ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

DEPARTMENT OF PHYSICS AND ASTRONOMY "A. RIGHI"

SECOND CYCLE DEGREE

PHYSICS

Dimensionality and boundary conditions in
Hadamard regularization

Defended by

Supervisor ]
Damiano Scevola

Prof. Roberto Casadio

Co-supervisor
Dr. Tommaso Bambagiotti

Graduation Session September 2025
Academic Year 2024/2025



Abstract

In this thesis, we analyze the role of boundaries and spacetime dimensionality in the
context of Hadamard regularization. We start by considering the constant density star
model, whose field equation reduces to a time independent Schrodinger-like equation with
a potential having a jump discontinuity. Due to the jump, which can also be expected in
slightly more realistic but still simple models, there are more types of boundary condi-
tions that one can enforce. Renormalization is what determines if a choice is physically
meaningful or not, and the most general renormalization method that can be applied
to a wide variety of models is the Hadamard subtraction, which relies on the universal
parametrix of the Feynman propagator near coincidence limit. We attempt this renor-
malization procedure to flat spacetime models whose equations of motion are formally
analogous to the homogeneous star case, with custom potentials. First, we apply it to the
well-known case of a real massless scalar in two-dimensional flat spacetime in a Dirichlet
box, and find out that it works. Then, we enhance the spacetime dimensionality to three
and work with a Dirichlet spherical cavity, in which case the divergences differ from those
obtained from the Hadamard parametrix. This hints to the fact that Dirichlet boundaries
may not be physically meaningful in four-dimensional models. After that, we consider
another variation of the first model where the Dirichlet box is substituted with a step
potential with a jump discontinuity. In this case, we find that the Hadamard parametrix
holds, hinting that, in two-dimensional spacetime models, the Hadamard method may
work independently of the choice of boundary conditions. When possible, components of
the renormalized energy-momentum tensor of the studied models are also found.
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Chapter 1

Introduction and motivation

In this first chapter, we are going to give a motivational introduction to the work that
is presented in the rest of the thesis. We first talk about the general issue of quantizing
gravity, then present the framework of quantum field theory in curved spacetime back-
ground and semiclassical gravity. After that, we motivate the study of compact objects
in flat spacetime, being in formal analogy with the case of a homogeneous compact star,
which is the natural laboratory where quantum gravitational effects may play a crucial
role.

1.1 Quantum gravity and compact stars

One of the main problems in theoretical physics today is the search for a theory of quan-
tum gravity. The theories that currently best describe our universe are the Standard
Model of particle physics and General Relativity. Both of them have limitations, and
cannot correctly describe some existing phenomena like dark matter and neutrino oscil-
lations, but so far they are the best we have to make predictions about experiments and
explain observations. There is one further problem about this situation: the Standard
Model speaks the language of quantum field theory, which in turn is framed in quantum
mechanical terms, but the usual quantization procedure we use for gauge theories breaks
down when General Relativity is brought into the picture. In fact, General Relativity
is a gauge theory with respect to diffeomorphism invariance, and one needs to fix the
gauge when quantizing, because the quantization process consists in assigning transition
amplitudes between physically distinct classical states. However, the only solutions we
know to Einstein field equations contain isometries, but these make the gauge fixing in-
effectiveﬂ since mathematically equivalent descriptions of the same physical state can be
confused with two distinct physical configurations having the same mathematical descrip-
tion. Therefore, the known ways to quantize gauge theories do not work for the currently
known solutions of General Relativity, and the search for a mathematically consistent
way to unite gravity with quantum field theory must go on.

One way to investigate about quantum gravity would be to solve Einstein equations
in absence of isometries, so that nothing prevents gauge fixing and the quantum theory
can be built coherently. However, solving the Einstein equations without isometries is
extremely hard, and analytical tools are of little use. The closest coherent framework to
a full quantum gravity theory that we have at our disposal is Quantum Field Theory in

1See [30] for a thorough investigation about this issue.



curved background. Here, we assume to have a fixed non-dynamical classical background
consisting of a lorentzian manifold with metric tensor g,, and energy-momentum tensor
T, satisfying Einstein equations

1 8rG
R,“, — §Rguy = _Tm/a

A
and dynamical quantum fields living on this background. These give a contribution to
the (renormalized) energy-momentum tensor such that the induced modification of the
metric tensor is assumed to be negligible with respect to the original one. In this regime,
which we may call perturbational, one can build a fully functional quantum field theory,
and compute observables such as scattering amplitudes and decay rates. However, there
is no a priori guarantee, even in the vacuum statd?}, that the contribution of the quantum
fluctuations to the energy-momentum tensor induces a modification to the metric tensor
and to the topology of the spacetime manifold which is negligible. This is something that
should be verified a posteriori and goes by the name of backreaction problem. Indeed, the
Einstein equations in the presence of a quantum field ¢ in the state |1}, become

_ 1-_ 87G -
R,uu - §Rg,ul/ = ? <TNV + <w| T;(fl/ |w>ren) )

where the bars on the left-hand side are present to mark quantum-corrected geometrical
quantities and distinguish them from the classical non-barred ones. The quantum cor-
rection given by the field ngS to the energy-momentum tensor plays a crucial role because,
even if it is small with respect to the classical source, the modifications on the metric
tensor and on the topology of the manifold may be drastic due to the non-linearity of the
left-hand side. Furthermore, the metric also enters the calculation of the correction term,
and if it changes drastically, then also the correction does. Therefore, one could think of
iterative numerical methods that reach a steady state that solves the semiclassical version
of the Einstein equations. This is the core of backreaction, and research on this path is
still ongoing. In some interesting cases, the first backreaction iteration may reveal some
underlying property of a full quantum gravity theory, and this motivates the interest
in finding the renormalized energy-momentum tensor in models where gravity starts to
couple strongly with the quantum fields.

One may look for a natural laboratory where quantum gravitational effects start
becoming important, and one is given by collapsing astrophysical objects. The classical
picture about gravitational collapse is given by the Oppenheimer-Snyder model [35]. In
this model, the stellar collapse ends with the formation of a black hole, meaning that both
an event horizon and a singularity are present. Black holes are relatively simpler than
stars and other astrophysical objects thanks to the no-hair theorem [34]. So, if the end
state is a black hole, one can hope for simpler calculations, and this is why results about
black holes are more present in the literature than those about stellar models. However,
when quantum fields are added to the background, phenomena like Hawking evaporation
come into play [13|. It is worth noting that, in the presence of Hawking radiation, the
resulting spacetime manifold drastically differs from the classical stationary solution. In
the classical case, the black hole is eternal and stays there forever, while with quantum
fields present it vanishes into thermal radiation. This shows that the very presence of
quantum fields can backreact and produce results that are very different from the classical

20ne may recall that the notion of vacuum in curved spacetime is ambiguous, but here we stay general
for the purpose of the argument we are making about backreaction.



picture. For a collapsing star, the backreaction may become important at scales that are
still far from the Planck scale, and therefore quantum gravity could be studied in these
macroscopic systems (see |21] for an example). It is therefore very interesting to study
such phenomena, which are still not fully understoodE], using the framework of QFT in
curved background. When applied to black hole physics, this approach is also called
black hole perturbation theory (BHPT for short), and many interesting results have been
obtained (see Section 1 of [1§]).

In what follows, we provide some theoretical notions about quantum field theories
in spherically symmetric backgrounds. These will help us deal with spacetime models
that contain compact spherical objects. For simplicity, we will replace the homogeneous
star model with flat spacetime models having a potential that approximates the effective
one given by the constant density star. The goal that one needs to keep in mind is to
find the renormalized energy-momentum tensor, since it is the core object that provides
information about the quantum properties of the matter distribution. Some of such
models of simple compact objects are then studied throughout the rest of this thesis, and
some interesting results about renormalization close to the boundary are presented.

1.2 Spherically symmetric spacetimes

A spherically symmetric lorentzian manifold M can be written by definition as a cartesian
product M = M, x S?, and the metric tensor can be decomposed as a direct sum

g=78%Q,

where v and € are the metric tensors on My and S?, respectively. The line element,

therefore, reads
ds? = yap(x9)drAde® + p*(2%)Qupdr’da’, (1.1)
with
Qupdz®dz® = d6? + sin® 0de?,

where the upper case indices A, B € {0,1} label coordinates in My and lower case
ones a,b € {0, o} label angular coordinates in S?. Spherical symmetry ensures that the
functions v45 and p do not depend on angular coordinates.

If the spacetime is also static, we can further decompose the metric 4 into a temporal

and a spacial part, and we can label the coordinates 2° and ! as ¢t and r respectively.
The line element, therefore, becomes

ds® = — f(r)dt* + h(r)dr® + p*(r)Qapdz*dz”. (1.2)

One can introduce the tortoise coordinate r, = r.(r) as follows

dr, = (;E:;)%dr, (1.3)

so that the line element in the new coordinate chart becomes (as r = r(ry))

ds® = —f(r)dt* + f(r.)dr? + r(r,)(d* + sin® 0dp?). (1.4)

3See [31] for a review about quantum effects in stellar collapse models.




1.2.1 D’Alembert operator

In general, the action of the D’Alembert operator in an arbitrary metric manifold on a
smooth function ¢ € C?(M,C) is given by the well-known formula

Uo = guuvuvugb = 8u <gMV\/__gay¢) .

-

If we plug the form of the metric (|1.1]) inside the above formula, we get

06 = Oy + = (aAp) ABOpp + —A 0, (1.5)

with
Hyo = \/1_—7814 (\/—_WAB@Bqﬁ) : (1.6a)
Apyd = ﬁag (sin 00p¢)) + = eaqu (1.6b)

We can notice that the operator A, acting on functions defined on S? admits spherical
harmonics Yz, (6, ) as eigenfunctions (see appendixfor further details about spherical
harmonics):

Aw)Yom = =00+ 1) Yo, (1.7)

The spherical harmonics form a complete orthonormal set for the Hilbert space of square
integrable functions on the sphere L?(S?). Therefore, the function ¢ can be decomposed
in a mode sum:

+oo m
x 0, ¢0) = szem VYo (0, ).
(=0 b=—m

The above decomposition in spherical harmonics is a general result for fields defined on
spherically symmetric spacetimes.

If the spacetime is also static, using {2° = ¢, 2! = r} coordinates, the matrix of the
metric tensor components 742 becomes diagonal. One can then completely separate the
time variable from the spacial ones. In this way, the temporal equation becomes that
of a harmonic oscillator, and one can introduce the Fourier basis e™™" to express ¢ as a
superposition of monochromatic components:

400 m

o(t,r,0,9) :/ ’“"tz Z Vo (w; ) Yem (0, ©). (1.8)

{=0 {=—m

1.3 Quantum field theory in static spherically symmet-
ric background
As anticipated, we now revise the basic concepts of Quantum Field Theory in curved

background. In particular, for the purpose of this thesis, we will only consider a real
massless scalar ﬁeldE] ® on a D-dimensional spacetime manifold M, with mostly-plus

4Fields with higher spin, of course, have computational complications, but have a similar treatment.
See Section 2.1 of [18].



signature (timelike squared line elements ds? are negative), minimally coupled with grav-
ity (the usual coupling constant ¢ is zero). We will follow Section 2.1 of 18] with the
cosmological constant A set to zero. The theory is fully specified by the Einstein-Hilbert
action functional S:

1
S[g,q)] = W/dD.T\/—gR‘i‘/dDI'V —gﬁm,

where we indicated the metric tensor with a bold g to avoid using the coordinate-
dependent notation g, since the action is a scalar quantity, and g = det g. The matter
Lagrangian is defined as

1
L= 50"V, BV,

In the action, additional terms must be taken into account if the spacetime manifold has
boundaries. We will talk about the boundary issues later.

Classically, the equations of motion for this theory are given by the Einstein equations
and the massless Klein-Gordon equation in curved spacetimeﬂ:

1
R, — §ng = 81GT,., (1.9a)
9"V Y, B = 0, (1.9b)

where the energy-momentum tensor 7}, is the one associated with the matter lagrangian
containing the field ®:

1
T =V,oV,® — 5g,wgoﬁva<1>vﬁ<1>.

The set of the above equations form a system of non-linear partial differential
equations describing the evolution of the field ® and the metric g. A particular solution to
the above system is called background solution, and is given by the triple (M, gB% ®5¢).
We therefore have a classical spacetime manifold M on which we are going to define
perturbations of the dynamical fields g and ®. By using € as a formal parameter that
keeps track of the perturbative order, we define

g=9g"“+¢h
P = PPC 4 ¢p.
Now, by keeping in mind that gP¢ and ®2¢ solve the equations of motion, we need to
find the dynamical equations for h and ¢, and for this purpose one can plug the above
expansions in the equations (1.9)), keep terms up to first order in € and simplify by using
the background equations. After this procedure, one gets the linearized equations for h,
which describe gravitational waves, and again a Klein-Gordon equation for ¢ (since the
equation itself is linear in the field):

O = 0.

We will not focus on the gravitational wave sector, but rather on the scalar perturbations
¢ solving the Klein-Gordon wave equation above. One way to physically justify this

14 . .
°We will use the convention ¢ = 1 from now on.



setupﬁ is by noting that the expectation value of many observables O satisfy classical
equations to a good approximation, and so the quantum state |1)) must be such that

WO W) = Ou + (¥|6]¢) = Oq,

with O, being the classical solution. We then assume that the quantum correction
(| 0]1) is small with respect to O, and will be the only dynamical quantity we will use
in the theory, leaving O, as a fixed background quantity.

If we are in a static spherically symmetric spacetime with coordinates {¢,r,0, ¢} and
line element given by with p(r) = r (being r the areal radius), we can express
o(t,r,0,p) as in (1.8), where we reduced the problem to finding the function v(w;r) with
arbitrary but fixed frequency w. We can conveniently view (|1.8]) as a linear combination
of the following modes:

U (W3 T)

Gom(wit,1,0,0) = e ™ Yim (0, ¢), (1.10)

where we cast Vg, (wW; ) = wgy(w;r)/r for convenience. Now, if we plug the above mode
into the field equation and use the tortoise coordinate r, defined by ((1.3)), so that the line
element becomes (|1.4), we get the master equation for we, (w;r,):

2
dd%m = [Vi(r2) — w?] ttgm, (1.11)
with
_ oEr Ll +1)
Vi (1) = 3 0 F(r.). (1.12)

PROOF. To get the master equation, we work with the tortoise coordinate 7., and line ele-
ment given by (T.4). In the language of the previous section, we have \/—y = f, v3B =
diag(—1/f,1/ f)AB. Therefore, in the d’alembertian (1.5), we have the following terms:

1 1 1 1
D(Q)(b@m = _?af(bfm + ?ag*(b@m - ?wz(ﬁém + ?ar*ﬁbém?
2 1
;amr?am Dem,
1 0 +1)
ﬁA(2)¢5m = - r2 ¢fm7

where we used the expansions (1.6) and the spherical harmonic eigenvalue relation (1.7]). By
putting everything into (1.5) and equating to zero, we get, after multiplying everything by f:

ar*rar*(bfm) - g(zr—;l)fgi)ﬁm =0. (113)

r

w2¢£m + <ar2* ¢€m +2

Now, if we exzpand using (1.10), we can cancel out the =Yy, (0, ) factor, and get an equation
for upp,. However, we need to compute the following derivatives:

87"* Upm, Upm,
Or, om = - TT&“* T,
O, u 1 1 U u
2 T« Llm Im 2 m A2
aT*Qng = , — ﬁar*Uemar*T — ﬁar*lmmar*r =+ 2?(87:*7") — ?87.*7",

6See Section 4 of |30].



so that the term in the parentheses in Eq. (1.13)) becomes

8r* r

82 Gom+2——0r, bpm =

8 U
et —W
_78* Im T*r"i_%%/yz u£m82 +M_2/UL;M

8r*u£m _ Upm 62
2 7"*
T T

Equation (1.13)), then, becomes

w2ugm n 83*Ugm U 52 1 E(f + 1)

T*

f=m =,

r r r2 r2

and after multiplying everything by r and moving all terms except the second derivative on the

right, we get 52
ag*uﬁm - |:< r.” + €(£+ 1)f> - w2:| Upm,

r r2

which is the master equation we wanted to prove.

1.4 Constant density compact stars

In the paper [27|, the master equation appears in Eq. 7, and is applied in the
case of a constant density Schwarzschild star. This model is a particular solution of
Einstein equations that saturates the Buchdahl bound. To understand what this bound
says, we assume to have an isotropic perfect fluid star with energy-momentum tensor
T# = diag(—p, p, p, p)*, on a static spherically symmetric spacetime with metric

ds* = —f(r)dt* + h(r)dr?* + r*(d6* + sin® 6dp?),

with p > 0 and 0,p < 0. The Buchdahl bound says that the metric above, satisfying the
Einstein equations, is regular only if

9
R>-GM,
4
where R is the radius of the star, and M is its mass.
The constant density star saturates the Buchdahl bound when p = 43%3 Even if this

model is unrealistic, it is useful because it is analytitcally simple and therefore well suited
for QFT calculations. For this model, the metric components f(r) and h(r) read

2
3 2GM 1 | 2GMr?

h(r) = (1 - QGMTQ)_l. (1.14b)

R3
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V/(GM)?

0.05 |

30 20 10 0 10
r/(GM)

Figure 1.1: Plot taken from |27, Fig. 1, representing the potential for ¢ =1, for
values of R/(GM) = 9/4 (blue), 2.3 (orange) and 2.4 (green). The dashed lines mark the
value of the tortoise coordinate r, where r = 0. We notice a jump discontinuity at the
surface of the star.

When r = R, we can easily detect that the two expressions match with the exterior
vacuum Schwarzschild solution

2GM 2
ds* = <1 — GT) dt* + <1 — GT> dr? + r?(d6* + sin? 0dy?).

We can apply the master equation (Eq. 7 in the paper [27]) with potential given by
(1.12), where the tortoise coordinate is defined in terms of . By plotting the potential
with ¢ = 1 as in Fig. [1.1| we can see that it has a step discontinuity on the surface of
the star. Since the potential enters in the master equation, which has to be solved, one
needs to impose boundary conditions on wuy,, at r = R. Therefore, the question arises:
which boundary conditions do we impose? One can think of a few options:

e Dirichlet: ¢(r = R) = 0;
e Neumann: 0,¢(r = R) = 0;

¢(r =R") = ¢(r = RT)
Orp(r=R") = 0:p(r = R)

Each boundary condition amounts to a specific physical choice about the nature of the
star surface and must be carefully considered. This is the issue we are going to address
in this thesis, by analyzing some of the possible options.

e smoothness:

8



1.5 Content and motivation

As we said before, the constant density star is not very realistic, but nonetheless its
analytical simplicity allows QFT calculations to be performed. The next step one can
think of is to find a more realistic model which still retains analytical manipulability. One
core feature of the homogeneous star model is that its potential has a step discontinuity
on the star surface, as we explored in the previous section. This step discontinuity is the
price to pay for analytical simplicity, and encodes the lack of realism of the model. As
we engineer slightly more realistic models, we may still encounter a discontinuity in the
potential, and the need to choose suitable and physically meaningful boundary conditions
persists.

We need to keep in mind that our goal is to find the renormalized energy-momentum
tensor in those more realistic models. In the case of a homogeneous star, in |27], the renor-
malized energy-momentum tensor is found via the conformal anomaly, by exploiting the
fact that the spacetime is conformally flat. This may not be the case for more realistic
models, and therefore we need a more generally valid procedure in order to compute the
renormalized energy-momentum tensor. The tool we need is the Hadamard renormaliza-
tion procedure, discussed algorithmically in [17]. Reviews of the main renormalization
methods that are used in curved spacetime are presented in Chapter 3 of [19] and Chapter
6 of |2|, and include point-splitting, adiabatic regularization, proper time regularization,
dimensional regularization and cutoff regularization. The Hadamard method is a par-
ticular case of point-splitting, which is based on a core mathematical property of the
propagator, that is its universal, state-independent, covariant and local singularity struc-
ture, called Hadamard parametriz. The advantage of this method is that it is very general,
it does not rely on any particular symmetry of the background spacetime, it does not
depend on the particular quantum state (as long as it is of the Hadamard type), and
the singular terms are purely geometric and local. We refer to Appendix [D] for further
discussion about the mathematical properties of Hadamard states. Furthermore, once
an approximate local form of the propagator is known up to second order in spacetime
coordinates, the energy-momentum tensor can be found as simply as applying a formula.

Thanks to all of these advantages, one may hope that the Hadamard renormalization
procedure can be applied to more general models of stellar collapse to find the renor-
malized energy-momentum tensor. However, these models often contain discontinuities
or boundaries due to the presence of the compact object, and it is not clear whether the
Hadamard procedure correctly applies to any spacetime with boundaries or discontinu-
ities, nor if, in absence of a working renormalization prescription, the modeled physical
objects are defined at all.

In this thesis, we are going to investigate the problem of renormalization from the
Hadamard point of view, and apply it to models that are inspired by the constant den-
sity star, which contain boundaries or discontinuities. Indeed, we expect the Hadamard
procedure to carry out fine if the potential associated to the master equation is smooth,
but it is quite hard to even find the normal modes in this case. Therefore, we are going
to attempt the Hadamard procedure to toy models that contain boundaries and discon-
tinuities, and we will see that the number of spacetime dimensions plays an important
role in the behaviour of the divergences near the boundary. We should, more precisely,
talk about Hadamard regqularization before one performs the subtraction that removes
divergences. In particular, we will see that in some of the models that we are going to
consider, we will just stop at analyzing the divergent part, and the renormalization step



is not performed.

We will consider massless real scalar field theories in flat spacetime, having an equation
of motion that is formally analogous to the master equation (1.11). In fact, in flat
spacetime we have that the frequency w is defined without issues, and by factorizing
the (monochromatic component of the) field ¢, (t,z) = e “'u,(x), the Klein-Gordon
equation with potential given by U(x)

O -Ulx))¢ =0
becomes formally analogous to the master equation ((1.11))
Vau(x) = [U(z) — w?] (),

with the spacial coordinate analogy x <> ..
In particular, we will analyze flat spacetime massless real scalar quantum field theories
in the following scenarios:

e one spacial dimension with Dirichlet boundary conditions at x = 0, L with L > 0;

e three spacial dimensions in spherical symmetry with Dirichlet boundary at the
surface of a sphere of radius R > 0;

e one spacial dimension with step potential U(z) = UyO(|z| — L), with © being the
Heaviside step function, and smoothness conditions.

