
DIPARTIMENTO DI INFORMATICA – SCIENZA E INGEGNERIA

CORSO DI LAUREA IN INGEGNERIA E SCIENZE INFORMATICHE

Effetti Visivi Avanzati in CGI:
Studio di Compute Shaders e Sistemi di

Particelle con Applicazioni a Simulazioni
Dinamiche

Elaborato in

Computer Graphics

Relatore

Prof.ssa Damiana Lazzaro

Presentata da

Federico Brighi

Sessione Unica
Anno Accademico 2024/2025

“ Sono un insicuro non accetto me,

senza dimostrare più a nessuno,

frate, eccetto a me”

Marracash, Body Parts – I Denti

Indice

1 Effetti visivi nel cinema e simulazione particellare 6
1.1 Sistema particellare . 6

1.2 CGI e VFX nel cinema . 10

1.3 Effetti visivi (VFX) . 13

1.4 Processo di creazione dei modelli 3D . 15

1.5 Tecniche di computer grafica con esempi cinematografici 19

1.5.1 Motion Capture: Andy Serkis, il caso di Cesare 19

1.5.2 Morphing: il T-1000 in Terminator 2 21

1.5.3 Bullet Time: Matrix, Neo schiva i proiettili 22

1.5.4 Interstellar: Gargantua, il buco nero più realistico del cinema 23

1.6 Evoluzione e prospettive future dell’industria VFX 24

1.7 Integrazione dell’intelligenza artificiale nel cinema 26

2 Compute Shader in OpenGL: Fondamenti e Applicazioni 30
2.1 Cosa Sono i Compute Shader . 30

2.2 Architettura e concetto di invocazione . 31

2.3 Accesso ai dati: Shader Storage Buffer Object (SSBO) 33

2.4 Confronto tra tecnologie di calcolo parallelo: CUDA, OpenCL e SYCL 35

2.5 Gestione delle immagini nei C.Shader: Image Load/Store 36

2.6 Implementazione base di un Compute Shader 38

2.7 Sincronizzazione e Operazioni avanzate . 41

2.7.1 Operazioni atomiche . 42

2.8 Limitazioni hardware e ottimizzazioni . 43

2.9 Conclusione . 44

3 Background matematico degli effetti particellari 45
3.1 Modello computazionale della singola particella 45

3.2 Dinamica e generazione: il ruolo dell’emitter 47

3.3 Forze fisiche e interazioni . 47

3.4 Collisioni e reazioni . 49

3.5 Integrazione numerica delle equazioni del moto 50

2

3.6 Riflessioni finali . 52

4 Sviluppo e implementazione del simulatore 54
4.1 Idea iniziale e sviluppo progressivo del progetto 55

4.2 Tecnologie utilizzate . 56

4.3 Reperimento dei modelli obj e Cell Fracture su Blender 60

4.4 Personaggio e gestione della sua animazione. 63

4.5 Creazione della scena: skybox e posizionamento degli elementi 75

4.6 Funzionalità varie: comandi da tastiera e gestione della camera 80

4.7 Gestione delle collisioni e Bounding Box . 85

4.8 Compute Shader e fisica dell’esplosione . 91

4.9 Confronto sistema GPU e CPU con analisi delle prestazioni 101

5 Considerazioni finali sul progetto e prospettive future 113
5.1 Considerazioni finali sul progetto . 113

5.2 Possibili estensioni future del progetto . 114

6 Conclusione e Ringraziamenti 115

Bibliografia 115

3

Introduzione

Il presente elaborato nasce dalla mia passione personale per il cinema e dal profondo interesse

nel comprendere le tecniche e i processi alla base della creazione degli effetti speciali, elementi

ormai centrali sia per la narrazione sia per l’impatto visivo delle produzioni cinematografiche

moderne. Sin dai primi anni di studio, ho sempre trovato affascinante osservare come la fusione

tra arte e tecnologia consenta di dar vita a mondi e situazioni che altrimenti sarebbero irrealiz-

zabili. Questa curiosità è stata ulteriormente alimentata dal corso di Computer Graphics che

ho seguito, grazie al quale ho potuto acquisire conoscenze teoriche e competenze pratiche sui

fondamenti della grafica digitale. Motivato da questo interesse, ho chiesto alla professoressa

Lazzaro di assumere il ruolo di relatrice per questo progetto, il quale rappresenta per me un’oc-

casione preziosa per approfondire e mettere in pratica quanto appreso, unendo la teoria con lo

sviluppo concreto di un effetto speciale.

Il panorama cinematografico e tecnologico contemporaneo è caratterizzato da un impiego sem-

pre più diffuso di strumenti digitali avanzati, che hanno reso gli effetti speciali una componente

imprescindibile per la creazione di esperienze visive immersive e coinvolgenti.

In particolare, le tecniche di rendering in tempo reale e l’utilizzo di shader programmabili,

come i compute shader, rivestono un ruolo centrale nell’ottimizzazione dell’efficienza e della

qualità degli effetti particellari, mantenendo elevate prestazioni anche in contesti interattivi.

Tale evoluzione tecnologica rappresenta un punto di incontro tra la teoria della computer grafica

e le sue applicazioni pratiche nei settori del cinema, dell’animazione e dei videogiochi. L’ado-

zione di queste soluzioni consente di simulare fenomeni naturali e dinamici con un livello di

realismo senza precedenti, aprendo nuove prospettive per la produzione di contenuti audiovisivi.

L’obiettivo principale dell’elaborato è lo sviluppo di un simulatore interattivo di distruzione

architettonica basato su OpenGL, che integra modellazione 3D, animazione di personaggi e

simulazione fisica avanzata. Il progetto prevede la realizzazione di una scena tridimensionale

complessa, popolata da modelli architettonici in formato OBJ importati insieme ai loro materia-

li MTL, all’interno della quale un personaggio animato, caricato da modello FBX con supporto

per animazione scheletrica, agisce come elemento scatenante per gli eventi distruttivi.

L’interazione si basa sul rilevamento delle collisioni tra il personaggio e gli elementi architet-

tonici, meccanismo che innesca automaticamente la transizione dalla loro forma integra ad una

versione frammentata, ottenuta tramite l’add-on cell fracture di Blender. La peculiarità tecnica

del progetto risiede nell’implementazione di un sistema fisico dual-mode: una versione CPU

multi-threaded tradizionale e una versione GPU che sfrutta i compute shader di OpenGL 4.3+

per il calcolo parallelo delle dinamiche di esplosione. Entrambe le implementazioni gestiscono

4

in real-time forze gravitazionali, dispersione esplosiva radiale, attrito aerodinamico e collisioni

tra piano e frammenti, permettendo un confronto prestazionale diretto tra architetture di calcolo

CPU e GPU per la simulazione fisica di sistemi particellari complessi.

Il lavoro è organizzato in cinque capitoli principali, ognuno dei quali affronta un aspetto speci-

fico del progetto:

Il primo capitolo introduce il contesto cinematografico e i principi fondamentali degli effetti

visivi e della simulazione particellare, fornendo un quadro teorico essenziale per comprendere

le motivazioni e le tecniche alla base del progetto.

Il secondo capitolo si focalizza sui compute shader in OpenGL, presentandone i fondamenti,

l’architettura e le tecniche di ottimizzazione impiegate, con un’analisi dettagliata delle proble-

matiche hardware e delle operazioni di sincronizzazione necessarie per la gestione di sistemi

complessi.

Il terzo capitolo affronta il background matematico degli effetti particellari, illustrando le formu-

lazioni teoriche e le equazioni che guidano il comportamento delle particelle nelle simulazioni.

Nel quarto capitolo viene descritta la fase di sviluppo e implementazione del simulatore, con

documentazione delle scelte progettuali, struttura del codice, integrazione degli shader, analisi

dei risultati ottenuti e performance del sistema, valutando l’efficacia dell’approccio e indivi-

duando eventuali margini di miglioramento.

Infine, il quinto capitolo riporta le conclusioni tratte dal lavoro svolto, evidenziando le prospet-

tive future e le possibili estensioni del progetto, con uno sguardo anche all’utilizzo dell’intelli-

genza artificiale nel cinema.

5

Capitolo 1

Effetti visivi nel cinema e simulazione
particellare

Il seguente capitolo è dedicato all’approfondimento teorico dei sistemi particellari, una delle

tecniche più diffuse e versatili nell’ambito della computer grafica. Dopo una descrizione ge-

nerale del concetto di particella e delle sue proprietà fondamentali, verranno analizzati i modi

in cui tali entità vengono impiegate per simulare fenomeni complessi della realtà, come fumo,

fuoco, esplosioni, pioggia o effetti astratti di tipo visivo. I sistemi particellari, infatti, costitui-

scono la base di numerosi algoritmi utilizzati nei software professionali per la produzione di

contenuti audiovisivi, dal cinema all’animazione digitale, fino al settore dei videogiochi.

Una sezione specifica è dedicata all’evoluzione storica della computer grafica, con particolare

attenzione al ruolo che i sistemi particellari e le tecniche di rendering hanno avuto nello svilup-

po degli effetti speciali. Verranno ripercorse le tappe principali che hanno segnato la transizione

dai primi esperimenti in grafica 2D alle simulazioni tridimensionali sempre più sofisticate, ca-

paci di integrare in modo realistico personaggi virtuali e ambienti digitali con riprese dal vivo.

All’interno del capitolo sarà inoltre fornita una panoramica delle procedure di modellazione
adottate nella creazione di personaggi, illustrando i passaggi fondamentali dalla realizzazione

di mesh e scheletri fino al rigging e all’animazione. Infine, verranno presentati alcuni esempi

concreti di effetti speciali che hanno segnato la storia del cinema e dell’animazione, eviden-

ziando come l’impiego combinato di particelle, shader e tecniche di rendering avanzate abbia

permesso di raggiungere livelli sempre più elevati di realismo e spettacolarità.

1.1 Sistema particellare

Un sistema particellare (particle system) è una tecnica della computer grafica che utilizza

un vasto numero di piccolissime sprites, modelli 3D o oggetti grafici per simulare fenomeni

6

complessi e ”fuzzy” difficili da riprodurre con tecniche di rendering tradizionali, come sistemi

caotici, fenomeni naturali o reazioni chimiche. La prima applicazione di sistemi particellari nel

cinema risale al 1984, quando William Reeves li utilizzò per simulare un muro di fuoco nel film

Star Trek II: L’ira di Khan.

Questi sistemi, basati su una modellazione volumetrica, sono particolarmente adatti per la ri-

produzione di fenomeni naturali volumetrici come fuoco, acqua, neve e nuvole.

Con il tempo si sono evoluti fino a simulare effetti sempre più complessi, come esplosioni,
scintille, movimenti dell’acqua, bagliori e persino elementi spaziali, nei quali le particelle

vengono continuamente generate, animate e fatte svanire per poi essere riemesse dalla sorgente

dell’effetto. Tecniche avanzate sono impiegate anche per simulare fasci di capelli, fili d’erba e

altri dettagli organici.

Si tratta di una tecnica di modellazione procedurale: si parte da un’ampia collezione di par-

ticelle geometriche elementari che cambiano stocasticamente nel tempo. Per rappresentare og-

getti naturali si fa uso di un ampio database di primitive geometriche; tuttavia, l’animazione,

che comprende nascita, movimento e morte delle particelle, è controllata da algoritmi che agi-

scono attraverso un numero limitato di parametri di controllo.

Figura 1.1: Sistema particellare complesso generato da un emitter, con particelle animate e
texture visibili nel ciclo di vita.

Una particella è un elemento visibile solo durante il suo ciclo di vita, i cui attributi possono

includere forma (bitmap o modello 3D), colore o texture superficiale, dimensione, massa,

durata, velocità, specificati come valori fissi o intervalli di variabilità. La posizione iniziale e

il movimento della particella nello spazio sono controllati da un emitter, una sorgente invisibile

la cui posizione determina il punto di generazione e la direzione del moto (ad esempio una mesh

7

3D). L’emitter possiede un set di parametri relativi al comportamento delle particelle, tra cui il

tasso di generazione (spawning rate), la velocità iniziale, la durata della vita o il colore.[8]

Figura 1.2: Confronto tra particelle dinamiche (sinistra) influenzate dalla gravità e particelle
statiche a filamento (destra) emesse dallo stesso cubo.

Tra i principali software impiegati nella modellazione e simulazione di sistemi particellari

spiccano strumenti altamente specializzati come:

• Houdini [1], sviluppato da SideFX, considerato uno standard industriale per la creazione

di effetti visivi basati su sistemi particellari. Grazie al suo approccio procedurale e alla

capacità di gestire simulazioni dinamiche di fluidi, fuoco, fumo e altro, offre un controllo

granulare sugli aspetti fisici e grafici. La sua flessibilità lo rende lo strumento preferito

nei grandi studi di VFX per cinema e televisione.

Figura 1.3: Schermata di esempio del software Houdini.

8

• Maya [2], prodotto da Autodesk, noto soprattutto per le sue capacità di modellazione

e animazione 3D, integra potenti plugin e moduli dedicati alla simulazione particellare,

permettendo cosı̀ di generare effetti complessi integrandoli agevolmente con pipeline di

produzione digitali ampie e articolate.

Figura 1.4: Schermata di esempio del software Maya.

• Blender [3], software open source in rapida crescita, che ha consolidato una suite di

strumenti dedicati alla simulazione particellare, inclusi sistemi di particelle tradizionali,

simulazioni di fluidi e fumo. Consente a un’ampia comunità di artisti di realizzare effetti

visivi di qualità professionale senza costi di licenza, facilitando l’accesso alla tecnologia

anche a chi si avvicina per la prima volta alla computer grafica (Blender è stato utilizzato

per la realizzazione del progetto di questa tesi, in particolare il suo add-on ”cell-fracture”).

Figura 1.5: Schermata di esempio del software Blender.

• Unreal Engine [4], inizialmente conosciuto come motore di gioco, ha esteso le sue fun-

zionalità includendo sistemi di particelle avanzati come Niagara, che permettono di gene-

9

rare simulazioni particellari in tempo reale. Questo aspetto è fondamentale per la produ-

zione di contenuti interattivi, realtà virtuale e visualizzazioni immersive, aprendo nuove

possibilità anche per il cinema e la produzione audiovisiva.

Figura 1.6: Schermata di esempio del software Unreal Engine.

La scelta del software più adatto varia in base al tipo di progetto, alla complessità dell’effetto

desiderato e alle esigenze di integrazione con le altre fasi della pipeline digitale, ma tutti questi

strumenti rappresentano oggi la punta di diamante nella simulazione particellare e negli effetti

visivi.

1.2 CGI e VFX nel cinema

Negli ultimi decenni, l’informatica ha assunto un ruolo sempre più centrale nella produzione ci-

nematografica, diventando uno strumento indispensabile soprattutto per la realizzazione di film

e serie TV che richiedono effetti visivi e speciali di elevata complessità, spesso impossibili o

troppo costosi da ottenere con le tradizionali tecniche di ripresa dal vivo.

In questo contesto, la CGI (Computer-Generated Imagery), ovvero la creazione di immagini,

scene e animazioni generate al computer , rappresenta una tecnologia estremamente versati-

le il cui impiego va ben oltre la semplice animazione o la creazione di effetti visivi, trovando

applicazione in multipli ambiti diversi come l’arte digitale, lo sviluppo di videogiochi, la mo-

dellazione tridimensionale e simulazioni di vario tipo.

Questa disciplina ha fatto un ulteriore passo avanti grazie ai progressi nel campo dell’intelli-

genza artificiale. Strumenti come DALL·E 3 e VEO-3 utilizzano tecniche avanzate di deep

learning per generare contenuti visivi, come immagini statiche o video, a partire da descrizioni

testuali, chiamate prompt, aprendo nuove opportunità creative e produttive agli utenti.

10

Figura 1.7: DALL·E 3 e VEO 3, software di generazione multimediale basati su intelligenza
artificiale, attualmente tra i più utilizzati nel campo della creazione visiva automatizzata.

La CGI si basa sull’utilizzo della computer grafica per creare contenuti sia bidimensionali che

tridimensionali: nel cinema essa può essere utilizzata autonomamente per la realizzazione di

intere scene o sequenze animate, oppure integrata sapientemente con riprese live action attra-

verso tecniche come la motion capture, che permette di trasferire i movimenti di attori reali a

personaggi digitali, garantendo cosı̀ un realismo senza precedenti.

Per ottenere risultati di alta qualità, tuttavia, è necessario disporre di un complesso ecosistema

software altamente specializzato, supportato da potenti infrastrutture di calcolo, in particolare

per la fase di rendering, che consiste nel processo di elaborazione e trasformazione dei modelli

digitali, delle animazioni e delle texture in sequenze di fotogrammi finali. La CGI è dunque

utilizzata non solo per creare personaggi e ambienti digitali complessi, ma anche per la rea-

lizzazione di elementi grafici bidimensionali, che contribuiscono a caratterizzare l’estetica del

prodotto audiovisivo.

L’impiego della computer grafica nel cinema risale ai primi anni ’60, ma è stato negli anni ’80

e ’90 che questa tecnologia ha conosciuto una vera e propria esplosione, grazie a film iconici

come Tron (1982), che ha introdotto l’uso pionieristico della CGI, Jurassic Park (1993), celebre

per la sua rivoluzionaria integrazione tra effetti digitali e èartici, e Terminator 2: Il giorno del

giudizio (1991), che ha portato il morphing e altri effetti digitali a nuovi livelli di complessità e

realismo.

Figura 1.8: Tron (1982).

11

Da allora, la CGI è diventata sempre più sofisticata e pervasiva, come si può osservare nelle

produzioni contemporanee di grande successo quali Avatar, Dune, Jurassic World e il Pianeta

delle Scimmie, dove la perfetta integrazione tra elementi digitali e riprese live action, accom-

pagnata da un’attenta gestione dell’illuminazione e delle ombre, contribuisce a creare mondi

immersivi e visivamente spettacolari, capaci di coinvolgere lo spettatore in maniera profonda.

Figura 1.9: Avatar 2 : la via dell’acqua (2022).

Per quanto riguarda il cinema d’animazione, Toy Story rappresenta una pietra miliare essendo il

primo lungometraggio completamente realizzato in CGI, aprendo la strada a una nuova era che

ha visto la produzione di capolavori come Inside Out e i due film dello Spider-Verse, opere che

hanno rivoluzionato il linguaggio visivo e narrativo del settore.

Figura 1.10: Toy Story (1995) e Spiderman: Across the Spider-Verse (2023).

L’adozione diffusa della CGI ha avuto un impatto significativo sull’industria cinematografica,

offrendo ai registi e ai creativi uno strumento straordinario per dar vita a visioni che, solo pochi

decenni fa, sarebbero state impensabili. Questo ha permesso di superare i limiti della realtà,

spingendo sempre più lontano i confini della fantasia. Tuttavia, un uso eccessivo o sbilanciato

della CGI potrebbe ridurre il valore delle tecniche tradizionali, come il trucco o gli effetti pratici

sul set, che spesso contribuiscono a dare autenticità e tattilità alle scene. Nonostante ciò, nel

12

complesso, la computer grafica ha ampliato enormemente le possibilità creative nel cinema

contemporaneo.[5]

Figura 1.11: Confronto dei VFX sui Velociraptor in Jurassic Park (1993) e in Jurassic World
(2015).

1.3 Effetti visivi (VFX)

Gli effetti visivi (VFX) rappresentano oggi una componente fondamentale nella produzione

cinematografica e televisiva, poiché permettono di aggiungere, modificare o migliorare ele-

menti visivi che non sono presenti o realizzabili sul set durante le riprese dal vivo. Tali effetti

possono spaziare dalla creazione di ambienti digitali altamente dettagliati, a personaggi fanta-
stici, fino ad includere esplosioni, catastrofi naturali e simulazioni di fenomeni atmosferici,
ovvero qualsiasi elemento visivo che contribuisca a costruire in modo credibile e coinvolgente

l’atmosfera e la narrazione della storia.

A differenza degli effetti pratici tradizionali, realizzati fisicamente sul set durante le riprese, i

VFX si basano sull’utilizzo di tecnologie digitali avanzate che consentono di integrare imma-

gini generate al computer con le riprese live action, ottenendo cosı̀ una fusione quasi impercet-
tibile tra il reale e il virtuale, e ampliando notevolmente le possibilità creative dei filmmaker.

Questo processo complesso richiede una stretta collaborazione tra artisti digitali, registi e
tecnici specializzati in compositing, animazione e simulazione, ognuno dei quali apporta

competenze specifiche al risultato finale.

13

Figura 1.12: Dietro le quinte della realizzazione di una scena in Avengers: Infinity War.

Nel corso degli anni, i progressi tecnologici hanno portato ad un aumento significativo sia della

complessità che della qualità degli effetti visivi, che oggi sono in grado di riprodurre con una

precisione straordinaria dettagli un tempo impensabili, come il comportamento realistico di ele-

menti naturali come fuoco, acqua, folle o condizioni atmosferiche. Questo livello di realismo

contribuisce in modo decisivo a immergere lo spettatore nel mondo narrativo, rafforzando la

credibilità visiva del film

È importante sottolineare che l’utilizzo intensivo dei VFX comporta anche un incremento con-
siderevole sia nei costi di produzione sia nei tempi di realizzazione delle sequenze più com-

plesse, richiedendo infrastrutture tecnologiche all’avanguardia e team altamente specializzati.

Tuttavia, nelle produzioni di punta a livello globale, questi strumenti sono ormai irrinunciabi-
li: alcuni casi emblematici includono blockbuster come Jurassic World, Star Wars: Il risveglio

della forza e la saga degli Avengers, film caratterizzati da budget che spesso superano i 350

milioni di dollari, arrivando in alcuni casi a sfiorare i 600 milioni, in larga parte a causa dell’uso

massiccio di effetti visivi sofisticati.

Figura 1.13: La troupe durante la realizzazione di una scena con green screen, sul set di un film.

14

Oltre all’aspetto puramente estetico, i VFX consentono di realizzare scene che sarebbero al-

trimenti pericolose, costose o addirittura impossibili da girare nella realtà, come distruzioni
catastrofiche, battaglie epiche o ambientazioni futuristiche, ampliando in modo sostanziale

le possibilità narrative e creative degli autori.

L’impatto degli effetti visivi si estende anche alla post-produzione, fase in cui la possibilità di

intervenire sulle immagini con precisione millimetrica consente di correggere, migliorare o

modificare ogni dettaglio, contribuendo cosı̀ a perfezionare il prodotto finale prima della distri-

buzione nelle sale o sulle piattaforme digitali.

Gli effetti visivi sono diventati un elemento imprescindibile per il successo commerciale e

artistico di un film, poiché consentono di superare le limitazioni tecniche e pratiche proprie

delle produzioni tradizionali, offrendo al pubblico esperienze visive sempre più spettacolari,

immersive e coinvolgenti.[6]

1.4 Processo di creazione dei modelli 3D

I modelli 3D di personaggi e oggetti, che vediamo nelle produzioni cinematografiche o videolu-

diche, nascono da un processo creativo e complesso che combina capacità artistiche e tecniche

avanzate di computer grafica.

Questo percorso coinvolge diverse fasi, tra cui la modellazione geometrica, l’applicazione delle

texture, la preparazione per l’animazione e l’ottimizzazione delle risorse computazionali, tutte

integrate accuratamente per garantire un risultato di qualità.

• Concept design: la fase iniziale riguarda lo sviluppo dell’idea di base del personaggio o

dell’oggetto digitale. Questo processo include la raccolta di riferimenti visivi, la creazio-

ne di mood board e schizzi, sia a mano libera che digitali, che rappresentano il design da

diverse angolazioni e con vari livelli di dettaglio. Questa fase è fondamentale per definire

le caratteristiche estetiche e funzionali del modello, costituendo la base per tutte le fasi

successive.

Figura 1.14: Concept Art di diverse parti del corpo di un personaggio.

15

• Modellazione 3D: si passa alla costruzione digitale del modello utilizzando software spe-

cializzati come Blender, Autodesk Maya o ZBrush. Partendo da primitive geometriche

semplici (ad esempio cubi, sfere o cilindri), l’artista modella la superficie del modello

tramite tecniche di sculpting digitale o polygonal modeling, aggiungendo dettagli e defi-

nendo la forma finale. Nei modelli high poly si possono raggiungere milioni di poligoni,

necessari per catturare anche i minimi dettagli. Dal punto di vista informatico, questa

fase comporta la gestione e manipolazione efficiente di mesh complesse, ottimizzando le

strutture dati per consentire modifiche interattive in tempo reale.

Figura 1.15: Modello 3D del personaggio visto da diverse angolazioni.

• Retopologia: poiché i modelli high poly sono troppo pesanti per essere animati o utiliz-

zati in tempo reale, si procede con la retopologia, ovvero la creazione di una mesh low

poly che riproduce fedelmente la forma del modello originale, ma con un numero ridot-

to di poligoni. Questa fase è fondamentale per migliorare le prestazioni computazionali

e garantire una deformazione corretta durante l’animazione. Algoritmi di remeshing e

decimation vengono impiegati per bilanciare la qualità visiva e la complessità geometrica.

Figura 1.16: Stadi della reptologia del modello 3D.

• UV unwrapping: per applicare texture bidimensionali sulla superficie tridimensionale,

il modello viene ”srotolato” in uno spazio 2D attraverso un processo chiamato UV un-

wrapping. Questa operazione implica la minimizzazione di distorsioni e sovrapposizioni

16

delle coordinate UV, e spesso utilizza algoritmi di parameterization della mesh basati

su metodi di ottimizzazione e minimizzazione dell’energia per preservare proporzioni e

continuità. Il risultato consente di mappare immagini di texture, mappe di normalità,

specularità e altri attributi visivi sul modello in modo realistico.

Figura 1.17: UV Unwrapping del personaggio 3D in 2D.

• Rigging: passaggio fondamentale per rendere il modello animabile: si crea uno scheletro

digitale composto da ossa e articolazioni, definendo una struttura gerarchica che controlla

il movimento. Il rigging comprende la definizione di joint, vincoli e sistemi di controllo,

spesso supportati da tecniche di inverse kinematics (IK) per semplificare la manipolazione

delle pose. Dal punto di vista algoritmico, ciò comporta la gestione di trasformazioni

rigide e calcoli matriciali complessi per propagare correttamente i movimenti alle diverse

parti del modello.

Figura 1.18: Creazione dello scheletro del personaggio per i movimenti.

17

• Skinning: questa fase consiste nell’assegnare pesi di influenza alle diverse parti della

mesh in relazione alle ossa del rig, definendo come la superficie si deforma in seguito al

movimento dello scheletro. Le tecniche più comuni sono il linear blend skinning e il dual

quaternion skinning, che affrontano il problema della deformazione fluida della mesh,

riducendo al minimo distorsioni visive e artefatti computazionali. La gestione efficiente

di questi pesi e la loro interpolazione rappresentano sfide cruciali per la qualità finale

dell’animazione.

Figura 1.19: Assegnazione di materiali e colori al personaggio per renderlo più realistico.

A questo punto, il modello tridimensionale è pronto per essere animato, e le due principali

tecniche utilizzate sono:

1. Animazione keyframe: è la tecnica tradizionale in cui l’animatore definisce manualmen-

te le posizioni chiave (keyframes) del modello in punti specifici nel tempo. Successiva-

mente, un algoritmo di interpolazione calcola automaticamente i fotogrammi intermedi

per creare un movimento fluido. Questo metodo richiede una profonda conoscenza artisti-

ca e una buona padronanza del software di animazione, ma permette un controllo preciso

sull’espressività e sul timing.

2. Motion capture: tecnica che sfrutta sensori e telecamere per acquisire i movimenti reali

di attori o oggetti, convertendoli in dati digitali che vengono poi applicati ai modelli 3D.

Dal punto di vista tecnico, implica la gestione di grandi quantità di dati di movimento, la

calibrazione dei sistemi di acquisizione e algoritmi di post-processing per filtrare rumori

e correggere errori. La motion capture permette di ottenere animazioni estremamente

realistiche, soprattutto per personaggi umanoidi, riducendo il tempo necessario rispetto

all’animazione manuale.

