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Introduction

Ovarian cancer is one of the leading causes of cancer-related mortality worldwide.
Early and accurate characterization of adnexal masses (benign or malignant) is critical
and relies heavily on transvaginal ultrasound, a noninvasive, real-time imaging modal-
ity [1]. Manual detection is often subjective and dependent on the diagnosing physi-
cian’s expertise; therefore, automated segmentation could be explored as a standardized
approach to reduce diagnostic variability, minimize clinical workload, and ultimately
improve patient outcomes. During examinations, ultrasound systems generate video
clips that capture the dynamic nature of anatomical structures. SynDiag employs an
image segmentation deep learning model to provide frame-by-frame accurate segmenta-
tion. However, this approach does not fully utilize the temporal dynamics inherent in
video data, which could offer superior diagnostic contextual information compared to
single-frame analysis. Furthermore, ultrasound imaging presents additional challenges
for computer vision applications [41]:

� Speckle Noise and Low Contrast: Inherent ultrasound speckle (i.e. a com-
mon grainy, granular texture that obscures anatomical details) reduces boundary
definition and complicate segmentation.

� Probe Motion and Deformation: Dynamic probe positioning and patient
movement introduce substantial frame-to-frame variations, presenting challenges
for segmentation models.

� Lesion Characteristics: The diverse properties of cystic, solid, and mixed le-
sions generate complex imaging patterns that challenge automated segmentation
algorithms.

These factors limit the effectiveness of frame-only segmentation networks and motivate
the incorporation of temporal context. In this thesis, we explore three strategies to
introduce temporal coherence into ovarian ultrasound segmentation:

1. Post-Processing Tracking (Chapter 3): Using SEA-RAFT optical flow esti-
mation to warp and fuse U-Net masks across frames, reducing flicker.
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ii Introduction

2. Promptable Transformer-based Model (Chapter 4): Extending the prompt-
able SAM2 model with a self-sorting memory bank (Med-SAM2) to leverage the
most informative past frames.

3. State-Space-based Model (Chapter 4): Embedding state-space modules and
boundary-aware losses into a Video Object Segmentation network (ViViM) for
efficient, accurate long-range modeling.

We begin by giving some preliminary notions in Chapter 1. In Chapter 2, we charac-
terize our privately collected dataset and preprocessing pipelines. In Chapters 3 and 4, as
explained above, we will introduce the innovative architectures that will be used during
the thesis. Chapter 5 delivers extensive evaluation on our ultrasound test set, quanti-
fying segmentation metrics, boundary accuracy, and inference speed for each approach
versus the U-Net baseline. Finally, we conclude with a discussion of clinical implications,
limitations, and future research directions.

Through these contributions, we demonstrate that integrating temporal information,
whether via optical-flow warping, self-sorting memory banks, or state-space modeling,
substantially enhances the reliability and consistency of ultrasound segmentation for
ovarian cancer diagnosis.
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Chapter 1

Preliminary Notions

In this chapter some preliminary notions will be given to better understand this thesis
contents. Particularly, we will explore the task of multiclass segmentation, along with the
benchmark method for image segmentation, the U-Net, and its principal components.
Lastly, we introduce Transformers, that are the building blocks of most of the proposed
video object segmentation models.

1.1 Image Segmentation

Image segmentation is a fundamental and critical task in computer vision that in-
volves partitioning images into multiple distinct regions based on shared characteristics
such as color, intensity, texture or semantic meaning. This process serves as a foun-
dational component for numerous applications including scene understanding, medical
image analysis, robotic perception, video surveillance, augmented reality, and image com-
pression [2].
Building upon the foundation of image segmentation, Video Object Segmentation
(VOS) extends these principles to the temporal domain, representing a more challeng-
ing and complex task. VOS aims at segmenting objects of interest throughout the given
video sequence, requiring models to maintain consistent object boundaries and identities
across multiple frames while handling dynamic challenges such as object deformation,
occlusions, illumination changes, and camera motion [3]. Generally, in VOS models,
segmentation is still performed frame-by-frame, and temporal complexity is introduced
by means of a memory bank that retains information about past frames.
In this section we will explore one of the main components of modern image segmenta-
tion models, CNNs, and we will present the baseline method used as benchmark during
the thesis, highlighting the motivations that lead to the introduction of VOS models,
instead of simply using image segmentation models.
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1.1.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs)[4] are the foundation of computer vi-
sion related tasks (such as image classification and segmentation) and they are composed
of three types of layers:

1. Convolutional Layer: whose primary function is to apply a set of filters (kernels)
to the input image in order to extract spatial features such as edges, textures, and
patterns.

2. Pooling Layer: responsible for performing downsampling along the spatial di-
mensions of the input, reducing the number of parameters.

3. Fully-Connected Layer: the final layer that provides probabilities and classifi-
cation results.

The main innovation reside in the convolutional layers, which are responsible for
extracting spatial features. In order to perform such extraction, each filter is slid across
the input, performing element-wise multiplication between the kernel and a small portion
of the input, and then summing the result to produce a single value. This process is
repeated across the entire image to produce a new feature map, which highlights the
presence of specific properties detected by the filters. Mathematically, given an input
image I and a filter K ∈ RhK×wK the convolution operation at pixel (i, j) is defined as:

(I ∗K)(i, j) =

hK∑
m=1

wK∑
l=1

K(m, l)I(i−m, j − l)

where hK and wK are the height and width of the kernel, respectively. An example of a
3× 3 convolution is shown in Figure 1.1.

In CNNs, multiple convolutional layers are applied sequentially in order to hierar-
chically extract increasingly complex patterns. After each convolution, an activation
function (usually ReLU) is applied to introduce non-linearity into the model, enabling it
to learn more complex representations. Additionally, convolutional layers are alternated
with pooling (and possibly normalization) layers in order to reduce dimensionality and
stabilize training. Finally, the features extracted by the convolutional layers are flattened
and passed through one or more fully connected layers to produce the final output. An
example of a simple CNN is shown in Figure 1.2.

1.1.2 U-Net

Currently, aU-Net architecture is adopted as a baseline for multi-class ovary segmen-
tation. In this section it will be presented the U-net structure, highlighting its strengths
and weakness, and motivate the choice of introducing Video Object Segmentation
end-to-end models.
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Figure 1.1: Example of a 3× 3 convolution [4].

Figure 1.2: Structure of a CNN in an n-classification task [4]. The input data goes through two
convolutional layers, two pooling layers and a fully connected layer. The Softmax activation
function provides the probability of the data belonging to each category.
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Figure 1.3: U-Net architecture, showing the symmetric encoder-decoder structure with skip
connections.
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(a) Input frame (b) Ground-truth mask (c) U-Net prediction

Figure 1.4: Example segmentation on a representative frame of our dataset. As we can see
U-Net performs reasonably well on both the solid class (in red) and the non-solid class (in
yellow).

U-Net Architecture

U-Net is a specialized CNN architecture that was originally developed for biomedical
image segmentation tasks[16]. As shown in Figure 1.3, it consists of a contracting encoder
path and an expanding decoder path, with skip connections that transfer high-resolution
features from encoder to decoder.

� Encoder: Repeated application of two 3×3 convolutions (each followed by a ReLU
activation function [5]), then a 2× 2 max-pooling with stride 2 for downsampling.
At each downsampling step the number of feature channels doubles.

� Decoder: Each step begins with a 2×2 up-sampling, reducing by half the number
of feature channels, followed by concatenation with the corresponding feature map
from the encoder via a skip connection. Two further 3 × 3 convolutions (with
ReLU) refine the combined features.

� Output layer: A final 1 × 1 convolution maps to three channels (one per class),
and a softmax activation produces per-pixel class probabilities.

Advantages and Limitations

Advantages

� Localization with context: Skip connections deliver high-resolution spatial in-
formation from the encoder directly to the decoder, giving precise boundary delin-
eation, as we can see in Figure 1.4.

� Data efficiency: The fully convolutional design and extensive feature reutiliza-
tion make the U-Net perform well on small medical datasets without the risk of
overfitting.
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Limitations

� Frame independence: U-Net processes each frame separately, without leveraging
temporal continuity or dynamics.

� Temporal inconsistency: With no temporal context we could lose some useful
information between adjacent frames, leading to a reduction of performance.

� Computational cost: Processing each frame separately can be slow for long video
sequences.

To address these issues, we explore three approaches in the following chapters:

1. U-Net + Tracking: Tracking is explored as a post-processing step that enforces
temporal consistency by linking segmented regions across frames.

2. Vision-Transformer-Based Model: End-to-end Promptable Video Object Seg-
mentation model based on transformers that encodes temporal information through
the utilization of a Memory Bank that stores past frames.

3. State-Space-Based Model: End-to-end Video Object Segmentation model that
propagates spatial and temporal information through a State-Space model archi-
tecture (Temporal Mamba Blocks) to perform accurate, temporal aware seg-
mentation.

1.2 Transformers

Transformers are a class of neural architecture based on a self-attention mecha-
nism that have become the foundational blocks of modern deep learning models. Orig-
inally introduced for natural language processing [6], the transformer’s key idea is to
compute interactions between all positions of the input via learned attention weights,
enabling efficient modeling of long-range dependencies.
To understand why transformers were revolutionary, consider how humans read and un-
derstand text. When you read a sentence like ”The cat that was sitting on the couch
stood up” your brain does not process each word independently. Instead, you automat-
ically connect ”cat” with ”stood up” even though they’re separated by several words.
Traditional neural networks like RNNs [7] struggled with these long-range connections be-
cause they processed sequences step-by-step, making it difficult to maintain information
across long distances. The transformer’s key innovation is self-attention: a mechanism
that allows every position in the input to directly interact with every other position,
regardless of distance. The mathematical foundation of this idea is scaled dot-product
attention:
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Scaled dot-product attention Given queries Q ∈ RN×dk , keys K ∈ RN×dk and
values V ∈ RN×dv (where N is the number of tokens), the basic attention operation, as
shown in Figure 1.5, is

Attention(Q,K, V ) = softmax
(QK⊤
√
dk

)
V.

Intuitively, the attention mechanism works as follows:

1. Query-key matching: The model computes similarity scores (QKT ) between the
current word being processed (query) and all words in the sequence (keys);

2. Normalization: The softmax function converts these raw scores into attention
weights that sum to 1;

3. Value aggregation: These weights determine how much each word’s representa-
tion (values) contributes to the final encoding.

The scaling factor
√
dk prevents the dot products from becoming too large.

Figure 1.5: Scaled Dot-Product Attention.

Multi-head attention In order to allow the model to focus on different types of
relationships simultaneously, the transformer uses H parallel attention heads, as shown
in Figure 1.6:

MultiHead(Q,K, V ) = Concat(head1, . . . , headH)W
O,

where headi = Attention(QWQ
i , KW

K
i , V W

V
i ). Each head has its own linear projections

WQ,K,V
i .
The entire model architecture is presented in Figure 1.7
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Figure 1.6: Multi-Head Attention consists of several attention layers running in parallel.

Key advantages The transformer architecture offers several advantages over previous
sequence-to-sequence models:

� Parallelization: Unlike RNNs[7], all positions can be processed simultaneously
during training, leading to significant computational speedups.

� Long-range dependencies: The self-attention mechanism allows direct connec-
tions between any two positions in the sequence, regardless of their distance.

� Interpretability: Attention weights provide insights into which parts of the input
the model should focus on for each output.

These properties have made transformers the dominant architecture not only for
natural language processing tasks but also for computer vision (Vision Transformer) [8].
Particularly, due to their ability to efficiently handle long-range dependencies, the vast
majority of the models explored in this thesis will be Vision Transformer based models,
which adapts the transformer architecture to process images by treating image patches
as sequential tokens.
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Figure 1.7: The entire transformer model architecture [6], comprising the innovative attention
layer.
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Chapter 2

Dataset Analysis

This chapter provides a detailed description of the ovarian ultrasound dataset
used to train and evaluate the proposed methods. We begin by examining the most
common histological subtypes represented in the data and by highlighting the main
challenges in ovary segmentation. Next, we present a cross-validation strategy designed
to assess model generalization and improve robustness. Finally, we describe the prepro-
cessing steps applied to the data to mitigate overfitting.

2.1 Data Description

The dataset consists of transvaginal ultrasound (US) video sequences of the ovary,
privately collected by gynecologists.

The US videos comprising the dataset are distributed between 33 different histolog-
ical types. Figure 2.1 illustrates this distribution, highlighting the three most common
categories:

1. Serous Cystadenoma: Benign, smooth-walled, purely cystic lesions lacking solid
tissue.

2. High-Grade Serous Adenocarcinoma: Malignant epithelial tumors with mixed
cystic-solid or predominantly solid components, often exhibiting necrosis and hem-
orrhage. Due to the high presence of solid component those are the most challeng-
ing of the three to correctly classify.

3. Dermoid: Benign tumors containing both fluid and solid elements (e.g., hair,
keratin, calcifications).

The full dataset contains over 15,000 manually labeled frames, a representative frame
for each of these subtypes and its ground truth mask are shown in Figure 2.3. Our deep
learning models will be trained on the provided dataset to generate segmentation masks

11



12 2. Dataset Analysis

Figure 2.1: Counts of clinical cases divided by histological groups.

that closely match the ground-truth annotations, with the aim of developing an auto-
mated ultrasound segmentation tool. Particularly, each frame is segmented into three
pixel-wise classes: solid, non-solid and background, for better understanding the
classes see Figure 2.2. The solid class marks all echogenic mass tissue (i.e. the part of
the lesion that reflects ultrasound waves, therefore looking bright), the non-solid class
marks fluid or cystic regions (the ones appearing darker on ultrasound) and the back-
ground class includes all other structures outside the mass. This three-class definition
is motivated by the fact that the morphological features of an adnexal mass are a good
indicator of whether it can be considered as benign or malignant. In particular, the
IOTA Simple Rules demonstrate that a large solid component increases the likelihood
of malignancy, whereas unilocular cysts (single fluid chambers) or small solid components
(<7 mm) are highly predictive of benignity, as described in [11]. Initially the full dataset
is partitioned into training set (∼10,000 annotated frames) and and a test set (∼5,000
annotated frames). Analysis of the training masks distribution Figure 2.4 reveals:

� Non-solid presence in over 90% of frames.