The reason why we consider 2D models is because of their simplicity, but also to highlight
the role that dimensionality plays in the UV divergences of the energy-momentum tensor.

In all of the three cases above, we compute the normal modes, the divergent part of
the Feynman propagator G¥ (x,y) = i(T$(x)d(y)) at coincidence limit near the boundary
(and, if possible, in other regions of the spacetime), and when the mathematical problem
can be analytically solved, also the renormalized energy-momentum tensor at some points.
At the end of the journey, the hope is to have an idea of the role of boundaries in
Hadamard regularization, to lay down the foundations for further research about quantum
field theory in stellar models and gravitational collapse.

10



Chapter 2

Real massless scalar in a box in 1-+1
dimensional Minkowski spacetime

The first model that we are going to consider is a real massless scalar field in 1+1-
dimensional flat spacetime with Dirichlet boundary conditions at two finite edges. We
will see that in this case the divergences of the propagator are of the Hadamard type,
and we will be able to subtract them and obtain the renormalized energy-momentum
tensor. In order to gain confidence with the Hadamard renormalization procedure, we
will also attempt a naive renormalization approach by explicitly introducing an exponen-
tial damping regulator, subtract the divergent term and then take the limit where the
regulator approaches 1. Since this model is pretty simple, we will do all the calculations
explicitly, in order to gain confidence with all the steps that are needed to get to the final
goal of renormalizing the energy-momentum tensor.

2.1 Classical theory

Let us then start with a real scalar field in one infinite temporal dimension t € (—o0, +00)
and one bounded spacial dimension x € [0, L], with L > 0 and Minkowski metric

G = (_01 (1)> , (2.1)

such that Dirichlet boundary conditions hold at the spacial boundary: ¢(t,z = 0) =
¢(t,x = L) = 0. The Klein-Gordon massless action will then be

00 L
S:/:o dt/0 dx (—%g“” qua,,gb). (2.2)

By varying the action with respect to ¢, we obtain the Klein-Gordon equation of motion

29

where [ = —92 + 92

PROOF. The lagrangian is
1
L= —igm/a,uﬁbauﬁb'

11



The derivatives are

oL
— =0
0¢ ’
oL
= MV&/ )
500 1N
oL
0 = —g"0,0,¢0 = —0¢ = (07 — 02)¢.
M8(8M¢) g i (b ¢) ( t )(rb
The Euler-Lagrange equations of motion for this theory reduce to a single equation:
oL oL

a a0
"0(0ud) 09
and if we substitute the derivatives calculated previously we get

O¢ = 0.
[]

The above equation is linear, and a complete set of solutions satisfying the Dirichlet
boundary conditions is given by

Un(t, 2) = N, sin(k,z)e”*n,

u’(t,x) = N sin(k,z)et
with n € {1,2,...} = NT, N,, being a normalization factor to be determined, and

by = . (2.4)

Proor. We now give a full derivation for the solutions, by taking a more mathematical approach.
The equation we need to solve is

(=07 + )e(t, ) = 0.

The above equation is manifestly linear, and therefore we look for a basis of the linear space
of solutions A (with complex coefficients). We proceed by separating variables, thanks to the
derivatives not being mized. Assume ¢(t,x) = a(t)B(z), so the equation of motion becomes:

By dividing both sides by o(t)B(x) (assuming ¢(t,z) # 0 for a moment), we get
at) _ 8"

a(t) — B(t)

If we inspect the above equation, we see that the two sides depend on two disjunct sets of variables,
and therefore they must both separately be equal to a constant, say —k* < 0, with k > 0. We can
then avoid the division by o(t)B(x) step, which was only useful to realize we could split the PDE
into two ODEs, and directly write:

a+ka=0
B+ k2B =0.

12



We then have two harmonic oscillators, and therefore the solutions can be written in terms of
the two bases:

ikt

a(t) € span{e™ 7™}, o, B(x) € span{cos(kz),sin(kz) } k>0, (2.5)

where we chose the trigonometric basis for the spacial part since it is convenient when imposing
boundary conditions. The actual space of solutions A is not given by the tensor product of the
two separate solution spaces, because we need to recall that k must be the same for both factors
to satisfy the equation of motion. Therefore, the basis for the linear space A is given by

o(t, ) € span{e* cos(kx), e~ sin(kz), e cos(kx), e sin(kx) }rso,

with the additional constraint that linear coefficients must be such that the field is real-valued.
The general solution is then a linear combination of the above modes with constrained coefficients:

o(t,x) = Z [e‘ikt(ak sin(kz) + by, cos(kz)) + e (a} sin(kz) + b}, cos(kzx))| ,
k

where the equality ¢(t,x) = ¢*(t,z) is manifest.
Now, we need to impose Dirichlet boundary conditions:

é(t,0) =0
é(t, L) = 0.

We may also impose the same conditions on the spacial derivatives, but they would just reduce
to the above equations, since taking the spacial derivative only amounts to an extra factor of £k
in any mode. If we plug x = 0 in the general solution, we get

$(t,0) =) (e—"’“bk + eikth) :

k

so we immediately have by, = 0. The updated general solution now only has sine factors:
o(t,x) = Zsin(ka:) (ake_ikt + a",;eikt) .
k
We still need to enforce ¢(t,x = L) =0 Vt € R. This is achieved by imposing
sin(kL) = 0,
meaning that
with n € {1,2,...} =Nt (we exclude non-positive integers because we are in the case k > 0).
Considering only the spacial part, this means that any function f € L2([0,L]) satisfying

Dirichlet boundary conditions at © = 0, L can be expressed as a linear combination of sine modes
{sin(k,z)}125. Let us define for a moment the standard inner product in L*([0, L], R)

L
(v1,02) = /0 or(@)va(a),

and compute the orthonormality relation of the sine modes. We therefore need to compute the
following integral:

L
Inm:/ dz sin(k,x) sin(k,,z).
0

13



We can use the Werner formula sin asin 3 = %[COS(O& — ) — cos(a + )] to get

1 (L
Inm = 5 / dx (cos[(kn — km)x] — cos[(kn + km)x])
0
Now, assume n # m and recall that k, = 7, so
T e (L it — kel — — - sinf(hn + el )|
L{ 1 1 B
=5 (n — sin[r(n —m)] — T sin[m(n + m)]> =0,
since sin(pr) = 0 Vp € Z. Whereas, if n = m, we have:
I L 1 L
I, = 2/0 dx [1 — cos(2knz)] = 3 o sin(2nm) = 5
We can therefore claim that
L L
/ dz sin(kpz) sin(kpz) = 55"% (2.6)
0

The orthonormal basis of the space L?([0, L], R) with Dirichlet boundary, and equipped with the
standard inner product is then given by

on(z) = \/z sin(kn).

Now, take an arbitrary test function f € L([0, L], R) such that f(0) = f(L) = 0. We can expand
f onto the complete basis {v,}125 as follows

“+oo

f(x) =Y {fova)vn(z)

n=1

_ i:f | " iy P 0)] 0a(0)
e

L
_ /0 [Z un@:)vn(y)] f(y)dy.

n=1

The above equality chain implies that the object inside the square brackets in the last expression
acts as a Dirac delta distribution on the test functiovﬂ f, and therefore we can write down the
following distributional identity (after substituting the expressions for vy, and multiplying both
sides by L/2), which is a completeness relation:

+o0 L
> sin(kna) sin(kny) = 50 =) (2.7)

n=1
Going back to the equation of motion, the final general solution is therefore given by the
following linear combination

—+00

o(t,) = Y lanun(t, ) + ayus (b, 2)],

n=1

'See Appendix [C| for a primer on theory of distributions.
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Figure 2.1: Spacial part v, (z) of the normal modes u, (¢, z) for n = 1,2,3,4,5 and L = 1.

where the modes uy, and w;, are defined by
Un(t, ) = Nye~ * sin(kz),

with N, being a normalization factor to be determined later.

We may also have chosen a non-negative separation constant, but in this case the field solu-
tion would be identically vanishing after imposing Dirichlet boundary conditions. Indeed, if the
separation constant was 0, the spacial solution would be f(x) = co + c1z, so B(0) = 0 yields
co = 0 and then B(L) = 0 yields ¢y = 0. Whereas, if the separation constant was positive, the
spacial part would have been B(x) = d4 cosh(kx) + d_ sinh(kx), so 3(0) = 0 yields d+ = 0 and
then B(L) =0 yields d— =0 (since k > 0 and so sinh(kL) > 0).

|
By setting
1
Nn - 5
k,L
the modes above become:
1 .
up(t, ) = — sin(k,z)e”*nt, (2.8a)
1 .
wh(t,x) = N sin(k,z)e™*nt. (2.8b)

By denoting u,(t,z) = e~*nty,(x), we can see the plot of the spacial part v, in Figure

21

The modes u,, are orthonormal with respect to the Klein-Gordon inner product
L
(61,03) = =i [ dn (618163~ 630101). (29)
0
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yielding the orthonormality relations
<un7 um> = 5nm7

(tp, Upy)

(Un, uy,)

_5nm7

0,

for all n,m € N,

(2.10a)
(2.10Db)
(2.10¢)

PROOF. Let us denote u, = u,, and u} = u,} so that (assuming N, € N):

ut(t,z) = N, sin(kpz)etHnt

We have, by direct calculation (with 01,09 € {4+, —}):

L
(ugt ul?) = —i/ da(Np Ny, sin(kn) sin(kp ) (ogikyy, )e'(@1Fn—o2km)t
0

nom

— Np Ny, sin(k,x) sin(k:m:r)(Uﬂkn)ei(glk"*@km)t)

L
= NNy (o1k, + agkm)ei(alk"Uka)t/ dx sin(k,x) sin(k,,x).
0

By using (2.6)) in the inner product, we have

; L
(ugt,ul?) = Ng(al + UQ)knel(Ulfvz)kntgénm‘

Now, for (un,unm) and (uk, uk), we have o1 = o9 and therefore:

<una um> = <u;k7,a u:n> = UlNgknLénma

so we obtain )

N, = ——,
" kL

and based on the sign of 01 = o2 we get a plus for (up, unm) and a minus (u},ur, ). Whereas, for
(Un,ul,), we have 01 = —og and therefore o1 + o9 = 0, making the inner product vanish.

From now on, we shall not specify the domain of the index n for the modes, keeping
in mind it is N*. In addition, these modes have definite frequency, being eigenfunctions

of the Schrédinger operator i0;:

iatun = knuny

o) = —kyu.

So, we see that
e u,(t,x) are positive-norm and positive-frequency;

e u(t,x) are negative-norm and negative-frequency.

16
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2.2 Field quantization

The general solution to the field equation is given by

—+00

o(t,x) = Z lay un(t, @) + afui (8, )] (2.12)

n=1

with the constraint that (a,,)* = a; to ensure that ¢ is real. To quantize, we need the
canonical conjugate momentum, which is given by

+oo
(@) = fa%) == [a,0un(t.z) + af O (t,)] . (2.13)
t n=1

By promoting the coefficients a;, a;" to operators a, , a; with (a )T = a, we obtain the

quantum versions of the field ¢ and its canonical conjugate momentum II:

knx) Qe
Z Sm(kn; iknt | gt gibnt) (2.14a)

[ K R
z fsm ko) (afe™t —a, e ). (2.14Db)

If we impose the algebra of creation-annihilation operators as follows

a,, . an,] =0, (2.15a)
o}, at] =0, (2.15b)
[a,, . at] = bnm, (2.15¢)
we can verify that ¢ and II satisfy the equal-time canonical commutation relations
[6(t,2),8(t,)] =0 (2.16a)
[ﬂ(t,x),ﬂ(t,y)- —0 (2.16b)
[éﬁ(t, x), 10(t, y): =id(r —y) (2.16¢)

PROOF. By direct calculation, using the relations above, we have (factors with vanishing com-
mutators are immediately dropped)

“+o0o +o0o

. . in (k) sin(kpy) et bt e it e ik
gb(tal‘)vqs(tay) = o a, e —tiknt +a+ln e —ikm +(l oikm
| | ;; Yl ]
+oo +o0 . .
_ sin(kn) SIN(km¥) (12 o1 itk ko)t o (ot A ilknka)t
Sl ) ) )
_ +ZOO +ZOO sin(kyx) sin(kny) (5 e~ ilkn—km)t _ s ei(kn—km)t>
= Lk "m nn
XX sin(k,z) sin(k,y)
=>. > (S — 6m) = 0.
n=1m=1
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+oo +o00o
«/k Torn . A A
S Z Z ™ sin(kyx) sin(kny) [ +etknt d_e_lk"t, &;;elk’”t —a e_““’”t}

n=1m=1
+0oo +o0o
= _nz::lmz::l \/k‘ZTmsin(knx) sin(kmy) (_ [at, an) oi(kn—km)t _ 4, at] e (lcnflcm)t>
+00 400 \/W ’ ‘
B Z Z sin( ”x) sin(kmy) (_5nmel(kn_km)t + 5nme_z(kn_km)t>
n=1m=1
+00 400
=3 () sinh) o LB+ Brn) = 0.
n=1m=1

+oo +oo i %
|:¢(t7$)7H t y L“ kﬂ n.’E Sln my) |:a e —tknt _|_a+ ikn t ;%elkmt _&%e—zkmt}
n

n= lm 1
- +oo +00 i /k;m 2) sin( )<[ ] —i(kn—km)t _ [Eﬁ &—} ei(kn—km)t)
_n 1m= 1L kn n my o e
+oo +oo k}
= \/—msm (knz) sin(kny) <5nme Wen=km)t 4 5 eilkn= km))
n= 1m 1
400 +o0 Z
= Z Z I sin(knx) sin(kny) - 20pm
n=1m=1

2 +oo
- ZZ > sin(kna) sin(kny)-

We can now employ (2.7) and see that

(6,20, 1, 9)] = 2 20— ) = i — ).
|

Recall that the state space of the quantum field theory is called Fock space, and can
be built starting from the vacuum |0), which is the state that is annihilated by all the
annihilation operators:

a, 10) = 0.
The excited states are built by acting on the vacuum with creation operators a;. In what
follows, we will often use the following identity:

(a=at) = (0]azak [0) = Gm. (2.17)

PRrRoOOF. We have

(0], 10) = (0] i ] + iy 10) = (0] G [0) — (0L TO) = B,

since the vacuum state is normalized (0]0) = 1.
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2.3 Energy-momentum tensor

The core quantity we are interested in is the energy-momentum tensor vacuum expec-

tation value (0| T}, [0) = (T,). To compute it, we use the standard formula (see e.g.
Eq. 2.26 of [2])

. | .
T,uz/ = ,u(baz/¢ - §guuga/88a¢aﬁ¢- (218)
By a straightforward calculation, we obtain
(Tya) = —(Thy) = —zm Znsm (2k,x) (2.19b)

PROOF. We can use the definitions of the field operator and its conjugate momentum (2.14)).
First, we need the derivative of ¢ with respect to x:

qut x) \/—cos knx) —iknt +ate ikn t)

Let us compute the expectation values of the squares of the differentiated operators:

(2 = — +ZOO Jio Vknkm sin(op) sin (k) <(d;&;eiknt _ &;e—iknt) <a+ oikmt _ &%e—ikmt)>

) sin(kpz) sin(kmax)(—a ;)

n=1m=1
+00 400
knkm _
3 S )
n=1m=1
k

((0:0)%) = +Z°° +ZOO Vnkim cos(knx) cos(kmx) <(&;e_ik" + af etknt ) (dm —ikmt | g+ zkmt>>

L
n=1m=1
+o0 +oo

knk ;
n=1m=1
+oo

Now, we can compute the components of the vacuum expectation value of the energy-momentum
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tensor:

(Tu) = () = L (1) [0+ (@.0)%)] = 3 [(17) + (@67
1 Xk, 1Nk, 7 R
25n21f[81n (knx) + cos™(k )]—QnZIL—QLQnZ_:ln,

+o00 400 k k

SO

sin(kpx) cos(kmx) <(dj;eik"t — d;e_ik”t> (&m “tkmt 4 gt kat)>

n=1m=1
+o00 +oo
\/k: km
=—i Z Z sin(kp ) cos(kpax)e  Fn—hm)t {anat)
n=1m=1 \?’—/
+oo k
=—i Z:l fn sin(k,x) cos(knx)

R
= —izrs Z nsin(2k,z),
2L =

(Tyt) = (110,0) =
=1 f +§ VEknkp cos(knz) sin(km) <(d;e_ik" + a—i— zkmﬁ) (d;;ez‘kmt 4 e_z‘kmt)>

n=1m=1
+o0o +o0 g

= ZZ k i 08 (kpa) sin(kyx)e~Fn—hkm)t (ay at)
n=1m=1 \?’—/

=1 Z ]%n sin(k,x) cos(k,x)

= 2L2 Znsm 2knx).

We notice a few things:

e the diagonal components include a quadratically divergent series;

e the off-diagonal components contain an oscillating series, which does not converge;

e the off-diagonal components are not equal, as one would expect from the energy-
momentum tensor being symmetric. This is due to the operator ordering ambiguity

when computing the product of non-commuting operators.

These three issues are all solved by renormalization. We will apply both a simple regular-
ization method and the Hadamard method to this case, to get a taste on how the latter
works. We expect to get the same result from both methods, being the energy-momentum

tensor an observable quantity.
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2.4 Simple renormalization

Since this is a simple case, we can just introduce a regulator by hand inside both series,
make them converge, and then recover the original case in some limit?] The regulating

factor we will use is
e~ = emoLm (2.20)

which is an exponentially damping factor. The series is convergent for a@ > 0. We recover
the divergence in the limit o« — 0, where the exponential regulating factor equals 1.

A common and simple renormalization prescription (found in Birrel-Davies [2], chapter
3) is given by subtracting from the regularized vacuum expectation value of the energy-
momentum tensor the one it has in the limit L — +oo:

A ~ ~

(T ) = (T reg = Hm (T} ey, (2.21)

and the renormalized energy-momentum tensor will be

~ ~

(T )ren = Hm(: T}, 1) (2.22)

a—0

2.4.1 Diagonal terms
By introducing the regulator by hand in the diagonal terms (2.19a)), we get (no sum over
w=rt,x)
A T I
(Tupdreg = 272 ; ne ",

which evaluates to
N T e L
(e}

Tuahreg = 573 (T — 1)

n=0

Now, we set r = e~ which is positive and less than 1 for all o > 0. We have

2More rigorously, we will treat the two expressions as distributions, being limits of a family of smooth
functions as the regulator tends to 1. See Section for the mathematical meaning of regularization.
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Since the series is absolutely convergent (all terms are positive), we can swap the derivative
operator and the infinite sum, to get

+oo %
- - ne *T = —_—

Now we notice that the start of the summation that we need to compute is not n = 0 but rather
n = 1, however this fact does not change the result, since the term associated to n = 0 1is
vanishing due to the n factor in front of the exponential. Therefore, we get our final result upon
multiplying by the prefactor 575 and collecting e —20F in the denominator:

—Q

(i 2 e ‘
ne
W‘ reg L2 L2 —2aT (ea

juted
L

_1)2'

. ™
—1)2 T 92 (e

NEINSE

e
Ta
L

To make the divergence manifest, we now expand the previous expression in power series
of a around 07, and get

. 1 us o
Tuwdees = 3oz ~ i + © (33)

2 ae?

PROOF. The power series is just a Taylor series expansion around o = 07. Let us call z = «
and expand around z = 07. The numerator is:

S

2

N=e =142+ +0(),

while the denominator s

2 2 2 4 ’
D= (ef-1) :<z—|—2+6—|—(9(z)>

4 24

2, .3, 7 5
= 4+ 40
22422+ — 4+ — +0(2°)

<1+z+£f~+0()>

Now, we use the following standard Taylor expansion

1
14 az+ bz2 + O(23)

=1—az+ (a® - b)2* + O(2®),

with a =1 and b = 7/12 and we get

N _9 22 3 b}
— = 1 Z 1— =
D=7 ( tzt +O(z ))( z+12z + O(z ))
22 5
—2 <].%7’f— 22 + E + 522 + 0(23))

— O—i+m 0_;—é+a>
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Now, substitute everything in the original formula:

z

A~

T e
(Tup)reg = (e =12

T 1 1
—sz<z2‘12+0<”>>

T L? 1 a
=212 (wzaz _12+O<L>>

_ 1 T +O(oz)
2?2412 L3/ =

The renormalization prescription simply reduces to discarding the divergent term, since
it is the only one that survives in the limit L — 400, and therefore gets subtracted
according to prescription (2.21)). By taking the limit o — 0 after the subtraction, we
get that the renormalized diagonal components of the vacuum expectation value of the
energy-momentum tensor are equal to

A ™

Tit)ren = (T, =
< tt>ren < :L‘x)ren 24L2

(2.23)

2.4.2 Off-diagonal terms
By introducing the regulator in the off-diagonal terms (2.19b)), we get (with u # v)

+0o0

(T reg = ii% Z ne “Z"sin <%I) , (2.24)
n=1
which evaluates to
. T sin x sin (%a)

Ty )reg = Tt
< g ) I Z4L2 [cos (%a) — cosx]2

PrRooF. We have

400 mn 400
—a . X ;TN
S = E ne” *L" sin (fx> =Im E ne *L"e"L”
n=1 n=1

1 _Li.‘j (_L" —%(a—ix)> 1 _Laf‘j — 21 (a—ix)
- ™ L€ - Waan:1€ '
By setting z = — 7 (a —ix), we get

The above is a geometric series with argument e*. In this case, we have z complex, but since
€? is holomorphic in all the complex plane, we can use the analytical extension of the geometric
series formula, provided |e*| < 1. Indeed,

le*| = e 27| =T <1 Va > 0.
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Let us denote e* = a — ib, with

a=e L%cosz,
b=e I%inzx
We then have
1 1 (1—a)—1ib (1—a)—1ib b
T A G o A s wy f I e oy R g g
e L%sin gz e L%sin gz

_ _9m . - _9om _m
(1—e 1%o0sz)2 4+ e 2L%in’xr 1+4+e 2L% —2e L%cosx
_7T . .
;/L/O‘smx 1 sinx

_y%(e%a 4 e EY _2cosx) "~ 2cos(Ta) —cosz’

Now, we need to differentiate and multiply by —L/7:

Lo sin = _ Lsinz 1) —%sin (Fa)
"~ 27 Oa cos (fa) —cosz Y < (cos (Fa) — cosa:)Z‘
i T

Finally, we need to multiply by £575 to get (T )reg:

. i . sin x sin (la)
T)reg = £——=5 = +i L
i) reg 212 412 [cos (%a) — CoS x]2

From this expression, we can conclude

<le>reg =0 (%) :

PROOF. Assume x # 0 and x # L, since in both cases all the terms in the infinite sum would
vanish, and the result would trivially be 0. By keeping x fized and taking o < %w, we can expand
around o = 07 and get

i SInT (%a + O (

(Tur)reg = +773 [1—cosz+0 (%Ei)}
—a i [0 (3)] (Favo () <o (%)

If we send L — 400 in the above, it vanishes, meaning that there is nothing to subtract,
according to the prescription (2.21). In fact, we also see that there are no divergent
terms in @ — 0. In addition, there is no finite part at all, since the leading term is of
order ae. Therefore, when we send a@ — 0, we get that the off-diagonal components of the
energy-momentum tensor vanish, and the symmetry of the EMT is recovered.

