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Sommario

Lo scopo di questa indagine è quello di analizzare l’evoluzione temporale e i parametri di
controllo del rigonfiamento post-glaciale, una struttura sopraelevata che si forma ai lati
di un ghiacciaio come risposta isostatica alla presenza del carico. Per farlo, sono stati
utilizzati gli spostamenti radiali e i tassi di spostamento radiale ottenuti con le simula-
zioni numeriche del programma TABOO, che ha permesso di valutare anche il contributo
dell’isostasia glaciale all’aumento del livello marino dal 1850 ad oggi; per farlo, il minimo
tasso di subsidenza attuale calcolato da TABOO è stato confrontato con il trend annuale
((2.90 ± 0.12) mm/yr) proveniente dai dati mareografici della stazione The Battery a
New York (40.7°N, 74°W), e successivamente corretto tenendo conto di effetti attuali
dovuti al cambiamento climatico e allo scioglimento dei ghiacciai ((1.3 ± 0.7) mm/yr).
In particolare, le simulazioni mostrano che il rigonfiamento post-glaciale continua a cre-
scere durante lo scioglimento della calotta glaciale; raggiunta la massima ampiezza, inizia
a muoversi verso l’interno mentre collassa, per poi invertire il suo moto orizzontale e mi-
grare verso l’esterno. Per il presente, le simulazioni di TABOO prevedono un tasso di
subsidenza annuale di -3.3 mm/yr, un valore non compatibile con i dati mareografici
della stazione di New York The Battery.
Infine, per quanto riguarda la forma e i tassi di subsidenza del rigonfiamento, è stato
possibile determinare che la prima dipende principalmente dallo spessore della litosfera
e dalla viscosità dello strato più alto del mantello. Inoltre, sono state trovate delle diffe-
renze significative nell’ampiezza del rigonfiamento rimuovendo la condizione di equilibrio
all’ultimo massimo glaciale. Invece, per quanto riguarda i tassi di subsidenza, le mag-
giori variazioni sono state rilevate modificando la durata di formazione del carico, la sua
semiampiezza angolare, lo spessore litosferico e la viscosità degli strati del mantello.
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Abstract

The purpose of this investigation is to analyze the temporal evolution and the control-
ling factors of the galcial forebulge, which is an isostatic upheaval induced by a glacial
load. In order to do so, radial displacements and the corresponding rates were taken into
account. The evolution of these physical quantities was determined by numerical simula-
tions performed by TABOO program, which was also used to determine the contribution
of glacial isostasy to the Rising Sea Level (RSL) from 1850s to nowadays; therefore,
TABOO’s results were compared with the annual trend ((2.90 ± 0.12) mm/yr) obtained
from tide gauge records measured at New York The Battery station (40.7°N, 74°W), cor-
rected by taking into consideration current climate change effects and ice melting ((1.3
± 0.7) mm/yr).
In particular, the results of the simulations show that the postglacial forebulge keeps
forming while the load is melting; after reaching its maximum amplitude, it starts mov-
ing inward and collapsing; in the end, the forebulge will invert its horizontal motion and
start migrating outwards. As of today, TABOO predictions establish a minimum annual
rate of subsidence of -3.3 mm/yr. However, this value is not compatible with tide gauge
data from New York The Battery station, as it overestimates the contribution to rising
sea level of post-glacial isostasy.
In the end, it was possible to establish that the forebulge shape depends mainly on
the lithosphere thickness and on the viscosity of the topmost mantle layer; furthermore,
significant differences on the forebulge shape were found by removing the condition of iso-
static equilibrium at the Last Glacial Maximum. On the other hand, significant changes
in rates of radial displacement were found by varying the duration of the load formation,
the load angular half amplitude, and both the lithospheric thickness and the viscosity of
all mantle layers.
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1. Introduction to the Surface Load-
ing Problem

A peripheral bulge, also known as forebulge, is formed as an isostatic response to a
glacial load which acts upon the lithosphere long enough to cause its flexure. As a
consequence, a bulge takes shape outside the region covered by the load so that isostatic
equilibrium is reached, since the bending of the lithosphere causes a flow of mantle
materials that accumulate at the margins of the load. This investigation aims at shedding
light on the dynamics of this process, since the bulge starts collapsing and migrating
after reaching its maximum amplitude. These deformations of the lithosphere can have
crucial consequences on Rising Sea Level (RSL) in coastal cities which now stand on the
forebulge. Therefore, it is fundamental to be able to predict the extent to which the
forebulge collapse can affect the RSL in these regions [Brandes et al., 2025].
This study was made possible by the use of TABOO 1, a post-glacial rebound calculator.
In fact, TABOO allows for the simulation of the Earth’s response to various loads with
different time histories. In particular, the program is based on the following assumptions
on the Earth [Spada, 2003b]:

1. It is Spherically symmetric (TABOO solves 1D problems), Viscoelastic, Incom-
pressible and Self-Gravitating (SVISG model);

2. it is non-rotating.