� Solid presence in approximately 77% of frames.

� The most frequent mask combination is the one containing both solid and non-solid
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Figure 2.2: Illustration of the International Ovarian Tumor Analysis (IOTA) simple rules for
adnexal mass characterization [12]. The left column (B1-B5) shows benign features, includ-
ing unilocular cysts, small solid components (<7 mm), presence of acoustic shadows, smooth
multilocular tumors (<100 mm), and absence of blood flow (color score 1). The right column
(M1-M5) shows malignant features, including irregular solid tumors, presence of ascites, at
least four papillary structures, irregular multilocular solid tumors (>100 mm), and very strong
blood flow (color score 4).
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Figure 2.3: Representative ultrasound frames (top row) and corresponding ground-truth seg-
mentation masks (bottom row) for the three most frequent histological subtypes, solid regions
are coloured as red, non-solid regions as yellow. (a) Serous cystadenoma; (b) High-grade
serous adenocarcinoma; (c) Dermoid cyst.
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Figure 2.4: Distribution of mask-type combinations in the training set.

components, followed by only non-solid masks and, lastly frames with only solid
masks.

These statistics reflect the predominance of benign cystic features (serous cystadeno-
mas and dermoids) as explained before. Moreover, those results underline a moderate
class imbalance between solid and non-solid categories, as well as an imbalance among
histological cases. In the following sections, we will describe our dataset preparation
pipeline, starting with the preprocessing steps we will adopt, followed by cross-
validation during training, in order to address class imbalance, mitigate overfitting,
and enhance model robustness.

2.2 Data Augmentation

Data augmentation is an essential technique in deep learning, especially in a medical
imaging context where acquiring large and diverse datasets is challenging. By modifying
the training dataset through various transformations, data augmentation enhances the
model generalization, helps preventing overfitting and improves robustness of the model.

2.2.1 Classical Data Augmentation Techniques

Classical augmentations include geometric transformations (which move or crop the
image) and photometric transformations (that change pixel intensities). These oper-
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ations are a powerful tool for removing biases and simulating variability. Below are
described the standard data augmentation techniques applied to our training dataset,
following the official implementation of [13].

Random Cropping

Random cropping is a data augmentation technique that involves selecting a ran-
dom portion (crop) of the original image to use as a training sample for the model. In
practical terms, if the original image is I(x, y) of width W and height H, we choose a
random offset ∆x, ∆y, with 0 ≤ ∆x ≤ W − w, 0 ≤ ∆y ≤ H − h, and output the
cropped image:

I ′(u, v) = I(u+∆x, v +∆y), u = 0, . . . , w − 1, v = 0, . . . , h− 1,

where (w, h) is the crop size. Afterward the cropped image is resized back to the original
size. The idea is that by using different crops of the same image, the model is exposed
to various contexts and orientations of the object, improving its ability to recognize the
object regardless of its position or surrounding details.

Random Flipping

This technique mirrors the image along an axis. For example, a horizontal flip reflects
left to right: for an image of width W , the pixel at (x, y) is mapped to (W − 1− x, y),
so:

I ′(x, y) = I(W − 1− x, y).

A vertical flip inverts top to bottom:

I ′(x, y) = I(x,H − 1− y).

Random Rotation

This rotates the image by a random angle θ around its center (cx, cy). Each pixel
(x, y) is mapped to (

x′

y′

)
=

(
cx
cy

)
+

(
cos θ − sin θ
sin θ cos θ

)(
x− cx
y − cy

)
.

In other words, the image is multiplied by the 2D rotation matrix R(θ). Rotation
introduces orientation variance: the model sees objects at various angles, helping with
its generalization.
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Gamma Correction

This transformation is a nonlinear contrast adjustment defined as follows: given the
pixel values I(x, y) normalized to [0, 1], we draw Γ ∼ Uniform(γmin, γmax) (in our case
γmin = 0.7, γmax = 1.3) and then apply the the following transformation:

I ′(x, y) = 255×
(
I(x, y)

255

)Γ

.

When Γ < 1, dark regions are brightened, when Γ > 1 dark regions are darkened.

Gaussian Blur

Gaussian blur involves smoothing the image by convolution with a Gaussian kernel.
In particular a Gaussian blur with standard deviation σ computes

I ′(x, y) = (I ∗Gσ)(x, y) =
∑
u,v

I(u, v)
1

2πσ2
exp(−(x− u)2 + (y − v)2

2σ2
).

This replaces each pixel by a weighted average of its neighbors. Gaussian blur simulates
low-resolution imaging. In data augmentation, blurring can make models robust to slight
defocusing or noise variations.

Each of these classical augmentations preserves the class label while altering appearance.
By applying them randomly during training, the model effectively sees many versions of
each image. This diversity forces the network to learn invariant features (e.g. a lesion is
recognized regardless of its exact position, orientation, or brightness) and thus improves
generalization and robustness.

2.2.2 Fan Cropping

Clinical ultrasound frames are typically acquired in a fan-shaped (sector) field of
view: pixels outside this sector carry no anatomical information and can introduce noise
and waste computation. To focus the model on the relevant region, we apply a custom
fan cropping step that uses the known sector (fan beam) binary mask to extract only
the fan-shaped ROI from each frame.

Definition 2.2.1 (Fan Cropping). Let each original frame be I(x, y) defined on a rect-
angular grid Ω = {0, . . . ,W − 1} × {0, . . . , H − 1}. The binary fan mask is defined as
follows:

M(x, y) =

{
1, (x, y) ∈ Ωfan,

0, otherwise,
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where Ωfan ⊂ Ω is the set of pixels inside the fan beam. The fan-cropped image Ifan is
then

Ifan(x, y) = I(x, y)M(x, y),

which zeroes out all pixels outside the fan. Next, we compute the minimal axis-aligned
bounding box of Ωfan:

xmin = min{x | ∃ y : M(x, y) = 1}, xmax = max{x | ∃ y : M(x, y) = 1},

ymin = min{y | ∃x : M(x, y) = 1}, ymax = max{y | ∃x : M(x, y) = 1}.

We then crop Ifan to this bounding box:

Icrop(u, v) = Ifan(xmin + u, ymin + v), 0 ≤ u ≤ xmax − xmin, 0 ≤ v ≤ ymax − ymin.

Finally, Icrop is resized to the original dimensions via bilinear interpolation.

The goals of this preprocessing step are:

� Noise reduction: Eliminates irrelevant background and machine annotations
outside the fan, reducing noise.

� Computational savings: Cropping to the sector reduces the number of pixels
processed by the network, speeding up both training and inference.

� Focus on ROI: Ensures the model only sees anatomically meaningful data, im-
proving segmentation accuracy on the ovary.

In our pipeline, fan cropping is applied as a preprocessing step to both the frame and
the relative ground truth mask. It has been crucial in reducing background noises and
overall improving the model performance.

2.2.3 Max Numerosity

In our dataset, each clinical case corresponds to a video sequences of the same patient
of varying length (number of frames). Without constraint, cases with very long videos
would dominate the training set, potentially biasing the model and increasing compu-
tational cost. In Figure 2.5 is shown the distribution of frames per clinical case. To
mitigate this effect, we introduce a preprocessing step called max numerosity, which
limits the number of frames per case to a fixed upper bound Nmax.

Let a clinical case c consist of nc frames:

Fc = {Fc,1, Fc,2, . . . , Fc,nc}.
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Figure 2.5: Number of frames per clinical case.

We choose a parameter Nmax ∈ N. Then the selected subset of frames F̃c is defined as

F̃c =

Fc if nc ≤ Nmax,

{F
c, ⌊ k

Nmax−1
(nc−1)⌋+1

| k = 0, 1, . . . , Nmax − 1} if nc > Nmax.

In words:
� If the total frames nc does not exceed Nmax, we keep all frames.

� Otherwise, we equispatially sample Nmax frames by dividing the original sequence
into Nmax equal-length intervals and taking one representative frame from each.

The method is summarized in 1.
Thanks to the implementation of this preprocessing step we manage to obtain:

� Balance across cases: By capping at Nmax, no single patient contributes an
outsized number of frames, reducing bias toward longer videos.

� Computational efficiency: Limiting frames per case bounds memory and com-
pute requirements during training.
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Algorithm 1: Equispatial sampling of frames

Input: Sequence of frames {Fc,i}nc
i=1 and parameter Nmax.

Output: Sampled set F̃c of size min(nc, Nmax).
if nc ≤ Nmax then

F̃c ← Fc

end
else

initialize F̃c ← ∅
for k ← 0 to Nmax − 1 do

ik ←
⌊ k

Nmax − 1
(nc − 1)

⌋
+ 1

F̃c ← F̃c ∪ {Fc,ik}
end

end

return F̃c

� Temporal coverage: Equispaced sampling preserves coverage across the entire
scan, ensuring that early, middle, and late frames are all represented.

By cross-validation, which will be explain in the next section, we determined the optimal
value to be Nmax = 3, so each clinical case is represented by three frames. Introducing
this parameter proved critical for enhancing model performance as well as mitigating
bias and overfitting.
Another sampling possibility is dynamical sampling where, at every training epoch,
instead of taking the frames equispatially distant, we randomly sample Nmax frames from
the full sequence.

Equispatial sampling guarantees uniform coverage of the entire sequence, while dy-
namic sampling increases the number of frames explored in training at the cost of oc-
casionally selecting less informative frames. As we will show in Chapter 5, equispatial
sampling yields more stable and higher segmentation accuracy in our ultrasound data.

2.3 Stratified Cross-Validation

In order to solve some of the problems stated above, aCross-Validation technique is
applied to the train dataset. Cross-validation is a resampling procedure used to evaluate
a model’s ability to generalize to an independent dataset. In classical settings we would
use distinct datasets for training and validation. However, because annotated data are
scarce, a single validation split may be unrepresentative: by chance the model can appear
to perform very well or very poorly, and either outcome would not reliably reflect true
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model performance. Instead of holding out a single validation set, the data are split into
multiple subsets (folds), and the model is trained and validated repeatedly on different
train/validation splits. This process allows us to get a more reliable estimate of validation
performance, helps prevent overfitting, and leads to a better choices of the model’s
hyperparameters.

In particular:

� Robust performance estimation: By averaging results over multiple folds, we
obtain metrics that are less sensitive to the particular choice of a single train/validation
split.

� Overfitting prevention: Consistent performance across folds indicates that the
model is not simply memorizing training samples.

� Hyperparameter tuning: Cross-validation provides feedback on how different
model settings affect performance, leading to a more robust hyperparameters se-
lection.

� Helpful insights: The variance of metrics across folds highlights where the model
may struggle (for example, on rare lesion types).

To ensure reliable performance estimation and robust generalization across the di-
verse range of adnexal masses, a Stratified 5-fold cross-validation strategy has been
adopted on the training set. This approach partitions the dataset into five equally sized
subsets while preserving the distribution of the main attributes, such as histological type
and the presence of solid and non-solid components.

Furthermore, given the moderate class imbalance observed in the segmentation masks
(Figure 2.4), stratification is crucial, in order to avoid folds dominated by a particular
mask-type combination. In Figure 2.6 is shown the consistent distribution of solid and
non-solid masks per fold. To quantify this consistency, we compute an imbalance score,
defined as the sum of the absolute deviations between the proportion of solid and non-
solid masks in the training and validation sets of each fold. A lower score indicates better
balance. Without this approach, the model could have very high performance on certain
validation sets, while failing to generalize less represented subgroups, such as purely solid
lesions. Moreover, since each video sequence contains temporally correlated frames
we apply cross-validation at the video level, rather than at the frame level, to preserve
temporal information and also to prevent frames from the same ultrasound sequence to
appear simultaneously in training and validation splits.

2.3.1 Imbalance Score

The imbalance score is used for quantifying the consistency of the mask’s type
distribution, the lower the imbalance score is, the better the fold represents the original
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Figure 2.6: Distribution of frames and masks in the different folds.

dataset. Mathematically, the imbalance score for a fold is the sum of absolute deviations
of the train and validation mask ratios from the overall dataset ratios. Let:

� N = total number of frames

� S = total number of frames with solid components

� NS = total number of frames with non-solid components

� Ntrain, Nval = number of frames in train / validation split

� Strain, Sval = number of frames with solid components in train / validation split

� NStrain, NSval = number of frames with non-solid components in train / validation
split

Then we define the ratios as:

rsolid =
S

N
, rnonsolid =

NS

N

rtrainsolid =
Strain

Ntrain

, rvalsolid =
Sval

Nval

rtrainnonsolid =
NStrain

Ntrain

, rvalnonsolid =
NSval

Nval

Then the imbalance score is computed as:

ImbalanceScore =
∣∣rtrainsolid − rsolid

∣∣+∣∣rvalsolid − rsolid
∣∣+∣∣rtrainnonsolid − rnonsolid

∣∣+∣∣rvalnonsolid − rnonsolid
∣∣ .
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To summarize, the imbalance score quantifies how much the distribution of solid and
non-solid frames in the training and validation sets deviates from the overall dataset
distribution. A lower score indicates that the split preserves the global proportions more
faithfully, while a higher score highlights stronger deviations and thus a more imbalanced
partition. The introduction of the imbalance score is critical for constructing more
balanced folds.
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Chapter 3

Object Tracking

In this chapter, we formally define the Object Tracking problem and explore three
representative families of trackers: detection-based methods, optical flow-based models,
and spatio-temporal graphical models, and for each a state-of-the-art architecture will
be presented. We then focus on an optical flow-based tracker, RAFT, and its enhanced
variant SEA-RAFT, analyzing their design and innovations. Finally, we show how
to integrate SEA-RAFT on top of U-Net segmentation masks to produce temporally
coherent segmentation results.

