nel punto di contatto, anche
se i moduli possono differire. In questo caso la curva appare visivamente
continua, ma la tangente lungo la curva puo variare tra i due segmenti.

o Continuita parametrica C™: la continuita parametrica di ordine n richiede che
tutte le derivate fino all’ordine n dei due segmenti coincidano nel punto di
contatto, cioé:

cHpy)y =Py k=1,....n

4.6.3 Curve interpolanti e approssimanti

Quando le curve parametriche sono utilizzate per modellare forme geometriche a
partire da insiemi discreti di punti, detti punti di controllo, esse possono essere clas-
sificate in base al modo in cui trattano i punti di controllo, dividendosi in due gruppi
principali: interpolanti, se passano esattamente per i punti dati, o approssimanti, se
li seguono senza necessariamente attraversarli.

Curve interpolanti

Una curva parametrica C(t) = (z(t),y(t),2(t)) ¢ detta interpolante rispetto a
un insieme di punti {Fy, P,..., P,} (detti punti di controllo) se essa soddisfa la
condizione di interpolazione:

67



dove {to,t1,...,t,} € un insieme di parametri associati ai punti di controllo.

In termini matematici, l'interpolazione puo essere formulata separatamente per
ciascuna coordinata della curva:

x(t;) =z, ylty)=vi, z2(t;) ==z, i=0,...,n

Una possibile costruzione consiste nell’esprimere ciascuna funzione come
combinazione lineare di funzioni base {@o(),. .., ¢, (t)}:

z(t) = Zai%(t)a y(t) = Zﬁi%(t)a z(t) = Z%‘%‘(t)

scegliendo i coefficienti «;, 8;,7; in modo che vengano soddisfatte le condizioni di
interpolazione:

x(t;) =z, ylty)=vi, z2(t;) =2z, 1=0,...,n

In questo modo, la costruzione della curva interpolante si riduce a risolvere tre
problemi di interpolazione scalare, uno per ciascuna coordinata.

Curve approssimanti

Una curva parametrica C(t) = (z(t), y(t), z(t)) ¢ detta approssimante rispetto a un
insieme di punti {Fy, P, ..., P,} (detti punti di controllo) se essa non necessaria-
mente passa per tutti i punti dati, ma ne definisce la forma generale in maniera
controllata. In termini formali, una curva approssimante ¢ una curva generata me-
diante combinazioni lineari di funzioni base, dove i punti di controllo influenzano la
forma della curva senza costringerla ad attraversarli.

Matematicamente, ogni coordinata della curva pud essere espressa come
combinazione lineare di funzioni base {¢o(t), ..., ,(t)}:

l’(t) = Zaigﬁi(t), y<t) = Zﬂigpi@)? Z(t) = Z%’@i(t)v

dove i coefficienti a4, 3;,7; sono determinati in modo da ottenere la migliore
approssimazione dei punti di controllo secondo criteri di continuita e regolarita.

A differenza delle curve interpolanti, quindi, le curve approssimanti consentono un
maggiore controllo sulla forma globale e sulla regolarita della curva, sacrificando il
passaggio esatto per i punti di controllo.

4.6.4 Curve di Hermite

Le curve di Hermite sono un tipo particolare di curve parametriche cubiche inter-
polanti definite nello spazio tridimensionale. Una curva parametrica cubica é una
curva C(t) = (z(t),y(t), 2(t)) in cui ciascuna coordinata ¢ una funzione polinomiale
di terzo grado del parametro t.
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Polinomio interpolatore di Hermite

Un polinomio interpolatore di Hermite é un polinomio cubico che descrive un tratto
di curva costruito in modo da interpolare due valori dati fy, fi € R e le rispettive
derivate dy, d; € R in due punti o, ¢; € [0, 1]. In altre parole, il polinomio identifica
un segmento di curva che passa esattamente per i valori dati e allinea la sua pendenza
alle estremita secondo le derivate specificate.

Il polinomio interpolatore di Hermite si scrive come:

Py (t) = @o(t) fo + 1(t)do + o(t) f1 + ¢1(t)ds

dove, per un generico t € [0, 1], le funzioni base cubiche sono definite da:

wo(t) =2t> —=3t2 + 1, @i(t) =1 =22 +t, o(t) = =26 + 32, (t) =° — 2

Le funzioni g e 1)y garantiscono che il polinomio assuma i valori fy e f; agli estremi,
mentre ¢; e Y modulano la tangente, assicurando che le derivate siano rispettate.
In particolare, si ha:

Py(to) = fo, Pu(ty) = fi, Py(te) =do, Ppy(t1) =di,

il che permette di concatenare pitt polinomi interpolatori di Hermite senza creare
discontinuita nella derivata prima, ottenendo curve continue e regolari.

Curve di Hermite

Un segmento di curva cubica di Hermite nello spazio tridimensionale ¢ la naturale
estensione del polinomio interpolatore di Hermite al caso vettoriale. Invece di due
valori scalari fy, f; e delle loro derivate dy, dy, si considerano due punti di controllo
Py, P, € R? e i corrispondenti vettori tangenti Ty, 77 € R3. In questo modo il
segmento si esprime come:

C(t) = wo(t)Po + o1 (t)Th + vo(t)Pr + 1 (t)T1, t € [0,1]

dove i punti di controllo Py, P; definiscono le estremita del segmento, mentre i vet-
tori tangenti Tg, T} controllano la direzione e la pendenza della curva nei punti di
controllo. Le funzioni base di Hermite ¢, 1, %0, 11 garantiscono interpolazione e
continuita C! tra segmenti adiacenti.

Dato un insieme di punti di controllo da interpolare {F,...,P,} C R? con P; =
(wi,ys, 2i), e le rispettive tangenti {Tp,...,T,} C R® con T; = (TF,T!,T7), la
curva di Hermite complessiva C(t) = (C,(t), Cy(t), C.(t)) si ottiene concatenando
segmenti Hermite tra punti consecutivi P; e P;,1, con interpolazione esatta delle
tangenti, garantendo continuita C* lungo tutta la curva.

Ogni segmento tra P; e P, é definito da:
Ci(t) = @o(s)P; + ©1(8)Ti + Yo(s) Pir1 + ¥1(s)Tia, s € [0, 1],

69



dove s ¢ la normalizzazione del parametro ¢ sull’intervallo [t;, t;11]:

t—t
s=——— tet,tin] CR
liv1 — t;

Esplicitando le componenti della curva in coordinate cartesiane, otteniamo:

n—1 ~
Cx(t> = Z gb[ti,ti-&-l}(t) @0(3)1.1' + 901(8)11133 + ¢0(3)xi+1 + wl(s)jjzﬁ-l]
i=0 )
n—1 ~
Cy(t) = Bty (t) |20(8)yi + 01()TY + to(s)yir + %(3)7}‘11}
i=0 )
n—1 ~
Calt) = 3 Ottuteent(8) [ 0(5)2 + @1(S)TF + o(5)zis1 + Ya(5) T,

=0

dove ¢y, 1,,,1(t) ¢ la funzione indicatrice dell'intervallo [t;, ;1] che assicura che solo
il segmento corrispondente contribuisca per ogni ¢ € [tg, t,]:

1, set e [tz, th'Jrl]

¢[ti7ti+1}<t) - {

0, altrimenti

4.6.5 Catmull-Rom Spline

Le Catmull-Rom spline sono una classe di curve parametriche cubiche interpo-
lanti definite nello spazio tridimensionale. Dato un insieme di punti di controllo
{Py, Py,...,P,} C R3 una Catmull-Rom spline costruisce un segmento cubico tra
ogni coppia di punti consecutivi P; e P, e ogni segmento puo essere interpretato
come un segmento di curva di Hermite:

Ci(t) = wo(s)Pi + ¢1(8)Ti + Yo (s) Piyr + 1 (s)Tiv1, s €10,1]

dove @q, ¢1, Yo, ¥1 sono le funzioni base di Hermite e s ¢ il parametro normalizzato
sull’intervallo [t;, t;11].

E’ importante sottolinare che ogni segmento di Catmull-Rom ¢ perd definito da
quattro punti consecutivi (P;_1, P;, Pi11, Pi42), dove P; e P4y sono i punti interpolati
dal segmento, mentre P;_; e P, 5 determinano la direzione delle tangenti ai punti
interpolati e quindi la forma del segmento.

A differenza delle curve di Hermite infatti, le tangenti 7; e T;,1 non sono specificate
manualmente, ma calcolate automaticamente dai punti adiacenti. In particolare,
ciascuna tangente ¢ parallela al segmento che congiunge il punto precedente con
quello successivo:

1 1
T = §(Pi+1 - Pz‘—l) Tiy1 = §(Pi+2 - Pz)
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Sostituendo queste tangenti nella formulazione di Hermite, la curva pud essere
riscritta come polinomio cubico in ¢ € [0, 1]:
1

C(t) = 5 (2P) + (—Po+ Po)t+ (2P — 5P+ 4P, — P3)t* + (= Py + 3P, — 3P+ P3)t3]

In generale, le Catmull-Rom spline garantiscono continuita C! lungo tutta la spline
e un importante controllo locale della curva dove la modifica di un punto di controllo
influisce principalmente sui segmenti adiacenti.
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Capitolo 5

Progetto

In questo capitolo viene descritta 1’organizzazione complessiva del progetto, con
particolare attenzione agli aspetti pratici che ne hanno guidato la realizzazione.

Saranno analizzati, in primo luogo, lo scopo del progetto, le tecnologie adottate e
la struttura generale del sistema. Successivamente verranno descritti i meccanismi
di gestione della telecamera e le modalita di interazione con 'utente. Si passera
quindi all’organizzazione delle geometrie impiegate per la costruzione degli oggetti
e all'inserimento di un personaggio animato importato da file esterni. Seguiranno
la trattazione dei buffer di memoria utilizzati per il passaggio dei dati e I’approfon-
dimento delle tecniche di rumore procedurale. Verranno poi analizzati la gestione
delle texture e i sistemi di rilevamento delle collisioni. Infine, sara dedicata parti-
colare attenzione all’utilizzo degli shader, gia introdotti nei capitoli precedenti, con
un focus sul loro ruolo nella gestione dinamica del livello di dettaglio.

Per mantenere la trattazione chiara e discorsiva, si & scelto di riportare solo alcuni
estratti di codice, selezionati come esempi significativi, evitando di appesantire il
testo con sequenze di codice troppo dettagliate.

5.1 Introduzione

5.1.1 Scopo del progetto

Il progetto mira ad utilizzare gli shader standard (Vertex Shader e Fragment Shader)
e gli shader opzionali (Tessellation Shaders e Geometry Shaders), descritti nei capi-
toli precedenti, per la realizzazione di due ambientazioni paesaggistiche, composte
da elementi di scena e da un personaggio animato controllabile.

In particolare, il progetto sfrutta I'utilizzo dei nuovi shader opzionali per dettagliare
in maniera dinamica (LOD dinamico) ogni oggetto presente nella scena, in base alla
posizione della telecamera virtuale o a quella del personaggio animato.
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5.1.2 Tecnologie utilizzate
Linguaggio C/C++

I1 linguaggio di programmazione scelto per lo sviluppo del progetto ¢ il C/C++,
ampiamente utilizzato in ambito grafico grazie alla sua efficienza e al controllo diretto
sulla memoria. Queste caratteristiche permettono di gestire in maniera precisa le
strutture dati e le risorse grafiche, garantendo prestazioni elevate. La scelta di questo
linguaggio ¢ inoltre dovuta al fatto che la maggior parte delle librerie moderne per
la computer grafica forniscono interfacce sviluppate per C e C++.

OpenGL

Come gia accennato, OpenGL (Open Graphics Library) é una libreria open source e
multipiattaforma che definisce un’API per la grafica 2D e 3D. E gestita dal Khronos
Group ed € ampiamente supportata nei sistemi operativi moderni, poiché permette
di utilizzare la potenza di calcolo delle GPU per eseguire rendering in tempo reale.
Nel progetto ¢ stata utilizzata nella sua versione piu recente, la 4.6, che permette
I'utilizzo di funzionalita avanzate per le pipeline grafiche programmabili e I'utilizzo
degli shader pit avanzati, come i Tessellation Shaders e il Geometry Shader.

GLSL

GLSL (OpenGL Shading Language) é il linguaggio di shading associato a OpenGL,
che presenta una sintassi simile a quella del C. Questo linguaggio ¢ progettato per
scrivere programmi eseguiti direttamente sulla GPU (chiamati shader), che permet-
tono di controllare in maniera flessibile la pipeline grafica. Nel progetto sono stati
utilizzati diversi tipi di shader, tra cui Vertex, Tessellation, Geometry e Fragment
Shader, con 'obiettivo di realizzare un rendering dettagliato e dinamico.

Glad

Glad (OpenGL Loading Library) ¢ una libreria fondamentale per lo sviluppo di
applicazioni in OpenGL. La sua funzione principale consiste nel caricare automati-
camente, al momento dell’esecuzione del programma, tutte le funzioni di OpenGL
necessarie per I'applicazione. In questo modo, Glad permette di verificare qua-
li estensioni siano disponibili su un determinato sistema operativo, garantendo la
portabilita e il corretto funzionamento dell’applicazione su diverse piattaforme.

GLFW

GLFW ¢ una libreria open source multipiattaforma progettata per semplificare lo
sviluppo di applicazioni grafiche basate su OpenGL. Fornisce un’interfaccia che per-
mette la creazione di finestre grafiche personalizzate, la gestione di eventi come la
chiusura della finestra o il suo ridimensionamento, e la creazione di contesti grafict,
ossia I’ambiente necessario per eseguire le operazioni grafiche. Inoltre, GLFW si
occupa di gestire l'interazione con il sistema operativo sottostante, rendendo piu
semplice I'input da tastiera, mouse e altri dispositivi.
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GLM

GLM (OpenGL Mathematics) ¢ una libreria di funzioni matematiche progettate
appositamente per applicazioni grafiche. E scritta interamente in C++ e segue le
stesse convenzioni utilizzate in GLSL. Questa libreria fornisce strumenti per gestire
vettori e matrici, indispensabili per operazioni come trasformazioni geometriche,
calcolo di proiezioni prospettiche e gestione di rotazioni nello spazio tridimensionale.

Assimp

Assimp (Open Asset Import Library) & una libreria che consente di importare una
vasta gamma di formati di file 3D, come ad esempio OBJ e FBX. L’obiettivo di
questa libreria ¢ fornire una rappresentazione unificata dei modelli caricati, senza
che lo sviluppatore debba preoccuparsi delle differenze fra i vari formati. Oltre al
caricamento della geometria, Assimp supporta anche 'importazione di materiali,
texture e dati per I’animazione scheletrica.

Dear ImGui

Dear ImGui ¢ una libreria grafica che implementa il paradigma delle Immediate
Mode GUI A differenza delle interfacce utente tradizionali (basate su oggetti per-
sistenti), con ImGui ogni elemento grafico dell'interfaccia viene ridisegnato a ogni
frame in maniera immediata. Questo approccio semplifica notevolmente la creazione
di pannelli di debug, strumenti di ispezione e interfacce di controllo integrate nel
programma. Nel progetto ¢ stata utilizzata per implementare un’interfaccia grafica
di supporto, utile a monitorare e modificare parametri durante 1’esecuzione.

5.1.3 Struttura generale

Il progetto ¢ stato organizzato secondo un’architettura modulare, in cui ogni com-
ponente é stato sviluppato come unita indipendente con responsabilitd ben definite.
Questo approccio segue il principio della Single Responsibility, secondo cui ciascun
modulo deve occuparsi di un compito specifico e non sovrapporsi alle funzioni degli
altri.

In pratica, per ogni sezione descritta nei paragrafi successivi ¢ stato sviluppato un
modulo dedicato, cosl da separare in maniera chiara la logica di gestione dei vari
aspetti del progetto. Questa suddivisione facilita la leggibilita e la manutenzione del
codice, oltre a permettere eventuali modifiche o estensioni senza dover intervenire
sull’intero progetto. Per quanto riguarda gli shader, questi sono stati organizzati
in moduli distinti, uno per ciascun tipo di shader della pipeline grafica (vertex,
tessellation, geometry, fragment), rispecchiando cosi la struttura della pipeline di
rendering.
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5.2 Telecamera

La telecamera virtuale rappresenta uno degli elementi fondamentali nelle applica-
zioni di computer grafica, poiché solo grazie ad essa ¢ possibile determinare quale
porzione di scena risultera visibile all’osservatore e che quindi dovra essere proietta-
ta sullo schermo. La telecamera, infatti, definisce il punto di vista e I’orientamento
dell’osservatore virtuale nello spazio tridimensionale.

Come gia spiegato, la View Transformation si occupa di trasformare le coordinate
dei punti dal sistema di riferimento del mondo ( World Space) a quello relativo alla
posizione e alla direzione della telecamera ( View Space).

5.2.1 Concetti fondamentali

Dal punto di vista teorico, per descrivere una telecamera virtuale € necessario definire
un oggetto caratterizzato da una posizione, una direzione di vista e due assi (u e v)
che puntano rispettivamente verso la destra e verso ’alto della telecamera. Questi
tre elementi tra loro ortogonali costituiscono il sistema di riferimento locale della
telecamera.

La posizione della telecamera é rappresentata da un vettore espresso nel sistema di
coordinate del mondo e identifica il punto in cui si trova ’osservatore. La direzione
di vista ¢ data dal vettore che si ottiene sottraendo al vettore posizione del target (il
punto verso cui la telecamera ¢ orientata) il vettore posizione della telecamera stessa.
Per convenzione in OpenGL, 'osservatore guarda lungo 1’asse z negativo. L’asse u,
che punta a destra della telecamera, viene calcolato come prodotto vettoriale tra il
vettore direzione e il vettore VUP, ossia il vettore definito nello spazio del mondo,
che punta verso ’alto. Una volta determinato u, & possibile calcolare I’asse v (rivolto
verso 'alto nel sistema della telecamera) come prodotto vettoriale tra u e la direzione
della telecamera. In questo modo si ottiene una terna che descrive univocamente
I'orientamento della telecamera.

Da tali vettori ¢ possibile costruire la matrice di vista, che converte coordinate
espresse nel sistema di riferimento del mondo in coordinate nel sistema di riferimento
della telecamera. Poiché la trasformazione di base ¢ perd quella che porta dallo
spazio della telecamera a quello del mondo, la matrice calcolata deve essere invertita
per poter essere applicata correttamente nella pipeline di rendering.

A livello implementativo, la libreria GLM fornisce la funzione lookAt, che consente
di costruire la matrice di vista a partire dalla posizione della telecamera, dal vettore
che ne definisce I'orientamento verso l’alto e dal punto target.

La telecamera viene descritta tramite la struttura ViewSetup, che contiene i campi
essenziali per definire i suoi parametri:

typedef struct {
vec3 position; // Posizione della camera nello spazio 3D
vec3 target; // Punto verso cui punta la camera
vec3 upVector; // Direzione verso 1’alto della camera
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vec3 direction; // Direzione di vista della camera

6 |} ViewSetup;

5.2.2 Proiezione prospettica

La telecamera non si limita a definire il sistema di riferimento locale per ’osservatore,
ma deve anche gestire la proiezione della scena sul piano di vista dell'utente. In
computer grafica, come giad accennato, vengono tipicamente utilizzati due tipi di
proiezione: quella ortogonale, che mantiene i parallelismi e i rapporti fra le distanze,
e quella prospettica, che cerca di riprodurre il modo in cui ’occhio umano percepisce
la realta, secondo cui gli oggetti pitt lontani appaiono pitu piccoli e quelli pitt vicini
appaiono piu grandi.

Come tipo di prospettiva, all’interno del progetto, é stata scelta la proiezione pro-
spettica. Questa é definita da quattro parametri principali: il campo visivo verticale
(fovY') che indica I'ampiezza del cono visivo espresso in gradi, il rapporto d’aspetto
(aspect ratio) che corrisponde al rapporto tra larghezza e altezza della finestra di
visualizzazione, il piano di clipping vicino (near plane) che rappresenta la distanza
minima alla quale un oggetto deve trovarsi per poter essere visualizzato e il piano
di clipping lontano (far plane) che rappresenta invece la distanza massima oltre la
quale gli oggetti vengono eliminati dal rendering.

Anche in questo caso, GLM fornisce la funzione perspective, che costruisce
automaticamente la matrice di proiezione prospettica a partire da questi valori.

Per rappresentare i parametri della proiezione viene utilizzata la struttura
PerspectiveSetup:

typedef struct {
float fovY; // Campo visivo verticale (in gradi)
float aspect; // Rapporto tra larghezza e altezza del viewport
float near_plane; // Piano di clipping vicino
float far_plane; // Piano di clipping lontano
} PerspectiveSetup;

5.2.3 Movimento della telecamera

Oltre a definire posizione, orientamento e proiezione, ¢ fondamentale poter gestire il
movimento della telecamera all’interno della scena, cosi da consentire all’osservatore
di esplorare 'ambiente 3D.

La logica di movimento implementata permette di traslare la telecamera lungo i tre
assi principali: avanti/indietro, destra/sinistra e su/git. Questi movimenti vengono
realizzati tramite un insieme di funzioni che aggiornano i vettori position e target
della struttura ViewSetup in base alla direzione di movimento desiderata e alla
velocita di spostamento della telecamera, espressa dal parametro cameraSpeed.
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Il controllo ¢ gestito dalle funzioni cameraUp, cameraDown, cameraleft,
cameraRight, cameraForward e cameraBack. Di seguito vengono descritte le
logiche di funzionamento dei tre gruppi pincipali di movimento, riportandone
I'implementazione.

Movimenti verticali

Il movimento verticale viene realizzato sfruttando la relazione tra la direzione di
vista e il vettore up. In particolare, si calcola dapprima un vettore laterale detto
slide wvector, ottenuto come prodotto vettoriale tra direzione e up. Questo vettore
descrive lo spostamento orizzontale perpendicolare alla direzione di vista, cioé quello
che la telecamera percepisce come destra/sinistra.