La creazione di modelli 3D animabili è un processo complesso e altamente specializzato che

combina competenze artistiche, solide conoscenze geometriche e tecniche informatiche avan-

18

zate. Questo lavoro articolato ha come obiettivo non solo il raggiungimento del realismo vi-

sivo, ma anche l’ottimizzazione delle prestazioni, aspetti oggi indispensabili nelle produzioni

cinematografiche, televisive e multimediali di alto livello. La sinergia tra arte e tecnologia ha

profondamente rivoluzionato il settore audiovisivo, rendendo possibile la realizzazione di effetti

visivi innovativi e personaggi digitali credibili, che un tempo sarebbero stati irrealizzabili.

Il risultato è una narrazione visiva sempre più coinvolgente, immersiva e spettacolare, capace

di trasportare lo spettatore in mondi completamente nuovi e affascinanti.[7]

1.5 Tecniche di computer grafica con esempi cinematografici

In questa sezione vengono presentate alcune delle tecniche più importanti utilizzate nella com-

puter grafica, corredate da esempi di film che hanno segnato la storia del cinema moderno.

1.5.1 Motion Capture: Andy Serkis, il caso di Cesare

La motion capture (mocap) è una tecnica che sfrutta la registrazione dei movimenti reali di

attori o oggetti per animare personaggi digitali in modo estremamente realistico. Per acquisire i

dati del movimento corporeo e facciale, si utilizzano telecamere e sensori speciali applicati sul

corpo e sul volto dell’attore, tra cui i cosiddetti facial markers. Questi ultimi sono piccoli punti

riflettenti o sensori posizionati in punti strategici del viso, che permettono di tracciare con preci-

sione i minimi spostamenti e le espressioni facciali dell’attore durante la recitazione, catturando

dettagli come movimenti delle sopracciglia, sorrisi, corrugamenti della fronte e persino micro-

espressioni. Questi dati vengono poi tradotti in modelli digitali che riproducono fedelmente le

emozioni e i movimenti del volto, rendendo possibile una rappresentazione estremamente rea-

listica e sfumata dei personaggi animati.

Figura 1.20: Andy Serkis, professionista nel settore del Motion Capture.

19

Tra i pionieri e le figure più importanti nel settore della motion capture vi è senza dubbio An-
dy Serkis, attore e regista britannico che ha rivoluzionato il modo di interpretare personaggi

digitali. Serkis ha portato la motion capture a un livello artistico superiore, trasformando la

recitazione digitale in una vera e propria forma di espressione teatrale, e dimostrando come

il talento umano possa fondersi con la tecnologia per creare personaggi credibili sul grande

schermo. La sua capacità di infondere vita e personalità ai personaggi digitali ha contribuito a

consolidare la motion capture come tecnica essenziale nel cinema contemporaneo.

Un esempio emblematico del suo lavoro è la creazione di Cesare, protagonista della saga de Il

Pianeta delle Scimmie. Per realizzare questo personaggio, Andy Serkis ha indossato una tuta

dotata di sensori per la cattura dei movimenti corporei e una telecamera speciale montata sul

volto, per registrare in tempo reale ogni espressione facciale con altissima precisione. I dati

raccolti sono stati elaborati dallo studio Weta Digital, che ha sovrapposto un modello digitale

dell’anatomia di una scimmia al corpo e al volto dell’attore, integrando i movimenti e le espres-

sioni registrati per creare un personaggio digitale animato ma dotato di una complessità emotiva

e di una naturalezza mai viste prima.

Figura 1.21: Fasi del motion capture per il personaggio di Cesare: da Andy Serkis in tuta, al
modello digitale, fino al risultato finale fotorealistico.

La realizzazione di Cesare rappresenta un punto di svolta nella motion capture, poiché il per-

sonaggio mostra movimenti articolati e sfumature emotive complesse, come rabbia, tristezza,

esitazione e autorità, capaci di suscitare empatia nel pubblico. Questa fusione tra recitazione

reale e animazione digitale ha ridefinito i confini del possibile nel cinema, aprendo nuove strade

nella rappresentazione di creature e personaggi virtuali.

Tuttavia, questa tecnologia comporta sfide tecniche significative, tra cui la gestione e l’elabora-

zione di grandi quantità di dati complessi, la sincronizzazione precisa tra movimenti del corpo

20

e del volto, e l’enorme potenza di calcolo necessaria per garantire risultati realistici entro tempi

produttivi compatibili con le esigenze dell’industria cinematografica.

1.5.2 Morphing: il T-1000 in Terminator 2

Il morphing è una tecnica di computer grafica che consente la trasformazione graduale e con-

tinua di un oggetto o personaggio in un altro, mediante l’interpolazione progressiva di forme

e immagini. Questa metodologia risulta particolarmente efficace per rappresentare mutazioni,

metamorfosi o transizioni surreali tra stati visivi distinti, generando effetti di forte impatto visi-

vo.

Un esempio emblematico e rivoluzionario dell’impiego del morphing si trova in Terminator

2: Judgment Day (1991), film diretto da James Cameron. Il personaggio del T-1000, un an-

droide composto da metallo liquido, è in grado di assumere differenti configurazioni fisiche,

trasformandosi in oggetti o individui con movimenti estremamente fluidi e naturali.

Grazie al lavoro pionieristico della Industrial Light & Magic (ILM), vennero realizzate se-

quenze visive straordinarie, come il passaggio del T-1000 attraverso le sbarre di una cella o la

rigenerazione di parti del corpo danneggiate, che rappresentarono un livello di sofisticazione

tecnica senza precedenti per l’epoca.

L’introduzione del morphing digitale in Terminator 2 costituı̀ un punto di svolta fondamentale

nel cinema degli effetti speciali, segnando il passaggio dagli effetti pratici e meccanici alle

soluzioni generate interamente al computer. Tale innovazione aprı̀ la strada a un utilizzo sempre

più diffuso e avanzato della CGI nelle produzioni cinematografiche successive.[10]

Figura 1.22: Realizzazione pratica dell’effetto di Morphing del T-1000, a cui vengono aggiunti
gli effetti speciali in Post-Produzione.

21

1.5.3 Bullet Time: Matrix, Neo schiva i proiettili

Una delle scene più iconiche e rivoluzionarie del cinema degli inizi degli anni 2000 è quella

del film Matrix, in cui il protagonista Neo, interpretato da Keanu Reeves, schiva una raffica di

proiettili piegandosi all’indietro in un movimento rallentato ed estremamente fluido, creando un

effetto visivo mai visto prima sul grande schermo.

Questa spettacolare sequenza è stata realizzata utilizzando una tecnica denominata Bullet Ti-
me, ideata da John Gaeta e dal team di Manex Visual Effects. La tecnica si basa sull’impiego di

un sistema complesso di decine di telecamere ad alta risoluzione, disposte in un arco o spirale

attorno all’attore, che catturano simultaneamente o in rapida successione molteplici angolazioni

della scena.

Durante la ripresa, mentre Reeves esegue il movimento rallentato, sorretto da un insieme di ca-

vi, ciascuna telecamera scatta una fotografia in un preciso istante, creando cosı̀ una sequenza di

immagini che, una volta assemblate, permettono di ottenere un effetto di tempo quasi congelato

ma con la possibilità di spostare virtualmente la ”camera” attorno al soggetto in movimento.

Questo sistema consente di esplorare la scena da prospettive dinamiche e non convenzionali,

combinando un rallentamento estremo con movimenti fluidi di inquadratura che intensificano

la drammaticità dell’azione.

Successivamente, gli effetti visivi digitali sono stati utilizzati per inserire proiettili, esplosioni e

lo sfondo, integrandoli perfettamente con la ripresa live action per amplificare l’impatto visivo

della scena. L’uso innovativo del Bullet Time ha trasformato Matrix in un vero e proprio cult

degli effetti speciali, influenzando profondamente l’estetica del cinema d’azione e aprendo la

strada a molteplici sperimentazioni nel campo della computer grafica e delle tecniche di ripresa

avanzate.

Figura 1.23: Dietro le quinte della realizzazione dell’effetto del Bullet Time dove Neo schiva i
proiettili, una delle più famose scene di azione del cinema.

22

1.5.4 Interstellar: Gargantua, il buco nero più realistico del cinema

Christopher Nolan è un regista universalmente riconosciuto per il suo approccio cinematografi-

co che privilegia l’uso di effetti pratici rispetto alla CGI, basando questa scelta sulla convinzione

che ciò che è reale risulti sempre più convincente e coinvolgente per il pubblico rispetto agli ele-

menti generati digitalmente. La sua filosofia si traduce in un’attenta valutazione di ogni singola

scena, in cui la CGI viene impiegata soltanto quando gli effetti pratici si rivelano tecnicamente

impossibili o estremamente rischiosi da realizzare sul set. Un esempio emblematico di questo

equilibrio è rappresentato dalle ustioni di Harvey Dent nel film Il Cavaliere Oscuro, dove la

computer grafica è stata utilizzata esclusivamente per riprodurre ferite che non potevano essere

simulate in maniera sicura e realistica con metodi tradizionali.

Questa visione si riflette nel successo dei suoi film Inception e Interstellar, entrambi vincitori

dell’Oscar per i migliori effetti visivi, dimostrando come l’equilibrio sapiente tra effetti digita-

li e pratici possa portare a risultati di altissimo livello, capaci di sorprendere e coinvolgere lo

spettatore senza sacrificare l’autenticità visiva.

Uno degli esempi più straordinari dell’approccio di Nolan alla computer grafica è rappresentato

dalla realizzazione del buco nero Gargantua nel film Interstellar, un elemento visivo che ha

richiesto uno sforzo combinato tra scienza, arte e tecnologia.

Il team di effetti visivi DNEG, guidato da Oliver James, ha collaborato strettamente con il fi-

sico teorico Kip Thorne per sviluppare un software di rendering in grado di rappresentare con

estrema accuratezza un buco nero rotante, tenendo conto delle complesse leggi della relatività

generale.

Figura 1.24: Il buco nero ”Gargantua” in Interstellar (2014).

23

Questo software è stato progettato per simulare in modo realistico il percorso dei raggi lumino-

si all’interno di uno spazio-tempo fortemente curvato dalla gravità, modellare l’effetto di lente

gravitazionale e riprodurre fenomeni relativistici come l’abberrazione della luce. Inoltre, il si-

stema permetteva di regolare vari parametri per rappresentare non solo buchi neri ma anche

wormhole, garantendo cosı̀ una flessibilità visiva senza precedenti.

La complessità del rendering è tale che ogni singolo fotogramma richiedeva fino a 100 ore di

elaborazione, generando un’enorme mole di dati che ha superato i 700 terabyte, e facendo uso

di cataloghi stellari ufficiali dell’ESA come Tper ricostruire fedelmente lo sfondo stellato.

Il risultato scientifico e artistico di questo lavoro ha portato alla pubblicazione di importanti

studi accademici e libri divulgativi, come The Science of Interstellar scritto da Kip Thorne, e

numerosi articoli apparsi su riviste come Classical and Quantum Gravity. Tra le sfide tecniche

più significative affrontate vi è stata la simulazione di una cinepresa che si muove a velocità rela-

tivistiche, con la necessità di integrare effetti quali l’abberrazione relativistica, l’effetto Doppler,

il redshift gravitazionale e la distorsione dello spazio-tempo, tutte componenti fondamentali per

garantire una resa fedele della fisica.[9]

1.6 Evoluzione e prospettive future dell’industria VFX

L’industria degli effetti visivi è attualmente in una fase di crescita e trasformazione senza pre-

cedenti. Un esempio lampante è rappresentato dalla crescita esponenziale di DNEG, una delle

più importanti società di VFX al mondo, che nel 2004 contava circa 80 dipendenti ed è arrivata

oggi a oltre 5.000, testimonianza della crescente domanda e complessità dei progetti.

Con l’aumento delle dimensioni e della complessità delle produzioni, i software e le infrastrut-

ture impiegate devono necessariamente essere scalabili, modulari e in grado di adattarsi rapida-

mente a esigenze in continuo mutamento, supportando flussi di lavoro collaborativi e integrati.

Tra le innovazioni che stanno plasmando il futuro degli effetti visivi va segnalato innanzitutto

il rendering in tempo reale, che permetterà agli artisti di effettuare iterazioni rapide e di vi-

sualizzare immediatamente le modifiche senza la necessità di lunghi rendering batch notturni,

aumentando cosı̀ l’efficienza e la creatività.

Inoltre, le applicazioni di machine learning e intelligenza artificiale stanno entrando sempre

più nel processo creativo, automatizzando la generazione di espressioni facciali più realistiche,

movimenti naturali dei personaggi e persino la creazione automatica di effetti complessi, ridu-

cendo i tempi e i costi di produzione.

24

Infine, la crescente attenzione verso l’open data e l’open access favorisce la condivisione di

risorse, algoritmi e tecnologie, con realtà come DNEG che si impegnano attivamente per pro-

muovere la collaborazione tra industria, mondo accademico e comunità scientifica, aprendo

nuove opportunità di innovazione e crescita.

Figura 1.25: Sessione collaborativa di lavoro di gruppo all’interno di una sede di DNEG.

25

1.7 Integrazione dell’intelligenza artificiale nel cinema

L’integrazione dell’intelligenza artificiale si sta affermando in modo sempre più significativo

nel mondo cinematografico, colmando il divario tra ambizioni creative elevate e limitazioni di

budget. In particolare, in film di grande successo come Avengers: Endgame, sono stati impiega-

ti algoritmi avanzati per cogliere ed elaborare i movimenti facciali degli attori, mettendo in luce

un dominio discreto ma influente dell’AI nella fase di pre-produzione. Studi come quello di

Industrial Light & Magic e Digital Domain hanno reso possibile, attraverso sistemi come Ma-
squerade, una resa fedele delle espressioni reali di Josh Brolin trasferite sul volto virtuale del

personaggio di Thanos, accelerando significativamente il processo di animazione visiva. Inoltre,

per il personaggio di Smart Hulk sempre in Avengers: Endgame, ILM e Disney Research hanno

implementato il sistema markerless Anyma, capace di catturare dettagli anatomici fini, come

lo scorrimento della pelle, preservando la libertà dell’attore Mark Ruffalo durante le riprese.[36]

Figura 1.26: Prima e Dopo della realizzazione del personaggio di Thanos.

Case di produzione come 20th Century Fox e Warner Bros stanno già sfruttando l’intelligen-

za artificiale per analizzare le sceneggiature dei loro prodotti: strumenti come ScriptBook e
Merlin valutano elementi quali trama, sviluppo dei personaggi, tono e potenzialità commercia-

li, offrendo previsioni sulla riuscita al botteghino, tempi di revisione significativamente ridotti

e un’accuratezza nelle selezioni del 25–35% superiore rispetto ai metodi tradizionali. Questi

sistemi non solo ottimizzano la scelta dei progetti da produrre ma contribuiscono anche alla

personalizzazione dei contenuti audiovisivi, generando sottotitoli in tempo reale in più lingue e

ottimizzando il doppiaggio sincronizzato alle labbra degli attori.

Anche il casting è al centro della rivoluzione AI: piattaforme come Cinelytic sono impiegate

per valutare il valore di mercato degli attori, prevedere il successo di un film e selezionare per-

26

former esteticamente affini al ruolo desiderato, innescando una selezione più rapida e accurata.

L’AI risulta inoltre decisiva nella creazione di massa di comparse digitali: film epici come Il

Gladiatore o Il Signore degli Anelli hanno sfruttato la generazione tramite AI di folle virtua-

li, riducendo drasticamente i costi legati all’impiego di comparse reali e offrendo al contempo

straordinaria flessibilità creativa.

Un ambito particolarmente innovativo è quello del cosiddetto “de-aging”, ovvero la tecnica che

consente di ringiovanire digitalmente un attore per rappresentarlo in diverse fasi della sua vita

all’interno dello stesso film. Un esempio emblematico è il caso di Gemini Man (2019), in cui

la tecnologia di intelligenza artificiale e grafica CGI è stata utilizzata per creare una versione

completamente digitale e ringiovanita dell’attore Will Smith. Nel film, Smith interpreta sia un

sicario di mezza età sia una sua controparte ventenne, generata interamente al computer.

Il processo non si è limitato all’applicazione di filtri cosmetici o correzioni superficiali: la ver-

sione giovane del personaggio è stata realizzata partendo da zero, sfruttando tecniche di motion

capture, machine learning e modellazione 3D avanzata, combinando dati reali delle sue perfor-

mance con un volto virtuale costruito ad hoc. La produzione ha utilizzato un mix di AI per

l’analisi delle espressioni facciali, l’apprendimento automatico su reference video storici del-

l’attore, e rendering fotorealistici generati con tecniche di path tracing ad alta risoluzione.

L’adozione dell’AI per il de-aging si sta ormai diffondendo nell’industria cinematografica,

aprendo la strada a nuove forme di storytelling in cui il tempo può essere manipolato digi-

talmente con estrema precisione, e in cui la performance di un attore può essere proiettata oltre

i limiti anagrafici e fisici del corpo umano.

Figura 1.27: La versione ringiovanita (SX) e originale (DX) di Will Smith.

27

Non meno rilevante è il contributo dell’AI nei doppiaggi: Start-up come Flawless permettono di

sincronizzare movimento delle labbra e mimica facciale con dialoghi localizzati (“vubbing”),

oltre a modificare espressioni e parole in post-produzione (come nel film Fall), evitando rifil-

mati e garantendo una perfetta coerenza audio-visiva allo spettatore.

Dal punto di vista sonoro, l’AI affianca anche i compositori suggerendo melodie, orchestrazioni

e arrangiamenti ispirati a stili e pattern su larga scala, ampliando la palette creativa a disposi-

zione per quanto riguarda la realizzazione di colonne sonore.

Sul piano promozionale, servizi come Netflix usano l’intelligenza artificiale per personalizzare

le anteprime (thumbnails) e strategie di marketing su misura, analizzando comportamenti di

visione e interazioni social, mentre studi come Warner Bros adottano l’AI per prevedere gli

incassi e definire strategie promozionali mirate, modellando campagne su target demografici

specifici.

Tuttavia, questa rapida espansione dell’AI nel cinema solleva importanti riflessioni etiche: la

possibilità di manipolare volti, voci o persino riportare in vita attori deceduti, come avviene

nei deepfake, solleva interrogativi centrali riguardo al consenso, all’autenticità e all’integrità

artistica. Le tecnologie di questo tipo, se non regolamentate, rischiano di erodere la fiducia del

pubblico e compromettere l’identità stessa della produzione cinematografica.

Un esempio concreto è nel film Rogue One: A Star Wars Story (2016), in cui è stato ricreato

digitalmente l’attore Peter Cushing per interpretare nuovamente il personaggio Grand Moff Tar-

kin, pur essendo morto nel 1994. Il volto di Cushing è stato applicato sul corpo dell’attore Guy

Henry tramite CGI, motion capture e materiale d’archivio, con il permesso dell’erede legale.

Figura 1.28: Il processo di creazione del personaggio del Grand Moff Tarkin tramite Deepfake.

28

A livello normativo, il quadro comincia a prendere forma:

• In Italia, un disegno di legge sull’IA introduce l’art. 612-quater nel Codice penale, che

punisce, con pene da uno a cinque anni, la diffusione illecita di contenuti audiovisivi

generati o manipolati con IA, ingannevoli e dannosi per la reputazione altrui, prevedendo

anche l’obbligo di segnalare visivamente i contenuti deepfake [38].

• L’Unione Europea, con l’ AI Act, definisce i deepfake e li classifica come a rischio “limi-

tato”, imponendo trasparenza: obbligo di etichettatura, marcatura tecnica e indicazione

dell’origine artificiale [37].

• La Danimarca ha proposto una normativa innovativa che attribuisce ai cittadini diritti

legali sulla propria immagine, voce e somiglianza, consentendo di opporsi e ottenere

risarcimento per deepfake non autorizzati, mentre le piattaforme non conformi rischiano

pesanti sanzioni [39].

• Negli Stati Uniti, il TAKE IT DOWN Act obbliga le piattaforme a rimuovere contenuti

intimi e deepfake non consensuali e in Corea del Sud la produzione o la distribuzione di

deepfake pornografici non consensuali è un reato punibile severamente [40].

• Inoltre, il GDPR considera l’immagine e la voce come dati personali, soggetti a protezio-

ne: manipolarli senza consenso implica responsabilità legali su trasparenza, diritto alla

privacy e trattamento dei dati [41].

29

Capitolo 2

Compute Shader in OpenGL: Fondamenti
e Applicazioni

In questo capitolo vengono introdotti i Compute Shader in OpenGL, analizzandone i concetti

fondamentali e le modalità di utilizzo. L’obiettivo è comprendere come questa tecnologia con-

senta di sfruttare in maniera diretta e flessibile la potenza di calcolo parallelo delle moderne

GPU, andando oltre la tradizionale pipeline grafica.

Si partirà da una panoramica generale su cosa sono i compute shader e perché rappresentano un

punto di svolta nel campo della grafica e della simulazione. Successivamente verranno descritti

i principi di architettura e invocazione, i meccanismi di accesso ai dati tramite Shader Storage
Buffer Object (SSBO), e le principali tecniche di sincronizzazione tra thread.

Man mano che verranno trattate, queste sezioni conterranno esempi di codice per illustrare

chiaramente come integrare questi strumenti nello sviluppo di applicazioni grafiche e fisiche

moderne.

2.1 Cosa Sono i Compute Shader

Con l’evoluzione delle GPU moderne, la potenza di calcolo disponibile è cresciuta esponen-

zialmente, aprendo nuove possibilità oltre al tradizionale rendering grafico. In particolare, è

diventato sempre più importante sfruttare questa potenza per eseguire calcoli generici e paral-

leli ad alte prestazioni, non limitati alla sola elaborazione di geometrie e pixel.

I Compute Shader, introdotti a partire da OpenGL 4.3, rappresentano una svolta fondamenta-

le in questo ambito. Permettono di eseguire operazioni di calcolo generiche direttamente sulla

GPU, in modo indipendente dalla normale pipeline grafica composta da vertex, tessellation,

30

geometry e fragment shader.[11]

Essi sono scritti in GLSL (OpenGL Shading Language), lo stesso linguaggio utilizzato dagli

altri shader della pipeline grafica. La loro peculiarità è di non essere legati al processo di ra-

sterizzazione: invece di occuparsi della trasformazione di vertici o della colorazione dei pixel, i

compute shader operano direttamente su buffer, immagini e strutture dati, adottando un paradig-

ma di calcolo parallelo altamente scalabile. In questo modo la GPU può essere sfruttata come

un vero e proprio motore di calcolo massivamente parallelo, ideale per applicazioni comples-

se come sistemi particellari, simulazioni fluidodinamiche e altre elaborazioni ad alte prestazioni.

Negli ultimi anni, i compute shader hanno assunto un ruolo centrale sia nella ricerca accade-

mica sia nello sviluppo industriale, grazie alla loro capacità di accelerare algoritmi complessi

in ambiti quali grafica avanzata, intelligenza artificiale e simulazioni scientifiche. La crescente

diffusione di questa tecnologia riflette l’importanza strategica delle GPU non solo come dispo-

sitivi grafici, ma come piattaforme di calcolo altamente performanti.[12]

In questo capitolo si approfondiranno i concetti base dei compute shader, la loro architettura di

esecuzione e le modalità di interazione con la memoria GPU, ponendo le basi per la progetta-

zione di un sistema di simulazione particellare efficiente e moderno basato su queste tecnologie.

2.2 Architettura e concetto di invocazione

La GPU si basa su un’architettura di tipo SIMD (Single Instruction, Multiple Data), in cui

un singolo flusso di istruzioni viene eseguito in parallelo su un grande insieme di dati. Que-

sto modello è particolarmente adatto per i compute shader, poiché consente di suddividere un

problema complesso in molteplici sotto-problemi elementari che possono essere risolti contem-

poraneamente da centinaia o migliaia di thread GPU.

L’esecuzione di un compute shader avviene tramite il seguente comando:

glDispatchCompute(x, y, z);

Il termine dispatch indica il lancio di un insieme di invocazioni parallele del compute shader.

I tre parametri (x, y, z) definiscono le dimensioni della griglia tridimensionale di calcolo, com-

posta da Work Groups, blocchi di thread che cooperano tra loro e che possono condividere

memoria locale e sincronizzarsi.

31

All’interno dello shader, la dimensione di ciascun work group si specifica con la direttiva:

layout(local_size_x = 128, local_size_y = 1, local_size_z = 1) in;

In questo esempio, ogni work group contiene 128 thread organizzati lungo l’asse x, mentre non

sono previsti thread negli assi y e z. Questo significa che il calcolo verrà suddiviso in gruppi

unidimensionali di 128 invocazioni ciascuno.

Ogni thread GPU (o invocazione locale) può individuare la propria posizione nello spazio

computazionale grazie a variabili integrate fornite dal linguaggio GLSL:

• gl GlobalInvocationID: identificatore globale univoco del thread rispetto all’inte-

ra griglia lanciata con glDispatchCompute;

• gl WorkGroupID: indice del work group corrente;

• gl LocalInvocationID: posizione del thread all’interno del proprio work group;

• gl LocalInvocationIndex: indice unidimensionale locale al gruppo, utile per

scorrere array condivisi.

Questa organizzazione gerarchica dispatch → work groups → invocazioni locali permette di

scalare il calcolo in modo efficiente, sfruttando al massimo la natura SIMD delle GPU.

Figura 2.1: Suddivisione dello spazio computazionale in work groups e work items

32

2.3 Accesso ai dati: Shader Storage Buffer Object (SSBO)

Per consentire ai compute shader di leggere e scrivere grandi quantità di dati, OpenGL mette a

disposizione gli Shader Storage Buffer Object (SSBO). A differenza delle variabili uniform

tradizionali, limitate in dimensione e solo in lettura, pensate principalmente per passare costanti

agli shader, gli SSBO permettono di accedere sia in lettura che in scrittura, a strutture di dati

complesse e array di dimensioni molto elevate. Questa caratteristica li rende fondamentali per

applicazioni di calcolo parallelo, dove migliaia di thread GPU devono manipolare informazioni

condivise in modo efficiente.[17]

Gli SSBO sono concettualmente simili agli Uniform Buffer Object (UBO), poiché anch’es-

si vengono dichiarati tramite interface block in GLSL e associati a un punto di binding. Le

differenze principali sono però sostanziali: mentre gli UBO sono limitati a circa 16KB, lo stan-

dard OpenGL garantisce per gli SSBO dimensioni fino a 128MB, e in molte implementazioni

il limite effettivo coincide con la quantità di memoria disponibile sulla GPU. Inoltre, gli SSBO

possono essere letti e scritti, anche con operazioni atomiche, rendendoli molto più flessibili de-

gli UBO che sono invece in sola lettura. Un ulteriore vantaggio è la possibilità di dichiarare

array a lunghezza variabile, sfruttando lo spazio di memoria effettivamente allocato e interro-

gando la dimensione a runtime mediante la funzione .length().

Nel linguaggio GLSL, un SSBO si dichiara specificando il layout e il punto di binding.

Ad esempio:

layout(std430, binding = 4) buffer Pos {

vec4 Positions[];

};

In questo caso viene dichiarato un buffer chiamato Pos, organizzato secondo il layout std430,

e associato all’unità di binding numero 4. Rispetto a std140, il layout std430 permette una

disposizione dei dati più compatta, riducendo lo spreco di memoria grazie a regole di allinea-

mento meno restrittive. Al suo interno è presente un array di vec4, che può essere utilizzato

dal compute shader per leggere e scrivere posizioni in modo diretto.

Dal lato C++, si crea il buffer corrispondente e lo si associa allo stesso punto di binding, gesten-

do cosı̀ la condivisione dei dati tra CPU e GPU in modo efficiente per le operazioni parallele di

calcolo. Il frammento di codice seguente mostra come configurarlo:

glGenBuffers(1, &posSSbo);

glBindBuffer(GL_SHADER_STORAGE_BUFFER, posSSbo);

glBufferData(GL_SHADER_STORAGE_BUFFER, size, NULL, GL_STATIC_DRAW);

glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 4, posSSbo);

33

La prima chiamata, glGenBuffers, alloca un identificatore per il buffer. Con glBindBuffer

si associa questo identificatore al target GL SHADER STORAGE BUFFER, indicando che il buf-

fer verrà utilizzato come SSBO. La funzione glBufferData riserva effettivamente la memo-

ria sulla GPU: in questo caso lo spazio è pari a size, mentre il puntatore ai dati è NULL, a

indicare che il buffer viene inizializzato vuoto. Infine, glBindBufferBase lega il buffer al-

la binding unit numero 4, che deve corrispondere esattamente al valore specificato nello shader

con la direttiva binding = 4.