3.1 Literature Review: Object Tracking

Object Tracking involves the estimation of object motion and state evolution across
temporal sequences, ensuring consistent object localization over time. The problem can
be formally define as the process of estimating the trajectory of one or more objects in
a video sequence, given their initial locations or characteristics. Despite this straight-
forward definition, the tracking problem extends far beyond simple position estimation,
in order to include a consistence object identity, the handling of appearance variations
and the management of complex interactions between multiple objects and their environ-
ment. In order to solve the lack of temporal complexity in the U-Net model described in
the previous chapter, we integrate a tracking stage on top of the frame-by-frame masks
with the aim to:

� Enforce temporal consistency;

� Suppress spurious flicker (eliminating rapid changes in object segmentation masks
between consecutive frames to preserve the original frames smoothness);

� Correctly propagate segmentation masks through occluded or low-contrast regions.

In this section we will review the three representative families of tracking methods that
are usually applied in the context of Object Tracking.
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3.1.1 Detection-based Tracking (SORT)

Simple Online and Real Time Tracking (SORT)[17] is one of the earliest ap-
proches for Object Tracking, it prioritizes computational efficiency and real-time perfor-
mance while maintaining competitive tracking accuracy. SORT employs a tracking-by-
detection structure, where object detection is performed independently on each frame
(a common object detector is YOLO [19]), followed by a data association step that links
detections across temporal sequences. SORT represents object states as

x = [u, v, s, r, u̇, v̇, ṡ]T ,

where (u, v) are the bounding box center coordinates, s is the scale, defined as the area
of the bounding box and r = w

h
is the aspect ratio, where w and h are the width and

height of the bounding box. By propagating (u, v, s) with a constant-velocity model
(and keeping r fixed, unless the object’s shape changes drastically), SORT’s Kalman
filter predicts where and how big each tracked object will be in the next frame, before
new detections are associated. A Kalman Filter[18] is a mathematical algorithm that
estimates the state of a dynamic system from a series of noisy measurements. This
procedure does not limit to an estimate of the object’s state (position, velocity) but also
measure how confident the model is in that estimate. In SORT, the Kalman filter works
as follows:

� Initial Step:The filter initializes a new track with the observed bounding box
parameters [u, v, s, r], and sets all velocity components to zero, creating the initial
state vector [u, v, s, r, 0, 0, 0, 0]. Velocity estimation occurs through the iterative
Kalman filter process as the object is tracked across subsequent frames.

� Prediction Step: For each frame predict where each tracked object should be
based on its previous position and estimated velocity.

� Update Step: After an association phase (via the Hungarian Algorithm[20]), for
each matched detection:

– Compute the difference between the predicted [u, v, s, r] and the detected
[udet, vdet, sdet, rdet].

– Calculate theKalman gain, which indicates how much to trust the prediction
versus the new measurement based on their uncertainties (for example, if the
prediction is uncertain and the measurement is reliable the Kalman gain will
be high and we will trust the measurement more).

– Adjust the state by moving partially from the prediction toward the detection,
weighted by the gain.

– Reduce the state covariance (it measures the uncertainty of the prediction)
because a real measurement has been preformed.
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SORT is widely used because of its computational efficiency and suitability for real-
time tracking applications. However, due to this simplicity, it has several limitations that
could affect its performance in challenging tracking tasks. For example, the linear motion
model, while computationally efficient, fails in representing complex motion patterns
such as sudden direction changes or object occlusions. Moreover, it has been proved
that SORT’s performance are highly dependent on the quality of the object detector,
which can undermine the robustness of the model.

3.1.2 Optical Flow based Model (FlowNet)

Optical Flow is a representation of the displacement field that maps pixels from
one frame to the corresponding pixel in the next frame, indicating how pixels move from
one frame to the next [21]. Optical flow estimation algorithms are responsible of com-
puting such map. Moreover flow estimation is crucial for object tracking applications,
as it provides motion information between consecutive frames, enabling the prediction
of object locations and the understanding of motion patterns. FlowNet represents an
important advancement in optical flow estimation, introducing the first end-to-end deep
learning approach to this problem, substituting the traditional optimization-based meth-
ods. FlowNet introduced two CNN-based architectural variants: FlowNetS(Simple)
and FlowNetC(Correlations), and they are both showned in Figure 3.1.

Figure 3.1: FlowNetS (top) and FlowNetC (bottom) architectures [21].

� FlowNetS: The FlowNetS architecture follows a straightforward encoder-decoder
design, where two consecutive frames are stacked together and fed into a contracting
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network (encoder) followed by an expanding network (decoder). Skip connections
between encoder and decoder layers are inserted to help preserved fine-grained
spatial information, essential for accurate flow estimation.

� FlowNetC: In FlowNetC a correlation layer has been added, in order to com-
pute features correlation between the two input frames (that will be processed si-
multaneously and not stacked as before), performing patch comparison between the
two feature maps. In details, given two multi-channel feature maps f1, f2 : R2 → Rc,
with w, h and c being their width, height and number of channels, the correlation
of two patches centered at x1 in the first map and x2 in the second map is defined
as:

c(x1,x2) =
∑

o∈[−k,k]×[−k,k]

⟨f1(x1 + o), f2(x2 + o)⟩

for a square patch of size K := 2k + 1. This explicit correlation computation
provides a more accurate flow estimation than the simple stacking approach used
in FlowNetS.

In conclusion, FlowNet provides a roboust, efficient, end-to-end learning model for optical
flow estimation, and modern tracking algorithm, like the one we will use for object
tracking (RAFT) are build upon FlowNet’s architecture.

3.1.3 Spatio-Temporal Graphical Model (CRFs)

Conditional Random Fields (CRFs) are a probabilistic framework for modeling
structured prediction problems. In particular, CRFs are suited for object tracking due
to their ability to model spatial and temporal consistency among subsequent frames
[22][23].

Definition 3.1.1. Let G = (V,E) be a graph such that Y = (Yv)v∈V so that Y is indexed
by the vertex of G. Then (X, Y ) is a conditional random field if, when conditioned
on X, the random variables Yv satisfy the Markov property with respect to the graph:

p(Yv|X, Yw, w ̸= v) = p(Yv|X, Yw, w ∼ v),

where w ∼ v means that w and v are neighbors in G.

In particular the CRF models the conditional probability:

P (Y |X) =
1

Z(X)
exp

(∑
i

θiϕi(Y,X)

)

where:
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� Z(X) is the partition function ensuring normalization;

� ϕi(Y,X) are feature functions that capture relationships between observations and
labels;

� θi are learned parameters weighting the importance of each feature function.

Usually CRFs are represented as factor graphs, where nodes represent random variables
and factors represent the relationships between them. In the context of object tracking
we will have:

� Unary Factors: Model the relationship between individual observation and object
states: ψi(yi, xi) = exp(θTi ϕ(yi, xi)). For example, in the context of object tracking
applied to segmentation masks, Unary factors will indicate how likely is a pixel to
belong to a particular class.

� Pairwise Factors: Model relationships between neighboring states ψij(yi, yj, xi) =
exp(θTijϕ(yi, yj, xi)). In our case, this terms will encourage neighboring pixels with
similar features (like color or intensity) to have the same label, enforcing spatial
smoothness.

� Higher-order Factors: Model complex interactions between multiple variables
ψC(yC , x) = exp(θTCϕ(yC , x)).

Modern tracking approaches use variants of CRFs, like Linear-Chain CRFs or Fully-
Connected CRFs[24], combining them with deep learning networks in order to obtain
robust, flexible and trainable models. However, CRFs-based architectures present some
drawbacks such as a high computational complexity for complex graph structures and
poor motion estimates (e.g., due to occlusion or low contrast) can propagate errors across
frames, resulting in an inaccurate prediction. Despite these challenges, CRFs remain a
powerful tool for Object Tracking tasks.

3.2 Recurrent All-Pairs Field Transforms

Recurrent All-Pairs Field Transforms (RAFT)[25] represents a significant ad-
vancement in optical flow estimation in order to address the fundamental limitations
of previous methods highlighted in the previous sections, such as high computational
complexity and challenges in correctly tracking occluded or fast-motion objects.

3.2.1 Model’s Architecture

RAFT architecture is shown in Figure 3.2. It consists of three main components:
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1. Feature Encoder: Extracts hierarchical feature representations from input frames.

2. Correlation Volume: Constructs and maintains a 4D correlation volume for
correspondence matching.

3. Update Operator: Iteratively refines flow estimates through a recurrent neural
network.

Figure 3.2: RAFT’s architecture build by: (1) a feature encoder and a context encoder, (2) a
correlation layer and (3) an update operator.

Feature Encoder

The feature encoder process both input frames I1, I2 through a shared convolutional
neural network to extract multi-scale feature representations. In particular, RAFT’s
feature encoder consists of 6 residual blocks, 2 at 1/2 resolution, 2 at 1/4 resolution and
2 at 1/8 resolution, where each level captures different aspects of visual information.
At last the encoder gθ outputs features at 1/8 resolution gθ : RH×W×3 → RH/8×W/8×D,
where D is set as 256. In addition to the feature network gθ, a context network hθ, that
has the same architecture of the feature network but only extracts feature from the first
frame, is used. This context network provides global information about the scene and
help resolve ambiguities in motion estimation.

4D Correlation Volume

The 4D Correlation Volume is the key innovation in RAFT that ensures efficient
all-pairs correlation computation. Given image features gθ(I1), gθ(I2) ∈ RH×W×D, the
correlation volume C is computed as the dot product between all pairs of feature vectors:

C(gθ(I1), gθ(I2)) ∈ RH×W×H×W , Cijkl =
∑
h

gθ(I1)ijh · gθ(I2)klh.
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Additionally, in order to efficiently handle both large and small displacements, RAFT
constructs a 4-layer correlation pyramid

{
C1,C2,C3,C4,

}
by pooling the last two

dimensions of the correlation volume with kernel sizes 1, 2, 4, and 8 and equivalent stride,
so that Ck ∈ RH×W×H/2k×W/2k . Lastly, RAFT introduces efficient lookup operations
to extract relevant information from the correlation volume:

L(C, f) = Bilinear(C, grid(f)),

where f represents the flow estimate (initially set at zero, later updated iteratively as
described in the next paragraph) and the lookup operation extracts correlation values
in a local neighborhood around the predicted correspondences. In particular, given a
current estimate of optical flow (f1, f2), each pixel x = (u, v) in I1 is mapped to its
estimated correspondence in I2: x′ = (u + f 1(u), v + f 2(v)), and the local grid around
x′ that we use to index from the correlation volume is defined as:

N(x′)r =
{
x′ + dx | dx ∈ Z2, ∥dx∥1 ≤ r

}
and since it is a grid of real number, bilinear sampling is used.

Iterative Updates

The update operator is implemented as a Gated Recurrent Unit (GRU) that
iteratively refines flow estimates:

Update Equation: ∆f, ht+1 = GRU(ht, xt),

where ht is the hidden state at iteration t, xt is the input consisting of correlation features,
flow features, and context features and ∆f is the flow update that is added to the current
estimate. Moreover, the update operator receives multiple type of information encoded
in xt:

� Correlation Features: Extracted from the correlation volume using lookup op-
erations.

� Flow Features: Encoded representation of the current flow estimate.

� Context Features: Global scene information from the context network.

During this step a process of Iterative Refinement is performed, where we start with
an initial flow estimate (usually zero) and then we apply the update operator multiple
times, with the aim of producing a refined flow estimate. Lastly an upsampling procedure
is performed in order to match the initial size.
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Loss Function

RAFT is trained using a sequence loss that supervises intermediate flow estimates
with exponentially increasing weights:

L =
N∑
i=1

γN−i ∥fgt − fi∥1 ,

where:

� fi is the flow estimate at iteration i;

� fgt is the ground truth flow;

� γ is a discount factor (set at 0.8);

� N is the number of iterations.

Observation 3.2.1. The loss function is used only during training to learn the GRU
parameters. During both training and inference, flow estimates are generated through the
iterative GRU update mechanism described above. The loss does not directly compute flow
updates, as it trains the network to produce better flow updates through backpropagation.

Advantages and Limitations of RAFT

RAFT brings several advantages over previous optical flow methods (such as FlowNet):

� Dense All-Pairs Correlation: By computing a full 4D correlation volume,
RAFT captures fine-grained correspondences across the entire image, enabling ac-
curate estimation even for small or fast-moving structures.

� Iterative Refinement: The recurrent update operator refines the flow estimate
over multiple iterations, improving robustness to noise and occlusions and converg-
ing to a precise solution.

� High Accuracy on Benchmarks: RAFT has been shown to achieve state-of-
the-art performance on popular optical flow datasets (e.g., Sintel, KITTI), demon-
strating its reliability across diverse scenarios.

Limitations
Despite its strengths, RAFT has some drawbacks:

� Computational and Memory Cost: The construction and storage of the 4D
correlation volume demand significant GPUmemory, challenging for high-resolution
inputs.
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� Low Inference Speed: Iterative updates, while improving accuracy, increase
inference time.

Overall, RAFT is an excellent choice for optical flow refinement and RAFT’s archi-
tecture serves as a building block for more advanced flow methods designed to overcome
its limitations, such as SEA-RAFT, which we introduce in the next section to address
memory, speed, and robustness challenges in ultrasound imaging.

3.2.2 Simple Efficient Accurate RAFT

Simple Efficient Accurate RAFT (SEA-RAFT)[27] builds upon the original
RAFT architecture introduced in the chapter before, improving the computational and
accuracy limitations discussed above. While SEA-RAFT maintains the three-component
architecture of RAFT (feature encoder, correlation volume, and update operator), it
introduces several key modifications:

1. Mixture of Laplace Loss Function: Replaces the traditional RAFT L1 loss
with a more robust loss function that better handles outliers and provides improved
training stability.

2. Direct Initial Flow Regression: Instead of starting with zero initialization,
SEA-RAFT directly regresses an initial flow estimate, significantly reducing the
number of iterations required for convergence.

3. Rigid-Flow Pre-training: Incorporates a specialized pre-training strategy that
improves generalization across different domains and datasets.