Successivamente, per ottenere lo spostamento verticale reale, si calcola il prodotto
vettoriale tra la direzione e lo slide vector. In questo modo si ricava un vettore orto-
gonale sia alla direzione di vista che allo spostamento laterale, quindi perfettamente
allineato con l’asse verticale percepito dalla telecamera (che non necessariamente
coincide con l'asse globale y).

Nella funzione cameraUp tale vettore verticale viene sottratto alla posizione del-
la telecamera e al target relativo, spostando la telecamera verso l'alto, mentre in
cameraDown viene sommato, realizzando cosi la discesa.

void cameraUp(void) {
SetupTelecamera.direction = SetupTelecamera.target - SetupTelecamera.
position;
slide_vector = normalize(cross(SetupTelecamera.direction,
SetupTelecamera.upVector)) ;
vec3 upDirection = cross(SetupTelecamera.direction, slide_vector) *

cameraSpeed;
SetupTelecamera.position -= upDirection;
SetupTelecamera.target -= upDirection;

void cameraDown(void) {
SetupTelecamera.direction = SetupTelecamera.target - SetupTelecamera.
position;
slide_vector = normalize(cross(SetupTelecamera.direction,
SetupTelecamera.upVector)) ;
vec3 upDirection = cross(SetupTelecamera.direction, slide_vector) *
cameraSpeed;
SetupTelecamera.position += upDirection;
SetupTelecamera.target += upDirection;

Movimenti orizzontali

Il movimento laterale sfrutta direttamente lo slide vector definito in precedenza. In
cameraleft, questo vettore viene sottratto alla posizione della telecamera e al target
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relativo, in modo da ottenere lo spostamento a sinistra. La funzione cameraRight
si comporta allo stesso modo, ma aggiunge lo slide vector, realizzando il movimento
verso destra.

void cameraLeft(void) {
SetupTelecamera.direction = SetupTelecamera.target - SetupTelecamera.
position;
slide_vector = cross(SetupTelecamera.direction, SetupTelecamera.
upVector) * cameraSpeed;
SetupTelecamera.position -= slide_vector;
SetupTelecamera.target -= slide_vector;

void cameraRight(void) {
SetupTelecamera.direction = SetupTelecamera.target - SetupTelecamera.
position;
slide_vector = cross(SetupTelecamera.direction, SetupTelecamera.
upVector) * cameraSpeed;
SetupTelecamera.position += slide_vector;
SetupTelecamera.target += slide_vector;

Movimenti longitudinali

Infine, il movimento lungo la direzione di vista sfrutta direttamente il vettore di-
rezione della telecamera, senza dover calcolare alcun nuovo vettore. La funzione
cameraForward avanza lungo questa direzione, sommano la direzione (scalata tra-
mite la velocita) alla posizione e si aggiorna il target di conseguenza. Al contrario,
la funzione cameraBack sottrae la direzione, permettendo di arretrare nella scena.

void cameraForward(void) {
SetupTelecamera.direction = SetupTelecamera.target - SetupTelecamera.
position;
SetupTelecamera.position += SetupTelecamera.direction * cameraSpeed;
SetupTelecamera.target = SetupTelecamera.position + SetupTelecamera.
direction;

void cameraBack(void) {
SetupTelecamera.direction = SetupTelecamera.target - SetupTelecamera.

position;
SetupTelecamera.position -= SetupTelecamera.direction * cameraSpeed;
SetupTelecamera.target = SetupTelecamera.position + SetupTelecamera.
direction;
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5.3 Interazioni con 'utente

Un aspetto molto importante del progetto ¢ dato dalla possibilita di interagire con
esso attraverso i pitt comuni dispositivi di input messi a disposizione dell’utente: il
mouse e la tastiera.

Per gestire correttamente tali input, la libreria GLFW mette a disposizione una
serie di strumenti che permettono di ricevere ed elaborare gli eventi generati da
questi dispositivi, come ad esempio la pressione di un tasto su mouse o tastiera,
lo spostamento del cursore del mouse o lo scorrimento della sua rotella. Questi
strumenti si basano sul meccanismo delle callback functions, cioé funzioni definite dal
programmatore che vengono richiamate automaticamente da GLFW nel momento
in cui si verifica un determinato evento.

Affinché GLFW sappia a quale funzione rivolgersi per la gestione di uno specifico
evento, & necessario registrare all’inizio del programma le callback di interesse trami-
te le apposite funzioni di assegnazione. Ad esempio, per eventi generati dal mouse,
glfwSetCursorPosCallback consente di associare una funzione alla gestione degli
spostamenti del cursore, mentre glfwSetScrollCallback permette di registrare la
funzione che gestira lo scorrimento della rotella.

Ogni funzione di callback deve rispettare la signature prevista da GLFW, la quale
specifica gli argomenti che vengono passati alla funzione al momento della chiamata.
Tali argomenti contengono le informazioni utili all’elaborazione dell’evento, come la
finestra coinvolta e i dati specifici legati al tipo di input.

Per la gestione del mouse, nel progetto sono state utilizzate principalmente due
tipologie di funzioni di callback: una per la gestione del movimento del cursore e
una per lo scorrimento della rotella del mouse.

La funzione associata allo spostamento del cursore (cursor_position_callback)
gestisce 'orientamento della telecamera a partire dai movimenti del mouse. Ogni
variazione di posizione del cursore viene tradotta in due offset, orizzontale e verticale,
che vanno ad aggiornare rispettivamente gli angoli di rotazione della telecamera
(possibili solo in senso orizzontale o in verticale). In questo modo 'utente puo
esplorare la scena liberamente, simulando il classico comportamento di una visuale
in prima persona.

Per evitare effetti indesiderati, come la rotazione completa attorno all’asse verticale
(che causerebbe l'inversione della visuale quando si guarda troppo verso 'alto o
verso il basso), I'angolo verticale viene limitato ad un intervallo compreso tra —89°
e +89°. Infine, dai nuovi valori ottenuti viene calcolata la direzione della telecamera,
che viene poi normalizzata e aggiornata all’interno della struttura di gestione della
telecamera.

La funzione legata allo scroll (scroll_callback), invece, viene utilizzata per mo-
dificare il campo visivo verticale (fovY) della proiezione prospettica, simulando un
effetto di zoom, avvicinando o allontanando la visuale senza alterare la posizione
della telecamera.
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Di seguito viene riportato il codice relativo all’implementazione di tali funzioni:

void cursor_position_callback(GLFWwindow* window, double xposIn, double

yposIn) {
if (!mouseLocked)
return;

int width, height;

glfwGetFramebufferSize (window, &width, &height);

float semnsitivity = 0.05f;

static bool firstCall = true;
static float lastX = width / 2.0f;
static float lastY = height / 2.0f;

float xpos = float(xposIn);
float ypos = float(yposIn);

ypos = height - ypos;

if (firstCall) {
lastX = xpos;
lastY = ypos;
firstCall = false;

float xoffset
float yoffset

xpos - lastX;
ypos - lastY;

lastX = xpos;

lastY = ypos;
xoffset *= sensitivity;
yoffset *= sensitivity;

Theta += xoffset;
Phi += yoffset;

if (Phi > 89.0f)

Phi = 89.0f;
if (Phi < -89.0f)
Phi = -89.0f;

vec3 newDirection;

newDirection.x = cos(radians(Theta)) * cos(radians(Phi));

newDirection.y = sin(radians(Phi));

newDirection.z = sin(radians(Theta)) * cos(radians(Phi));
SetupTelecamera.direction = normalize(newDirection);
SetupTelecamera.target = SetupTelecamera.position + SetupTelecamera.
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direction;

void scroll_callback(GLFWwindow* window, double xoffset, double yoffset) {
if (yoffset < 0)
SetupProspettiva.fovY -= 1; //Rotella del mouse indietro
else
SetupProspettiva.fovY += 1; //Rotella del mouse in avanti

Oltre alle funzioni di callback per la gestione del mouse, all’interno del progetto ¢
stata inoltre definita una funzione process_input, che simula il comportamento di
una normale funzione di callback, senza pero esserlo realmente. A differenza delle
callback fornite da GLFW, che vengono invocate automaticamente al verificarsi
di un evento, questa funzione viene richiamata esplicitamente nel ciclo principale
del programma per verificare lo stato corrente di mouse e tastiera ed elaborare di
conseguenza le azioni da intraprendere.

Per quanto riguarda la gestione del mouse, la funzione si occupa di gestire la visibilita
del cursore e la modalita di controllo della visuale mediante il tasto destro del mouse.
Quando il cursore ¢ visibile, la telecamera non segue i movimenti del mouse e I'utente
puo interagire liberamente con eventuali interfacce grafiche. Al contrario, quando
il cursore & nascosto, i movimenti del mouse vengono interpretati come variazioni
dell’orientamento della telecamera, permettendo un controllo diretto della scena.

Per quanto riguarda la gestione della tastiera, process_input associa ai tasti stan-
dard di movimento (W, A, S, D) lo spostamento della telecamera sul piano orizzontale,
mentre i tasti SPACE e LEFT SHIFT consentono di muoversi rispettivamente verso
I’alto e verso il basso, completando cosi un controllo tridimensionale. La funzione
permette inoltre di abilitare o disabilitare il rendering in modalita wireframe tramite
itasti L e F, e di terminare il programma con il tasto ESC.

La stessa funzione gestisce infine anche il movimento del personaggio animato trami-
te le frecce direzionali, traducendo i comandi in spostamenti coerenti con le direzioni
indicate (avanti, indietro, sinistra e destra). Contemporaneamente allo spostamento
lineare, viene calcolato ’angolo di rotazione del modello in modo che I'orientamento
del personaggio risulti sempre coerente con la direzione del moto.

La funzione process_input non ¢é stata implementata come funzione di callback
perché non si limita a reagire ad un singolo evento, ma deve gestire in maniera
continua lo stato dei dispositivi di input. Per questo motivo viene richiamata ad
ogni iterazione del ciclo di rendering, cosi da garantire un controllo fluido e costante
della scena e delle entita presenti in essa.

5.4 Geometrie

Come anticipato nei capitoli iniziali di questa tesi, il compito principale dell’appli-
cazione lato CPU nei confronti della pipeline grafica & quello di definire la geometria
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degli oggetti nella scena, andandone a calcolare le coordinate dei vertici e organiz-
zandoli secondo il tipo di primitive che il resto della pipeline si aspetta di ricevere
in ingresso.

In particolare, poiché il progetto utilizza gli shader di tessellazione e di geometria
per arricchire e dettagliare ulteriormente le forme, le geometrie vengono definite lato
CPU in maniera semplificata, con un numero ridotto di vertici che rappresentano la
forma di base degli oggetti. Questo consente di demandare alla GPU il compito di
generare la complessita finale, alleggerendo cosi il carico computazionale iniziale.

Di seguito vengono presentate le geometrie principali utilizzate, divise in base alle
due ambientazioni realizzate.

5.4.1 Ambientazione 1: paesaggio montuoso

Terreno

Il terreno é stato definito come una griglia regolare di punti appartenenti ad un
piano. La funzione simplePlane genera i vertici di questa griglia a partire da
due parametri: la dimensione complessiva del piano e il numero di suddivisioni
desiderate. In questo modo il piano viene suddiviso in celle quadrate, costituite
ciascuna da quattro vertici.

Successivamente, tramite la funzione generatePatches, tali vertici vengono orga-
nizzati in gruppi da quattro, cosi da poter essere elaborati come patch quadrilaterali
dalla pipeline. Ogni patch corrisponde a una singola cella della griglia e rappre-
senta l'unita di base che sara poi sottoposta ai Tessellation Shaders e Geometry
Shader, responsabili di aumentarne il dettaglio e deformarla per ottenere un terreno
realistico.

vector<float> generatePatches(const vector<float>& plane, int division) {
vector<float> patches;
int rowLength = division + 1;

for (int row = 0; row < division; ++row) {
for (int col = 0; col < division; ++col) {
int vO = ((row + 1) * rowLength + col) * 3;
int vl = ((row + 1) * rowLength + col + 1) * 3;
int v2 = (row * rowLength + col + 1) * 3;
int v3 = (row * rowLength + col) * 3;

patches.push_back(plane[v0]);
patches.push_back(plane[v0 + 1]);
patches.push_back(plane[v0 + 2]);

patches.push_back(plane[vi]);

patches.push_back(plane[vl + 1]);
patches.push_back(plane[vl + 2]);
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patches.push_back(plane[v2]);
patches.push_back(plane[v2 + 1]);
patches.push_back(plane[v2 + 2]);

patches.push_back(plane[v3]);

patches.push_back(plane[v3 + 1]);
patches.push_back(plane[v3 + 2]);

return patches;

In particolare, si anticipa che, poiché il terreno é stato definito come completamen-
te piatto, quindi privo di dislivelli lungo 'asse verticale, ’aspetto montuoso verra
generato successivamente attraverso ’utilizzo di una speciale mappa di altezza. Que-
st’ultima, descritta nel dettaglio nella sezione permettera di attribuire a ciascun
vertice un valore di elevazione, cosi da ottenere un terreno irregolare e realistico una
volta che la geometria sara amplificata dagli shader.

Stelle

Per la generazione delle stelle si é scelto di partire da una rappresentazione sferica
semplificata. Viene innanzitutto definito un insieme di direzioni corrispondenti ai
sei assi principali dello spazio tridimensionale (sphereCorners). Combinando op-
portunamente questi punti attraverso la tabella ottanteTriangles, si ottengono
otto triangoli che corrispondono agli ottanti di una sfera.

La funzione generateSphericalBase utilizza tali direzioni per costruire un insieme
di vertici distribuiti su una superficie sferica di raggio prefissato, centrata in una
posizione arbitraria. In questo modo si ottiene una base poligonale approssimata
della sfera, che costituisce il punto di partenza per la generazione delle stelle nella
scena.

vector<vec3> sphereCorners = {
vec3(0, 1, 0),
vec3(0, -1, 0),
vec3(0, 0, 1),
vec3(0, 0, -1),
vec3(1, 0, 0),
vec3(-1, 0, 0)
};

const int ottanteTriangles([8][3] = {

{0, 2, 43,
{0, 3, 4},
{0, 3, 5},
{0, 2, 5%,

// Ottante
// Ottante
// Ottante
// Ottante

1

2
3
4
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{1, 2, 4}, // Ottante
{1, 3, 4}, // Ottante
{1, 3, 5}, // Ottante
{1, 2, 56} // Ottante

0 N O O

};

vector<vec3> generateSphericalBase(const vec3& center, float radius) {
vector<vec3> verts;

for (dnt 1 = 0; i < 8; ++i) {
for (int j = 0; j < 3; ++j) {
vec3 dir = normalize(sphereCorners[ottanteTriangles[i][j]1]);
vec3 offset = dir * radius;
verts.push_back(center + offset);

return verts;

5.4.2 Ambientazione 2: paesaggio urbano

Terreno

Analogamente a quanto fatto per il paesaggio montuoso, il terreno di questa ambien-
tazione é organizzato come una griglia regolare, ma con una suddivisione funzionale
che permette di distinguere le aree stradali da quelle coperte di erba.

La funzione roadAndGrass genera i vertici della griglia e associa a ciascun punto
un indicatore booleano che definisce se quel punto appartiene alla strada o all’erba
circostante. La strada principale viene posizionata lungo I’asse centrale della griglia,
formando una croce, e la sua larghezza € definita da un parametro della funzione,
consentendone in questo modo la regolazione.

Successivamente, la funzione generatePatches organizza i vertici in patch quadri-
laterali come gia visto per il terreno precedente. Ciascun patch viene classificata fra
patch di erba o patch di strada e viene calcolato un array di flag che identifica i bordi
della patch che confinano con una patch di tipologia diversa. Queste informazioni
saranno poi utilizzate dagli shader per applicare correttamente i materiali e generare
gli effetti visivi di transizione tra strada e terreno verde.

Edifici e siepi

Per la rappresentazione degli edifici e delle siepi della scena urbana sono stati utiliz-
zati dei blocchi a forma di parallelepipedo. La funzione generateBlocks si occupa
di generare i vertici dei parallelepipedi a partire da un insieme di posizioni centrali.

Per ciascun blocco viene calcolata un’altezza casuale compresa in un intervallo pre-
stabilito, in modo da conferire variazione e realismo agli edifici e alle siepi. Gli edi-
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fici hanno dimensioni standard e altezza variabile, mentre le siepi vengono generate
con una scala minore e proporzioni leggermente irregolari, ottenute introducendo
casualita nella larghezza e nella profondita dei parallelepipedi.

Ogni blocco puo poi essere suddiviso verticalmente in pit segmenti, permetten-
do di ampliare ulteriormente il dettaglio a livello di shader senza incrementare
eccessivamente il numero di vertici lato CPU.

La funzione generatePatchesFromBlocks organizza infine i vertici dei blocchi in
patch quadrilaterali e calcola le normali delle facce. Le facce superiori e inferiori
possono essere opzionalmente escluse nel caso degli edifici, poiché coperte dal tetto
(generato separatamente) o a contatto col terreno, mentre le facce laterali vengono
mantenute per garantire la corretta illuminazione e la resa dei materiali.

Tetti

I tetti sono generati separatamente rispetto ai blocchi che costituiscono i corpi degli
edifici, in modo da poter avere una maggior possibilita di personalizzazione e per
una gestione piu precisa dell’organizzazione dei vertici delle geometrie.

La funzione generateRoofs costruisce i tetti come tronchi di piramide, con la base
superiore leggermente ridotta rispetto a quella inferiore. Per ciascun tetto viene
definita la posizione centrale, calcolata a partire dalla base superiore del blocco
corrispondente e da un’altezza prefissata. La funzione suddivide inoltre ogni faccia
in porzioni piu piccole, cosi da aumentare il successivo dettaglio dinamico fornito
dagli shader e rendere 'oggetto piu realistico una volta applicate le texture.

Successivamente, la funzione generatePatchesFromRoofs organizza i vertici in
patch quadrilaterali e calcola le normali per ciascuna faccia. Queste ultime sono
orientate in modo coerente con la geometria, cosi che quelle relative alle basi punti-
no verso l’alto o verso il basso (a seconda che si tratti della base superiore o inferiore),
mentre quelle relative ai lati inclinati siano orientate verso 1’esterno.

Lampioni

Per generare i lampioni sono state utilizzate due funzioni, una per la geometria
relativa al palo e una per la sfera luminosa.

La funzione generateLampLinesFromBases costruisce i vertici dei pali dei lampioni
a partire da un’insieme di posizioni di base e dalla direzione desiderata, in modo
da essere coerenti con l'andamento della strada. I vertici del palo sono disposti
in modo da creare tre curve principali, che definiscono 'asta verticale e la curva
superiore che sostiene la luce. Questa scelta é stata fatta perché successivamente
la geometria del palo viene amplificata e disposta lungo curve Catmull-Rom grazie
agli shader, ottenendo un effetto piu organico e dettagliato. In questa fase, i pali
non sono stati inoltre suddivisi in patch quadrilaterali, ma in patch da due vertici,
poiché nei Tessellation Shaders verra utilizzato un tipo di patch differente.

La funzione generateSphericalBasesFromPositions genera le sfere luminose che
si trovano all’estremita superiore del palo. La definizione della geometria delle sfere
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utilizza lo stesso metodo gia utilizzato per le stelle della prima ambientazione, ma
utilizzando un posizionamento leggermente differente. Il centro della sfera ¢ infatti
calcolato in modo che la base superiore della sfera coincida con l'estremita finale
del palo. Successivamente, per ciascuna sfera vengono generati otto triangoli che
rappresentano gli ottanti della sfera, scalati in base a un raggio casuale scelto per
ogni lampione.

pair<vector<vec3>, vector<vec3>> generateLampLinesFromBases(const vector<
vec3>& basePositions, const vector<vec3>& directions, vector<pair<vec3,
vec3>>& verticalRods) {

vector<vec3> result;
vector<vec3> lightPositions;

float height = 1.3f;
float width = 0.3f;
float halfWidth = width * 0.5f;

for (size_t i = 0; i < basePositions.size(); ++i) {
const vec3& base = basePositions[i];
const vec3& dir = directions[i];
float angle = atan2(dir.x, dir.z);

auto rotateY = [&] (const vec3& offset) -> vec3 {
return vec3(
offset.x * cos(angle) + offset.z * sin(angle),
offset.y,
-offset.x * sin(angle) + offset.z * cos(angle)
)3
s

vec3 baselLeft = base + rotateY(vec3(-halfWidth, 0.0f, 0.0f));
vec3 topleft = base + rotateY(vec3(-halfWidth, height, 0.0f));
vec3 topRight = base + rotateY(vec3(halfWidth, height, 0.0f));
float shortlLeg = height * 0.15f;
vec3 baseRight = base + rotateY(

vec3(halfWidth, height - shortLeg, 0.0f)
)3

verticalRods.push_back({ baselLeft, topLeft });
result.insert(result.end(),{baseleft,topLeft,topRight,baseRight}) ;
result.insert(result.end(),{topLeft,topRight,baseRight,baseRight}) ;
result.insert(result.end(),{baseleft,baselLeft,topLeft,topRight});
lightPositions.push_back(baseRight) ;

return { result, lightPositions };
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5.5 Personaggio animato

Un problema comune ad entrambe le ambientazioni € stato quello di integrare nella
scena un modello tridimensionale di un personaggio animato, capace di muoversi
all’interno del paesaggio. Per questo scopo é stato utilizzato un modello esterno in
formato FBX, nel quale erano gia presenti le animazioni corrispondenti ai movimenti
del personaggio (respirazione e camminata).