Dal punto di vista prestazionale, è bene osservare che l’accesso agli SSBO può risultare più

lento rispetto agli UBO, in quanto avviene in modo simile alle buffer textures, cioè tramite ope-

razioni di memoria meno ottimizzate. Tuttavia, la loro maggiore capacità e flessibilità li rende

insostituibili in scenari complessi. L’uso in scrittura richiede inoltre particolare attenzione: trat-

tandosi di accessi di memoria incoerenti, è necessario inserire le opportune barriere di memoria,

ad esempio memoryBarrier() nei compute shader o glMemoryBarrier lato CPU, per

garantire la visibilità e la coerenza dei dati tra diverse invocazioni.

Un aspetto avanzato riguarda l’uso dei qualificatori di memoria. È possibile specificare attribu-

ti come coherent, volatile, restrict, readonly e writeonly per controllare il

comportamento delle operazioni di lettura e scrittura. Ad esempio, il qualificatore coherent

assicura che le modifiche siano visibili a tutte le invocazioni, ma obbliga anche all’uso di bar-

riere di memoria, mentre restrict informa il compilatore che quella variabile è l’unico rife-

rimento a quella porzione di memoria, consentendo ottimizzazioni più aggressive.

Grazie a queste proprietà, i compute shader possono manipolare array di milioni di elementi in

un singolo dispatch, realizzando simulazioni fisiche, algoritmi di collisione, sistemi particellari

o tecniche avanzate di riduzione e parallelizzazione, sfruttando la GPU come un vero e proprio

motore di calcolo general-purpose.

Figura 2.2: Collegamento degli SSBO in OpenGL

34

2.4 Confronto tra tecnologie di calcolo parallelo: CUDA, Open-
CL e SYCL

Confrontare i compute shader con altre tecnologie di calcolo parallelo su GPU permette di evi-

denziare le peculiarità e i contesti d’uso ottimali per ciascuna soluzione.

CUDA[14]

CUDA (Compute Unified Device Architecture) è una piattaforma proprietaria sviluppata da

NVIDIA, basata su un’estensione di C/C++, e concepita per l’uso esclusivo su GPU NVIDIA.

Offre ampie librerie, strumenti di profiling e debugging, e un ecosistema molto maturo per l’H-

PC e la ricerca scientifica.

OpenCL[15]

OpenCL (Open Computing Language) è uno standard aperto gestito dal Khronos Group, pensa-

to per supportare calcolo parallelo su piattaforme eterogenee (GPU, CPU, FPGA, ecc.). La sua

natura multipiattaforma lo rende estremamente versatile, benché richieda spesso ottimizzazioni

specifiche per raggiungere piena efficienza su hardware diversi.

SYCL[16]

SYCL è un modello di programmazione emergente, single-source basato su C++17, che con-

sente di scrivere codice host e device in un unico file, aumentando la produttività. Nasce come

estensione di OpenCL, ma si sta affermando come framework autonomo e più moderno per il

calcolo eterogeneo.

Compute Shader (OpenGL)
I compute shader di OpenGL offrono una forma di calcolo parallelo integrata nella pipeline

grafica stessa, senza necessità di contesto esterno. Pur non essendo multipiattaforma come

OpenCL, risultano particolarmente efficaci e convenienti per aggiungere capacità di calcolo

general-purpose all’interno di applicazioni OpenGL.

Differenze chiave

• Portabilità: OpenCL e SYCL sono multipiattaforma, CUDA è limitato alle GPU NVI-

DIA. I Compute Shader operano su GPU compatibili con OpenGL 4.3+.

• Integrazione con la grafica: I Compute shader sono immediatamente utilizzabili nella

pipeline grafica, senza overhead esterni.

35

• Ecosistema e tooling: CUDA dispone di strumenti avanzati, OpenCL e SYCL sono più

accessibili in contesti eterogenei. I Compute Shader offrono semplicità laddove la grafica

è centrale.

• Performance empiriche: Alcune analisi mostrano che, in scenari come il volume ren-

dering, i Compute Shader possono risultare più veloci rispetto a implementazioni in

OpenCL o CUDA.

2.5 Gestione delle immagini nei C.Shader: Image Load/Store

Oltre agli SSBO (Shader Storage Buffer Objects), i compute shader possono leggere e scri-

vere direttamente su immagini (texture) utilizzando le funzioni di image load/store, aprendo

possibilità avanzate di calcolo parallelo che superano i limiti dei tradizionali accessi tramite

campionamento.

Concetto ed utilizzo

Le funzionalità di image load/store permettono di associare le texture a binding point indipen-

denti, rendendole accessibili come vere e proprie aree di memoria. In questo modo è possibile

effettuare letture e scritture arbitrarie sui dati immagine all’interno di uno shader, cosa che

sarebbe impossibile con i normali texture samplers, i quali si limitano a fornire accessi in so-

la lettura con interpolazione. Grazie a questa caratteristica, le immagini diventano una risorsa

flessibile non solo per il rendering, ma anche per il calcolo parallelo di tipo generale, rendendo

i compute shader un potente strumento di GPGPU (General Purpose GPU Computing).[13]

Applicazioni tipiche

Le operazioni di image load/store trovano impiego in numerosi scenari pratici. Un caso fre-

quente è la gestione della trasparenza order-independent, dove è necessario accumulare e

combinare contributi multipli senza rispettare un ordine di disegno predefinito. Altri esempi

riguardano l’accesso in lettura e scrittura a immagini utilizzate come buffer intermedi per

algoritmi di post-processing, come filtri di blur, edge detection o correzioni di colore. Inoltre,

questa funzionalità permette di implementare algoritmi non lineari basati su texture, come si-

mulazioni fisiche su griglie 2D/3D o tecniche avanzate di image-based rendering.

Coerenza e sincronizzazione

A differenza delle operazioni tradizionali su texture o framebuffer, le scritture effettuate tramite

imageStore non garantiscono automaticamente la coerenza tra le varie invocazioni dello shader.

36

Questo può portare a letture di dati non aggiornati o a condizioni di race se più thread accedono

simultaneamente alla stessa locazione di memoria. Per evitare tali problemi, è necessario inse-

rire manualmente barriere di memoria, come glMemoryBarrier, che impongono un ordine

nelle operazioni e assicurano la visibilità corretta dei dati tra invocazioni. Questo rende la ge-

stione più complessa ma permette un controllo fine sul parallelismo e sull’accesso concorrente.

Strumenti in GLSL

Il linguaggio GLSL fornisce funzioni dedicate per la manipolazione diretta delle immagini:

• imageLoad(...) per leggere un texel da un’immagine in una determinata coordinata;

• imageStore(...) per scrivere un nuovo valore elaborato in un texel specifico.

Questi strumenti non dipendono dal filtraggio o dal mipmapping tipico dei samplers, ma ope-

rano a livello di memoria grezza. Sono quindi fondamentali all’interno dei compute shader per

realizzare operazioni complesse su immagini 2D o volumi 3D, come simulazioni di fluidi, ge-

nerazione di mappe di illuminazione o calcolo di effetti di occlusione ambientale.

Vantaggi e limiti

L’impiego di image load/store consente un controllo diretto e dettagliato sulla memoria im-

magine, svincolato dal flusso grafico tradizionale e dalle restrizioni della pipeline di rasterizza-

zione. Questo apre la strada a tecniche ibride che combinano calcolo parallelo e rendering in

maniera molto efficiente.

Tuttavia, tale flessibilità comporta anche alcuni limiti: la gestione esplicita della sincroniz-
zazione introduce complessità nello sviluppo e può ridurre le prestazioni se non progettata

correttamente. Inoltre, non tutte le operazioni sono supportate: in particolare, non è possibile

utilizzare direttamente le funzioni atomiche sui texel tramite imageStore, limitando quindi la

possibilità di implementare aggiornamenti concorrenti senza strategie aggiuntive.

L’uso di image load/store è estremamente potente e rappresenta una delle funzionalità più avan-

zate dei compute shader, ma richiede attenzione nella programmazione per bilanciare flessibi-
lità, correttezza e prestazioni.

37

2.6 Implementazione base di un Compute Shader

L’implementazione di un compute shader in OpenGL consiste in una sequenza di operazioni

che permettono di far comunicare i dati preparati dalla CPU con la logica parallela eseguita

sulla GPU. In pratica, la CPU prepara e trasferisce i dati, mentre la GPU si occupa di elaborarli

in maniera massicciamente parallela grazie al compute shader scritto in GLSL.

Di seguito vengono descritti i principali passaggi da seguire per implementare un compute sha-

der di base in OpenGL:

Preparazione dei dati su CPU

Il punto di partenza è sempre la CPU, che deve predisporre i dati da elaborare. In una simu-

lazione di particelle, ad esempio, si definiscono gli array contenenti le posizioni e le velocità

iniziali di tutte le particelle. Oltre ai dati, è utile memorizzare anche la dimensione complessiva

del problema, indicata con N . Questo valore servirà successivamente per determinare quanti

gruppi di lavoro (work group) dovranno essere lanciati, cosı̀ da coprire tutti gli elementi da ag-

giornare.

Creazione e configurazione degli SSBO

Per rendere disponibili i dati alla GPU, occorre memorizzarli in un buffer OpenGL, in partico-

lare in un Shader Storage Buffer Object (SSBO).
Il seguente frammento di codice mostra i passaggi fondamentali:

GLuint posSSBO;

glGenBuffers(1, &posSSBO);

glBindBuffer(GL_SHADER_STORAGE_BUFFER, posSSBO);

glBufferData(GL_SHADER_STORAGE_BUFFER, bufferSize, data, GL_STATIC_DRAW);

glBindBufferBase(GL_SHADER_STORAGE_BUFFER, bindingIndex, posSSBO);

Con glGenBuffers si crea un nuovo buffer, il cui identificativo viene salvato nella variabile

posSSBO.

glBindBuffer associa il buffer appena creato al target GL SHADER STORAGE BUFFER,

rendendolo il buffer attivo su cui verranno eseguite le operazioni successive.

La chiamata glBufferData alloca la memoria per il buffer e, opzionalmente, carica al

suo interno i dati iniziali (contenuti nel puntatore data). La dimensione riservata è pari a

bufferSize, mentre il flag GL STATIC DRAW suggerisce a OpenGL che i dati non cambie-

ranno frequentemente.

Infine, con glBindBufferBase il buffer viene legato a un determinato indice di binding

38

(bindingIndex). Questo indice deve coincidere con quello dichiarato nello shader GLSL,

in modo che il compute shader sappia a quale buffer accedere.

Scrittura del compute shader (GLSL)

Il compute shader stabilisce la logica di elaborazione: ogni invocazione dello shader lavora su

un sottoinsieme dei dati. Ecco un esempio:

#version 430

layout(local_size_x = 128) in;

layout(std430, binding = 0) buffer PosBuffer {

vec4 Positions[];

};

void main() {

uint id = gl_GlobalInvocationID.x;

if (id >= Positions.length()) return;

Positions[id] += vec4(0.0, -0.01, 0.0, 0.0);

}

La direttiva #version 430 indica la versione minima di GLSL necessaria per i compute sha-

der. L’istruzione layout(local size x = 128) in specifica che ogni gruppo di lavoro

locale contiene 128 invocazioni lungo l’asse X. In pratica, ciascun work group calcolerà 128

elementi alla volta.

Il blocco layout(std430, binding = 0) buffer PosBuffer {vec4 Positions[]}
definisce un SSBO accessibile dallo shader. Il qualificatore binding = 0 deve corrispondere

a quello impostato dalla CPU, e l’array Positions[] contiene i dati effettivi (posizioni delle

particelle).

All’interno della funzione main, la variabile gl GlobalInvocationID.x fornisce l’indi-

ce globale dell’invocazione dello shader. Questo indice viene usato per accedere all’elemento

corretto dell’array.

La condizione if (id >= Positions.length()) return; evita accessi fuori dai li-

miti qualora ci fossero più invocazioni del numero effettivo di elementi.

Infine, l’operazione Positions[id] += vec4(0.0, -0.01, 0.0, 0.0) modifica

39

la posizione della particella, applicando uno spostamento lungo l’asse Y (ad esempio una sem-

plice forza di gravità).

Compilazione e caricamento dello shader

Il codice GLSL deve essere trasformato in un oggetto eseguibile da OpenGL :

GLuint shader = glCreateShader(GL_COMPUTE_SHADER);

glShaderSource(shader, 1, &source, NULL);

glCompileShader(shader);

GLuint program = glCreateProgram();

glAttachShader(program, shader);

glLinkProgram(program);

Con glCreateShader(GL COMPUTE SHADER) si crea un oggetto shader specifico per il

calcolo.

glShaderSource carica all’interno di tale oggetto il sorgente GLSL (contenuto in source).

glCompileShader compila il codice, traducendolo in una forma comprensibile dalla GPU.

Si crea poi un oggetto programma (glCreateProgram) e vi si collega lo shader compilato

tramite glAttachShader.

Infine, glLinkProgram unisce lo shader al programma, rendendolo pronto per l’esecuzione.

Esecuzione dello shader

Per eseguire il compute shader, occorre attivare il programma e lanciare un dispatch:

GLuint numGroupsX = (N + 128 - 1) / 128;

glUseProgram(program);

glDispatchCompute(numGroupsX, 1, 1);

La variabile numGroupsX calcola il numero di gruppi necessari per coprire tutti gli N elemen-

ti, dividendo N per 128 (dimensione del gruppo locale) e arrotondando per eccesso.

Con glUseProgram(program) si attiva il programma contenente il compute shader e la

chiamata glDispatchCompute(numGroupsX, 1, 1) avvia l’esecuzione dello shader,

organizzando le invocazioni in una griglia tridimensionale di gruppi (in questo specifico caso di

esempio solo lungo X).

40

Sincronizzazione

Una volta terminata l’elaborazione, bisogna garantire che le scritture sui buffer siano effetti-

vamente completate prima che vengano lette da altre parti del programma (sia da GPU che da

CPU).

glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT);

La funzione glMemoryBarrier forza una barriera di memoria: in questo caso specifico, con

il flag GL SHADER STORAGE BARRIER BIT, si assicura che le scritture sugli SSBO siano

visibili e correttamente ordinate prima di qualsiasi accesso successivo.

Accesso ai risultati

Dopo la barriera di memoria, i dati aggiornati sono disponibili. È possibile leggerli dalla CPU

(ad esempio mappando il buffer con glMapBuffer) oppure passarli direttamente ad altri stadi

della pipeline grafica. In un’applicazione di rendering particellare, lo stesso SSBO delle posi-

zioni può essere collegato a un vertex shader per disegnare le particelle, evitando cosı̀ copie

ridondanti tra CPU e GPU.

2.7 Sincronizzazione e Operazioni avanzate

In un contesto di calcolo parallelo, dove centinaia di thread operano simultaneamente sugli stes-

si dati, la sincronizzazione diventa un aspetto cruciale per garantire la correttezza dei risultati.

Nei compute shader, le invocazioni appartenenti a uno stesso work group possono comunicare

tra loro utilizzando variabili dichiarate con il qualificatore shared.

Queste variabili risiedono in una memoria locale al gruppo, accessibile da tutte le sue invoca-

zioni, e permettono di condividere informazioni intermedie senza dover ricorrere alla memoria

globale della GPU, che sarebbe più lenta da utilizzare.

È importante notare che le variabili shared non sono inizializzate automaticamente: il loro

contenuto all’avvio dell’esecuzione è indefinito. Per questo motivo, è buona pratica che una

sola invocazione del gruppo (tipicamente quella con gl LocalInvocationID == 0) si

occupi di assegnare un valore iniziale, prima che gli altri thread le utilizzino.

La sincronizzazione tra invocazioni è garantita da primitive specifiche: una delle più comuni

è la funzione barrier(), che forza tutte le invocazioni del work group a fermarsi e atten-

dere che le altre abbiano raggiunto lo stesso punto di esecuzione. In questo modo si assicura

che tutte le operazioni precedenti siano completate prima che il programma possa proseguire in

parallelo. Questa barriera è fondamentale quando più thread devono collaborare su una stessa

41

struttura dati, evitando condizioni di race.

Un’altra funzione essenziale è memoryBarrierShared(), che non ferma l’esecuzione dei

thread, ma garantisce la coerenza degli accessi alla memoria condivisa. In pratica, assicura che

tutte le scritture effettuate fino a quel punto siano visibili a tutte le invocazioni del gruppo prima

che vengano eseguite nuove letture o scritture. Senza questa barriera, potrebbero verificarsi si-

tuazioni in cui un thread legge ancora un valore obsoleto, mentre un altro lo ha già aggiornato.

Grazie alla combinazione di variabili shared, barriere di sincronizzazione e operazioni ato-
miche, i compute shader possono implementare algoritmi paralleli sofisticati, come riduzioni,

ordinamenti o accumuli distribuiti, mantenendo un controllo fine sul flusso dei dati e sulla loro

coerenza.

2.7.1 Operazioni atomiche

Un aspetto particolarmente potente degli SSBO è la possibilità di eseguire operazioni atomi-
che, cioè operazioni che vengono garantite come indivisibili dal punto di vista dell’accesso

concorrente alla memoria. In un contesto altamente parallelo, dove centinaia di thread possono

tentare di leggere e scrivere la stessa variabile nello stesso istante, le operazioni atomiche evita-

no condizioni di race e garantiscono la correttezza del risultato.

Le operazioni atomiche sono supportate per tipi interi (int, uint) e possono essere applicate

anche ad elementi di array o a singoli componenti di vettori. Il loro impiego è cruciale in

scenari come l’implementazione di contatori globali, la costruzione di istogrammi, la gestione

di strutture dati parallele o la sincronizzazione tra thread.

Alcuni esempi tipici sono:

atomicAdd(mem[i], value);

atomicMax(mem[i], value);

atomicCompSwap(mem[i], expected, new);

Nel primo caso, atomicAdd permette a più thread di incrementare una stessa variabile senza

perdere aggiornamenti, cosa che accadrebbe con una semplice somma non atomica.

Con atomicMax, invece, si può mantenere il massimo globale fra valori calcolati in parallelo.

Infine, atomicCompSwap (compare-and-swap) è uno strumento fondamentale per costruire

primitive di sincronizzazione più complesse, poiché consente di modificare una variabile solo

se contiene un valore atteso.

Tutte queste operazioni restituiscono il valore precedente della variabile su cui agiscono, per-

mettendo cosı̀ di implementare logiche di controllo sofisticate. Tuttavia, è importante notare che

42

le operazioni atomiche, pur garantendo la correttezza, hanno un costo in termini di prestazioni:

un loro utilizzo eccessivo può ridurre il parallelismo effettivo della GPU. Per questo motivo,

vengono impiegate solo nei punti critici dell’algoritmo, laddove non è possibile ricorrere a

soluzioni completamente parallele.

2.8 Limitazioni hardware e ottimizzazioni

L’implementazione di compute shader in OpenGL deve necessariamente tener conto di alcune

limitazioni imposte dall’hardware e dalle specifiche del driver, le quali influenzano direttamente

la progettazione e le prestazioni degli shader.

• GL MAX COMPUTE WORK GROUP COUNT: definisce il numero massimo di work

group che possono essere lanciati lungo ciascuna dimensione (X, Y, Z) della griglia di di-

spatch. Il valore minimo garantito dalla specifica è 65535 per ogni asse, ma può variare a

seconda della GPU. Superare questo limite causa errori di runtime.

• GL MAX COMPUTE WORK GROUP SIZE: indica la dimensione massima consen-

tita per ciascuna dimensione (X, Y, Z) del singolo work group, ovvero il numero massimo

di invocazioni locali (thread) per asse. Valori tipici minimi garantiti sono 1024 per X e

Y e 64 per Z. Il prodotto delle dimensioni locali determina il numero totale di thread

eseguibili in parallelo all’interno di un work group.

• GL MAX COMPUTE WORK GROUP INVOCATIONS: specifica il numero massi-

mo di invocazioni complessive (thread) consentite in un singolo work group, risultante dal

prodotto delle dimensioni locali. Il valore minimo garantito è 1024. Questo parametro

vincola la granularità del parallelismo e influisce sull’organizzazione interna del calcolo.

• GL MAX COMPUTE SHARED MEMORY SIZE: indica la quantità massima di me-

moria condivisa (shared memory) disponibile per ciascun work group, espressa in byte. Il

minimo previsto è 32 KB, ma alcune GPU possono offrire valori superiori. La memoria

condivisa permette la comunicazione e la sincronizzazione efficiente tra le invocazioni al-

l’interno del work group, ma è una risorsa limitata che deve essere gestita con attenzione

per evitare colli di bottiglia.

Questi vincoli sono determinanti nella definizione dell’architettura dello shader: dimensioni

troppo grandi dei work group o un uso eccessivo della memoria condivisa possono portare a

malfunzionamenti, cali di prestazioni o impossibilità di compilare correttamente lo shader.

Per questo motivo, è buona pratica interrogare i valori supportati dalla GPU in fase di inizializ-

zazione tramite chiamate come glGetIntegeri v() e adattare dinamicamente la configu-

razione dello shader alle risorse hardware disponibili.

43

Inoltre, ottimizzazioni come il bilanciamento della dimensione dei work group, la minimizza-

zione dell’uso della memoria condivisa e la riduzione delle dipendenze tra thread sono fonda-

mentali per ottenere prestazioni elevate e scalabilità nei sistemi di calcolo parallelo basati su

compute shader.

2.9 Conclusione

I compute shader costituiscono uno strumento centrale per la grafica contemporanea e per il

calcolo parallelo su GPU, poiché consentono di sfruttare appieno la capacità di elaborazione

massiva delle schede video. La loro introduzione ha reso possibile lo sviluppo di simulazioni

complesse e ad alte prestazioni, che si estendono ben oltre l’ambito della semplice generazione

di immagini e includono settori come la fisica computazionale, la dinamica dei fluidi, l’intelli-

genza artificiale e molte altre forme di elaborazione dati.

Questa tecnologia risulta particolarmente adatta ad applicazioni di interesse cinematografico,

scientifico e ingegneristico, dove la possibilità di gestire un elevato numero di elementi con

precisione e rapidità rappresenta un requisito fondamentale. Inoltre, l’uso dei compute shader

introduce un livello di modularità e flessibilità che agevola l’integrazione di nuovi algoritmi e

metodologie, favorendo lo sviluppo di sistemi scalabili e facilmente estendibili.

In questo senso, i compute shader non sono soltanto un passo in avanti per l’evoluzione della

computer grafica, ma anche una piattaforma versatile per la computazione parallela, destinata

ad avere un impatto significativo in molteplici ambiti della tecnologia moderna.

Figura 2.3: Schema del flusso di lavoro: un programma contenente il compute shader aggiorna
i dati nei buffer OpenGL, mentre un programma grafico successivo legge gli stessi buffer per
eseguire il rendering.

44

Capitolo 3

Background matematico degli effetti
particellari

La capacità di simulare fenomeni complessi e volumetrici come fuoco, fumo, esplosioni, o

agenti atmosferici quali pioggia e neve, in ambito cinematografico e videoludico, è resa pos-

sibile grazie ai sistemi particellari. Questa tecnica, fondamentale per superare i limiti della

modellazione geometrica tradizionale, rappresenta entità complesse tramite un insieme dinami-

co di particelle discrete . Mentre il Capitolo 1 ha introdotto la natura dei sistemi particellari e

il loro impiego, questo capitolo si addentra nei principi matematici e fisici che ne governano il

comportamento dinamico e l’interazione con l’ambiente, aspetti cruciali per ottenere il realismo

visivo richiesto nelle produzioni cinematografiche ad alta fedeltà.

3.1 Modello computazionale della singola particella

Ogni singola particella, pur essendo un elemento visivamente semplice (spesso rappresentata

come una piccola sprite o un billboard), nasconde una complessità notevole a livello compu-

tazionale e fisico. Il comportamento di ogni particella viene definito attraverso un insieme

articolato di attributi fisici e visivi che ne governano la traiettoria, l’interazione con l’ambiente

circostante e l’aspetto durante tutto il suo ciclo di vita. La gestione simultanea di milioni di

queste entità in parallelo rappresenta la vera sfida computazionale alla base delle simulazioni

particellari realistiche.[20]

Gli attributi principali di ogni particella includono:

• Posizione (x⃗ ∈ R3): vettore tridimensionale che definisce la posizione esatta della parti-

cella nello spazio virtuale, fondamentale per il calcolo delle interazioni e delle collisioni.

• Velocità (v⃗ ∈ R3): vettore che indica la direzione e la velocità con cui la particella si

muove, influenzato dalle forze esterne e interne al sistema.

45

• Accelerazione (⃗a ∈ R3): tasso di variazione della velocità, risultante dall’applicazione

delle forze che agiscono sulla particella in ogni istante temporale.

• Massa (m ∈ R+): grandezza scalare che rappresenta l’inerzia della particella, determi-

nando come essa risponde alle forze applicate.

• Vita residua (lifetime): durata temporale residua della particella, che determina quanto a

lungo essa sarà visibile e attiva nella simulazione prima di essere rimossa.

• Parametri estetici: comprendono il colore (con canale alfa per la trasparenza), la dimen-

sione, la forma (tipicamente sprite o mesh 3D) e l’orientamento (rotazione), tutti elementi

che influenzano l’aspetto finale e l’impatto visivo.

L’evoluzione temporale degli attributi delle particelle è controllata tramite lifetime curves, fun-

zioni che modulano gradualmente proprietà visive come opacità, scala e colore per ottenere

effetti dinamici realistici.

Dal punto di vista fisico, il movimento delle particelle è regolato dalla seconda legge di Newton:

F⃗ = ma⃗ = m
dv⃗

dt

che collega la forza agente all’accelerazione, mentre la posizione si aggiorna secondo:

dx⃗

dt
= v⃗

Poiché risolvere queste equazioni in forma analitica per calcolare la posizione è complesso, si

ricorre a metodi di discretizzazione numerica, adatti anche all’esecuzione parallela su GPU.

La sfida computazionale consiste nell’aggiornare in tempo reale milioni di particelle, ognuna

con caratteristiche e vincoli propri, bilanciando realismo visivo e prestazioni per applicazioni

real-time tipiche di cinema e videogiochi.

Figura 3.1: Rappresentazione schematica degli attributi spaziali e di orientamento fondamentali
di una particella all’interno del sistema.

46

3.2 Dinamica e generazione: il ruolo dell’emitter

L’emitter è l’origine funzionale del sistema particellare, la sorgente da cui vengono generate

dinamicamente le particelle secondo parametri configurabili. Non si limita a definire un punto

di emissione, ma rappresenta una vera e propria interfaccia tra il modello fisico della simulazio-

ne e la distribuzione statistica delle proprietà iniziali delle particelle.

Tra le caratteristiche principali di un emitter sono da menzionare:

• Posizione e forma: l’emissione può avvenire da un punto, una linea, una superficie o un

volume tridimensionale, e spesso coincide con una geometria della scena.

• Frequenza di emissione: definisce il numero di particelle generate per unità di tempo e

può variare in funzione di eventi o condizioni ambientali.

• Velocità e direzione iniziale: vettori che indicano la quantità e la direzione di moto delle

particelle al momento della loro nascita; sono spesso soggette a variazioni pseudo-casuali

per evitare movimenti troppo uniformi e creare cosı̀ un effetto più naturale.

• Lifetime e attributi iniziali: come durata, scala, opacità, assegnati in fase di emissione

con una componente stocastica, per garantire varietà e realismo.

Particolarmente utile nella simulazione cinematografica è l’uso di funzioni di noise (come Per-

lin o Simplex), che permettono di generare fluttuazioni continue e coerenti nello spazio-tempo.