Mixture of Laplace Loss

SEA-RAFT replaces the standard L1 sequence loss with a Mixture of Laplace
(MoL) loss, which models the prediction error at each iteration as a weighted sum of
Laplace distributions. This gives the network the flexibility to handle both frequent
small errors as well as occasional large errors without letting the outliers dominate the
loss. For each pixel (u, v), the mixture is defined as:

MixLap
(
x; α, β1, β2, µ

)
= α

exp
(
−|x− µ|/eβ1

)
2 eβ1

+ (1− α)
exp
(
−|x− µ|/eβ2

)
2 eβ2

,

Particularly,

� The first component α
exp
(
−|x−µ|/eβ1

)
2 eβ1

is responsible for modeling frequent small
errors;
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� The second component (1−α) exp
(
−|x−µ|/eβ2

)
2 eβ2

is responsible for handling occasional
large outliers without overwhelming the loss.

We have:

� α(u, v) ∈ [0, 1] is the mixing coefficient at each pixel that determinate the relative
importance of each component;

� β1(u, v) and β2(u, v) are the log-scales of the two components;

� µ(u, v, d) = fi(u, v, d) is the predicted flow at iteration i.

To explicitly encourage one component to behave like the standard L1 loss, β1 is fixed at
zero (so that eβ1 = 1), making the first component equivalent to the standard L1 loss.
The complete MoL loss is formulated as the discounted negative log-likelihood over all
pixels, flow components, and refinement iterations:

LMoL = − 1

2HW

N∑
i=1

γ N−i
∑
u,v

∑
d∈{x,y}

log
[
MixLap

(
fgt(u, v, d); α(u, v), 0, β2(u, v), fi(u, v, d)

)]
,

where

� γ ∈ (0, 1) is the iteration discount factor;

� H,W are the frame height and width;

� N is the total number of refinement iterations:

� {α, β2} are predicted by small auxiliary heads in the network.

In particular, a high α value indicates high confidence in the prediction, giving more
weight to the L1 component. On the other hand, a lower α allows the model to predicts
challenging regions (e.g. occlusions) by relying more on the second component, without
overwhelming the loss.

Initial Flow Regression

Unlike RAFT, which initializes flow estimates to zero, SEA-RAFT includes a direct
flow regression network (via multiple CNNs [26]) that predicts an initial flow estimate
f0 from the context encoder, given both frames as input. This initial flow estimate leads
to faster convergence and reduces computational costs, as fewer iterations are needed to
reach convergence.
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Rigid-Flow Pre-training Stratetgy

SEA-RAFT introduces a pre-training phase using rigid-motion transformations
on the dataset TartanAir [28]. During this phase, the model learns to estimate optical
flow for scenes undergoing rigid transformations (rotations, translations, and scaling).
This pre-training strategy leads to a better model’s generalization.

Overall, SEA-RAFT maintains the main RAFT’s strengths, while addressing several
limitations:

� Improved Convergence Speed: Direct initial flow regression reduces required
iterations.

� Enhanced Training Stability: Mixture of Laplace loss provides more stable
training.

� Better Generalization: Rigid-flow pre-training improves performance across dif-
ferent domains.

SEA-RAFT represents a significant step forward in optical flow estimation, combining
the proven architecture of RAFT with innovative improvements that address its key
limitations. Its enhanced accuracy, efficiency, and robustness makes it an excellent choice
for our post-processing pipeline in medical image tracking. In the next section, we
will explore how we leverage SEA-RAFT to warp and fuse U-Net segmentation masks,
achieving temporally coherent ovary segmentation masks.

3.2.3 Mask Refinement with SEA-RAFT

To enforce temporal consistency in segmentation masks, we apply SEA-RAFT, to
predict the optical flow between a pair of adjacent frames, performing a post-processing
step on top of frame-by-frame U-Net predictions. The pipeline involves the following
stages:

1. Frame-by-frame Segmentation: Each frame It is passed through the U-Net
model described earlier to obtain an initial segmentation maskMU-Net

t ∈ [0, 1]H×W×C ,
that does not take into account temporal consistency.

2. Optical Flow Estimation: For consecutive frames (It−1, It), temporal informa-
tion is encoded in the optical flow predicted by SEA-RAFT: Ft−1→t ∈ RH×W×2,
mapping each pixel in frame t− 1 to its corresponding location in frame t.

3. Mask Warping: The previous mask MU-Net
t−1 ∈ [0, 1]H×W×C is spatially trans-

formed using Ft−1→t to obtain the next frame mask prediction:

Mwarp
t (x, y) =MU-Net

t−1 (x− u, y − v), (u, v) = Ft−1→t(x, y)



36 3. Object Tracking

with bilinear interpolation.

4. Final segmentation mask: The final segmentation mask is computed as a
weighted average of the U-Net prediction and the warped segmentation mask from
the previous step:

Mfinal
t = αMU-Net

t + (1− α)Mwarp
t ,

where α is set as 0.5 in order to ensure equal contribution from both segmentation
masks.

This tracking approach provides a solid method for encoding temporal information
while maintaining the performance derived from U-Net segmentation. However, as we
will show in Chapter 5, the results do not improve upon those obtained with U-Net
alone. This limitation can be attributed to several factors. First, this method relies
entirely on U-Net segmentation and cannot recover objects that are completely missed
by the initial segmentation. Second, due to the lack of optical flow datasets for ovarian
ultrasound images, SEA-RAFT has not been trained specifically for this domain, which
presents particularly complex and challenging images.
Given these limitations, we introduce an alternative approach to address temporal con-
sistency among frames in the next chapter: end-to-end Video Object Segmentation
models, which aims to provide a more robust method at the cost of an increased model
complexity.



Chapter 4

Video Object Segmentation

Video Object Segmentation (VOS) is the task of generating accurate, temporally
coherent masks for one or more objects throughout an entire video sequence. Unlike
frame-by-frame segmentation approaches, which ignore motion and can produce temporal
inconsistent predictions, VOS methods integrate spatial appearance cues with temporal
context, leveraging mechanisms such as memory banks, attention, and state-space models
to propagate object identity over time.

In the medical domain, and particularly for ovarian ultrasound videos, VOS faces ad-
ditional challenges: low contrast and noise, rapid probe motion causing large inter-frame
displacements, and boundary details critical for diagnosis. General-purpose VOS archi-
tectures (e.g. STM, AOT, CUTIE) provide foundational techniques but often struggle to
balance long-range modeling, boundary precision, and computational efficiency in this
setting [41][35][39].

In this chapter, we first review three representative VOS architectures:

� Space-Time Memory Networks (STM), which store past frames and masks
in a differentiable memory bank.

� Associating Objects with Transformers (AOT), which introduces an identity
bank and hierarchical attention to handle multiple targets.

� CUTIE, which define an object transformer for better propagation over time.

We then motivate and introduce two methods suited for medical domain:

� Med-SAM2, which augments SAM2 with a self-sorting memory bank and prompt-
ing strategy to focus on the most informative frames.

� ViViM, which employs State-Space Models to capture long-range dependency and
a boundary-aware affine constraint to sharpen edges.

37
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Finally, we describe the training and inference pipelines for each model, including opti-
mizers, loss functions and prompting strategy, and we describe the segmentation metrics
that we will use to measure the performance of our models in Chapter 5.

4.1 Literature Review: Video Object Segmentation

Video Object Segmentation (VOS) aims to produce temporally coherent masks
that delineate and track one or more target objects across an entire video sequence,
preserving object identity and boundary precision over time. Unlike the two stages U-
Net + tracker approach, where segmentation and temporal smoothing are separated,
end-to-end VOS architectures embed temporal reasoning directly within the network,
often through a learnable memory bank or attention mechanism that store relevant
features from past frames.

Intuitively, this joint formulation is more robust: in a post-processing tracker, mask
warping relies entirely on the quality of the U-Net predictions (e.g. if the U-Net fails to
detect an object in one frame, the tracker can only propagate that error). By contrast,
end-to-end VOS models learn to correct those errors leveraging temporal information.
In this section, we review three state-of-the-art VOS methods by exploring their archi-
tectures, strengths, and limitations, before presenting the two approaches we use in our
experiments: MED-SAM2 and ViViM.

4.1.1 Space-Time Memory Networks

Space-TimeMemory Networks (STM)[29] introduced the now popularmemory-
based architecture that maintains temporal consistency through the storage and re-
trieval of past frame information. STM architecture, as shown in Figure 4.1, consists of
four main components:

1. Memory Encoder: Given T reference frames in the model’s memory {IMt }Tt=1

and their ground-truth masks {GM
t }Tt=1, the memory encoder EM produces a pair

of 3D key and value maps:

KM ∈ RT×H′×W ′×Ck , V M ∈ RT×H′×W ′×Cv ,

where for each t, (KM
t , V

M
t ) = EM

(
IMt , G

M
t

)
.

2. Query Encoder: For the current (query) frame IQ, the query encoder EQ pro-
duces a pair of 2D key and value maps:

KQ ∈ RH′×W ′×Ck , V Q ∈ RH′×W ′×Cv , (KQ, V Q) = EQ(IQ).
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Figure 4.1: STM network consists of two encoders, one for the memory frames, the other for
the query frame, along a space-time memory read block and a decoder.

3. Space-time Memory Read: At each query location i, we compute similarities
f(kQi , k

M
j ) of the query key against every key in the memory location j (which

encodes both past frames and their segmentation masks), where kQi represents the
key vector at a single location i within the 2D key map KQ and kQi has dimension-
ality Ck (the key channel dimension). Those similarity scores become weights in a
weighted sum of the corresponding memory values (effectively we will end up with
a vector containing information about every pixel in all relevant past frames):

yi =
[
vQi ,

1
Zi

∑
∀j

f(kQi , k
M
j ) vMj

]
, Zi =

∑
∀j

f(kQi , k
M
j ),

where the similarity function is defined as:

f(kQi , k
M
j ) = exp

(
kQi ·kMj

)
.

Here:

� kQi is the key at query spatial location i.

� kMj and vMj are the key and value at memory location j.

� [·, ·] denotes concatenation of the retrieved memory embedding with the query
value vQi .

This step aggregates information from all past frames before passing the result into
the decoder.

4. Segmentation Decoder: Finally, the decoder takes the output of the read oper-
ation and reconstructs the query frame’s segmentation mask M̂Q via convolutional
layers.
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Memory Update

After predicting the segmentation mask M̂Q for the query frame, we can append

(IQ, M̂Q) to the memory bank, potentially discarding the oldest entry to keep the memory
bank size T fixed.

Strengths and Limitations

� Strengths: Long-term consistency due to the direct access to T past frames as
well as robustness and capacity to handle occlusions.

� Limitations: The main drawback is that computational memory grows with the
number T of stored past frames, in particular spatio-temporal attention over T ×
H ′ ×W ′ can be computationally expensive.

By explicitly learning to read from a space-time memory, STM successfully inte-
grates spatial information with temporal context, in order to create a solid end-to-end
VOS model. Over the years several extensions of the basic STM architecture have been
proposed, one notable example is the AOT model, which we introduce in the next
section.

4.1.2 Associating Objects with Transformers

Associating Objects with Transformers (AOT)[30] is the second video segmen-
tation architecture we will explore, that tackles the problem by introducing an innovative
identification mechanism that enables efficient tracking and segmentation of multiple
objects simultaneously. Building upon STM, AOT addresses some of its limitations dis-
cussed above by creating a more efficient model focused on multi-object scenarios, by
introducing two key innovations, as shown in Figure 4.2:

1. Identification Mechanism for Multi-Object Association: AOT proposes an
identification system consisting of identification embedding and identification de-
coding components, in order to keep track of different objects along subsequent
frames. The system maintains an identity bank D ∈ RM×C containing M identifi-
cation vectors with C dimensions. For N target objects (N < M) in a video, each
target is randomly assigned a different identification vector through a permutation
matrix P ∈ {0, 1}N×M :

E = ID(Y,D) = Y PD,

where Y ∈ {0, 1}T×H×W×N represents the one-hot masks of targets, and E ∈
RT×H×W×C is the resulting identification embedding. This step ensures that every
object in the frame has its own unique ID, allowing multi-object tracking among
frames.
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Figure 4.2: (a) Overview of AOT architecture. (b)Illustration of how the Identity Mechanism
works. (c)The structure of the LSTT block (LN is a layer normalization module).

2. Long Short-Term Transformer (LSTT): Unlike traditional single-layer atten-
tion mechanisms, AOT employs a hierarchical transformer architecture with three
distinct attention modules:

� Self-Attention: Learns associations among targets within the current frame

� Long-Term Attention: Aggregates information from distant memory frames
using non-local attention:

AttLT (X t
l , X

m
l , Y

m) = AttID(X t
lW

K
l , X

m
l W

K
l , X

m
l W

V
l , Y

mD)

� Short-Term Attention: Handles nearby frames within spatial-temporal
neighborhoods for temporal smoothness:

AttST (X t
l,p, X

n
l,N (p), Y

n
l,N (p)) = AttLT (X t

l,p, X
n
l,N (p), Y

n
l,N (p))

where X t
l denotes input features at time t and block l, N (p) represents a spatial

neighborhood centered at location p, X t
l,p is the feature of X t

l at location p and
WK

l ,W
V
l are projection parameters. Those attention layers ensure that we consider

both short and long term information among frames.

3. Multi-Object Decoding: The identification decoding predicts:

Ŷ = softmax(PLD),

where LD ∈ RH×W×M contains probability logits for all M identities, P is the
same permutation matrix used in identification embedding and Ŷ is the probability
prediction of all the N targets. Finally, the predicted mask for each target is
obtained by taking the argmax operation across the identity dimension: M̂ =
argmax(Ŷ , dim =M), which assigns each pixel to the most probable target identity,
resulting in the final segmentation mask.
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Strengths and Limitations

� Strengths: AOT provides an efficient handling of a variable numbers of target
objects, performing robust multi-object association through identification mecha-
nism. Moreover the hierarchical attention enables both long-term consistency and
short-term smoothness.

� Limitations: Due to the multiple attention layers in LSTT blocks, AOT presents
a computational overhead compared to the STM model introduced in the previous
section. Additionally, AOT’s identification mechanism is challenged by scenarios
with very similar object appearances.