La sfida principale ¢ consistita nella gestione dei dati di animazione: ¢é stato ne-
cessario determinare come estrarre correttamente tutte le informazioni incorporate
all’interno di un file FBX e come organizzarle all’interno del codice del progetto, in
modo da poter riprodurre fedelmente I’animazione durante I’esecuzione [10].

L’intero processo si é concretizzato nello studio e nell’utilizzo della libreria Assimp,
che mette a disposizione funzioni, strutture dati e classi progettate per leggere e
interpretare la gerarchia dei nodi, le matrici di trasformazione e i pesi delle ossa.
Comprendere come sfruttare queste funzionalita ha permesso di salvare e organiz-
zare efficacemente tutti i dati di animazione all’interno del progetto, garantendo la
corretta riproduzione delle animazioni durante il rendering .

Figura 5.1: Personaggio animato in modalita FILL (sinistra) e in modalita LINE (destra).

5.5.1 Concetti fondamentali

Come anticipato, il modello del personaggio animato ¢ contenuto in un file FBX, che
non fornisce solamente la geometria del modello, ma include informazioni essenziali
per l'animazione, come ad esempio il rigging.

Il r¢gging consiste nell’inserimento di uno scheletro virtuale all’interno del modello,
composto da ossa (dette bones) che ne definiscono la struttura interna e ne con-

88



trollano la deformazione e il movimento. Queste ossa sono organizzate secondo una
gerarchia ad albero, in cui ogni osso pud avere un parent (o padre) e pit child (o
figli). L’osso parent si trova a un livello pit alto nella gerarchia e rappresenta il rife-
rimento per i movimenti dei figli; le ossa child, collocate a livelli pitt bassi, ereditano
le trasformazioni applicate al parent, ma non viceversa.

Questa struttura gerarchica implica che una trasformazione applicata a un osso non
si limita a influenzare la sua posizione locale, ma si propaga a tutti i figli lungo la
catena, garantendo coerenza nei movimenti complessivi dello scheletro. Facendo un
esempio concreto, muovendo il braccio (padre), tutto ’avambraccio e la mano (figli)
si muoveranno di conseguenza. Se invece si muove solo la mano, il braccio rimane
invariato.

La gerarchia ad albero permette quindi di rappresentare relazioni complesse in modo
efficiente, riducendo la necessita di calcolare separatamente ogni singola trasforma-
zione e assicurando che la mesh si deformi in modo realistico durante 1’animazio-
ne. Ogni osso memorizza informazioni sulle proprie trasformazioni locali rispetto
al parent, e la posizione finale nello spazio globale viene calcolata concatenando le
trasformazioni lungo l'intera catena gerarchica fino al root bone.

Lo scheletro cosi definito costituisce la base della skeletal animation, ovvero il pro-
cesso mediante il quale le animazioni del modello vengono generate facendo muovere
le ossa. Le trasformazioni delle ossa non si limitano al loro spazio locale, ma si pro-
pagano ai vertici del modello, indicato in questo contesto come skin (cioé la pelle
visibile del personaggio), attraverso la tecnica dello skinning. Tale tecnica prevede
che ogni vertice possa essere influenzato da pit ossa, e per ognuno di questi venga
assegnato un peso w;, che determina quanto il movimento di quell’osso incide sulla
trasformazione finale del vertice. La somma di tutti i pesi che influenzano un ver-
tice deve essere pari a 1, in modo da garantire che la deformazione sia coerente e
naturale.

Dato quindi un vertice della pelle v;, influenzato da n ossa b; (con j = 0,...,n),
la trasformazione finale di tale vertice ¢ calcolata come combinazione lineare dei
contributi delle ossa che lo influenzano:

n

trasformazione v; = E wj - trasformazione_ b;
J=0

Questo meccanismo garantisce che il modello si deformi in maniera coerente e
naturale, consentendo animazioni fluide e realistiche.

5.5.2 Parsing del modello con Assimp

Per semplificare la gestione dei modelli tridimensionali, in particolare dei file in
formato FBX, ¢é stata utilizzata la libreria Assimp (Open Asset Import Library).
Questa libreria si occupa di leggere i dati presenti nel file di input e di convertirli
in strutture dati gerarchiche, che possono poi essere direttamente sfruttate per il
rendering e per I’animazione.
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L’elemento centrale attorno a cui ruota ’organizzazione delle informazioni & 1’ogget-
to aiScene, restituito dal metodo Importer.readFile(filename, flags) della
classe Importer. Quest’ultima gestisce 'intero processo di importazione e mette
a disposizione una serie di parametri di post-processing (i cosiddetti flags) che
permettono di adattare i dati alle necessita del rendering, evitando di dover im-
plementare manualmente procedure di conversione o pulizia. Fra i pitt comuni si
trovano, ad esempio, aiProcess_Triangulate, che converte tutte le primitive in
triangoli, aiProcess_JoinIdenticalVertices, che elimina i vertici duplicati ridu-
cendo la memoria occupata, e aiProcess_GenNormals, che genera automaticamente
le normali quando queste non sono presenti.

L’oggetto aiScene rappresenta quindi il contenitore principale di tutte le informa-
zioni importate e raccoglie sia i dati geometrici dei modelli, sia quelli relativi alle
ossa e alle animazioni. Al suo interno, uno degli attributi pitt importanti & I'array
mMeshes [], che contiene tutte le mesh della scena e la cui dimensione é definita
dal valore mNumMesh. Una mesh, rappresentata dall’oggetto aiMesh, descrive la geo-
metria del modello tramite collezioni di vertici connessi da primitive (tipicamente
triangoli), accompagnati da informazioni aggiuntive come normali e coordinate di
texture.

5.5.3 Mesh e ossa

Tra i campi principali di aiMesh, di particolare interesse per la skeletal animation,
vi sono: 'array mVertices[] che contiene le coordinate di ciascun vertice, I’array
mNormals[] che memorizza le normali, 'array di puntatori mTextureCoords[] []
che conserva, per ogni canale di texture, le coordinate corrispondenti ai vertici, e
infine i campi mNumBones e mBones [], che indicano rispettivamente il numero di ossa
associate alla mesh e 'array degli oggetti aiBone che descrivono tali ossa.

Ciascun osso é quindi rappresentato da un oggetto aiBone, che fornisce tutti i dati
necessari per legare la mesh allo scheletro. In particolare, ’attributo mName identi-
fica 'osso all’interno della gerarchia, specificandone il nome univoco, mentre I’array
mWeights[] descrive ’elenco dei vertici della mesh influenzati da quell’osso. Ogni
elemento di questo array ¢ un oggetto della struttura aiVertexWeight, la quale
contiene due campi fondamentali: mVertexId, che specifica I'indice del vertice in-
fluenzato, e mWeight, che rappresenta il peso con cui l'osso contribuisce al movimento
di quel vertice.

Un ruolo cruciale é poi svolto dalla matrice m0ffsetMatrix, che definisce la trasfor-
magzione necessaria per portare i vertici dallo spazio della mesh allo spazio locale
dell’osso nella bind pose, ovvero nella configurazione iniziale del modello.

5.5.4 Gerarchia delle ossa

L’oggetto aiScene contiene al suo interno anche le informazioni riguardanti 1’or-
ganizzazione gerarchica delle ossa che compongono lo scheletro di ciascuna mesh
presente. In particolare, fra gli ulteriori campi fondamentali messi a disposizione da
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aiScene, ¢ presente mRootNode,che rappresenta il nodo radice della gerarchia ed ¢
implementato come un oggetto aiNode.

Ogni oggetto aiNode rappresenta un nodo della gerarchia corrispondente ad un osso
dello scheletro ed é caratterizzato da diversi attributi: il campo mName che identifica
il nodo mediante un nome univoco (consentendo di stabilire la corrispondenza con
'osso che rappresenta), il campo mParent che mantiene un riferimento al nodo padre,
il campo mNumChildren che specifica il numero di nodi figli e 'array mChildren[]
che contiene i riferimenti a ciascun nodo figlio. In questo modo 'insieme dei nodi
viene organizzato in una struttura ad albero, con mRootNode come radice e tutti gli
altri nodi collegati gerarchicamente.

5.5.5 Sistemi di riferimento dello scheletro

Per poter animare correttamente una mesh, ¢ fondamentale gestire i diversi sistemi
di riferimento messi a disposizione da Assimp. In particolare, possiamo distinguere
tre spazi principali: il local space, che rappresenta il sistema di coordinate della
mesh originale, il root bone space, che rappresenta il sistema di riferimento dell’osso
corrispondente al nodo radice, e il child bone space, che rappresenta il sistema di
riferimento delle ossa corrispondenti ai nodi figli, ereditando le trasformazioni dai
nodi genitori.

Ogni nodo della gerarchia é rappresentato da un oggetto aiNode, che contiene infor-
mazioni fondamentali per determinare la posizione dei vertici nello spazio globale.
Tra queste, il campo mTransformation definisce la matrice di trasformazione locale
del nodo rispetto al proprio padre, descrivendo come il sistema di coordinate del
nodo deve essere trasformato per allinearsi a quello del padre. La trasformazione
globale di un nodo si ottiene moltiplicando ricorsivamente le trasformazioni lungo
il percorso che va dalla radice al nodo stesso. Ad esempio, consideriamo una ge-
rarchia di nodi A, B e C (dove A ¢ la radice, B ¢ figlio di A e C ¢ figlio di B), la
trasformazione globale del nodo C' si ottiene come:

globalTransforme = mTransformationy - mTransformationg - mTransformationc

Nella maggior parte dei modelli importati, la matrice mTransformation del nodo
radice coincide con la matrice identita, poiché la scena € modellata direttamente
rispetto a tale nodo.

Combinando la trasformazione locale di ciascun nodo (mTransformation) con la
matrice mOffsetMatrix delle ossa (descritta nella sezione precedente), & possibile
calcolare la posizione finale dei vertici nello spazio globale della scena (cioé nel
sistema di riferimento del nodo radice) durante I’animazione:

boneSpacePosition = mOffsetMatrix - localSpacePosition
globalSpacePosition = global Transformy,.q. - bone_ space_ position

dove localSpacePosition sono le coordinate del vertice nello spazio della mesh origi-
nale, mOffsetMatriz é la matrice che trasforma il vertice dallo spazio della mesh allo
spazio locale dell’osso nella bind pose, globalTransform,,.q. rappresenta la trasforma-
zione globale del nodo (ottenuta moltiplicando tutte le mTransformation lungo il
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percorso dalla radice al nodo corrente), boneSpacePosition & la posizione del verti-
ce nello spazio dell’osso e globalSpacePosition € la posizione finale del vertice nello
spazio globale.

5.5.6 Animazioni

Infine, 'oggetto aiScene raccoglie le informazioni sulle animazioni tramite l'array
mAnimations, la cui dimensione é specificata dal campo mNumAnimations.

Ogni elemento di questo array é un oggetto aiAnimation, che descrive una sequen-
za di movimento completa. I campi principali di aiAnimation sono mDuration,
che definisce la durata dell’animazione espressa in tick, mTicksPerSecond, che in-
dica il numero di tick per secondo, e I’array mChannels[], che raccoglie i canali di
animazione.

Ciascun canale e rappresentato da un oggetto aiNodeAnim che definisce ’animazione
di un nodo specifico, identificato dal campo mNodeName. Ogni aiNodeAnim contiene
quindi tre array: mPositionKeys[], mRotationKeys[] e mScalingKeys[], i cui
elementi descrivono matematicamente i valori di traslazione, rotazione e scalatura
nel tempo. Le rispettive dimensioni sono specificate dai campi mNumPositionKeys,
mNumRotationKeys e mNumScalingKeys.

Grazie ai campi relativi all’'unitd di tempo, €& possibile convertire la durata
dell’animazione in secondi mediante la formula:

animation time in_seconds = mDuration / mTicksPerSecond

Durante l’esecuzione dell’animazione, i valori contenuti negli array
mPositionKeys[], mRotationKeys[] e mScalingKeys[] vengono interpolati
in base al tempo corrente, cosi da ottenere la trasformazione locale del nodo in ogni
istante. Questa trasformazione locale viene poi combinata con le trasformazioni
dei nodi parent lungo la gerarchia (mTransformation di ciascun aiNode) e con la
matrice mOffsetMatrix dell’osso (aiBone), al fine di calcolare la posizione finale
dei vertici nello spazio globale durante I’animazione.

5.5.7 Implementazione del modello animato

Per integrare un modello animato all’interno del progetto, é stato sviluppato un siste-
ma di caricamento e gestione dei dati forniti dai file FBX, sfruttando le funzionalita
offerte dalla libreria Assimp che sono state descritte precedentemente. L’implemen-
tazione si articola in due fasi principali: caricamento dei dati geometrici della mesh e
delle ossa (con associazione dei relativi vertici alle ossa) e calcolo delle trasformazioni
delle ossa durante I’animazione.

Caricamento delle mesh e delle ossa

Il caricamento dei modelli avviene tramite la funzione loadModel, che si occupa di
leggere il file FBX e di costruire le strutture dati necessarie per la gestione delle
animazioni scheletriche. Per ogni mesh presente nella scena, le posizioni, le normali
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e le coordinate di texture vengono salvate in array globali, mantenendo un offset che
permette di riferirsi ai vertici correttamente anche in presenza di pitt mesh.

Parallelamente, per ciascun osso associato alla mesh, viene registrata la sua matrice
di offset, che trasforma le coordinate dei vertici dalla posizione nello spazio della
mesh allo spazio locale dell’osso nella bind pose. Ogni vertice riceve inoltre una
lista di ossa che lo influenzano, insieme ai pesi corrispondenti, tramite la struttura
VertexBoneData. Questo permette di calcolare successivamente le deformazioni
della mesh in base alle animazioni applicate allo scheletro.

In sintesi, questa fase garantisce che tutte le informazioni necessarie per animare
correttamente la mesh siano disponibili: la geometria é memorizzata, ogni vertice é
associato alle ossa che ne determinano il movimento e le matrici di offset delle ossa
sono salavate per calcolare le trasformazioni globali durante ’animazione.

void loadMeshBones(const int meshIndex, const aiMesh* mesh, ModelState
state) {
for (int i = 0; i < mesh->mNumBones; i++) {
const aiBone* bone = mesh->mBones[i];

int boneID = getBoneID(bone, state);
for (int j = 0; j < bone->mNumWeights; j++) {
const aiVertexWeight& vertexWeight = bone->mWeights[j];
unsigned int globalVertexID = mesh_vertices[meshIndex] +
vertexWeight .mVertexId;
vertices_to_bones[globalVertexID] .addBone(
bonelD,
vertexWeight .mWeight
)3

void loadSceneData(const aiScene* scene, ModelState state) {
int total_vertices = 0;
int total_indices = 0;
int total_bones = 0;

mesh_vertices.resize(scene->mNumMeshes) ;

for (int i = 0; i < scene->mNumMeshes; i++) {
const aiMesh* mesh = scene->mMeshes[i];
total_vertices += mesh->mNumVertices;

total_indices += mesh->mNumFaces * 3;
total_bones += mesh->mNumBones;

positions.reserve(total_vertices);
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normals.reserve(total_vertices);
texCoords.reserve(total_vertices);
indices.reserve(total_indices);

vertices_to_bones.resize(total_vertices);

int vertex_offset = 0;

for (int i = 0; i < scene->mNumMeshes; i++) {
const aiMesh* mesh = scene->mMeshes[i];
int num_vertices = mesh->mNumVertices;
int num_indices = mesh->mNumFaces * 3;
int num_bones = mesh->mNumBones;

mesh_vertices[i] = vertex_offset;

for (int v = 0; v < num_vertices; v++) {
unsigned int globalVertexID = mesh_vertices[i] + v;
VertexBoneData& vertex = vertices_to_bones[globalVertexID];

// Position
aiVector3D pos = mesh->mVertices[v];
positions.push_back(vec3(pos.x, pos.y, pos.z));

// Normal

if (mesh->HasNormals()) {
aiVector3D normal = mesh->mNormals[v];
normals.push_back(vec3(normal.x, normal.y, normal.z));

}
else {
aiVector3D backupNormal(0.0f, 1.0f, 0.0f);
normals.push_back(vec3(
backupNormal.x,
backupNormal.y,
backupNormal.z
)5
}

// Texture coords

if (mesh->HasTextureCoords(0)) {
aiVector3D uv = mesh->mTextureCoords[0] [v];
texCoords.push_back(vec2(uv.x, uv.y));

}
else {
aiVector3D backupUV(0.0f, 0.0f, 0.0f);
texCoords.push_back(vec2(backupUV.x, backupUV.y));
}

for (int f = 0; f < mesh->mNumFaces; f++) {
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const aiFace& face = mesh->mFaces[f];

indices.push_back(mesh_vertices[i] + face.mIndices[0]);
indices.push_back(mesh_vertices[i] + face.mIndices[1]);
indices.push_back(mesh_vertices[i] + face.mIndices[2]);

if (mesh->HasBones()) {
loadMeshBones (i, mesh, state);

vertex_offset += num_vertices;

for (auto& v : vertices_to_bones) {
v.normalize();

void loadModel (string modelPath, ModelState state) {
aiMatrix4x4 transform;

if (state == WALKING) {
scene_walking = importerWalking.ReadFile(
modelPath,
aiProcess_Triangulate |
aiProcess_GenSmoothNormals |
aiProcess_JoinlIdenticalVertices

)

if (!scene_walking || !scene_walking->HasMeshes()) {
return;

}

transform = scene_walking->mRootNode->mTransformation;
globallnverseTransformation = inverse(
aiMatrix4x4_to_mat4 (transform)

);
loadSceneData(scene_walking, state);
}
else {
scene_standing = importerStanding.ReadFile(
modelPath,

aiProcess_Triangulate |
aiProcess_GenSmoothNormals |
aiProcess_JoinIdenticalVertices

)3
if (!scene_standing || !scene_standing->HasMeshes()) {
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return;

transform = scene_standing->mRootNode->mTransformation;
globallnverseTransformation = inverse(
aiMatrix4x4_to_mat4 (transform)

)

loadSceneData(scene_standing, state);

Calcolo delle trasformazioni delle ossa

Il cuore dell’animazione scheletrica ¢ la funzione readNodeHierarchy, che percorre
ricorsivamente la gerarchia dei nodi dello scheletro, calcolando la trasformazione
globale di ciascun nodo a partire dalle trasformazioni locali e dai dati di animazione.

Per ogni nodo, la funzione verifica se €& presente un canale di animazione
(aiNodeAnim) associato. Se presente, vengono calcolati tramite interpolazione i
valori di traslazione, rotazione e scalatura in base al tempo corrente. Tali in-
terpolazioni sono gestite da funzioni dedicate (CalcInterpolatedTranslation,
CalcInterpolatedRotation e CalcInterpolatedScaling), che si occupano di in-
dividuare i keyframe adiacenti e calcolare una media ponderata tra i valori, otte-
nendo cosi transizioni fluide tra le pose definite dall’animazione. Con il termine
keyframe si intendono punti nel tempo in cui vengono definite esplicitamente le tra-
sformazioni di un nodo: tra due keyframe consecutivi, le trasformazioni vengono
interpolate per generare movimenti continui e realistici.

Le trasformazioni interpolate vengono quindi combinate per ottenere la trasforma-
zione locale del nodo, che rappresenta lo spostamento, ’orientamento e la scala del
nodo rispetto al nodo padre. Questa trasformazione locale viene poi moltiplicata
per la trasformazione globale del nodo genitore, generando cosi la trasformazione
globale del nodo nello spazio del modello.

Per ogni osso associato a un nodo, la trasformazione globale calcolata viene com-
binata con la matrice di offset dell’osso (offsetMatrix), riportando i vertici dallo
spazio della bind pose allo spazio locale dell’osso. Questo passaggio ¢ fondamenta-
le per garantire che le deformazioni della mesh seguano correttamente i movimenti
dello scheletro e rispettino la gerarchia dei nodi.

Il processo viene eseguito ricorsivamente su tutti i figli del nodo, aggiornando in
modo coerente tutte le ossa dello scheletro. Grazie a questa procedura, ogni vertice
della mesh puo essere trasformato correttamente in base alla combinazione delle ossa
che lo influenzano, permettendo animazioni realistiche e fluide in tempo reale.

void readNodeHierarchy(float animationTimeTicks, const aiNode* node, const
mat4& parentTransform, ModelState state) {
string nodeName = node->mName.data;
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aiAnimation* animation;
if (state == WALKING) {
animation = scene_walking->mAnimations[0];

}
else{

animation = scene_standing->mAnimations[0];
}

mat4 nodeTransformation = aiMatrix4x4_to_mat4(node->mTransformation);
aiNodeAnim* nodeAnimation = findNodeAnim(animation, nodeName) ;

if (nodeAnimation) {
aiVector3D scaling;
mat4 scalingMatrix = mat4(1.0f);
CalcInterpolatedScaling(

scaling,

animationTimeTicks,

nodeAnimation
)3
scalingMatrix = scale(

scalingMatrix,

vec3(scaling.x, scaling.y, scaling.z)
)3

aiQuaternion rotation;

CalcInterpolatedRotation(
rotation,
animationTimeTicks,
nodeAnimation

);

quat glmRotation = quat(
rotation.w,
rotation.x,
rotation.y,
rotation.z

);

mat4 rotationMatrix = toMat4(glmRotation) ;

aiVector3D translation;
mat4 translationMatrix = mat4(1.0f);;
CalcInterpolatedTranslation(

translation,

animationTimeTicks,

nodeAnimation
);
translationMatrix = translate(

translationMatrix,

vec3(translation.x, translation.y, translation.z)
);
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nodeTransformation = translationMatrix *
rotationMatrix *
scalingMatrix;

mat4 globalTransform = parentTransform * nodeTransformation;

if (state == WALKING) {
if (bone_name_to_index_walking.find(nodeName) !=
bone_name_to_index_walking.end()) {
int boneIndex = bone_name_to_index_walking[nodeName] ;
bone_info_walking[boneIndex] .finalTransform =
globalInverseTransformation *
globalTransform *
bone_info_walking[boneIndex] .offsetMatrix;

}
else {
if (bone_name_to_index_standing.find(nodeName) !=
bone_name_to_index_standing.end()) {
int boneIndex = bone_name_to_index_standing[nodeName] ;
bone_info_standing[boneIndex] .finalTransform =
globalInverseTransformation *
globalTransform *
bone_info_standing[boneIndex] .offsetMatrix;

}
}
for (unsigned int i = 0; i < node->mNumChildren; i++) {
readNodeHierarchy (
animationTimeTicks,
node->mChildren[i],
globalTransform,
state
);

Aggiornamento delle animazioni

Durante 'esecuzione, la funzione updateBoneTransforms viene chiamata ogni frame
per aggiornare le trasformazioni delle ossa in base al tempo di animazione corrente.
Grazie al mapping tra nomi delle ossa e indici negli array di trasformazioni, le matrici
finali calcolate possono essere trasferite direttamente agli shader per applicare lo
skinning dei vertici.
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Gestione delle texture incorporate

Infine, la funzione extractEmbeddedTextures consente di salvare su disco even-
tuali texture incorporate all’interno del file FBX. Questo permette di riutilizzare
tali immagini durante il rendering, garantendo che il modello venga visualizzato
correttamente anche se il file originale non fornisce texture esterne separate.