Queste funzioni vengono impiegate per modulare direzione, intensità o densità dell’emissione,

riproducendo effetti naturali come vento, turbolenza, o l’irregolarità del fumo che si dirama da

una sorgente.

3.3 Forze fisiche e interazioni

Le particelle sono soggette a diverse forze che ne influenzano la traiettoria nel tempo.

Alcune sono forze fisiche reali (come la gravità), mentre altre sono modellate per simulare

fenomeni ambientali complessi (come vento, turbolenza, attrazione locale, ecc.).

Forze base

• Forza di Gravità:

F⃗g = mg⃗

dove m rappresenta la massa della particella e g⃗ è l’accelerazione gravitazionale, gene-

ralmente costante e orientata verso il basso. È essenziale per simulare effetti come caduta

di pioggia, polvere o detriti.

47

• Forza d’Attrito (resistenza del mezzo):

F⃗d = −kdv⃗

Una forza di smorzamento proporzionale alla velocità, dove kd è il coefficiente di resi-

stenza del mezzo e v⃗ rappresenta la velocità della particella. Il segno negativo indica che

la forza agisce in direzione opposta al moto, simulando cosı̀ l’effetto dell’aria o di un

fluido che frena progressivamente il movimento della particella nel tempo.

• Forza Elastica (Legge di Hooke):

F⃗spring = −ks(|⃗l| − r0)l̂ − kd

(
(v⃗a − v⃗b) · l̂
|⃗l|

)
l̂

Questa forza viene utilizzata per connettere due particelle con un comportamento elastico,

come nel caso di tessuti, catene o peli. Nella formula, ks rappresenta la costante elastica

che regola la rigidità della connessione, l⃗ è il vettore che unisce le due particelle, r0 indica

la lunghezza a riposo della molla e l̂ è il versore del vettore l⃗, cioè la sua direzione nor-

malizzata. Le quantità v⃗a e v⃗b corrispondono alle velocità delle due particelle collegate,

mentre kd è il coefficiente di smorzamento viscoelastico che introduce una resistenza pro-

porzionale alla velocità relativa lungo la direzione della molla. Il primo termine descrive

la componente elastica secondo la legge di Hooke, mentre il secondo rappresenta l’azione

dello smorzamento, che riduce progressivamente le oscillazioni rendendo il sistema più

stabile.

Forze avanzate

• Turbulenza / Vento:

F⃗wind = Cwind · noise(x⃗, t)

Viene utilizzata per simulare disturbi atmosferici complessi, come correnti d’aria irrego-

lari, vortici o turbolenze. Nella formula, Cwind rappresenta il coefficiente che regola l’in-

tensità complessiva dell’effetto, mentre la funzione noise(x⃗, t) genera variazioni coerenti

nello spazio e nel tempo in base alla posizione x⃗ della particella e all’istante tempora-

le t. In questo modo si ottengono movimenti irregolari ma continui, che riproducono il

comportamento caotico di fenomeni naturali quali vento e fumo.

• Forza di Attrazione / Repulsione:

F⃗attraction = kattr
P⃗ − x⃗

|P⃗ − x⃗|2

48

Agisce spingendo le particelle verso o lontano da un punto di riferimento P . Nella for-

mula, kattr è la costante che determina l’intensità dell’attrazione o della repulsione, x⃗

rappresenta la posizione della particella e P⃗ è la posizione del punto di riferimento. Il

denominatore |P⃗ − x⃗|2 indica che l’intensità della forza decresce con il quadrato della di-

stanza, in modo analogo a fenomeni fisici reali come la gravità o l’elettrostatica. Questa

formulazione è utile per realizzare effetti come raccolte di particelle, esplosioni inverse o

attrattori artificiali all’interno della simulazione.

• Interazioni N-body: Modelli complessi che considerano l’influenza reciproca tra tutte le

particelle. Sono fondamentali per simulazioni fisicamente accurate (come sistemi gravi-

tazionali), ma computazionalmente costose. L’uso di strutture di accelerazione spaziale

come griglie uniformi, alberi k-d o octree riduce la complessità da O(n2) a O(n log n).

3.4 Collisioni e reazioni

Il trattamento delle collisioni è essenziale per rendere credibili le simulazioni particellari in am-

bienti fisici complessi. Le particelle possono interagire con geometrie statiche (es. pavimenti,

pareti, mesh) o con altre particelle. Una gestione corretta delle collisioni contribuisce sia al

realismo visivo che alla stabilità numerica del sistema.

Collisione con superfici

Quando una particella entra in contatto con una superficie, il sistema esegue i seguenti passaggi:

1. Rilevamento del contatto: verifica se la posizione della particella ha superato un limite

definito dalla geometria (es. piano y = 0).

2. Calcolo della normale e punto d’impatto: si determina la normale alla superficie nel

punto di collisione, indicata con n̂, fondamentale per il calcolo della riflessione.

3. Calcolo della velocità riflessa:

v⃗r = v⃗ − (1 + e)(v⃗ · n̂)n̂

dove e è il coefficiente di elasticità (con e = 1 per urti elastici, e < 1 per urti dissipativi).

4. Correzione della posizione: per evitare che la particella rimanga all’interno della super-

ficie, viene traslata lungo la normale fino a uscire dalla zona di penetrazione.

49

Figura 3.2: Collisione tra una particella e una superficie piana: la direzione incidente viene
riflessa secondo la normale n̂ al punto di contatto, con un coefficiente di restituzione e.

Collisioni tra particelle

Nei sistemi ad alta densità, le particelle possono entrare in contatto tra loro. Queste interazioni

possono essere gestite in vari modi:

• Forze repulsive: quando due particelle si avvicinano oltre una certa soglia, si applica una

forza inversamente proporzionale alla distanza per simulare un rimbalzo.

• Risoluzione tramite impulsi: si calcola la variazione di velocità causata dall’urto secon-

do le leggi della conservazione dell’energia e della quantità di moto.

• Accelerazione spaziale: per evitare controlli O(n2), si utilizzano strutture come griglie

uniformi, alberi k-d o octree per individuare le coppie di particelle realmente vicine.

3.5 Integrazione numerica delle equazioni del moto

L’integrazione numerica consente di aggiornare posizione e velocità delle particelle nel tempo,

risolvendo le equazioni del moto in forma discretizzata. La scelta del metodo di integrazione

dipende dal compromesso tra accuratezza, stabilità e costo computazionale.

Metodo di Eulero (esplicito) [21]

Uno dei metodi più semplici e diretti:

x⃗t+∆t = x⃗t +
v⃗t
∆t

v⃗t+∆t = v⃗t +
F⃗t

m
·∆t

Sebbene computazionalmente leggero, può risultare instabile con ∆t troppo grandi o forze in-

tense. Per questo motivo è spesso utilizzato solo in contesti controllati, come simulazioni con

forte dissipazione numerica o effetti a breve durata visiva.

50

Metodo di Eulero semi-esplicito [22]

Una variante molto diffusa e leggermente più stabile del metodo esplicito è il cosiddetto Eulero
semi-esplicito. In questo approccio, la velocità viene aggiornata per prima utilizzando le forze

note al tempo t, e successivamente la nuova posizione viene calcolata impiegando direttamente

la velocità aggiornata v⃗t+∆t:

v⃗t+∆t = v⃗t +
F⃗t

m
·∆t

x⃗t+∆t = x⃗t + v⃗t+∆t ·∆t

Rispetto all’Eulero esplicito, in cui la posizione viene aggiornata con la velocità preceden-

te, questo metodo offre una maggiore stabilità numerica, soprattutto nelle simulazioni che

coinvolgono forze conservative come gravità o elasticità.

Nel progetto è stato adottato proprio questo schema, in quanto consente di mantenere le tra-

iettorie dei frammenti stabili anche in presenza di tempi di integrazione relativamente grandi.

Inoltre, l’algoritmo è stato arricchito con un termine di smorzamento esponenziale:

v⃗t+∆t = (v⃗t + g⃗∆t) · e−k∆t

dove k rappresenta il coefficiente di resistenza dell’aria. Questo consente di ridurre progressi-

vamente l’energia del sistema, simulando in maniera realistica l’effetto dissipativo del mezzo e

impedendo che i frammenti accelerino indefinitamente.

Il metodo di Eulero semi-esplicito costituisce quindi un buon compromesso tra semplicità com-

putazionale e stabilità, risultando particolarmente adatto alle simulazioni in tempo reale basate

su compute shader, come quella implementata in questo progetto.

Metodo di Verlet [23]

Molto usato nei motori fisici e nei videogiochi grazie alla sua stabilità numerica e al basso costo

computazionale:

x⃗t+∆t = 2x⃗t − x⃗t−∆t + a⃗t ·∆t2

Non richiede il calcolo esplicito della velocità, ma quest’ultima può essere approssimata. È

ideale per simulazioni basate sulla posizione (position-based dynamics), come tessuti, corde o

sistemi vincolati.

51

Metodo di Runge–Kutta del 4° ordine (RK4) [24]

Dato il problema ai valori iniziali

˙⃗x = f⃗(t, x⃗), x⃗(t0) = x⃗0, h ≡ ∆t > 0,

si definisce la ricorrenza

x⃗n+1 = x⃗n +
h

6

(
k1 + 2k2 + 2k3 + k4

)
, tn+1 = tn + h,

dove gli incrementi k1, k2, k3, k4 sono le stime della derivata f⃗ ai punti intermedi dell’intervallo

[tn, tn+1]:
k1 = f⃗

(
tn, x⃗n

)
,

k2 = f⃗
(
tn +

h
2
, x⃗n +

h
2
k1
)
,

k3 = f⃗
(
tn +

h
2
, x⃗n +

h
2
k2
)
,

k4 = f⃗
(
tn + h, x⃗n + h k3

)
.

Nel calcolo della media pesata, i contributi valutati a metà intervallo hanno peso doppio.

In particolare:

• k1 è la pendenza all’inizio dell’intervallo (t = tn);

• k2 è la pendenza a metà intervallo usando un primo passo di Eulero con k1;

• k3 è un’ulteriore pendenza a metà intervallo usando k2;

• k4 è la pendenza alla fine dell’intervallo (t = tn + h) usando k3.

Il metodo RK4 offre una migliore conservazione dell’energia e minori errori locali, ma è più

oneroso computazionalmente. Per questo è utilizzato principalmente in simulazioni offline o

rendering precomputati in ambito cinematografico, dove la qualità visiva è prioritaria rispetto al

frame rate.

3.6 Riflessioni finali

La comprensione approfondita dei principi fisici e numerici alla base dei sistemi particellari è

essenziale per ottenere simulazioni coerenti, controllabili e visivamente credibili. Ogni forza,

modello di interazione e metodo di integrazione ha un impatto diretto sul comportamento delle

particelle e sulla qualità finale dell’effetto visivo.

Questi fondamenti teorici non sono solo strumenti di modellazione, ma anche leve creative. La

capacità di decidere quando semplificare o approfondire un modello fisico è una competenza

52

essenziale, soprattutto nel campo degli effetti visivi, dove è sempre necessario bilanciare reali-

smo e prestazioni.

Un aspetto cruciale per la realizzazione pratica di tali simulazioni, soprattutto in ambito cinema-

tografico e videoludico, è l’implementazione efficiente su GPU. Le architetture parallele offerte

dai compute shader permettono di gestire milioni di particelle simultaneamente, sfruttando al

meglio la potenza computazionale disponibile. Questo consente di superare i limiti delle simu-

lazioni tradizionali basate su CPU, garantendo al contempo prestazioni in tempo reale o quasi

real-time necessarie nelle pipeline di produzione VFX moderne.

Figura 3.3: Evoluzione di un sistema particellare: emissione dall’emitter, traiettorie influenzate
da forze fisiche e collisione con una superficie.

53

Capitolo 4

Sviluppo e implementazione del simulatore

In questo capitolo vengono illustrate nel dettaglio le fasi di realizzazione del simulatore, a parti-

re dall’idea iniziale fino alle soluzioni implementative finali. Dopo aver presentato l’evoluzione

del progetto e le tecnologie adottate, si descrivono i processi di caricamento e gestione della

scena, il controllo del personaggio e della telecamera, e le varie tecniche utilizzate per il rileva-

mento delle collisioni. Una sezione significativa è dedicata alla fisica delle esplosioni e all’uso

dei compute shader, che consentono di sfruttare la potenza della GPU per ottenere simulazioni

più complesse ed efficienti. Infine, viene discusso un confronto tra le prestazioni della GPU e

della CPU, utile a valutare i benefici delle diverse strategie adottate.

Figura 4.1: Schermata principale del progetto di tesi.

54

4.1 Idea iniziale e sviluppo progressivo del progetto

Il progetto si propone di sviluppare un simulatore interattivo 3D capace di riprodurre in tempo

reale esplosioni e crolli architettonici. L’obiettivo è creare un ambiente realistico ma compu-

tazionalmente efficiente, nel quale un edificio possa frammentarsi e i detriti si distribuiscano

nello spazio seguendo leggi fisiche semplificate. Oltre all’aspetto visivo, il progetto punta a

sperimentare e applicare tecniche di calcolo parallelo per gestire dinamicamente la simulazione

fisica, sfruttando la potenza della GPU per ottimizzare prestazioni e realismo.

Lo sviluppo ha seguito una progressione graduale: in una prima fase è stato costruito un proto-

tipo di base, comprendente la finestra di rendering, i controlli della telecamera e primi tentativi

di simulatore particellare.

Successivamente si è passati al caricamento di modelli più complessi, come il palazzo e l’al-

bero, preparati con la tecnica del cell fracture in Blender per poterli suddividere in frammenti.

Questo ha permesso di introdurre la transizione dal modello integro alla sua versione distrutta

attraverso un input da tastiera, rendendo la simulazione più realistica.

Un punto centrale del progetto è stata l’introduzione della fisica: per descrivere il movimento

dei frammenti, dopo vari tentativi, si è scelto un metodo di integrazione numerica semplice ma

efficace, cioè l’Eulero semi-esplicito con smorzamento, in grado di tenere conto di forze come

la gravità, la spinta radiale dell’esplosione e l’attrito dell’aria. Questa scelta ha garantito una

buona stabilità della simulazione pur mantenendo la leggerezza dei calcoli, aspetto essenziale

per il rendering in tempo reale.

Con il procedere delle fasi sono stati aggiunti altri elementi che hanno contribuito a dare com-

pletezza al simulatore: un sistema di materiali per migliorare la resa visiva, uno skybox per

contestualizzare la scena,e strumenti di monitoraggio delle prestazioni per analizzare l’impatto

delle varie soluzioni implementative. Infine, è stato pensato anche un livello di interattività, con

la possibilità di controllare da tastiera un personaggio, il quale funge da innesco per le esplosio-

ni e i crolli degli oggetti in scena.

Dall’insieme di queste riflessioni nasce l’idea di progetto finale: una scena 3D interattiva dove

un personaggio, controllato dall’utente, si muove all’interno di un ambiente urbano popolato

da vari oggetti come autobus, palazzi, alberi e cabine telefoniche. Quando il personaggio entra

in contatto con uno di questi oggetti, si attiva un’animazione ”punching” in cui egli sferra un

pugno all’oggetto, causando la sua frantumazione in molteplici pezzi che poi cadono sul piano

di base e realizzando un’esplosione realistica.[27].

55

4.2 Tecnologie utilizzate

Lo sviluppo del simulatore ha richiesto l’integrazione di diverse tecnologie, sia per la parte gra-

fica che per la gestione dei modelli e delle dipendenze esterne. La selezione delle librerie non

è stata casuale, ma il risultato di un processo di valutazione basato su criteri di compatibilità,

stabilità e diffusione nel settore della grafica in tempo reale. L’obiettivo principale è stato creare

un ambiente modulare e scalabile, capace di garantire elevate prestazioni computazionali man-

tenendo al contempo una struttura del codice chiara, organizzata e facilmente estendibile per

futuri sviluppi o aggiunte funzionali.

OpenGL 4.3[29]

OpenGL rappresenta il nucleo grafico del progetto, ovvero l’insieme di strumenti che consente

di comunicare direttamente con la scheda video per eseguire operazioni di rendering e calcolo.

La versione 4.3 è stata scelta poiché introduce una delle innovazioni più rilevanti per il progetto:

i compute shader. Questi permettono di sfruttare la GPU non solo per la grafica tradizionale,

ma anche per il calcolo parallelo, rendendo possibile la simulazione della fisica dei frammenti

in tempo reale.

Oltre a questa caratteristica, OpenGL fornisce i meccanismi fondamentali per la gestione della

pipeline grafica: caricamento dei modelli, applicazione dei materiali, illuminazione dinamica e

gestione dei buffer. La sua diffusione e la disponibilità di ampia documentazione hanno reso

questa tecnologia la scelta più solida per il progetto.

GLFW [30]

GLFW è la libreria che si occupa della creazione della finestra, della gestione del contesto

OpenGL e dell’elaborazione degli input da tastiera e mouse. La sua adozione è stata dettata dalla

semplicità di integrazione e dalla leggerezza, che la rendono ideale per progetti che richiedono

un controllo diretto sull’API grafica senza la complessità di framework più pesanti.

In questo simulatore, GLFW ha consentito di implementare un sistema di input modulare e

intuitivo, permettendo all’utente di interagire con la scena attraverso comandi da tastiera e mo-

vimenti della telecamera.

GLAD[31]

Per poter utilizzare le funzioni più recenti di OpenGL, è necessario un meccanismo che ne

gestisca il caricamento dinamico, in quanto non tutte le versioni delle librerie grafiche fornite

dal sistema operativo espongono le stesse funzionalità. A questo scopo è stata impiegata la

56

libreria GLAD, che si occupa di caricare in modo trasparente i puntatori alle funzioni OpenGL

necessarie al progetto.

Grazie a GLAD, è stato possibile garantire la portabilità del simulatore su diverse configurazio-

ni hardware e software, riducendo i problemi di compatibilità legati ai driver grafici.

GL e KHR headers[32]

Un ulteriore supporto tecnico è stato fornito dai file di intestazione standard GL e KHR, che

definiscono costanti, macro e prototipi delle funzioni OpenGL. Questi header costituiscono il

ponte tra le specifiche ufficiali e il codice sorgente, garantendo coerenza e chiarezza nell’uti-

lizzo delle API grafiche. Pur essendo meno visibili rispetto ad altre librerie, la loro presenza è

imprescindibile per la corretta compilazione e manutenzione del progetto.

Assimp (Open Asset Import Library)[33]

La gestione dei modelli tridimensionali è stata affidata ad Assimp, libreria che supporta un

ampio numero di formati tra cui .obj, scelto per la compatibilità con Blender. Grazie ad

Assimp, il simulatore è in grado di caricare sia i modelli integri che quelli frantumati tramite la

tecnica del cell fracture, senza necessità di sviluppare un parser proprietario.

Un vantaggio significativo di Assimp è la capacità di gestire non solo le geometrie, ma anche

i materiali associati ai modelli. Questo ha permesso di mantenere un legame diretto tra i file

scaricati o esportati da Blender e la scena caricata dal simulatore, riducendo tempi e complessità

di sviluppo.

GLM (OpenGL Mathematics)[34]

Per quanto riguarda la parte matematica, è stata adottata GLM, libreria header-only progettata

per replicare la sintassi e la logica di GLSL. Essa fornisce strumenti per la gestione di vettori,

matrici e quaternioni, semplificando notevolmente le operazioni di trasformazione geometrica

e calcolo delle proiezioni prospettiche.

L’utilizzo di GLM si è rivelato particolarmente efficace per mantenere coerenza tra il codice

C++ e gli shader scritti in GLSL, riducendo le possibilità di errore e rendendo più intuitiva l’in-

tegrazione delle due parti. Grazie a questa libreria, è stato possibile implementare con facilità

funzioni di scaling, rotazione e traslazione dei modelli caricati nella scena.

57

La maggior parte dei pacchetti è stata scaricata dai rispettivi siti ufficiali e inserita in una cartella

delle dipendenze, suddivisa in due sottocartelle: include e lib, contenenti i file di supporto

necessari.

Una volta predisposte le directory, è stato necessario collegare i file di supporto in Visual Studio

eseguendo i seguenti passaggi (dal file di progetto→ Proprietà):

1. Include: Proprietà di configurazione→ C/C++→ Generale→ Directory

di inclusione aggiuntive:

Aggiunto il percorso alla cartella include.

Figura 4.2: Percorso di dipendenze per gli Include

2. Lib: Proprietà di configurazione→ Linker→ Generale→ Directory

di libreria aggiuntive

Aggiunto il percorso alla cartella lib.

Figura 4.3: Percorso per le dipendenze per i Lib

58

3. Dipendenze Aggiuntive: Proprietà di configurazione→ Linker→ Input

→ Dipendenze aggiuntive

Elenco dei file .lib aggiuntivi richiesti.

Figura 4.4: Percorso per le dipendenze aggiuntive

Grazie a questa combinazione di strumenti è stato possibile costruire un ambiente di sviluppo

modulare e flessibile, dove ciascuna libreria svolge un ruolo ben definito all’interno del progetto.

Questa architettura ha reso possibile integrare progressivamente nuove funzionalità, come la

simulazione fisica parallela e la gestione interattiva della scena.

59

4.3 Reperimento dei modelli obj e Cell Fracture su Blender

Per reperire gli oggetti e il personaggio da inserire nella scena, è stato necessario esplorare di-

verse piattaforme che offrono modelli 3D gratuiti. Dopo una fase preliminare di ricerca e test, la

mia scelta è ricaduta sul sito PolyPizza, che mette a disposizione un ampio catalogo di modelli

low-poly scaricabili in formato .obj. Questa tipologia di modelli si è rivelata particolarmente

adatta al progetto, poiché la semplicità geometrica delle mesh riduce il carico computazionale

e agevola il processo di frantumazione necessario per simulare l’esplosione e il crollo degli og-

getti.

Figura 4.5: Il sito Polypizza, dove sono stati reperiti gli oggetti.

Il file .mtl (Material Template Library) associato a ogni modello 3D contiene informazioni sui

materiali e sui colori di base degli oggetti, come proprietà di colore, lucentezza, trasparenza e

mappature delle texture. In questo modo, l’importazione degli oggetti nel simulatore non ha

richiesto interventi manuali complessi, garantendo fin da subito una resa visiva coerente con lo

stile scelto. La disponibilità di file già pronti ha permesso di concentrarsi maggiormente sulla

parte fisica e interattiva del progetto, senza dover investire tempo nella modellazione da zero.

Per preparare i modelli alla simulazione di distruzione è stato necessario ricorrere a Blender,

software open-source per la modellazione e l’animazione 3D. In particolare, si è fatto uso del-

l’estensione Cell Fracture, che non è sempre inclusa di default e deve quindi essere installata

manualmente. Questa estensione consente di suddividere un oggetto in un numero variabile di

frammenti, generando automaticamente una mesh composta da parti indipendenti.

La procedura adottata per ciascun oggetto è stata sistematica:

60

1. Importazione del modello in formato .obj in Blender.

Figura 4.6: Importazione del modello in formato .obj in Blender

2. Selezione dell’oggetto e applicazione dell’effetto Cell Fracture dal menu Object →
Quick Effects → Cell Fracture.

Figura 4.7: Selezione dell’oggetto e applicazione dell’effetto Cell Fracture

3. Utilizzo delle impostazioni di default per la maggior parte degli oggetti (circa un centinaio

di frammenti), con l’unica eccezione del palazzo, per il quale è stato necessario aumentare

il numero di frammenti generati al fine di ottenere una distruzione più realistica, adeguata

alla sua maggiore complessità geometrica.

61

Figura 4.8: Applicazione dell’effetto di Cell Fracture

4. Eliminazione dell’oggetto padre integro dalla scena, mantenendo unicamente i frammenti

generati dall’estensione.

5. Esportazione dell’oggetto frantumato in formato .obj insieme al file .mtl aggiornato,

cosı̀ da poter essere integrato nella cartella di progetto.

Figura 4.9: Esportazione dell’oggetto frantumato in formato .obj

Una volta caricati nel simulatore, i modelli sono stati gestiti come models, completi dei loro

materiali. Per adattarli alla scena, è stato poi necessario applicare operazioni di trasformazione

quali scaling, rotazioni e traslazioni (descritte in 4.5),rese possibili grazie alle funzioni della

libreria GLM (OpenGL Mathematics).

62

In questo modo è stato possibile popolare la scena con oggetti coerenti, leggeri da gestire a

livello computazionale e pronti per interagire con il sistema fisico di esplosione e crollo. La

combinazione tra la semplicità dei modelli low-poly e la flessibilità della fratturazione tramite

Blender ha reso il processo di preparazione efficiente e funzionale, consentendo di ottenere

risultati visivi soddisfacenti senza appesantire l’implementazione tecnica del simulatore.

4.4 Personaggio e gestione della sua animazione.

Per quanto riguarda il personaggio è stato scelto il sito Mixamo[26], una piattaforma che con-

sente di scaricare modelli tridimensionali completi di scheletro e animazioni già pronte all’uso.

L’adozione di questo strumento ha permesso di integrare rapidamente un personaggio animato

all’interno del simulatore, evitando la necessità di realizzare manualmente il rigging e la fase di

animazione.

Figura 4.10: Il sito Mixamo, dove ho reperito il personaggio e le sue animazioni.

Il processo è iniziato con la selezione del modello: tra i numerosi personaggi disponibili, è stato

scelto un mostro, ritenuto adatto a rappresentare un’entità in grado di colpire un edificio con

sufficiente forza da innescarne l’esplosione in frammenti. Una volta individuato il modello, Mi-

xamo lo ha impostato come personaggio principale, pronto per il test delle diverse animazioni.

Figura 4.11: Il modello scelto per il progetto.

63

Il modello viene inizialmente presentato in T-pose (posa a T), configurazione standard utile per

la successiva applicazione delle animazioni. Per renderlo più naturale all’interno della scena,

sono state selezionate tre animazioni principali:

• Breathing, utilizzata per evitare che il personaggio rimanesse statico in T-pose, confe-

rendo invece un movimento respiratorio di base;

• Walking, impostata in modalità in place, cosı̀ da garantire una camminata continua sul

posto, perfetta per simulare gli spostamenti controllati dall’utente;

• Punching, l’animazione principale, che mostra il personaggio mentre carica e sferra un

pugno, azione impiegata per colpire gli oggetti e generare l’esplosione.

Figura 4.12: Animazione di camminata ”In Place”

Dopo il download delle animazioni, è stato necessario un passaggio di correzione in Blender.

Infatti, Mixamo esporta i modelli utilizzando l’asse verticale Z, mentre in OpenGL l’asse verti-

cale di riferimento è Y . Questa differenza avrebbe causato un’errata interpretazione delle pose;

perciò, è stato effettuato un semplice riallineamento degli assi prima dell’esportazione definiti-

va.

Completata la correzione, il personaggio animato è stato caricato correttamente all’interno del

simulatore OpenGL, risultando pienamente integrato con la scena e pronto a interagire con gli

elementi architettonici.[28]

64

Listing 4.1: Costruttore e setup delle animazioni� �
1 Character::Character(const std::string& modelPath): position(0.0f),

rotation(0.0f), velocity(0.0f),currentState(CharacterState::IDLE),

previousState(CharacterState::IDLE),m_punchCooldown(0.0f),

m_isVisible(true), m_renderScale(2.0f) {

2

3 // Caricamento del modello scheletrato (FBX)

4 model = std::make_unique<AnimatedModel>("mostro.fbx");

5

6 // Caricamento delle clip FBX (stesso rig)

7 idleAnimation = std::make_unique<Animation>("Idle_mostro.fbx",

model.get());

8 walkAnimation = std::make_unique<Animation>("Walking_mostro.fbx"

, model.get());

9 punchAnimation = std::make_unique<Animation>("Punch_mostro.fbx",

model.get());

10

11 // Looping delle clip

12 idleAnimation->SetLooping(true);

13 walkAnimation->SetLooping(true);

14 punchAnimation->SetLooping(false);

15

16 // Animazione iniziale

17 currentAnimation = idleAnimation.get();

18 }� �
Questo costruttore inizializza lo stato del personaggio (posizione, rotazione, visibilità, scala di

rendering) e carica il modello scheletrato in formato .fbx, associando le tre clip principali

(Idle, Walking, Punch). L’animazione corrente parte da Idle, cosı̀ il personaggio è inizialmente

in posa di riposo.