Although AOT was thought for multi-object scenarios, it is still a relevant state-of-
the-art method and its architectural innovations (e.g. the hierarchical attention struc-
ture) could be a solid choice in single-object segmentation as well [30].

4.1.3 Putting the Object Back into Video Object Segmentation

Building on the pixel-level memory introduced in the two previous architectures,
STM and AOT, CUTIE[31] introduces an object-level memory reading which aims at
propagating the full object through time, instead of single pixels. CUTIE architecture
is presented in Figure 4.3.

Figure 4.3: Overview of the CUTIE architecture, highlighting the novel object transformer with
enrich the pixel feature with object-level semantics to produce a more accurate segmentation
mask.
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Given a query frame with encoded features q ∈ RHW×C and memory features k ∈
RTHW×C , traditional pixel-level methods compute attention weights:

Apix
ij =

exp(d(qi, kj))∑
m exp(d(qi, km))

where d(·, ·) represents a distance function. Critically this approach alone lacks high-
level consistency as each pixel qi is matched independently, and can cause a drop in
segmentation accuracy, especially in a scenario where the object is occluded for multiple
frames and it reappears later on.

Object Transformer

CUTIE’s architecture centers on an object transformer that employs a small set of
learnable object queries X ∈ RN×C to facilitate top-down object-level reasoning. The
system maintains two distinct memory components:

1. Pixel Memory: F ∈ RT×H×W×C storing high-resolution spatial features.

2. Object Memory: S ∈ RN×C storing compact object representations.

The object transformer operates through L transformer blocks, where each block l per-
forms bidirectional updates:

X l, Rl = TransformerBlockl(X
l−1, Rl−1, S),

with initial conditions X0 = X + S and R0 obtained from pixel memory readout.
The core innovation of CUTIE lies in the masked cross-attention mechanism. Stan-
dard cross-attention computes:

X ′
l = softmax(QlK

T
l )Vl +Xl

where Ql, Kl, Vl are linear transformations of queries and features. CUTIE introduces a
masking matrix Ml ∈ {0,−∞}N×HW to enforce semantic separation:

X ′
l = softmax(Ml +QlK

T
l )Vl +Xl.

The masking function is defined as:

Ml(q, i) =


0 ifq ≤ N/2 and M̂l(i) ≥ 0.5

0 if q > N/2 and M̂l(i) < 0.5

−∞ otherwise

where M̂l(i) = σ(flinear(Rl−1(i))) is a learned mask prediction. Specifically Ml(q, i)
determines whether the q-th query is allowed (= 0) or not(= −∞) to attend to the i-th
pixel.
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Object Memory Construction

The object memory S ∈ RN×C is constructed through weighted pooling operations.
Given object features U ∈ RTHW×C and N pooling masks {Wq ∈ [0, 1]THW : 0 < q ≤ N},
the q-th object memory vector is:

Sq =

∑THW
i=1 U(i)Wq(i)∑THW

i=1 Wq(i)

The pooling weights incorporate foreground-background separation:

Wq(i) =


0 if q ≤ N/2 and M(i) < 0.5

0 if q > N/2 and M(i) ≥ 0.5

σ(fPoolWeight(F (i) +Rsin(i))) otherwise

where σ is the sigmoid function, fPoolWeight is a 2-layer, N -dimensional MLP and Rsin

represents 2D sinusoidal positional embeddings.

Positional Embeddings

The method employs positional embeddings to enable location-aware attention:

� Object Query Embeddings:

PX = EX + fObjEmbed(S),

where EX ∈ RN×C is learnable and fObjEmbed is a linear projection.

� Pixel Feature Embeddings:

PR = Rsin + fPixEmbed(R0),

combining fixed sinusoidal embeddings with learned projections of initial readouts.

Strengths and Limitations

� Strenghts: The introduction of an Object Transformer and an Object Memory,
along the classical Pixel Memory, allows CUTIE to produce more accurate segmen-
tation masks and improve its robustness to the noise and occlusions [31].

� Limitations: CUTIE requires a segmentation mask for the first frame (One-
shot VOS), which is problematic especially in inference settings. Additionally the
method may struggle with sudden and significant appearance variation, that could
be encountered in our dataset.
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Overall, the three presented methods provide a solid choice for video object segmen-
tation, however, considering the complexity of ultrasound videos, in order to perform
accurate segmentation we will need specific architectures that focuses on medical data.
For this reason we will introduce the two methods, Med-SAM2 and ViViM, that will be
used for evaluation.

4.2 Med-SAM2: Medical Segment Anything Model

2

Ultrasound video analysis presents unique challenges that distinguish it from both
natural video processing and static medical image segmentation. Unlike natural videos
where objects maintain consistent appearance and motion patterns, ultrasound imaging
involves probe movement, varying imaging angles, and anatomical structures that can
appear and disappear as they move in and out of the frames [41]. Traditional video
object segmentation methods like STM, AOT and CUTIE, while effective for natural
scenes, struggle with the noise, low contrast, and temporal inconsistencies characteristic
of ultrasound videos. In this section we will introduce Med-SAM2 a transformer-based
promptable end-to-end Video Object Segmentation model that addresses the challenges
of medical VOS. Unlike the previously discussed methods, Med-SAM2 introduces a fun-
damentally different approach to temporal memory management, recognizing that in
medical imaging, frame quality and relevance matter more than temporal proximity.
In the following section we will start by describing SAM2, and then we will introduce
Med-SAM2 along with training details.

4.2.1 Segment Anything Model 2

Segment Anything Model 2 (SAM2)[33] is an extension of the original Seg-
ment Anything Model [32], originally developed for promptable image segmentation,
to promptable video (multi-)object segmentation. As we have seen in the three VOS
methods presented before, the challenge in working with videos instead of images is
overcome by the introduction of temporal awareness into the model, usually done by
means of a memory bank, that stores past frames information, in order to obtain a
spatio-temporal mask, called masklet. The main innovation with respect to the method
above is the introduction of prompts, represented under the form of points, bounding
boxes or segmentation masks of past frames, which are passed as input to the model
in order to define a region of interest in which the model focuses its prediction. The
notion of prompts is first introduced in SAM for single image segmentation, and it’s
naturally extended for the VOS task in the sense that the prompts are still passed on
single frames, but those prompts are propagated during the segmentation to subsequent
frames; prompts can also be passed during the segmentation to any frame.



46 4. Video Object Segmentation

Figure 4.4: SAM2 architecture, depicting the new memory components to add temporal com-
plexity to the model.

Architecturally SAM2 extend SAM to videos as shown in Figure 4.4, it is formed by
6 components:

� Image Encoder: Responsible for producing frame-by-frame feature embedding.

� Memory Attention: It conditions the current frame features on the past frames
features, predictions and prompts.

� Prompt Encoder: Responsible for prompts embedding. Input prompts are di-
vided in sparse prompt (points, bounding boxes) and dense prompts (masks).

� Mask Decoder: The mask decoder maps the image embedding, prompt embed-
dings, and an output token to a mask, producing the final output.

� Memory Encoder: It uses image embeddings from the image encoder with pre-
dicted mask information to produce memory features that are stored in the memory
bank and propagated to subsequent frames for temporal-aware segmentation.

� Memory Bank: Responsible for maintaining information about past predictions,
as well as past prompts.

We describe each component in detail below.

Image Encoder

The Image Encoder takes as input single frames (in a streaming approach) and
its role is to provide feature embedding representing each frame. The encoder is built
upon the Hiera architecture, a hierarchical Vision Transformer that has been pretrained
using a Masked Autoencoder (MAE) [34]. This MAE pretraining strategy follows a
self-supervised learning paradigm where random patches of input images are masked
(typically up to 75% of all patches) and the model learns to reconstruct the missing
pixels, this approach force the model to improve its generalization and robustness.
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Memory Attention

This is the core component in order to define a temporal-aware model. The Mem-
ory Attention layer is responsible for conditioning the current frame’s features on past
frame’s features (store in a memory bank) and new and past prompts. L transformer
blocks are stacked, each one of them performs self-attention on the current frame (cap-
turing long-range dependencies and contextual information), followed by cross-attention
that considers past frames and prompts, followed by a Multi-Layer Perceptron (MLP).

Prompt Encoder

The prompt encoder in SAM2 is designed to handle different types of user input
prompts (points, bounding boxes and masks) and convert them into a consistent 256-
dimensional embedding format that the model can work with.

� Point Prompts: Each point gets converted into a R256 vector by combining two
components:

1. A positional encoding that captures where the point is located in the image.

2. A learned embedding that indicates whether this point represents foreground
(object we want to segment) or background (what we don’t want).

� Box Prompts: A bounding box is represent as a pair of embeddings for its two
corner points (top-left and botton-right), using the same logic described before.

� Mask Prompts: When a segmentation mask is provided as a prompt, we are
interest in maintaining spatial correspondence with the image through convolu-
tional processing. This process is done by progressive downsampling the input
mask through various convolutional layers with different stride, in order to allow
the model to learn hierarchical features at different scales, and GELU activations
and layer normalization between each convolution.

Moreover, an occlusion head is also introduce in the model that predicts whether the
object of interest is present in the current frame.

Mask Decoder

The mask decoder is a Transformer-based architecture that combines image and
prompt information to generate a segmentation mask, the decoder structure is shown in
Figure 4.5.

Due to the fact that a single input prompt may be ambiguous in the sense that it could
lead to multiple valid masks, a modification to the model structure is necessary to resolve
this ambiguity. The problem is eliminated by predicting multiple masks simultaneously
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Figure 4.5: Mask decoder architecture. The design largely follows SAM, but the model also
uses the mask token corresponding to the output mask as an object pointer and generate an
occlusion score which indicates if the object of interest is visible in the current frame or not.

instead of predicting a single mask. If no subsequent prompts resolve this ambiguity, the
model only propagates the mask with the highest predicted IoU for the current frame.

Memory Encoder

The memory encoder uses the image embeddings produced by the image encoder
and it fuses them with the predicted mask information in order to produce memory
features that will be stored in the memory bank and propagated to subsequent frames,
to provide temporal-aware segmentation.

Memory Bank

SAM2’s memory bank is similar to the ones of the models described before, it uses
a First In First Out (FIFO) queue of memories of a fixed number of past frames and
prompts, in order to retain information about past predictions and past prompts. As
we will see, SAM2’s memory bank is not optimal to work with US videos, and more in
general with medical data. To solve those issues a new memory bank is constructed in
Med-SAM2, which we will describe in the next section.

4.2.2 Med-SAM2 architecture

As seen above, in SAM2’s original design, the system maintains a FIFO queue of
memories to predict each frame [33]. This works well for natural videos where temporal
order often correlates with relevance, due to the fact that recent frames are typically
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most similar to the current frame. However, medical images present unique challenges
that make temporal order less meaningful. In medical ultrasound, where anatomy may
move in and out of view or change appearance, we do not always want to keep just
the previous frames, but we may want to preserve those frames where the lesion or
organ boundary was clearest, rather than simply the most recent frames. Due to those
considerations, we introduce a variant of SAM2, Medical SAM2 (Med-SAM2)[35]
that employs a self-sorting memory bank that dynamically selects informative frames
embedding based on confidence and dissimilarity, regardless of temporal order, discarding
low quality frames and keeping the frames that are most likely to help future predictions.
Med-SAM2 architecture, including the new self sorting memory bank is represented in
Figure 4.6, where all the other model’s components are the same as in SAM2.

Figure 4.6: Med-SAM2 architecture largely follows SAM2, with the exception of the introduc-
tion of a self-sorting memory bank that maintains the most relevant past frames.

Self-Sorting Memory Bank

In this paragraph we describe more in depth Med-SAM2 self-sorting memory bank.
LetX = {xt}Tt=1 be the input sequence of frames, and P = {Pt}Tt=1 the optional prompts,

then the model predicts Y = {yt}
T
t=1 segmentation masks for each frame xt. After going

through the image encoder ϵimg, each frame outputs a feature embedding Et = ϵimg(xt).
The same process is extended to prompts, where we will get a prompt embedding Qt =
ϵprompt(Pt). We now introduce Med-SAM2 self-sorting memory bank M sort

t that
dynamically selects and retains the most informative embedding from past frames Ei.

Updating the Memory Bank

At each time step t M sort
t is updated based on M sort

t−1 and the embedding Et−1 of the
previous frame. First the model predicts the segmentation mask yt−1 and computes the
IoU confidence score ct−1 for frame t − 1, such confidence score represents the model’s
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own estimate of how good its segmentation mask yt−1 for frame t− 1 is. We then apply
a quality filter ct−1 ≥ cthresh, so that only good enough predictions are stored in the
memory bank. If the confidence score ct−1 satisfies the quality filter, then we form a
candidate set C =M sort

t−1 ∪{Et−1}. As we want to maintain diversity among the memory
bank’s frames we compute the total dissimilarity for each embedding inside the candidate
set:

Di =
∑
Ej∈C
j ̸=i

1− sim(Ei,Ej), ∀Ei ∈ C

where sim(·, ·) is a similarity function. The top K embeddings with the highest total
dissimilarity are selected to form the updated memory bank:

M sort
t = TopKEi∈C(Di),

where K is the size of the memory bank. This process guarantees that the memory bank
contains the most relevant and diverse embedding. If the quality filter is not met, the
memory bank is kept unchanged M sort

t =M sort
t−1 .

Resampling the Memory Bank

Before computing the attention for frame t, higher selection probabilities are assigned
to embeddings that are similar to the current one Et, in order to emphasize those during
the attention operation. First we compute for the current frame Et how similar it is
to each stored embeddings Ei in the memory bank. The similarity scores are then
normalized to create a probability distribution pi,t:

pi,t =
sim(Et,Ei)∑

Ej∈Msort
t

sim(Et,Ej)
, ∀Ei ∈M sort

t .

Using this probability distribution, we perform resampling with replacement to create
the importance weighted memory bank M̃ sort

t :

M̃ sort
t =

{
Eik | ik ∼ Categorical

(
{pi,t}), k = 1, . . . , K

}
.