Per ottenere cio, la funzione sfrutta alcune strutture dati messe a disposizione
dalla libreria Assimp. In particolare, si utilizza il campo mTextures della classe
aiScene, un’array di lunghezza mNumTextures che contiene tutte le texture salvate
internamente al file, rappresentate da oggetti aiTexture.

Il contenuto di ciascuna texture viene quindi salvato in un file separato, con esten-
sione specificata dal campo achFormatHint di aiTexture, utilizzando le normali
operazioni di scrittura su file in C/C++. I dati da scrivere sono contenuti nel
campo pcData, mentre la dimensione del contenuto ¢ indicata dal campo mWidth.

void extractEmbeddedTextures(const string modelPath, const string&
outputDirectory) {
scene_bind_pose = importerBindPose.ReadFile(
modelPath,
aiProcess_Triangulate |
aiProcess_GenSmoothNormals |
aiProcess_JoinldenticalVertices

)

if (!scene_bind_pose->HasTextures()) {
return;

}

for (unsigned int i = 0; i < scene_bind_pose->mNumTextures; ++i) {
const aiTexture* texture = scene_bind_pose->mTextures[i];

if (texture->mHeight == 0) {
string extension = texture->achFormatHint;
string fileName = outputDirectory + +
to_string(i) + + extension;

ofstream fout(fileName, ios::binary);

fout.write(
reinterpret_cast<const char*>(texture->pcData),
texture->mWidth

)3

fout.close();
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5.6 Buffer di memoria

Tutti i vertici delle geometrie generate, per poter essere passati e utilizzati dagli
shader della pipeline, devono essere organizzati e caricati in un sistema di buffer
utilizzato da OpenGL. I buffer pitt comuni sono i Vertex Buffer Object (VBO), che
contengono insiemi di dati come le coordinate dei vertici, le normali o le coordinate
di texture, e i Vertex Array Object (VAO), che fungono da contenitori logici e memo-
rizzano la configurazione che specifica come i dati devono essere letti ed interpretati
durante il rendering.

L’associazione tra un VAO e uno o piut VBO permette di organizzare le informazioni
in maniera ordinata ed efficiente. Ogni VBO puo contenere un tipo specifico di
attributo: per esempio le posizioni dei vertici, le normali, o ancora i pesi di influenza
delle ossa in un modello animato. Tramite la funzione glVertexAttribPointer si
specifica come i dati sono strutturati (dimensione, tipo, offset, ecc.), mentre con
glEnableVertexAttribArray si attiva il relativo attributo, che verra poi utilizzato
dagli shader.

Un ulteriore buffer, chiamato Element Buffer Object (EBO), viene invece utilizzato
per gestire gli indici. In questo modo € possibile evitare la duplicazione di vertici
che appartengono a pitt geometrie di base, migliorando sia la compattezza dei dati
sia 'efficienza in fase di rendering.

Un esempio completo di questa organizzazione dei dati si ritrova nella funzione
INIT_MODEL_BUFFERS, la funzione utilizzata per caricare tutti i dati relativi al per-
sonaggio animato nei relativi buffer. Al suo interno viene generato un VAO che
contiene diversi VBO, ciascuno dedicato a un tipo specifico di informazione: il pri-
mo contiene le posizioni dei vertici, il secondo le normali, il terzo le coordinate di
texture, il quarto gli identificatori delle ossa e il quinto i pesi relativi alle ossa.

Infine, viene associato un EBO che memorizza gli indici dei vertici da utilizzare per
disegnare i triangoli che compongono la mesh. In questo modo, durante il rendering,
OpenGL puo ricostruire correttamente la geometria del modello senza ridondanza
nei dati.

ModelBufferPair INIT_MODEL_BUFFERS() {
ModelBufferPair pair;

vector<ivec4> bonelIDs(vertices_to_bones.size());

vector<vec4> weights(vertices_to_bones.size());

for (size_t i = 0; i < vertices_to_bones.size(); it++) {

bonelIDs[i] = ivec4(

vertices_to_bones[i] .boneIDs[0],
vertices_to_bones[i] .boneIDs[1],
vertices_to_bones[i] .boneIDs[2],
vertices_to_bones[i] .boneIDs[3]

)3
weights[i] = vec4(
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vertices_to_bones[i] .weights[0],
vertices_to_bones[i].weights[1],
vertices_to_bones[i] .weights[2],
vertices_to_bones[i] .weights[3]

)

glGenVertexArrays (1, &pair.vao);
glBindVertexArray(pair.vao);

// Genera i buffer

glGenBuffers(1l, &pair.vboPositions);
glGenBuffers(1l, &pair.vboNormals);
glGenBuffers(1l, &pair.vboTexCoords) ;
glGenBuffers(1l, &pair.ebo);

// POSIZIONI

glBindBuffer (GL_ARRAY_BUFFER, pair.vboPositions);
glBufferData(GL_ARRAY_BUFFER, positions.size() * sizeof(vec3),
positions.data(), GL_STATIC_DRAW);
glEnableVertexAttribArray(0); // location O
glVertexAttribPointer (0, 3, GL_FLOAT, GL_FALSE, sizeof(vec3), (voidx)0);

// NORMALI

glBindBuffer (GL_ARRAY_BUFFER, pair.vboNormals);

glBufferData (GL_ARRAY_BUFFER, normals.size() * sizeof(vec3), normals.
data(), GL_STATIC_DRAW);

glEnableVertexAttribArray(1); // location 1

glVertexAttribPointer(l, 3, GL_FLOAT, GL_FALSE, sizeof(vec3),(void*)0);

// TEX COORDS

glBindBuffer (GL_ARRAY_BUFFER, pair.vboTexCoords) ;

glBufferData (GL_ARRAY_BUFFER, texCoords.size() * sizeof (vec2),
texCoords.data(), GL_STATIC_DRAW);
glEnableVertexAttribArray(2); // location 2
glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, sizeof(vec2),(void*)0);

// BONES: boneIDs (interi)

glGenBuffers(1l, &pair.vboBoneIDs);

glBindBuffer (GL_ARRAY_BUFFER, pair.vboBonelDs);
glBufferData(GL_ARRAY_BUFFER, bonelDs.size() * sizeof(ivec4), bonelDs.
data(), GL_STATIC_DRAW);

glEnableVertexAttribArray(3); // location 3

glVertexAttribIPointer(3, 4, GL_INT, sizeof(ivec4), (void#)0);

// BONES: weights (float)

glGenBuffers(1l, &pair.vboBoneWeights) ;

glBindBuffer (GL_ARRAY_BUFFER, pair.vboBoneWeights);

glBufferData (GL_ARRAY_BUFFER, weights.size() * sizeof(vecd), weights.
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data(), GL_STATIC_DRAW);
glEnableVertexAttribArray(4); // location 4
glVertexAttribPointer(4, 4, GL_FLOAT, GL_FALSE, sizeof(vec4),(void*)0);

// INDICI

glBindBuffer (GL_ELEMENT _ARRAY_BUFFER, pair.ebo);

glBufferData (GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof (unsigned
int), indices.data(), GL_STATIC_DRAW);

glBindVertexArray(0) ;
return pair;

5.7 Rumore procedurale

Un aspetto centrale nello sviluppo della prima ambientazione € stata la definizione
di una displacement map, utilizzata per deformare dinamicamente la superficie del
terreno e generare un paesaggio realistico, con variazioni di altitudine che riprodu-
cessero montagne, colline, pianure e aree costiere. Con il termine displacement map
si intende una mappa bidimensionale di valori numerici che, una volta interpretata
dalla pipeline grafica, viene impiegata per spostare i vertici della geometria lungo la
direzione normale, modificando effettivamente la forma del modello.

Per generare questa mappa non si é fatto ricorso a dati predefiniti, ma si é scelto un
approccio basato sulla procedural generation (o generazione procedurale). Con que-
sta espressione si intende la creazione di contenuti attraverso algoritmi matematici,
anziché tramite modellazione manuale. In questo modo ¢ possibile generare scenari
vasti, senza che risultino artificiosi o ripetitivi, mantenendo al contempo un elevato
livello di controllo sui parametri che determinano la morfologia del terreno.

11 principio alla base di queste tecniche ¢ I'impiego del cosiddetto rumore (o noise).
In ambito matematico e informatico, il termine indica una funzione matematica che
restituisce valori numerici distribuiti secondo un certo grado di complessita e variabi-
litd. Un rumore puramente casuale produce sequenze di valori tra loro indipendenti,
senza alcuna correlazione spaziale, e di conseguenza risulta del tutto privo di strut-
tura. Per molte applicazioni grafiche, tuttavia, & preferibile utilizzare un rumore
pseudo-casuale, che conserva la componente di imprevedibilita tipica del caso ma
introduce al tempo stesso una certa continuita. In questo modo, i valori generati
non sono completamente disgiunti, ma presentano transizioni graduali e correlazioni
locali [5].

Tra i diversi metodi possibili per generare superfici procedurali, € stato scelto I'al-
goritmo Perlin Noise, introdotto da Ken Perlin negli anni ’80 . Si tratta di una
funzione in grado di generare un rumore pseudo-casuale “morbido”, caratterizzato
da variazioni graduali e prive di discontinuita. Integrato in una displacement map, il
Perlin Noise permette di creare terreni realistici, con rilievi e depressioni distribuiti
in modo coerente, che richiamano ’andamento del paesaggio reale , .
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Nei paragrafi seguenti vengono descritte le principali fasi dell’algoritmo.

5.7.1 Valori iniziali

L’algoritmo ha inizio assumendo di possedere una griglia quadrata di dimensione
n-n. Si assume anche che il valore di n sia un numero piccolo, solitamente compreso
fra 2 e 10.

Per ogni vertice (i, j) appartenente alla griglia, dove 0 < i, j < n, si genera un valore
scalare randomico z;;, che rappresenta il valore di base del punto. Per facilitare la
continuita sui bordi della griglia, ¢ conveniente applicare gli stessi valori ai punti pit
esterni sui vari lati della griglia: z;, = 2 € 2,; = 20; (per ogni valore di i e j).

Dato un punto qualsiasi (z,y), con 0 < z,y < n, i vertici appartenenti alla griglia
che compongono la cella che contiene il punto sono i seguenti:

zo = |z] 1 = (xo+ 1) mod n
vo = lv] y1 = (Yo +1) mod n

5.7.2 Random gradients

Nell’algoritmo classico di Perlin Noise, per ogni vertice della griglia si calcola poi un
vettore bidimensionale randomico che rappresenta il gradiente del punto. Questo
determina la direzione lungo la quale la funzione di noise tendera ad aumentare
o diminuire. In questo modo pero, i gradienti relativi a vertici adiacenti possono
essere completamente differenti: in un punto il terreno potrebbe pendere verso nord-
est, mentre nel vertice confinante potrebbe pendere verso sud-ovest, generando un
andamento brusco tra le celle.

Per fare in modo che la funzione di noise abbia un effetto pit graduale e non com-
pletamente randomico su ogni singolo punto della griglia, 1’algoritmo classico opera
nel seguente modo. Preso una singola cella della griglia, si indicano i suoi estremi
con (o, Yo), (z1,v0), (z1,91), (zo,71) e 1 gradienti corrispondenti con goo, 91,0, 91,1,
go1- Per ogni punto (x,y) interno alla cella si calcolano i vettori che congiungono
ciascun vertice della cella al punto stesso:

Vo,0 = (Ia y) - (l’o,yo) Vo,1 = (xa?/) - (x(]a yl)
vig = (2,y) — (z1,91) vio = (7,y) — (21, %)

e si valuta il dot product con i corrispondenti gradienti dei vertici. Il risultato
prende il nome di vertical displacement e rappresenta l'altezza che il punto avrebbe
nello spazio a tre dimensioni. Questo valore ¢ massimo se i vettori puntano nella
stessa direzione, minimo se opposti, nullo se ortogonali. Il dot product, oltre che
rappresentare la scelta piti consona, permette anche di scalare l'effetto in maniera
lineare con la distanza dal vertice. I valori di displacement per ogni cella sono i
seguenti:

50,0 = (Uo,o : 90,0) 50,1 = (’Uo,1 'go,l)
51,1 = (U1,1 : 91,1) 51,0 = (U1,0 : gl,O)
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5.7.3 Fading

Uno dei problemi principali dei valori di displacement € che essi risultano influenzati
da tutti gli angoli della cella corrispondente. Man mano che ci si sposta dal vertice
della cella, il valore tende ad aumentare, mentre I'effetto desiderato & esattamente il
contrario: il gradiente di displacement deve applicarsi con maggiore intensita vicino
ai vertici della cella e diminuire progressivamente allontanandosi da essi.

Per ottenere questo comportamento, si definisce una funzione particolare chiamata
fade function, una funzione parametrica dipendente da un parametro t, che restitui-
sce 0 quandot = 0 e 1 quando ¢ = 1. Originariamente la funzione era ¢(t) = 3t*>—2t3,
ma successivamente si ¢ adottata una versione piu regolare:

Y(t) = 6t° — 15t* + 10¢3

dove ¥(0) = 0, ¥(1) = 1 e la derivata seconda ¢ non nulla in entrambi i valori,
garantendo una transizione pitt morbida.

In due dimensioni, si definisce invece la joint fade function, ottenuta moltiplicando
i valori della fade function classica calcolati sui due assi: V(z,y) = () (y).

Il valore finale della noise function al punto (z, y) si ottiene tramite un’interpolazione
bilineare pesata dei quattro vertici della cella corrispondente, utilizzando i valori
della joint fade function ¥(z,y) come pesi:

noise(x,y) = V(1 —x,1 —y)doo + ¥(z,1 —y)d10+ V(1 —2,y)d01 + V(x,y)011

In questo modo, ogni vertice contribuisce in maniera graduale e continua al valore
finale, intensificando il proprio contributo man mano che il punto si trova vicino ad
esso, evitando brusche discontinuita.

5.7.4 Aggiunta delle altezze random

Per ottenere un ulteriore elemento di casualita, ¢ possibile aggiungere al valore di
displacement verticale anche i valori scalari randomici inizialmente assegnati ai punti
della griglia come valori di base (vedi sezione [5.7.1)). Considerata la cella avente
(1,7) come indici del vertice in basso a sinistra, il calcolo dei valori di displacement
diventera:

50,0 = Zi,j(UO,O : 90,0) 50,1 = Zi,j+1(Uo,1 '90,1)
0= Zz‘+1,j+1(U1,1 '91,1) 0o = Zi+1,j(v1,0 : 91,0)

5.7.5 Brownian motion

Il risultato del Perlin Noise classico in due dimensioni é una funzione continua e
graduale, con variazioni dolci sui due assi. Pur essendo casuale, le transizioni tra i
valori adiacenti sono morbide e prive di brusche discontinuita. Tuttavia, 'ampiezza
delle variazioni rimane relativamente costante e la frequenza delle oscillazioni si
mantiene in un range limitato, il che conferisce al risultato un aspetto regolare e
poco frastagliato.
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Per rendere la funzione piu dettagliata e ricca di variazioni, € possibile sommare
tra loro diverse versioni della stessa funzione, scalate mediante I'uso di frequenze
e ampiezze diverse. Questo approccio prende il nome di Fractal Brownian Motion

(FBM).

Nella pratica, ogni iterazione (detta octave o ottava) di questa somma utilizza un
rumore leggermente diverso, con frequenza incrementata e ampiezza ridotta rispetto
all’iterazione precedente. L’incremento di frequenza ¢ definito lacunarity, mentre la
diminuzione dell’ampiezza ¢ definita gain.

Aggiungendo un rumore diverso ad ogni iterazione (octaves), modificato incremen-
tando la frequenza originale con step regolari (lacunarity) e decrementando I’am-
piezza (gain), é possibile ottenere una granularita piu fine e ottenere cosi maggiori
dettagli.

Tipicamente, la frequenza viene raddoppiata e 'ampiezza dimezzata ad ogni ottava,
producendo un rumore piti granulare e dettagliato. La funzione risultante puo quindi
essere espressa come:

k

FBM(z,y) = Zpi -noise(2' - z,2" - y)
=0

dove p’ rappresenta I'ampiezza dell’ottava i-esima, mentre 2¢ scala la frequenza. In
questo modo, la combinazione di piu ottave produce un terreno digitale con dettagli
su piu scale, senza perdere la continuita e la regolarita tipiche del Perlin Noise.

5.7.6 Implementazione

Nell’implementazione del progetto, 'algoritmo di generazione del Perlin Noise ¢ stato
modificato rispetto alla versione classica per garantire maggiore controllo, continuita
tra le celle e semplicita computazionale.

Invece di utilizzare dei gradienti completamente randomici per ogni vertice della
griglia, infatti, si & scelto di utilizzare un insieme discreto di quattro direzioni costanti
(1,1),(=1,1),(—1,-1),(1,—1). La scelta del gradiente per ciascun vertice viene
determinata tramite una tabella di permutazione pseudo-casuale di 256 elementi,
duplicata per ottenere un array di 512 valori. La tabella di permutazione rappresenta
un insieme di valori interi compresi tra 0 e 255 generati casualmente tramite il
generatore Mersenne Twister, un algoritmo per la generazione di numeri pseudo-
casuali ad alta rapidita, messo a disposizione dalla libreria <random>.

In questo modo l'effetto casuale del terreno viene preservato, si evitano discontinuita
improvvise tra le celle adiacenti e si semplifica la funzione di interpolazione.

Di seguito viene riportata una porzione del codice utilizzato per I'implementazione
dell’algoritmo Perlin Noise, comprensivo della gestione delle ottave per la FBM. e
dove MakePermutation() rappresenta la funzione di riempimento della tabella di
permutazione:

vector<float> textureData;
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static vector<int> permutation = MakePermutation();

vec2 GetConstantVector(int value) {
switch (value & 3) {
case 0: return vec2(1.0f, 1.0f);
case 1: return vec2(-1.0f, 1.0f);
case 2: return vec2(-1.0f, -1.0f);
default: return vec2(1.0f, -1.0f);

float Fade(float t) {
return ((6 * t - 15) * t + 10) * t * t * t;

float Lerp(float t, float a, float b) {
return a + t * (b - a);

3

float Noise2D(float x, float y) {
int X static_cast<int>(floor(x)) & 255;
int Y = static_cast<int>(floor(y)) & 255;
float x_decimal = x - floor(x);
float y_decimal = y - floor(y);
vec2 topRight = vec2(x_decimal - 1.0, y_decimal - 1.0);
vec2 topLeft = vec2(x_decimal, y_decimal - 1.0);
vec2 bottomRight = vec2(x_decimal - 1.0, y_decimal);
vec2 bottomLeft = vec2(x_decimal, y_decimal);
int valueTopRight = permutation[permutation[X + 1] + Y + 1];
int valueToplLeft = permutation[permutation[X] + Y + 1];
int valueBottomRight = permutation[permutation[X + 1] + Y];
int valueBottomLeft = permutation[permutation[X] + Y];
float dotTopRight = dot(topRight, GetConstantVector(valueTopRight))

float dotTopLeft = dot(topLeft, GetConstantVector(valueTopLeft));
float dotBottomRight = dot(bottomRight, GetConstantVector(
valueBottomRight)) ;
float dotBottomLeft = dot(bottomLeft, GetConstantVector(
valueBottomLeft)) ;
float u = Fade(x_decimal);
float v = Fade(y_decimal);
return Lerp(u,
Lerp(v, dotBottomLeft, dotTopLeft),
Lerp(v, dotBottomRight, dotTopRight)
)3

float FractalBrownianMotion(float x, float y, int numOctaves) {
float result = 0.0f;
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float amplitude = 0.9f;
float frequency = 0.005f;
float gain = 0.5f;
float lacunarity = 2.0f;
for (int 1 = 0; i < numOctaves; ++i) {
result += amplitude * Noise2D(x * frequency, y * frequency)

amplitude *= gain;
frequency *= lacunarity;
b

return result;

vector<float> generateFBMData(int width, int height, int numOctaves) {
vector<float> data(width * height);
float scale = 512.0f * 2.5;
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
float xf = static_cast<float>(x) / width;
float yf = static_cast<float>(y) / height;
float value = FractalBrownianMotion(xf * scale, yf
* scale, numOctaves);
datal[(y * width) + x] = value;

3

return data;

5.8 Texture

Le texture rivestono un ruolo fondamentale all’interno del progetto, in quanto costi-
tuiscono la base per la colorazione e il dettaglio visivo dei vari oggetti presenti nella
scena, consentendo di ottenere una resa il piti possibile realistica. Il loro utilizzo non
si ¢ limitato esclusivamente alla componente di colore, ma ha riguardato anche il
displacement, ovvero lo spostamento dei vertici delle geometrie amplificate in base
a determinate condizioni, seguendo la direzione della normale associata a ciascun
vertice.