<ﬂ:p>ren - <Txt>ren =0. (225)

It is interesting to notice that the series was not divergent, and the quantum ordering
ambiguity has been solved just by regularization. We can interpret the result distribu-
tionally, as the limit of the sequence of well-defined functions parameterized by «, with

expression given by (2.24)).
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2.5 Hadamard renormalization

We are now working with a simple model, where the spacetime is flat and the number
of spacetime dimensions is 2. However, when dealing with general static and spherically
symmetric spacetimes, there is no obvious and quick way to add a regulator by hand,
subtract the divergences and compute the renormalized energy-momentum tensor. As
discussed in the introductory chapter, the Hadamard renormalization procedure is a sys-
tematic way to do this, which only pre-requires that the Feynman propagator expression
of the theory is known, or at least a second-order approximation of it near the coincidence
limit. We will give a schematic presentation of how to apply the Hadamard procedure,
and then employ it to compute the renormalized energy-momentum tensor of our model,
to indeed verify that the result is the same one we got with the naive (but working, just
for this case) approach.

2.5.1 General algorithmic procedure

In order to properly perform the Hadamard renormalization, we follow algorithmically
the procedure outlined by Decanini-Folacci in [17], in the case D = 2. The general outline
of the procedure, in an arbitrary spacetime of dimensionality D with field equation of
motion (O —m? — {R)¢ = 0 is as follows]

e Compute the Feynman propagator G (z, z’) of the theory, or at least an approxi-
mation near coincidence limit at second order in spacetime variables.

e Compute the following quantity (Eq. 32 in Decanini-Folacci)

= if D=2
= D_ 2.26
ap F((22)Dl) it D42 (2.26)
T) 2

e Write down the Hadamard singularity structure expression Gfmg (or parametriz)

of the propagator, which is given in terms of the Synge world function, defined as
half the geodesic distance squared:

1
o(z,2) = 57’(95, z')%;

the specific form of the Hadamard parametrix depends on the local geometry only,
since it encodes the ultraviolet divergences, that dominate short distances. We will
not report all the details here, but they are well explained in a self-contained fashion
in the paper by Decanini and Folacci [17].

e Compute the renormalized propagator W (z,z') (Eq. 85 in Decanini-Folacci):

W(z, o) = %[GF(;U, ) — GE, (2. (2.27)

3m is the bare mass of the scalar field and R is the Ricci scalar. ¢ is the coupling constant between

the field and the Ricci scalar.

25



e Next, compute the following limits:

w(r) = lim W(z, '), (2.28a)

' —x
wy,(z) = lim V,V, W (z,z"). (2.28Db)

' —x

e Finally, compute the renormalized vacuum expectation value of the energy-momentum
tensor:
A ap 1

(Tyw)ren = - —w,“,+2(1 20)V,V, w+ 26 — GO+ R, W—g,,v1 | +O 4,

(2.29)
where R, is the Ricci tensor, v; and ©,, depend on the spacetime dimension, the
geometry and the parameters of the theory, and can be computed by using the
formulas reported in Decanini-Folacci, Section III.

2.5.2 Computing the Feynman propagator

First, we need the Feynman propagator
GE(t,a;t, &) = i(Th(t,x)p(t', a")) = i{op(t, x)d(t', &) O(t—t) +i{

By direct calculation, we get

RS Y

(t,2))O(t —1).

>

(t', ")

—+00

(o(t,z)(t',2)) = Z % sin(k,z) sin(k,z)e~#*n (=), (2.30)
n=1
+oo

(Gt 2ot z)) =) % sin(k,z) sin(k,a')e*n (=), (2.31)
n=1

We can then easily put the Feynman propagator in a compact form:

—+o00 .
2 . /
Gl (t, ', 7)) = — sin(k,z) sin(k,z" e~ Fnlt= 2.32
(t,x;t', 2) stm( ) sin(kn')e : (2.32)

n=1

where we notice the appearance of an absolute value.

PROOF. Let us compute the quantity ((t, z)p(t',x')). We have, by using (2.14al):

+oo 400
(o(t,x Z Z sin (kn) sin (k')

== L\/W

(i e rte ot 4 oot e ikntgibmt’ | gt gikatg=ikmt! | gtgh cihnteihmt”
+00 +00

: —iknt ikmt’

= Z Z sin (kpx) sin (k:mx') e Wintethimt s

== L\/W

= ; k;lL sin (knz) sin (kp,2') o—ikn(t'—1)

The Feynman propagator trivially follows from this calculation, by noticing k,L = mn, multiply-

ing by i and inserting the absolute value for time ordering.
]
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2.5.3 Hadamard parametrix

After acknowledging that in our case we have ap = %, we now need to write down the

Hadamard parametrix, which is reported in Eq. 86 of Decanini-Folacci:

GE (it ') = 4LV(t, .t ) loglo(t, z,t', ') + 0], (2.33)
s
Here, V(x,2') is given in Section IIT A of Decanini-Folacci, in Eqgs. 87-91. Since in our

case R, = 0, R =0 and m = 0, we then have:

'Uo——l,
UOa:Oa
lR 0

Vo ab = — a )
0 ab 19 Jab

1 5, 1 1
= __ - = —=—|R=0
e 2(£ 6)

This means that

1
Vo =v9 — vy o V% + T wVeoVio + (9(0%) = -1+ O(a%

) = O(07),

),

N

Vi=v1+0(c

and therefore \ \
Vit,x;t, 2" ) =Vo+Vi+O(0z2) = =14+ O(o2).

The Synge world function, in this flat case, reduces to
1
o(t,z;t' z") = 5[—(15 —t')? + (x — 2')?]. (2.34)
Therefore, the Hadamard parametrix of the propagator singularity is

s _t_t/2 _ N2
Ging(t,x;t/,w/):z;log{ ( >2+(I z) +z’0+]

Therefore, by putting everything together, the renormalized propagator W (¢, z;t', z') now
becomes:

+oo
4 e [t —a')? - (t—t)?
W(t,z;t' x') = ; - sin(k,z) sin(k,z')e " * =1 1 log {(:p z) 5 ( ) + i0+] .
(2.35)

2.5.4 Renormalizing the energy-momentum tensor

In order to compute the renormalized vacuum expectation value of the energy-momentum
tensor, we need to apply (2.29)). In our case, the formula reduces to

A

1 1 1
<T,LLI/>7‘BTL = - (_w,m/ + éa,uayw - _g,ullljw) . (236)

47 4
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PROOF. Indeed, in the flat and massless case, covariant derivatives become partial derivatives,
Ry, =0, vi = 0 as seen before and we are free to choose &€ = 1/2 so that the second term inside
the brackets vanishes. In addition, we have, by FEq. 92 of Decanini-Folacci:

log M?
47

CHAE [—(1/2)m3g,,] = 0.

We need to compute the following limits

t,x)= i W(t,x;t' 2
wt )=, Jm W)
wy(t,x) = lim  9,0,W(t,x;t' 2").

(t',x')—=(t,x)

The results, in our case, are:

w(t,z) = 21In [L‘/ﬁ sin (7”'3)] , (2.38a)

7r L
w2 i
Wy (t, ) = W (t, ) = 62 [1 — 3csc? f)} : (2.38b)
Wiy (t, ) = wy(t, ) = 0. (2.38¢)

We notice that w and w,, do not depend on time, therefore we will write w = w(z) and

Wy = Wy ().

PROOF. First, we compute the derivatives of W (t,z,t' z'):

—+00
4 . , a2 (+— )2
W (t, x; t, m/) _ Z - sin(kpz) Sin(kna;/)eﬂk"‘t*t i log (x —a) . ( )

n=1

+407 |,

4 2(x — ')
AN . N —ikn|t—t
O W (t, ;' x') = g —nk‘n cos(knz) sin(k,x')e =¥l + ( NE— ()2 10 )

n=1

A = 4. . : N, —ikn|t—t'| / Q(t - t,)
oW (t,z;t',2') = Z ﬁzkn sin(kyz) sin(knz')e sgn(t' —t) — G2 (=t ti0r

n=1

00, W (t, ;' 2") = 0,0,W (t, ;¢ 2') =

4t —t")(x — )
[(z — )2 — (t — /)2 4+ i0+]2’

X 4 :

E k2 cos(kpx) sin(kna')e = sgn (¢! — ) +
n

n=1

2
(x —a')2 = (t—t)%

+o0
4 4 /
2 Y F12 : N —ikn|t—t'|
W (t,x;t = E k kn kn
IW(t,x;t',x") - = sin(kpz) sin(k,2')e

n=1
We also need the second time derivative of e~ *nlt="1 in order to compute OPW (t, ;' 2').
8te_ik"‘t_t/‘ = —ikne_ik"‘t_tll sgn(t —t'),
Ofe_ik”‘t_t/‘ _ (_ikn)ze—ikn\t_t/\ sgnQ(t _ t') _ Z-k,ne—z‘kn\t_t/\ L28(t — t')

= — ke Fnlt =tk sen?(t — t) — 2i6(t — t)],
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where we used the following distributional identitieﬁ:

0,|z| =sgnz =20(z) —
0.0(z) = 0(z2).

Therefore, we get the second time derivative of W :

OPW (t, x; 1, 2") Z kene” Fnlt =Yk, sgn®(t — t') — 2i6(t — /)] sin(kna) sin(kpa')
n= 1

(x—a")2 4 (t —t')?
(o=@ = (=)

Now, we need to take the limits. Since the expression is reqularized, the limit can be taken
i any direction, with a small caveat about the second time derivative, where we should avoid
setting t —t' = 0 exactly, because the Dirac delta can give issues. In this latter case, we will first
perform the limit in time, assuming that t' is very close to t but never equal, and only after we

take the limit in the space direction. When t' — t but not exactly equal, we have sgn?(t' —t) =1,
S(t' —t) =0 and e~ It =1, 50

-2

+oo
2
tl/1£n>t OPW (t,z;t, ") nZ:l k2 sin(kpx) sin(kpz’) — CErk

We notice that the above limit is equal to the same limit taken on the second spacial derivative:

+oo
2
lim O2W (t, z;t, Z k:2 sin(k, ) sin(k,2') —

t'—t

oo = Jm oWt ait o),
n= 1

Therefore, we will have the same expression for wy and Wy, which is obtained by taking the
limit ¥ — x. Let us parameterize ¥’ = x + €, so that the limit becomes ¢ — 07 (we are free
to choose the direction of the limit). We then have, by applying Werner trigonometric identity
involving the product of two sine functions:

| 2
wy(t, ) = Wey(t,x) = 61_1)155r - Z k;2 sin(kpx) sin(kpz’) — 62]
n= 1

. [ 272 = 2mx TE 2
= J;%L T \e\pn) T (7)) -2
2rx = TE 2
= eli%lJr (chos ( > — chos (Ln>> — 62]
Now we use the distributional identity (C.9a)) twice, and get
272 1 1 2
L? \ 2 (cos 22"’3 — 1) 2 (cos - 1) €2

2 1 1 2
2L2 \ sin? o SinQWTm e’

where we also used the trigonometric identity 1 — cosa = 2sin?(a/2). Now, we employ the

Wit (t, ) = Wye(t,z) = lim

following expansion.:
1
— + +0
sin? o a2 3 (@),

4See Section for the definition of distributional derivatives.
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so that we get

2 2
wy(t, ) = Wee(t,x) = lim [W <42L = + O(€) — csc? M) — 2]
T

e—0+ | 2L2 3 L €2
. 2 2 w2 0 TT 2
=% [2 Te L et O(‘f)}
2

Then, we compute Wy = wy. To do this, we first send t' — t in 0,0, W = 0,0,W

+oo .
. 4i o . N, —ikn|t' —t| / At — ) (z — a') —
t/lg?i g ﬁk” cos(knx) sin(k,x')e sgn(t' —t) + - 0|

4271'

chos (kpx) sin(kyx').

We can now set ' = x + € and send € — 0 after applying Werner trigonometric formula:

2ir? [ =
Wiz (t, 7) = wae(t, 7) = ﬂ:61_1>110fl+ Tz nZnsm (2kpz) + Znsm (kne)| = 0.
To get the final equality above, we used (C.9b)). We then see that the off-diagonal components
Wee = Wy vanish, but this is somehow expected since the infinite sum is multiplied by i and
therefore it must vanish for the off-diagonal components of the energy-momentum tensor to be
real.

We are now left with computing w, for which we just need to take the coincidence limit of

W(t,z;t', 2"). We will use (C.11)) in what follows.
+o0
4 o N2 (4 $\2
w(t,x) = lim lim [Z — sin(kp ) sin(k,z')e " Fnlt' =t 4 og <($ z) 5 (t=*) + i0+>]
n

' —xt'—t

= lim Jf 4 sin(k,z) sin(knz’) + lo (o=
e o n " " & 2
o

2 T = 2 2mx €2
= Jim |2 eos (Fn) - 25 o8 (L”> +log < 5 )]

al

= lim —210g‘2s1n(2L>‘ +210g‘2s1n(7; )‘ + 2log

e—0t |
s1n( )ﬂf T
— lim |21 21 (2 ( )‘
Jip. | 2los | 5T |+ 210w 2ein (7
2L sin (2% L2
= 2log w = 2log \[Sin (@> ,
™2 T L

where we used the standard limit limq_,o $2¢ = 1, and the fact that we can bring the limit inside

the log due to regularity of log for posztwe argument.

|
By plugging everything inside ([2.36]), we obtain
(Tit)ren = (Tra) u (2.39)
tt/ren — xx/ren 24[/2’ .
< t >ren = <th>ren =0 (2 40)




PROOF. First, we compute the derivatives of w:

dyw(z) = 0pdpw(x) = 000w (x) = dPw(x) =0,

Do) 2 LV2 <7T33) T 2 (ﬂ'x)
w(x) = cos|— | — = —cot | —
T B - N/ LT
27T2 272 T
2 _ 2
Now, we have
1 1 1
Ttt Ten = E —wy + 3t 4gttDw] = 4 [ Wyy + 48210]
1

- (g e ()] + o e (7?))
- 247TL2 M +M 24L2’

N . 1 1
<Tta:>ren = <T:(:t>ren = E |:wtx + iataxw -

1
4gta:|:|w:| =0,

- 1 1 1 1 1 1
<T1:ac>ren = E |:_wx:v + ia:%w - 4gwx|:|w:| = E [_w;m + iagw - 4agw:|
1 1 - ™
= g |t 390 = Gien = 55

The above are exactly the values we obtained with the simple renormalization method in
the previous paragraph. This means that we correctly performed the Hadamard renor-
malization procedure, and we now gained confidence with a general tool for renormalizing
the energy-momentum tensor.

We will see that things get much more complicated in scenarios that involve four
spacetime dimensions, even with the highly symmetric background, and in those where
there is an additional potential term in the equation of motion. In this simple case, we can
notice that the Hadamard parametrix correctly captures the divergence of the propagator
in the coincidence limit everywhere, but we will see, in the next chapter, that in the four
dimensional theory the Hadamard parametrix does not hold near the boundary.

2.6 Casimir effect

The natural step, once the energy momentum tensor has been renormalized, is to talk
about the Casimir effect. This phenomenon has been widely discussed in literature, and
can be summarized as the force between two surfaces that is due to the presence of a
field in vacuum state between them. In our case, the spacetime is flat, is two dimensional
and the two “surfaces” are just the two points + = 0 and = L. The attractive force
between those two points can be computed from the Casimir energy, which is just the
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total energy present between the two points. We can easily write down the Casimir energy
by integrating the energy density over the spacial domain:

™

Fo(t) = [ anpto) = [ etTidn =57

The Casimir force is given by the spacial gradient of the Casimir energy. In an inertial
reference frame where x = 0 and z = L points have constant velocity, each point will feel

a force of
T

™
F=ouEell) = =0 (~5i7) = ~5im

which is attractive. We therefore conclude that in the presence of a massless real scalar

field, two points where the field vanishes attract each other with a net force equivalent
to F'.

2.7 Further research directions

There are several natural ways to extend this simple model or make useful variations on
it, by keeping in mind the primary objective of studying the collapse of a star or another
compact object:

e add a constant mass term and compute the renormalized energy-momentum tensor;

e use a step potential instead of Dirichlet boundaries to model the compact object
(in the homogeneous star model, the effective potential has a step discontinuity at
the edge of the star);

e make the distance between the two Dirichlet boundaries vary with time and see
what happens to the energy-momentum tensor.

Actually, the first two points are connected, in the sense that adding a step potential
effectively means that the field has mass outside the compact object, and no mass inside.
In the next chapter, we will study the four dimensional version of this problem and see
that Dirichlet boundary can be problematic with Hadamard renormalization.
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Chapter 3

Real massless scalar in a spherical
cavity in 143 dimensional Minkowski
spacetime

In order to proceed with our understanding of the role of boundaries in Hadamard regu-
larization, it is useful to study models of increasing complexity. As a first simple model,
we considered a 141 dimensional Minkowski quantum field theory in a spacial Dirich-
let box. The next step is to take 3 spacial dimensions, and consider a spherical spacial
Dirichlet boundary of radius R, while still retaining flat geometry. This is still too simple
as a model of a star, but in this way we can investigate the role that dimensionality plays
in the Hadamard renormalization procedure (however, in this case, we will see that a
problem arises during the regularization step, that is the divergent terms do not match
the universal Hadamard parametrix). A nice reference for this model is |15], where an
explicit (integral) expression for the renormalized energy density is given. In this thesis,
however, we want to present an alternative calculation, which makes use of the heat ker-
nel method and fractional laplacian formalism. Other useful references are [5| 8|, which
treat the problem of Casimir energy in spherical geometry.

3.1 Classical theory

Consider a four-dimensional lorentzian metric manifold with signature (— + ++). We
employ the usual time coordinate ¢ € R, alongside with spacial spherical coordinates
r € [0, R] with R >0, 0§ € [0, 7] and ¢ € [0, 27).

Metric
The metric is
-1 0 O 0
0 1 0 0
g,ul/(t77a797g0) - O O TQ O 9
0 0 0 7r2%sin®60
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with inverse given by

-1 0 0 0

0 1 0 0
m t? 797 =

0 0 0 7"2siln§9

Action

Let us now write down the action of our theory. Since we are in a spherical cavity with

radius R, the action is

400 R s 2
1
S = / d*zy/|g|L = / dt/ dr/ rd@/ rsin Odp <——g‘“’ Mzﬁ&,gzﬁ) , (3.1
M —o0 0 0 0 2
with lagrangian density given by
I
Equation of motion
The Euler-Lagrange equation yields the equation of motion for the field:
39
PROOF. Euler-Lagrange equation for scalar fields reads (see e.g. eq. 2.8 in [25])
oL 9 oL
96 " 0(0u9)
We have
oL
a—¢ =0
oL
= —g"d,p = Mg,
20,0 ~ 9 ¢ ¢
SO 8£
= —-0,0"¢p = —0¢ = 0.
Vo) T
|
In components, the Klein-Gordon equation above becomes:
1
—r?sin 007 ¢ + sin 62r0,¢ + sin 0r202¢ + cos 00y + sin ;¢ + m@igb =0 (3.4

Boundary condition

When solving the equation of motion, we need to impose the Dirichlet boundary con-

dition at r = R, that is Vt € R, V0 € [0, 7], Vo € [0, 27),

o(t, R, 0,p) =0.
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3.1.1 Normal modes

Since the equation of motion is linear in the field, we can look for a complete orthonormal
basis of solutions which spans the whole linear space of the field’s physical dynamical
trajectories. To achieve this goal, we need to manipulate Eq. (3.4) and define an inner
product.

Solving the equation of motion
First, we make the ansatz

o(t,r,8,0) = A(t)B(r)C(0)D(¢).
Then, by substituting the above ansatz into (3.4 and dividing by ¢ = ABC'D we get

_A"(t)  B"(r) 2B'(r)  1C"(0) _CO (9) w2 g2e) _
a0 T B0 T Teae T e T e D)
Now, multiply by r? and separate the variables (¢,7) from (6, p):
LLAW B 280 [C0) O D)
TR ol < R [ R R

Since the two sides depend on disjoint sets of variables, we can equate both of them to a
constant simultaneously, which we call (¢ 4 1):

A"(t)  B"(r) 2B'(r) _(({+1)

—A()—i— ()—l— By~ 12 (3.6a)
C"O) | oot 0C O | 2P0 _
C’(Q) 0 + csc? 0 Dlo) 0(0+1) (3.6b)

Eq. above is just the spherical harmonics equation, and the general solution is a
linear combination of spherical harmonics, which are discussed in Appendix [A.3]
Consider equation , containing temporal and radial components. We can again

separate variables and call the separation variable —w? = —k? (we will use both inter-
changeably):

A'(t)

Alt)

B"(r) 2B'(r) L+1) 5

B(r) rBn ¢

We can solve them independently and get the general solutions

At) = 1™ + ane™", (3.7)

B(r) = bije(wr) + baye(wr), (3.8)
where j, and y, are the spherical Bessel functions of first and second kind, respectively
(see Appendix. Since y,(wr) diverges for r = 0, we manually set by = 0 to get a regular
solution at r = 0.