An analytical expression for the displacements induced by a surface load can be found
by solving the equilibrium equations for a SVISG Earth. Therefore, before deriving the
analytical model for the Earth response, it is necessary to introduce the mathematical
model for surface loads and for viscoelasticity. In particular, the following treatise is
based on Spada and Melini’s book ”Glacial Isostatic Adjustment: Theory for a Spheri-
cally Symmetric Earth and Numerical Results” [Spada and Melini, 2025] and on Spada’s
work ”The theory behind TABOO” [Spada, 2003b].

1TABOO (Spada 2003) is available from https://github.com/danielemelini/TABOO. It was origi-
nally distributed by the Samizdat Press and now it can also be found at the page https://samizdat.
mines.edu/.
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1.1 Surface Loads

The surface loads that generate the perturbation can be of two kinds: axis-symmetric
(AX loads), if they have axial simmetry, or non axis-symmetric (NAX loads), if not.
Clearly, AX loads can be treated as a sub-case of NAX loads.
The surface load is defined as follows:

L(t, θ, λ) = − 1

γ0

dfn
dA

(t, θ, λ) (1.1)

where dfn is the normal force acting on the Earth’s surface dA = a2dΩ, and γo =
Gme

a2
is

the gravity acceleration on the Earth’s surface. Furthermore, a is the Earth radius and
θ and λ indicate colatitude and longitude, respectively.
The loads were restricted to those whose function can always be factorized in this way:

L(t, θ, λ) = f(t)σ(θ, λ), (1.2)

where f(t) is the load time-history and σ(θ, λ) is the load function, which defines the
spatial extension of the load. According to the general CSH expansion theorem, for a
generic NAX load it is always possible to write:

σ(θ, λ) =
∞∑
l=0

l∑
m=−l

σlmYlm(θ, λ), (1.3)

where σlm are the CSH (Complex Spherical Harmonics) coefficients and are given by:

σlm =

∫
Ω

σ(θ, λ)Y ∗
lm(θ, λ) dΩ, (1.4)

and where Ylm(θ, λ) are the spherical harmonics. From Equation (1.3) one can obtain the
RSH (Real Spherical Harmonics) expansion, according to the RSH expansion theorem:

σ(θ, λ) =
∞∑
l=0

+l∑
m=0

(cσlm cos (mλ) + sσlm sin (mλ))Plm(cos θ), (1.5)

where Plm(cos θ) are the Legendre orthogonal polynomials and where(
cσlm
sσlm

)
= (2− δ0m)µlm

(
Re(σlm)

− Im(σlm)

)
with (l ≥ 0, 0 ≤ m ≤ l), (1.6)

with

µlm =

√
2l + 1

4π

(l −m)!

(l +m)!
. (1.7)
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1.2 The Viscoelastic Model

The Maxwell Rheology is the simplest viscoelastic model, but can reproduce the Earth
behavior reasonably [Cathles, 1975]. In particular, a Maxwellian body is characterized
by an elastic and a viscous component, respectively given by:

ϵe =
σ

2G
(1.8)

ϵ̇v =
σ

2V
, (1.9)

where σ is the applied stress, ϵe and ϵ̇v are the consequent elastic strain and viscous strain
rate, while G and V are the shear modulus and the Maxwell viscosity, respectively.
The total strain rate is obtained by adding the time derivative of Equation (1.8) and
Equation (1.9):

ϵ̇ = ϵ̇e + ϵ̇v =
σ̇

2G
+

σ

2V
. (1.10)

Equation (1.10) can be solved by applying the Laplace transform to both sides of the
equation:

s

(∫ ∞

0

estϵ(t) dt

)
−ϵ(0) =

s

2G

(∫ ∞

0

estσ(t) dt

)
−σ(0) +

1

2V

(∫ ∞

0

estσ(t) dt

)
. (1.11)

By putting ϵ(0) = σ(0) = 0 and LT [ϵ] =
∫∞
0

estσ(t) dt ≡ ϵ(s), the following relation is
obtained:

ϵ(s) =
σ(s)

2G(s)
with G(s) =

Gs

s+G/V
, (1.12)

which is formally identical to the elastic relation shown in Equation (1.8).

1.3 Response to Surface Loads

The Laplace-transformed components of surface displacements can now be obtained by
considering the general poloidal-toroidal decomposition of a solenoidal displacement field
[Backus, 1986 and Sabadini et al., 1995]. In fact, the toroidal components were neglected
because of the assumption of spherical symmetry, so that the Laplace-transformed com-
ponents of the surface displacement induced by a NAX load acting upon a SVISG Earth
can be written as:ur

uθ

uλ

 (s, a, θ, λ) =
∞∑
l=0

l∑
m=−l

ulm

vlm
vlm

 (s, a) ·

 1
∂θ
∂λ
sin θ

Ylm(θ, λ) (1.13)
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where ulm and vlm satisfy the constitutive equation:(
ulm

vlm

)
(s, a) =

(
cl
dl

)
(s)σlmf(s) (1.14)

and where f(s) = LT [f(t)], cl, dl are model-related constants, a is the Earth radius and
σlm are the CSH coefficient of the load function, and are given by Equation (1.4).
In order to obtain an expression for ulm and vlm that is a function of known quantities,
three results from literature need to be used [Spada, 2003b]:

1. The constitutive equation that describes the strain in response to a unit load
(L(t,Θ) = δ(t)σδ(Θ)): (

ul

vl

)δ

(s, a) =

(
cl
dl

)
(s)σδ

l ; (1.15)

2. the definition of load-deformation coefficients hl and ll:

1

a

(
ul

vl

)δ

(s, a) ≡ mδ
s

me

(
hl

ll

)
(s), l ≥ 2 (1.16)

where mδ
s is the static mass of the unit load and me is the mass of the Earth;

3. the coefficients of the expansion on Legendre polynomials of the unit load function:

σδ
l = mδ

s(
2l + 1

4πa2
). (1.17)

In fact, by inverting Equation (1.15), one obtains an expression for cl, dl as a function
of unit-load reletad quantities, which can be replaced with the expressions given by
Equations (1.16) and (1.17), so that one obtains:(

cl
dl

)
(s) =

1

σδ
l

(
ul

vl

)δ

(s, a) =
4πa3

me(2l + 1)

(
hl

ll

)
(s) (1.18)

when inserted into Equation (1.14), this formula gives an expression for ulm and vlm
that has to be inserted into Equation (1.13). Now, by considering the facts that ρe =
3me/(4πa

2) is the average density of the Earth, and that(
hl

ll

)
(s)f(s) =

(
hl

ll

)
(t) ⊗ f(t) ≡

(
h̄l

l̄l

)
(t), (1.19)
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equation (1.13) becomes:ur

uθ

uλ

 (t, a, θ, λ) =
3

ρe

∞∑
l=0

l∑
m=−l

σlm

2l + 1

h̄l

l̄l
l̄l

 (t)

 1
∂θ
∂λ
sin θ

Ylm(θ, λ). (1.20)

By applying Equations (1.5) and (1.6), one can obtain the Laplace-Transformed expres-
sion for Equation (1.20) with real coefficients, so that Equation (1.20) becomes:ur

uθ

uλ

 (t, a, θ, λ) ≡ 3

ρe

∞∑
l=0

+l∑
m=0

1

(2l + 1)

h̄l

l̄l
l̄l

 (t)

cσlm cos (mλ) + sσlm sin (mλ)
cσlm cos(mλ) + sσlm sin(mλ)
sσlm cos(mλ)− cσlm sin(mλ)


·

 1
∂θ
∂λ
sin θ

Plm(cos θ), (1.21)

where cσlm and sσlm are given by Equation (1.6). In this investigation, only AX loads were
taken into account.

1.4 Response to AX Loads

In order to derive the Earth response to AX loads, it is useful to take into consideration
the symmetry of the problem. In particular, the load function σ(θ, λ) can be defined
in another frame called ”load reference frame” (LRF), in which the symmetry axis of
the load coincides with the z-axis and where the pole of the load is defined as the
intersection between the load and the z-axis. In this frame, the load function depends
on a new colatitude only, Θ, which is defined as follows:

cosΘp = cos θp cos θc + sin θp sin θc cos (λp − λc), (1.22)

where (θp, λp) and (θc, λc) are the spherical coordinates of the point P and of the pole of
the load, as measured in the Geographical Reference Frame (GRF).
In the LRF, the expansion of the load function in Legendre polynomials can be written
as:

σAX(Θ) =
∞∑
l=0

σAX
l Pl(cosΘ), (1.23)

where

σAX
l =

2l + 1

2

∫ π

0

σAX(Θ)Pl(cosΘ) sinΘdΘ. (1.24)

8



Using the addition theorem, it is possible to link the coefficients of the LEG expansion
σAX
l in LRF to the CSH coefficients σax

lm in GRF. In particular, Equation (1.23) becomes:

σAX(Θ) ≡ σax(θ, λ) =
∞∑
l=0

l∑
m=−l

σax
lmYlm(θ, λ), (1.25)

with

σax
lm =

4πY ∗
lm(θc, λc)

2l + 1
σAX
l . (1.26)

This expression can be put into Equation (1.6) so as to determine the analytic expression
for cσlm and sσlm which, inserted into Equation (1.21) gives:ur

uθ

uλ

ax

(t, a, θ, λ) =
3

ρe

∞∑
l=0

+l∑
m=0

h̄l

l̄l
l̄l

 (t)
2− δ0m
2l + 1

(l −m)!

(l +m)!
σAX
l Plm cos θc cosm(λ− λc)

cosm(λ− λc)
− sinm(λ− λc)

 1
∂θ
m

sin θ

Plm(cos θ). (1.27)

The LEG expansion (Equation (1.23)) is particularly useful to calculate the static mass
ms of the load, which is given by:

ms
def
=

∫
Ω

σ(θ, λ) dA
Eq.1.23
= 2πa2

∫ π

0

σAX(Θ) sinΘdΘ = 4πa2σAX
0 . (1.28)

From the static mass it is possible to determine the dynamic mass of the load:

µ(t)
def
=

∫
Ω

L(t, θ, λ) dA = f(t)ms. (1.29)

Note that the first definitions of Equations (1.28) and (1.29) are true for NAX loads as
well.
The principle of mass conservation is ensured by introducing a complementary load such
that the total dynamic mass of the system is identically null. In particular, it has to be:

µT (t) = µ1(t) + µ2(t) = f 1(t)m1
s + f 2(t)m2

s ≡ 0 (1.30)

where µ1(t) is the dynamic mass of the ”primary” load and µ2(t) is the dynamic mass
of the ”secondary” load. Equation (1.30) can be satisfied by the condition:{

f 1(t) = f 2(t)

m1
s = −m2

s.
(1.31)
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In other words, the primary and secondary load need to have the same time history but
opposite static masses. Conventionally, m1

s ≥ 0 and is associated with an excess of mass
on the Earth, such as an ice sheet. Thus, m2

s ≤ 0 and is related to a mass deficiency,
such as sea level drop due to ice formation. In the TABOO program, the secondary load
is realized by introducing a complementary disk load with negative height on the ocean
surface.
In this investigation, only two load geometries were used, and they both have axial
symmetry: the disk and the parabola. A graphical representation of these two scenarios
was shown in Figure 1.1.
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LGtl (t=o)
fhir*t

IC50
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Figure 1.1: Forebulge induced by a disk load (Figure 1.1a) and by a parabolic load
(Figure 1.1b) at Last Glacial Maximum (t = 15 kyrs) and at present time (t = 0).

The Balanced Disk Load

The load function for a disk load in the LRF is given by:

σd(Θ) =

{
ρih 0 ≤ Θ ≤ α

0 α < Θ ≤ π,
(1.32)

where ρi is the density of the load, h is its maximum height and α is its angular half-
amplitude.
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By replacing this expression into the third equivalence of Equation (1.28), it is immediate
to obtain the static mass of the disk, which is given by:

md
s = 2πa2ρih(1− cosα). (1.33)

The disk load is balanced by a secondary disk load which satisfies Equation (1.31); by
imposing this condition, one obtains the following load function:

σc(Θ) =

{
0 0 ≤ Θ ≤ α

ρih
′ α ≤ Θ ≤ π,

(1.34)

where

h′ = h
(cosα− 1

cosα + 1

)
. (1.35)

The load function for the balanced disk load is then obtained by adding Equations (1.32)
and (1.34):

σcd(Θ) = ρih

{
1 0 ≤ Θ ≤ α
cosα−1
cosα+1

α ≤ Θ ≤ π,
(1.36)

which, inserted into Equation (1.24), gives the LEG expansion coefficients for a balanced
disk load:

σcd
l =

{
0 l = 0
Pl−1(cosα)−Pl+1(cosα))

1+cosα
l ≥ 1.

(1.37)

Then, this result must be inserted into Equation (1.27) to obtain the Earth response to
a balanced disk load.

The Balanced Parabolic Load

The idea behind the analytic expression for the balanced parabolic load is the same as
the one for the balanced disk load; therefore, only the main results were written [Yuen
et al., 1986]. In particular, the load function for the balanced parabolic load is given by:

σcp = ρi

{
ho

√
cosΘ−cosα
1−cosα

0 ≤ Θ ≤ α

h′ α < Θ ≤ π,
(1.38)

where

h′ = −2

3

(
1− cosα

1 + cosα

)
h0, (1.39)
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with α being the angular half-amplitude of the parabolic load, and h0 being the load
thickness at Θ = 0.
The corresponding LEG coefficients are given by:

σcp
l = ρih

{
0 l = 0
ρih0

3
(1− cosα)ξl(α) +

ρih
′

2
[Pl+1(cosα)− Pl−1(cosα)] l ≥ 1,

(1.40)

where

ξl(α) = − 3

4(1− cosα)2

[
Tl+1(α)− Tl+2(α)

l + 3/2
− Tl−1(α)− Tl(α)

l − 1/2

]
, (1.41)

where Tl(α) are the Chebichev polynomials of second kind.
Finally, the static mass of the primary load is given by

mp
s =

4

3
πa2ρih0(1− cosα). (1.42)
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2. Method

2.1 Model

The dynamic of the forebulge was studied through its radial displacements as well as
their corresponding rates. The evolution of these physical quantities was determined by
numerical simulations performed by the TABOO program, which allows the user to set
the Earth’s model, the load geometry, its time history and the type of study. To define
the outline of the evolution, the following choice of parameters was made:

1. Earth model:
The lithosphere is 70 km thick and the mantle is made of three viscosity layers.
Therefore, the upper shallow mantle is divided into two layers of viscosity 1.0 ·
1021Pa · s, while the lower mantle is made of one layer of viscosity 2.0 · 1021Pa · s
[Mitrovica, 1996]. The Earth’s density and rigidity profile used was employed by
the GIA Benchmark group [Spada et al., 2011], and it was explained in more detail
in Table 2.1.