Nel progetto sono stati utilizzati tre tipi di texture: quelle di colore e quelle di displa-
cement, ottenute caricando immagini esterne tramite la libreria stb_image, e una
ulteriore texture ottenuta a partire dalla mappa di altezze generata con 1’algoritmo
Perlin Noise combinato con Fractal Brownian Motion (vedi sezione [5.7)).

Una volta create o caricate, le texture vengono rese disponibili agli shader attraverso
il loro identificatore OpenGL. In pratica, ciascuna texture & associata a un oggetto
della GPU che puo essere richiamato negli shader sotto forma di sampler2D, ovvero
un collegamento alla texture che permette di accedere ai valori memorizzati al suo
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interno, restituendo il colore o l'informazione associata a una specifica coordinata
di texture.

Figura 5.2: Esempio di texture di colore (in alto) e relativa texture di displacement (in basso).

5.8.1 Caricamento di texture di colore e displacement

Per quanto riguarda le texture di colore e di displacement utilizzate negli sce-
nari del progetto, queste sono state caricate da file esterni tramite la funzione
loadSingleTexture. Questa funzione, partendo dal percorso del file, si occupa ini-
zialmente di leggere i dati dell'immagine tramite la libreria stb_image, verificando
il tipo di immagine e adattando il formato della texture da utilizzare.

Una volta caricati i dati, viene generato un identificatore per la texture e viene riem-
pita con i valori letti. In questa fase vengono inoltre definiti i parametri fondamentali
per la sua gestione. Il parametro GL_REPEAT stabilisce che, quando le coordinate
di texture fuoriescono dall’intervallo [0, 1], 'immagine viene ripetuta in modo con-
tinuo, cosi da estendere la superficie senza interruzioni. Per quanto riguarda i filtri
di interpolazione, GL_LINEAR indica che, se le coordinate non corrispondono esat-
tamente a un punto dell'immagine, il colore viene calcolato facendo una media dei
pixel piu vicini. Il parametro GL_LINEAR_MIPMAP_LINEAR, invece, applica la stessa
logica anche alle versioni ridotte dell'immagine (chiamate mipmap), che vengono ge-
nerate automaticamente e servono a migliorare la resa visiva e le prestazioni quando
la texture viene vista da lontano.
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GLuint loadSingleTexture(const string& path) {

int width, height, channels;

stbi_set_flip_vertically_on_load(true);

unsigned char* data = stbi_load(
path.c_str(),

&width,
&height,
&channels,
0

);

if (!data) {
return O;

}

GLuint texturelD;
glGenTextures(1l, &texturelD);
glBindTexture (GL_TEXTURE_2D, texturelD);

GLenum format = GL_RGB;
GLint internalFormat = GL_RGBS;

if (channels == 1) {
format = GL_RED;
internalFormat = GL_RS;

}

else if (channels == 3) {
format = GL_RGB;
internalFormat = GL_RGBS;

}

else if (channels == 4) {
format = GL_RGBA;
internalFormat = GL_RGBAS8;

}
else {
stbi_image_free(data);
return O;
}
glTexImage2D(
GL_TEXTURE_2D, 0, internalFormat, width,
height, 0, format, GL_UNSIGNED_BYTE, data
);

glGenerateMipmap (GL_TEXTURE_2D) ;

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_LINEAR_MIPMAP_LINEAR);
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glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

stbi_image_free(data);
return texturelD;

5.8.2 Generazione della texture di altezze

La texture di altezze, utilizzata unicamente per la definizione delle variazioni geo-
metriche del terreno all’interno della prima ambientazione, é stata invece generata
direttamente a partire da valori numerici ottenuti dalla funzione generateFBMData
definita nella sezione precedente.

In pratica, la funzione createFloatTexture2D prende un insieme di valori in virgola
mobile e li organizza in una texture 2D, dove ogni punto memorizza un singolo valore
che rappresenta ’altezza relativa di quella posizione. Queste informazioni vengono
poi lette negli shader per determinare come spostare i vertici e ottenere superfici piti
dettagliate e irregolari.

Come per le altre texture, sono stati definiti i parametri di wrapping e filtraggio.
Tuttavia, in questo caso non vengono generate mipmap, poiché la texture di altezze
non viene usata per la resa visiva diretta, ma come base per calcoli geometrici che
richiedono la massima precisione.

GLuint createFloatTexture2D(int width, int height, const vector<float>&
data) {
GLuint texturelD;
glGenTextures(1l, &texturelD);
glBindTexture (GL_TEXTURE_2D, texturelD);

ngexImageQD(GL_TEXTURE_QD, 0, GL_R32F, width, height, 0, GL_RED,
GL_FLOAT, data.data());

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

return texturelD;

5.9 Collisioni

All'interno del progetto, in entrambe le ambientazioni, il personaggio animato non
puo muoversi liberamente nello spazio, ma deve evitare le zone gia occupate dagli
oggetti della scena.
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Nel secondo ambiente questo vincolo é gestito tramite i cosiddetti bounding volume,
ovvero parallelepipedi che racchiudono I'ingombro massimo di ciascun oggetto (per-
sonaggio compreso) lungo i tre assi principali, calcolati a partire dalle coordinate
minime e massime dei suoi vertici. Quando il personaggio tenta di muoversi, viene
controllato se il suo bounding volume andrebbe a intersecare quello di un altro og-
getto. In caso di intersezione lo spostamento viene annullato, poiché significherebbe
entrare in uno spazio gia occupato.

Nel primo ambiente, invece, la gestione delle collisioni é differente, in quanto I'unico
oggetto con cui il personaggio interagisce ¢ il terreno montuoso, del quale deve
seguire 'andamento. Qui si sfrutta direttamente la pipeline grafica del terreno:
oltre ai dati della superficie, viene passata anche la posizione del personaggio, cosi
che ogni patch possa averla a disposizione e confrontarla con la propria area. In
questa pipeline particoalre non é presente un Fragment Shader, ma viene usata una
transform feedback, che consente di salvare dalla pipeline alcune informazioni utili
che possono essere utilizzate lato applicativo. In particolare, viene individuata la
patch del terreno su cui si trova il personaggio e da essa si estraggono sia l’altezza (per
aggiornare la sua posizione verticale) sia la normale (per attribuire un’inclinazione
coerente con la pendenza del terreno).

5.10 Shaders

Gli shader rappresentano la componente principale alla base della realizzazione delle
due ambientazioni del progetto. Grazie al loro utilizzo é stato possibile implementare
un sistema di LOD dinamico, in cui sia il livello di dettaglio del terreno, sia quello
degli oggetti di scena, viene calcolato in maniera adattiva. In questo modo gli
elementi risultano pitt o meno definiti e realistici, in base alla loro distanza dal
personaggio o dalla telecamera virtuale.

Nell’implementazione del progetto sono state definite diverse pipeline di rendering,
ognuna caratterizzata da specifici shader e da compiti ben precisi. In generale, la
maggior parte delle pipeline comprende Vertex Shader, Tessellation Control Shader,
Tessellation Evaluation Shader, Geometry Shader e Fragment Shader. Sono presenti
tuttavia anche pipeline semplificate: ad esempio, nei casi in cui non € necessario
I'utilizzo della tessellazione o dell’amplificazione delle geometrie, i relativi shader
non sono stati inclusi. In un caso particolare, gia introdotto nella sezione la
pipeline é stata fatta terminare al Geometry Shader, senza quindi passare né al
Fragment Shader, ne alle fasi di clipping e rasterizzazione.

Per la maggior parte degli oggetti della scena & stata implementata una pipeline
dedicata, poiché ciascun tipo di entita richiedeva parametri e comportamenti diffe-
renti rispetto agli altri. Questa suddivisione é resa possibile dalla struttura stessa di
OpenGL, che rende infatti possibile la definizione di pitt programmi shader distinti,
ognuno costituito dai propri stadi, selezionando di volta in volta quello da utilizzare
tramite il comando glUseProgram.

Di seguito verra fornita una spiegazione teorica delle principali pipeline realizzate,
suddivise in base all’ambientazione. Verranno inoltre mostrati alcuni esempi di codi-
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ce GLSL, limitati pero alle parti piu significative per comprendere il funzionamento
degli shader.

5.10.1 Terreno (ambientazione 1)

Figura 5.3: Vista dall’alto del terreno montuoso relativo alla prima ambientazione.

La pipeline utilizzata per il terreno montuoso della prima ambientazione mostra in
maniera chiara come sia stato implementato il sistema di LOD adattivo grazie agli
shader di tessellazione e di geometria.

Il Vertex Shader ¢ stato realizzato in modalita pass through, dove cioé i dati dei ver-
tici, gia preparati lato CPU, vengono semplicemente inoltrati al resto della pipeline,
senza ulteriori elaborazioni. Il cuor del sistema risiede nei Tessellation Shaders.

Nel Tessellation Control Shader si stabilisce il livello di suddivisione della mesh ed é
qui che si concretizza il sistema di LOD adattivo. Invece di assegnare un unico valore
di tessellazione a tutta la patch, il livello viene definito lato per lato, considerando la
distanza tra la telecamera (o il personaggio) e il punto medio di ciascun lato. Questo
approccio permette di regolare con precisione il dettaglio di ogni porzione di terreno
in funzione della distanza dall’osservatore e garantisce che i lati condivisi tra patch
adiacenti abbiano lo stesso livello di tessellazione, evitando fratture o disallineamenti
nella mesh, un problema comune nelle pipeline senza gestione della continuita.

Il valore finale di tessellazione per ciascun lato viene determinato tramite interpola-
zioni lineari e normalizzazioni, cosi da ottenere transizioni graduali. Per ogni patch
si tiene conto sia della distanza media dell’osservatore, sia del dislivello massimo
interno, calcolato come differenza tra l’altezza minima e massima dei vertici. In
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questo modo, le zone lontane o piatte vengono suddivise meno, mentre quelle vi-
cine o con forti variazioni di quota vengono dettagliate maggiormente, ottenendo
un compromesso ottimale tra qualita visiva ed efficienza computazionale. I livelli
di tessellazione esterna seguono la logica appena descritta, mentre i livelli interni
vengono determinati prendendo il valore massimo tra i livelli di tessellazione dei lati
corrispondenti, in modo da garantire coerenza interna.

void main() {
gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].
gl_Position;

if (gl_InvocationID == 0) {

vec3 pl4];
float h[4];
for (int i = 0; 1 < 4; ++i) {
pli]l = gl_in[i].gl_Position.xyz;
vec2 uv = p[i] .xz * UV_SCALE;
h[i] texture(u_fbmTexture, uv).r * HEIGHT_SCALE;

float minH = min(min(h[0], h[1]), minCh[2], h[3]1));
float maxH = max(max(h[0], h[1]), max(h[2], h[3]));
float deltaH = maxH - minH;

vec3 center[4];

center[0] = (p[0] + p[3]) * 0.5;
center[1] = (p[0] + p[1]) * 0.5;
center[2] = (p[1] + p[2]) * 0.5;
center[3] = (p[2] + p[3]) * 0.5;

vec3 basePosition;
if (useCharacterToTess) {
basePosition = characterPosition;

}
else {

basePosition = cameraPosition;
}

for (int 1 = 0; i < 4; ++i) {

float dist = length(basePosition - center[i]);
float tess;
if (dist > MAX_DIST) {

tess = MIN_TES;
}
else {

float distFactor = dist / MAX_DIST;

float heightFactor = clamp(

deltaH / MAX_HEIGHT_DIFF,
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= O
o O

);
float lodFactor = 0.6 * distFactor +
0.4 * (1.0 - heightFactor);
tess = mix(MAX_TES, MIN_TES, lodFactor);
}

gl_TessLevelOuter[i] = tess;

gl_TessLevelInner [0] = max(
gl_TessLevelOuter[1],
gl_TessLevelOuter [3]

)3

gl_TessLevellnner[1] = max(
gl_TessLevelOuter[0],
gl_TessLevelOuter[2]

)3

Nel Tessellation Evaluation Shader, la suddivisione calcolata dal TCS viene tradotta
in geometria effettiva. Ogni vertice generato viene posizionato tramite un’interpo-
lazione bilineare dei quattro vertici originali della patch quadrilaterale e successiva-
mente elevato lungo 'asse verticale utilizzando la mappa procedurale di displacement
basata su Fractal Brownian Motion di Perlin Noise. L’utilizzo di una funzione con-
tinua per la generazione dell’altezza semplifica notevolmente la gestione dei confini,
evitando buchi o discontinuita tra patch adiacenti, problema che invece si presenta
in pipeline che usano texture locali o segmentate. Inoltre, in questa fase si calcola-
no le normali dei nuovi vertici tramite differenze locali finite, ottenendo una stima
coerente della superficie, fondamentale per 'illuminazione successiva.

void main() {
vec3 pO = gl_in[0].gl_Position.xyz;

vec3 pl = gl_in[1].gl_Position.xyz;
vec3 p2 = gl_in[2].gl_Position.xyz;
vec3 p3 = gl_in[3].gl_Position.xyz;

float u = gl_TessCoord.x;
float v = gl_TessCoord.y;

vec3 pos = ((1.0 - w) * (1.0 - v) * p0) +
(u* (1.0 - v) *x pl) +
(u *x v *x p2) +
((1.0 - w) * v x p3);

vec2 uv = pos.xz * UV_SCALE;
float height = texture(u_fbmTexture, uv).r;

114




pos.y += height * HEIGHT_SCALE;

worldPos = model * vec4d(pos, 1.0);

vec2 delta = vec2(1.0 / terrainSize_tes);

float hL = texture(u_fbmTexture, uv - vec2(delta.x, 0.0)).r *
HEIGHT _SCALE;

float hR = texture(u_fbmTexture, uv
HEIGHT_SCALE;

+

vec2(delta.x, 0.0)).r *

float hD = texture(u_fbmTexture, uv - vec2(0.0, delta.y)).r *
HEIGHT_SCALE;
float hU = texture(u_fbmTexture, uv + vec2(0.0, delta.y)).r *

HEIGHT_SCALE;

vecld dx = vec3(2.0 * delta.x, hR - hL, 0.0);

vec3 dz = vec3(0.0, hU - hD, 2.0 * delta.y);

vec3 normal = normalize(cross(dz, dx));

tes_normal = mat3(transpose(inverse(model))) * normal;

Successivamente, all’interno del Geometry Shader avviene la generazione procedura-
le della vegetazione, composta da erba e alghe. Per ogni triangolo ricevuto, lo shader
esegue innanzitutto un culling rispetto alla telecamera, utilizzando la normale del
triangolo e la direzione verso 1’osservatore, evitando cosi di generare geometria non
visibile e risparmiando risorse computazionali.

La generazione dell’erba (funzione generateGrass) sfrutta alcuni punti chiave del
triangolo, come i vertici estremi, i centri dei lati e il centro del triangolo. Per cia-
scun punto vengono create foglie singole, definite come dei triangoli orientati lungo
il vettore tangente alla superficie e ruotati casualmente entro un angolo massimo
prestabilito. L’oscillazione naturale dovuta al vento & simulata tramite una funzione
sinusoidale dipendente dal tempo, con una fase casuale per ogni foglia per evitare
pattern ripetitivi.

Figura 5.4: Esempio di erba generata tramite gli shader in modalita FILL (sinistra) e in modalita
LINE (destra).
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Analogamente, le alghe (funzione generateKelps) vengono costruite come segmen-
ti rettangolari disposti uno sopra ’altro lungo una direzione principale, con piccole
variazioni angolari pseudo-casuali tra un segmento e 'altro. Anche qui, un’oscilla-
zione sinusoidale conferisce un effetto dinamico realistico, mentre le normali vengono
calcolate coerentemente per garantire un’illuminazione corretta.

Figura 5.5: Esempio di alghe generate tramite gli shader in modalita FILL (sinistra) e in modalita
LINE (destra).

All’interno del Geometry Shader avviene anche un’altra operazione di LOD basata
sulla distanza della patch dal punto di riferimento (telecamera o personaggio). Sola-
mente le patch vicine all’osservatore vengono popolate con erba o alghe, riducendo
cosi il numero di vertici generati per le zone lontane e migliorando le prestazioni
complessive. In aggiunta, anche 'altezza del terreno determina la comparsa di erba
o alghe: ’erba viene generata solo su superfici comprese tra un minimo e un massi-
mo prefissati, mentre le alghe compaiono esclusivamente nelle zone piu basse della
mappa.

void main() {
vec3 normal = normalize(cross(
worldPos[1] .xyz - worldPos[0].xyz,
worldPos[2] .xyz - worldPos[0].xyz
));

if (normal.y < 0.0) normal = -normal;

vec3 triCenter = (
worldPos[0] .xyz +
worldPos[1] .xyz +
worldPos[2] .xyz
) / 3.0;
vec3 toCamera = normalize(cameraPosition - triCenter);

float visibility = dot(normal, toCamera);
if (visibility < 0.0) return;

for (int i = 0; i < 3; ++i) {
gl_Position = proj * view * worldPos[il;
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gs_worldPos = worldPos[i];
gs_normal = normalize(tes_normall[il);
gs_isGrass = 0;
gs_isKelp = 0;
EmitVertex();
}

EndPrimitive();

vec3 basePosition;
if (useCharacterToTess) {
basePosition = characterPosition;

}
else {

basePosition = cameraPosition;
}

vec3 center = (
worldPos[0] .xyz +
worldPos[1] .xyz +
worldPos [2] .xyz
) / 3.0;
bool isClose = (length(basePosition - center) < MAX_DISTANCE);

if (isClose) {
float centerHeight = center.y;

if (centerHeight > GRASS_MIN_TERRAIN_HEIGHT &&
centerHeight < GRASS_MAX_TERRAIN_HEIGHT) {

generateGrass();

}

else if (centerHeight < KELP_MAX_TERRAIN_HEIGHT) {
generateKelps() ;

}

Infine, all’interno del Fragment Shader viene assegnato il colore ad ogni elemento.
Per prima cosa, viene identificato il tipo di elemento da renderizzare tramite I'utilizzo
di variabili booleane assegnate ad ogni vertice, che indicano se si tratta di erba,
alghe o terreno. In base a queste informazioni é poi possibile assegnare a ciascun
vertice il colore appropriato: per l'erba viene utilizzato un colore verde brillante,
per le alghe un colore verde scuro, mentre per il terreno un colore determinato
tramite una funzione di blending fra texture (blendTextures). In questo caso,
I’altezza del vertice nello spazio funge da parametro principale per determinare la
transizione tra le diverse texture, permettendo di rappresentare in maniera naturale
zone acquatiche, sabbiose, erbose, rocciose o innevate.
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In questa fase il colore viene modulato dall’effetto dell’illuminazione. Il modello uti-
lizzato é quello di Phong, composto da tre contributi principali: ambientale, diffuso
e speculare. La componente ambientale rappresenta la luce diffusa presente nell’am-
biente, garantendo che anche le zone in ombra siano percepibili. La componente
diffusa dipende dall’orientamento della superficie rispetto alla luce, evidenziando
pendenze e dettagli del terreno. Infine, la componente speculare, calcolata secondo
la variante di Blinn-Phong, genera i riflessi brillanti che cambiano in base all’angolo
tra la luce, la normale della superficie e la direzione dello sguardo dell’osservato-
re, conferendo realismo ai materiali. Per ottenere questi effetti, all’interno della
funzione computeLighting la normale del vertice viene normalizzata e usata per
determinare sia la componente diffusa sia quella speculare. La direzione della luce
e quella del verso della camera vengono combinate per calcolare correttamente le
intensita delle due componenti. Infine, il risultato dell’illuminazione viene sommato
al colore base del frammento, ottenendo un output visivo coerente che integra colori,
texture e luce.

vec3 computelLighting(vec3 normal, vec3 fragPos, vec3 viewPos, vec3
baseColor) {
vec3 norm = normalize(normal);

vec3 lightDir = normalize(light.position - fragPos);

float ambientStrength = 0.1;
vec3 ambient = ambientStrength * light.color;

float diff = max(dot(norm, lightDir), 0.0);
vec3 diffuse = diff * light.color;

vec3 viewDir = normalize(viewPos - fragPos);

vec3 reflectDir = reflect(-lightDir, norm);

float spec = pow(max(dot(viewDir, reflectDir), 0.0), 32.0);
float specularStrength = 0.5;

vec3d specular = specularStrength * spec * light.color;

vec3 lighting = (ambient + diffuse + specular) * baseColor * light.
power;
return lighting;

void main() {
float h = gs_worldPos.y;
vec2 uv = gs_worldPos.xz;
vec3 baseColor;

if (gs_isGrass == 1) {

baseColor = vec3(0.2, 0.8, 0.1);
}
else if (gs_isKelp == 1) {
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baseColor = vec3(0.2, 0.25, 0.1);

}
else {

baseColor = blendTextures(h, uv).rgb;
}

vec3 lighting = computeLighting(
normalize(gs_normal),
gs_worldPos.xyz,
ViewPos,
baseColor

)3

FragColor = vec4(lighting, 1.0);

5.10.2 Transform Feedback (ambientazione 1)

Il caso piu particolare all’interno del progetto ¢ rappresentato dalla pipeline con
Transform Feedback, gia anticipata nella sezione in riferimento alla gestione delle
collisioni con il terreno montuoso.