This step is performed to ensure that the memory bank dynamically adapts to empha-
size the most relevant past embeddings for the current segmentation task. By performing
sampling with replacement similar embeddings to the current one get amplified in the
sense that they appear multiple times, and they will have more influence in the atten-
tion mechanism that is performed after, while very dissimilar frames will not be consider
during segmentation.



4.2. Med-SAM2: Medical Segment Anything Model 2 51

4.2.3 Training And Inference

In this section we detail the training framework and inference pipeline for Med-SAM2
on our ovarian ultrasound video dataset, focusing in detail to the loss function used and
the prompting strategy adopted.
Following the concepts introduced in Chapter 2, we train the model, starting from
SAM2’s pre-trained weights [33], with a 5-fold cross validation, where the training set is
split into five stratified folds preserving the distribution of histological types and mask
combinations. We tuned the model’s hyperparameters by training on four folds and
validating on the hold-out fold, rotating for three different hold-out folds, effectively
performing three different trainings. Lastly, with optimal hyperparameters fixed, Med-
SAM2 is retrained on the entire training set (all five folds combined) for the final model
weights, maximizing data utilization. Beforehand, all the data is preprocessed with the
same steps described in Chapter 2.

Optimizer and Scheduler

We trained our model with AdamW optimizer using weight decay, while the learning
rate η follows a OneCycleLR scheduler over each epoch:

η(t) ramps from ηmin to ηmax and back.

This cyclic schedule accelerates convergence (high learning rate helps escape local min-
ima) and avoids overfitting by regularizing high-learning rate phases, the learning rate
over each epoch is presented in Figure 4.7.

Loss Function

In order to address class imbalance and boundary precision, we optimize a composite
loss, which is a weighted average between a Focal loss [37] and Tversky loss [38].

Definition 4.2.1 (Focal loss). : The focal loss is defined as:

LFocal(pt) = −αt(1− pt)γ log(pt),

where pt is the predicted probability for the true class t, αt is the class-specific weighting
factor for class t and γ is the focusing parameter that controls how much to down-weight
easy examples.

The focal loss addresses class imbalance through two complementary mechanisms.
First, the focusing parameter γ automatically down-weights easy examples where the
model exhibits high confidence in the correct prediction (pt close to 1), while maintain-
ing full loss contribution for hard examples with low confidence (pt close to 0). When
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Figure 4.7: Learning rate during Med-SAM2 training with OneCycleLR, where η jumps from
ηmin to ηmax.

γ = 0, the focal loss reduces to standard cross-entropy; increasing γ progressively fo-
cuses training on challenging examples. Second, the class-specific weighting factor αt

provides explicit control over class importance, typically set inversely proportional to
class frequency to help the model correctly classify underrepresented classes. For our
segmentation task, we set αt = [1/f0, 1/f1, 1/f2] where fi represents the frequency of
class i (background, solid and non-solid) in the training dataset, and γ is set equals to
2.

Definition 4.2.2 (Tversky loss). : The Tversky loss is defined as:

LTversky = 1−
∑

i pigi∑
i pigi + α

∑
i pi(1− gi) + β

∑
i(1− pi)gi

,

where pi is the predicted probability for pixel i, gi is the ground truth label, and α and
β are hyperparameters that control the penalty for false positives and false negatives,
respectively.

The Tversky loss generalizes the Dice coefficient by introducing asymmetric penal-
ties for false positives and false negatives through the parameters α and β. When
α = β = 0.5, the Tversky loss reduces to the standard Dice loss. By adjusting these pa-
rameters, we can explicitly control the trade-off between precision and recall: increasing
α penalizes false positives more heavily (favoring higher precision), while increasing β
penalizes false negatives more severely (favoring higher recall). This asymmetric penal-
ization is particularly valuable for boundary-sensitive segmentation tasks where different
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types of errors have varying clinical or practical significance. The Tversky loss directly
optimizes for overlap-based metrics, making it especially effective at improving bound-
ary precision and connectivity of segmented regions. Unlike pixel-wise losses that treat
each pixel independently, the Tversky loss considers global shape properties and regional
coherence, leading to more spatially consistent predictions. In our implementation, we
set α = 0.3 and β = 0.7 to prioritize recall over precision, minimizing false negatives in
the model’s predictions.
We thus define the final loss as:

L = λLFocal + (1− λ)LTversky,

where we set λ = 0.4, to give more relevance to Tversky loss.

Prompting Strategy

� Prompting Strategy (Training): Following SAM2 original training, we also
train our model passing as prompts points in order to simulate user interaction
(clicks). For each training frame:

1. We sample one positive click uniformly at random from the pixels of the target
class (either solid or non-solid).

2. We sample one negative click uniformly at random from the background (out-
side all object masks).

These two-click prompts, one inside the region of interest and the other one outside,
improve the model’s boundary precision and produce a more accurate segmentation
mask.

� Prompting Strategy (Inference): In the absence of ground-truth masks during
inference, we cannot provide positive or negative clicks. Instead, we create a fake
prompt by placing four clicks at the corners of the frame, in order to pass as prompt
the bounding box containing the full image.

Details on the training hyperparameters (e.g. learning rate, batch size, memory bank
size) and the segmentation results will be presented in Chapter 5.

4.3 ViViM: Video Vision Mamba for Efficient Long-

Range VOS

In the previous sections we have examined the challenges of medical VOS and demon-
strated how general VOS models (AOT, CUTIE) struggle to perform accurate segmen-
tation in medical contexts. To address these issues, we introduced Med-SAM2, which
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implements a self-sorting memory bank that considers the most relevant past frames
rather than simply using the last N frames. However, as we will explore in the next
chapter, transformer-based models like Med-SAM2 have limitations in constructing long-
term dependencies from a computational complexity perspective. This poses significant
problems when processing longer sequences with limited memory resources. To over-
come these computational challenges, we introduce State Space Models (SSMs), which
enable efficient long sequence modeling. Specifically, we present ViViM (Video Vision
Mamba)[39], an SSM-based model that incorporates temporal complexity while adding
an improved boundary-aware constraint across frames. This approach addresses both
the efficiency limitations of transformer architectures and the temporal modeling re-
quirements of medical video segmentation.

4.3.1 State Space Models

In this section we will introduce State Space Models (SSMs), which are the
founding architecture of ViViM. SSMs are a class of machine learning algorithms used
to make predictions about dynamic systems by modeling how their internal state evolves
over time through differential equations. From Figure 4.8 it can be seen that an SSM is
based on three time-dependent variables:

� x(t) ∈ Cn represents the n state variables.

� u(t) ∈ Cm represents the m state inputs.

� y(t) ∈ Cp represents the p outputs.

Figure 4.8: Block diagram representation of the continuous state-space equations.

As well as four learnable matrices:
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� A ∈ Cn×n is the state matrix, responsible for the control of how the current state
evolves into the next state.

� B ∈ Cn×m is the control matrix, that describes how external inputs influence the
state evolution.

� C ∈ Cp×n is the output matrix.

� D ∈ Cp×m is the command matrix, that allows inputs to directly influence outputs.

SSMs can be reduce to the following system of equations:

x′(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

The first equation, the state evolution equation, tells us how the internal state evolves
over time based on the current state and inputs, while the second one, the output equa-
tion, tells us how output are generated from the current state and inputs. Moreover,
since the term Du(t) can be seen as a skip connection and it is therefore easy to compute,
it will be set at 0, simplifying the previous system to:

x′(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

Since the resulting system is continuous, it must be discretized before it can be actually
used in our deep learning model.

Discrete View

The structured state space sequence models (also known as S4) and Mamba [40],
which are at the basis of ViViM, are the discrete version of the continuous system define
above, where the matrices A,B are discretized following the zero-order hold transforma-
tion (ZOH), which is defined as follows:

A = exp(∆A), B = (∆A)−1(exp(∆A)− I)∆B,

where ∆ represents the time interval between consecutive discrete observation (i.e. ∆ =
(tn − tn−1), and A,B are the discretized matrices. Moreover since C and D represents
instantaneous mappings from state and input to output respectively, they do not require
discretization and remain unchanged in the discrete-time formulation. Hence the final
discrete system will be:

xt = Axt−1 +But

yt = Cxt
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Convolutive View

By iterating the equation of the previous system, we will get that:

x0 = Bu0

x1 = Ax0 +Bu1 = ABu0 +Bu1

x2 = Ax1 +Bu2 = A(ABu0 +Bu1) +Bu2 = A
2
Bu0 + ABu1 +Bu2

Then we can write the second equation as:

y0 = Cx0 = CBu0

y1 = Cx1 = CABu0 + CBu1

y2 = Cx2 = CA
2
Bu0 + CABu1 + CBu2

Hence, by defining the convolutional kernel Kt = (CB,CAB, . . . , CA
t
B), we will have

y = u ∗K.

This convolutive formulation reveals that the discrete SSM can be computed as a convo-
lution between the input sequence u and the convolutional kernel K. This dual represen-
tation (recurrent or discrete view and convolutional view) enables the model to alternate
between the two equivalent formulation:

� Training Phase: The model utilizes the convolutive view to enable efficient par-
allel computation across the entire sequence using Fast Fourier Transform (FFT)
algorithms. This allows the model to process all time steps simultaneously, making
training more computationally efficient than Transformers.

� Inference Phase: The model switches to the recurrent view for autoregressive
generation, processing tokens sequentially using the discrete formulation xt =
Axt−1 + But. This provides constant memory usage regardless of sequence length
and eliminates the need to recompute previous states.

The key idea is that both views are mathematically equivalent but computationally opti-
mized for different scenarios. The convolutional view y = u∗K is optimal when the entire
input sequence is available (as it is during training), while the recurrent view excels for
sequential generation (inference). This dual-mode operation allows S4 and Mamba ar-
chitectures to combine the parallel training efficiency of CNNs with the memory-efficient
sequential processing of RNNs, providing the best of both architectures.
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4.3.2 Selective State Space Models (Mamba)

While the S4 architecture established the foundation for efficient state space models
in deep learning, it still faced limitations in terms of selectivity and context-dependent
processing. Mamba [40] addresses these challenges by introducing a selective mechanism
that allows the model to dynamically focus on relevant information while filtering out
irrelevant content, making it particularly effective for long sequence modeling.

Selection Mechanism

Traditional SSMs, like S4, use fixed parameters A, B, and C that remain constant
across all inputs. This limitation means the model cannot adaptively focus on different
parts of the input sequence based on content (similar to what Transformers do). Mamba
introduces selectivity into the model by making these parameters input-dependent:

Bt = sB(xt), Ct = sC(xt), ∆t = s∆(xt),

where sB, sC , and s∆ are learned functions (typically linear projections) that compute
parameter values based on the current input xt:

� ∆t (timescale parameter): Controls how much the current input affects the
hidden state update. A larger ∆t makes the model focus more on the current
input, while a smaller ∆t preserves more of the previous state.

� Bt (input matrix): Determines how much the current input influences the state
evolution.

� Ct (output matrix): Controls which aspects of the hidden state are relevant for
the current output, enabling selective information retrieval.

As shown in Figure 4.9 a complete Mamba Block consists of:

1. Input Projection: Linear transformation to project the input to higher dimen-
sion.

2. Selective SSM: The selective state space layer.

3. Activation Function: Typically SiLU (Swish) activation function.

4. Output Projection: Linear transformation back to model dimension.

5. Residual Connection: Skip connection around the entire block.

Mamba’s selective mechanism provides several key advantages:
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Figure 4.9: Mamba architecture, with at its core the Selective SSM mechanism described
previously.

� Content-based Filtering: The model can ignore irrelevant information by learn-
ing appropriate ∆t, Bt, and Ct values.

� Improved Long-range Dependencies: Selective parameters allow the model
to maintain important information over long sequences while forgetting irrelevant
details.

� Efficiency: Maintains the linear complexity of traditional SSMs while improving
the model performance.

While standard Mamba blocks excel at processing sequential data, their application
to video understanding presents a fundamental limitation. Standard Mamba processes
individual frames by treating spatial patches as sequential tokens, capturing intra-frame
spatial dependencies, however, this approach fails to model the inter-frame temporal
relationships that are at the basis of a VOS task. To address this limitation we introduce
Temporal Mamba Blocks, that are the founding blocks of ViViM.

4.3.3 ViViM Architecture

In this section, we introduce ViViM[39] a Video Vision Mamba model for medical
VOS, based on an extension of Mamba blocks in video settings, Temporal Mamba blocks,
in order to add temporal complexity to the model. ViViM architecture is shown in
Figure 4.10 and it is formed by the following components:

1. Hierarchical Encoder: The encoder processes video data through multiple stages
with decreasing spatial resolution and increasing feature complexity, in order to
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Figure 4.10: a) The overview of ViViM architecture, where the video is fed into a hierarchical
encoder, followed by ST-Mamba blocks and a final CNN-based segmentation head. b) Temporal
Mamba Block overview. c)ST-Mamba layer structure, including the three directional selective
scan mechanism.
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generate multi-scale feature representations that capture fine-grained local details
at early layers and global context at deeper layers.

2. Spatio-Temporal Mamba Block: The key innovation of ViViM lies in the ST-
Mamba blocks, which allows ViViM to process video sequences by introducing
spatio-temporal selective scanning. Specifically, in order to explicit the relation-
ship among frames, patches of each frame are unfolded along rows and column
into sequences, and then those frame sequences are concatenated to constitute
the temporal-first sequence, which, as we can see in Figure 4.10(c), is scanned
along along the forward and backward directions to explore bidirectional temporal
dependencies. Simultaneously, a spatial-first sequence is constructed by stacking
patches along the temporal axis, and a scanning operation is performed in order to
integrate information of each pixel from all frames (standard selective SSM model
procedure). The spatio-temporal selective scan mechanism with three directions
guarantees us that our model perform both spatial and temporal aware segmenta-
tion.