Recall that we need to impose the Dirichlet boundary condition on the field at r = R,
meaning that B(R) = 0. This means that we want

blj5<wR) = 07
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which implies that w is quantized

Qp
Wy, = —]_f;,, (3.9)

where oy, is the n'* zero of the spherical Bessel function j,. This, in turn, means that
also the frequencies of the temporal harmonic oscillator become quantized.

There will then be as many modes as the possible values that the triplet of quantum
numbers (n, ¢, m) can take. We know from the angular part that ¢ € {0,1,2,...} and
m € {—{,...,L}. Furthermore, the zeros of spherical Bessel functions of integer order are
countably infinite (and unbounded), i.e. n € {1,2,3,...}. Our modes will look like

uan( r, 07 SD) szntjé(wﬁnr)nm(e SO)
aZEm(t> r,0, 30) el ﬂ(wﬁnr)YEm(e 90)'

Klein-Gordon inner product

In a scalar field theory, one can introduce the Klein-Gordon (non positive-definite) inner
product. Given two solutions ¢; and ¢, and a spacelike hypersurface >; with constant ¢,
we define their inner product as (see e.g. Eq. 2.9 in [2])

(61, ) = —i /Z V191610065 — 630061z, (3.10)

and it does not depend on the value of ¢ defining the hypersurface ;.

PROOF. First, let us prove that the properties of indefinite inner products are satisfied. We need
to show conjugate symmetry and linearity in the first argument. Indeed, linearity is proven by

(@ + b, 0) = =i [ V[glla(6a0003 — 03h0n) + bnduds — 0300’
- a<¢a7 ¢2> + b<¢bv ¢2>7
while conjugate symmetry follows from

(61, 62)" / V191658002 — 200878
= —i/E V19l(62006% — ¢100¢2)d>x = (B2, P1).

We now need to prove independence from t. Let us define the quantity

Ju(@1, ¢2) = —i(P10.03 — $30,01). (3.11)

By using the Leibniz rule, we can compute the four-divergence of J* (changing the sign to the
temporal component since we are raising the index with signature — + ++):

M1, g2) = M ¢160¢2+/8@W+ G505 1
M+ ¢131¢2_/PW— $507 1
M+ ¢182¢2/2¢%82/¢T P55 ¢1
+05610505 + ¢133¢2/3%¢§/33/¢T— $50361),
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which turns out to be vanishing:

OpJ" (#1, ¢2) = —i($10¢5 — ¢30¢1) =0

since both ¢1 and ¢35 solve the Klein-Gordon equation O¢ = 0. This means by definition that
J* is a conserved quantity. Now let us define the following hypersurfaces using spacial spherical
coordinates and t1 < to:

Sor={(1,1,0,9)0<r <R 0<0<70<¢<2n}
Et27R:{(t2ar97(p)‘ 0<r <R0§9§W70§§0§2Tr};
Vi ={(t,R,0,0)|t € [t1,12],0 <0 < 7,0 < ¢ < 27};
oUgr = Ztl,R U th’R U Vg.
We notice that OU is a closed hypersurface which is the boundary of a hypercylinder from t1 to

ta. We can use Stokes’ theorem (see e.g. Appendiz E of Carroll’s book [12]) which states that,
being n* the unit vector normal to the hypersurface at each point,

}{ Jun“dg’x = / 8MJ”d4:E =0,
oU U

where the last equality follows from J¥ being a conserved quantity. The left-hand side can be
written as (being n* = (1,0,0,0) and m* orthogonal to Vi)

/ —/ Jlm“dgx +/ J#mﬂd?’x =0,
2R Xi9,R Vr

but the integral over Vi vanishes because the fields ¢1 and ¢35 vanish at r = R due to the Dirichlet
boundary condition. By the fact that J,n* = Jy in the coordinates we have chosen, and since it
1s a scalar quantity, we have proven the following equality:

/‘ %ﬁx:/ Jod3z,
Etl,R EtQ,R

and this equivalence holds for any values of t1 and to.

To be more explicit, the Klein-Gordon inner product in our case looks like

(P1, P2) = /dr/ rd@/ 7 sin 0dy (¢10p05 — ¢50:P1) - (3.12)

Orthonormalization
Our aim is to compute the norm of i, and @, to normalize the modes, and also to
check that distinct modes are orthogonal. We have the following relations:

<ﬂ/n€m7 7ln’ﬂm’> = Oé@nR2j£2i1 (afn)(snn/éﬂ’émm/ (3133)
(T W) = —Ctin R 71 (m) S Ot Grt (3.13Db)
<Ungm, n'0'm > - 0 (313C)
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PROOF. First, we note that

ataném (ta T, 03 90) = _iwﬁnanfm (t7 T, 07 30)7
Oty gy, (E,7, 0, 0) = +iwen U g, (E, 7,0, ©).

ném

Using the Klein-Gordon inner product (3.12)), we have, for the first relation,
R T 2T
<fan€m7an’é’m’> = —Z/ dT‘/ T'de/ rsin Qd@(fbngmatﬂ:/glm/ - ﬂ;/zlm/atfbnem)

0 0 0
R T 2

= —Z/ dT‘/ T’d@/ rsin Hd(p(iwgln/ + Z'wgn)jg(awn’r‘)jgl(L(Jg/n/’r‘)o
0 0 0

Yo (0, 0) Yt (0, ) (in )t
R
_ (wfn + wéln,)e—z(wen—wzln/)t |:/ 7'2de5((,<}@”7')ng (we'n'T) .
0

7r 2
. / dH/ sin 0deYem (0, ©) Yy, (6, )
0 0
= (wfn + U.)g/n/)efi(wén*wg/n/)tN’

where we are left with evaluating the integral
R ) ™ 2
N = / r d?"je(wznT)jef(we/n/T)/ d&/ sin 0dpY (0, 0) Yy (0, ¢).
0 0 0
Similarly, for the second relation, we have
R T 2w
(%mﬂiwmﬁ = —i/ d?“/ Td@/ rsin Hd(p(ﬁrwmatﬁnlg/ml — ’fbn/g/m/atﬁ:Lgm)
0 0 0

R T 2w
= —z'/ dr/ rd@/ 7 sin Odp(—iwpr — iwem)je(wenr) jo (Werpr)-
0 0 0
Y (0,0) Y (0, p)e ™ en e )t

= _(wfn + Wg/n/)€+i(wén_wgln/)tN'
Let us now evaluate N :

R g 2
N = |:/ T2deg(Wgn7“)jg/ (wg/n/T):| . |:/ d@/ sin 0d<ngm(9, QO)}/;m/ (0, QO)
0 0 0

R
= / r2drjo(went) jo(Wen ™) 800 Sy
0
R3 .
= 7]@@1 (Cten)Onn O Oy

where we have used the orthonormality of the spherical harmonics (A.13)) and the orthogonality
of spherical Bessel functions in finite domain in succession. Therefore, we have

~ ~ 3 2 2 .2
<unéma un’f/m’> = wﬁnR Je+1 (aen)énn’éﬁﬁ’ 5mm’ = aEnR Jo+1 (afn)énn’ééf’ 5mm’a

~ % ~ % 3 -2 2 .2
<uném7 un%/m/> = —wm R ]eil(afn)(snn’(sﬁ’émm’ = —ay, R ]Eil(afn)énn’(sa’émm’v

since the factors of 2 simplify, and we, = wpp = B
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For the third relation, we have
R T 27
<1~Lngm,ﬂ;/€/m/> = —i/ d’l”/ T’de/ rsin edgo(ﬂngmatﬂn/glm/ - @n/g/mlatﬂngm)
0 0 0
R T 2
= —Z/ dr/ ’I"de/ 7 sin Hdgo(—z'wg/n/ —+ iwﬁn)jé(w@nr)j@’(Wf’n"'")'
0 0 0
Yem (8, 9) Yo (6, p)e en o)t

R 2
= (win — wpyJe et / r2drje(went)jo (wemn) / dipeim+mie.
0 0

204+1(0—m)! (200410 —m))! [T
. df sin 0 Py, 0) Pyt 9),
\/ A (4 m)! \/ A (0 +m') /0 sin 0 Py, (cos 0) Py, (cos 0)

where we used the definition of spherical harmonics in terms of associated Legendre polynomials

(A.9). The integral in ¢ is just a Kronecker delta 218y, s, and we can set m’ = —m everywhere,
including
P, 0) =P, o) = (—1ymlE—mtp 0
Z’m’(COS ) - g/v_m(COS ) - (_ ) m E’m(COS )7

where we used (A.8). The relation becomes
. R 2
(it W) = (it = o) e | [ oo )] 20
0

(0 —m)! [2041(—m)! [20+1( —m)
C+mM\ ar C+m)\ ar (@ +m)!

(=D"
. / df sin 0 Py, (cos 0) Py, (cos 0)
0

R
_ (Wén . wZn/)e%(wen+wen/)t [/ TQdeg(WgnT)jz(wen'T)} %5m7_m,.
0

.(_1)m(€—m)!2@+/l’(€—pl){ 7 (e+pm5/
(C+m)l 4x (L4 m)! 26T (L7 m)! t

. R —m)!
= (=1)™(wpn — wz’n/)e_l(wén"'wln/)t [/0 T2deg(W€n7")j€(w€n’T):| Méﬁgl5m7_ml
m —2%w R3 . g —m '
= (_1) %_%)e 2 entQJEil(agn)W(snn/(Sa/ém’m/

=0,

where we used the orthogonality relation of associated Legendre polynomials (A.7) and also the

orthogonality relation of spherical Bessel functions in a finite domain .
|

The orthonormal modes are then given by dividing @ and @* by the norm, which is the
square root of the prefactor of the Kronecker deltas in (3.13al), and also in (3.13b]) with
a negative sign:

. T T
Ve Rjesi () = \/;RJH;ﬂ(O@n) = \/;RBzm

where we used the identity (B.3) and defined

B = Jz+§i1(0‘m)- (3.14)
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Orthonormal modes
We then get the following orthonormal modes, whose radial components (denoted by
Ve (r) such that w,e, (t,7,0,¢) = ety (r)Y;"(0, p)) are plotted in Figure ?7:

2 1 : m —lw
Unem (t,7,0, ) = \/;RBg Fe(wWner ) Y™ (0, p)e " “net (3.15a)
2 1 : m iWpet
nﬂm(t T, 9, 90) %RB@ ]E(wnér)}/e (€7 QD)G e (315b)

The normal modes satisfy the orthonormality relations:

<un€ma un’f’m’> - 5nn’5€£’ 5mm’ (3 16)
<U:L€m7 UZ’E’m’> = _5'rm’ 6%’5mm’ (3 17)
</U/n@m, u:;/z/m/> - O (318)

Frequency
The orthonormal modes (3.15)) are eigenfunctions of the frequency operator id;, with
definite positive or negative frequency eigenvalue:

iatunfm = WneUnem, (319)

10Uy gy = — WU (3.20)

Therefore, we have that

® Uym(t,r,0,¢) is positive norm and positive frequency;

o u, (t,7,0,¢) is negative norm and negative frequency.
The plots of the frequencies and the spacing between them are reported in Figure
Classical field general solution

The general solution to the Klein-Gordon equation (3.3) is a linear combination of the
modes ([3.15) with complex coefficients a_ e C:

ném> nﬁm

“+o00 400

t T 9790 ZZ Z némuném t T 9790) + an[m nfm(t 7” 6790)} (321)

n=1 =0 m=—/

where (a,, )* = a’, to make the field real-valued.

Classical canonical momentum field
The canonical momentum field is given by

oL
I(t,r,0,p) = ———, 3.22
(1r0.0) = 5 (3.22)
so that we have the standard equal-time Poisson bracket:
/ / / 1 / / /
{o(t,r,0,0) 11(t,r", 0, @)} = —=0(r —1")0(0 — 0')6(¢ — ¢'). (3.23)

Val

We are now ready for quantizing the field.
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3.2 Quantization

We promote the mode coefficients in the general solution to creation and annihilation
operator pairs, and write down the quantized field and canonical momentum.

+oo +oo 44
o(t,r,0,¢) = ZZ Z g Unem (6,75 0, 0) + @y o (8,7,0, 0)] (3.24a)
n=1 (=0 m=—/¢
400 400  +4

t [ ‘9’ SO Z Z Z ngmatunfm t T, 9’ SO) + an(matunfm<t7 T, 97 @)] (324b)

n=1 =0 m=—/

By imposing the standard algebra for creation-annihilation operator pairs, we get the
equal time canonical commutation relations with the right prefactors:

é(t7 T’ 97 ¢)7$<t7 ,r‘/? 9/7 (p/>- = 0
[ﬂ(t,r,&,gp),ﬂ(t,r’ﬁ',gp’)- =0

—

[$(t7.6,9), 1Lt 0. ) | = —=d(r = 11)6(6 — )3 — )

3.3 Feynman propagator

In order to study the energy-momentum tensor, it is useful to analyze the propagator, in
particular its behaviour near coincidence limit. We define the Feynman propagator as in
eq. 21 of Decanini-Folacci [17]:

Gr(z1,22) =1 (0] Tﬁzg@l)ﬁzg(@) 10)
=7 [@(tl — tQ)G+<l'1, l’z) -+ @(t2 - tl)G7<x27 .%1)] )

where

G (21, 22) = (0] §(x1)o(x2) |0)
G_(z1,22) = (0] p(w2) (1) |0) ,

and x; = (t;,7;,0;, ;). By plugging (3.24al) inside the above expressions we get (after
some algebra, done with Wolfram Mathematica)

+oo 400 +4

Gl ez) = R2 Z Z Z ﬂwzn(trw)je(Wénrl)ﬂ(“}énﬁ)y;z (01, 01)Y,™" (02, 2)
n=1 (=0 m=—¢ ”
400 +oo  +£

G_(21,72) = ZZ Z ﬁw"(trh)jii(Wénﬁ)jé(“fﬂnﬁ)ye (01, 01)Y,"" (02, 02),

n=1 {=0 m=—¢ n

which differ just by the sign of the time oscillating exponential. Therefore, the time
ordering is achieved just by using an absolute value, and the Feynman propagator will be

+o00 +o00

Grp(x1,12) = ZZ Z ﬂwe"‘t17t2|j€(wén"’l>ﬂ<wnr2)Ye (01, 01)Y," (02, 02).

n=1 {=0 m=—/¢ n

(3.25)
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By using the spherical harmonic addition theorem (A.14]), we obtain (with 7 defined in
(A1H))

400 400

' 2+1
Gr(21,72) = 2}22 ZZ B2 el =12 5 (W) jo(wenta) Po(cos ). (3.26)
n=1 ¢=0 n

Coincidence limit

Since we are interested in the behaviour near coincidence xy — x7, we now choose a
purely timelike spacetime path to perform the limit (we are assuming that the finite result
after renormalization does not depend on the renormalization scheme that is chosen, and
therefore we can freely choose the spacetime path along which to perform the limit):

[ty —ta] =€>0
To=T1 =T

0, =6, =460
Y2 = P1 =P,

so we are interested in the limit e — 0%,
The Feynman propagator in this spacetime path simplifies to

] R 26 + 1 77,&4]@ €2
Gr(r1,22) =5 2R2 Z Z B’ g (WenT), (3.27)
1 ¢4=0 n

since Py(1) =1 as stated in (A.1)), which ensures spherical symmetry.

Wick rotation
In order to work with this expression, it is useful to perform a Wick rotation, which

amounts to substituting
e — —if. (3.28)

PROOF. The path integral is

0] = / DS,

with action defined as in (3.1)) (and lagrangian given by (3.2)) ):

/d4:):\/]?/$ /dt/d3 F[ (0r9) ¢)]

The Wick rotation is so that Oy = —i0g, and dt = —if3, so we have

. . . 1 1,5
iS[p] — z/(—zdﬁ) [—2(86@2 _ 2(V¢)2} = —Sgpld],
and the euclidean action Sg[¢] is manifestly positive definite, so that the euclidean path integral

18 convergent:
5[0] = / Dee 59,
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In addition, we have
Gp(ry,1y) = —iGp(2?, 2,

where z¥ = (3, F). We then obtain the euclidean propagator

“+o0 400

Golones) = g 0 7 oye ()| o

It is not clear if the above expression can be put in a closed form, but for our purposes
we can focus on the behaviour of the propagator in two particular cases:

e near the boundary r ~ R~

e at the center r =0

3.3.1 Near-boundary behaviour

To analyze the behaviour of the propagator near the boundary » ~ R, it is useful to set
r

—~ 1"
R
1

X

,
=1-—~0"
R ?

so that r/R =1—y and y ~ 0. By substituting in the argument of the spherical Bessel
function in the propagator (3.29)), and Taylor expanding, we obtain

. r . T
Je (a€n§> = Jo (oupx) = mz]u (en(1—y)) =4/ 26%93 Jz+ Qon, — YQun)

S L P —— o

T
—(1—
( 2 200m%

x—1 7TOégn

=7

where we used the relations (B.3)), (B.1d) and the fact that ay, is a zero of J, 1. By
plugging the above into 1} we get a very nice simplification

Y

O{gnjgié(agn) + O(y?)

— i (awm) + O(y?),

: :z : 2 n + n
2R2 n=1 (= OW z 2 ’

- 47 R? T

-1 (1—:5)2 a AR o8 3
= 52;2“1 +O(y%),

and so we write the euclidean propagator as follows:

Gp(B,z) = 4;]% 1;9” %ZZ (20 + 1)e 77 + O(y?). (3.30)




We now focus on the double series, which we call K(8):

K(B) = ii@m 1)e #°#" (3.31)
n=1 /=0

Heat kernel interpretation of the double series

Let M = B?(R) be the manifold of a 3D ball of radius R > 0, and consider the pseudo-
laplacia operator v/—V?2. By solving the Klein-Gordon equation (in Section we
have found that the solutions obey

(=07 + V)g(t,,0,0) =0,

therefore
—V2o(t,r,0,0) = =07 (7,0, ©). (3.32)

We have also found that a complete set of solutions (i.e. a basis for the linear space
of solutions) is given by the positive and negative frequency modes e, (t, 7,6, @) and
W (t, 7,0, ¢). In addition, we know that these modes admit a time-space factorization
as follows:

—iWen

unfm(ta r, 0? ()0) =e€ tvnfm(ra 67 90)
urLEm(ta T, 07 90) = eiwentv* (Tv 87 90>

ném

By plugging the above factorization into (3.32)), we obtain (after cancelling out the extra
factor e*iwent):

_VQUn€m<Ta 0: 90) = w?nvnfm(ru ‘97 QO)
—Vu* (r,0,p) = w?nvfwm(r, 0, ).

The second equation is actually the first one in disguise, in fact (see (3.13b|) without time
exponential factor):

i 1:0.8) = || 2 V0, )
and Y,"*(0,¢) = (—1)"Y, (8, ), therefore the second equation above just becomes

_VQUn,Z,—m(TJ 67 QO)W = w?nvn,g,_m(r, ‘97 90)(713%7

and since m runs from —/ to ¢, it contains the exact same information of the first one.
The relation
_VQUnKm(Ta 07 SD) = wlgnvném (Ta 97 90) (333)

is just an eigenvalue equation telling us that v,, are eigenfunctions of the operator —V?
with eigenvalues wgn, and we can also claim that the set of all v,,, is complete because
we can build any solution to the spacial part of the Klein-Gordon equation with them.
The full spectrum of the operator —V? therefore consists of the set of all w? , each with
degeneracy 2¢ + 1.

1See Section for an introduction to fractional laplacians.
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Let us now consider the operator v/ —V?2. Its spectrum will consist of the square root
of the eigenvalues of —V?2, which are simply the values wy,, each with degeneracy 2¢ + 1.

We then consider the operator
e PV-VE

Obviously, its spectrum is made of the values

XYn
— Buw _
Aop = €990 = ¢ 51%7

each one having degeneracy 2¢ + 1 as well. If we compute the trace of the operator
e PV _VQ, we get
+00 400

Tre ?V-V2 = Z 2(22 + 1)675%,

n=1 ¢=0

which is exactly equal to K (f), defined in (3.31)). This is called heat kernel, since it can
be interpreted as a function that solves the heat diffusion equation, as described in [11]
and in Appendix [E]

Heat kernel expansion for small (s

Since we are interested in the coincidence limit of the propagator (8 — 07), we would
like to perform an expansion of K (3) for small values of 3. This is called the heat kernel
expansion or Schwinger-DeWitt expansion. In general, for a manifold of dimension n and
a pseudo-laplacian operator A of integer order m, we have the following expansion of the
heat trace (see [14]):

+o00
Tre P4 ~ Z A8 (3.34)
k=0

In our case, our operator v/—V? is of order m = 1, since —V? is of order 2. The dimension
is n = 3, therefore our expansion looks like

+o0
K(B) ~ ) Ast>. (3.35)
k=0

We now need the coefficients A,. To compute those, we consider an easier and well-known
version of the problem: we still retain the 3-dimensional ball with Dirichlet boundary
conditions at 7 = R, but we take the laplacian operator —V? instead of its square root,
and its heat kernel K (/). Equation 1.1 in Bordag et al. paper [4] tells us that the heat
kernel K () (the paper uses t <> ) can be expanded for small values of 5 as (D = 3):

+00 +00
K(B)~@#mp)™2 > Bt =Y Gfe, (3.36)
k=0,1,1 k=0

)ty

which matches the general form (3.35]) with m = 2, n = 3, A = —V?2. In the above, while
we retain the same notation of Bordag et al. for the coefficients By, we have defined for
later convenience the coefficients (', which relate to the former ones as:

B2

Cip = 3
© (4m)

(3.37)
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Bordag et al. paper [4] also computes the coefficients By, in the case of a 3-dimensional ball
with radius R and Dirichlet boundary conditions for the laplacian operator —V2+m?. It
states that the heat kernel can be factorized in a massless part and a massive exponentially
damping factor K(f) = szo(ﬁ)e_m25. Appendix B of Bordag et al. paper |4] reports
the coefficients By of K,,—¢(f), which are the ones we will need in order to compute A
in our case.