Radius (km) Density (kg/m3) Shear Modulus (Pa · 1011)

LT 6371 3037 0.50605

ML1 6301 3438 0.70363

ML2 5951 3871 1.0549

ML3 5701 4978 2.2834

CORE 3480 10750 0.0

Table 2.1: Density and rigidity profile of a horizontally homogeneous Earth assuming
that the lithosphere is 70 km thick. Label LT stands for ”Lithosphere” while MLn, n
=1, 2, 3 stands for Mantle Layer number n. In the column labelled by ”Radius”, the
distance (km) between the centre of the Earth and the top of the corresponding layer
is displayed. In the second and third columns the density (kg/m3) and shear modulus
(Pa · 1011) of the corresponding layers are displayed, respectively.
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2. Load geometry:
The glacial load has a quasi-parabolic shape and an angular amplitude of 10° in
lateral direction, and it is placed at the North Pole. Furthermore, a complementary
disk load (i. e. a load of uniform thickness) is added in the region outside the load
so as to ensure the conservation of mass.

3. Load Time history:
The following function describes the load’s time history, which was referred to as
”simple deglaciation”:

f(t) =


h if t < 0

h
(
1− t

τ

)
if 0 ≤ t < τ

0 if t ≥ τ,

(2.1)

where h is the ice thickness at t ≤ 0, which was set at 2500 m [Spada and Melini,
2025], while τ defines the length of the deglaciation and was set at 10 kyrs [Mo-
toyama et al., 2007]. This time history establishes the condition of isostatic equilib-
rium at the Last Glacial Maximum (LGM), which is perturbed during the uniform
deglaciation that occurs at the constant rate of 1/τ . This function was represented
in Figure 2.1.
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Simple Deglaciation Load History

Figure 2.1: Graphical representation of the simple deglaciation function. The load is
still unitl t = 0, when it starts melting at a constant rate given by 0.1 kyrs−1, until at t
= 10 kyrs it disappears.
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4. Study:
The type of investigation is a local study which consists of computing the analysis
on points regularly separated by 0.1° along a fixed meridian (0 meridian) and
included between 0° and 30° along colatitude. The analysis is computed at t = 15
kyrs, which corresponds to present time according to the time convention used for
this investigation [Severinghaus and Brook, 1999].

Later on, this choice of parameters was referred to as ”model 0”. Even though for this
investigation only radial displacements and rates were used, in Figure 2.2 all the quan-
tities that TABOO can compute (radial, colatitudinal, longitudinal displacements and
geoid’s height displacement) were shown. In Figure 2.3, the rates of the above-mentioned
quantities were shown. All these quantities were plotted as functions of colatitude, and
this format was kept for all TABOO simulations performed for this investigation.
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Figure 2.2: Radial (green), colatitudinal (red), longitudinal (blue) displacements and
geoid height (yellow) as functions of colatitude computed by setting the parameters of
model 0 (with t = 15 kyrs, which corresponds to present time according to the time
convention used for this investigation).

Furthermore, the implications of the assumption of spherical symmetry, on which TABOO
simulations are based, were specified [Spada, 2003b]:

1. The load position does not affect the computed analysis. Therefore, for the sake
of simplicity it was placed at the North Pole of the Earth model;
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Figure 2.3: Radial (green), colatiudinal (red), longitudinal (blue) rates of displacement
and rate of geoid height variation (yellow) as functions of colatitude computed by setting
the parameters of model 0 (with t = 15 kyrs, which corresponds to present time according
to the time convention used for this investigation).

2. the longitudinal displacement and its rate are always zero, as shown in Figure 2.2
and Figure 2.3;

3. the meridian along which the analysis is computed does not affect the obtained
results, as the load is axis-symmetric [Farrel, 1972].

To add to this, starting from the ice thickness set in Load History and the load shape
and angular half-amplitude set in Load Geometry, TABOO provides an estimate of the
maximum load mass by using Equation (1.42) where ρi = 931 kg/m3 is the ice density.
The resulting mass was found to be around 6.01 · 1018 kg, a compatible value with the
estimated maximum mass of the Laurentide Ice Sheet (LIS), which is of the order of 1019

kg [Moreno-Parada et al., 2023].

2.2 Forebulge Time Evolution

To investigate the dynamics of the forebulge, the only parameter of the Earth and ice cap
models that needed to be changed was the instant t at which the analysis is computed. To
plot an outline of the temporal evolution, t was varied between 0 kyrs and 25 kyrs through
increments of 1 kyr each. By comparing the graphs plotted for each t, it was possible

16



to obtain an outline of the temporal evolution of lithosphere deformations induced by
glacial unloading. To have a clearer view of the evolution of the forebulge, the graphs
were zoomed in on the lateral upheaval by setting the following ranges:

1. [9, 30]◦ colatitude on the x-axis for both the radial displacements and their rates;

2. [−15, 35] m for the radial displacements;

3. [−5, 5] mm/yr for the rates of the radial displacements.

The evolution of the forebulge was quantified by tracking the movements of its peak. To
do this, the following quantities were recorded:

1. The instant at which the analysis is computed;

2. the colatitude at which the maximum amplitude is found;

3. the maximum amplitude;

4. the corresponding rate of radial displacement.

Through such data, it was possible to quantify both vertical and horizontal displacement
of the peak over time.