Come interviene Assimp
Il caricamento dei file .fbx avviene tramite la libreria Assimp, utilizzata dalle classi AnimatedModel

e Animation. In particolare:

• Clip di animazione. Il costruttore di Animation usa Assimp::Importer per leg-

gere la scena FBX, imposta la Global Inverse Transform della root e costruisce i cana-

li (aiNodeAnim) di posizione/rotazione/scala per ciascun osso del rig; inoltre alloca

l’array delle matrici finali per lo skinning.

65

Listing 4.2: Lettura di una clip FBX con Assimp (da ‘Animation.cpp‘)� �
1 Animation::Animation(const std::string& animationPath, Model* model)

{

2 Assimp::Importer importer;

3 const aiScene* scene = importer.ReadFile(

4 animationPath,

5 aiProcess_Triangulate | aiProcess_GenSmoothNormals |

6 aiProcess_FlipUVs | aiProcess_CalcTangentSpace);

7 if (!scene || scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE || !scene

->mRootNode) { /* ... */ }

8

9 // Trasformazione inversa globale della root

10 m_GlobalInverseTransform = glm::inverse(AssimpGLMHelpers::

ConvertMatrixToGLMFormat(scene->mRootNode->mTransformation));

11

12 ReadHierarchyData(m_RootNode, scene->mRootNode);

13 ReadAnimationChannels(scene->mAnimations[0], model);

14

15 m_FinalBoneMatrices.reserve(100);

16 for (int i = 0; i < 100; ++i) m_FinalBoneMatrices.push_back(glm::

mat4(1.0f));

17 }� �
Questo mostra chiaramente dove la clip viene analizzata e associata alle ossa del modello.

• Modello e pesi di skinning. AnimatedModel estrae per ogni mesh le ossa (aiBone),

salva la offset matrix (bind pose) nella mappa delle ossa e scrive fino a quattro pesi per

vertice negli array BoneIDs/Weights, normalizzandoli. L’override di processMesh

garantisce che l’estrazione dei pesi avvenga durante il caricamento del mesh.

Listing 4.3: Estrazione di ossa e pesi (da ‘AnimatedModel.cpp‘)� �
1 std::unique_ptr<Mesh> AnimatedModel::processMesh(aiMesh* mesh, const

aiScene* scene) {

2 auto processedMesh = Model::processMesh(mesh, scene);

3 auto& vertices = processedMesh->vertices;

4

5 for (auto& v : vertices) SetVertexBoneDataToDefault(v);

6 ExtractBoneWeightForVertices(vertices, mesh, scene); // legge

aiBone e pesi

7 processedMesh->updateVertexData();

8 return processedMesh;

66

9 }

10

11 void AnimatedModel::ExtractBoneWeightForVertices(std::vector<Vertex>&

vertices, aiMesh* mesh, const aiScene* scene) {

12 for (unsigned int b = 0; b < mesh->mNumBones; ++b) {

13 std::string boneName = mesh->mBones[b]->mName.C_Str();

14 int boneID = GetOrCreateBoneID(boneName);

15

16 // Offset matrix della bind-pose

17 m_BoneInfoMap[boneName].offset =

18 AssimpGLMHelpers::ConvertMatrixToGLMFormat(mesh->mBones[b

]->mOffsetMatrix);

19

20 // Pesi per-vertice (max 4)

21 for (unsigned int w = 0; w < mesh->mBones[b]->mNumWeights; ++

w) {

22 int vId = mesh->mBones[b]->mWeights[w].mVertexId;

23 float weight = mesh->mBones[b]->mWeights[w].mWeight;

24 SetVertexBoneData(vertices[vId], boneID, weight);

25 }

26 }

27 // Normalizzazione dei pesi

28 for (auto& v : vertices) {

29 float sum = v.Weights.x + v.Weights.y + v.Weights.z + v.

Weights.w;

30 if (sum > 0.0f) v.Weights /= sum;

31 }

32 }� �
Queste funzioni sono quelle effettivamente chiamate al caricamento del modello e dimostrano

l’utilizzo di Assimp per popolare la mappa delle ossa e i pesi di skinning.

Durante l’aggiornamento dell’animazione, per ogni osso viene calcolata la trasformazione finale

secondo

Mfinal = MGlobalInverse ·MNodeTransform ·MOffset,

e l’intero array boneMatrices[0..N) è inviato allo shader per lo skinning sulla GPU.

L’utilizzo di Assimp è fondamentale per il parsing dei file FBX, l’estrazione di ossa e pesi

(bind pose), la lettura dei canali di animazione con interpolazione (lineare per traslazione/scala,

sferica per rotazioni), e consente di riutilizzare lo stesso rig per più clip e di sincronizzare il

personaggio con la logica interattiva della simulazione.

67

Listing 4.4: Upload delle bone matrices allo shader� �
1 void Character::Render(Shader& shader) {

2 if (!model || !m_isVisible) return;

3

4 shader.use();

5 shader.setMat4("model", GetModelMatrix());

6 shader.setBool("hasTexture", true);

7

8 AnimatedModel* animModel = dynamic_cast<AnimatedModel*>(model.get());

9 if (currentAnimation && animModel) {

10 std::vector<glm::mat4> boneTransforms = currentAnimation->

GetFinalBoneMatrices();

11 int maxBones = std::min(static_cast<int>(boneTransforms.size()),

100);

12 if (maxBones > 0) {

13 for (int i = 0; i < maxBones; ++i) {

14 std::string name = "boneMatrices[" + std::to_string(i) +

"]";

15 shader.setMat4(name, boneTransforms[i]);

16 }

17 shader.setBool("hasAnimation", true);

18 shader.setInt("boneCount", maxBones);

19 } else {

20 shader.setBool("hasAnimation", false);

21 shader.setInt("boneCount", 0);

22 }

23 } else {

24 shader.setBool("hasAnimation", false);

25 shader.setInt("boneCount", 0);

26 }

27 model->render(shader);

28 }� �
Questa funzione effettua il rendering del personaggio: imposta la model matrix e, se è attiva

un’animazione su un modello scheletrato, invia allo shader l’array di matrici ossee boneMatrices[]

(fino a 100). Imposta anche le uniform hasAnimation e boneCount per abilitare lo skin-

ning sul vertex shader. Se non ci sono ossa da animare, disattiva lo skinning.

Alla fine invoca il render del modello.

68

Listing 4.5: Movimento, stati e gestione del pugno� �
1 void Character::Move(const glm::vec3& direction, float speed, float

deltaTime) {

2 if (std::isnan(direction.x) || std::isnan(direction.y) || std::

isnan(direction.z)) return;

3 if (std::isinf(direction.x) || std::isinf(direction.y) || std::

isinf(direction.z)) return;

4 if (currentState == CharacterState::PUNCHING) return;

5 float moveLength = glm::length(direction);

6 if (moveLength > 0.1f) {

7 glm::vec3 normalizedDir = glm::normalize(direction);

8 float moveDistance = speed * deltaTime;

9 position += normalizedDir * moveDistance;

10 if (currentState != CharacterState::WALKING) {

11 StartWalking();

12 }

13 float targetRotation = atan2(normalizedDir.x, normalizedDir.z

);

14 if (!std::isnan(targetRotation) && !std::isinf(targetRotation

)) {

15 float rotDiff = targetRotation - rotation;

16 while (rotDiff > glm::pi<float>()) rotDiff -= 2 * glm::pi

<float>();

17 while (rotDiff < -glm::pi<float>()) rotDiff += 2 * glm::

pi<float>();

18 float rotSpeed = 10.0f;

19 if (abs(rotDiff) > 0.1f) {

20 rotation += rotDiff * rotSpeed * deltaTime;

21 }

22 else {

23 rotation = targetRotation;

24 }

25 }

26 }

27 else {

28 if (currentState == CharacterState::WALKING) {

29 StopWalking();

30 }

31 }

32 }

33

69

34 void Character::StartPunching() {

35 if (currentState != CharacterState::PUNCHING) {

36 previousState = currentState;

37 currentState = CharacterState::PUNCHING;

38 SwitchAnimation(punchAnimation.get());

39 punchAnimation->Reset();

40 m_punchCooldown = 3.0f; // cooldown

41 }

42 }

43 bool Character::HasFinishedPunching() const {

44 return currentState == CharacterState::PUNCHING && punchAnimation

->IsFinished();

45 }

46

47 void Character::ResetToIdle() {

48 currentState = CharacterState::IDLE;

49 SwitchAnimation(idleAnimation.get());

50 m_punchCooldown = 0.0f;

51 m_isVisible = true;

52 m_renderScale = 2.0f;

53 }� �
Il metodo Move nella classe Character.cpp è responsabile della gestione dello spostamento e

dell’orientamento del personaggio in base all’input ricevuto: All’inizio vengono eseguiti con-

trolli di sicurezza per evitare che valori non validi (come NaN o infiniti) possano compromettere

la logica. Se il personaggio si trova nello stato di PUNCHING, lo spostamento viene disabilitato

per impedire movimenti durante l’animazione di attacco.

Se la direzione fornita ha una lunghezza significativa, il vettore viene normalizzato e utilizzato

per calcolare il nuovo spostamento in funzione della velocità e del deltaTime. La posizione

viene aggiornata di conseguenza e, se lo stato corrente non è già WALKING, viene invocato

StartWalking() per avviare l’animazione di camminata.

La rotazione del personaggio viene calcolata a partire dalla direzione di marcia tramite la fun-

zione atan2. Per evitare rotazioni improvvise, la differenza rispetto alla rotazione attuale viene

normalizzata nell’intervallo [−π, π] e applicata gradualmente con un fattore di interpolazione

(rotSpeed), ottenendo un effetto di transizione fluida verso la nuova direzione. Se la diffe-

renza angolare è molto piccola, la rotazione viene aggiornata direttamente al valore target.

Al contrario, se la lunghezza del vettore direzionale è trascurabile, il personaggio viene consi-

derato fermo: in tal caso, se lo stato era WALKING, viene richiamato StopWalking() per

riportarlo allo stato di inattività (IDLE) e interrompere l’animazione di camminata.

70

Listing 4.6: Capsula della mano destra nel world-space� �
1 Capsule Character::GetRightFistCapsuleWorld() const {

2 Capsule cap{ glm::vec3(0), glm::vec3(0), 0.18f * m_renderScale };

3 auto* anim = currentAnimation;

4 auto* animModel = dynamic_cast<AnimatedModel*>(model.get());

5 if (!anim || !animModel) return cap;

6 auto finals = currentAnimation->GetFinalBoneMatrices();

7 const auto& map = animModel->GetBoneInfoMap();

8 auto find = [&](const char* n)->const auto* {

9 auto it = map.find(n); return (it == map.end() ? nullptr : &

it->second);

10 };

11 auto* h = find("mixamorig:RightHand"), * f = find("mixamorig:

RightForeArm");

12 if (!h || !f) return cap;

13

14 glm::mat4 G = glm::inverse(anim->GetGlobalInverseTransform());

15 glm::mat4 Mw = GetModelMatrix();

16

17 glm::mat4 Hw = Mw * (G * finals[h->id] * glm::inverse(h->offset))

;

18 glm::mat4 Fw = Mw * (G * finals[f->id] * glm::inverse(f->offset))

;

19

20 cap.a = glm::vec3(Fw * glm::vec4(0, 0, 0, 1));

21 cap.b = glm::vec3(Hw * glm::vec4(0, 0, 0, 1));

22 return cap;

23 }� �
Qui si costruisce una capsula attorno al polso del personaggio che segue l’animazione del pu-

gno: si recuperano le matrici finali di RightForeArm e RightHand, le si portano in world-

space usando la model matrix e la global inverse transform, e si definiscono le estremità della

capsula nei punti ossei trasformati. Il raggio scala con m renderScale. In questo modo la

hitbox creata sulla mano del personaggio è usata per il test di impatto con gli oggetti (esplosio-

ne), rendendo più realistica l’animazione.

Listing 4.7: Creazione del personaggio� �
1 std::vectorstd::string

2 characterFiles = {

3 "mostro.fbx", "Walking_mostro.fbx", "Idle_mostro.fbx", "Punch_mostro.

71

fbx"

4 };

5

6 for (const std::string& fbxFile : characterFiles) {

7 if (FileUtils::fileExists(fbxFile)) {

8 m_character = std::make_unique<Character>(fbxFile);

9 m_character->SetPosition(glm::vec3(3.0f, -0.8f, 3.0f));

10 break;

11 }

12 }� �
Durante l’inizializzazione dell’applicazione si crea il Character selezionando il primo file

disponibile tra quelli FBX previsti e lo si posiziona nella scena con SetPosition.

In questo modo il personaggio è pronto per essere aggiornato e renderizzato nel game loop.

Listing 4.8: Input di movimento, update e trigger esplosione� �
1 if (m_character) {

2 glm::vec3 moveDirection(0.0f);

3 bool isMoving = false;

4

5 if (m_window->isKeyPressed(GLFW_KEY_UP)) { moveDirection.z -= 1.0f

; isMoving = true; }

6 if (m_window->isKeyPressed(GLFW_KEY_DOWN)) { moveDirection.z += 1.0f

; isMoving = true; }

7 if (m_window->isKeyPressed(GLFW_KEY_LEFT)) { moveDirection.x -= 1.0f

; isMoving = true; }

8 if (m_window->isKeyPressed(GLFW_KEY_RIGHT)) { moveDirection.x += 1.0f

; isMoving = true; }

9

10 if (isMoving) {

11 float length = glm::length(moveDirection);

12 if (length > 0.0001f) {

13 moveDirection = glm::normalize(moveDirection);

14 m_character->Move(moveDirection, 2.5f, deltaTime);

15 glm::vec3 p = m_character->GetPosition();

16 p.y = -0.85f;

17 p.x = glm::clamp(p.x, -20.0f, 20.0f);

18 p.z = glm::clamp(p.z, -20.0f, 20.0f);

19 m_character->SetPosition(p);

20 }

21 } else {

72

22 m_character->Move(glm::vec3(0.0f), 0.0f, deltaTime);

23 }

24

25 m_character->Update(deltaTime);

26

27 bool nearBuilding = m_character->IsNearBuilding(glm::vec3(0.0f, 0.0f,

0.0f), 3.0f);

28 if (m_character->GetState() == CharacterState::WALKING &&

29 nearBuilding && m_stateManager && m_stateManager->isIntact()) {

30 m_character->InteractWithBuilding(); // avvia il punch

31 }

32

33 if (m_character->GetState() == CharacterState::PUNCHING) {

34 Capsule fist = m_character->GetRightFistCapsuleWorld();

35 AABB buildingAABB = /* AABB world del palazzo */;

36 glm::vec3 hitPoint;

37 if (CapsuleVsAABB(fist, buildingAABB, hitPoint)) {

38 m_stateManager->triggerExplosion(); // esplosione immediata

39 }

40 }

41

42 if (m_character->HasFinishedPunching()) {

43 m_character->ResetToIdle();

44 }

45 }� �
Nel ciclo di aggiornamento il programma cattura lo stato delle frecce direzionali della tastiera

e costruisce un vettore di movimento che rappresenta la direzione desiderata. Se almeno una

freccia è premuta, questo vettore viene normalizzato in modo da garantire una velocità uniforme

in qualunque direzione, evitando che spostarsi in diagonale risulti più rapido che muoversi in

linea retta. Successivamente viene invocato il metodo Move, che aggiorna la posizione del per-

sonaggio in funzione della direzione normalizzata, della velocità prefissata e del deltaTime,

assicurando uno spostamento regolare e indipendente dal framerate. Dopo lo spostamento, la

posizione viene vincolata all’interno dei limiti della scena tramite un’operazione di clamping

sugli assi orizzontali, mentre l’altezza viene mantenuta costante sul piano di base, cosı̀ da garan-

tire che il personaggio rimanga correttamente ancorato al terreno virtuale. Nel caso in cui non

vi siano input da tastiera, Move viene comunque richiamato con un vettore nullo, provocando

la transizione automatica allo stato di inattività.

Una volta aggiornati movimento e posizione, il metodo Update si occupa di far avanzare

l’animazione corrente e di gestire i cambiamenti di stato, come eventuali cooldown o il pas-

73

saggio tra camminata e idle. A questo punto viene verificata la distanza dal palazzo: se il

personaggio si trova abbastanza vicino ed è nello stato di camminata, viene richiamata la fun-

zione InteractWithBuilding(), che avvia l’animazione di pugno e imposta lo stato a

PUNCHING. Durante questa fase viene calcolata la capsula corrispondente al braccio destro

in world space, comprendente mano e avambraccio, e viene eseguito un test di collisione con

la bounding box dell’edificio. Nel momento in cui la capsula del pugno interseca l’AABB,

viene invocata la funzione triggerExplosion(), che scatena la simulazione fisica della

frantumazione del palazzo. Al termine dell’animazione di attacco, grazie al controllo forni-

to da HasFinishedPunching(), il personaggio torna automaticamente nello stato di idle,

pronto a ricevere nuovi input dall’utente e a ripetere l’interazione.

74

4.5 Creazione della scena: skybox e posizionamento degli ele-
menti

La costruzione della scena rappresenta il momento in cui vengono definiti il contesto grafico e

gli elementi interattivi che compongono l’ambiente di simulazione.

In questa fase si creano la finestra di rendering, lo skybox che funge da sfondo, gli oggetti sta-

tici della scena (come il palazzo e altri modelli in formato .obj) e il personaggio animato che

interagisce con essi.

Caricamento della scena (Window e Application)

La prima fase riguarda la creazione della finestra e l’inizializzazione del contesto OpenGL:

questa operazione è gestita dalla classe Window, che utilizza la libreria GLFW per la creazione

della finestra e GLAD per il caricamento dinamico delle funzioni OpenGL.

All’interno del costruttore vengono impostate le versioni del contesto, la possibilità di ridimen-

sionamento e il multisampling per migliorare la qualità grafica.

Listing 4.9: Inizializzazione della finestra con GLFW e GLAD� �
1 bool Window::initialize() {

2 if (!glfwInit()) return false;

3 glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 4);

4 glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);

5 glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

6 glfwWindowHint(GLFW_RESIZABLE, GLFW_TRUE);

7 glfwWindowHint(GLFW_SAMPLES, 4);

8

9 m_window = glfwCreateWindow(m_width, m_height, m_title.c_str(),

nullptr, nullptr);

10 if (!m_window) { glfwTerminate(); return false; }

11

12 glfwMakeContextCurrent(m_window);

13 if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) return

false;

14

15 glEnable(GL_DEPTH_TEST);

16 glEnable(GL_MULTISAMPLE);

17 glViewport(0, 0, m_width, m_height);

18 glfwSwapInterval(1); // VSync

19 return true;

20 }� �
75

Questo metodo si occupa di configurare l’ambiente grafico: vengono inizializzate le librerie, la

finestra viene creata secondo parametri precisi con il contesto OpenGL 4.3, abilitate le opzioni

di depth test e multisampling, e attivato il VSync per limitare gli FPS alla frequenza di aggior-

namento del monitor. In questo modo l’applicazione dispone di una base solida per ospitare il

rendering della scena.

Skybox

Per contestualizzare visivamente la scena è stato utilizzato uno skybox, ovvero un cubo che cir-

conda l’intero ambiente e al quale vengono applicate sei texture (una per faccia) che simulano

il cielo e l’orizzonte. Lo skybox utilizzato per questo progetto, rappresentante un paesaggio

urbano coerente all’idea di sviluppo, è stato reperito dal sito OpenGameArt.org [25] : Do-

po il download del file .zip, il contenuto viene estratto e collocato in una nuova sottocartella

chiamata “skybox” all’interno della directory di progetto; in questa cartella sono presenti i sei

file .jpeg, ciascuno corrispondente a un’angolazione specifica dello skybox. La classe Skybox

gestisce sia la costruzione della geometria sia il caricamento delle immagini che costituiscono

il cubemap.

Listing 4.10: Inizializzazione dello skybox e caricamento delle texture� �
1 bool Skybox::initialize(const std::vector<std::string>& faces) {

2 setupSkyboxGeometry();

3 createSkyboxShader();

4 m_cubemapTexture = loadCubemap(faces);

5 return m_cubemapTexture != 0;

6 }

7

8 void Skybox::render(const glm::mat4& view, const glm::mat4&

projection) {

9 glDepthFunc(GL_LEQUAL);

10 m_skyboxShader->use();

11 glm::mat4 viewNoTranslation = glm::mat4(glm::mat3(view));

12 m_skyboxShader->setMat4("view", viewNoTranslation);

13 m_skyboxShader->setMat4("projection", projection);

14 glBindVertexArray(m_VAO);

15 glBindTexture(GL_TEXTURE_CUBE_MAP, m_cubemapTexture);

16 glDrawArrays(GL_TRIANGLES, 0, 36);

17 glBindVertexArray(0);

18 glDepthFunc(GL_LESS);

19 }� �
76

Il metodo initialize della classe Skybox ha il compito di predisporre tutti gli elementi

necessari per la creazione dello sfondo tridimensionale: in primo luogo viene invocata la fun-

zione setupSkyboxGeometry(), che definisce la geometria del cubo attraverso un array di

vertici: le sei facce dello skybox sono infatti costruite come due triangoli ciascuna, per un totale

di 36 vertici. Questo approccio consente di rappresentare un cubo unitario senza coordinate

texture tradizionali, poiché le immagini verranno applicate direttamente come cubemap. Suc-

cessivamente viene creato e compilato lo shader dedicato allo skybox, composto da un vertex

shader e da un fragment shader, il cui compito è quello di gestire correttamente la proiezione

del cubo e la visualizzazione delle texture.

Il passo successivo riguarda il caricamento delle sei immagini che compongono la cubemap:

la funzione loadCubemap si occupa di associare ogni immagine ad una faccia del cubo (po-

sitive/negative X , Y e Z). Le immagini vengono lette con la libreria stb image [35][35] e

caricate in OpenGL tramite chiamate a glTexImage2D, specificando il formato corretto in

base al numero di canali (RGB o RGBA). Per migliorare la resa grafica vengono poi impostati i

parametri di filtraggio (GL LINEAR) e di wrapping (GL CLAMP TO EDGE), cosı̀ da evitare ar-

tefatti visivi sui bordi delle facce. Infine, viene generata una mipmap del cubemap per garantire

una resa ottimale anche quando la scena è visualizzata a distanze diverse.

Per la fase di rendering invece, la funzione render riceve in ingresso le matrici di vista e pro-

iezione della camera. Prima del disegno viene modificata la funzione di profondità (nel codice

presente è glDepthFunc(GL LEQUAL)) per garantire che lo skybox sia sempre disegnato

correttamente anche quando gli oggetti della scena si trovano nello stesso piano di profondità.

La matrice di vista viene poi trasformata eliminando la componente di traslazione: questo ac-

corgimento è fondamentale, perché consente allo skybox di ruotare insieme alla telecamera ma

di non seguire mai i suoi spostamenti.

In questo modo il cubo rimane sempre centrato sull’osservatore e appare quindi infinito, crean-

do l’illusione di un ambiente che si estende all’infinito attorno alla scena. Dopo aver impostato

le variabili uniform necessarie nello shader, viene eseguita la chiamata glDrawArrays che

disegna i 36 vertici dello skybox, applicando la texture cubemap caricata in precedenza.

Infine, la funzione di profondità viene ripristinata al valore predefinito (GL LESS) per consen-

tire il rendering corretto degli oggetti successivi nella scena.

77

Posizionamento di oggetti e personaggio

Gli oggetti che compongono la scena (palazzo, albero, cabina telefonica e bus) vengono caricati

da file .obj tramite la classe Model. Questa utilizza Assimp per importare le geometrie e

associa i materiali definiti nei file .mtl. Una volta importati, i modelli vengono scalati, traslati

e ruotati per essere posizionati correttamente rispetto al piano di gioco.

Listing 4.11: Caricamento e posizionamento di un modello� �
1 glm::mat4 buildingModelMatrix = glm::mat4(1.0f);

2 buildingModelMatrix = glm::translate(buildingModelMatrix, glm::vec3

(0.0f, -0.9f, 0.0f));

3 buildingModelMatrix = glm::rotate(buildingModelMatrix, glm::radians

(180.0f), glm::vec3(0.0f, 1.0f, 0.0f));

4 buildingModelMatrix = glm::scale(buildingModelMatrix, glm::vec3(1.2f,

1.6f, 1.2f));� �
In questo esempio il modello del palazzo, precedentemente caricato da file, viene posizionato

all’interno della scena e scalato secondo valori specifici per renderlo coerente con il resto degli

oggetti. Procedure analoghe vengono applicate agli altri oggetti, garantendo coerenza nelle

proporzioni e nella disposizione spaziale.

Il personaggio animato, importato da Mixamo, viene invece gestito dalla classe Character,

che integra modello e animazioni. Il posizionamento iniziale avviene al centro della scena, da

cui il personaggio può muoversi in direzione degli oggetti con i comandi da tastiera, restando

sempre all’interno del piano di gioco.

Listing 4.12: Inizializzazione del personaggio nella scena� �
1 std::cout << "Loading character..." << std::endl;

2 std::vector<std::string> characterFiles = { "mostro.fbx", "

Walking_mostro.fbx", "Idle_mostro.fbx", "Punch_mostro.fbx" };

3

4 for (const std::string& fbxFile : characterFiles) {

5 if (FileUtils::fileExists(fbxFile)) {

6 try {

7 m_character = std::make_unique<Character>(fbxFile);

8 m_character->SetPosition(glm::vec3(3.0f, -0.8f, 3.0f));

9 std::cout << "Character loaded successfully: " << fbxFile

<< std::endl;

10 break;

11 }

12 catch (const std::exception& e) {

13 std::cerr << "Failed to load " << fbxFile << ": " << e.

what() << std::endl;

78

14 }

15 }

16 }� �
In questo frammento di codice viene gestito il caricamento del personaggio animato: viene defi-

nito un vettore contenente i percorsi ai file .fbx necessari: il modello principale (mostro.fbx)

e le animazioni fondamentali per il suo funzionamento, cioè Walking, Idle e Punch. Questi

file rappresentano rispettivamente la mesh del personaggio e le tre animazioni che ne descrivo-

no i comportamenti base.

Il ciclo for scorre la lista dei file e, per ciascuno, verifica innanzitutto la presenza del file sul

disco tramite la funzione FileUtils::fileExists. In caso positivo, prova a creare una

nuova istanza di Character, passando come parametro il file corrente. L’uso di un blocco

try-catch consente di gestire eventuali eccezioni generate durante la fase di caricamento, ad

esempio dovute a file corrotti o incompatibili: se il caricamento ha successo, viene stampato un

messaggio di conferma con il nome del file e il ciclo viene interrotto; al contrario, se si verifica

un errore, l’eccezione viene catturata e viene stampato un messaggio che specifica quale file

non è stato caricato e la causa del fallimento.

Una volta creato con successo, il personaggio viene posizionato nella scena con la chiama-

ta SetPosition, che ne definisce le coordinate iniziali nella scena (x=3.0, y=-0.8, z=3.0).

Questo posizionamento leggermente decentrato rispetto al palazzo e agli oggetti premette di

predisporre il personaggio all’interazione: muovendosi nella scena, potrà avvicinarsi agli og-

getti e, grazie alle animazioni collegate, eseguire i movimenti di camminata e il colpo di pugno

che scatena l’esplosione.

79

4.6 Funzionalità varie: comandi da tastiera e gestione della
camera

L’interattività del simulatore si basa sulla possibilità per l’utente di muoversi liberamente nella

scena e di attivare eventi particolari, come le esplosioni. Questa funzionalità è stata ottenuta

grazie all’integrazione tra la classe InputHandler, che gestisce la pressione dei tasti e dei

relativi callback, e la classe Camera, che si occupa del movimento e dell’orientamento della

telecamera. In questo modo l’utente può navigare nello spazio tridimensionale e interagire con

gli oggetti in maniera naturale e reattiva.

Gestione degli input da tastiera

La classe InputHandler inizializza i binding di default e associa ogni tasto ad un’azione. Al-

cuni tasti gestiscono movimenti continui (come W, A, S, D), altri invece attivano eventi singoli

(come la stampa di debug o il reset della scena).