Come nella pipeline standard del terreno della prima ambientazione, i primi tre stadi
di questa pipeline (Vertex Shader, Tessellation Control Shader e Tessellation Eva-
luation Shader) restano invariati e operano esattamente come gia descritto: i vertici
iniziali vengono processati, suddivisi adattivamente e proiettati nello spazio del mon-
do. La differenza principale riguarda invece la parte finale della pipeline. Qui non
viene utilizzato alcun Fragment Shader, poiché non si vuole effettuare un ulterio-
re rendering a schermo del terreno montuoso, ma piuttosto catturare informazioni
geometriche direttamente dalla GPU e renderle disponibili al lato CPU.

Questo é reso possibile dalla modalita Transform Feedback, una funzionalita di Open-
GL che permette di registrare i valori di output di un determinato stadio della
pipeline (in questo caso il Geometry Shader) e memorizzarli all'interno di un buf-
fer dedicato. Invece di inviare i dati al rasterizer e al framebuffer, essi vengono
intercettati e salvati in una struttura accessibile dall’applicazione.

Nello specifico, la pipeline ¢é stata configurata affinché il Geometry Sha-
der emetta, non piu primitive grafiche, ma punti che contengono due in-
formazioni fondamentali: la posizione interpolata del personaggio sul terreno
(characterPositionTransformFeedback) e la normale locale del terreno in quel
punto (characterNormalTransformFeedback).

Questi valori, dichiarati come waryings, vengono registrati tramite la funzione
glTransformFeedbackVaryings, che specifica ad OpenGL quali variabili devono
essere catturate nel buffer assegnato alla Transform Feedback. Quando la pipeline
elabora le patch del terreno, il Geometry Shader calcola se la posizione del per-
sonaggio, proiettata sul piano XZ, ricade all’interno di un triangolo tessellato. In
caso positivo, I'altezza corrispondente (coordinata Y) viene determinata per inter-
polazione baricentrica e la normale locale del terreno viene calcolata come prodotto
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vettoriale tra i lati del triangolo. Entrambe le informazioni sono poi emesse come
singolo vertice di tipo point e catturate dal Transform Feedback. Ne consegue che,
per ciascun frame, il buffer conterra al pitt un solo record valido, corrispondente
alla patch effettivamente attraversata dal personaggio, mentre in assenza di corri-
spondenze (ad esempio se il personaggio si trova fuori dai limiti del terreno), nessun
valore viene aggiornato.

Lato CPU, i dati vengono letti tramite la funzione glMapBuffer, che consente di
accedere direttamente al contenuto del buffer. In questo modo ¢ possibile aggiornare
in tempo reale 1’altezza del personaggio rispetto al terreno e ottenere la normale
corrispondente, utile per definirne 1’orientamento in accordo con la pendenza locale.

I1 buffer, dimensionato per contenere coppie di vettori tridimensionali (posizione e
normale), & gestito con aggiornamenti dinamici a ogni frame (GL_DYNAMIC_READ),
cosi da poter seguire in tempo reale il movimento del personaggio sulla superficie del
terreno. Grazie a questo approccio, il personaggio si muove sul terreno rispettan-
done fedelmente sia ’altimetria, sia 'inclinazione, senza necessita di implementare
esternamente algoritmi di collisione veri e propri.

void main() {
vec3 center = (
worldPos[0] .xyz +
worldPos[1] .xyz +
worldPos[2] .xyz

) / 3.0;
vec3 p0 = worldPos[0].xyz;
vec3 pl = worldPos[1].xyz;

vec3 p2 = worldPos[2] .xyz;

vec2 charXZ = characterPosition.xz;

bool inside = isPointInTriangle(charXZ, p0.xz, pl.xz, p2.xz);
float interpolatedY = -100.0;

if (inside) {
vec2 vO = pl.xz - p0.xz;
vec2 vl = p2.xz - p0.xz;

vec2 v2 = charXZ - p0.xz;
float d00 = dot(v0, vO0);
float d01 = dot(v0, v1);
float dil = dot(vl, v1);
float d20 = dot(v2, v0);
float d21 = dot(v2, v1);

float denom = d00 * di11 - dO1 * dOi;

float v = (d11 * d20 - d01 * d21) / denom;
float w = (d00 * d21 - d01 * d20) / denom;
float u=1.0 - v - w;
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interpolatedY = u * p0.y + v * pl.y + w * p2.y;

vec3d edgel = pl - pO;
vec3d edge2 = p2 - pO;
vec3 normal = normalize(cross(edgel, edge2));

characterPositionTransformFeedback = vec3(
characterPosition.x,
interpolatedy,
characterPosition.z

);

characterNormalTransformFeedback = normal;

EmitVertex();
EndPrimitive();

}

Listing 5.1: Geometry Shader per il calcolo della posizione e normale del personaggio sul terreno
con Transform Feedback.

5.10.3 Stelle (ambientazione 1)

Figura 5.6: Esempio di stelle generata tramite gli shader in modalita FILL (sinistra) e in modalita
LINE (destra).

La pipeline per la generazione di una stella costituisce un caso di pipeline completa,
ma di semplice comprensione. Comprende tutti gli stadi descritti: Vertex Shader,
Tessellation Control Shader, Tessellation Evaluation Shader, Geometry Shader e
Fragment Shader, ognuno con un ruolo preciso nella costruzione della geometria sfe-
rica a partire dagli otto ottanti triangolari iniziali. Analogamente a quanto descritto
per il terreno montuoso, anche qui é implementato un sistema di LOD adattivo ba-
sato sulla distanza, che regola il dettaglio dei triangoli in funzione della vicinanza
alla telecamera, garantendo cosi una sfera visivamente coerente e ben definita.

Il Vertex Shader, come per il terreno montuoso, si limita a riceve le posizioni dei
vertici e il centro della sfera corrispondente e ad inoltrarli al Tessellation Control
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Shader, convertendo le coordinate nel formato corretto e predisponendo il centro
della sfera in output.

I1 Tessellation Control Shader riceve le patch triangolari e decide il livello di suddi-
visione di ciascuna patch in base alla distanza tra la telecamera (o personaggio) e
il centro della sfera. I triangoli lontani ricevono una tessellazione minima, mentre
quelli pit vicini vengono suddivisi maggiormente per aumentare il dettaglio della
superficie sferica. La suddivisione € uniforme sia sui lati esterni sia all’interno della
patch, assicurando transizioni regolari e senza fratture tra triangoli adiacenti.

All’interno del Tessellation Evaluation Shader ogni vertice viene poi posizionato tra-
mite interpolazione baricentrica dei tre vertici originali della patch e successivamente
proiettato sulla superficie della sfera. Per farlo, si calcola il raggio come distanza tra
il vertice originale e il centro della sfera, si normalizza il vettore dal centro al vertice
e lo si scala in modo da riportare il vertice sulla superficie sferica. In questo modo,
tutti i vertici generati vengono distribuiti in maniera coerente sulla sfera, evitando
distorsioni o spigoli vivi. L’output dello shader include le coordinate finali nello
spazio del mondo, pronte per essere elaborate dal Geometry Shader.

Il Geometry Shader riceve i triangoli generati dal TES e calcola la posizione di
ciascun vertice rispetto al centro del triangolo, senza modificare la geometria, ma
garantendo che siano compatibili con eventuali trasformazioni successive. Per ogni
vertice viene applicata la trasformazione dalle coordinate mondo a quelle di vista,
attraverso la matrice di vista e quella di proiezione. L’output comprende sia la
posizione trasformata sia una copia delle coordinate nello spazio mondo, utile per
eventuali effetti o calcoli aggiuntivi.

Infine, il Fragment Shader assegna il colore finale dei pixel della sfera. In questa
implementazione, la stella ¢ resa con un colore uniforme giallo chiaro, che simula la
superficie luminosa della stella senza introdurre dettagli complessi.

void main() {

vec3 p0 = gl_in[0].gl_Position.xyz;
vec3 pl = gl_in[1].gl_Position.xyz;
vec3 p2 = gl_in[2].gl_Position.xyz;
float u = gl_TessCoord.x;

float v = gl_TessCoord.y;

float w=1.0 - u - v;

vec3 pos = w * pO + u * pl + v *x p2;

vec3 sphereCenter = tcCenter[0];

float r = length(pO - sphereCenter);

vec3 dir = normalize(pos - sphereCenter);

vec3 sphericalPos = sphereCenter + dir * r;

worldPos = model * vec4(sphericalPos, 1.0);
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19 ‘}

Listing 5.2: Tessellation Evaluation Shader per la generazione della sfera.

5.10.4 Personaggio (ambientazioni 1 e 2)

La pipeline dedicata al personaggio animato rappresenta un caso di pipeline pit
tradizionale e lineare, senza shader di tessellazione e di geometria, in cui ’attenzione
é rivolta allo skinning delle ossa e all’illuminazione per il rendering finale.

II Vertex Shader riceve in ingresso tutti i dati calcolati lato CPU (vedi sezione
e passati in modo appropriato: i vertici del modello, le normali, le coordinate di
texture e i dati per lo skinning, cioé gli indici delle ossa e i pesi associati. La funzione
principale di questo shader é applicare la trasformazione delle ossa ai vertici del
modello. Ogni vertice viene influenzato dalle quattro ossa piu rilevanti, combinando
le matrici di trasformazione secondo i pesi associati. In questo modo il modello puo
deformarsi in modo realistico seguendo ’animazione calcolata dall’applicazione.

Una volta applicato lo skinning, il Vertex Shader calcola la posizione finale del
vertice nel World Space e trasforma la normale utilizzando sia la matrice di trasfor-
mazione del modello sia la trasformazione delle ossa, garantendo un’illuminazione
corretta. Le coordinate di texture, cosi come posizione e normale, vengono inoltrate
al Fragment Shader. Infine, la posizione del vertice viene proiettata nello spazio
della telecamera tramite le matrici di vista e di proiezione.

Il Fragment Shader utilizza lo stesso modello di illuminazione gia applicato al terreno
montuoso (modello di Phong), basato su luce puntiforme con componenti ambien-
tale, diffusa e speculare. Il colore finale del modello é ottenuto dalla combinazione
tra la texture e la luce, ottenendo un effetto realistico che valorizza le forme del
modello.

void main() {
mat4 skinMatrix

aWeights[0] * bones[aBoneIDs[0]] +
aWeights[1] * bones[aBoneIDs[1]] +
aWeights[2] * bones[aBoneIDs[2]] +
aWeights[3] * bones[aBoneIDs[3]];

vecd skinnedPos = skinMatrix * vec4(aPos, 1.0);
FragPos = vec3(model * skinnedPos);

mat3 normalMatrix = transpose(inverse(mat3(model * skinMatrix)));
Normal = normalize(normalMatrix * aNormal);

TextCoords = aTextCoords;

gl _Position = proj * view * vecd4(FragPos, 1.0);

Listing 5.3: Vertex Shader per lo skinning del personaggio.
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5.10.5 Terreno (ambientazione 2)

Figura 5.7: Paesaggio urbano della seconda ambientazione, visto dall’alto.

La pipeline dedicata al terreno della seconda ambientazione introduce una gestione
particolare delle patch, che vengono elaborate in due passaggi distinti: uno per le
aree di erba e uno per le strade.

Il Vertex Shader svolge un ruolo puramente di pass-through. Riceve le coordina-
te dei vertici della patch e un vettore che indica quali lati confinano con superfici
di tipo diverso (erba o strada). Questo vettore, calcolato lato CPU dalla funzione
generatePatches, specifica per ciascun lato se il displacement debba essere azze-
rato, cosi da garantire continuita tra patch diverse ed evitare buchi o disallinea-
menti visivi. Lo shader non effettua quindi trasformazioni, ma si limita a inoltrare
correttamente i dati al Tessellation Control Shader.

Il Tessellation Control Shader mantiene i dati in uscita e imposta i fattori di tes-
sellazione, determinando il livello di suddivisione di ciascuna patch. Come gia visto
per il terreno montuoso, questi valori vengono scelti dinamicamente in base alla di-
stanza dalla telecamera o dal personaggio, implementando un meccanismo di LOD
adattivo. In particolare, lo shader (proprio come per il terreno montuoso) calcola i
punti medi dei lati della patch, ne misura la distanza dalla posizione di riferimento
e assegna livelli di tessellazione piu elevati nelle aree vicine e piul bassi nelle zone
lontane, garantendo al tempo stesso la continuita tra patch adiacenti ed evitando la
formazione di buchi.

Nel Tessellation Evaluation Shader, per ogni nuovo vertice vengono calcolate le
coordinate baricentriche normalizzate e utilizzate per ricostruire la posizione del
punto allinterno della patch. A partire da queste coordinate viene campionata
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la texture di displacement, che definisce 'altezza del terreno. Se pero il vertice
si trova su un lato che confina con una superficie di tipo diverso, il displacement
viene azzerato in base al vettore ricevuto dal Vertex Shader, cosi da garantire una
transizione continua tra erba e strada. Infine, lo shader calcola le normali tramite
differenze finite, con la stessa tecnica gia adottata per il terreno montuoso.

Il Geometry Shader riceve i triangoli prodotti dal Tessellation Evaluation Shader e
li proietta nello spazio della telecamera. Per ciascun vertice inoltra le informazioni
necessarie (posizione, normale e coordinate di texture), senza alterare ulteriormente
la geometria. In questo modo funge da collegamento diretto con il Fragment Shader.

Il Fragment Shader completa la pipeline applicando il modello di illuminazione di
Phong gia utilizzato in precedenza. Il colore finale ¢ ottenuto combinando l'effetto
della luce con la texture di base, che varia a seconda che la patch rappresenti erba
o strada. In questo modo il terreno appare visivamente coerente, con transizioni
fluide tra le diverse superfici e un’illuminazione realistica.

vec3 getDisplacedPos(vec2 uv, vec3 p0O, vec3 pl, vec3 p2, vec3 p3) {
float u = uv.x;
float v = uv.y;

vec3 pos = ((1.0 - w) * (1.0 - v) * p0)
+ (u* (1.0 - v) * p1)
+ (u *x v x p2)

+ ((1.0 - w) * v * p3);

float height = texture(texturel, uv).r;
float epsilon = 0.001;

bool onLeft = abs(uv.x) < epsilon;

bool onBottom = abs(uv.y) < epsilon;

bool onRight = abs(uv.x - 1.0) < epsilon;
bool onTop = abs(uv.y - 1.0) < epsilon;

if ((onTop && tcDisplace[0].x == 1.0f) ||
(onRight && tcDisplace[0].y == 1.0f) ||
(onBottom &% tcDisplace[0].z == 1.0f) ||
(onLeft && tcDisplace[0].w == 1.0f)) {
height = 0.0f;

if ((onLeft && onBottom) ||
(onLeft && onTop) ||
(onRight && onBottom) ||
(onRight && onTop)) {
height = 0.0f;

return pos + vec3(0.0, height * SCALE, 0.0);
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void main() {
vec3d p0 =
vec3 pl =
vec3d p2 =
vec3 p3 =

float u
float v
vec2 uv

vec3 pos =

vec2 delta

float hL =
float hR
float hD =
float hU

vec3 dx
vec3 dz

gl_in[0] .gl_Position.
gl_in[1].gl_Position.
gl_in[2].gl_Position.
gl_in[3].gl_Position.

gl_TessCoord.x;
gl_TessCoord.y;
vec2(u, v);

getDisplacedPos (uv,

= vec2(1.0 / 5.0);

texture(texturel, uv - vec2(delta.x, 0.0)).
texture(texturel, uv + vec2(delta.x, 0.0)).
texture(texturel, uv - vec2(0.0, delta.y)).
texture(texturel, uv + vec2(0.0, delta.y)).

vec3(2.0 * delta.x,
vec3(0.0, (hU - hD),

Xyz;
Xyz;
Xyz;
Xyz;

PO, pl, p2, p3);

vec3 normal = normalize(cross(dz, dx));

worldPos =

normalTES

tesUV = uv
}

model * vec4(pos, 1

= normalize(transpose(inverse(mat3(model)))

b

r * SCALE;
r * SCALE;
r * SCALE;
r *x SCALE;
(hR - hL), 0.0);
2.0 * delta.y);
.0);
* normal) ;

Listing 5.4: Tessellation Evaluation Shader per determinare il displacement dei vertici delle patch.

5.10.6 Edifici, siepi e tetti (ambientazione 2)

Figura 5.8: Esempio di edificio con tetto (sinistra) e di siepe (destra) generati tramite shader in

modalitd FILL.
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Un esempio di gestione simile a quella del terreno della seconda ambientazione € rap-
presentato dalla pipeline utilizzata per edifici e siepi, ma anche da quella utilizzata
per i tetti. Poiché queste pipeline condividono la stessa struttura di base e differi-
scono solo per alcuni dettagli, verranno descritte insieme, mettendo in evidenza le
caratteristiche che le distinguono.

Il Vertex Shader, come gia avviene per la maggior parte delle altre pipeline definite, &
di tipo pass-through, che si limita a ricevere i dati inviati dall’applicazione (posizione
dei vertici e relative normali) e a passarli direttamente allo stadio successivo, senza
applicare trasformazioni aggiuntive.

Anche in questo caso, come gia descritto per il terreno della seconda ambientazione, il
Tessellation Control Shader definisce i valori di tessellazione seguendo inizialmente
lo stesso approccio usato per il terreno montuoso. In particolare, per ogni patch
vengono calcolati i punti medi dei lati e misurata la loro distanza dalla telecamera
(o dal personaggio, a seconda del parametro di configurazione). Questa misura non
tiene conto della componente verticale, ma viene calcolata solo sul piano orizzontale.
In questo modo, anche avvicinandosi alla base di un edificio, é possibile ottenere una
suddivisione dettagliata anche delle parti pit alte, come i tetti, che il personaggio
non potrebbe raggiungere direttamente.

I livelli di tessellazione vengono inizialmente assegnati in funzione di queste distanze,
con valori piu elevati per le aree vicine e piu bassi per quelle lontane, implemen-
tando quindi un LOD adattivo. Per garantire perd una suddivisione proporzionata,
questi valori vengono corretti in base alla lunghezza effettiva dei lati della patch.
La procedura consiste nel calcolare la lunghezza di ciascun lato, stimare i rapporti
con i livelli iniziali, ricavarne la media per ciascun asse e, infine, moltiplicare questa
densita media per le lunghezze dei lati stessi, ottenendo i livelli finali.

Le versioni utilizzate per edifici, siepi e tetti condividono la stessa logica generale,
differenziandosi unicamente per i valori dei parametri di distanza minima e massima
che regolano il calcolo, che risultano piti contenuti per i tetti e leggermente pitt ampi
per edifici e siepi, cosi da modulare con maggiore precisione il livello di dettaglio in
funzione della tipologia di oggetto.

Per ogni vertice ottenuto dalla suddivisione, il Tessellation Evaluation Shader calcola
le coordinate baricentriche normalizzate all’interno della patch e utilizza un’inter-
polazione bilineare per determinare la posizione iniziale del punto. Successivamente
viene campionata la texture di displacement e applicata lungo la normale locale del
vertice, scalata di un fattore arbitrario.

Una caratteristica importante di questo shader é la gestione dei bordi delle patch
e degli spigoli delle facce. Per determinare se un vertice generato debba ricevere il
displacement o meno, al TES vengono passati i vertici originali della geometria di
partenza: per ogni tetto, tutti i vertici del tronco di piramide corrispondente, e per
ogni edificio o siepe, i vertici del parallelepipedo. Lo shader confronta la posizione
interpolata del vertice con questi punti originali, verificando se si trova su uno spigolo
tramite test geometrici. In particolare, nel caso dei tronchi di piramide si controlla se
il punto giace su uno dei segmenti che collegano i vertici, mentre nei parallelepipedi
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si verifica se almeno due componenti coincidono con quelle di un vertice originale.
Se il vertice si trova su uno spigolo, il displacement viene annullato, garantendo
continuita tra le superfici adiacenti ed evitando sovrapposizioni o disallineamenti.
Per i tetti, oltre agli spigoli, il displacement viene disabilitato anche sulle facce
orizzontali, mentre per edifici e siepi la logica si basa sulla strategia di displacement
appena spiegata.

Infine, le normali sono calcolate tramite differenze finite, valutando la posizione dei
punti vicini, ottenendo delle normali corrette anche in presenza di displacement. In
entrambe le versioni del TES, le coordinate di texture vengono rimappate in funzione
della normale della faccia per garantire un orientamento e un mapping corretto delle
texture su tutte le facce.