2.3 Current Land Subsidence and Rising Sea Level

The impact of the forebulge collapse on rising sea level was studied through its evolution
from today (t = 15 kyrs) to the next two centuries (t = 15.2 kyrs), by increments of 50
years each. Thus, TABOO simulations were performed to obtain the radial displacements
and their rates for each instant t. Initially, the two types of graphs were analyzed by
recording the minimum rate of radial displacement, its colatitude and the corresponding
radial displacement found in the uplifted region next to the load.
After that, a more general analysis was conducted by finding the radial displacement
rates every 0.1° colatitude in the forebulge region. These data were used to create two
charts. The first one has the following characteristics:

1. The radial displacements as a function of colatitude, computed at t = 15 kyrs, are
displayed, so as to have a visual representation of the forebulge;

2. every 0.1° colatitude (the interval at which the analysis is computed, set in the
local study) a down arrow is drawn with color shades from yellow to red. To each
shade of color corresponds one of the following ranges:
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(a) [0, 1] mm/yr;

(b) [1, 2] mm/yr;

(c) [2, 3] mm/yr;

(d) [3, 3.5] mm/yr;

where the absolute values of the subsidence rates were used.

3. the range of the x axis is [9, 16.5]◦ colatitude, in order to display the whole subsi-
dence region.

The second chart is very similar to the first one, but:

1. The range of the x axis is [10, 16.5]◦, so as to display the forebulge region, where
the radial displacements are positive for definition since the forebulge identifies the
upheaval;

2. In addition to the radial displacements computed at t = 15 kyrs, there is a curve
representing the same quantity calculated at t = 15.2 kyrs, in order to visualize
the entity of land subsidence in the forebulge region.

Note that in fact, according to TABOO’s simulations, the subsidence regions covers the
interval [9, 30]◦; however, for a matter of visibility, the rates were computed only until
16.5°, so as to focus on the forebulge region.
Then, the maximum rate of subsidence computed for t = 15 kyrs was assumed constant
and compared with experimental data from the Permanent Service for Mean Sea Level
[Holgate et al., 2013], which distributes annual and monthly tide gauge records from
various stations throughout the world. In particular, the comparison was made with
records from New York The Battery station [PSMSL, 2025c], which is located close to
the top of the LIS-related forebulge [Brandes et al., 2025] and shows a high subsidence
rate, equal to (2.90 ± 0.12) mm/yr [PSMSL, 2025a]. This value was obtained using
monthly data from 1856 to 2024 referred to the Revised Local Reference (RLR, 6.98
m below the Mean Sea Level calculated between 1964 and 2005 for New York The
Battery), a common datum to which each mean value is reduced to in order to calculate
time series [PSMSL, 2025b]. However, a discrepancy of (1.3 ± 0.7) mm/yr is expected
between TABOO predictions and experimental data, as this is the average contribution
of climate change and current ice melting to rising sea level [Gornitz et al., 2001]. Note
that TABOO data represent the vertical land movement; therefore, the subsidence rate
was changed in sign so that the value could be connected with the annual trend of RSL.
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2.4 Controlling Parameters of the Forebulge

The glacial forebulge was studied further by varying the parameters of model 0, in order
to determine its controlling factors and the role of each parameter in determining the
forebulge shape and its subsidence rates.

Load history

The load history chosen for model 0 is extremely simplistic, since it assumes the condition
of equilibrium at LGM and neglects the duration of the load formation. However, there is
proof that this assumption leads to unrealistic results, which are referred to as the strain
rate-stress paradox[Brandes et al., 2025]. For this reason, the radial displacements and
the corresponding rates were analysed by considering a more realistic time history, which
is referred to as ”saw tooth” and which is given by:

f(t) =
N∑

n=0

fn(t), (2.2)

where N ≥ 0 is the number of glaciation in addition to the last and where

fn(t) = [H(t+ nθ + τ)−H(t+ nθ)]f ↑
n(t) + [H(t+ nθ)−H(t+ nθ − δ)]f ↓

n(t), (2.3)

with −τ ≤ t ≤ −nθ + δ.
In Equation (2.3), H(t) denotes the step function, τ is the length of each loading phase
and δ is the length of the unloading phase; θ ≡ τ + δ and:

f ↑
n(t) = +

t

τ
+

nθ + τ

τ
(2.4)

f ↓
n(t) = − t

δ
− nθ − δ

δ
. (2.5)

In particular, two investigations were performed:

1. The first one was meant to study the impact of different loading times. Therefore,
the closest case to model 0 was chosen, with n = 1, δ = 10 kyrs and h = 2500
m. Three different loading times were chosen: τ1 = 10 kyrs, τ2 = 30 kyrs and τ3 =
90 kyrs. This choice of parameters, which differs from model 0 only for the presence
of 1 glaciation in addition to the last, is referred to as ”model 1”;

2. the second one was meant to investigate the radial displacements and their rates
obtained by making a suitable choice of parameters for the Laurentide Ice Sheet.
Therefore, the loading time τ was set at 90 kyrs, while the number of glaciations
in addition to the last was set at 8, for a total number of glaciations equal to 9
[Motoyama et al., 2007]. This choice of parameters was referred to as ”model 2”.
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Figure 2.4: Graphical representation of the Saw Tooth time history. This funtion was
obtained by choosing n = 8, τ = 90 kyrs and δ = 10 kyrs.