Listing 4.13: Inizializzazione dei key bindings� �
1 void InputHandler::setupDefaultKeyBindings() {

2 // Movement keys (continuous)

3 addKeyBinding(GLFW_KEY_W, InputAction::MOVE_FORWARD, false);

4 addKeyBinding(GLFW_KEY_S, InputAction::MOVE_BACKWARD, false);

5 addKeyBinding(GLFW_KEY_A, InputAction::MOVE_LEFT, false);

6 addKeyBinding(GLFW_KEY_D, InputAction::MOVE_RIGHT, false);

7 addKeyBinding(GLFW_KEY_SPACE, InputAction::MOVE_UP, false);

8 addKeyBinding(GLFW_KEY_LEFT_SHIFT, InputAction::MOVE_DOWN, false)

;

9

10 // Toggle keys (single press)

11 addKeyBinding(GLFW_KEY_C, InputAction::TOGGLE_CAMERA, true);

12 addKeyBinding(GLFW_KEY_F, InputAction::TOGGLE_FULLSCREEN, true);

13

14 // Action keys (single press)

15 addKeyBinding(GLFW_KEY_R, InputAction::RESET_EXPLOSION, true);

16 addKeyBinding(GLFW_KEY_ESCAPE, InputAction::EXIT_APPLICATION,

true);

17

18 // Debug keys

19 addKeyBinding(GLFW_KEY_I, InputAction::DEBUG_INFO, true);

20 }� �
80

In questo frammento vengono definiti i tasti di movimento e di interazione: i primi (W, A, S,

D, Space, Shift) sono gestiti come input continui, ovvero rimangono attivi finché il tasto è

premuto (per avere un movimento fluido e non a scatti).

Al contrario, i tasti per le azioni (R, ESC, I) sono interpretati come input singoli e scatenano

immediatamente l’evento collegato.

La gestione degli eventi viene completata tramite callback, che collegano ogni azione a una

funzione.

Listing 4.14: Esempio di callback per i tasti azione� �
1 setActionCallback(InputAction::TOGGLE_FULLSCREEN, [this]() {

2 if (m_window) {

3 std::cout << "Toggling fullscreen..." << std::endl;

4 m_window->toggleFullscreen();

5 }

6 });

7

8 setActionCallback(InputAction::TOGGLE_CAMERA, [this]() {

9 toggleCameraControl();

10 });� �
Il primo callback collega il tasto F alla funzione toogleFullscreen() passando cosı̀ dalla

modalità finestra alla modalità schermo intero, mentre il secondo esempio mostra invece come

il tasto C abiliti o disabiliti il controllo della telecamera, alternando tra modalità libera e moda-

lità bloccata.

Funzionamento della Camera

La classe Camera gestisce la posizione e l’orientamento nello spazio tridimensionale. Essa cal-

cola due matrici fondamentali: la matrice di vista, che definisce l’orientamento e la posizione

della telecamera, e la matrice di proiezione, che determina la distorsione prospettica.

Listing 4.15: Calcolo delle matrici di vista e proiezione� �
1 glm::mat4 Camera::getViewMatrix() const {

2 return glm::lookAt(m_position, m_position + m_front, m_up);

3 }

4

5 glm::mat4 Camera::getProjectionMatrix(float aspectRatio, float

nearPlane, float farPlane) const {

6 return glm::perspective(glm::radians(m_zoom), aspectRatio,

nearPlane, farPlane);}� �
81

La matrice di vista viene costruita con la funzione glm::lookAt, che utilizza la posizione

della camera, la direzione di osservazione (m front) e il vettore up. La matrice di proiezione

sfrutta invece la funzione glm::perspective, che applica una proiezione prospettica para-

metrizzata dal campo visivo (zoom), dal rapporto d’aspetto della finestra e dai piani di clipping

vicino/lontano.

Per rendere la telecamera reattiva, sono implementati metodi che gestiscono i movimenti tramite

tastiera e mouse.

Listing 4.16: Movimento della telecamera da tastiera� �
1 void Camera::processKeyboard(Camera_Movement direction, float

deltaTime) {

2 float velocity = m_movementSpeed * deltaTime;

3

4 switch (direction) {

5 case FORWARD: m_position += m_front * velocity; break;

6 case BACKWARD: m_position -= m_front * velocity; break;

7 case LEFT: m_position -= m_right * velocity; break;

8 case RIGHT: m_position += m_right * velocity; break;

9 case UP: m_position += m_worldUp * velocity; break;

10 case DOWN: m_position -= m_worldUp * velocity; break;

11 }

12 }� �
Questo metodo sposta la telecamera nelle direzioni fondamentali (avanti, indietro, destra, sini-

stra, alto, basso) in base ai tasti premuti (W, S, D, A, SPACE, SHIFT) e al tempo trascorso,

garantendo un movimento fluido indipendente dal framerate.

I movimenti del mouse invece influenzano gli angoli di rotazione (yaw e pitch), permettendo di

orientare la visuale.

Listing 4.17: Gestione del movimento del mouse� �
1 void Camera::processMouseMovement(float xpos, float ypos, bool

constrainPitch) {

2 if (m_firstMouse) {

3 m_lastX = xpos; m_lastY = ypos;

4 m_firstMouse = false;

5 }

6

7 float xoffset = xpos - m_lastX;

8 float yoffset = m_lastY - ypos; // y invertito

82

9 m_lastX = xpos; m_lastY = ypos;

10

11 xoffset *= m_mouseSensitivity;

12 yoffset *= m_mouseSensitivity;

13

14 m_yaw += xoffset;

15 m_pitch += yoffset;

16

17 if (constrainPitch) {

18 m_pitch = clamp(m_pitch, -89.0f, 89.0f);

19 }

20

21 updateCameraVectors();

22 }� �
In questo metodo viene gestito l’aggiornamento dell’orientamento della telecamera in base ai

movimenti del mouse: alla prima chiamata viene inizializzato lo stato del mouse, salvando le

coordinate iniziali per evitare scatti improvvisi della visuale. Successivamente si calcolano gli

offset orizzontali e verticali, ossia la differenza tra la posizione attuale e quella precedente del

cursore, tenendo conto che in ambiente grafico l’asse verticale ha un orientamento invertito.

Gli offset vengono scalati con un coefficiente di sensibilità, in modo da regolare la velocità di ro-

tazione della telecamera. A questo punto i valori vengono sommati agli angoli yaw e pitch, che

rappresentano rispettivamente la rotazione orizzontale e quella verticale. Per prevenire ribalta-

menti indesiderati della visuale, il pitch viene limitato all’intervallo [−89◦, 89◦], impedendo alla

telecamera di ruotare completamente verso l’alto o il basso. Infine, viene invocata la funzione

updateCameraVectors(), che ricalcola i vettori direzionali della telecamera (front, right,

up) sulla base dei nuovi angoli, assicurando che la scena venga renderizzata correttamente se-

condo il nuovo orientamento.

Abilitazione e disabilitazione della telecamera

Il controllo della telecamera può essere attivato o disattivato tramite il tasto C, che attiva o

disattiva il controllo della telecamera, nascondendo il cursore e abilitando il movimento con il

mouse quando attivo. Questo comportamento è implementato nella funzione seguente:

Listing 4.18: Attivazione e disattivazione del controllo camera� �
1 void InputHandler::setCameraEnabled(bool enabled) {

2 m_cameraEnabled = enabled;

3

4 if (m_window) {

83

5 if (enabled) {

6 m_window->setCursorMode(GLFW_CURSOR_DISABLED);

7 if (m_camera) {

8 m_camera->resetMouseState();

9 }

10 std::cout << "Camera control enabled" << std::endl;

11 }

12 else {

13 m_window->setCursorMode(GLFW_CURSOR_NORMAL);

14 std::cout << "Camera control disabled" << std::endl;

15 }

16 }

17 }� �
Questa funzione permette di abilitare o disabilitare il controllo della telecamera tramite mouse:

quando viene attivata, il cursore del mouse viene nascosto e bloccato al centro della finestra:

in questo stato i movimenti del mouse vengono catturati interamente per aggiornare l’orienta-

mento della telecamera, garantendo all’utente la possibilità di ruotare liberamente lo sguardo

nello spazio 3D. Inoltre, lo stato interno della camera viene azzerato per evitare salti improvvisi

all’attivazione. Quando invece il controllo viene disabilitato, il cursore torna visibile e può muo-

versi liberamente all’interno della finestra senza modificare la visuale. Questo comportamento

è utile, ad esempio, quando si desidera interagire con l’interfaccia o fermare temporaneamente

la simulazione.

Tasto Azione
W Muovi la telecamera in avanti
S Muovi la telecamera indietro
A Muovi la telecamera a sinistra
D Muovi la telecamera a destra

SPACE Muovi la telecamera verso l’alto
SHIFT Muovi la telecamera verso il basso

R Resetta la scena (palazzo integro)
I Mostra informazioni di debug

ESC Esci dall’applicazione
C Abilita/disabilita il controllo della telecamera (mouse)
F Attiva/disattiva la modalità fullscreen
P Commutazione tra fisica su CPU e GPU

Tabella 4.1: Mappatura dei comandi da tastiera nel simulatore

Grazie all’integrazione tra la gestione degli input e la telecamera, il simulatore permette un’in-

terazione fluida e intuitiva, consentendo all’utente di muoversi liberamente nello spazio 3D.

84

4.7 Gestione delle collisioni e Bounding Box

In questa sezione si descrivono le procedure per la getione delle collisioni e le strutture geome-

triche utilizzate nel simulatore. Per gli oggetti statici viene adottata una Axis-Aligned Boun-
ding Box (AABB) definita da centro ed estensioni lungo i semiassi, mentre per il pugno del

personaggio viene utilizzata una capsula (segmento con raggio) allineata all’animazione. La

libreria include utility per trasformare AABB locali in world space tenendo conto di rotazioni e

scale non uniformi, e per visualizzare le bounding box in wireframe per il debug e test discreti di

collisione capsule–AABB e test continui “swept” per gestire colpi veloci (time-of-impact). Infi-

ne, sono presenti anche utility per una risoluzione minima di penetrazione tra AABB (push-out).

L’integrazione avviene nella classe Application con il calcolo degli AABB locali dai mo-

delli, il toggle runtime della visualizzazione e l’uso dei test durante l’interazione pugno →
esplosione.

AABB: struttura dati e trasformazione in spazio mondo

Listing 4.19: Struttura AABB e trasformazione locale→mondo� �
1 struct AABB { // center + half-extents

2 glm::vec3 c; // center

3 glm::vec3 e; // half-extents

4 };

5

6 // Converte un AABB locale in world-space (gestisce rotazione e scala

non-uniforme)

7 inline AABB ToWorldAABB(const AABB& local, const glm::mat4& M) {

8 glm::vec3 C = glm::vec3(M * glm::vec4(local.c, 1.0f));

9 glm::mat3 R = glm::mat3(M);

10 glm::mat3 AR = glm::mat3(glm::abs(R[0]), glm::abs(R[1]), glm::abs

(R[2]));

11 glm::vec3 E = AR * local.e;

12 return { C, E };

13 }� �
L’AABB è rappresentata dal centro c e dalle semi-estensioni e. La trasformazione in world-

space calcola il nuovo centro come C = M [c, 1]T mentre le nuove estensioni sono ottenute

come E = |R| e, dove R è la parte 3× 3 derivata dalla matrice di modello M e |R| è la matrice

con i valori assoluti delle colonne. Questo metodo, una tecnica standard, permette di incorpo-

rare rotazioni e scale non uniformi mantenendo l’AABB allineata agli assi, ottenendo cosı̀ un

85

bounding box “abbastanza stretto” attorno al modello trasformato.

Debug: Disegno Wireframe delle AABB

Listing 4.20: Model matrix per AABB e disegno wireframe� �
1 inline glm::mat4 AABBModelMatrix(const AABB& w) {

2 return glm::translate(glm::mat4(1.0f), w.c) * glm::scale(glm::

mat4(1.0f), w.e * 2.0f);

3 }

4

5 // Disegna un AABB come cubo wireframe, usando renderCube

6 inline void DrawAABB_Wire(

7 const AABB& wbox, const glm::vec3& color,

8 const glm::mat4& view, const glm::mat4& proj,

9 const std::function<void(const glm::mat4&, const glm::mat4&,

const glm::mat4&, const glm::vec3&)>& renderCube)

10 {

11 glDisable(GL_CULL_FACE);

12 glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);

13 renderCube(AABBModelMatrix(wbox), view, proj, color);

14 glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);

15 glEnable(GL_CULL_FACE);

16 }� �
Per il debug, ogni AABB in world-space viene rappresentata come cubo unitario scalato alle

dimensioni 2e (dove e è la semi-estensione) e traslato in c. La funzione DrawAABB Wire im-

posta la modalità wireframe (poligoni contornati da linee) , e affida la draw call a un callback,

renderCube, che utilizza le matrici M, V, P e un colore a scelta . Ciò consente di ispezionare

rapidamente ingombri, offset e correttezza delle trasformazioni.

Test Capsula–AABB (pugno del personaggio sugli oggetti)

Listing 4.21: Capsula, punto più vicino su AABB e test discreto� �
1 struct Capsule { glm::vec3 a, b; float r; }; // segmento AB + raggio

2

3 inline glm::vec3 ClosestPointOnAABB(const glm::vec3& p, const AABB& b

){

4 glm::vec3 minB = b.c - b.e, maxB = b.c + b.e;

5 return glm::clamp(p, minB, maxB);

6 }

86

7

8 inline bool CapsuleVsAABB(const Capsule& cap, const AABB& box, glm::

vec3& contact){

9 const int N = 8; float best = 1e9f;

10 glm::vec3 bestP(0);

11 for(int i=0;i<=N;i++){

12 float t = i*(1.0f/N);

13 glm::vec3 p = glm::mix(cap.a, cap.b, t);

14 glm::vec3 q = ClosestPointOnAABB(p, box);

15 float d2 = glm::dot(p - q, p - q);

16 if(d2<best){ best=d2; bestP=q; }

17 }

18 contact = bestP;

19 return best <= cap.r*cap.r;

20 }� �
Il pugno è modellato come una capsula, cioè un segmento tra mano e avambraccio con un rag-

gio, allineato all’animazione. Il test discreto campiona N + 1 punti lungo il segmento ab e, per

ciascuno di essi, calcola il punto più vicino sull’AABB. Se la minima distanza al quadrato è

minore o uguale a r2, c’è contatto e viene restituito anche un punto di contatto approssimato.

Questa procedura è robusta, semplice da calcolare in parallelo e sufficiente per attivare l’evento

di esplosione.

Collisioni continue (swept) per colpi veloci

Listing 4.22: Time-of-impact con capsula swept� �
1 inline bool SweptCapsuleVsAABB(const Capsule& prev, const Capsule&

curr, const AABB& box, float& toi, glm::vec3& contact) {

2 // Approccio conservativo a passi temporali: robusto per colpi

veloci

3 const int STEPS = 12;

4 Capsule c; c.r = curr.r; // raggio costante tra i due frame

5

6 // Controllo iniziale (t = 0)

7 glm::vec3 hit0;

8 if (CapsuleVsAABB(prev, box, hit0)) { toi = 0.0f; contact = hit0;

return true; }

9

10 for (int i = 1; i <= STEPS; ++i) {

11 float t = float(i) / float(STEPS);

87

12 c.a = glm::mix(prev.a, curr.a, t);

13 c.b = glm::mix(prev.b, curr.b, t);

14 glm::vec3 h;

15 if (CapsuleVsAABB(c, box, h)) {

16 toi = t;

17 contact = h;

18 return true;

19 }

20 }

21 return false;

22 }� �
Per evitare il tunneling con movimenti rapidi tra due frame (ad es. un pugno veloce che “sal-

ta” l’oggetto), viene impiegato un test swept che interpola linearmente la capsula dallo stato

precedente a quello corrente in ”STEPS” sotto-campionamenti. Appena si verifica un contatto

si ritorna il time-of-impact t ∈ [0, 1] e un punto di contatto. Aumentare STEPS migliora la

robustezza (a scapito del costo).

AABB–AABB: rilevazione e vettore minimo di separazione

Listing 4.23: Overlap AABB–AABB con push-out su asse minimo� �
1 inline bool AABBvsAABB_Resolve(const AABB& A, const AABB& B, glm::

vec3& push){

2 glm::vec3 d = A.c - B.c;

3 glm::vec3 o = (A.e + B.e) - glm::abs(d); // overlap su assi

4 if (o.x<=0 || o.y<=0 || o.z<=0){ push=glm::vec3(0); return false;

}

5 // scelgo l’asse con overlap minore

6 if (o.x < o.y && o.x < o.z) {

7 push = glm::vec3((d.x<0?-o.x:o.x), 0, 0);

8 } else if (o.y < o.z) {

9 push = glm::vec3(0, (d.y<0?-o.y:o.y), 0);

10 } else{

11 push = glm::vec3(0, 0, (d.z<0?-o.z:o.z));

12 } return true;

13 }� �

88

L’overlap tra due AABB in world-space viene calcolato asse per asse: se su almeno un asse

non c’è intersezione, non vi è collisione. In caso contrario si sceglie l’asse con penetrazione

minima e si restituisce un vettore push da applicare come push-out che separa gli oggetti con

la minima correzione possibile. Questo metodo è utile per stabilizzare gli appoggi o per evitare

che il personaggio attraversi un oggetto.

Integrazione nell’applicazione: AABB locali, piano di base e toggle debug

Listing 4.24: Calcolo degli AABB locali dai modelli� �
1 auto MakeLocalAABB = [](const Model* m) -> AABB {

2 glm::vec3 minB, maxB;

3 m->getModelMinMax(minB, maxB); // <-- nuovo

4 AABB a;

5 a.c = (minB + maxB) * 0.5f; // centro = (min+max)/2

6 a.e = (maxB - minB) * 0.5f; // half-extents = (max-min)/2

7 return a;

8 };

9

10 if (m_buildingModel) m_buildingLocalAABB = MakeLocalAABB(

m_buildingModel.get());

11 if (m_treeModel) m_treeLocalAABB = MakeLocalAABB(

m_treeModel.get());

12 if (m_busModel) m_busLocalAABB = MakeLocalAABB(

m_busModel.get());

13 if (m_phoneBoothModel) m_phoneLocalAABB = MakeLocalAABB(

m_phoneBoothModel.get());

14 if (m_character && m_character->GetModelPtr())

15 m_characterLocalAABB = MakeLocalAABB(m_character->GetModelPtr());� �
Durante l’inizializzazione, per ogni modello viene estratto l’ingombro assegnando centro ed

estensioni direttamente dal min /max dei vertici in spazio locale. Questi AABB locali vengono

poi trasformati frame-by-frame in world space tramite ToWorldAABB usando la rispettiva

model matrix, cosı̀ da eseguire i test di collisione e (opzionalmente) disegnarli in overlay tramite

la pressione del tasto B della tastiera.

89

Listing 4.25: AABB del piano di base e toggle visuale AABB (tasto B)� �
1 m_groundLocalAABB.c = glm::vec3(0.0f, 0.0f, 0.0f); // Centro

2 m_groundLocalAABB.e = glm::vec3(1.0f, 1.0f, 1.0f); // Half-extents:

da -1 a +1

3

4 // === DEBUG BOUNDS TOGGLE (tasto B) ===

5 {

6 bool bPressed = m_window->isKeyPressed(GLFW_KEY_B);

7 if (bPressed && !m_prevB) {

8 m_drawBounds = !m_drawBounds;

9 std::cout << "[DEBUG] Bounding boxes: " << (m_drawBounds ? "

ON" : "OFF") << std::endl;

10 }

11 m_prevB = bPressed;

12 }� �
Il piano di base è modellato come AABB unitario locale (poi scalato con la propria model ma-

trix); ciò consente collisioni/poggi con gli altri elementi. A runtime, la pressione del tasto B

abilita/disabilita la visualizzazione delle AABB di scena, utile per tarare scale, offset e validare

i test di collisione in fase di debug.

Aggiunta sull’integrazione con gli eventi di simulazione

Durante l’interazione, quando la capsula del pugno interseca l’AABB di un oggetto (edificio,

albero, bus, cabina), viene attivato l’evento corrispondente, cioè l’esplosione dell’oggetto se-

lezionato. Successivamente, si passa allo stato fisico appropriato (con fisica attiva su GPU o

CPU) per gestire l’animazione della frammentazione. La scelta tra l’utilizzo della CPU o della

GPU per questa funzionalità, con impostazione di default su GPU, avviene tramite il tasto P.

Figura 4.13: Visualizzazione dei BBox degli elementi presenti in scena.

90

4.8 Compute Shader e fisica dell’esplosione

Questa sezione descrive com’è stata realizzata la fisica in tempo reale dei frammenti tramite

compute shader OpenGL 4.3 (GLSL). L’idea alla base è spostare il calcolo delle forze (gravità,

spinta esplosiva, smorzamento) e degli aggiornamenti di stato (posizione, velocità, integrazione

nel tempo, collisione col suolo) in un kernel GPU che lavora in parallelo sui frammenti. Il lato

C++ si occupa di compilare e collegare il compute shader, allocare e popolare i buffer (parame-

tri fisici in UBO, dati dei frammenti e trasformazioni istanziate in SSBO), aggiornare i parametri

a ogni frame, lanciare il kernel (glDispatchCompute) e sincronizzare con barriere di me-

moria. Trigger e preset fisici sono stati gestiti all’interno della classe PhysicsSystem.

Architettura generale: pipeline compute e gestione shader

Il compute shader viene caricato da file (compute physics.glsl), compilato e linkato nel

programma OpenGL dedicato. L’inizializzazione crea inoltre i buffer per parametri e dati.

Il calcolo viene poi lanciato ogni frame con un numero di work groups proporzionale al numero

di frammenti. Il lato C++ calcola i gruppi come ⌈N/32⌉, dato che il local size x nello sha-

der è 32; dopo il dispatch viene inserita una glMemoryBarrier per garantire la visibilità

delle scritture su SSBO/UBO al resto della pipeline.

Listing 4.26: Caricamento, compilazione, creazione UBO e dispatch del compute shader� �
1 bool ComputeShader::initialize() {

2 if (loadFromFile("compute_physics.glsl")) {

3 createBuffers(); // UBO dei parametri fisici

4 m_initialized = true;

5 return true;

6 }

7 return false;

8 }

9

10 void ComputeShader::createBuffers() {

11 glGenBuffers(1, &m_paramsUBO);

12 glBindBuffer(GL_UNIFORM_BUFFER, m_paramsUBO);

13 glBufferData(GL_UNIFORM_BUFFER, sizeof(PhysicsParams), &

m_physicsParams, GL_DYNAMIC_DRAW);

14 glBindBufferBase(GL_UNIFORM_BUFFER, 0, m_paramsUBO); // UBO

15 glBindBuffer(GL_UNIFORM_BUFFER, 0);

16 }

17

18

19 void ComputeShader::dispatch() {

91

20 if (!m_initialized || m_numFragments == 0) return;

21

22 glUseProgram(m_computeProgram);

23 glBindBufferBase(GL_UNIFORM_BUFFER, 0, m_paramsUBO);

24 glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 1, m_fragmentsSSBO);

// SSBO frammenti

25 if (m_instanceSSBO) glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 2,

m_instanceSSBO);

26

27 GLuint numGroups = (m_numFragments + 31) / 32; // ceil(N/32)

28 glDispatchCompute(numGroups, 1, 1);

29

30 glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT |

GL_BUFFER_UPDATE_BARRIER_BIT);

31 }� �
Questa parte di codice mostra le tre fasi principali: (1) inizializzazione e compilazione del

compute shader; (2) creazione dell’ UBO dei parametri fisici (binding 0); (3) lancio del kernel

con i buffer necessari a bordo (SSBO per i frammenti a binding 1 e, se presente, l’SSBO per

l’instanced rendering a binding 2), seguito da una barriera di memoria per rendere visibili le

scritture del kernel.

Struttura del compute shader e fisica implementata

Il cuore della simulazione è racchiuso nel compute shader compute physics.glsl, scritto

in linguaggio GLSL (OpenGL Shading Language) con estensioni per il calcolo parallelo e per

l’uso dei buffer di memoria (SSBO).

A differenza dei classici vertex o fragment shader, il compute shader non si occupa di grafica

ma esegue in parallelo operazioni generiche sui dati. Ogni work item (invocazione) gestisce un

frammento della scena, permettendo di aggiornare posizione, velocità e orientamento di centi-

naia di elementi contemporaneamente.

Il frammento di codice riportato di seguito mostra la funzione main, dove avvengono i calcoli

principali:

Listing 4.27: Funzione main del compute shader� �
1 void main() {

2 uint index = gl_GlobalInvocationID.x;

3 if (index >= uint(numFragments)) return;

4

92

5 if (resetSimulation != 0) {

6 resetFragment(fragments[index]);

7 return;

8 }

9

10 FragmentData fragment = fragments[index];

11

12 // Impulso iniziale di esplosione

13 if (currentTime < 1.0) {

14 vec3 toFragment = fragment.initialPosition - explosionCenter;

15 float distance = length(toFragment);

16

17 if (explosionRadius > 0.0 && distance < explosionRadius) {

18 vec3 explosionDirection = (distance > 1e-3) ? normalize(

toFragment): vec3(0.0, 1.0, 0.0);

19

20 float forceFalloff = 1.0 - (distance / explosionRadius);

21 forceFalloff *= forceFalloff;

22

23 // Rumore per rendere meno uniforme l’esplosione

24 vec3 rnd = vec3(

25 noise(fragment.initialPosition + vec3(1.0,0.0,0.0)) -

0.5,

26 noise(fragment.initialPosition + vec3(0.0,1.0,0.0)) -

0.5,

27 noise(fragment.initialPosition + vec3(0.0,0.0,1.0)) -

0.5

28) * 0.5;

29

30 vec3 explosionVelocity = (explosionDirection + rnd)*

explosionForce * forceFalloff;

31

32 explosionVelocity.y = abs(explosionVelocity.y) +

explosionForce * 0.3;

33

34 fragment.velocity = explosionVelocity;

35 fragment.structuralIntegrity = 0.0;

36 fragment.angularVelocity = rnd * 5.0;

37 }

38 }

39

93

40 // Aggiornamento fisico standard

41 if (fragment.structuralIntegrity <= 0.0) {

42 int substeps = int(ceil(deltaTime / TARGET_DT));

43 substeps = clamp(substeps, 1, MAX_SUBSTEPS);

44 float dt = deltaTime / float(substeps);

45

46 for (int s = 0; s < substeps; ++s) {

47 float linDamp = exp(-airDamping * dt);

48 fragment.velocity = (fragment.velocity + gravity * dt) *

linDamp;

49 fragment.position += fragment.velocity * dt;

50

51 handleGroundCollision(fragment);

52

53 fragment.angularVelocity *= exp(-airDamping * dt);

54 fragment.orientation = integrateOrientation(fragment.

orientation, fragment.angularVelocity, dt);

55 }

56 }

57 fragments[index] = fragment;

58 }� �
Il linguaggio GLSL utilizza una sintassi simile al C, ma con estensioni per la grafica e il calcolo

parallelo. Alcuni aspetti chiave di questo codice sono:

• Identificazione del work item: la variabile gl GlobalInvocationID.x identifi-

ca l’indice del frammento da elaborare. In questo modo ogni invocazione del compute

shader si occupa di un frammento distinto.

• Reset della simulazione: se il flag resetSimulation è attivo, i frammenti vengono

riportati alle condizioni iniziali tramite la funzione resetFragment.

• Impulso iniziale: all’avvio (currentTime < 1.0) viene calcolata una velocità ini-

ziale che spinge i frammenti lontano dal centro dell’esplosione. La forza decresce qua-

draticamente con la distanza (force falloff) ed è resa irregolare da un fattore di rumore

pseudo-casuale.

• Integrazione numerica: se il frammento è “rotto” (structuralIntegrity <=

0.0), vengono calcolati sottopassi temporali (substeps) per migliorare la stabilità. L’in-

tegrazione delle equazioni del moto avviene con uno schema di Eulero semi-implicito,

applicando gravità, smorzamento esponenziale e aggiornando posizione e velocità.