3. Decoder: CNN-based segmentation head that produces accurate, boundary-aware
segmentation masks.

One of the most significant advantages of ViViM over Transformer-based video models
(like Med-SAM2) lies in its computational efficiency. Both SSMs in ST-Mamba and self-
attention in Transformers provide a crucial solution to model spatio-temporal context.
Given a video sequence K ∈ R1×T×M×D, where T represents the temporal sequence
length (number of frames) M represents the spatial sequence length (number of patches
per frame),D represents the feature dimension (number of channels) andN is the internal
state size (hidden dimension) used inside the state-space model (in ST-Mamba is set to
16 by default), then the computational complexities of a global self-attention and SSM
are:

Ω(self-attention) = 4(TM)D2 + 2(TM)2D,

Ω(SSM) = 4(TM)(2D)N + (TM)(2D)N2,

so:

� The self-attention cost scales like O((TM)2D + (TM)D2), which is quadratic in
the total number of tokens T ×M .

� The SSM cost scales like O((TM)DN +(TM)N2), i.e. linear in TM (the sequence
length), with additional cost proportional to the N2.

Because N is much smaller than TM , the SSM in ST-Mamba achieves near-linear
complexity, making it more efficient for long video sequences than transformer based
methods, like Med-SAM2.
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4.3.4 Training and Inference

The same approach described for Med-SAM2 is applied to ViViM training: we per-
form a 5-fold cross validation, then we proceeded to train ViViM on four folds and
validating in the hold-out fold, rotating for three different hold-out folds, in order to
fine tune the model hyperparameters. Lastly, we retrained ViViM on the full training
set, comprising all five folds. Our data is preprocess with the same steps described in
Chapter 1, like we did in Med-SAM2.

Optimizer and Scheduler

We trained our model with AdamW optimizer using weight decay, while the learn-
ing rate η follows a CosineAnnealingLR scheduler over each epoch. Cosine annealing
smoothly decays the learning rate from its initial value ηmax down to a minimum value
ηmin following a half-cosine curve, which helps avoiding sharp drops and encourages the
optimizer to explore more early on and fine-tune later. Concretely, if you schedule over
E epochs, the learning rate at epoch t is:

η(t) = ηmin +
1

2
(ηmax − ηmin)(1 + cos(

t

E
π)).

In particular at t = 0, η(0) = ηmax and at t = E, η(E) = ηmin. The learning rate η
during traninig can be seen in Figure 4.11

Figure 4.11: Learning rate during ViViM training with CosineAnnealingLR.
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Loss Function

To encourage accurate, boundary-sharp, and temporally consistent segmentations,
we train ViViM with a composite loss combining three terms:

L = Lseg + λ1 Laffine + λ2 Lce,

where λ1, λ2 are both set to 0.3.

1. Segmentation Loss Lseg. As we did in Med-SAM2, we use a weighted average
of class-balanced focal loss and Tversky loss to handle class imbalance and emphasize
boundary accuracy:

Lseg = αLFocal + (1− α)LTversky.

where, as we did before, α is set as 0.4, in order to emphasize more the Tversky loss
term.

2. Boundary-aware Affine Loss Laffine. To enforce structured, precised boundaries
and discourage temporal copying, we:

1. Extract ground-truth edges Bt
gt and predicted edges Bt

pred on each small patch via
Sobel filtering and a lightweight boundary head.

2. Use a pretrained MLP to compute two patch-wise affine matrices: θ̂ti aligning
Bt

pred → Bt
gt, and θ̂

1
i aligning Bt

pred → B1
gt.

3. Minimize

Laffine =
1

Np

Np∑
i=1

(
∆1 · ∥θ̂ti − I∥F − ∆2 · ∥θ̂1i − I∥F

)
,

where ∥·∥F is the Frobenius norm, I the identity, Np denotes the number of patches

and ∆1, ∆2 are two balancing hyperparameters to control the effects of θ̂ti and θ̂
1
i ,

respectively set as ∆1 = 1.00 and ∆2 = 0.01. Minimizing this function we aim to
push Bt

pred towards Bt
gt and away from B1

gt, in order to improve the segmentation
boundary precision, and avoid temporal copying among future frames masks.

3. Categorical Cross Entropy Loss Lce. To directly supervise the multiclass logits
zp,c at each pixel p, we add

Lce = −
∑
p

C∑
c=1

1{yp=c} log
(
ŷp,c
)
, ŷp,c =

exp(zp,c)∑C
k=1 exp(zp,k)

.

This term encourages correct class predictions and complements the overlap-based and
boundary-shaping losses.

Further details on the training hyperparameters (e.g. learning rate, batch size, video
clip length) and the segmentation results will be presented in Chapter 5.
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4.4 Evaluation Metrics

At inference time, for pixel-wise multiclass segmentation, with classes background,
solid, and non-solid, the network outputs, for each pixel p, a probability vector ŷp =
(ŷp,1, ŷp,2, ŷp,3), which is converted to a hard prediction

ỹp = arg max
c∈{1,2,3}

ŷp,c .

Comparisons against the ground-truth mask yp ∈ {1, 2, 3} allow us to compute for each
class c the entries of the confusion matrix:

TPc = #{ p : (ỹp = c) ∧ (yp = c)},
FPc = #{ p : (ỹp = c) ∧ (yp ̸= c)},
FNc = #{ p : (ỹp ̸= c) ∧ (yp = c)},
TNc = #{ p : (ỹp ̸= c) ∧ (yp ̸= c)}.

Those variables hold the following meaning:

� True Positives TPc: pixels predicted as class c and truly belonging to class c.

� False Positives FPc: pixels predicted as class c but actually belonging to a dif-
ferent class.

� False Negatives FNc: pixels of class c in the ground truth that were predicted as
some other class.

� True Negatives TNc: pixels neither predicted as class c nor actually class c.

These counts are essential for the computation of the evaluation metrics. By conven-
tion we compute each metric per class following the official implementation in [15].

Accuracy & Specificity

Accuracy measures the overall fraction of correctly classified pixels for class c (count-
ing both correct positives and correct negatives). Formally:

Accc =
TPc + TNc

TPc + TNc + FPc + FNc

.

Practically speaking, accuracy is the ratio of correct predictions over the total samples.
While accuracy is an overall useful metric, it can be misleading when the Region Of
Interest (ROI) is small compared to the background: for example, if 99% of pixels are
background, a naive model that always predicts background would score 99% accuracy
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despite missing all tumor regions, for this reason it’s better to compute more compre-
hensive metrics (specificity, recall and precision) and segmentation specific metrics, like
IoU and Dice.

Specificity measures the ability to correctly identify the negative class. For class c,
it is:

Specc =
TNc

TNc + FPc

,

i.e. the fraction of non-c pixels correctly identified as not-c. In particular, high specificity
means few false alarms (FP).

Precision & Recall

Precision for class c quantifies how many of the pixels predicted as c are actually c.
It is defined as:

Precc =
TPc

TPc + FPc

,

Thus, precision is the fraction of true positives among all predicted positives. A high
precision means that when the model predicts class c, it is usually correct.

Recall for class c measures how well the model finds all the actual c pixels. It is
defined as:

Recc =
TPc

TPc + FNc

,

This is the fraction of true class-c pixels that were correctly predicted as c. High recall
means few false negatives. Recall is critical in the task of tumor detection: missing a
true tumor pixel (FN) can be more serious than a false alarm. So, in general, we focus
on improving the recall of the model rather than its precision.

Jaccard Index

The Jaccard index, also known as Intersection over Union (IoU), for class c
measures the overlap between the predicted region and the ground-truth region of class
c:

Jaccc =
|{ỹ = c} ∩ {y = c}|
|{ỹ = c} ∪ {y = c}|

=
TPc

TPc + FPc + FNc

.

Intuitively, IoU ranges from 0 (no overlap) to 1 (perfect overlap). It penalizes both false
negatives and false positives, making it very suitable for segmentation tasks, and, in
particular it’s very popular in medical imaging. For example, if a tiny tumor is missed,
IoU drops sharply.
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Dice Coefficient

The Dice coefficient for class c is defined as:

Dicec =
2 |{ỹ = c} ∩ {y = c}|
|{ỹ = c}|+ |{y = c}|

=
2TPc

2TPc + FPc + FNc

.

Intuitively, Dice balances precision and recall: it is high only if both precision and recall
are high. This makes it a good indicator of a model’s positive-class performance.

Conclusive Remarks

In this chapter, we have explored the evolution of Video Object Segmentation, from
early memory-bank methods like STM, through transformer-based architectures such
as AOT and CUTIE. We then introduced two specialized medical VOS models, Med-
SAM2 and ViViM, each designed to tackle the unique challenges of ovarian ultrasound
segmentation, namely low contrast, rapid appearance changes, and the need for both
long-range temporal coherence and precise boundaries. Med-SAM2 addresses these by
incorporating a self-sorting memory bank containing the most informative past frames
and predictions, while ViViM leverages state-space model structures and boundary-aware
constraints to achieve efficient, accurate segmentation over extended sequences. Having
established these foundations, the next chapter will focus on the results of those two
methods, Med-SAM2 and ViViM, along with the results of the mask refinement approach
using the SEA-RAFT tracking model, and the comparison with the benchmark method
(U-Net).
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Chapter 5

Experimental Results and
Comparative Analysis

In this final chapter, we evaluate the segmentation performance of the three intro-
duced methods: SEA-RAFT, Med-SAM2, and ViViM, compared to the baseline U-Net
results, on the held-out test set introduced in Chapter 2. Our goals are to:

� Quantify pixel-level accuracy using standard segmentation metrics (IoU, Dice, pre-
cision, recall, specificity) for both the solid and non-solid classes;

� Visualize class-normalized confusion matrices to highlight per-class strengths and
weaknesses;

� Compare inference runtimes (FPS, total and per-frame latency) to assess real-time
deployability;

� Present qualitative segmentation examples to illustrate boundary accuracy and
temporal consistency.

Particularly, we begin in the first section with the comparison between equispatial and
dynamic sampling methods introduced with max numerosity as a preprocessing step to
determine the effectiveness of each sampling method. Section 5.2 presents the evalu-
ation results of the introduced VOS methods, SEA-RAFT as a post-processing mask
refinement step and the benchmark U-Net method, providing empirical evidence that
temporal-aware models provide better and more accurate segmentation masks. Lastly,
in Section 5.3 we present our closing remarks and future direction ideas.

5.1 Training Configuration and Sampling Strategy

Comparison

In this section we will present some further training details along with the choice
of the models hyperparameters. In chapter 2 we have introduced various preprocessing

67
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steps, ranging from the classical data augmentation techniques, to domain-specific ones
(fan cropping and max numerosity). In particular, max numerosity is introduced with
the scope of limiting each clinical case to Nmax frames. In Chapter 2 we have compared
two sampling schemes:

1. Equispatially: We divide the original video into Nmax equal-length intervals and
we select one representative frame for each intervals;

2. Dynamically: At every training epoch, randomly sample Nmax frames from the
full sequence.

As we show below, equispatial sampling yields more stable and higher segmentation
accuracy in our ultrasound data.

Following the procedure of performing a five-folds cross-validation technique for op-
timal hyperparameter settings, in Figure 5.1 are shown the Confusion Matrices (row-
normalized and column-normalized) of Med-SAM2 trained with equispatially sampled
frames in comparison to the confusion matrix of Med-SAM2 trained with dynamically
sampled frames. The results are presented for the first cross-validation training on the
hold-out set used for validation. Med-SAM2 is trained for 100 epochs, with initial learn-
ing rate η = 10−4, batch size of 16 frames, memory bank size of 16 frames and max
numerosity Nmax = 3.

From Figure 5.1 we can observe that there is a performance drop in the segmentation
metrics from equispatial to dynamic sampling, especially regarding solid class. This
suggests that equispatial coverage of each lesion is better learned by the model rather
than random frame selection. A similar trend holds for ViViM as well, as shown in
Figure 5.2. Where ViViM was trained for 100 epochs, with initial learning rate η = 10−4,
batch size of 3 clips with each clip length of 5 (so effective batch size of 15 frames), and
Nmax = 3.

From those results we adopt for both methods equispatial sampling as frame selection
method for the final training.
Figure 5.3 plots the training loss over epochs:

� Med-SAM2 (left) converges smoothly to a stable minimum.
� ViViM (right) shows more oscillations, reflecting its complex composite loss.

Despite ViViM’s oscillatory behavior, its segmentation performance (as we will show
in the next section) exceeds Med-SAM2, demonstrating its robustness to complex tem-
poral modeling. In the following section, we present our inference results of ViViM and
Med-SAM2 against the U-Net and SEA-RAFT baselines.
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Figure 5.1: Comparison between the confusion matrices of Med-SAM2 with equispatial
sampling (on top) and dynamic sampling (bottom). The confusion matrices represents
respectively the recall per class and the precision per class.
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Figure 5.2: Comparison between the confusion matrices of ViViM with equispatial sam-
pling (on top) and dynamic sampling (bottom).
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Figure 5.3: Comparison between Med-SAM2 and ViViM loss during the final training
phase.

5.2 Comparative Performance Evaluation

In this section we will present the evaluation results on the test dataset of the three
proposed methods, SEA-RAFT, Med-SAM2 and ViViM, for ultrasound video object seg-
mentation in comparison with the baseline method (U-Net) to determine how temporal
modeling impacts segmentation accuracy. We begin with the class-normalized confusion
matrices for each method, then we will present a detailed comparison of the standard
segmentation metrics.

Figure 5.4: Confusion matrix normalized per row (left) and per column (right) of U-Net.

From the confusion matrices we can derived the following:

� Prompt Mismatch in Med-SAM2: Med-SAM2’s performance drops from val-
idation to inference (compare Figures 5.1 and 5.6) due to the change in prompting
strategy: during training we used positive/negative prompts derived from ground-
truth masks, whereas at inference (where no ground-truth is available) we supply
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Figure 5.5: Confusion matrix normalized per row (left) and per column (right) of SEA-
RAFT.

Figure 5.6: Confusion matrix normalized per row (left) and per column (right) of Med-
SAM2.



5.2. Comparative Performance Evaluation 73

Figure 5.7: Confusion matrix normalized per row (left) and per column (right) of ViViM.

the model only a full-frame bounding box as prompt, in order to still have a fully
automated model with no need of human interactions. This mismatch inevitably
reduces lesion localization accuracy, yet Med-SAM2 still achieves higher recall for
the solid class compared to U-Net, which is a good result given our goal of mini-
mizing false negatives.