Load Geometry

Load with different shapes and amplitudes were used to compute the corresponding
radial displacements and rates. In particular, model 0 was compared with:

1. Model 3: a disk load with the same mass and amplitude. In order to obtain
the maximum height that realizes such a configuration, Equation (1.33) (with ρi =
931 kg/m3), which gives the static mass for a disk load, was inverted. In particular,
the maximum height h was found to be 1667 m;

2. model 4: a parabolic load with the same maximum thickness but half as wide. In
particular, in this case the two ice caps do not have the same mass because, being
the second one only 5° wide, this choice would have led to an unrealistically tall
ice sheet.

In both models 3 ad 4, a complementary load is added to ensure the mass conservation.

Earth Model

Finally, the lithosphere thickness and the viscosity of the mantle layers were varied in
order to analyze the dependence of the forebulge on these parameters.
Since the density and shear moduli profile used so far (see Table 2.1) does not allow
to set the lithospheric thickness, the following computation was performed by using the
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density and rigidity profile shown in Table 2.2, which was built ad hoc for TABOO
[Spada, 2003a]. In particular, the lithosphere thickness was set at the following values

Radius (km) Density (kg/m3) Shear Modulus (Pa · 1011)

LT 6371 P-A P-A

ML1 6371 - h P-A P-A

ML2 5971 3857.7 0.735

ML3 5701 4877.9 1.064

CORE 3480 10931.7 0.0

Table 2.2: Density and rigidity profile of a horizontally homogeneous Earth, where the
lithospheric thickness h can be set by the user. The label LT stands for ”Lithosphere”
while MLn, n = 1, 2, 3 stands for Mantle Layer number n. In the column labeled
by ”Radius”, the distance (km) between the centre of the Earth and the top of the
corresponding layer is displayed. In the second and third column the density (kg/m3)
and shear modulus (Pa · 1011) of the corresponding layers are displayed. This model is
fully Prem-Averaged (P-A), except fore the core shear modulus, which was purposely
set to 0 [Spada, 2003a].

[Turcotte and Gerald, 2014]:

1. 70 km, which is the average lithosphere thickness of the Earth;

2. 40 km, which is a suitable value for the oceanic lithosphere;

3. 120 km, which is a suitable value for the continental lithosphere;

Both configurations 2. and 3. were referred to as ”model 5”, as they differ from model 0
only for the lithospheric thickness (and, consequently, for the density and rigidity profile).
Configuration 1 was referred to as model 0 in spite of the different density and rigidity
profile. In particular, case 3. is locally realistic when analysing the deformations induced
on the North American plate, whose continental lithosphere is anomalously thick [Zhao,
2013].
Then, the role of the viscosity of the mantle layers was investigated. In order to perform
this task, the number of viscosity layers was not varied. Furthermore, the radii of each
layer, their density and shear moduli were maintained constant, as TABOO does not
allow the user to change these parameters one at time. This task was performed in two
ways:

1. All three viscosity layers were proportionally modified (model 6). In particular,
the two following configurations were used:
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(a) η1 = 0.1 · 1021Pa · s, η2 = 0.1 · 1021Pa · s, η3 = 0.2 · 1021Pa · s;
(b) η1 = 10 · 1021Pa · s, η2 = 10 · 1021Pa · s, η3 = 20 · 1021Pa · s;

2. only the first viscosity layer was modified (model 7). In particular, the two following
configurations were used:

(a) η1 = 0.1 · 1021Pa · s;
(b) η1 = 10 · 1021Pa · s.

Again, the point b) of option 2 is particularly suitable for the North American plate,
whose continental lithosphere is anomalously thick [Zhao, 2013].
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3. Results

3.1 Forebulge Time Evolution

In Figures 3.1a and 3.1b, the temporal evolutions from 0 to 25 kyrs of the radial dis-
placement and its rate were shown. These graphs are meant to help visualise the entity
of the process as a whole, since it is responsible for both a tough where the load would
be and the forebulge.
From Figures 3.2a and 3.2b, it was possible to qualitatively describe the temporal evo-
lution of the forebulge:

1. 0 kyrs ≤ t < 8 kyrs:
During the deglaciation of the load, the forebulge continues to rise while slowly
moving inwards. In this phase, the rate of rising continuously decreases.

2. 8 kyrs ≤ t ≤ 10 kyrs:
After reaching its maximum amplitude, the forebulge starts collapsing while it
keeps moving inwards.

3. 10 kyrs < t ≤ 15 kyrs:
The load has disappeared, while the forebulge continues collapsing and moving in-
wards. This is what has been happening since the disappearance of the Laurentide
Ice Sheet until today. At t = 13 kyrs, the rate of lowering reached its maximum.
Since then, the rate of subsidence continuously decreases in absolute value.

4. 15 kyrs < t ≤ 25 kyrs:
The forebulge continues to collapse and reverses its horizontal migration, moving
outwards. The collapse is irreversible and continues even when the upheaval goes
below 0 m. This is what is going to happen in the next ten thousands of years.