94

• Collisione con il terreno: la funzione handleGroundCollision corregge la posi-

zione verticale, applica la restituzione e un attrito semplificato, impedendo ai frammenti

di attraversare il piano di base.

• Rotazioni: l’orientamento di ciascun frammento è rappresentato da un quaternione; la

funzione integrateOrientation aggiorna la rotazione in base alla velocità ango-

lare e normalizza il risultato.

• Scrittura dei risultati: al termine del calcolo, i dati aggiornati del frammento vengono

riscritti nello SSBO, rendendoli disponibili per il rendering istanziato.

Grazie a questa struttura, il compute shader è in grado di gestire in parallelo centinaia di fram-

menti, garantendo un’evoluzione fisica realistica dell’esplosione con un carico computazionale

sostenuto interamente dalla GPU.

Modello dati: parametri fisici (UBO) e frammenti (SSBO)

I parametri fisici globali (centro e intensità dell’esplosione, gravità, smorzamento dell’aria, pia-

no di rimbalzo, ∆t, ecc.) risiedono in un Uniform Buffer Object e sono aggiornati a ogni

frame. Ogni frammento ha invece un record dedicato in un Shader Storage Buffer Object con

posizione, velocità, massa, raggio di bounding, coefficiente di restituzione, orientamento, forze

accumulate, ecc. Questa mappatura 1:1 tra C++ e GLSL riduce gli overhead di copia e consente

al kernel di leggere/scrivere direttamente i campi necessari.

Listing 4.28: Inizializzazione dei frammenti e creazione SSBO/Instance-SSBO� �
1 void ComputeShader::initializeFragments(const std::vector<glm::vec3>&

fragmentCenters,const std::vector<float>& fragmentRadii) {

2 m_numFragments = (int)fragmentCenters.size();

3 m_fragmentsData.clear(); m_fragmentsData.reserve(m_numFragments);

4

5 for (int i = 0; i < m_numFragments; ++i) {

6 FragmentData f{};

7 f.position = fragmentCenters[i];

8 f.initialPosition = fragmentCenters[i];

9 f.velocity = glm::vec3(0.0f);

10 f.angularVelocity = glm::vec3(0.0f);

11 f.mass = 1.0f;

12 f.boundingRadius = fragmentRadii[i];

13 f.restitution = 0.3f;

14 f.orientation = glm::vec4(0,0,0,1);

15 f.force = glm::vec3(0.0f);

16 f.structuralIntegrity = 1.0f;

95

17 m_fragmentsData.push_back(f);

18 }

19

20 // SSBO dei frammenti (binding 1)

21 glGenBuffers(1, &m_fragmentsSSBO);

22 glBindBuffer(GL_SHADER_STORAGE_BUFFER, m_fragmentsSSBO);

23 glBufferData(GL_SHADER_STORAGE_BUFFER, m_numFragments * sizeof(

FragmentData), m_fragmentsData.data(), GL_DYNAMIC_DRAW);

24 glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 1, m_fragmentsSSBO);

25

26 // SSBO per instanced rendering (binding 2)

27 struct InstanceTransform { glm::mat4 modelMatrix; glm::vec3

velocity; float explosionTime; };

28 glGenBuffers(1, &m_instanceSSBO);

29 glBindBuffer(GL_SHADER_STORAGE_BUFFER, m_instanceSSBO);

30 glBufferData(GL_SHADER_STORAGE_BUFFER, m_numFragments * sizeof(

InstanceTransform), nullptr, GL_DYNAMIC_DRAW);

31

32 std::vector<InstanceTransform> initial(m_numFragments);

33 for (int i = 0; i < m_numFragments; ++i) {

34 initial[i].modelMatrix = glm::translate(glm::mat4(1.0f),

fragmentCenters[i]);

35 initial[i].velocity = glm::vec3(0.0f);

36 initial[i].explosionTime = -1.0f;

37 }

38 glBufferSubData(GL_SHADER_STORAGE_BUFFER, 0, m_numFragments*

sizeof(InstanceTransform), initial.data());

39 glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 2, m_instanceSSBO);

40 glBindBuffer(GL_SHADER_STORAGE_BUFFER, 0);

41

42 m_physicsParams.numFragments = m_numFragments;

43 updateBuffers(); }� �
In questa parte di codice invece si vede la costruzione dei record FragmentData (posizione

iniziale, velocità, massa, raggio, restituzione, ecc.) e l’allocazione dei due SSBO: uno per i dati

fisici (binding 1), uno per le trasformazioni per l’instanced rendering (binding 2), inizializzato

con una modelMatrix di sola traslazione.

Il numero di frammenti viene sincronizzato nell’UBO per permettere al kernel di conoscere la

taglia del problema.+

96

Innesco dell’esplosione e preset dei parametri

L’innesco dell’esplosione avviene dal PhysicsSystem, che inoltra al compute shader il cen-

tro dell’esplosione e i parametri correnti (forza, raggio, durata), impostati a seconda del preset.

startExplosion azzera il tempo interno della simulazione e abilita la dinamica.

Listing 4.29: Trigger dell’esplosione: lato sistema fisico e shader� �
1 void PhysicsSystem::startExplosion(const glm::vec3& center) {

2 m_computeShader->startExplosion(center, m_forceParams.

explosionForce, m_forceParams.explosionRadius);

3 auto& params = const_cast<PhysicsParams&>(m_computeShader->

getPhysicsParams());

4 params.maxTime = m_forceParams.explosionDuration; // durata

5 }

6

7 void ComputeShader::startExplosion(const glm::vec3& center, float

force, float radius) {

8 setExplosionParameters(center, force, radius);

9 m_physicsParams.currentTime = 0.0f;

10 m_physicsParams.resetSimulation = 0;

11 m_simulationActive = true;

12 updateBuffers();

13 }� �
Qui invece si nota come l’innesco scriva centro, forza e raggio nell’UBO e resetti il tempo di

simulazione. L’utilizzo dei preset (ad es. realistic vs disintegration) regola gravità, raggio,

smorzamento e durata per caratterizzare scenari differenti, mantenendo invariata la struttura

della logica alla base dell’esplosione.

Aggiornamento per frame: tempo, dispatch e sincronizzazione

Ad ogni frame, il PhysicsSystem valida il ∆t, applica un eventuale time scale, aggiorna

l’UBO e lancia il kernel; al termine, sincronizza e (se la simulazione è attiva) scarica un sot-

toinsieme dei dati aggiornati per statistiche e diagnostica dei dati (average/max velocity, energia

cinetica, . . .).

Listing 4.30: Loop di aggiornamento della fisica GPU� �
1 void PhysicsSystem::update(float deltaTime) {

2 if (deltaTime <= 0.0f || deltaTime > 0.1f) deltaTime = 1.0f/60.0f

;

97

3 float scaledDeltaTime = deltaTime * m_forceParams.timeScale;

4

5 m_computeShader->update(scaledDeltaTime); // aggiorna UBO

6 m_computeShader->dispatch(); // lancia il compute

shader

7 m_computeShader->synchronize(); // barriera per

visibilita’ SSBO

8

9 if (m_computeShader->isSimulationActive()) {

10 m_computeShader->downloadFragmentDataFromGPU(); // debug

11 }

12

13 updateDebugInfo();

14 }� �
La funzione update della classe PhysicsSystem evidenzia il ciclo standard: aggiornamen-

to dei parametri, dispatch del compute, barriera di memoria e (se richiesto) lettura parziale

dei risultati per il monitoring di dati e prestazioni, senza interrompere la pipeline di rendering.

Forze e integrazione numerica nel compute shader

Il compute shader applica ai frammenti: gravità g⃗, smorzamento dell’aria (forza proporzio-

nale alla velocità, −kdv⃗), spinta esplosiva radiale centrata in c⃗exp con decadimento rispetto alla

distanza e azzerata oltre il raggio impostato.

L’integrazione nel tempo viene effettuata mediante il metodo di Eulero semi-esplicito, usando

il ∆t fornito via UBO: prima si aggiornano le velocità v⃗t+∆t = v⃗t + F⃗
m
∆t, poi le posizioni

x⃗t+∆t = x⃗t + v⃗t+∆t∆t.

La presenza di gravity, airDamping, explosionCenter, Force, Radius e deltaTime nell’UBO,

unita ai campi per massa/velocità nei frammenti, riflette questa pipeline fisica, mentre la colli-

sione col suolo usa il livello groundLevel e il coefficiente di restitution per il rimbalzo

controllato.

Collisione con il suolo e parametri di contatto

Il piano di contatto è orizzontale (y = groundLevel) e ogni frammento è trattato come sfera

di raggio boundingRadius. Quando y − r ≤ groundLevel si applica una correzione

di posizione e si modifica la velocità verticale con il coefficiente di restituzione (vy ← −e vy),

mentre l’ airDamping agisce come smorzamento globale. Tali parametri sono impostati dal

PhysicsSystem tramite applyForceParameters e propagati all’UBO.

98

Reset della simulazione e coerenza dei dati

Per tornare allo stato integro, il lato C++ imposta un flag di reset nell’UBO, lancia un dispatch

per avviare l’operazione sulla GPU e sincronizza il processo; al termine i dati aggiornati ven-

gono scaricati dalla GPU per riallineare lo stato sulla CPU, operazione utile per riportare le

posizioni iniziali dei frammenti e ripartire da zero, ad esempio quando viene premuto il tasto R.

Listing 4.31: Reset GPU-side con riallineamento dei dati� �
1 void ComputeShader::resetSimulation() {

2 m_physicsParams.resetSimulation = 1;

3 m_physicsParams.currentTime = 0.0f;

4 m_simulationActive = false;

5

6 updateBuffers(); // scrive l’UBO

7 dispatch(); // esegue il reset nel kernel

8 synchronize(); // attende la fine

9

10 downloadFragmentDataFromGPU(); // riallinea lo stato lato CPU

11

12 m_physicsParams.resetSimulation = 0;

13 updateBuffers();

14 }� �
Qui viene mostrato l’intero reset path: flag su UBO, dispatch, barriera, readback selettivo e

pulizia del flag, cosı̀ da garantire coerenza dei dati per l’eventuale re-render o controllo delle

statistiche.

Controlli runtime e limiti hardware

Durante l’update l’applicazione può ispezionare i limiti hardware del dispositivo (taglia mas-

sima dei work-group, invocazioni per gruppo) per diagnosticare problemi di configurazione e

tarare al bisogno le dimensioni del dispatch. Questo controllo è eseguito una sola volta e ripor-

tato in console insieme alle informazioni di debug.

Listing 4.32: Ispezione dei limiti compute della GPU� �
1 GLint maxWorkGroupSize[3];

2 glGetIntegeri_v(GL_MAX_COMPUTE_WORK_GROUP_SIZE, 0, &maxWorkGroupSize

[0]);

3 glGetIntegeri_v(GL_MAX_COMPUTE_WORK_GROUP_SIZE, 1, &maxWorkGroupSize

[1]);

99

4 glGetIntegeri_v(GL_MAX_COMPUTE_WORK_GROUP_SIZE, 2, &maxWorkGroupSize

[2]);

5

6 GLint maxWorkGroupInvocations;

7 glGetIntegerv(GL_MAX_COMPUTE_WORK_GROUP_INVOCATIONS, &

maxWorkGroupInvocations);

8

9 std::cout << "Max work group size: "

10 << maxWorkGroupSize[0] << "x" << maxWorkGroupSize[1] << "x"

<< maxWorkGroupSize[2] << "\n"

11 << "Max work group invocations: " <<

maxWorkGroupInvocations << std::endl;� �
Questo frammento di codice serve a interrogare la scheda grafica per conoscere i limiti del

compute shader, in particolare la dimensione massima dei gruppi di lavoro e il numero totale

di invocazioni consentite per gruppo. Queste informazioni sono utili per configurare corretta-

mente il dispatch ed evitare errori di esecuzione. Nel progetto, il compute shader lavora in

modalità data-parallel, cioè ogni frammento è aggiornato da un work item indipendente.

I parametri globali della simulazione (forze, raggio dell’esplosione, gravità, tempo, ecc.) ven-

gono passati tramite un UBO, mentre lo stato dei singoli frammenti (posizione, velocità, massa,

orientamento) è gestito negli SSBO insieme alle trasformazioni necessarie per il rendering istan-

ziato. Grazie a questa architettura semplice ma efficace, la simulazione delle esplosioni resta

stabile e reattiva, mantenendo un framerate elevato e permettendo eventuali estensioni future

come metodi di integrazione più accurati o nuove tipologie di collisione.

100

4.9 Confronto sistema GPU e CPU con analisi delle presta-
zioni

Questo paragrafo mette a confronto le due pipeline fisiche alternative implementate all’interno

del simulatore: un metodo GPU basato su compute shader che integra le equazioni del moto

direttamente sulla scheda grafica e un metodo CPU che esegue gli stessi aggiornamenti per-

frammento sul processore. Entrambe le pipeline utilizzano gli stessi dati d’ingresso (centri e

raggi dei frammenti) e possono essere attivate a runtime tramite un toggle dedicato (tasto P

della tastiera), garantendo cosı̀ un confronto omogeneo fra i due metodi..

Implementazione su GPU (Compute Shader)

L’elaborato utilizza i Compute Shader per simulare la fisica dei frammenti in parallelo sul-

la GPU. Il sistema è incapsulato nella classe PhysicsSystem, che funge da interfaccia di

alto livello verso lo shader di calcolo. Durante l’inizializzazione viene creato lo shader, con-

figurati i parametri fisici e caricati i dati relativi ai frammenti (posizione, raggio, massa im-

plicita). L’esecuzione ad ogni frame segue una pipeline definita: update → dispatch →
synchronize. In questa fase, il sistema applica le forze correnti (gravità, esplosione, attrito)

e calcola le nuove posizioni e velocità dei frammenti in modo parallelo su GPU.

L’aggiornamento della simulazione avviene in tempo reale, e opzionalmente si può effettuare

un download dei dati aggiornati dal buffer GPU verso CPU per finalità di debug o rendering

ibrido. Il seguente listato mostra l’inizializzazione, il caricamento dei frammenti, la gestione

dell’esplosione e l’aggiornamento della simulazione al variare del tempo di gioco.

Listing 4.33: GPU: setup, update e parametri� �
1 bool PhysicsSystem::initialize(StateManager* stateManager) {

2 m_stateManager = stateManager;

3 m_computeShader = std::make_unique<ComputeShader>();

4 if (!m_computeShader->initialize()) return false;

5 applyForceParameters();

6 return true;

7 }

8

9 void PhysicsSystem::setupFragments(const std::vector<glm::vec3>&

centers, const std::vector<float>& radii) {

10 m_computeShader->initializeFragments(centers, radii);

11 applyForceParameters();

12 }

13

14 void PhysicsSystem::startExplosion(const glm::vec3& center) {

101

15 m_computeShader->startExplosion(center, m_forceParams.

explosionForce, m_forceParams.explosionRadius);

16 auto& params = const_cast<PhysicsParams&>(m_computeShader->

getPhysicsParams());

17 params.maxTime = m_forceParams.explosionDuration;

18 }

19

20 void PhysicsSystem::update(float deltaTime) {

21 if (deltaTime <= 0.0f || deltaTime > 0.1f) deltaTime = 1.0f/60.0f

;

22 float scaled = deltaTime * m_forceParams.timeScale;

23 m_computeShader->update(scaled);

24 m_computeShader->dispatch();

25 m_computeShader->synchronize();

26 if (m_computeShader->isSimulationActive()) {

27 m_computeShader->downloadFragmentDataFromGPU();

28 }

29 }

30

31 void PhysicsSystem::applyForceParameters() {

32 glm::vec3 g = m_forceParams.gravity * m_forceParams.gravityScale;

33 m_computeShader->setGravity(g);

34 m_computeShader->setAirDamping(m_forceParams.airDamping);

35 m_computeShader->setExplosionParameters(glm::vec3(0.0f),

m_forceParams.explosionForce, m_forceParams.explosionRadius);

36 m_computeShader->setGroundLevel(-0.60f);

37 }� �
Implementazione su CPU

L’alternativa CPU, implementata nella classe PhysicsSystemCPU, riproduce la stessa se-

mantica fisica utilizzata nel sistema basato su Compute Shader, ma eseguita interamente su

architettura seriale o multithreaded a seconda del contesto. L’obiettivo è offrire un sistema fi-

sico equivalente in termini di comportamento e parametri, ma eseguibile anche su dispositivi o

configurazioni che non supportano nativamente gli shader di calcolo.

La simulazione è divisa in più fasi: inizializzazione dei frammenti, generazione dell’impul-

so d’esplosione con una distribuzione spaziale basata su distanza dal centro (falloff) e rumore

pseudo-casuale controllato, aggiornamento delle velocità e posizioni tramite integrazione tem-

porale esplicita, e gestione dei contatti con il piano di appoggio (rimbalzo e frizione). Al termine

di ogni ciclo di aggiornamento, vengono calcolate le matrici di trasformazione che servono per

il rendering di ciascun frammento.

102

L’impulso iniziale di esplosione assegna a ciascun frammento una velocità proporzionale alla

sua distanza dal centro, arricchita da una perturbazione casuale tramite funzione noise per

simulare l’effetto caotico e non uniforme dell’esplosione. Il sistema gestisce inoltre la gravità,

lo smorzamento dell’aria e il contatto col suolo con restituzione elastica e attrito semplificato.

Infine, vengono applicate condizioni di sicurezza come il clamping della posizione entro i limiti

della scena per evitare errori numerici o artefatti visivi.

Il codice che segue mostra l’inizializzazione dei dati, la logica di generazione dell’impulso

esplosivo e l’aggiornamento fisico ad ogni frame, comprensivo di gestione del contatto e re-

stituzione. Viene inoltre registrato il tempo di aggiornamento (m lastUpdateTimeMs) per

eventuali analisi prestazionali.

Listing 4.34: CPU: init, impulso d’esplosione e update� �
1 void PhysicsSystemCPU::initialize(const std::vector<glm::vec3>&

centers, const std::vector<float>& radii) {

2 m_fragments.clear();

3 for (size_t i = 0; i < centers.size(); ++i) {

4 CPU_Fragment f; f.position = centers[i]; f.initialPosition =

centers[i];

5 f.velocity = glm::vec3(0.0f); f.radius = radii[i]; f.mass =

1.0f;

6 f.structuralIntegrity = 1.0f; m_fragments.push_back(f);

7 }

8 m_active = false; m_currentTime = 0.0f;

9 }

10

11 void PhysicsSystemCPU::startExplosion(const glm::vec3& center, float

force, float radius) {

12 m_currentTime = 0.0f; m_explosionCenter = center;

13 m_explosionForce = force; m_explosionRadius = radius;

14 for (size_t i = 0; i < m_fragments.size(); ++i) {

15 auto& f = m_fragments[i];

16 glm::vec3 toFrag = f.initialPosition - center;

17 float distance = glm::length(toFrag);

18 if (distance < radius) {

19 glm::vec3 dir = distance > 0.001f ? glm::normalize(toFrag

) : glm::vec3(0,1,0);

20 float falloff = 1.0f - (distance / radius);

21 falloff = glm::pow(falloff, 1.5f); //

dispersione piu’ graduale

22 glm::vec3 randDir = glm::vec3(

23 noise(f.initialPosition+glm::vec3(1,0,0)) - 0.5f,

103

24 noise(f.initialPosition+glm::vec3(0,1,0)) * 0.3f,

25 noise(f.initialPosition+glm::vec3(0,0,1)) - 0.5f) *

0.6f;

26 glm::vec3 finalDir = glm::normalize(dir + randDir);

27 glm::vec3 v = finalDir * force * falloff;

28 v.y = v.y * 0.7f + force * 0.2f; // componente

verticale bilanciata

29 v.x *= 1.3f; v.z *= 1.3f; // boost

orizzontale

30 f.velocity = v; f.structuralIntegrity = 0.0f;

31 }

32 }

33 m_active = true;

34 }

35

36 void PhysicsSystemCPU::update(float dt) {

37 if (!m_active) { m_lastUpdateTimeMs = 0.0f; return; }

38 auto start = std::chrono::high_resolution_clock::now();

39 m_currentTime += dt;

40 for (auto& f : m_fragments) if (f.structuralIntegrity <= 0.0f) {

41 f.velocity += m_gravity * dt; // gravita’

42 float speed = glm::length(f.velocity); // smorzamento

aria

43 if (speed > 0.001f) f.velocity *= (1.0f - m_airDamping * 0.5f

* dt);

44 f.position += f.velocity * dt; // integrazione

45 float ground = m_groundLevel + f.radius + 0.05f;

46 if (f.position.y <= ground) { // contatto piano

+ restituzione

47 f.position.y = ground;

48 if (f.velocity.y < -0.1f) f.velocity.y = -f.velocity.y *

m_restitution;

49 else f.velocity.y = 0.0f;

50 f.velocity.x *= 0.9f; f.velocity.z *= 0.9f; //

frizione semplice

51 if (glm::length(f.velocity) < 0.01f) f.velocity = glm::

vec3(0);

52 }

53 f.position = glm::clamp(f.position, glm::vec3(-100), glm::

vec3(100));

54 if (f.position.y < m_groundLevel - 1.0f) { // safety clamp

104

55 f.position.y = ground; f.velocity = glm::vec3(0);

56 }

57 }

58 auto end = std::chrono::high_resolution_clock::now();

59 m_lastUpdateTimeMs = std::chrono::duration<float,std::milli>(end

- start).count();

60 }

61

62 std::vector<glm::mat4> PhysicsSystemCPU::getFragmentTransforms()

const {

63 std::vector<glm::mat4> T;

64 for (const auto& f : m_fragments)

65 T.push_back(glm::translate(glm::mat4(1.0f), f.position)); //

solo traslazione

66 return T;

67 }� �
Toggle runtime e misura del tempo di fisica

Il passaggio CPU/GPU è gestito da Application: con il tasto P si inverte m useCPUPhysics

e si aggiorna subito il PerformanceMonitor. Nel loop di update, il tempo fisico è misurato

con orologi ad alta risoluzione e inviato al monitor insieme al numero di frammenti attivi.

Listing 4.35: Toggle CPU/GPU e tempi di fisica (in ‘Application.cpp‘)� �
1 m_window->setKeyCallback([this](int key,int scancode,int action,int

mods){

2 if (key == GLFW_KEY_P && action == GLFW_PRESS) {

3 m_useCPUPhysics = !m_useCPUPhysics;

4 std::cout << "[TOGGLE] Physics method: "

5 << (m_useCPUPhysics ? "CPU" : "GPU") << std::endl;

6 if (m_performanceMonitor) {

7 m_performanceMonitor->setPhysicsMode(m_useCPUPhysics ? "

CPU" : "GPU");

8 }

9 }

10 });

11

12 // ... poi nel main update():

13 if (shouldRunBuildingPhysics && m_physicsSystem && m_physicsSystem->

isInitialized()) {

14 if (m_performanceMonitor) {

105

15 m_performanceMonitor->setPhysicsMode(m_useCPUPhysics ? "CPU"

: "GPU");

16 }

17

18 if (m_useCPUPhysics) {

19 auto cpuStart = std::chrono::high_resolution_clock::now();

20 m_physicsCPU.update(deltaTime);

21 auto cpuEnd = std::chrono::high_resolution_clock::now();

22 float cpuMs = std::chrono::duration<float,std::milli>(cpuEnd

- cpuStart).count();

23 int active = m_physicsCPU.getFragmentCount();

24 if (m_performanceMonitor) m_performanceMonitor->

setPhysicsMetrics(active, 0, cpuMs);

25 } else {

26 auto gpuStart = std::chrono::high_resolution_clock::now();

27 m_physicsSystem->update(deltaTime);

28 auto gpuEnd = std::chrono::high_resolution_clock::now();

29 float gpuMs = std::chrono::duration<float,std::milli>(gpuEnd

- gpuStart).count();

30 int active = m_physicsSystem->getFragmentCount();

31 if (m_performanceMonitor) m_performanceMonitor->

setPhysicsMetrics(active, 0, gpuMs);

32 }

33 } else {

34 if (m_performanceMonitor) {

35 m_performanceMonitor->setPhysicsMode("Idle");

36 m_performanceMonitor->setPhysicsMetrics(0, 0, 0.0f);

37 }

38 }� �
Raccolta delle prestazioni ed export

La telemetria è invece centralizzata nel PerformanceMonitor: ogni frame aggiorna FPS e

frame time, mantiene uno storico dei dati raccolti, salva la modalità fisica corrente e permette di

esportare questi dati in un file CSV dedicato per l’analisi delle prestazioni a programma spento.

Listing 4.36: PerformanceMonitor: aggiornamento e export CSV� �
1 void PerformanceMonitor::updateFPSMetrics(float deltaTime) {

2 if (deltaTime < 0.016f) deltaTime = 0.016f;

3 if (deltaTime > 0.1f) deltaTime = 0.1f;

4 m_currentMetrics.currentFPS = 1.0f / deltaTime;

106

5 if (m_currentMetrics.currentFPS > 60.0f) m_currentMetrics.

currentFPS = 60.0f;

6 if (m_currentMetrics.currentFPS < 10.0f) m_currentMetrics.

currentFPS = 10.0f;

7 m_currentMetrics.frameTime = 1000.0f / m_currentMetrics.

currentFPS;

8 }

9

10 void PerformanceMonitor::setPhysicsMode(const std::string& mode) {

11 m_currentMetrics.physicsMode = mode;

12 }

13

14 void PerformanceMonitor::setPhysicsMetrics(int activeFragments,int

sleeping,float physicsTime) {

15 m_currentMetrics.activeFragments = activeFragments;

16 m_currentMetrics.sleepingFragments = sleeping;

17 m_currentMetrics.physicsTime = physicsTime;

18 m_currentMetrics.physicsActive = (physicsTime > 0.0f);

19 }

20

21 void PerformanceMonitor::exportMetricsToCSV(const std::string&

filename) const {

22 std::ofstream file(filename);

23 file << "Timestamp;FPS;FrameTime_ms;GPUUsage_%;"

24 << "RenderTime_ms;CPUUsage_%;"

25 << "MemoryUsage_%;"

26 << "PhysicsTime_ms;PhysicsMode" << std::endl;

27 size_t maxSize = std::max({ m_fpsHistory.size(),

m_frameTimeHistory.size(), m_gpuUsageHistory.size(),

m_renderTimeHistory.size(), m_cpuUsageHistory.size(),

m_memoryUsageHistory.size(), m_physicsTimeHistory.size(),

m_physicsModeHistory.size() });

28 }� �
Protocollo di confronto

Per ogni scena si procede cosı̀: prima avviene l’inizializzazione parallela dei due sistemi con

gli stessi frammenti, poi avviene l’innesco dell’esplosione con i parametri fisici. Segue il cam-

pionamento di FPS, frame time e tempo fisico (da Application) e la memorizzazione della

modalità attiva (da PerformanceMonitor). A questo punto si esportano i dati raccolti nel

file CSV per un’analisi statistica (medie, percentili, varianza).

107

Alla fine dell’applicazione i dati vengono salvati automaticamente:

Listing 4.37: Export automatico a fine run� �
1 if (m_performanceMonitor) {

2 m_performanceMonitor->exportMetricsToCSV("performance_data.csv");

3 }� �
Analisi delle prestazioni

Per valutare l’efficienza dei due approcci fisici, è stata condotta una serie di test su un PC fisso

con GPU NVIDIA GeForce GTX 750 Ti dotata di 2 GB di memoria dedicata, fino a 8 GB di

memoria condivisa (per un totale di 10 GB di memoria grafica disponibile) e 16 GB di RAM di

sistema.

Il simulatore è stato eseguito in due modalità: con la fisica gestita da compute shader (GPU) e

con la fisica gestita dalla CPU tramite integrazione per-frammento.

I modelli .obj dell’ autobus, dell’albero e della cabina telefonica sono stati suddivisi tramite

l’add-on Cell-Fracture di Blender in circa 100 frammenti, mentre il palazzo, il modello più

grande è stato invece diviso in più frammenti (circa 300).

L’immagine sottostante mostra come apparirebbero i modelli frantumati all’interno della scena.