� SEA-RAFT Performance: SEA-RAFT does not outperform U-Net, having
comparable to slightly worse performance, likely because it operates purely as
a post-processing step on the U-Net outputs and has not been fine-tuned on ul-
trasound data. Any segmentation errors missed by U-Net cannot be corrected by
flow-based warping alone.

� ViViM Performance: ViViM delivers the strongest balance of precision and re-
call across all classes, outperforming both the baseline and other temporal methods.
Its state-space-based sequence modeling and composite loss function effectively cap-
ture long-range dependencies and produce accurate, boundary-aware segmentation
masks.

Detailed Segmentation Metrics

Tables 5.1 and 5.2 summarize respectively for the class of solid and non-solid speci-
ficity, precision, recall, Jaccard (or IoU) and Dice metrics. Overall, temporal models,
particularly ViViM, demonstrate some advantages over frame-only segmentation, vali-
dating the inclusion of temporal complexity in ultrasound video analysis. Moreover, we
can observe that the U-Net still remains a solid choice for segmentation, as it is arguably
the most consistent method across the two classes, while both ViViM and Med-SAM2
present a more evident gap between solid and non-solid class. Med-SAM2 specifically
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outperforms all the other methods in the solid class, but has by far the worse performance
in the non-solid class.

Model Spec. Prec. Rec. Jacc. Dice

U-Net 0.968 0.741 0.723 0.493 0.578
SEA-RAFT 0.968 0.742 0.709 0.432 0.519
Med-SAM2 0.941 0.632 0.823 0.512 0.636
ViViM 0.971 0.771 0.748 0.453 0.532

Table 5.1: Segmentation metrics for the solid class. Bold indicates top performance.

Model Spec. Prec. Rec. Jacc. Dice

U-Net 0.971 0.877 0.844 0.660 0.746
SEA-RAFT 0.968 0.880 0.772 0.639 0.730
Med-SAM2 0.976 0.855 0.762 0.602 0.710
ViViM 0.969 0.882 0.874 0.688 0.770

Table 5.2: Segmentation metrics for the non-solid class. Bold indicates top performance.

Table 5.3 confirms that ViViM’s state-space architecture runs at over 140 FPS, sig-
nificantly faster than Med-SAM2 (34 FPS) and even U-Net (≈ 100 FPS), making it
highly suitable for real-time clinical deployment, as we proved in the last chapter.

Model FPS Total Inference Time (s) Avg Time per Frame (ms)

Med-SAM2 34.09 149.48 29.33
ViViM 140.17 33.39 7.13

Table 5.3: Inference speed comparison of Med-SAM2 and ViViM on test set.

Segmentation Visualization

Figure 5.8 shows example frames with ground-truth masks alongside predictions from
U-Net, SEA-RAFT, Med-SAM2, and ViViM. Several observations stand out:

� Med-SAM2 Boundaries: The transformer-based Med-SAM2 often produces
blurred and inaccurate edges, a known weakness of vision transformers on hard
boundary tasks [36].
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� ViViM Precision: Thanks to its state-space architecture and boundary-aware
affine loss, ViViM delivers the sharpest, most accurate contours, closely matching
the ground truth even in low-contrast regions.

� U-Net vs. SEA-RAFT: Both U-Net and SEA-RAFT generate generally clean
masks but struggle with occlusions and texture variations. SEA-RAFT, as a post-
processor, rarely improves upon U-Net and sometimes worsen the segmentation
mask.

Overall, ViViM and U-Net produce the most visually coherent segmentations, with
ViViM offering superior edge detail and temporal stability. SEA-RAFT’s gains are
marginal, while Med-SAM2 remains challenged by boundary accuracy.

Figure 5.8: Qualitative comparison of segmentation results (red: solid class; yellow: non-solid
class). From left to right: Input frame, Ground Truth, U-Net, ViViM, Med-SAM2, SEA-RAFT.

5.3 Closing Remarks and Future Directions

In this chapter, we have compared the four methods introduced throughout the thesis
for the task of segmenting ovarian ultrasound videos. We close this chapter by providing
some final thoughts on the models explored:
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� U-Net: Our baseline was a U-Net, which, despite its architectural simplicity com-
pared to the other introduced models, provides accurate and consistent segmenta-
tion masks. However, those masks can be prone to flickering (i.e. rapid changes of
object’s appearence) and temporal inconsistency, from which we derive the need
for introducing temporal-aware models.

� SEA-RAFT: SEA-RAFT is explored as a post-processing technique to add tempo-
ral smoothing via optical flow estimation. However, due to the lack of pre-training
on medical datasets and its reliance on U-Net’s segmentation masks, it offers only
marginal gains.

� Med-SAM2: Med-SAM2 scores well on solid lesions, which its self-sorting memory
bank could be a factor in. However, the problematic boundary accuracy and the
prompt mismatch from training to inference remain challenges.

� ViViM: ViViM delivers the best balance of precision, recall, and inference speed
by means of a state-space model architecture (Mamba blocks) and composite loss
that provides sharp boundary segmentation.

Overall, ViViM emerges as the most promising approach, validating that efficient
state-space temporal modeling, combined with a boundary-aware loss, can outperform
both the baseline method and transformer-based memory models in this domain.

Future Research Directions

Based on our findings, several promising ideas for future research emerge that could
further advance video object segmentation in medical ultrasound applications:

� Medical-Domain Optical Flow Datasets: Current flow estimators (e.g. SEA-
RAFT) are pretrained on natural-image benchmarks, which differ significantly from
ultrasound videos. Constructing a dedicated ultrasound video flow dataset would
enable pretraining or fine-tuning of flow networks on domain-relevant motion pat-
terns, leading to more accurate mask warping and stronger post-processing results.

� Adaptive Prompting for Med-SAM2: Med-SAM2’s inference prompts cur-
rently consist of a full-frame bounding box. Integrating an auxiliary detection
model (e.g. YOLO) could generate more precise box or click prompts automat-
ically. Such prompts would ensure consistency between training and inference
prompting strategies, improving Med-SAM2’s segmentation accuracy and consis-
tency.

� Composite Loss for Med-SAM2: Exploiting a composite loss similar to ViViM
could yield sharper boundaries and improved segmentation quality for the Med-
SAM2 framework.
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� ViViM Hyperparameter Optimization: Since ViViM is the best-performing
model, careful hyperparameter tuning could further boost its performance and
establish more robust optimization protocols for clinical deployment.

By pursuing these directions (domain-specific pretraining, adaptive prompting, struc-
tured losses, and hyperparameters tuning) we aim to develop VOS models that combine
clinical reliability with real-time performance in ultrasound applications.





Conclusion

This thesis has explored the integration of temporal context into ovarian ultrasound
segmentation through three different approaches: post-processing tracking, end-to-end
transformer-based model and end-to-end state-space model. After giving some prelimi-
nary knowledge in Chapter 1, we began in Chapter 2 by analyzing our private ovarian
ultrasound video collection of more than 10 000 annotated frames across 33 histological
types. After quantifying class imbalances (solid, non-solid, background) and histological
prevalence, we introduced stratified 5-fold cross-validation at the video level to ensure ro-
bust performance estimates during training. Multiple classical augmentation techniques
(e.g. cropping, flippings, rotations) and domain-specific techniques (fan cropping and
max numerosity frame sampling) are explored to mitigate overfitting and class imbal-
ance. In Chapter 3 we explored Tracking as a post-processing mask refinement technique.
Firstly, we surveyed three tracking paradigms: detection-based (with the SORT model),
optical flow estimation (FlowNet) and spatio-temporal graphical models (CRFs), and
identified RAFT as a state-of-the-art flow estimator framework. Its successor SEA-
RAFT brings a Mixture-of-Laplace loss, direct initial regression, and rigid-flow pretrain-
ing for faster convergence and greater robustness. We then detailed our mask-refinement
pipeline: warping U-Net outputs via SEA-RAFT flow estimate and fusing them with
current predictions. While this reduced flicker, it could not recover missed regions and
yielded only marginal gains as the produced segmentation masks are highly dependent
on the U-Net ones. Chapter 4 was dedicated to the introduction of end-to-end VOS mod-
els. We reviewed three general-purpose state-of-the-art architectures: STM (space-time
memory), AOT (identity-aware transformers), and CUTIE (object-level transformers),
highlighting their memory mechanisms, attention layers, and computational trade-offs.
Building on these, we introduced two medical-domain methods:

� Med-SAM2 augments the promptable Segment Anything Model 2 with a self-
sorting memory bank tailored to ultrasound’s non-stationary anatomy and employs
click-based prompts during training. At inference, full-frame box prompts yield
strong solid-class results but expose boundary and prompt-mismatch weaknesses.

� ViViM embeds selective State-Space Mamba blocks for efficient long-range depen-
dency, plus a boundary-aware affine loss, achieving the best balance of IoU, Dice,
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precision, recall, and real-time speed (> 140 FPS).

Finally, in Chapter 5 we presented our experimental results, where we demonstrated
that:

� SEA-RAFT produces smooths masks but fails to correct U-Net’s misses.

� Med-SAM2 excels in solid-class recall yet suffers boundary blur under the current
prompts and loss function.

� ViViM consistently outperforms all methods in both accuracy and runtime, vali-
dating state-space modeling and structured losses for clinical ultrasound VOS.

Lastly, to further improve our model’s segmentation results, we proposed the following
directions:

1. Domain-Specific Flow Pretraining: Build an ultrasound optical-flow dataset
to fine-tune SEA-RAFT for more robust segmentation outputs.

2. Adaptive Prompt Generation: Integrate automatic lesion detectors to generate
more precise Med-SAM2 prompts at inference.

3. Structured Loss Extensions: Apply boundary-aware loss to Med-SAM2 to
sharpen the final masks.

4. Hyperparameters Tuning: Correctly tune ViViM’s hyperparameters in order
to further boost its performance.

This thesis contributes to the advancement of video object segmentation in medical
ultrasound by demonstrating that state-space models, when combined with appropriate
loss functions and extensive preprocessing, can achieve superior performance over tradi-
tional frame-by-frame approaches and transformer-based methods. The comprehensive
evaluation of temporal modeling strategies, from post-processing tracking to end-to-end
architectures, provides valuable insights for the development of clinically accurate ul-
trasound analysis systems. Our findings establish ViViM as a promising foundation for
real-time, temporally coherent ovarian ultrasound segmentation, while identifying pos-
sibilities for further improvement across all evaluated approaches. The demonstrated
ability to achieve both high accuracy and real-time performance (> 140 FPS) positions
ViViM as a viable candidate for integration into clinical ultrasound workflows, potentially
enhancing the consistency and efficiency of ovarian lesion segmentation and providing
a reliable automated analysis tool that can support medical professionals in diagnosing
tumors.
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Rolland, C., Gustafson, L., Mintun, E., Pan, J., Alwala, K. V., Carion, N., Wu, C.,
Girshick, R., Dollár, P., & Kirillov, A. (2024). SAM 2: Segment Anything in Images
and Videos. Advances in Neural Information Processing Systems, vol. 37.

[34] He, K., Chen, X., Xie, S., Li, Y., Dollár, P., & Girshick, R. (2022). Masked au-
toencoders are scalable vision learners. Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).

[35] Zhu, J., Hamdi, A., Qi, Y., Jin, Y., & Wu, J. (2024). Medical SAM 2: Seg-
ment medical images as video via Segment Anything Model 2. arXiv preprint
arXiv:2408.00874.

[36] Bai, X., Yu, Y., et al. (2024). FS-MedSAM2: Exploring the Potential of SAM2
for Few-Shot Medical Image Segmentation without Fine-tuning. arXiv preprint
arXiv:2409.04298.

[37] Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal Loss for Dense
Object Detection. Proceedings of the IEEE International Conference on Computer
Vision (ICCV), pp. 2999-3007.

[38] Salehi, S. S. M., Erdogmus, D., & Gholipour, A. (2017). Tversky loss function
for image segmentation using 3D fully convolutional deep networks. International
Workshop on Machine Learning in Medical Imaging, pp. 379-387.

[39] Yang, Y., Xing, Z., & Zhu, L. (2024). Vivim: a Video Vision Mamba for Medical
Video Object Segmentation. IEEE Transactions on Circuits and Systems for Video
Technology.

[40] Gu A. and Dao T. (2023). Mamba: Linear-time sequence modeling with selective
state spaces. arXiv preprint arXiv:2312.00752, 2023.

[41] Wang, R., Lei, T., Cui, R., Zhang, B., Meng, H., & Nandi, A. K. (2022). Medical
image segmentation using deep learning: A survey. IET Image Processing, vol. 16,
no. 5, pp. 1243-1267.


	Introduction
	Preliminary Notions
	Image Segmentation
	Convolutional Neural Networks
	U-Net

	Transformers

	Dataset Analysis
	Data Description
	Data Augmentation
	Classical Data Augmentation Techniques
	Fan Cropping
	Max Numerosity

	Stratified Cross-Validation
	Imbalance Score


	Object Tracking
	Literature Review: Object Tracking
	Detection-based Tracking (SORT)
	Optical Flow based Model (FlowNet)
	Spatio-Temporal Graphical Model (CRFs)

	Recurrent All-Pairs Field Transforms
	Model's Architecture
	Simple Efficient Accurate RAFT
	Mask Refinement with SEA-RAFT


	Video Object Segmentation
	Literature Review: Video Object Segmentation
	Space-Time Memory Networks
	Associating Objects with Transformers
	Putting the Object Back into Video Object Segmentation

	Med-SAM2: Medical Segment Anything Model 2
	Segment Anything Model 2
	Med-SAM2 architecture
	Training And Inference

	ViViM: Video Vision Mamba for Efficient Long-Range VOS
	State Space Models
	Selective State Space Models (Mamba)
	ViViM Architecture
	Training and Inference

	Evaluation Metrics

	Experimental Results and Comparative Analysis
	Training Configuration and Sampling Strategy Comparison
	Comparative Performance Evaluation
	Closing Remarks and Future Directions

	Conclusion
	Bibliography