Subordination formula and heat kernel coefficients

What we now need is a way to relate Ay to the Bj coefficients. It is here that the
subordination formula comes into play. Stinga’s paper 24| reports, at page 7, the sub-
ordination formula for the semigrou Uly,z) = evV"Vu(x) (defined in Eq. 3 of the
paper), which reads:

2s +oo 2

Y —v _y(-v2) U

U(y) = —dt.
(y) 43F(8) /0 e e tlts

If we set s = %, u(z) = 1, and use S in place of y, we get
+o0o
e PV = B / e_%e_t(_w)d—f. (3.38)
2ﬁ 0 t2

Recall that our goal is to compute the heat kernel coefficients A, of the fractional laplacian
vV —=V?2, defined in (3.35)), in terms of the By coefficients, or equivalently the C} ones,
defined in (3.36). We have, for j € {0, 1,2, 3}:

Y 4—3\ _ Bjp.(4-]
Aj_zj—3\/%r< 5 )_Zwr > (3.39)

PROOF. Let us start by setting the notation:

+o0
K e2(B) =Tre V"V a0 Y~ A;8778 (3.40a)
§=0
2 = j=3
K_go(t)=Tre V) vy 00 Y Cite (3.40D)
=0

Now we use the subordination formula (3.38), which in this notation reads

+o0o 2 3
K _W(b’):%ﬁﬁ/o K_oa (e Tt 3dt.

Before being able to plug the heat kernel expansions inside the subordination formula, we need
to deal with the fact that the integral goes from O to 400, which could give problems because the
expansion is only valid for small arguments.

2The subordination formula relates the heat trace of the negative laplacian operator to the heat
trace of the fractional laplacian. This formula lies within the framework of the semigroup approach (see
e.g. |25]), which is a method of dealing with irreversible time evolution, like the one happening in heat
diffusion. This is discussed in Appendix[E] alongside with a basic introduction to subordination formulas.
See also [9] for further reference.
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We can split the integral on a positive value of t which we denote tg > 0:
—+00 32
K =(B) = 2\5/7?/0 Tre Ve Gt 24t
5 to o2 400
:/ Tre Ve 4tt 2dt+/ Tre Ve 4tt Sdt
AV
= I-(B) + I-(B)
Since e~t0A < et e have (for tg > 0)
Tre V") < Tre (-V?) = M (to) < 400,

where we assumed that the heat trace converges. In fact, we can use Weyl’s law [28] to prove it,
which states that the number density of the eigenvalues of the laplacian in a bounded Dirichlet
domain in R™, for high eigenvalues \, is proportional to X2, which in our case gives N\ =

No)\%. By approzimating the trace sum of the eigenvalues with an integral, we have

+oo
Tre 0V ~ / e "N (A / Ce by = VT
0 2t0

where C is a purely geometrical constant. We can now bound the second integral I.(8) above:

B [T v

— Tre
SN
B[t

< =
N 2f t()
400 52

—M(t0)2f t e~ T3 dt
0

= M(to) ert <

2
L(8) = e~ TSt

2
Tr e*to(*vz)e*%t*% dt

i)

which goes as O(B) for B3 — 0. Therefore, since we are interested in this limit, we can safely
assume I (B) = O(B) and proceed with the calculation of the heat kernel coefficients.
We have thus cast the subordination formula into the following relation:

to 2
K /~=(B) = Q\ﬁ/;r/o K o (e Tt 3dt + O(B).

For ty > 0 sufficiently small, we can plug the expansion (3.40b)) inside the above relation, and
get

to 4 3

+o00 9 5
KW(B):Q\B/;Z@/O 12 e TR dt+ 0(B).
k=0

Now, we make the substitution

2
S
4t
2
7
4du
/32
dt = —mdu,



and we get
8, [ (N L
KV??“>:57%§3 S () () o
_ Z <ﬁ> ﬁjw efuulfgdu
— —k\ ks
ﬁ—)o Z 2k 3\/> ( 2 ) B )

from which we can immediately read off the coefficients Ay.

We can indeed check with the literature that our derivation is correct. In fact, Gorbar, in his
paper [0, states, in Eq. 58, that the relation between the heat kernel coefficients of the square
root of the laplacian and the ones without the square oot is

E,/ V2_2 (3 m)E vQ

r (")

and we can reduce to the above equation by using the gamma duplication formula [35]:
1
I'(z)l <z + 2) = 21722 /71(22).

By setting z = % we get

(154) =il

2R /mT(3—k) T(3—k)
O AT T

which is precisely the result stated by Gorbar [0].

so that

Ck7

Let us notice that we cannot go beyond j = 3 because, for higher values, the gamma
function has singularities, and therefore we can conclude nothing about the higher order
coefficients, and we need to settle with the terms up to the power 3°.

Divergence of the propagator near the boundary
We are now able to compute the divergent behaviour of the euclidean propagator near
the boundary, thanks to the heat kernel expansion for small 5 values. We have, by (3.35)

+o0
B)=> A,
k=0

and we know, from (3.39)), that

Bijao (4 —k
Ap="2p (22,
BT kg2 ( 2 )
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We now need the values of By, for the 3-dimensional Dirichlet ball of radius I, which
we can read from Bordag et al. paper [4] in appendix B:

4
BO = §7TR3,
B1/2 = 27T3/2R2,
B, — 87TR’
3
1
Bse = —67T3/2
The corresponding Ay are:
4R3
AO - 5 _ >
3T
R2
Al - _77
2R
Ay = —
2 3 )
1
3 — 487

and we finally get

~ 4R*1  R*1 2R1 1

K(ﬁ) B0+ S—WE—EE—F?)—WB—E—FO(ﬁ) (3.41)

Now we need to go back to Eq. (3.30)) to finally compute the divergent part of the
propagator near the boundary:
1 (1—-x)*0

CeBo)= g agh ) +0W),

where K (B) is defined in (3.31). By differentiating the asymptotic heat-kernel expansion
(3.41) with respect to 3, we get

0K 4R® 1 ,1 2R 1
%(ﬂ) =———+ R"— — _7T_ + O(l)

So the propagator becomes

%wmzﬂ‘@[Rl R1 11

—————+——+0my

x w2 54 An B3 6m? B2

which we can Wick rotate back to lorentzian time

T T2t A3 6m2 2

LB AL Lion]] e
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3.3.2 Behaviour at r =0

Now we proceed to analyze the euclidean propagator Gg(z1,x2) at r = 0. Let us start
from expression (3.29)): if we set r = 0 we get a huge simplification due to the fact that
the only spherical Bessel function that survives when the argument is 0 is jo and it equals
1, while all the others vanish:

jO(O) 17
jf>0(0) = 05

and the fact that the zeros of the spherical Bessel function j, are just multiples of 7:
Qop, — NTT.

We end up with

<5’ "= O 2 2R2 Z J a
Now we use relations (B.1a)), (B.3)) and (B.4b|) to write

On

2a0n cos?(nm) 2
Jié(%) = J§(Oé0n) = Ji (aon) = 2nj3 (nm) = 2m T
The propagator reduces to
1 &= o 1 o2 1 1 7232
=0 -BE — — . O 4
Cell.r=0= 1 ;”e TR (% - 1>2 e om0V
(3.43)

where we performed similar steps as in Section 2.4.1 We can now Wick rotate back to
lorentzian time

. imt ) . )
7 eR ) /) im2t?

Crlt.r=0)=iCrlit.r =0) = 77 € 1>2 = “1e  mr ew O
eRr —

(3.44)

3.3.3 Hadamard singular part

In the absence of boundaries, the propagator presents a well characterized singular be-
haviour at coincidence limit. The main reference we use for this is the Decanini-Folacci
paper [17]. In Section we outline the algorithmic procedure to follow in order to
renormalize the energy-momentum tensor. In the first steps, the Hadamard parametrix
is required in order to perform the subtraction. Let us then check the Hadamard singular
part of our propagator, which is reported in Eq. 101 of Decanini-Folacci paper:

7 U(xy,x ‘
ngg(lﬁl,ﬂig) =23 (U(ml(x;) j)i0+ + V(xq,22) In[o(xq, 22) + z()*]) . (3.45)
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To compute U(z1,x2) and V(xy, z5), we look at Section III C of the paper |17], and since
the curvature tensors, scalar and the mass m are all vanishing in our model, we have

U=1and V =0, so

1 1
GE = :
sing (1, 2) 82 o (w1, x9) + 10T

We now analyze the Synge’s world function o(x;, z5) and impose that the time splitting
is purely temporal:
1 t?
= [~(ts —t1)}] = ——
o(x1,2) 2[ (t2 = t1)] 9
so the singular part becomes .
i
4R

GE () =

sing

(3.46)

Behaviour at the center We can immediately check that the renormalized propagator
is indeed finite in the coincidence limit, since the singular part exactly
matches the divergence appearing in . This is consistent with the fact that we are
far away from the boundary, and the Hadamard UV divergence is purely local, so it is
not affected by the presence of the boundary as long as we are far away from it. In the
next section we will exploit this result to compute the renormalized energy density at
r=0.

Behaviour near boundary Near the Dirichlet boundary, things get quite complicated
because the local presence of boundary affects the UV divergence. The way the divergence
gets distorted depends purely on the geometry of the boundary, as one can deduce by
the very fact that the heat kernel expansion we performed to derive the near-boundary
behaviour relies solely on the geometry of the boundary. A nice interpretation of this
issue is presented in a paper by McAvity and Osborn [3]. Here it is showed that the
additional UV divergent contribution comes from the short length geodesic paths linking
two points near the boundary which undergo reflection.

Behaviour near the center The exact expression of the propagator near time coinci-
dence limit at the center » = 0 could be computed analytically due to huge simplifications.
One could also attempt to compute the approximate expression near the center, at r = 0,
but this is not an easy task because there is no obvious analytical way to proceed. Nu-
merically, one could engineer a mode-by-mode subtraction method and hope that the
terms of the series decay to zero in a convenient way so that one can truncate the sum
and still get a good numerical result. It seems, however, that there is no obvious way
to proceed, since the orthonormal basis on which the bare propagator is expanded is not
suitable for expanding the Hadamard singular part, because the latter does not satisfy
the Dirichlet boundary condition at » = R. We therefore leave this problem open for
further research.
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3.4 Energy-momentum tensor

Eq. (71) of Decanini-Folacci [17] gives us the prescription for computing the energy-
momentum tensor starting from the renormalized propagator:

A « 1 1 1
<O| TNV ’0>ren = 7D _wﬂl‘ + 5(1 - 2£)w§lﬂ/ + 5 <2£ - 5) gﬂl’Dw + gRlU’w - gﬂl’vl ’
(3.47)
where (Egs. 75, 85 and 32 of Decanini-folacci [17])

w(x) = xQEglzx W(zy,xs),

wy(r)= lim V,V,W(z1,22),

T2—T1=T

2

Wz, o) = E[GF(%@) — GL (@1, 20)],
D
1

ap = —.
872

341 r=0

Our goal is now to compute the renormalized energy density at r = 0, that is the ¢t
component of the energy-momentum tensor. We make the following considerations:

e since we are in flat spacetime, we are free to choose any value of £, which couples
the field ¢ to the Ricci scalar, which vanishes identically;

e our expression of the propagator (3.44)) is already in the spacial coincidence limit,
the only variable which is not point split is the time ¢ =ty — #1;

e therefore, we are only able to compute the time derivatives of our propagator, not
the spacial ones;

e if weset u =1t and v =1t in (3.47)), the only term that contains spacial derivatives
is the one containing CJw, but if we choose £ = 1/4 we can make it vanishing;

e since the only derivatives that we will take are temporal, the fact that we already
are in the spacial coincidence limit does not spoil the procedure;

o 1R, = 0 identically;

o v, =0;
e ap = ﬁ, since D = 4, by Eq. 32 in Decanini-Folacci paper [17];
L ®tt = 0.

We therefore reduce to

1 1
pren(r = O) = @ |:_wtt + Zafw} . (348)
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So, we are left with computing wy and w4. We have

872 1 im2(ty — t1)?
Wit tar =0) = == (_48R2 B 5)6201%41) ) + Ot = 1)),
2
T
w(t,r = ) = —@,

wy(t,r =0) = lim 0,0, ( ™ ——(ty — 11)* + O((to —t1)4)) = —

120R4

to—t1=t

Finally, Eq. (3.48) becomes

3.4.2 r # (0 away from boundary
The energy-momentum tensor for a real massless scalar field reads

~

1 N~ o~ N~ A
T,uu - §g,uugaﬂaa¢aﬁ¢ - au¢au¢

Calculations (done in Wolfram Mathematica) yield:

< tt> =T,

(T,,) = —15T,

( Aee) =T,
(T,,) = r*sin0T,

and all the off-diagonal components are zero. Here, T is defined as

+o00 400

47TR4 Z Z Z Oéfn D/Z 0, )| [j@—l(wn[r) - j£+1(wng7“)]2

n=1 ¢=0 m——ﬂ
+oo 400

. . 2
167T2R4ZZ Jz o 20 1) e ner) = e nar)],

n—1 (=0 n)

7T4

60R*

(3.49)

where we used the spherical harmonic addition theorem . Note that the above is
not renormalized and therefore yields a divergent result. This is where the Hadamard
renormalization procedure comes into play. However, for the Hadamard procedure to
work properly, one has to be able to perform the subtraction needed for the calculation
of the limits . While in the two-dimensional model we were able to put the infinite
discrete sum in a closed form and perform the subtraction explicitly, here there is no
known closed form for the infinite sum, and therefore we cannot proceed with the cal-
culation of w and w,, in general. We leave this problem open for further investigation,
perhaps using numerical methods to deal with the finite part after subtraction.

95



3.4.3 Near the boundary

As previously stated, near the boundary things get more complicated since the divergence
of the propagator does not match the Hadamard parametrix. One could then proceed by
subtracting all divergent terms by hand, but it is not clear what the physical meaning
of this subtraction could be. This means that the physical significance of the Dirichlet
boundary is not clear, and other alternatives should be considered.

3.5 Final considerations, remarks, and further research
paths

In this chapter, we studied the Feynman propagator in a spherical Dirichlet cavity, and
attempted to compute the renormalized energy-momentum tensor. Here are some re-
marks.

e The crucial step is taking the coincidence limit, but while in the 2-dimensional
model we first took the time coincidence limit and then the spacial one, in this
case we proceeded the other way around. Indeed, when working with trigonometric
functions, there are prosthaphaeresis and Werner formulas that lead to huge sim-
plifications, but in the case of spherical Bessel functions there are no equivalent
formulas that can help.

e Therefore, we first took the spacial coincidence limit, Wick rotated to euclidean
time, and then worked with a decaying time exponential which works as a regulator
to make the series convergent.

e In spacial coincidence, the information about the time separation is preserved, and
one is able to compute time derivatives (after Wick rotating back). It turned out
that to apply the Hadamard renormalization procedure at r = 0 on (Ttt>, this
information was sufficient, and we obtained the renormalized energy density at
r = 0.

e To compute the other diagonal components of the renormalized energy-momentum
tensor, one should instead take the coincidence limit spacially and try to simplify the
propagator in such a way that the subtraction is possible and gives a closed expres-
sion. For the off-diagonal components, two coordinates should be non-coincident in
the limiting process, since there are two distinct derivatives to take.

e To compute the renormalized energy-momentum tensor in the bulk, one can still use
the Hadamard procedure, since the singular parametrix holds correctly in the bulk
region (away from boundary). However, handling the mode sum and performing
the subtraction is not easy, and one can think of using numerical methods.

e We used the heat kernel formalism and obtained the divergent expression of the
Feynman propagator near the boundary. This divergence does not match the
Hadamard parametrix. In the two-dimensional case, however, this issue was not
present. Omne can conjecture an explaination tied to the geodesic reflection phe-
nomenon described in [3]. This is another research path that one can take to
further investigate the issue.
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e It is not obvious how to proceed in order to compute the renormalized energy-
momentum tensor close to the boundary. The naive subtraction does not have
clear physical significance, since it is different from the mere Hadamard subtrac-
tion, which, physically, in this case, just means subtracting the infinite Minkowski
spacetime contribution. This suggests another type of boundary conditions should
be used to physically model the compact object.

The next natural step is to substitute the Dirichlet boundary with a step potential, which
is what we will do in one spacial dimension in the next chapter.
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Chapter 4

Real massless scalar in a 141
dimensional Minkowski spacetime with
step potential

As anticipated, we now turn to a model which is somewhat closer to the model of a static
Schwarzschild star, but still not quite, since we are still going to work with flat spacetime
and two dimensions. We saw that the Hadamard renormalization procedure was success-
ful in the two dimensional model discussed in Chapter [2 even near the boundary, but
unsuccessful near the spherical Dirichlet boundary of the previous chapter. Since the goal
of this thesis is to get an idea of how to deal with boundaries of compact objects, it is
useful to verify if the presence of a step discontinuity spoils the Hadamard parametrix or
not. To do this, we will work in two dimensions for simplicity and compute the Feynman
propagator of a two dimensional flat spacetime model with a potential having a step
discontinuity, as discussed in the introduction. Some tricks that will be used in solving
the equation of motion and imposing the matching conditions are inspired by [29].

4.1 Solving the equation of motion

Let us now consider the Minkowski metric g, = diag(—1, 1), and the action
+o0 +o0 1 1
S = / dt/ dx (—59*”8”@58@ — EU(SL‘)qbz) , (4.1)

where the potential U(x) is placed in the ¢? term as an effective position-dependent mass
term. In order to resemble the static Schwarzschild star effective potential, which has a
step discontinuity at r = R, we introduce the simplest step potential, that is 0 inside the
compact object, and U, > 0 outside:

U(z) = Up©(|2| - L), (4.2)

with Uy > 0, L > 0 and © being the Heaviside step function. The plot is shown in Figure
One may ask why we did not set the potential outside to be zero, so that we recover
massless Minkowski modes at infinity. The reason is that in this way one should have the
potential inside to be less than zero, giving a negative effective mass squared, leading to
tachyonic instabilities. We therefore pay the price of adding an effective mass outside in
order to keep the model as simple as possible while having a step discontinuity.
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Figure 4.1: Plot of the step potential U(z) with L = 10.0.
The Euler-Lagrange equation of motion yields:
(O—-U(zx))p =0. (4.3)
Proor. We have
oL
96 —U(xz)¢
oL
= —0'¢.
500 ¢
So that or or
Oy — 2= = _O¢+ Ulz)s,
M@0 06 0TI
and equating the above to zero yields
(O—U2)g = 0.

We then have two distinct cases locally:

e |z| < L, with equation of motion ¢ = 0;

e |z| > L, with equation of motion (O — Ujy)¢ = 0.

Of course, there are two disconnected regions that fall into the second case: x < —L and
x > L. Let us then proceed to analyze the two above cases.
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4.1.1 Case |z| < L
In this subdomain, U(x) = 0, and the equation of motion (4.3) reduces to

O¢ = 0. (4.4)

The above is easily solved via separation of variables, yielding the following independent
modes (with k£ > 0 and definite parity):

up' (t, ) = Ajpe M (e £ e ) (4.5a)
upi(t,m) = A e (e £ et ), (4.5b)

PROOF. First, expand the box operator. The equation of motion becomes
(—0F + ) ¢(t,x) = 0.

Now factorize ¢(t, x) into ¢(t,x) = a(t)B(x) and substitute. After dividing by aB and using —k>
as negative separating constant (with k > 0, see Sectionfor the full discussion on the reason
of this choice), we get two harmonic oscillators with frequency k. The positive time frequency
solution is given by e~ multiplied by a general linear combination of the two spacial modes
+ikx
e :
up'(t, ) = e M (Ape™ + Ape™*).

We now separate the positive and negative parity parts in the spacial sector, by noting that any
one-variable function can be written as a sum of a positive and negative parity functions:

1

fl@) = S (F@) + F(=2) + 5 (F@) — (=),

We can then require u" to have definite parity by imposing u}cni(—x) = iuz?i(af), where we
added the £ label to keep track of the parity. This constraint translates to:

6—ikt(A]:€|:e—ika: + A]:gl:ezk’x> _ :Ee_ikt(Ageikx + 142‘:6—1']4/’90)7

which is satisfied if and only if A = :I:Aki. By substituting AT in the solution, we get to the
result we wanted to prove.

|
4.1.2 Case |z| > L
In this subdomain, U(x) = Uy > 0, and the equation of motion (4.3)) reduces to
(0 —Up)¢ = 0. (4.6)
When separating variables, we have an effective squared mass m? = Uy, and therefore
the solutions behave as massive field modes. By defining wy = /|k? — Up| and o4 (x) as
1 if + 1 ifz>0
or(z) = _ = _ ) (4.7)
sgnx if — +1 ifx <0

we have two cases:
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o k> /Uy

u'l(t,2) = e (Bt (WD) 4 CFemnlel=I) g (1), (4.82)
Ut (b, ) = et (BEReminlleh) e pin =Dy () (4.8b)
o k< /Uyp:
U (10) = De e g (1) (490
a4, 2) = D eem 1 Eg (z), (4.9b)

PROOF. Let us write down the equation of motion after expanding the box operator:
(=07 + 07 — Uo)o(t,x) = 0.

Now, factorize ¢(t,x) = a(t)B(x), substitute in the equation of motion and divide everything by
af (see for clarity about this division being legitimate and the separating constant —k?* with
k>0), so that

d /B// 9
—=— —Up=—-k".
Q I} 0

We then have
a+ka=0

B+ (k* = Uy)p = 0.