Infine, il Geometry Shader e il Fragment Shader di entrambe le tipologie di geome-
tria sono strutturati e organizzati in maniera analoga alle altre pipeline. Il Geometry
Shader si limita a trasferire le informazioni nello spazio della telecamera, applican-
do le matrici di trasformazione fondamentali, mentre il Fragment Shader gestisce
I'illuminazione utilizzando il modello di Phong.

vec3 getDisplacedPos(vec2 uv, vec3 p0O, vec3 pl, vec3 p2, vec3 p3) {
float u = uv.x;
float v = uv.y;
vec3 pos = ((1.0 - uw) * (1.0 - v) * p0) + (u * (1.0 - v) * pl) + (u *x v
* p2) + ((1.0 - u) * v * p3);

vec2 mappedUV = remapUV(uv, normal_tcs[0]);
float height = texture(texturel, mappedUV).r;

float epsilon = 0.001;
bool onBlockBorder = false;

int edges[24] = int[](
0,1, 1, 2, 2, 3, 3, 0, // base inferiore
4, 5, 5,6, 6, 7, 7, 4, // base superiore
0, 4, 1, 5, 2, 6, 3, 7 // spigoli verticali

int baseIndex = (gl_PrimitivelID / 6) * 8;

for (int i = 0; i < 24; i += 2) {
vec3 a = originalPoints[baseIndex + edges[il];
vec3 b = originalPoints[baseIndex + edges[i + 1]];

if (isPointOnSegment(pos, a, b, epsilon)) {
onBlockBorder = true;

}

bool isHorizontalFace = abs(normal_tcs[0].y) > 0.99;
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if (onBlockBorder || isHorizontalFace) {
height = 0.0;

return pos + normal_tcs[0] * height * SCALE;

void main() {
vec3 p0 = gl_in[0].gl_Position.xyz;
vec3 pl = gl_in[1].gl_Position.xyz;
vec3 p2 = gl_in[2].gl_Position.xyz;
vec3 p3 = gl_in[3].gl_Position.xyz;

float u = gl_TessCoord.x;

float v = gl_TessCoord.y;

vec2 uv = vec2(u, v);

vec3 pos = getDisplacedPos(uv, pO, pl, p2, p3);

vec2 delta = vec2(1.0 / 64.0);

vec3 posL = getDisplacedPos(uv - vec2(delta.x, 0.0), pO, pl, p2, p3);
vec3 posR = getDisplacedPos(uv + vec2(delta.x, 0.0), pO, pl, p2, p3);
vec3 posD = getDisplacedPos(uv - vec2(0.0, delta.y), pO, pl, p2, p3);

vec3 posU = getDisplacedPos(uv + vec2(0.0, delta.y), pO, pl, p2, p3);
vec3 dU = posU - posD;

vec3 dR = posR - posL;

vec3 normal = normalize(cross(dU, dR));

if (dot(normal, normal_tcs[0]) < 0.0) {
normal = -normal;

bool isHorizontalFace = abs(normal_tcs[0].y) > 0.99;
worldPos = model * vec4(pos, 1.0);
normalTES = normalize(transpose(inverse(mat3(model))) * normal);

if (isHorizontalFace) {
tesUV = vec2(-1.0, -1.0);

}
else {

tesUV = remapUV(uv, normal_tcs[0]);
}

Listing 5.5: Esempio di Tessellation Evaluation Shader utilizzato per determinare il displacement

dei vertici dei lati del tetto.
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5.10.7 Lampioni (ambientazione 2)

Figura 5.9: Esempio di lampione generato tramite gli shader in modalita FILL (sinistra) e in
modalita LINE (destra).

Un ultimo caso di gestione particolare del sistema di LOD adattivo tramite gli sha-
der ¢ dato dalla pipeline relativa ai lampioni della seconda ambientazione. Qui la
geometria di partenza ¢ molto leggera rispetto alle altre pipeline e deve essere am-
plificata per ottenere un aspetto realistico. La pipeline descritta di seguito riguarda
i pali dei lampioni, mentre quella utilizzata per le luci sferiche rimane identica a
quella delle stelle della prima ambientazione.

Il Vertex Shader viene ancora una volta utilizzato in modalita pass-through,
semplicemente per trasportare i vertici della geometria allo stadio successivo.

Il Tessellation Control Shader definisce i livelli di tessellazione in maniera legger-
mente differente rispetto alle altre pipeline, poiché le patch sono rappresentate da
isolines, costituite da segmenti congiunti per ciascun lampione. Per ogni patch, lo
shader calcola la distanza dei vertici rispetto alla telecamera (o al personaggio) e
ne fa la media, ottenendo un valore rappresentativo della distanza complessiva della
patch. Questo valore viene quindi normalizzato e trasformato nel secondo livello di
tessellazione tramite una funzione di interpolazione lineare. Il primo livello esterno
viene mantenuto a 1, poiché nelle isolines influisce sul numero di linee parallele,
mentre il secondo livello determina quanti vertici vengono generati lungo ciascuna
curva, permettendo di ottenere pali pit definiti quando il personaggio si avvicina.
La distanza viene calcolata solo sul piano orizzontale, ignorando la componente ver-
ticale, cosi da reagire anche quando il personaggio si muove vicino alla base del
lampione senza dover salire.

i |void main() {
2 gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].
gl_Position;
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if (gl_InvocationID == 0) {
vec3 basePosition = useCharacterToTess 7 characterPosition :
cameraPosition;

float distSum = 0.0;
for (int i = 0; i < 4; ++i) {
distSum += length(basePosition - gl_in[i].gl_Position.xyz);

float avgDist = distSum / 4.0;
float tessLevel = mix(
float (maxTessLevel),
float(minTessLevel),
clamp((avgDist - minDist) / (maxDist - minDist),

0.0,

1.0)
);
gl_TessLevelOuter[0] = 1.0;
gl_TessLevelOuter[1] = tessLevel;

Listing 5.6: Tessellation Control Shader utilizzato per la tessellazione del palo del lampione.

Nel Tessellation Evaluation Shader, i vertici generati vengono posizionati lungo
le curve dei segmenti utilizzando l'interpolazione Catmull-Rom, che permette di
ottenere curve lisce e continue tra i punti originali della geometria, distribuendo
uniformemente i vertici lungo il percorso, mantenendo la forma del palo.

vec3 catmullRom(vec3 p0, vec3 pl, vec3 p2, vec3 p3, float t) {
return 0.5 * (
(2.0 * p1) +
(-p0 + p2) * t +
(2.0 * p0 - 5.0 * p1 + 4.0 * p2 - p3) *x t * t +
(-p0 + 3.0 * pl - 3.0 *x p2 + p3) * t * t *x t
)3

void main() {
float t = gl_TessCoord.x;
float curvelndex = gl_TessCoord.y;

vec3 p0 = gl_in[0].gl_Position.xyz;
vec3 pl = gl_in[1].gl_Position.xyz;
vec3 p2 = gl_in[2].gl_Position.xyz;
vec3 p3 = gl_in[3].gl_Position.xyz;
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N

vec3 pos = catmullRom(pO, pl, p2, p3, t);
pos.y += spacing * curvelndex;
gl _Position = vec4(pos, 1.0);

}

Listing 5.7: Tessellation Evaluation Shader utilizzato per la creazione di curve interpolanti per
il palo del lampione.

Il Geometry Shader riceve le linee generate dal TES e costruisce attorno a ciascun
segmento un tubo cilindrico, generando sezioni circolari con piu vertici per conferire
tridimensionalita al palo. Per ciascun vertice della sezione vengono calcolati i due
vettori ortogonali al segmento, e la posizione viene trasformata nello spazio della te-
lecamera tramite le matrici di trasformazione fondamentali. Viene inoltre applicato
un leggero allungamento ai bordi dei segmenti per evitare interruzioni visibili tra le
sezioni, creando l'illusione di un tubo continuo lungo tutto il palo.

vec3 orthogonal (vec3 v) {
if (abs(v.x) > abs(v.z))
return normalize(vec3(-v.y, v.x, 0.0));
else
return normalize(vec3(0.0, -v.z, v.y));

void main() {
vec3 p0 = gl_in[0].gl_Position.xyz;
vec3 pl = gl_in[1].gl_Position.xyz;
vec3 tangent = normalize(pl - p0);

vec3 extendedPO = pO - tangent * extendLength;
vec3 extendedPl = pl + tangent * extendLength;

vec3 normal = orthogonal (tangent);
vec3 binormal = normalize(cross(tangent, normal));

for (int i = 0; i <= circleSegments; i++) {
float angle = float(i) / float(circleSegments) * 2.0 *
3.14159265359;
float cosA
float sinA

cos(angle) ;
sin(angle);

vec3 offset = normal * cosA * radius + binormal * sinA * radius;
vec3 posO = extendedPO + offset;
vec3 posl extendedP1 + offset;

gsFragPos = posO0;

gsNormal = normalize(offset);

gl_Position = proj * view * model * vec4(pos0O, 1.0);
EmitVertex();
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gsFragPos = posl;

gsNormal = normalize(offset);

gl_Position = proj * view * model * vec4(posl, 1.0);
EmitVertex();

EndPrimitive();

}

Listing 5.8: Geometry Shader utilizzato per la creazione dei tubi cilindrici attorno al palo del
lampione.

Infine, il Fragment Shader si occupa di replicare la gestione dell’illuminazione tramite

il modello di Phong, in maniera analoga alle altre pipeline, sfruttando le informazioni
di posizione e normale passate dal Geometry Shader.
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Capitolo 6

Risultati e conclusioni

In questo capitolo vengono presentate le analisi conclusive sui risultati raggiunti dal
progetto. Si parte dall’osservazione dei risultati visivi ottenuti, per poi esaminare e
confrontare le prestazioni delle diverse varianti sviluppate. Infine, vengono discusse
possibili direzioni di sviluppo future, evidenziando gli aspetti principali legati al
miglioramento dell’applicazione.

6.1 Risultati visivi

Dopo aver gia proposto alcune immagini dei risultati ottenuti e dopo aver descritto le
tecniche utilizzate per la realizzazione del sistema di LOD adattivo nelle due diverse
ambientazioni, é ora utile fornire una dimostrazione visiva degli effetti grafici globali
raggiunti.

Per ogni esempio di seguito proposto vengono prima mostrate le immagini ottenute
attraverso la suddivisione con LOD dinamico, con un livello di dettaglio minimo
iniziale, in cui la geometria mantiene una forma molto vicina a quella di base gene-
rata lato applicativo, e successivamente con dettaglio massimo, cosi da evidenziare
le differenze geometriche e valutare I'impatto visivo degli algoritmi descritti nella
sezione dedicata allo sviluppo del progetto.

6.1.1 Ambientazione 1

Montagne e vegetazione

Nella prima ambientazione, 1'effetto pit evidente della suddivisione e dell’amplifi-
cazione geometrica si riscontra sulle montagne che caratterizzano il terreno: esse
risultano piu definite man mano che, avvicinandosi alla telecamera o al personaggio,
aumenta il loro livello di suddivisione.

Dalla figura [6.1| emerge chiaramente come la suddivisione massima della geometria
renda le cime piu frastagliate e realistiche, grazie ad una maggiore precisione nella
rappresentazione dei dislivelli, dovuta all’aumento del dettaglio geometrico.
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La figura mostra invece I'impatto diretto della tessellazione e dell’amplificazione
geometrica sulla struttura di base. Si nota chiaramente come la geometria maggior-
mente suddivisa risulti piu fitta e dettagliata, permettendo una resa pit convincente
della superficie montuosa. In questo caso, il LOD adattivo porta anche a una di-
stribuzione piu ricca della vegetazione nelle aree vicine alla telecamera, mentre le
zone pitl lontane mantengono una geometria semplificata e priva di vegetazione
aggiuntiva.

Figura 6.1: Esempio di montagna definita tramite LOD adattivo, in modalita FILL (a sinistra la
versione base, a destra quella amplificata).

Figura 6.2: Esempio di montagna definita tramite LOD adattivo, in modalita LINE (a sinistra la
versione base, a destra quella amplificata).

Stelle

Un ulteriore effetto significativo, della prima ambientazione, riguarda la geometria
realizzata per rappresentare le stelle sferiche.

In figura[6.3]si osserva come la geometria suddisa tramite un livello di dettaglio mini-
mo, inizialmente pitl vicina a un solido romboidale, venga progressivamente raffinata
fino ad assumere una forma sferica molto piu realistica. La figura mette invece
in evidenza la complessita geometrica introdotta dal processo di tessellazione, grazie
al quale la densita delle suddivisioni aumenta in modo significativo, permettendo
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di ottenere un numero elevato di vertici che definiscono con precisione la superficie
curva della stella.

Figura 6.3: Esempio di stella definita tramite LOD adattivo, in modalita FILL (a sinistra la
versione base, a destra quella amplificata).

Figura 6.4: Esempio di stella definita tramite LOD adattivo, in modalitd LINE (a sinistra la
versione base, a destra quella amplificata).

6.1.2 Ambientazione 2
Lampioni

Nella seconda ambientazione, caratterizzata dalla presenza di un numero maggiore
di oggetti definiti e amplificati dinamicamente, si osservano diversi casi ben visibili di
come il LOD adattivo abbia contribuito a rendere la scena maggiormente realistica
nelle zone vicine alla telecamera o al personaggio.

Un primo esempio, molto efficace, ¢ dato dalla geometria relativa al lampione. In
figura [6.5] si puo notare come la geometria, con livello di dettaglio minimo, risulti
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spezzata, semplice e innaturale, mentre invece diventi lineare, realistica e continua
con livello di dettaglio massimo. Come per gli altri casi, la figura mostra invece
il grado di suddivisione geometrica che risulta dall’aumento del livello di dettaglio
quando l'oggetto risulta vicino alla telecamera.

Figura 6.5: Esempio di lampione definito tramite LOD adattivo, in modalita FILL (a sinistra la
versione base, a destra quella amplificata).

Figura 6.6: Esempio di lampione definito tramite LOD adattivo, in modalita LINE (a sinistra la
versione base, a destra quella amplificata).
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Edifici e tetti

Un secondo caso in cui risulta particolarmente evidente I’apporto del LOD adattivo
é rappresentato dagli edifici in cui, sia i tetti sia le facciate laterali beneficiano della
suddivisione dinamica della geometria. Nelle figure e viene confrontata la
versione a dettaglio minimo, caratterizzata da superfici semplificate e spigoli poco
realistici, e la versione a dettaglio massimo, in cui la tessellazione consente di ottenere
geometrie pitt complesse e convincenti dal punto di vista visivo.

Figura 6.7: Esempio di edificio e di tetto definiti tramite LOD adattivo, in modalita FILL (a
sinistra la versione base, a destra quella amplificata).

Figura 6.8: Esempio di edificio e di tetto definiti tramite LOD adattivo, in modalita LINE (a
sinistra la versione base, a destra quella amplificata).
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Siepi

Un ulteriore esempio dell’efficacia del LOD adattivo, riguarda le siepi, in cui la sud-
divisione dinamica della geometria contribuisce a rendere le superfici pit realistiche.
Nelle figure e si osserva come, nella versione a dettaglio minimo, la forma
della siepe risulti squadrata e poco naturale. Al contrario, nella versione a dettaglio
massimo, 'incremento del numero di vertici consente di ottenere superfici pit de-
finite e conferisce all’elemento un aspetto complessivo piu realistico e coerente con
I’ambiente circostante.

Figura 6.9: Esempio di siepe definita tramite LOD adattivo, in modalita FILL (a sinistra la
versione base, a destra quella amplificata).

Figura 6.10: Esempio di siepe definita tramite LOD adattivo, in modalitd LINE (a sinistra la
versione base, a destra quella amplificata).

Strada

L’ultimo esempio riguarda invece la strada, su cui l'effetto del LOD adattivo &
evidente nelle figure e[6.12] Nella versione a dettaglio minimo, la strada appare
infatti piatta a causa della geometria limitata a disposizione. Grazie ad un livello
di suddivisione maggiore del LOD dinamico, implementato tramite tessellation e
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geometry shader, é possibile invece suddividere e amplificare la geometria, generando
un numero maggiore di vertici e permettendo una migliore rappresentazione delle
irregolarita e dei piccoli dislivelli dovuti alle rocce che compongono la superficie,
conferendo alla strada un aspetto piu tridimensionale e realistico.

Figura 6.11: Esempio di una parte di strada definita tramite LOD adattivo, in modalita FILL (a
sinistra la versione base, a destra quella amplificata).

Figura 6.12: Esempio di una parte di strada definita tramite LOD adattivo, in modalita LINE (a
sinistra la versione base, a destra quella amplificata).

6.2 Analisi delle prestazioni

6.2.1 Configurazioni di test

Per valutare l'efficacia del lavoro svolto e la coerenza con gli obiettivi prefissati,
sono state realizzate diverse varianti dell’applicazione, cosi da sperimentare differenti
modalita di esecuzione e gestione del dettaglio geometrico.

In particolare, per entrambe le ambientazioni sviluppate (paesaggio montuoso e
urbano), sono state implementate quattro versioni distinte:

e Versione con LOD dinamico calcolato dalla GPU: rappresenta il cuore
del progetto di tesi. In questa configurazione il livello di dettaglio viene gestito
direttamente sulla GPU, tramite Tessellation Shaders e Geometry Shader,
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dove la suddivisione e 'amplificazione della geometria variano dinamicamente
in base alla distanza dalla telecamera.

e Versione con LOD dinamico calcolato dalla CPU: qui la gestione del
dettaglio viene realizzata dalla componente applicativa. In questo caso non
si fa uso né di tessellation né di geometry shading, ma ¢ la CPU che calcola
dinamicamente il livello di dettaglio delle geometrie da visualizzare. All’avvio
del programma (fuori dal ciclo principale) viene definita la geometria di base
suddivisa in patch, in modo analogo a quanto avviene in una pipeline con tes-
sellation. Durante ogni iterazione del ciclo principale, per ciascuna patch viene
calcolata la distanza dal centro rispetto al punto di riferimento (telecamera o
personaggio) e, tramite un’operazione di interpolazione lineare inversa, viene
stabilito il livello di suddivisione da applicare (uguale per ciascun lato della
patch). In seguito, vengono generati i nuovi vertici di ogni patch in base al
livello di suddivisione calcolato, utilizzando una suddivisione bilineare quando
si lavora su superfici planari (ad esempio per il terreno o per i muri), o in
altri casi, rigenerando l'intera geometria con un numero di vertici variabile in
base al LOD, creando mesh pitt o meno dettagliate (ad esempio per le sfere dei
lampioni). Per ciascun vertice generato, vengono inoltre calcolati gli attributi
necessari al rendering, come i valori di displacement, le normali e le coordinate
di texture. Infine, i buffer della GPU vengono aggiornati con i vertici appe-
na calcolati, in modo che vengano cosi processati dal flusso tradizionale della
pipeline grafica, passando attraverso Vertex Shader e Fragment Shader.

e Versione con calcoli eseguiti dalla GPU senza LOD dinamico e con
geometria al massimo dettaglio: gli shader opzionali vengono utilizzati per
definire sempre il massimo livello di dettaglio per ogni geometria originale. La
geometria di partenza viene comunque raffinata dalla GPU, ma senza alcuna
logica di adattamento basata sulla distanza dalla telecamera.

e Versione con calcoli eseguiti dalla CPU senza LOD dinamico e con
geometria al massimo dettaglio: le mesh vengono caricate al massimo
livello di dettaglio fin dall’inizio. La pipeline grafica in questo caso ¢é ridotta ai
soli Vertex Shader e Fragment Shader, impiegati per la semplice visualizzazione
delle geometrie.

In questo modo sono state ottenute quattro implementazioni per ciascuna ambien-
tazione, utili per confrontare in maniera diretta i diversi approcci e valutarne le
prestazioni.

Per l'analisi delle prestazioni ¢ stato utilizzato come indicatore principale il nu-
mero di FPS (frames per second), ovvero il numero di schermate renderizzate e
visualizzate nell’arco di un secondo. La misurazione é stata effettuata direttamente
allinterno dell’applicazione, considerando le iterazioni del main loop (cioé il ciclo
principale del programma che aggiorna costantemente lo stato dell’applicazione e
ridisegna la scena) e il numero di frame effettivamente presentati.

I quattro casi di test sono stati eseguiti su due distinte configurazioni hardware: una
GPU integrata, montata su un computer portatile, e una GPU dedicata, presente
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su un computer fisso.

Nel primo caso, I'applicazione é stata eseguita su un portatile dotato di GPU
integrata Intel(R) Iris(R) Plus Graphics, con driver in versione 27.20.100.8681 (ri-
lasciati il 05/09/2020). Questa GPU supporta le DirectX 12 con Feature Level 12.1,
che definiscono il massimo livello di funzionalita grafiche teoricamente disponibili
sull’hardware. Le DirectX sono un insieme di librerie sviluppate da Microsoft che
consentono ai programmi di interagire con 'hardware grafico in modo standardizza-
to, garantendo compatibilita e prestazioni migliori. Il Feature Level rappresenta
invece il sottoinsieme di funzionalita effettivamente implementate dall’hardware, che
indica il livello massimo di capacita grafiche che una GPU puo mettere a disposizione,
pur restando conforme a una determinata versione delle DirectX.

Queste informazioni vengono riportate come riferimento tecnico per comprendere
le capacita della scheda grafica. Va precisato perod che nel progetto non sono state
utilizzate direttamente le DirectX, ma sono state sfruttate le funzionalita messe a
disposizione da OpenGL e dalle altre librerie impiegate, che operano comunque entro
i limiti e le capacita dell’hardware stesso.

La GPU Iris Plus non possiede memoria video dedicata, ma condivide la RAM
con il processore centrale. Questo comporta una minore larghezza di banda e una
ridotta capacita di calcolo parallelo rispetto a una GPU dedicata, fattori che incidono
soprattutto in scenari che richiedono tecniche come la tessellation o il geometry
shading. Nonostante questo, le prestazioni ottenute si sono dimostrate sufficienti
per lo sviluppo e la sperimentazione di pipeline basate su OpenGL 4.6.

La GPU é integrata in un processore Intel Core 17-1065G7 da 1.30 GHz, apparte-
nente alla famiglia Ice Lake di decima generazione. In questo modello il controller
grafico é incluso direttamente nel die della CPU, ovvero nello stesso chip fisico che
ospita tutti i componenti principali del processore. Questa configurazione rappresen-
ta un tipico esempio di sistema consumer, cioé di uso comune, non specializzato per
il calcolo grafico avanzato. Testare l'applicazione su questa piattaforma permette
quindi di verificare quanto il programma sia efficiente e portabile anche su macchine
comuni, senza GPU dedicata.

Nel secondo caso, 'applicazione é stata eseguita su un computer fisso dotato di
GPU dedicata NVIDIA GeForce GTX 750 Ti, con driver in versione 32.0.15.6094
(rilasciati il 14/08/2024). Questa GPU supporta le DirectX 12 con Feature Level
11.0. A differenza della GPU integrata del primo caso, la GTX 750 Ti dispone
di 2 GB di memoria video dedicata con banda di 86.4 GB/s, caratteristiche che
consentono una gestione piu efficiente delle texture e dei buffer grafici. Tuttavia,
il livello di funzionalita 11.0 la limita rispetto a schede pitt moderne, impedendo
I’accesso ad alcune tecniche avanzate introdotte con le versioni successive.