Ovviamente durante la simulazione l’utente non visualizza mai questa disposizione in quanto

prima vede i modelli interi con le texture caricate e poi, quando il personaggio colpisce l’ogget-

to selezionato, vede il modello esplodere nei vari frammenti di color arancione.

Figura 4.14: Visualizzazione della scena con i modelli frammentati.

108

Confronto delle Statistiche aggregate
Nelle seguenti 4 tabelle vengono riportati diversi valori, divisi a coppie: Figura 4.15 e Figura

4.16 mostrano le prestazioni di GPU e CPU con circa 600 frammenti utilizzati, mentre Figura

4.17 e Figura 4.18 presentano i risultati ottenuti su scene di complessità superiore,contenenti

oltre 1000 frammenti.

Figura 4.15: Prestazioni simulazione su GPU
- Caso 600 Frammenti.

Figura 4.16: Prestazioni simulazione su CPU
- Caso 600 Frammenti.

Figura 4.17: Prestazioni simulazione su GPU
- Caso 1000 Frammenti.

Figura 4.18: Prestazioni simulazione su CPU
- Caso 1000 Frammenti.

Dall’analisi dei dati riportati, emerge che aumentando il numero di frammenti inizializzati nella

scena, entrambi gli approcci tendono naturalmente a diminuire le proprie prestazioni, ma in

modo diverso: l’approccio GPU con Compute Shader tende ad abbassare gradualmente i Frame

Per Secondo (FPS), mentre l’approccio CPU mostra un crollo nettamente più drastico.

109

Discussione dei risultati

PRESTAZIONI GPU CPU
FPS medio 774.5 1452.8

FPS min 459.5 1213.0

FPS max 832.0 1642.8

Tempo fisica medio (ms) 0.6 0.003

Uso medio GPU (%) 69.2 69.3

Uso medio CPU (%) 11.1 11.8

Tabella 4.2: Confronto tra le due modalità di simulazione - Caso 600 Frammenti.

PRESTAZIONI GPU CPU
FPS medio 376.0 502.5

FPS min 324.6 394.1

FPS max 441.0 589.3

Tempo fisica medio (ms) 0.7 0.015

Uso medio GPU (%) 69.6 68.9

Uso medio CPU (%) 11.6 12.2

Tabella 4.3: Confronto tra le due modalità di simulazione - Caso 1000 Frammenti.

Dall’analisi dei log emergono le seguenti evidenze sullo scenario dei circa 600 frammenti:

• Frame rate: nel caso dei 600 frammenti, la modalità CPU raggiunge in media∼1452 FPS

(picchi a ∼1642 FPS), mentre la GPU si assesta intorno a ∼774 FPS (max ∼832 FPS).

Il minimo in CPU resta sui∼1213 FPS mentre in GPU il minimo è più basso, ∼459 FPS.

• Tempo di fisica: la GPU oscilla mediamente sui 0.6 ms per frame con rari picchi (spi-

ke) in corrispondenza dell’innesco dell’esplosione, mentre la CPU resta nell’ordine dei

microsecondi (0.003ms).

• Carico risorse: la percentuale di uso della GPU è simile (68–70%) in entrambe le mo-

dalità, segno che il rendering domina comunque il frame time. L’uso della CPU invece è

leggermente più alto in CPU mode (∼12%) rispetto alla GPU mode (∼11%).

110

Secondo Scenario: oltre 1000 frammenti

Aumentando a 1000 il numero di frammenti, le prestazioni tendono a calare sia per la CPU che

per la GPU, ma con dinamiche molto diverse. La GPU continua a beneficiare del parallelismo

massivo offerto dai suoi Streaming Multiprocessors (SM), mentre la CPU mostra un degrado

molto più marcato dovuto al numero limitato di core fisici disponibili.

Analizzando i dati delle tabelle si osserva che:

• FPS medio e minimo: passando da 600 a 1000 frammenti, gli FPS medi calano sia in

GPU (da ∼774 a ∼376) che in CPU (da ∼1453 a ∼503). Tuttavia, il crollo relativo è

molto più pronunciato per la CPU, che perde oltre il 65% delle prestazioni, mentre la

GPU si mantiene più stabile. Anche i valori minimi seguono lo stesso andamento: la

GPU resta sopra i 324 FPS, mentre la CPU scende a poco più di 394 FPS.

• Tempo fisica medio: entrambi i sistemi mostrano un incremento del tempo di calcolo, ma

ancora una volta la GPU riesce a contenere l’aumento (da ∼0.6 ms a ∼0.7 ms), mentre la

CPU cresce in maniera molto più drastica (da ∼0.003 ms a ∼0.015 ms), segnalando una

perdita significativa di efficienza al crescere della complessità della scena.

• Uso risorse: le percentuali di utilizzo medio rimangono simili tra i due scenari, indican-

do che il limite non risiede tanto nella saturazione delle risorse quanto nell’architettura

intrinseca: la GPU scala meglio al crescere del carico, mentre la CPU tende rapidamente

al collo di bottiglia.

Accorgimenti al codice che potrebbero portare al miglioramento delle prestazioni GPU sono:

1. Parallelismo massivo: più frammenti presenti⇒ più thread attivi in contemporanea.

Si arriverà al punto in cui gli FPS per la CPU raggiungeranno quelli della GPU, addirittura

scendendo sotto di essi.

2. Occupazione e latency hiding: con più lavoro si saturano gli SM e si mascherano le

latenze di memoria.

3. Banda/coalescenza memoria: accessi vettoriali e aggregati riducono i costi per fram-

mento.

4. Ammortamento overhead fisso: i costi di lancio kernel/sincronizzazione pesano sempre

meno all’aumentare di N .

In pratica, al raddoppiare del numero di frammenti, il tempo di calcolo della CPU tende ad

aumentare in maniera pressoché lineare, mentre quello della GPU cresce più lentamente. Di

conseguenza, il rapporto TCPU/TGPU aumenta con l’incremento di N , fino a raggiungere la

saturazione della GPU, oltre la quale il vantaggio si stabilizza.

111

Sintesi

Dall’analisi dei dati raccolti da entrambe le simulazioni e con diverso numero di frammenti,

emergono le seguenti considerazioni principali:

1. In assenza di VSync, entrambe le modalità garantiscono l’esecuzione del programma in

real-time, ossia un aggiornamento sufficientemente veloce da mantenere la simulazione

fluida e interattiva (buoni FPS anche durante l’animazione delle esplosioni).

Tuttavia, la CPU mostra FPS medi più elevati sull’attuale dataset.

2. La GPU introduce un costo di simulazione fisica medio dell’ordine di pochi millisecondi,

con occasionali picchi in corrispondenza di eventi impulsivi (esplosioni).

Tali oscillazioni risultano tuttavia mitigabili mediante ottimizzazioni a livello di kernel e

gestione della memoria.

3. Con l’aumentare del numero di frammenti, la GPU si conferma la scelta preferibile per

via del parallelismo massivo e della migliore scalabilità, mentre le prestazioni della CPU

degradano in maniera pressoché lineare con la numerosità degli elementi simulati.

Figura 4.19: Differenza del numero di Core tra CPU e GPU.

112

Capitolo 5

Considerazioni finali sul progetto e
prospettive future

5.1 Considerazioni finali sul progetto

Il progetto realizzato ha dimostrato come l’impiego dei Compute Shader su GPU, all’interno di

un’architettura modulare OpenGL, permetta di ottenere simulazioni di esplosioni architettoni-

che con elevato livello di realismo e buone prestazioni, in cui la gestione simultanea di centinaia

di frammenti, in presenza di forze fisiche quali gravità, attrito e collisioni, è stata implementata

tramite un motore fisico basato sul metodo di Eulero semi-esplicito.

I test effettuati mostrano che, in condizioni di simulazione con un numero contenuto di fram-

menti, le performance attuali tra versione multithread su CPU e versione su GPU/Compute

Shader risultano comparabili, ma con FPS più alti durante le simulazioni in CPU.

Tuttavia, l’approccio GPU risulta essere particolarmente vantaggioso quando il carico compu-

tazionale aumenta, ad esempio in scenari caratterizzati da un numero elevato di frammenti o

entità fisiche da gestire simultaneamente. Questo vantaggio è dovuto al parallelismo massivo

disponibile sulle GPU, che consistono di migliaia di core in grado di elaborare dati in parallelo,

una caratteristica che consente una maggiore scalabilità rispetto alla CPU anche se quest’ultima

dispone di molti core.

In contesti di simulazioni fisiche su larga scala (ad esempio fluidi o materiali granulari), vari

studi mostrano come l’utilizzo della GPU offra significativi incrementi di throughput, arrivando

a migliorare le prestazioni anche di decine di volte rispetto a implementazioni sequenziali su

CPU.

113

Inoltre, l’architettura dei Compute Shader consente l’utilizzo di tecniche come Shared Local

Data o gruppi di lavoro ottimizzati, migliorando ulteriormente l’efficienza in scenari ad alto

carico.

Questi elementi suggeriscono che, sebbene le prestazioni attuali tra CPU e GPU siano simili

in scenari leggeri, l’adozione della GPU si giustifica pienamente al crescere della complessità

e del carico di simulazione. L’approccio basato su Compute Shader risulta quindi strategico e

robusto, fornendo un solido punto di partenza per estensioni future finalizzate a gestire ambienti

altamente dinamici e densi.

5.2 Possibili estensioni future del progetto

Sulla base delle considerazioni precedenti, emergono diverse direzioni di approfondimento per

estendere il progetto:

• Aumento della complessità della scena: l’utilizzo della GPU diventa ancora più cru-

ciale per gestire simulazioni con un elevato numero di frammenti o entità distruttibi-

li, dove il parallelismo può mantenere un frame rate stabile. Un’idea potrebbe essere

quella quindi di andare ad aggiungere ancora più oggetti alla scena, aumentando anche

significativamente il numero dei frammenti che li compongono.

• Ottimizzazione via strutture dati e meccanismi avanzati: sfruttare tecniche come da-

ta buffering, dispatch indiretti e memoria condivisa (Shared Local Data) su GPU per

migliorare latenza e larghezza di banda in simulazioni elaborate.

• Metodi numerici avanzati: passaggio a RK4 per stabilità e precisione: implementare

una versione del motore fisico basata sul metodo di integrazione esplicita Runge–Kutta

di quarto ordine (RK4), noto per offrire un bilanciamento ottimale tra accuratezza e costo

computazionale rispetto al metodo di Eulero. RK4 riduce l’errore globale da ordine O(h)

a O(h4), permettendo l’utilizzo di passi temporali maggiori senza comprometterne la

stabilità.

• Integrazione di tecniche di intelligenza artificiale: guardando ancora più avanti, un’a-

rea di ricerca promettente è l’integrazione di tecniche di intelligenza artificiale all’interno

del sistema. L’uso di reti neurali o modelli predittivi potrebbe servire, ad esempio, per

ottimizzare il comportamento dei frammenti, prevedere traiettorie realistiche sulla base

di dati precedenti, o generare distribuzioni fisiche credibili senza dover calcolare ogni

interazione in tempo reale.

Il progetto attuale costituisce una solida base che unisce efficienza, realismo e modularità, ideale

per evolversi verso simulazioni sempre più dense e complesse in ambito cinematografico o

videoludico.

114

Capitolo 6

Conclusione e Ringraziamenti

Giunti alla conclusione di questo progetto, posso affermare con soddisfazione che si è trattato di

un lavoro che ha rappresentato, per me, la perfetta chiusura di un cerchio all’interno del mio per-

corso universitario. Questo elaborato ha racchiuso molte delle competenze acqusite nel corso

dei 3 anni di studio, intrecciando in modo concreto e coerente discipline diverse: dalla Compu-

ter Graphics, base del progetto e della sua realizzazione, alla Fisica, che ha fornito gli strumenti

necessari per modellare le forze coinvolte nella simulazione dell’esplosione, fino ad arrivare ai

concetti di programmazione concorrente e multithreading appresi in Sistemi Operativi. Sono

riuscito inoltre ad utilizzare collegamenti con aspetti normativi, grazie agli approfondimenti

affrontati nel corso di Diritto riguardanti l’intelligenza artificiale e le sue implicazioni legali, la-

sciando anche spazio ad una parte più personale, legata alla mia passione per il cinema. È stato

un lavoro impegnativo, spesso faticoso e stressante, ma che mi ha reso orgoglioso non solo per

il risultato ottenuto, ma soprattutto per la crescita personale e professionale che mi ha permesso

di raggiungere.

Ci tengo quindi a ringraziare in primis la professoressa Damiana Lazzaro, la quale si è sempre

posta con gentilezza e disponibilità sia durante i corsi affrontati durante i 3 anni, sia durante

l’intero percorso di lavoro sulla tesi. Dalla richiesta di essere la mia relatrice, alla conclusione

dell’elaborato e alla stesura di questa tesi, il suo supporto è stato fondamentale.

Ringrazio poi i miei compagni, i quali hanno condiviso con me questi 3 anni, facendo sembrare

più leggeri di quello che erano i momenti più impegnativi: in particolare durante il periodo di

tesi il confronto, gli aggiornamenti costanti e il sostegno reciproco sono stati preziosi e deter-

minanti, sempre vissuti con spirito di collaborazione, serietà e un sorriso.

Un ringraziamento va anche a chi mi ha ”sopportato” più che ”supportato” durante questo pe-

riodo stressante.

Ultimo ma non per importanza, ringrazio Federico, che non si è mai arreso nemmeno quando

tutto sembrava andare male e la testa gli diceva di mollare. Complimenti, ce l’hai fatta.

115

Bibliografia

[1] Houdini. Disponibile su: https://www.sidefx.com/products/houdini/

[2] Maya. Disponibile su: https://www.autodesk.com/ch-it/products/maya/

overview

[3] Blender, Utilizzato come base teorica per realizzare l’effetto di ”Cell-Fracture”. Disponibile

su: https://www.blender.org/

[4] Unreal Engine. Disponibile su: https://www.unrealengine.com/en-US

[5] Boords. Filmmaking 101: What is CGI in Movies and Ani-

mation. Disponibile su: https://boords.com/blog/

filmmaking-101-what-is-cgi-in-movies-and-animation

[6] Riaz. Exploring the Uses of Computer Graphics in Film and

VFX. Disponibile su: https://medium.com/@riaz.cse260/

exploring-the-uses-of-computer-graphics-in-film-and-vfx-6d7fa1313184

[7] N-iX Game & VR Studio. 3D Character Development Pipeline. Disponibile su: https:

//gamestudio.n-ix.com/3d-character-development-pipeline/

[8] Wikipedia. Sistema particellare. Disponibile su: https://it.wikipedia.org/

wiki/Sistema_particellare

[9] CERN Courier. Building Gargantua. Disponibile su: https://cerncourier.com/

a/building-gargantua/

[10] Adobe. Morphing in Animation. Disponibile su: https://www.adobe.com/it/

creativecloud/animation/discover/morphing-in-animation.html

[11] Khronos Group. Compute Shader – OpenGL Wiki. Disponibile su: https://www.

khronos.org/opengl/wiki/Compute_Shader.

[12] Mike Bailey. OpenGL Compute Shaders – Particle System Example. Dispense del

corso di Computer Graphics, Oregon State University, dicembre 2023. Disponi-

bile su: https://web.engr.oregonstate.edu/˜mjb/cs557/Handouts/

compute.shader.6pp.pdf

116

https://www.sidefx.com/products/houdini/
https://www.autodesk.com/ch-it/products/maya/overview
https://www.autodesk.com/ch-it/products/maya/overview
https://www.blender.org/
https://www.unrealengine.com/en-US
https://boords.com/blog/filmmaking-101-what-is-cgi-in-movies-and-animation
https://boords.com/blog/filmmaking-101-what-is-cgi-in-movies-and-animation
https://medium.com/@riaz.cse260/exploring-the-uses-of-computer-graphics-in-film-and-vfx-6d7fa1313184
https://medium.com/@riaz.cse260/exploring-the-uses-of-computer-graphics-in-film-and-vfx-6d7fa1313184
https://gamestudio.n-ix.com/3d-character-development-pipeline/
https://gamestudio.n-ix.com/3d-character-development-pipeline/
https://it.wikipedia.org/wiki/Sistema_particellare
https://it.wikipedia.org/wiki/Sistema_particellare
https://cerncourier.com/a/building-gargantua/
https://cerncourier.com/a/building-gargantua/
https://www.adobe.com/it/creativecloud/animation/discover/morphing-in-animation.html
https://www.adobe.com/it/creativecloud/animation/discover/morphing-in-animation.html
https://www.khronos.org/opengl/wiki/Compute_Shader
https://www.khronos.org/opengl/wiki/Compute_Shader
https://web.engr.oregonstate.edu/~mjb/cs557/Handouts/compute.shader.6pp.pdf
https://web.engr.oregonstate.edu/~mjb/cs557/Handouts/compute.shader.6pp.pdf

[13] Khronos Group Image Load Store. Disponibile su: https://www.khronos.org/

opengl/wiki/Image_Load_Store

[14] CUDA. Disponibile su: https://forums.developer.nvidia.com/t/

opengl-computeshader-vs-cuda-can-computeshader-replace-cuda/

258830

[15] What is the Difference between OpenCl and OpenGL’s compute shader? Di-

sponibile su: https://stackoverflow.com/questions/15868498/

what-is-the-difference-between-opencl-and-opengls-compute-shader

[16] SYCL. Disponibile su: https://www.khronos.org/sycl/

[17] Shader Storage Buffer Object. Disponibili su https://www.khronos.org/

opengl/wiki/Shader_Storage_Buffer_Object

[18] William T. Reeves. Particle Systems – A Technique for Modeling a Class of Fuzzy Ob-

jects. Note didattiche del corso di Informatique Graphique, Université Paris-Saclay. Di-

sponibile su: https://www.lri.fr/˜mbl/ENS/IG2/devoir2/files/docs/

fuzzyParticles.pdf

[19] Ciara Belle. Particle Systems: Theory and Practice. Progetto indipendente, University

of Maryland, 2012. Disponibile su: https://www.cs.umd.edu/˜mount/Indep/

Ciara_Belle/ciara-partic-system-final-2012.pdf

[20] Andrew Witkin, David Baraff. Physically Based Modeling: Principles and Practice.

SIGGRAPH Course Notes, 2001. Disponibile su: https://graphics.pixar.com/

pbm2001/pdf/notesc.pdf

[21] Metodo di Eulero Disponibile su: https://it.wikipedia.org/wiki/Metodo_

di_Eulero

[22] Metodo di Eulero Semi-Esplicito Disponibile su: https://it.wikipedia.org/

wiki/Metodo_di_Eulero_semi-implicito

[23] Metodo di Verlet. Disponibile su: https://en.wikipedia.org/wiki/Verlet_

integration

[24] Metodo di Runge-Kutta. Disponibile su: https://it.wikipedia.org/wiki/

Metodi_di_Runge-Kutta

[25] OpenGameArt.org, Fonte dove ho reperito lo skybox per il mio progetto. Disponibile su:

https://opengameart.org/content/urban-skyboxes?page=1

117

https://www.khronos.org/opengl/wiki/Image_Load_Store
https://www.khronos.org/opengl/wiki/Image_Load_Store
https://forums.developer.nvidia.com/t/opengl-computeshader-vs-cuda-can-computeshader-replace-cuda/258830
https://forums.developer.nvidia.com/t/opengl-computeshader-vs-cuda-can-computeshader-replace-cuda/258830
https://forums.developer.nvidia.com/t/opengl-computeshader-vs-cuda-can-computeshader-replace-cuda/258830
https://stackoverflow.com/questions/15868498/what-is-the-difference-between-opencl-and-opengls-compute-shader
https://stackoverflow.com/questions/15868498/what-is-the-difference-between-opencl-and-opengls-compute-shader
https://www.khronos.org/sycl/
https://www.khronos.org/opengl/wiki/Shader_Storage_Buffer_Object
https://www.khronos.org/opengl/wiki/Shader_Storage_Buffer_Object
https://www.lri.fr/~mbl/ENS/IG2/devoir2/files/docs/fuzzyParticles.pdf
https://www.lri.fr/~mbl/ENS/IG2/devoir2/files/docs/fuzzyParticles.pdf
https://www.cs.umd.edu/~mount/Indep/Ciara_Belle/ciara-partic-system-final-2012.pdf
https://www.cs.umd.edu/~mount/Indep/Ciara_Belle/ciara-partic-system-final-2012.pdf
https://graphics.pixar.com/pbm2001/pdf/notesc.pdf
https://graphics.pixar.com/pbm2001/pdf/notesc.pdf
https://it.wikipedia.org/wiki/Metodo_di_Eulero
https://it.wikipedia.org/wiki/Metodo_di_Eulero
https://it.wikipedia.org/wiki/Metodo_di_Eulero_semi-implicito
https://it.wikipedia.org/wiki/Metodo_di_Eulero_semi-implicito
https://en.wikipedia.org/wiki/Verlet_integration
https://en.wikipedia.org/wiki/Verlet_integration
https://it.wikipedia.org/wiki/Metodi_di_Runge-Kutta
https://it.wikipedia.org/wiki/Metodi_di_Runge-Kutta
https://opengameart.org/content/urban-skyboxes?page=1

[26] Mixamo.com, Fonte dove ho reperito il modellino 3d del personaggio e le relative

animazioni associate. Disponibile su: https://www.mixamo.com/#/

[27] Canale Youtube di Geopop, ho preso questo video come riferimento per avere una ispi-

razione realistica e scientifica sul crollo del palazzo. Disponibile su: https://www.

youtube.com/watch?v=xjj3oYdBJsU

[28] Olgdev.org, utilizzato come base teorica per quanto riguarda l’utilizzo di un personaggio e

delle sue animazioni nella scena. Disponibile su: https://www.ogldev.org/www/

tutorial38/tutorial38.html

[29] Sito ufficiale di OpenGL. Disponibile su: https://www.opengl.org/

[30] Sito ufficiale di GLFW. Disponibile su: https://www.glfw.org/

[31] Riferimenti a GLAD all’interno della wiki opengl. Disponibile su: https://www.

khronos.org/opengl/wiki/OpenGL_Loading_Library

[32] Sito ufficiale di khronos con riferimenti ad opengl. Disponibile su: https://

registry.khronos.org/OpenGL/index_gl.php

[33] Riferimenti ad Assimp all’interno del sito di learnOpenGL. Disponibile su: https://

learnopengl.com/Model-Loading/Assimp

[34] Riferimenti alla libreria GLM all’interno del sito ufficiale di OpenGL. Disponibile su:

https://www.opengl.org/sdk/libs/GLM/

[35] Sean T. Barrett, stb image.h – Header-only public-domain image loading library.

Disponibile su: https://github.com/nothings/stb

[36] Agenda Digitale, L’IA nel cinema: una nuova era per produzione e creatività.

Disponibile su: https://www.agendadigitale.eu/cultura-digitale/

lia-nel-cinema-una-nuova-era-per-produzione-e-creativita/

[37] Parlamento Europeo. Regolamento sull’intelligenza artificiale (AI Act). Versione appro-

vata in prima lettura il 13 marzo 2024. Disponibile su: https://eur-lex.europa.

eu/legal-content/IT/TXT/?uri=CELEX:52021PC0206

[38] Senato della Repubblica Italiana. Proposta di legge sull’intelligenza artificiale — Intro-

duzione dell’art. 612-quater c.p.. 2024. Disponibile su: https://futurodigitale.

infocert.it/pillole-normative/reato-di-deepfake/

[39] The Guardian. Denmark drafts law to protect citizens from AI-generated deepfakes. 2025.

Disponibile su: https://www.theguardian.com/technology/2025/jun/

27/deepfakes-denmark-copyright-law-artificial-intelligence

118

https://www.mixamo.com/#/
https://www.youtube.com/watch?v=xjj3oYdBJsU
https://www.youtube.com/watch?v=xjj3oYdBJsU
https://www.ogldev.org/www/tutorial38/tutorial38.html
https://www.ogldev.org/www/tutorial38/tutorial38.html
https://www.opengl.org/
https://www.glfw.org/
https://www.khronos.org/opengl/wiki/OpenGL_Loading_Library
https://www.khronos.org/opengl/wiki/OpenGL_Loading_Library
https://registry.khronos.org/OpenGL/index_gl.php
https://registry.khronos.org/OpenGL/index_gl.php
https://learnopengl.com/Model-Loading/Assimp
https://learnopengl.com/Model-Loading/Assimp
https://www.opengl.org/sdk/libs/GLM/
https://github.com/nothings/stb
https://www.agendadigitale.eu/cultura-digitale/lia-nel-cinema-una-nuova-era-per-produzione-e-creativita/
https://www.agendadigitale.eu/cultura-digitale/lia-nel-cinema-una-nuova-era-per-produzione-e-creativita/
https://eur-lex.europa.eu/legal-content/IT/TXT/?uri=CELEX:52021PC0206
https://eur-lex.europa.eu/legal-content/IT/TXT/?uri=CELEX:52021PC0206
https://futurodigitale.infocert.it/pillole-normative/reato-di-deepfake/
https://futurodigitale.infocert.it/pillole-normative/reato-di-deepfake/
https://www.theguardian.com/technology/2025/jun/27/deepfakes-denmark-copyright-law-artificial-intelligence
https://www.theguardian.com/technology/2025/jun/27/deepfakes-denmark-copyright-law-artificial-intelligence

[40] U.S. Congress. TAKE IT DOWN Act – Bill to combat non-consensual deepfake content.

Approvato nel 2025. Disponibile su: https://en.wikipedia.org/wiki/TAKE_

IT_DOWN_Act

[41] Parlamento Europeo e Consiglio. Regolamento (UE) 2016/679 - Regolamento generale

sulla protezione dei dati (GDPR). Disponibile su: https://eur-lex.europa.eu/

legal-content/IT/TXT/?uri=CELEX:32016R0679

119

https://en.wikipedia.org/wiki/TAKE_IT_DOWN_Act
https://en.wikipedia.org/wiki/TAKE_IT_DOWN_Act
https://eur-lex.europa.eu/legal-content/IT/TXT/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/IT/TXT/?uri=CELEX:32016R0679

	Effetti visivi nel cinema e simulazione particellare
	Sistema particellare
	CGI e VFX nel cinema
	Effetti visivi (VFX)
	Processo di creazione dei modelli 3D
	Tecniche di computer grafica con esempi cinematografici
	Motion Capture: Andy Serkis, il caso di Cesare
	Morphing: il T-1000 in Terminator 2
	Bullet Time: Matrix, Neo schiva i proiettili
	Interstellar: Gargantua, il buco nero più realistico del cinema

	Evoluzione e prospettive future dell’industria VFX
	Integrazione dell'intelligenza artificiale nel cinema

	Compute Shader in OpenGL: Fondamenti e Applicazioni
	Cosa Sono i Compute Shader
	Architettura e concetto di invocazione
	Accesso ai dati: Shader Storage Buffer Object (SSBO)
	Confronto tra tecnologie di calcolo parallelo: CUDA, OpenCL e SYCL
	Gestione delle immagini nei C.Shader: Image Load/Store
	Implementazione base di un Compute Shader
	Sincronizzazione e Operazioni avanzate
	Operazioni atomiche

	Limitazioni hardware e ottimizzazioni
	Conclusione

	Background matematico degli effetti particellari
	Modello computazionale della singola particella
	Dinamica e generazione: il ruolo dell'emitter
	Forze fisiche e interazioni
	Collisioni e reazioni
	Integrazione numerica delle equazioni del moto
	Riflessioni finali

	Sviluppo e implementazione del simulatore
	Idea iniziale e sviluppo progressivo del progetto
	Tecnologie utilizzate
	Reperimento dei modelli obj e Cell Fracture su Blender
	Personaggio e gestione della sua animazione.
	Creazione della scena: skybox e posizionamento degli elementi
	Funzionalità varie: comandi da tastiera e gestione della camera
	Gestione delle collisioni e Bounding Box
	Compute Shader e fisica dell’esplosione
	Confronto sistema GPU e CPU con analisi delle prestazioni

	Considerazioni finali sul progetto e prospettive future
	Considerazioni finali sul progetto
	Possibili estensioni future del progetto

	Conclusione e Ringraziamenti
	Bibliografia