The solution of the first equation is a general linear combination of et and e***, but we choose
to build positive frequency modes and then also consider their complex conjugate, as usual. Now,
to solve the second equation, we define wy = +/|k? — Uy| so that there are three cases:

ik

o k2—Uy > 0: the spacial solution is a general linear combination of{e_wk(|x‘_L), eiwk(“v|_L)},
where we chose to pull out an additional factor of eX™rL for later convenience when en-
forcing matching conditions. In general, since we want to build a solution on the domain
|x| > L, which has two disconnected patches, we should assign them different coefficients,
s0 we write

Ut (t,x) = e M (Bretor(e1-D) 4 Cpeminlel=L)) if g >
ult(t, z) = e~ (Byeiwr(al=L) 4 Gy emiwn(lal=L)) ifr < L,

but imposing definite parity uzujc(t, —x) = :l:uzf‘j:(t, x), we get Bf = j:B/,:Ct and C’];t = :tC’;t.
To account for these identities, we just need to substitute and insert the function oy (x) as
a factor, so that we end up with the expression we wanted to prove.

o k2—Uy < 0: the spacial solution in this case is a general linear combination of e~<r(I#I=L)

and e 1=L) " however, we set the coefficient of the growing exponential to zero by hand
because we want normalizable solutions. In this case we also have two distinct coefficients
for the two disconnected patches of the domain, but upon imposing definite parity we get
that the coefficient ]_7)2[ of the region x < —L is equal to :i:D,f, with D,f being the coefficient
of the region x > L. To account for this, we need again to employ the function o (x), and
putting all the factors together we end up with the expression we wanted to prove.

o k2 =Uy: in this case we reduce to a trivial linear solution, which becomes identically zero
if we want the field to vanish at spacial infinity. We can therefore discard this case and

work with the other two.
[ |
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4.2

Matching conditions

We want the solution to be continuous and have continuous first spacial derivative every-
where, which is the stricter achievable requirement for a field. From now on, we need to
work in the two separate cases: k > /Uy and k < v/U,. The points where we can have
discontinuities are x = L, so it suffices to enforce the following conditions:

¢(t’ L_) = gb(tv L+)

az¢(t7 L_> = amqb(ta L+)
¢(t7 _L7> = (b(t: _L+)
ax¢(tv _L_) = am¢(tv _L+)'

Since the general solution of the field ¢ will be written in terms of the independent modes,
we need to enforce the matching conditions mode by mode. However, since each mode
has definite parity, we do not need to deal with the point x = —L as long as we enforce

the matching conditions at x = L.

PrRooOF. We want to prove that, by enforcing the matching conditions at x

L, they hold

automatically at © = —L. Let us then assume uy(—x) = tuy(x) and also assume

ui(t, L+) = ui(t, L_),
Opu+ (t, L+) = axui(t, L_).

We then have

ug(t,—L7) = fug(t, L+) =tuy(t,L”) = ux(t, —L+)
Opuy(t,—L™) = +0,u(t, L+) = +0,us(t, L™ ) = Opus(t, —L+).

We therefore see by the two chains of equality that the matching conditions are enforced at

x = —L too.

4.2.1 Case k > U,

Let us start with the case k > 1/Uy. By matching

(4.5a)) and (4.8al) at x = L, we get the

following expressions for the coefficients B,f and C} as a function of Af:

Bf = Af :cos(kL) + sz sin(kL)] : (4.10a)
CF=Af :cos(k:L) — zwﬁk sin(kL)} : (4.10b)
B, = A, wﬁk cos(kL) + z'sin(kL)} , (4.10¢)
C, =—-4A; wﬁk cos(kL) — isin(k‘L)} . (4.10d)
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ProoF. What we want to enforce is
{ug}ﬂ: (t,L) = U?fi (t,L)
Opuil’ (t, L) = puft(t, L)
AF(e*L £ e kL) = (O + Bif)oetEy
{ikAj(e“fL Fe k) = —jupsgnE(C — By )oAE)
{Af(eikL +e ) = OF + B,:CIE

_wﬁkAj(eikL == e—ikzL) _ C]:Ct _ B]f .

We can then split the two cases of +:

e case +:
B + G = 2A} cos(kL) (I)
Bf — Cf = 2iAf Esin(kL) (1)’
® case —:
B, +C, = 2iA; sin(kL) (1)
By — Gy =2A; & cos(kL) (I1)"

In both cases, we find B,:f and C,:f by doing

() = ()
2 b
which gives exactly the results we aimed for.
|
If we substitute back into the expressions (4.5al),(4.8al), we get
u” (t,x) = 245 e " cos(kx), (4.11a)
uptt” (t, ) = 245 (cos(kL) cos[wi(|x| — L)] — — sin(kL) sinfwy(|z]| — L)]) .| (4.11Db)
W (tx) = 2iA; e sin(kx), (4.11¢)
quf’>(t, r) = 2iA, sgnx
(4.11d)

W

: (ﬁ cos(kL) sin[wy(|z| — L)] + sin(kL) cos[wy (|| — L)]) :

4.2.2 Case k < Uy

Now we turn to the case k < y/Uy. By matching (4.5a) and (4.9a) at = = L we get the

following expression for the coefficients D,:f as a function of A :

D} =2Af cos(kL),
D, =2iA, sin(kL),
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and the quantization conditions on k:

+
sin(k"L) = :—i cos(kTL), (4.13a)
cos(k™L) = —L;—’i sin(k™L). (4.13b)

PROOF. The matching conditions we want to enforce are
uiy (t, L) = ug'y=(t, L)
Optly (t, L) = Opup < (t, L)
Af(eikL 4 efikL) — D]:CI:
ikAki(eikL Fe ) = —Dkiwk '

We can now apply the substitution Df = 2A,f cos(kL), so that the second equation becomes:

ik%{(eikL F e—ikL) _ _wk%(eikL 4 e—ikL)'
We can now split into the two cases of . We have

® case +:

Df =245 cos(kTL) .
=2kT sin(kTL) = ~2w;" cos(k*L)’

o case —:
Dy = 2iA; sin(k~L)
21k~ cos(k™L) = —2fw; cos(k™L)

We can immediately read off the relations we wanted to prove from the above systems.

The quantization conditions are present because there is only a single hyperbolic oscillator
mode entering the solution, that is the decaying exponential, while there is no growing
exponential mode which carries an additional coefficient. This implies that there is one
less constant to determine, while the matching conditions are still two. Therefore, the
condition that would have constrained the coefficient of the growing exponential mode,
constrains k instead, making it discrete (quantized) in the low energy sector 0 < k < /Up.
This is consistent with the general theory, which tells us that the spectrum is discrete
inside the convex region of a one-dimensional potential, and continuous outside. We can
cast the quantization conditions in a more convenient form that helps us visualize the
solutions (see fig. |4.2)):

k+

cot(kTL) = —, (4.14a)
Wi
=
tan(k"L) = ——. (4.14Db)
Wi
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cot(k *L) =KL
k
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Figure 4.2: Plots of the transcendental quantization conditions for k™ (above) and k~
(below), with Uy = 2.0 and L = 10.0. The intersection points are the allowed values for
kT and k™.
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Figure 4.3: Plot of the eigenvalues k* with Uy = 2.0 and L = 10.0.

20

We can see that the number of allowed values for k¥ is finite, and we will call this
number Ni. We will also label the solutions &k with a discrete index n € {1,..., Ni}

so that 0 < k¥ <

Up and kF < kI,,. We will also relabel wif into wi and Af into

A% when dealing with the low energy sector. The plot of the finite eigenvalues alongside

with the potential is shown in Figure 4.3|

Let us finally write down the low energy modes (4.5al):

upS(t,x) = 2A et cos(kt ),
upyS(t,x) = 24, e Zk"tcos(/’ﬂf{L)e""’f(|"’“""L),
WS (t ) = 2iA, e sin(k, ),
oS (t,x) = 2iA, e sin(k; L)e™@n 1#1=1) ggn o
and the transcendental quantization conditions
sin(k"L) = U cos(ktL)
n k’;{ n )
_ W, . _
cos(k, L) = —k—’_‘ sin(k,, L),

with 0 < k¥ < /Uy and n € {1,..., Ni}.
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4.3 Normalization

We now introduce the Klein-Gordon inner product and compute the normalization factor
of the modes that we found in the previous section. We define

+oo
(g, ug) = —z'/ dx(uy Opusy — usOpuy ). (4.17)

In the case where the spacetime is static, the modes can be factorized as

wi(t,z) = e~ kit i (x),

so that the Klein-Gordon inner product reduces to

—+00

(i, 1) = (ky + k) / d fy(x) f5 (). (4.18)

[e.o]

Thanks to the way we built our modes, we can avoid checking if they are orthogonal,
since we used orthogonal bases when constructing solutions. We are then left with com-
puting the coefficients A* and AkjE of discrete and continuous modes respectively. In our
case, the spacial part of the modes is defined piecewise:

B fin(z) if|z| < L
flw) = {fout(g:) if 2] > L.

In addition, the modes have definite parity, so that when they are squared they become
even functions f?(—z) = f?(x) and the integral becomes

a4 ) o[ ot [ ot

We will use the above relation in the calculation of the squared norm of our modes.

4.3.1 Discrete modes

We need to compute the coefficients AF of (4.15)) by imposing normalization of the modes.
We get

wE
A= 4.19
4 \/8]@%(1 +wtL) (4.19)
Proor. We have
+oo
(upy oyup ) = 16k Af|? ( cos®(k,x)dx +/ e~ 2wn (2=L) cos2(k:nL)dJ;>
L
+o 207+
— 16k AT 2 ( 1+cos 2k )d:U+COS (ka)>
2wn
— 8]€+‘A+’2 <L Sln( kr—tL) COS2(]€?L_L)>

1 1
= 8k | A ? (L + o sin(k;" L) cos(k;" L) + — COSQ(k‘:{L)> .

n Wn
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Now, we use the transcendental quantization condition (4.16a) by substituting cos(k,}) = % sin(k;FL):

W,
< Sy gkt A2 (L 2 L) 4 b cos(k L
<un,+,un,+> AL + +Sln(n )+ +cos(n )
Wn Wn,
1

S w1
wit '

+
w,
) - |A7—H2 ’ 8k7—~’0— nw+

n

= 8k A ? <L+

If we impose that the above expression equals 1, we can invert for |Af| and get the final result.
Now, we do the same with the odd one:

L 400 B
(Up sy ) = 16k, A, |2 (/ sin?(k, x)dx +/ e~ 2 (z=1) sin2(knL)da;)
0 L
(2k; L) N sinQ(k:;L)>
2k, Wn

= 8ky | A (L - =

1 1
= 8k |A,; |2 (L = sin(k,, L) cos(k, L) + — sinz(k;L)> .

n Wn

We now employ the transcendental quantization condition (4.16b)) by substituting sin(k, L) =
—f}—": cos(k, L), and get

1 1
(0 ) = Skl P (L oo D)+ s 1))
UJn Wn
w, L+1

n

1
=8k, |A, |° (L + ) = |A,” -8k,
Wn

By inverting the above relation for |A,| after imposing it equals 1, we get the final result.

Of course, the normalization coefficients AF are defined up to an arbitrary phase factor,
and we can choose them so that the factor ¢ in the odd sector gets cancelled and the final
expressions for the modes are real. The plots of the spacial part of the even and odd
normal modes for the discrete case are shown in Figure [4.4]

4.3.2 Continuous modes

For the continuous modes, the normalization factors for the even and odd ones are,
respectively,

|Af] = [4wk <cos2(kL) + i—;sinQ(kL))} - (4.20a)
A | = [4wk (sin2(kL) + 5—2 cos2(kL))] - (4.20b)

PROOF. Since the product of two functions having the same parity is an even function, we can
take double the integral from 0 to +o0o instead of the integral over all R. We have

L
(up 4 Ugs) = 8AAL - (k+q) {/0 cos(kz) cos(qz)dx+

/L o <cos(k:L) cosliwop (z — L)] — = sin(kL) sinfwi(z — L)]>

Wk

<cos(qL) coslwy(z — L)] — L sin(qL) sinfwg(z — L)]> dx} .

Wq

68



T
0.6 n=1 |
—— n=2
— n=3
0.4 i N n=4 |
f‘/ / T
. A\
=
8
Y
0.0 4 \
_ \
0-2 \/\}" uV,
—-0.4
=20 =15 =10 -5 0 5 10 15 20
x
T
0.4 n=1 |
—— n=2

T AN TR
e \
A

- _(x)

Vo
| |
o o
¥ =
T
o
——
=
e
=]
—
I
e —

Figure 4.4: Plots of the spacial component vy ,(7) of the discrete normal modes
uy 4 (t,z) = e‘ikrﬁftv;’i(x) in the even (above) and odd (below) cases, with Uy = 2.0
and L = 10.0.
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By substituting y = x — L in the second integral, we have

L
<u,i+, ug ) = 8A;*A; (k+q) [/ cos(kz) cos(qx)dx+
0

/0+OO (COS(kL) cos(wry) — L sin(kL) Sin(ka)>

Wk

(costaL) cosi) - LsinfaL) sinfann) ) d|-

Our goal is to compute the coefficient of the delta distribution that comes out due to the spectrum
being continuous. We already know that when k # q the modes are orthogonal, so we only
care about k = q. In this case, we have a singularity due to the expected presence of a delta
distribution, and we therefore only care about divergent contributions in the calculation. Let us
then discard all the finite terms, getting:

+o0
(Ug 4o ug ) =~ SAI;F*Aq+ (k+q) [/ (Cos(kL) cos(wry) — L sin(kL) sin(wky)>
) ) 0 wk

(costaL) cosin) - LsinfaL) snfann) ) d|

—+o0
_8AFAT - (k4 q) /0 da-

cos(kL) cos(qL) cos(wyx) cos(wyx) — L2 sin(kL) cos(qL) sin(wyx) cos(wqx)
Wi
_4 sin(gqL) cos(kL) sin(wqx) cos(wyx) + a sin(kL) sin(¢L) sin(wyx) sin(wqaﬁ)}
Wq WEWq
Now, we use Egs. (C.7). We have that wy +wy # 0 always (since both wy,wqy > 0) so that we can
neglect 0(wy, +wq) which is 0 and Pwkiwq which is finite (non-divergent terms can be neglected).
We then have

. 7 1 . .
<u,i+, Uy 4 )~ 8A; A;‘ (k+q) [Zé(wk — wy) (Cos(kL) cos(qL) + ooy sin(kL) Sln(qL)>
1 k q 1 .
_Pp T4 ik — g1
o (S L) geml- o]

Now, we see that the coefficient of the Cauchy principal value includes a sin[(k — q)L], which
goes to zero when wy, = wy since in this case we also have k = q and can therefore be neglected.
In the other term, we can equate k = q and wy, = wq but we would like to cast the Dirac delta in
terms of k — q. We can use the following standard relation

Sah) = 3 (421)

where k; are the zeros of g(k) (see [10] for details about this relation). In our case g(k) =
VUy — k2 — \/Uo —q2. Since k > 0, its only zero is at k = q. The derwative evaulated at k = q

is g'(q) = —2k/(2VUy — k?) = —(]/\/Uoi—q2 = —q/wq. Therefore, we have

§(wp, — wy) = %5@ —q).

i

By substituting above, we get

2

N 9 T Wi 9 k=
() 2 AT -2k 50k ) (cort (L) + L sin0) )|

2

= |A;r‘2 - 8wy, (COSQ(]{ZL) + Zzisin2(kL)> 0(k —q) =2m0(k — q),
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where we imposed the right orthonormality expression in the last equality. We then have

1
2 2
AL = [4(.% (cos2(k:L) + l% sinz(kzL)ﬂ )

Wi

Now, let us compute the normalization coefficient A,_. We have
L
(ug_ ug_) =8A AL - (k+q) {/ sin(kx) sin(qx)dz+
0

Wk

(:)Iq cos(qL) sin(wyy) + sin(gL) COS(wqy)> dy} ,

where we already performed the substitution y = x — L. Now, as before, we can discard the finite
contribution given by the first integral, and write

+o0o
(up_yug_) =~ 8A AL - (k+ q)/o dx-

cos(kL) cos(qL) sin(wgz) sin(wqx) + L cos(kL) sin(gL) sin(wgx) cos(wyx)

WrWq Wk
+ wi cos(qL) sin(kL) sin(wqx) cos(wgx) + sin(kL) sin(gL) cos(wix) cos(wqx)] .
q

1

Again, by neglecting terms proportional to Pwk+wq

and 6(wy, + wgq), we have

Cw g 0 kq
<u,?’_, ui_) ~ 8A, Aq (k+q) [25(wk — wy) (w]cwq

1 k q 1 .
P T A Zsinf(k - o)1)
+P (wk+wq) L sin[(k — g 1]

1

cos(kL) cos(qL) + sin(kL) Sin(qL)>

We see that the term proportional to P

vanishes when k = q, and so we are left with

W —Wq
N _9 T Wy, k2 9 . 9
(u;_,uzj ~ 8|A, |7 - 2k [21{;5(15 —q) <W;% cos”(kL) + sin (k;L)ﬂ

2
= |A;|2 - 8wy, <52 cos®(kL) + sinQ(kL)> 0(k —q) =2mé(k — q),
k

where we used again (4.21). By imposing the last equality, we have

1
2 2
|A; | = {4&% <sin2(kL) + % COS2(]€L)>:| )
k

The plots of the spacial components of the even and odd normal modes in the continuous
spectrum are shown in Figure 4.5
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4.4 (Quantization

Let us now write the general solution of the field equation, which is a linear combination
of the orthonormal even and odd modes:

3, x) = Dy (t,x) + o (t,x) = D 6y(t, @),
S=+,—

qb:i:(t’x) = ¢i(t,$) + Qﬁi(t,:ﬂ),

Ny
01t x) = [aznul,(t,2) + alui’,(t, o)),

n=1

oo dk

¢i(t,$) = /\ﬁ o [bi UL k(t z) + by KU k(t x)} .

By promoting the coefficients to creation-annihilation operator pairs, we obtain the canon-
ical commutation relations

[$(t.2), L(t,y)| = id(a = ).

The algebra of the creation-annihilation operator pairs is given by the set of all possible
commutators between them, the only nonvanishing ones being

[&s,n, &Lm,} = 8y O
[l;s,k:; Bz/7k/:| - (533/ . 27'('(5(]{} — kl)

One can then proceed with the usual Fock space construction, by assuming the vacuum
|0) to be the state that is annihilated by all the annihilation operators, and by creating
all the excited states by acting with creation (bosonic) operators on the vacuum. We will
make use of the following identities:

(i st} ) = <[an an, o ]> (@ ] = GssOum (4.22a)
(bl ) = ([Brs 8| ) = By = 20,000k = g) (4.22b)
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4.5 Propagator inside

Let us write down the explicit expression of the field operator inside, by using (4.5)):

N+
¢ 22A+ COS(k’+ ) <&n’+€—ik’:{t + ;FLJrezk t>
NJ
+ 324, sin(k ) (a7 4 al et
n=1
+0oo dk . . . .
+ /\ﬁ %ZAJr cos(kx) (b,wre—Z t 4 bl e t)
+o00 dk . . . .
[ Eou; sin(ha) (e 4 e
Vg 2T , k,—

To write down the propagator, one needs to compute (T¢(z)d(y)), but the only terms
which do not get annihilated are those proportional to (dn’+&7t, ) (dnﬁ_djk_), (bn,+b27 R

(l;n_l;jlj We have
+oo0 400

(TH(t, z) =3 4Af A, cos(kx) cos(ky)eT R @, Lal, )

n=1m=1
+oo 400

+ Z Z 4A; A cos(k x) cos(ky)eTithnt=knt) (dn’_&lm_)

n=1 m=1

/+oo /+oo dl{?dq

Foo oo dk‘d 2
/ / q4A A, cos(kz) cos(qy)eTH—" (b, -5 ),

Cos(kx)cos(qy)ﬁ’(kt ) (by, bT +)

where the sign F stands for sgn(¢’ — t). Now, we can use (4.22)) and get

<T¢(t 1' Z 4’A+|2 COS )COS(k:y)efikmtfﬂ
No_
+ Z 4|A; |2 sin(k;x) Sin(k;;y)e*ikﬂtft’\
n=1
Tk —ik|t—t|
T —A|Af|? cos(kz) cos(ky)e
JOg 2T
+oo gk 2 T
T —A4| A, |” sin(kz) sin(ky)e '
JOg 2T

What we want to do now is to check if the divergence of the propagator is of the Hadamard
form, and since we are in two dimensional flat spacetime, we aim at the parametrix (2.5.3):

— )+ (x—y)?

5 +1

; —(t
GL (t,x,t’,y)Z—flog[ (
T

sing
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The above expression is singular at coincidence limit ¢ — ¢, y — x. We will take the

limit spacially, by first setting ' = ¢ and then letting y — x. We have
1 i

GE (t,x,t,y) ~ ——log[(z — y)?] = —=— log(z — 4.23

sing (1,2, 8,y) = ——log[(z —y)7] = ——log(z ~y), (4.23)

where we discarded a finite term coming from the fixed factor of 2 of the denominator

inside the logarithm. Indeed, we are only interested in the divergent contribution when

y approaches x. From the expression of (To(t, z)p(t',y)) above, we only care about the

two integrals, since the two sums are finite and we are only interested in terms with

ultraviolet divergences. By substituting the expressions of Af and setting ¢’ = ¢, we end
up with the following integrals:

3t 7)d 0 dk [ (k2 = Up) cos?(KL) + k2 sin’ (kL
(To(t,x)o(t,y)) = /ﬁ = [( O)COH sin”(kL)
+ /Jm = {(kQ — Up) sin*(kL) + k? cos*(kL)
Voo 27 ViZ =T,

T dk 1 T dk 1
~ / — — cos(kx) cos(ky) + / — —sin(kx) sin(ky) + O(1),
VTo 2 k VTo 2m k

] h cos(kz) cos(ky)

1 B sin(ka) sin(ky)

PROOF. We need to manipulate the coefficient. Let us denote f(z) = sin?(x) or cos?(x)
interchangeably so that in any case 0 < f(x) < 1. The factors inside the brackets in the above
integrals can both be put in the same form:

k2 — U, Bi-% -

1
K2—Uof(kL) k2 (1- % f(kL))  k1— U f(kL)

We have, by the fact that 0 < f(x) < 1:

-5 -5 1 U
k k 0 —4
< = =1+ 5 +0(k),
1—%f(kL) 1-Y% 1_% 2k2
and
Ug
1— 2 =1- O(k
= Gpan SV TR T e O

Therefore, we have

JSi- G
1+ 0k

1- Y% (kL)
We can therefore conclude that the prefactor yields

A = L1+ O(7) = 1 + O,

o~

The divergence, therefore, only comes from the 1/k term, while the O(k=3) term gives a finite
contribution upon integration, which we denote with O(1).
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By performing the integrals, we get

(T3t 2)(t,9)) = 5 Ci [VTole — )] +O(),

where Ci is the cosine integral function, defined in [36], at Chapter 6.