Il sistema utilizza poi un processore Intel(R) Core(TM) i7-6700K da 4.00 GHz,
appartenente alla famiglia Skylake di sesta generazione, con 4 core fisici e 8 proces-
sori logici. Rispetto alla CPU del portatile, questa soluzione garantisce prestazioni
superiori.
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Tale configurazione rappresenta quindi un esempio di sistema desktop enthusiast,
dove la presenza di una GPU dedicata e di una CPU performante consente di testare
I’applicazione in condizioni pit favorevoli rispetto a un sistema consumer portatile.

6.2.2 Risultati ottenuti e confronto delle prestazioni

I risultati ottenuti dall’esecuzione dei vari casi di test sulle due configurazioni hard-
ware appena descritte sono riportati nelle tabelle seguenti. In entrambe, i dati sono
stati organizzati come segue. Ogni riga corrisponde a uno dei quattro casi di test
previsti:

e Dettaglio geometrico dinamico realizzato tramite LOD adattivo sulla GPU.
e Dettaglio geometrico dinamico realizzato tramite LOD adattivo sulla CPU.

e Dettaglio massimo, indipendente dalla posizione della telecamera, elaborato
ad ogni iterazione dalla GPU.

e Dettaglio statico della geometria, caricata direttamente al livello massimo,
elaborato una sola volta (al di fuori del ciclo principale) dalla CPU.

Sulle colonne, i dati sono differenziati secondo due modalita, ovvero LINE MODE (che
visualizza le sole linee delle geometrie) e FILL (che consente di valutare 'effetto
visivo completo, con le geometrie riempite). Ciascuna di queste due modalita ¢
a sua volta suddivisa in due colonne, per confrontare direttamente le prestazioni
ottenute su hardware con GPU integrata e su hardware con GPU dedicata.

Sono state realizzate due tabelle distinte, una per ciascuna delle ambientazioni svi-
luppate, cosi da analizzare separatamente i risultati e rendere pit chiara 'osserva-
zione delle differenze prestazionali all’interno dello stesso contesto. In particolare,
la figura riporta le prestazioni relative alla prima ambientazione (il paesaggio
montuoso), mentre la si riferisce alla seconda (il paesaggio urbano).

Questa organizzazione consente di mettere in evidenza, in modo lineare e immedia-
to, le variazioni di performance tra i diversi approcci implementativi e tra le due
configurazioni hardware, facilitando sia il confronto diretto sia la lettura complessiva
dei dati.

LINE MODE FILLMODE
GPU integrata GPU dedicata | GPU integrata | GPU dedicata
Dettaglio dinamico GPU 90-130 400-410 90-150 410-420
Dettaglio dinamico CPU 1-2 3-6 1-2 5-6
Dettaglio statico GPU 2-3 50 2-3 55
Dettaglio statico CPU 10-15 35 45-50 130

Figura 6.13: Confronto delle prestazioni nelle quattro versioni di test realizzate per la prima
ambientazione (paesaggio montuoso), con unita di misura espressa in FPS (frames per second).
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LINE MODE FILLMODE
GPU integrata GPU dedicata | GPU integrata | GPU dedicata
Dettaglio dinamico GPU 100-130 320-480 110-180 400-450
Dettaglio dinamico CPU 6-8 B-12 6-8 B-12
Dettaglio statico GPU 12 30 28 B0
Dettaglio statico CPU 8 20 55-80 170

Figura 6.14: Confronto delle prestazioni nelle quattro versioni di test realizzate per la seconda
ambientazione (paesaggio urbano), con unita di misura espressa in FPS (frames per second).

Dai risultati relativi alla prima ambientazione, i test mostrano chiaramente come
I’approccio di dettaglio dinamico implementato sulla GPU garantisca prestazioni
nettamente superiori rispetto alle altre soluzioni.

Per quanto riguarda la tecnica del dettaglio dinamico delle geometrie: attraverso
la GPU dedicata si raggiungono valori stabili intorno ai 400 FPS in entrambe le
modalita (LINE e FILL), mentre con la GPU integrata le prestazioni oscillano fra 90
e 150 FPS, mantenendo comunque una fluidita pienamente utilizzabile. Al contrario,
lo stesso approccio dinamico, ma eseguito su CPU, produce valori quasi nulli (con
un massimo di 6 FPS tra i risultati ottenuti coi due tipi di hardware), poiché i calcoli
del LOD sono eseguiti direttamente nel ciclo principale dell’applicazione, senza poter
sfruttare il parallelismo fornito dalla GPU.

In questo scenario, la CPU é costretta a gestire in modo sequenziale un gran nume-
ro di operazioni di calcolo per la generazione e I’adattamento dei vertici, simulando
I'intero processo di suddivisione e amplificazione geometrica attraverso calcoli soft-
ware. Questo comporta un dispendio significativo di tempo e di risorse, oltre che
un carico computazionale troppo oneroso per poter essere gestito in tempo reale.
La GPU, invece, grazie alla sua architettura, puo distribuire questi calcoli su piu
esecuzioni in parallelo e integra nella propria pipeline dei componenti ottimizzati,
sia programmabili (come Tessellation Shaders e Geometry Shader) sia fissi (come
il Tessellator). Quest’ultimo, in particolare, & in grado di generare nuovi vertici
direttamente in hardware, con latenze ridotte, permettendo un adattamento geome-
trico dinamico che risulta estremamente efficiente. In questo modo, la GPU riesce
a garantire prestazioni elevate pur mantenendo un livello qualitativo molto alto.

Nel caso di assegnazione del massimo livello di dettaglio a tutta la geometria della
scena, i risultati mostrano limiti significativi. Attraverso la GPU si ottengono pre-
stazioni accettabili con la GPU dedicata (50 FPS in LINE MODE e 55 FPS in FILL
MODE), ma estremamente basse con la GPU integrata (2 — 3 FPS). Cio ¢ dovuto al
fatto che l'intera complessita geometrica viene caricata senza alcun adattamento,
portando a un numero di vertici molto elevato che la GPU ¢ costretta a processare
integralmente, facendo cosi risaltare le diverse prestazioni dei due tipi di GPU hard-
ware. Nel caso della versione statica lato CPU invece, i dati risultano generalmente
migliori, ma cio6 dipende dal diverso flusso di elaborazione. Qui, infatti, i vertici
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vengono passati gia completamente definiti alla pipeline e processati su GPU solo
dal Vertex e dal Fragment Shader.

La discreta qualita dei risultati ottenuti nel caso di dettaglio statico elaborato dalla
CPU non puod pero reggere il confronto con il caso di LOD dinamico su GPU, anche
considerando il fatto che I’aumento della complessita della scena determinerebbe un
repentino decadimento delle prestazioni, a causa del numero sempre crescente di
vertici che verrebbero generati e processati integralmente dalla pipeline grafica. Il
LOD dinamico su GPU parte invece da un numero molto pitt contenuto di vertici
e genera quelli mancanti direttamente all’interno della pipeline, riducendo il cari-
co iniziale e mantenendo la possibilita di adattare dinamicamente la complessita in
funzione della posizione della telecamera. Se le scene aumentassero di complessita
(come accadrebbe in un contesto reale, con intere mappe o ambienti completi), il
costo di definire fin dall’inizio un numero enorme di vertici diventerebbe insoste-
nibile e proprio in tali scenari emergerebbe in modo ancora pitt netto il vantaggio
dell’approccio dinamico su GPU.

Nella seconda ambientazione (paesaggio urbano), i valori confermano lo stesso
andamento generale, ma introducono alcune nuove considerazioni legate alla natu-
ra piu eterogenea della scena. In questo contesto, il dettaglio dinamico su GPU
mantiene prestazioni molto elevate, con valori compresi tra 320 e 480 FPS su GPU
dedicata e tra 100 e 180 FPS su GPU integrata. Tali risultati dimostrano la ro-
bustezza dell’approccio anche in scenari caratterizzati da una maggiore varieta di
elementi e da pipeline di gestione pitt numerose e articolate, riuscendo comunque a
garantire un equilibrio ottimale tra qualita visiva e fluidita del rendering.

L’approccio dinamico su CPU mostra prestazioni leggermente migliori rispetto alla
prima ambientazione (tra 6 e 12 FPS), ma rimane comunque del tutto inadeguato
per un’applicazione in tempo reale. Questo incremento minimo é da attribuire alla
diversa distribuzione dei vertici nella scena urbana, ma non rappresenta in alcun
modo un vantaggio concreto.

Il dettaglio statico su GPU risente maggiormente della complessita geometrica: le
prestazioni scendono a 30-60 FPS su GPU dedicata e a soli 12-28 FPS su GPU
integrata, evidenziando la difficolta di gestire direttamente scene molto dense senza
meccanismi di adattamento. Ancora una volta, questo sottolinea l'efficacia del LOD
dinamico lato GPU rispetto alle soluzioni statiche.

Infine, il dettaglio statico lato CPU mostra risultati piu variegati. In modalita
FILL con GPU dedicata si osservano valori molto alti (fino a 170 FPS), ma negli
altri casi le prestazioni risultano notevolmente inferiori. Anche qui, il fenomeno
¢ spiegabile con il diverso bilanciamento dei carichi: in questa ambientazione, le
geometrie urbane, pur numerose, presentano strutture regolari che talvolta agevolano
il passaggio diretto dei vertici gia definiti. Tuttavia, 'approccio resta poco flessibile
e non paragonabile al metodo dinamico su GPU, che garantisce un adattamento pit
fine e costante delle risorse.

Un aspetto rilevante emerso dai dati complessivi riguarda anche la differenza tra
GPU integrata e dedicata. Quest’ultima garantisce sempre un incremento presta-
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zionale significativo (anche superiore a cinque volte in alcuni casi), dimostrando
quanto la parallelizzazione e la maggiore potenza della GPU dedicata incidano nella
resa del sistema. Cio € particolarmente evidente nei casi di calcolo intensivo, come
I’adattamento dinamico della geometria, dove le potenzialita hardware della GPU
vengono sfruttate appieno.

6.3 Conclusioni e sviluppi futuri

L’analisi complessiva conferma come 1'utilizzo del LOD dinamico, realizzato tramite
shader di tessellazione e di geometria, rappresenti una soluzione efficace per coniu-
gare qualita visiva e prestazioni. Questa tecnica permette di sfruttare appieno le
potenzialita della GPU e di adattare in tempo reale il dettaglio delle geometrie,
garantendo risultati che si rivelano superiori rispetto ad approcci piu statici o basati

sulla sola CPU.

Tuttavia, l'efficacia di questo metodo non dipende soltanto dal principio alla ba-
se del metodo stesso, ma soprattutto dal modo in cui questo viene implementato.
Ogni operazione superflua all’interno degli shader, seppur apparentemente irrilevan-
te, viene inevitabilmente ripetuta per milioni di vertici e tende quindi ad amplificarsi
fino a compromettere le prestazioni complessive. E quindi fondamentale progettare
algoritmi snelli ed efficienti, capaci di evitare sprechi computazionali e di sfruttare
al meglio le risorse messe a disposizione dalla pipeline grafica.

In questo senso, il LOD dinamico su GPU rappresenta una scelta solida e versatile,
a patto che venga accompagnato da un’attenta progettazione degli shader e da un
uso consapevole degli strumenti offerti dall’hardware grafico.

Un possibile sviluppo futuro riguarda 'ottimizzazione del sistema di LOD adattivo
per considerare non solo la distanza dal personaggio, ma anche la sua direzione di
vista. In questo modo, la suddivisione e I'aumento del dettaglio geometrico ver-
rebbero applicati solo alle parti effettivamente visibili all'utente, in base all’altezza,
all’inclinazione e alla posizione all’interno del cono di vista. Questo approccio per-
mette di concentrare le risorse computazionali solo su cio che 'utente vede realmente,
evitando di generare dettagli superflui per geometrie vicine ma non osservate, e mi-
gliorando ulteriormente l'efficienza del sistema, soprattutto in ambienti di grandi
dimensioni tipici di videogiochi o simulazioni interattive.

Un secondo ambito di sviluppo riguarda ’adattamento dinamico del LOD in funzio-
ne delle prestazioni rilevate in tempo reale dall’applicazione. In pratica, il sistema
potrebbe regolare automaticamente la densita dei vertici e i livelli di dettaglio in
base alla capacita di rendering corrente, mantenendo costante la fluidita percepita
dall’utente. In presenza di zone particolarmente complesse o di cali di prestazioni,
il sistema ridurrebbe temporaneamente il dettaglio massimo generato, senza com-
promettere l’esperienza complessiva, bilanciando cosi qualita visiva e stabilita delle
prestazioni.

Complessivamente, il lavoro svolto dimostra quindi come il LOD dinamico su GPU,
implementato tramite shader di tessellazione e geometria, sia una strategia efficace
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per ottenere alta qualita visiva senza compromettere le prestazioni, anche in sce-
nari complessi e ricchi di dettagli. I risultati sperimentali confermano la validita
dell’approccio e sottolineano 'importanza di un’attenta progettazione degli shader
per sfruttare al meglio le potenzialita hardware. Gli sviluppi futuri illustrati of-
frono inoltre indicazioni concrete su come estendere e perfezionare ulteriormente la
tecnica, rendendola ancora pitt adattativa ed efficiente.

148



Bibliografia

10.

11.

12.

13.

. Akenine-Moller, Tomas; Haines, Eric; Hoffman, Naty; Pesce, Angelo; Iwanicki,

Michal; Hillaire, Sébastien. Real-Time Rendering, Fourth Edition. CRC Press,
2018.

. Bailey, Mike; Cunningham, Steve. Graphics Shaders: Theory and Practice,

Second FEdition. CRC Press, 2012.

Gonzalez Vivo, Patricio; Lowe, Jen. Fractal Brownian Motion. In The Book
of Shaders, 2015. https://thebookofshaders.com/13/

Gordan, Victor. Modern OpenGL Tutorial — Tessellation Shaders. YouTube,
2022. https://www.youtube.com/watch?v=21gfE-zUym3

Gordan, Victor. Procedural Generation Tutorial. YouTube, 2022. https:
//www . youtube . com/watch?v=FKLbihgDLsg

. Kessenich, John; Sellers, Graham; Shreiner, Dave. OpenGL Programming

Guide: The Official Guide to Learning OpenGL, Version 4.3, Fighth Edition.
Addison-Wesley, 2013.

LearnOpenGL. Geometry Shader Tutorial.  https://learnopengl.com/
Advanced-0OpenGL/Geometry-Shader

. LearnOpenGL. Guest Article: Tessellation and Height Maps. https://

learnopengl.com/Guest-Articles/2021/Tessellation/Height-map

. LearnOpenGL. Guest Article: Tessellation Shaders Tutorial. https://

learnopengl.com/Guest-Articles/2021/Tessellation/Tessellation

Meiri, Etay. Skeletal Animation with Assimp — Tutorial 38. OGLDev, 2011.
https://ogldev.org/www/tutorial38/tutorial38.html

Mount, Dave; Eastman, Roger. Procedural Generation: 2D Perlin Noise. Uni-
versity of Maryland, Lecture Notes, 2018. https://www.cs.umd.edu/class/
spring2018/cmsc425/Lects/lect13-2d-perlin. pdf

Open Asset Import Library Documentation. Assimp Data Structures (non
ufficiale). https://documentation.help/assimp/data.html

Perlin, Ken. An Image Synthesizer. Proceedings of SIGGRAPH ’85, 1985, pp.
287-296. https://dl.acm.org/doi/pdf/10.1145/325165.325247

149


https://thebookofshaders.com/13/
https://www.youtube.com/watch?v=21gfE-zUym8
https://www.youtube.com/watch?v=FKLbihqDLsg
https://www.youtube.com/watch?v=FKLbihqDLsg
https://learnopengl.com/Advanced-OpenGL/Geometry-Shader
https://learnopengl.com/Advanced-OpenGL/Geometry-Shader
https://learnopengl.com/Guest-Articles/2021/Tessellation/Height-map
https://learnopengl.com/Guest-Articles/2021/Tessellation/Height-map
https://learnopengl.com/Guest-Articles/2021/Tessellation/Tessellation
https://learnopengl.com/Guest-Articles/2021/Tessellation/Tessellation
https://ogldev.org/www/tutorial38/tutorial38.html
https://www.cs.umd.edu/class/spring2018/cmsc425/Lects/lect13-2d-perlin.pdf
https://www.cs.umd.edu/class/spring2018/cmsc425/Lects/lect13-2d-perlin.pdf
https://documentation.help/assimp/data.html
https://dl.acm.org/doi/pdf/10.1145/325165.325247

14.

15.

16.

17.

18.

19.

The Khronos Group. Geometry Shader — OpenGL Wiki. https://www.
khronos.org/opengl/wiki/Geometry_Shader

The Khronos Group. OpenGL 4.6 Core Profile Specification. 2017. https:
//registry.khronos.org/0OpenGL/specs/gl/glspecd6.core.pdf

The Khronos Group. Tessellation Control Shader — OpenGL Wiki. https:
//www .khronos.org/opengl/wiki/Tessellation_Control_Shader

Vince, John. Mathematics for Computer Graphics, Seventh Edition. Springer-
Verlag London, 2025.

Yuksel, Cem. Interactive Computer Graphics — Geometry Shader Lecture.
University of Utah, School of Computing, YouTube, 2020. https://www.
youtube.com/watch?v=5Ruv2H91kGA

Yuksel, Cem. Interactive Computer Graphics — Tessellation Shaders Lecture.
University of Utah, School of Computing, YouTube, 2020. https://www.
youtube.com/watch?v=0qRMNrvu6TE

150


https://www.khronos.org/opengl/wiki/Geometry_Shader
https://www.khronos.org/opengl/wiki/Geometry_Shader
https://registry.khronos.org/OpenGL/specs/gl/glspec46.core.pdf
https://registry.khronos.org/OpenGL/specs/gl/glspec46.core.pdf
https://www.khronos.org/opengl/wiki/Tessellation_Control_Shader
https://www.khronos.org/opengl/wiki/Tessellation_Control_Shader
https://www.youtube.com/watch?v=5Ruv2H9lkGA
https://www.youtube.com/watch?v=5Ruv2H9lkGA
https://www.youtube.com/watch?v=OqRMNrvu6TE
https://www.youtube.com/watch?v=OqRMNrvu6TE

	Introduzione
	Classic Rendering Graphic Pipeline
	Struttura generale
	Application Stage
	Geometry Processing Stage
	Rasterization Stage
	Pixel Processing Stage

	Stadi Programmabili della GPU
	Vertex Shader
	Fragment Shader
	OpenGL
	GLSL
	GPU


	Tessellation Shaders
	Introduzione
	Concetti Fondamentali
	Tessellation
	Patch

	Tessellation Control Shader (TCS)
	Creazione e distruzione
	Input
	Output

	Tessellation Primitive Generator (Tessellator)
	Tipi di primitive
	Modalità di spaziatura
	Orientamento
	Primitive Tessellation

	Tessellation Evaluation Shader (TES)
	Creazione e distruzione
	Input
	Output

	Query e misurazioni

	Geometry Shader
	Introduzione
	Caratteristiche generali
	Creazione e distruzione
	Primitive di adiacenza
	Input
	Output
	Variabili built-in e funzionamento interno
	Gestione dei dati in ingresso
	Emissione di vertici
	Gestione dei dati in uscita
	Gestione di più stream di output
	Uso e sincronizzazione delle variabili in e out

	Layered Rendering
	Render to screen e render to texture
	Caratteristiche generali
	Funzionamento
	Considerazione sulle prestazioni

	Query e misurazioni
	Geometry Shader Instancing

	Fondamenti Matematici
	Spazi vettoriali e operazioni sui vettori
	Concetti fondamentali
	Operazioni fondamentali
	Prodotto scalare tra vettori
	Prodotto Vettoriale

	Sistemi di riferimento e coordinate omogenee
	Sistema di riferimento
	Coordinate omogenee
	Cambio di sistema di riferimento

	Trasformazioni affini
	Definizione
	Traslazione
	Scalatura
	Rotazione
	Composizione di trasformazioni

	Interpolazione
	Interpolazione lineare
	Interpolazione bilineare
	Interpolazione baricentrica

	Derivate e gradiente
	Derivata in una dimensione
	Derivate parziali in più dimensioni
	Gradiente

	Curve parametriche
	Definizione
	Continuità
	Curve interpolanti e approssimanti
	Curve di Hermite
	Catmull-Rom Spline


	Progetto
	Introduzione
	Scopo del progetto
	Tecnologie utilizzate
	Struttura generale

	Telecamera
	Concetti fondamentali
	Proiezione prospettica
	Movimento della telecamera

	Interazioni con l'utente
	Geometrie
	Ambientazione 1: paesaggio montuoso
	Ambientazione 2: paesaggio urbano

	Personaggio animato
	Concetti fondamentali
	Parsing del modello con Assimp
	Mesh e ossa
	Gerarchia delle ossa
	Sistemi di riferimento dello scheletro
	Animazioni
	Implementazione del modello animato

	Buffer di memoria
	Rumore procedurale
	Valori iniziali
	Random gradients
	Fading
	Aggiunta delle altezze random
	Brownian motion
	Implementazione

	Texture
	Caricamento di texture di colore e displacement
	Generazione della texture di altezze

	Collisioni
	Shaders
	Terreno (ambientazione 1)
	Transform Feedback (ambientazione 1)
	Stelle (ambientazione 1)
	Personaggio (ambientazioni 1 e 2)
	Terreno (ambientazione 2)
	Edifici, siepi e tetti (ambientazione 2)
	Lampioni (ambientazione 2)


	Risultati e conclusioni
	Risultati visivi
	Ambientazione 1
	Ambientazione 2

	Analisi delle prestazioni
	Configurazioni di test
	Risultati ottenuti e confronto delle prestazioni

	Conclusioni e sviluppi futuri

	Bibliografia