PROOF. By using Werner formulas, we get

+oo +0o0 _ +oo
/ k1 cos(kz) cos(ky) = ! [/ dk coslh(@ )] +/ dk coslk(z + y)) y)q
VT, 2Tk 2 )y 2m k N k

= = (-0 [VOa — )] - ¢ [Viata +9)])
/\/J;o %% sin(kz) sin(ky) = % [/\/;O ;ii(m[k(zy)] B /\/J;O ZiW}
- i (_ Ci [\/ﬁo(x — y)} + Ci Wfo(fv + y)D :

By summing the above two integrals, we get the final result.

The two-point function (T(¢, z)¢(¢,y)) is related to the propagator via an i factor (see
eq. 21 of [17]), and yields

G (1, 1,y) = (T, 2)(t,9) = 5 Ci [Tl — )] + O(1)

By using the series expansion of the cosine integral function (see 6.6.6 in DLMF [36]) we
can write (after absorbing the Euler constant and the power series into O(1))

i i
G (t2,t,y) = =5~ log |\/Uo(z — y)| + O(1) = =5~ log(w — y) + O(1),
where we also absorbed the term proportional to log+/Uj in the finite remainder.
We therefore see that the divergent contribution in the coincidence limit exactly
matches the Hadamard parametrix (4.23) everywhere.

4.6 Final considerations and remarks

In this chapter, we introduced a step potential in 1+ 1-dimensional flat spacetime to model
a compact object. We obtained a singularity structure of the propagator inside the object
that matches the Hadamard parametrix, even close to the boundary of the object, that
we saw gives rise to problems when the spacial dimensionality is three. This is also what
happened in the case of a Dirichlet boundary, and it probably hints to a general rule that
in 141 dimensions the singular part of the propagator near the boundary is of Hadamard
type, and numerical work can be done starting from this conclusion.

It is worth to notice that we were able to detect the type of UV divergence in this
case because we had a one-dimensional integral whose result could be written in a closed
form in terms of the Ci special function. When one extends the problem to three spacial
dimensions, a sum over ¢ appears from the spherical harmonic addition theorem, and
we saw in the previous chapter that the calculations become more involved, especially
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near the boundary. In the Dirichlet case, we were able to perform a Taylor expansion of
the spherical Bessel functions near the boundary, and the terms that came out simplified
with the complicated prefactor exactly. Our problem, then, reduced to just computing a
heat trace of a fractional laplacian operator. If, instead of imposing Dirichlet boundary
conditions, we impose matching conditions, the Taylor expansion gives additional zero-th
order terms, which were absent in the Dirichlet case, and calculations become even more
complicated. To get a grasp about the nature of the leading singularity, one can try to
engineer a numerical method that fits the divergent power law near coincidence, but this
is left for future works.
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Chapter 5

Remarks and conclusions

The aim of this thesis was to better understand the role that boundaries and dimen-
sionality play in the divergences of the energy-momentum tensor, in order to lay the
foundations for further research and numerical work on computing the finite part of it
and investigating the quantum properties of the matter that constitutes strongly gravi-
tationally coupled objects. In particular, we considered the problem of a homogeneous
static and spherically symmetric star near the Buchdahl limit, and saw that the equation
that governs the dynamics of a real massless scalar on this background can be reduced
to a time-independent Schrodinger-like equation with an effective potential that contains
a jump discontinuity. Inspired by this fact, we then proceeded to study simpler models
in flat spacetime, by keeping in mind that the question one needs to answer is: what
boundary conditions does one need to enforce in order to have a physically consistent
model of a compact object? Indeed, the end goal of finding the energy-momentum tensor
must go through the process of renormalization, and this is where physical conditions
play a crucial role.

Motivated by the ambition of studying QFT on backgrounds which more and more
realistically model the existing stars, we focused on the most general renormalization
procedure that is available for QF'T on curved spacetime: the Hadamard renormalization.
This relies on the fact that, in the absence of boundaries and topological singularities, the
singular structure of the propagator at the coincidence limit is only dependent on the local
geometry, and no global information like the quantum state or far away sources enter it.
By having the expression of the Feynman propagator at least to second order in spacetime
coordinates near the coincidence limit, one can directly subtract the singularities and find
the renormalized energy-momentum tensor by just performing derivatives and limits. It
is clear that, if the procedure is successful, one can interpret the final result in physical
terms and work with it, but in this thesis it is shown that boundaries can spoil the
Hadamard parametrix. Therefore, the question arises whether quantities which diverge
more than the Hadamard parametrix have any physical meaning at all.

To begin with, we applied the Hadamard procedure to a well-known case of a real
massless scalar in two spacetime dimensions, enclosed in a Dirichlet box. Here, we com-
puted the renormalized energy-momentum tensor in two different ways: by explicitly
introducing a regulator in the formula and manually subtracting the divergent part, and
by applying the Hadamard procedure. We showed that the Feynman propagator has
the same singularity as the Hadamard parametrix prescribes, and therefore the renor-
malization procedure is successful. In both cases, we found the same components of the
(vacuum expectation value of the) renormalized energy-momentum tensor.
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Then, we proceeded to extend the spacial dimensionality from one to three, by re-
taining spherical symmetry. Here, the calculations were much more involved, since we
had to deal with spherical Bessel functions and zeros. By using the heat kernel formal-
ism, we managed to obtain the expression of the time-split Feynman propagator, and
we observed that, near the boundary, the Hadamard parametrix was not matched. We
therefore have one first interesting result: by increasing the number of spacial dimensions
from one to three, Dirichlet boundaries spoil the Hadamard renormalization procedure
near the boundary. In the bulk region, away from the Dirichlet boundary, we saw that
the Feynman propagator had the Hadamard form locally, and we managed to find the
renormalized energy density at the center of the spherical cavity. Proximate to the cen-
ter, one can think of performing numerical calculations, since the divergent part is known
and can easily be subtracted, leaving the computer working only with finite expressions.
However, the issue near the boundary remains, and it is not clear whether one can work
with Dirichlet boundaries at all in this case, since the physical meaning of mathematical
expressions is only assigned after renormalization.

After that, we enhanced the first two-dimensional model by substituting the Dirichlet
boundary with a simple step potential, and enforcing continuity of the field and its spacial
derivative across the jump. Here, we were able to compute normal modes and find the
singular part of the Feynman propagator everywhere. We saw that also in this case
the Hadamard parametrix was matched inside the object, and the road for numerical
calculations to find the renormalized energy-momentum tensor is open, even close to the
boundary. Another interesting result seems to stem out of our work: two-dimensional
models seem to keep the Hadamard singular part unspoiled, but this has to be checked
in the general case, maybe studying geodesic reflection.

The path to a full understanding of the quantum properties of matter in compact
stars is still long, but the hope is that this thesis can constitute a small step in that
direction, and lay the foundations for further research about this topic, which is located
inside the bigger picture of understanding quantum effects in gravity.
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Appendix A

Legendre polynomials and spherical
harmonics

For reference and clarity, in this appendix we will state some facts regarding Legendre
polynomials and spherical harmonics which are used throughout this dissertation. The
references are [38, 37, [39).

A.1 Legendre polynomials

Legendre polynomials can be defined via the Rodrigues’ formula as (¢ € {0,1,2,...})

The set of all Legendre polynomials { P(x)}, 5 forms a complete orthogonal basis for the
space L*([—1,1], R, w(z) = 1). We have

Py(1) =1, (A.1)

and

1
2
/1 Py(x) Py (x)dz = ST 1554' (A.2)

A.2 Associated Legendre polynomials

Associated Legendre polynomials P;*(z) can be defined via the following formula (with
0e€{0,1,2,...} and m € {0,...,(})

m m n dm
Py (a) = (~1" (1 — ) E

Py(x), (A.3)

where Py(z) are the unassociated Legendre polynomials discussed in the previous section.
Legendre polynomials for negative m are defined by

(¢ —m)!
(€ +m)!

By (a) = (=)™ B (). (A.4)
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They satisfy the following orthogonality relation

/_1 PM(x) Py (x)de = %i_ . Eﬁ i_ Z;(Sw (A.5)

We also use the convention

Bom(2) = (=1)" P (2), (A.6)

and the orthogonality relation stays the same due to (—1)*™ appearing on both sides due
to index lowering:

/_ Punla) P = ; €2+ 1 Ei * Z;i‘;‘f" (A7)

The definition for negative m (A.6) with lower index stays the same (due to a factor
(—1)™ = (—1)~™ appearing on both sides when lowering the index):

B o (0 —m)!
Py _m(x) =(-1) 0+ m>!Pgm(Q§). (A.8)
A.3 Spherical harmonics
Spherical harmonics are defined as follows:
m 204+1(0—m) . im
Y, (0, ) = \/ g (E—I—m)!Pg (cosB)e"™?. (A.9)
They are orthonormal:
s 2m
/ do / sin 0deY™ (0, )Y (0, 0) = S Oy (A.10)
0 0
The complex conjugation gives
Yém*(ea 90) = (_1)m}/£_m(97 90)' (A‘ll)

By lowering the m index in the associated Legendre polynomial, we can also lower
the index of the spherical harmonics:

Yim(0,9) = (=1)"Y"(0, ), (A.12)

and the orthonormality relation is the same (a factor of (—1)™+™ appears, but it equals
1 due to m = m’ from the Kronecker delta):

™ 2m
/ d@/ sin 0dwYe, (60, )Yy, (0, 0) = 000 O - (A.13)
0 0

There is the so called spherical harmonic addition theorem which states

+
D Y01, 1) Y (0, 02) = - Py(cos7), (A.14)
m=—/
where
cosy = cos 6y cos Oy + sin 01 sin O cos(p; — p2) (A.15)
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Appendix B

Bessel functions

The definitions and properties of Bessel functions can be found in chapter 10 of NIST
DLMF (Digital Library of Mathematical Functions) [36]. Here we report some useful
identities and properties that are used throughout this dissertation.

B.1 Bessel function of the first kind

We denote the Bessel function of the first kind of order v evaluated on z as J,(z), and
the n'* zero of J, as Jun- We always consider v € R, so, as stated by [36] in 10.21, J,(2)
has a countably infinite number of positive real simple zeros, indexed by n € {1,2,3,...}.

B.1.1 Recurrece relations

The following recurrence relations are useful (DLMF [36] 10.6.1-2):

2
Jyo1(2) + Jyp (2) = 7”J,,(z> (B.1a)
J,1(2) = J1(2) = 2J.(2) (B.1b)
J(=) = Jya(2) = S 0(2) (B.1c)
J(2) = =Jona(2) + 24 (2) (B.1d)
B.1.2 Orthogonality in finite domain
The following orthogonality relation holds (DLMF [36] 10.22.37):
! 1
/ tJy (Junt) Sy (Jumt)dt = §[J;(jy7n)]25m/ (B.2)
0

B.2 Spherical Bessel function of the first kind

The spherical Bessel function of the first kind of order ¢ evaluated on z is denoted by
Je(2). We assume ¢ € NU{0}.
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B.2.1 Relation with Bessel function of the first kind

The following identity between Bessel functions and spherical Bessel functions of the first

kind holds (DLMF [36] 10.47.3):

) =\ 3 ) B3

B.2.2 Expressions for few spherical Bessel functions of first kind

We have:
jol(2) = SH;Z, (B.4a)
i) =0F -2 (B.4b)
Jo(z) = (% - %) sin z — %cos z. (B.4c)
B.2.3 Zeros

The zeros of the spherical Bessel function of the first kind of order ¢, denoted by «y, with
n € {1,2,...}, are thus equal to those of the Bessel function of the first kind of order
l+ %:

Qn = Jopntl- (B.5)

B.2.4 Orthogonality for finite domain
The following orthogonality relation holds (with R > 0):

[ st (o) i (ves) = s -

PROOF. We want to evaluate

I= /OR 7“2d7“jg <C¥gn%> Je (Oégn/%) .

We make the following change of variable

so the integral becomes
1
=8 [Pt (@unt) o (anrt).
0
Now, we use (B.3) twice and get

TR3 !
I = 2\/OW/O tdtjz_’_%(afnt)‘]é—ké(aén/t)'
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Using (B.2)), we obtain

R m ' 2
1= 5 G iy )
and employing (B.1c) and (B.1d)) we have
R =« 0+ 1 2
R =« {4+ % 2
= 7@ [—Jé+g(agn)+£n T+i Oégn) Onn/ s

where we recognize that g, = j, . 1 and so we cancel the terms proportional to Bessel functions
’ 2

evaluated on their zeros. We thus have found that

R} w R} 1
1= 5 g, Ty 0o = 550 Tiy g (€an)on
and by using (B.3) we finally have
R? R3
I= ) 42—1(0‘€n)5nn = ?Jif—l(aén)&nn"
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Appendix C

Theory of distributions

Many quantities in quantum field theory need to be understood in the distributional
sense, and this is sometimes crucial to not lose the mathematical sense on which the
actual theory relies on. In this appendix, we are going to give a brief introduction to
distribution theory. A good reference is [10], and some topics have been taken from [29).
We also provide an introduction to microlocal analysis, wave-front sets and products of
distributions, for which good references are |16, 20].

C.1 Test functions spaces

The main idea is that a distribution 7'(x) should be viewed as an integral kernel which
must be smeared onto a function f(z) like [T'(z)f(z)dxz, yielding a finite result. Distri-
butions are not functions, since they can be undefined pointwise. A distribution is well
defined if and only if its smearing on all of the functions within a certain space, called
test functions space is well defined. Of course, there are multiple choices that are possible
for test functions. The core idea of test functions is that they vanish at the boundary of
their domain. Here we present two of the most commonly used in physics. The formal
definition of distributions does not rely on integration, being only later connected to it
via a notational trick by analogy with a specific example. Let us proceed step by step.

Definition 1 (Compactly Supported Functions). The space D(R") = C*(R")
consists of smooth real or complex valued functions with compact support with respect to
the standard topology of R™.

Being compactly supported and regular, the integral of these functions inside their domain
is finite.

Definition 2 (Schwartz Space). The Schwartz space S(R") is the set of all real or
complex valued functions f € C*°(R™) such that for every pair of multi-indices «, 3,

sup |z%0sf(z)| < o0.

TzER™
These are infinitely differentiable functions that, along with all their derivatives, decay
faster than any power of 1/|x| at infinity. Functions belonging to the Schwartz space are
those who have a definite Fourier transform. Schwartz space can be informally thought
of as the extension of compactly supported functions space with domain extended at
infinity. Of course a compactly supported function is also a Schwartz function.
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C.2 Distributions

Now that we have in mind test functions spaces, we can define what is a distribution.

Definition 3 (Distribution). Given a test function space on R", denoted by D(R"),
a distribution T on R™ is a continuous linear functional on D(R™):

T : D(R") — C.

The space of distributions is denoted by D'(R™). The action of a distribution T € D'(R™)
on a test function f € D(R™) as a linear functional is denoted by T[f] € R. If D(R™) is
the Schwartz space, the distribution is said to be tempered.

1
loc

Every locally integrable function g € L, .(R"™) defines a tempered distribution 7}, on

the Schwartz space by
T)f)= | f@gl)dr. feDE)

We keep this example in mind when defining distributions that are not functions, and
we will set up a notational trick that makes us write proper distributions as “functions”
of the position, and their action on test functions as a smearing integration, where the
distribution acts like an integral kernel.

We now define two of the most commonly used distributions: the Dirac delta and the
Heaviside step function.

Definition 4 (Dirac Delta). Given a test function space D(R™), the Dirac delta 0 is
the distribution defined by

olf] = f(0), feDR).
By analogy with the case of distributions defined by locally integrable functions, we can

define the notation 0(x) to represent the distribution, where the following integral smearing
action is intended:

U= [ s = 1)

Consequently, we can interpret §(z) informally as a “function” which is zero everywhere
except at * = 0, where it equals infinity. However, this functional definition is not
sufficient to specify the distributional property of the Dirac delta, and we also need the
above integral action.

From now on, we will use the two notations for distributions interchangeably.

Definition 5 (Heaviside Function). The Heaviside step function © is the function

defined on R
Oz) = 0 x<0,
1 =>0.

© is locally integrable, and it acts on test functions via ©[f] = fooo f(x)dx.

Now, we define the concept of distributional derivative, which relies on the analogy
with integration by parts.
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Definition 6 (Distributional derivative). Let D(R") be a test function space and
let T € D'(R™) be a distribution. The distributional derivative of T in the direction x; is
itself a distribution, defined via its action on an arbitrary test function f € D(R™):

O T)[f] = =T0;f].

This definition can be justified by analogy with integration by parts, keeping in mind
that test functions vanish at the boundary. Therefore, we have:

O = [ @)@ (a)de = T ptfin, — [ T(@)(0,)(a)de = ~T10, ).

With this definition, we show that the distributional derivative of the Heaviside step
function is the Dirac delta in R.

n

Theorem 1. In the distributional sense,

d
%@(JJ) = d(x).

Proor. Let f € D(R). Then

Tin=-0| L] =~ [ rwis= 10) - £y = 100

where we used the property that test functions vanish at infinity. Since this holds for all test
functions, we have that the distributional derivative of © behaves as a Dirac delta, and therefore
equals it.

Definition 7 (Fourier transform of distributions). Consider the Schwartz space
S(R™) of test functions and let f € S(R™), so that its Fourier transform is well defined.
Let T € S'(R™) be a (tempered) distribution. We define the Fourier transform FT of T
as a distribution via its action on the arbitrary test function f:

(FT)f] = TIF[].

This definition reduces to the ordinary Fourier transform if T happens to be an ordinary
function, and defines a continuous automorphism in S'(R™).

C.3 Regularizing distributions

In quantum field theory, one often applies a regularization procedure to some seemingly
not well defined quantity to make it well defined and convergent. Then, the regularized
quantity is carried along in calculations, and only at the end one recovers the original
quantity in some limit. To those who are unfamiliar with distributions, this procedure
may seem rather obscure, leaving some second thoughts about the legitimacy of the
calculation. However, this procedure, called reqularization, can be given a precise math-
ematical meaning using distributions. We state the following theorem without proof (see
[10], Chapter 5), which clarifies what happens.
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Theorem 2 (Mollifier regularization theorem). Let T € D'(R™). Then, there
ezists a family {pe}eso with . € C(R™) such that

lim () f(z)dxe =T[f] Vf e DR").

e—0t Rn

We can make an example by instantiating the above theorem for the Dirac delta distri-
bution.

Theorem 3. Let g: R — R be a function of y € R such that g(y) > 0 and

/_+oog(y)dy =1.

Then, define the mollifier:
pe(r) =€y (—) : (C.1)

Then, we have, distributionally,

PROOF. We have pc(x) > 0 since e+ > 0 and g(x/€) > 0. Then, if we consider the substitution

T = ey, we have
+oo +00 T +oo
/ drpe(z) = / ey (;) =/ 9(y)dy = 1.

Now, pick an arbitrary test function f(x). Then,
+o00 +oo +o0 00
| edas@in= [ (2) pan = [ airtends —= [ )04y = 10).

This means that p. becomes § when € — 0.

|
If we choose the function ] ,
_y
— e 2 ,
9(y) NG
we have
1 o2
WE(x) = e 22,
eV 2T

which is a normalized gaussian function with standard deviation ¢ = €, and by the
above theorem we have that the Dirac delta can be viewed as the limit of the gaussian
distribution with standard deviation approaching 0. Alternatively, one can prove

lim L — — 5a) (C.2)

0+ T2 + €2
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PROOF. Let us exploit the previous theorem with

and

Indeed, by going on the complex plane and closing the contour with a semicircle CE of radius
R > 0 on the upper half plane, we have, by Cauchy residue theorem (see [26]):

teo 1
/ .
o 14277 T RS rRUCE  Jok ) 1422

1 1
(z+1i)(z—1)

and so 1/m is the right normalization factor. We then have, in accordance with the previous
theorem,

= 27 Res = 2

2=1

1 1 1 €

xr)= — = — s
pe(x) 7T61-|-%22 T2+ €2

and the assertion follows by applying the previous theorem.

C.4 Cauchy principal value and Sokhotski-Plemelj the-
orem

Definition 8 (Cauchy principal value). We define the distribution P%, called Cauchy
principal value of 1/x, as a distribution. Its action on an arbitrary test function f is

[ ([ [ 7) 5

The above definition is well posed.

Proor. We have

@), +/+°°f(w)dx:/+°°f< o +/*°°f<fv>d$:/+°°m>—i”<—@dm.

x T T xT

— 00

For e — 0%, the integrand becomes f'(0), which is well defined.
|

Theorem 4. The Cauchy principal value is approrimated by the following family of
smooth functions, with € — 07 :

R L (C.3)

T es0t 22 4 €2
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PROOF. Let f(x) be a test function. Then,

[ gt | o ([ o
4 (/o:+/:oo> L f(a)de

Now, we want to show that the first two terms are O(€) so that we are left with what we wanted
to prove. To do this, we substitute y = x/e. Let us start with the first term

+e€ T 1 1
| st = [ Yty = [ 250+ 06 = 06
—_———

e x2+62f LY+ Y2+
=0

where we used the fact that odd integrals vanish on symmetric domains. Now, let us deal with
the second term

/6+/+OO 952162_915 f(z)dz = /€+/+Oo xgc;i@f(x)dx:

o e oo Je ( )

_(/_:+/1+°O) y(y?:—l)f(ey)dy:—(/_:_}—/l—i—oo) y(y21+1)dyf(0)—|—0(6)20(6),
=0

where again we made the symmetric odd integral vanish. We therefore have

[ st ([ [ ) ot

which concludes the proof upon taking the limit € — 0.

|
Theorem 5 (Sokhotski-Plemelj theorem). We define the distribution
1
x £1i07
via its action on a test function f(z):
o T
/_ _ arac/@de=lim [ oo f(z)de.
We have the following distributional identity
Pl i (C.4)
x 10t T

PROOF. Let f(x) be a test function. We then have

RIS | T e too g ) +ooq €
/ aziief(x)dx_/oo x2+62f( z)dz _/oo $2+62f($)d$:|:Z7T/oo 7ra:2+62f( z)dz

—00
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Now, we use egs. (C.3) and (C.2) to take the limit € — 0% and write

) +00 1 +oo 1 . “+o0o “+o0o 1 )
elg(r)l+ - m:l:ief(flf)da: = /OO Pxf(:z:)da:qim/oo d(z)f(x)dx = /Oo [Px :Fmé(:z)] f(z)dz,
which shows us that the distribution ﬁ acts on an arbitrary test function as P% Fimd(x),
and therefore equals it.

[ |

C.5 Products of distributions and microlocal analysis

In order to define the product of two distributions, we need to be careful about what
happens with the singularities of the factors. Indeed, the product of two distribution can
be ill-defined, and there is a precise condition for when it is well-defined.

Example 1. Consider the Schwartz space S(R) and the distributions 6(x) and Pt on
it. Then, the product 6(x) - P= is ill-defined.

PROOF. We will compute the action on a test function f € S(R) by regularizing one of the two
distributions and show that we have a different result if we instead regularize the other one.
Let us start by regularizing the Dirac delta using an even smooth mollifier p.(x - We

then have
7= (P2 o)) = p [ 2400,

T

Now, since f is smooth, we can write f(x) = f(0) + xg(x) with g smooth, and get

Ty = f(O).P/R weix)dx+4¢e(x)g(x)dx = f'(O).

We now have that the first integral vanishes because it 1s an odd integral over a symmetric domain
(recall that we assumed @, to be even, and 1 is odd), and the second integral gives g(0) after
taking € — 0T, which is equal to f'(0) (locally, only at x =0).

Now, let us compute the test action on f by swapping the role of the two distributions. We

reqularize PL via (C.3) (which is odd), and get

Ty =3 | 32l = [ 605 0) = 50 =0

We see that the two actions T4 and Tp coincide if and only if f'(0) =0, but this must hold
for an arbitrary test function f, and of course there are functions whose derivative at x = 0 is

not zero. Therefore, the product is ill defined.
|

However, one can indeed define the product between a proper distribution and a smooth
function (which is itself a distribution), and the result is a distribution. We can then ask
ourselves if there are cases where two proper distributions can be multiplied without any
trouble. The answer is yes, and there is a condition for when this can be done, called
Hormander condition. To state it, we first need to define another concept, the wave-
front set WE(T) of a distribution 7", which is in turn based on the concept of microlocal
smoothness.
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Definition 9 (Microlocal smoothness). Let T' € S'(R") be a tempered distribution
over R", let xo,& € R™ and § # 0. Then, T is microlocally smooth at (xq,&) if there
er1sts

e a compactly supported cutoff x € C°(R™) with x(zo) # 0,
e a conic neighbourhood V' of &,

such that the Fourier transform F[xT] € S'(R") is a Schwartz function in V (decays
faster than any power at infinity in V' ):

VN €N, 2115(1 +ENMIFIXTIE)] < 0.
€
Definition 10 (Wave-front set). Let T € S'(R") be a tempered distribution over R™.
The wave-front set of T is the set

WF(T) = {(x0,&) € R" x (R"\ {0})|T" is not microlocally smooth at (x¢,&)}. (C.5)

The wave-front set can be informally thought as the set of positions and momenta
directions where a distribution is singular. Of course, smooth functions have empty
wavefront sets. As an example, let us compute the wave-front set of the delta distribution
and the Cauchy principal value.

Example 2. The wave-front set of the Dirac delta distribution is

WE(@5) = {(0,9)¢ € R*\ {0}}. (C.6)

Therefore, the Dirac delta is singular at o = 0 in all momentum directions.

PROOF. Choose x¢ # 0, and compactly supported x such that x(0) = 0 but x(z¢) # 0. Then,
X6 = 0 everywhere, and therefore also its Fourier transform F[x0] = 0 everywhere. Therefore,
it decays faster than every power in any cone. This means that § is microlocally smooth at all
(z0,&0) with xg # 0.

Now pick xo = 0. Then, for any x(0) # 0 we have x6 = x(0)d. Its Fourier transform is the
constant function F[xd] = x(0) everywhere, and therefore it does not decay at all in any cone.
Therefore, § is not microlocally smooth at (0,&y) for any § € R™ \ {0}.

|

Example 3. We also give, without proof, the wave-front set of the Cauchy principal
value PL:

wr(Py) = (.00 £ 0,

We are now ready to state the condition (which we will not prove) of when the product
of two distributions is well defined.

Proposition 1 (Hérmander condition). Let T, T, € S'(R™) be two tempered distri-
butions, with respective wave-front sets W F(T1) and W F(T3). Then, ThT, is well-defined
if and only if the composite wave-front set WF(Ty) @ WF(Ty) = {(z,& + &)|(x, &) €
WF(T)), (z,&) € WEF(T)} does not contain an element of the form (x,0).
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Of course, since smooth functions have empty wave-front sets, they can always be
multiplied correctly. Let us now recall our initial example of product of distributions.

Example 4. We can check that the product of 6 and P% does not satisfy the above
condition. Indeed they have the same singular support x = 0 in position space, and
for every non-zero momentum &y of the Dirac delta there is a corresponding —&y of the
Cauchy principal value such that the sum of momenta is zero. Therefore, the product of
these two distributions is not defined, as we expected.

We will see that the product of distributions plays a crucial role in understanding
renormalization in quantum field theory, in the next appendix.

C.6 Useful formulae

In this section we collect some useful formulas that are used throughout the dissertation,
and rely on distribution theory or complex analysis to make mathematical sense.

C.6.1 Trigonometric integrals

Let us prove the following distributional identities:

[ coston)costanlas = Z 50— )+ 660+ ) (©7)

[ sintomsntan)ds = 31560~ 50+ ) ()
oo 1,1 1

/0 sin(px) cos(qz)dr = 5 [Pm + Pqu} (C.7¢)
i _lp b et

/0 sin(px) cos(qz)dx = 5 {Pp " Pp — q} (C.7d)

PROOF. Distributionally, we have

—+00
1 1 )

i k+i0t k40t

+oo +oo e:r(ik:fe)
/ e*T — 1im ehTe= T dr — lim —
0 e—01 Jo e—0t+ 1k —€

We now use the Sokhotski-Plemelj theorem (C.4)) to write
+oo 1
/ ek® =P~ 4 wo(k),
0 k
and by taking the real and imaginary parts we get the following identities
+0o0
/ cos(kx)dr = wo(k), (C.8a)
0

+00 1
/ sin(kz)dr = P%. (C.8b)
0
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We can now apply Werner trigonometric formulas to compute the integrals one by one. In what
follows, we will use the above relations without mention, with k = p + q.

+00 +o0
/ cos(pz) cos(qx)dx 21/ (cos[(p — q)z] + cos[(p + q)z])dz =

/ sin(px) sin(qx)d
0

“+oo
/ sin p.%' COS q:):
0

+00
/ cos(pz) sin(qx)d (sin[(p — q)z| — sin[(p + q)z])dz =
0
|

(cos[(p — q)x] — cos[(p + ¢q)x])dx =

(sin[(p — q)x] + sin[(p + q)z])dx =

J’_
8

l\D\b—\ L\D\»—t [\D\n—l

8

|
N~ N
N

=
| | =

<

+

g

3

+
=

C.6.2 Infinite sums

We want to prove the following distributiona]ﬂ identities

chos (nd) (cos9 —y (C.9a)

Z nsin(nf) = 0. (C.9b)

PROOF. The identities we want to prove are the real and imaginary parts of the following series:

too +o0 o '
S = Znean — Z (280) m@a

n=0 n=0

where we changed the start value of n in the summation to 0 for convenience, since the term with
n = 0 is vanishing. Now, to manipulate this expression distributionally, introduce the regulating
factor e=*" term by term, which makes the series convergent for a > 0. The distributional value
of the series is recovered in the limit o — 0.

. AL n(—a+if . 0 1
s= i (<iga) S = i (Sige) 7o

+
a—0 =0

where we swapped the derivative with the sum due to the series being absolutely convergent.
Indeed, if we set z = —a 410 we have || = e~ < 1 Va > 0, and we are inside the convergence
radius of the geometric series. Now, compute the derivative and then restore the value o = 0,
since the regulator has done its job.

) ] _e—otid et
=t (V=g =

!Note that the series are manifestly not convergent in the classical sense, and can be made sense of
only distributionally.
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Now, let us denote a = cos® and b =sinf so that ¢’ = a + ib. We then have:

G atib o+ ib
[(1—a)—i]2 (1—a)?2—0b%—2ib(1—a)
B a+ib
[ —2a+ a2t + a?] — 2ib(1 — a)
a+ib a—+ib 1

~ 2a(a—1) +2ib(a—1)  2(a—1)(a4db) 2(a—1)

and by restoring a = cos O we get the final result:

+oo 1
S = ind _ )
; ne 2(cosf —1)

Upon taking the real and imaginary parts of the above expressions, we immediately obtain the

identities we wanted to prove.
|

Let us now consider another identity, to prove which we will make use of the logarith-
mic power series in complex analysis (see [26], eq. 2.29), which states:

+oo

log(1 + 2) = Z(—w%. (C.10)

n=1

The infinite sum distributional identity we want to prove is the following:

+o0
Z cos(nd) — g
n

n=1

QSing‘. (C.11)

PROOF. Let us split the cosine in imaginary exponentials and introduce a regulator e~ "™ term
by term:

+00 inf —ind
g Z cos(nf) — lim o—an e’ 4 e .1
= n a0t £ 2n a—0+ 2

Now, we can use (C.10), but flipping the sign in fromt of z, so that we get:

+o0 o

—1 —z)= —.

og(l—2)=) ~
n=1
Then, by setting z = e~ we can write
: 1 10—« —if0—a
S=— lim — |log(l—¢e""%) +1log(l—e )| -
a—0t 2

We can now apply the property log ab = log a+log b, which still holds for complex arguments (as
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20/ states in sec. 2.7), and write:

1 . .
S=— lim —log [1 — W _pifma 6_2“}
a—0t+ 2
1 ) )
=— lim -1lo [1 —e (e +e7) + e’za}
a—0+ 2 & ( )

1
= — lim 5 log [1 —2e¢ “cosf + 6720[]

a—0t

1 1 0
= —ilog [2(1 — cosB)] = —ilog <4 sin? 2)

1

2
= —log <4 sin? g) = —log

2sin9’.
2
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Appendix D

Distributions in QFT, Hadamard states
and renormalization

In quantum field theory, distributions play a crucial role. Indeed, there is an axiomatic
formulation of quantum field theory by Wightman [1|, which states that field operators
are not ordinary operator-valued functions, but rather operator valued distributions. Fur-
thermore, since all relevant quantities (such as the propagator, and the energy-momentum
tensor, or higher order correlation functions) are constructed in terms of the field and
its derivatives, the theory of distributions discussed in the previous chapter turns very
useful.

D.1 Fields as operator-valued distributions

~

Let us consider the quantum state ¢(x) |0) in standard four-dimensional Minkowski real
scalar field theory, where ¢(z) is the field operator evaluated at spacetime point x, and
|0) is the standard Minkowski vacuum state belonging to the usual Fock space H. We
have

[o62 )] = (01 6(2)62) 10) = ~iGe(a.2) = .

since the bare propagator is divergent at coincidence limit. We therefore see that (5(95)
is not a good operator, since when it acts on a normalized state such as the vacuum, it
yields a state with undefined norm. This means that, in order to hope to make sense
of the new state, one has to try smearing it against a test function in the Schwartz
space (or a compactly supported functions space). It turns out that the result of the
smearing process is a genuine element of the original state space H, having finite norm.
The element qg(x), therefore, is not an operator-valued function, since when evaluated
at a point does not behave as an operator, but rather an operator-valued distribution.
Indeed, when acting on a state, it gives as a result an element of an extended space of
states H' O H. This extended space is equipped with a distributional inner product, in
the sense that inner products (brakets) between any two states of H' are distributions.
We will see that the propagator is one of those.

In Definition [6] we defined the distributional derivative, and saw that it is indeed a
well-defined distribution. We can therefore claim that the conjugate momentum f[(x) =
d,¢(x) and spacial derivatives of the field d;¢(x) are themselves distributions. We can
now start to build observables in terms of distributions.

97



D.2 Propagator as a distribution

In ordinary Minkowski QFT, the propagator in momentum space is a distribution that
looks like

~ 7 1
G — —pP S(p? — m?2
r(p) p? —m? +i0t p? — m? Fmopm—m),

where we used the Sokhotski-Plemelj theorem ((C.4). Upon Fourier transforming to con-
figuration space, one obtains

Gp(z —y)=F ! [@F} (z —y),

which is a tempered distribution in the variable x — y. Microlocally, the singular support
of G lies on the light cone (x — y)* = 0, and the corresponding wavefront set encodes
the directions in momentum space generating this cone. Thus G is a perfectly good
distribution as long as one stays off the diagonal x = y, which is a one-dimensional
manifold. There, at coincidence, a problem arises. To define objects such as qg(x)z one
would need to restrict the bi-distribution G¥ (z,y) = ($(x)p(y)) to the diagonal = = .
Hormander’s pullback theorem tells us that this restriction is possible only if

WF (G") N N*(Diag) = @

where N*(Diag) = {(z, k,z, —k)} is the conormal bundle of the diagonal (see [22|, The-
orem 8.2.4). For Hadamard two-point functions, however, the wavefront set is precisely
(Radzikowski condition, see [7])

WEF(G") = {(x, ko, y, —ky (@, ko) ~ (y, ky), ke € Vi, (D.1)

where (z,k;) ~ (y, k,) means that 2 and y are joined by a null geodesic and k,, k, are
cotangent covectors at x and y respectively, obtained by parallel transport along the
geodesic. V is the closed future light cone in cotangent space. The above set does
indeed intersect N*(Diag) and therefore the raw product ¢(z)¢(z) is not defined as a
distribution. This is the microlocal statement of the ultraviolet divergence at coincidence.
More informally, another way to look at this issue is that, when multiplying ngS(x) by
itself, the Hormander criterion is violated and the result is more singular than allowed to
form a distribution. To resolve this issue, one needs renormalization, which involves the
subtraction of a universal Hadamard parametrix G, (x,y) that has the same singular

wavefront set. The difference G — Gf, , is smooth near the diagonal x = y, and its

restriction to # = y is well defined. This yields the renormalized Wick square : ¢? : (x)
and, more generally, provides the microlocal foundation of renormalization in curved
spacetime QFT.

D.3 Hadamard states and renormalization

In the paper [17], which is used in this thesis as a reference for Hadamard renormalization,
it is stated that the renormalization procedure only works for Hadamard states. One
can think of a Hadamard state being the analogue of Minkowski vacuum in general
curved spacetime. More precisely, a Hadamard state |H) is a quantum state of the QFT
such that the expectation value (H| ¢(z)é(y) |H) has the same singular structure as the
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Minkowski vacuum locally. This is consistent with local flatness in general relativity,
since we expect the short-distance ultraviolet divergences (those which we subtract by
renormalization) to be purely local. We therefore require physical states to have the same
universal Hadamard singular structure, so that the counterterm is state-independent and
purely local, and after renormalization the state-dependent information is preserved and
smooth. Of course, this discourse applies to the renormalization of all expectation values
quadratic in field and its derivatives. Microlocally, the definition of a Hadamard state
|H) is given in terms of the wave-front set of the two-point function of H, and is the
Radzikowski condition (D.1)). By subtracting a distribution with the same wave-front
set, we obtain an object whose wave-front set is empty, and therefore we have a smooth
function. This is exactly what W (z,y) is in Decanini-Folacci paper [17], and from this
we can directly build the renormalized energy-momentum tensor.
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Appendix E

Heat kernel expansion, semigroups and
fractional laplacian

In this appendix, we want to give a basic introduction to the theory of heat kernel expan-
sion, starting from the heat equation and its solution. Let us start from the definition of
an elliptic operator.

E.1 Heat semigroup and heat kernel

Definition 11 (Elliptic operators). Let M be a smooth Riemannian manifold of
dimension D endowed with euclidean metric g. An operator L acting on smooth functions
on M 1s called a laplacian elliptic operator if, in local coordinates, it takes the form

L=—-¢"V,V,+V(x),

where V(z) is a potential term. Such elliptic operators L are self-adjoint and non-
negative, and their spectrum is discrete and unbounded

with eigenfunctions {¢;} forming an orthonormal basis of L*(M).

Now, we introduce an abstract tool, which is the positive exponential map of the
operator L, and which will turn out to be useful later.

Definition 12 (Heat semigroup). Let L be an elliptic operator with non-negative
eigenvalues {\;}]2) and t > 0. Let also f € L*(M). We then define the heat semigroup
as an operator acting on L*(M) like

+o0o
ef =Y e (f.6,);, (E.1)
j=1

where (f, ¢;) is the standard L* inner product.

The name heat semigroup is related to the fact that, after it acts on an arbitrary
function f € L?(M), it satisfies the heat equation. Indeed, define

u(t, ) = (7" f)(x),
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then, u(t, z) satisfies the heat equation with initial conditions and ¢ > 0

8, + L)u(t,z) = 0,
(@ + Lyuft. ) -
u(0,2) = f(x).

This is because we have 9;(e*F f(z)) = —Le ' f, and ¢ %% = 1. In addition, the name

semigroup stems from the fact that the elements e~* with ¢ > 0 form a semigroup.

We are not interested in the negative values of ¢, since the spectral sum (E.1]) would be
divergent, being the eigenvalues non-negative. Since the solution to the heat equation is
unique, the heat semigroup is a powerful abstract tool to represent it.

Proposition 2 (Heat kernel). By definition, the operator et has a smooth integral
kernel K (t,z,y) such thaf]

(e f)(z) = /M K(t,2,9)f (y)dy.

PROOF. Indeed, from the spectral representation (E.1)), we have

(e‘th)(m)Zioe_”Nf ¢>‘>¢>‘(fﬂ)=/ fe‘”%-(fﬂ)qb*(y) f(y)dyZ/ K(t,z,y)f(y)-
1 P5)Pj “ j j " ) X,

j=1 j=1

K(t,2,y)
[ ]

It follows that the integral kernel K (¢, z,y) solves the heat equation with initial conditions

(8t+L:c)K(t?x>y> =0
K(O,l‘7y):(5($—y> ‘

PROOF. We already know that, for an arbitrary f € L?>(M), the expression u(t,x) = et f
solves the Cauchy problem (E.2)). Let us then expand the heat semigroup in its integral represen-
tation. We get

S KO, 2.9)f(w)dy = f() !

and since these equations need to hold for an arbitrary f, we can conclude that

(at + Ly)K(t, 2, y) =0
K(Oax7y) - (5($ - y)

n this appendix, we work with the convention dz = /| det g|d™.
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E.2 Heat trace and heat kernel expansion

We now get closer to the heat kernel expansion, and define the heat trace as the trace of

the heat semigroup
+00

K(t)=Tre 't = Z et
j=1
or equivalently, in terms of the kernel,

K(t)=Tre " = / K(t,z,x)dx.
M

We therefore get to the very interesting equality

+oo
Ze‘t’\j :/ K(t,z,z)dx, (E.3)
j=1 M

which connects spectral data (eigenvalues of the operator L) with the geometry of the
manifold (the kernel of the diagonal).

We now make contact with Vassilevich [11], in particular Eq. 1.13, where we read that
the heat kernel admits an asymptotic expansion (i.e. its radius of convergence is zero,
and therefore fails if we add corrections higher than a certain order and then truncate):

_axy) 4o
2

K(t,x,y) ~ W Z ar(x, y)t*, (E.4)

where o(z,y) is the Synge world function, which corresponds to half the square of the
geodesic distance between x and y, and ax(z,y) are called the heat kernel coefficients.

Sometimes, it is easier to work with the heat trace expansion, instead of expanding
the full kernel. We therefore can take the trace of (E.4) to get

K(t) = /M K(t,z,z)dx ~ (4mt)~ P/ f (/M ak(:n,a:)da:) t*

k=0

TV
Ag

and we have the heat trace coefficients Ay, which differ from the heat kernel coefficients
ax(z,y) by a trace action.

E.3 Fractional laplacian and subordination formula

Let us now define the fractional laplacian L® and state the subordination formula that
relates the heat semigroup of L to the one of L. We reference |24] for this section.

Definition 13 (Fractional laplacian). Let L be an elliptic operator on a smooth
manifold M with eigenvalues \; > 0 and eigenfunctions given by ¢;. For any o > 0, we
define the fractional power of L by raising the eigenvalues to the same power:

L% = Xj¢;.

This fully determines the action of L on any arbitrary f € L?*(M), since the operator is
linear and the eigenfunctions span the whole functional space.
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It is worth mentioning that for non-integer values of «, the operator is non-local since

the value of L®f(x) for a given x € M depends on the value of f at other points which
are far from x.

At page 5 of [24], we have the integral representation of the action of L* on a function
f,if 0 < a <1, and we get the subordination formula:

wr 1 tee dt
Lf—m/0 (e Lf—f)tlj,

which relates the operator L* with L, hence the name subordination.
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