The graphs in Figures 3.3 were made in order to better visualize the temporal evolution
of the radial displacements and the corresponding rates for each temporal interval defined
by points 1 - 4 above.
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Figure 3.1: Temporal evolution of radial displacement (Figure 3.1a) and the correspond-
ing rates (Figure 3.1b) from 0 to 25 kyrs. The dark, thick line corresponds to t = 0 kyrs,
which is the starting point of the evolution.
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Figure 3.2: Temporal evolution of radial displacement (Figure 3.2a) and the correspond-
ing rates (Figure 3.2b) of the forebulge from 0 to 25 kyrs. The dark, thick line corresponds
to t = 0 kyrs, which is the starting point of the evolution.
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Figure 3.3: Temporal evolution of radial displacements (Figure 3.3a) and their rates
(Figure 3.3b) divided in four categories: t < 8 kyrs (blue), 8 kyrs ≤ t ≤ 10 kyrs (green),
10 < t ≤ 15 kyrs (yellow) and 15 kyrs ≤ t ≤ 25 kyrs (orange). The darker and thicker
line represents the starting point of the evolution.

In Table 3.1 the maximum amplitude (m), its colatitude (deg) and its rate of dis-
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placement (mm/yr) were displayed. In this case, the evolution varies from 0 to 19 kyrs,
as after this instant the forebulge is completely submerged.

t (kyrs) colatitude (deg) amplitude (m) rate (mm/yr)

0 13.0 22.48 0.43

1 13.0 23.41 1.25

2 12.9 24.78 1.41

3 12.8 26.11 1.28

4 12.8 27.23 0.95

5 12.7 28.05 0.63

6 12.6 28.19 0.30

7 12.5 28.63 -0.03

8 12.5 28.40 -0.43

9 12.4 27.86 -0.71

10 12.3 27.01 -1.49

11 12.3 24.75 -2.84

12 12.2 21.63 -3.35

13 12.2 18.17 -3.51

14 12.2 14.68 -3.46

15 12.2 11.29 -3.30

16 12.3 8.10 -3.06

17 12.3 5.17 -2.81

18 12.4 2.49 -2.53

19 12.4 0.08 -2.28

Table 3.1: Temporal evolution of the peak from 0 kyrs to 19 kyrs.In this table, the peak’s
colatitude (deg), its amplitude (m) and its rate of displacement (mm/yr) is displayed.

This data confirmed the qualitative description explained previously and enriched it
with further details:

1. The peak of the forebulge reached a maximum amplitude of 28.6 m. This value is
relative to the surface of this Earth Model, which is a sphere of radius r = 6371
km;

27



2. firstly, the peak migrated from 13.0° to 12.2° colatitude; then, the direction of
motion reversed and migrated from 12.2° to 12.4° colatitude before going below 0
m;

3. at t = 13 kyrs the peak was subjected to its maximum rate of subsidence, which
was -3.5 mm/yr;

4. today, the peak subsides with a velocity of -3.3 mm/yr.

3.2 Current Land Subsidence and Rising Sea Level

In Table 3.2 the minimum rate of radial displacement, its colatitude and the correspond-
ing radial displacements were displayed. The evolution varies from t = 15 kyrs to t =
15.2 kyrs. First of all, from Table 3.2 it is possible to establish that glacial isostasy alone

t (kyrs) colatitude (deg) minimum rate (mm/yr) amplitude (m)

15.00 12.0 -3.3164 11.04

15.05 12.0 -3.3074 10.87

15.10 12.0 -3.2983 10.71

15.15 12.0 -3.2890 10.54

15.20 12.0 -3.2796 10.38

Table 3.2: Time evolution of the minimum rate of radial displacement. In the first
column, the colatitude (deg) at which the maximum rate is found is displayed. In the
second column, the value of the minimum rate (mm/yr) is displayed, while in the third
column the corresponding radial displacement (m) is displayed.

is not responsible for subsidence rates greater than 3.3 mm/yr. Furthermore, the vari-
ations in the maximum subsidence rate are sufficiently small to be considered constant
at 3.3 mm/yr throughout this time interval. In fact, all values found in the forebulge
region can be considered constant over such a short time interval. The minimum rate of
radial displacement is always found at the same colatitude, which is 12°, and does not
coincide with the peak of the forebulge, even though it is very close to it. Overall, the
piece of land found at 12° will be subjected to 66.0 cm of vertical displacement in the
next two hundred years.
In Figure 3.4 the spatial distribution of the rates of subsidence were displayed. Three
main aspects emerge from the graph:

1. The subsidence region does not coincide with the forebulge, as subsidence is regis-
tered even in depressed land;
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2. the subsidence rates tends to be higher (in absolute value) where the radial dis-
placements themselves are higher;

3. the spatial distribution of the rates of radial displacement is not symmetric: at the
same value of radial displacement, the computed rate of radial displacement at the
left of the peak is higher (in absolute value) then at the right.

In particular, the third point lead to further investigations on the reasons behind the
outward motion of the forebulge’s peak for t > 15 kyrs, shown in Table 3.1. In fact,
by computing the horizontal displacements at t = 15 kyrs and at t = 16 kyrs, it was
possible to verify that in both cases they are still negative, which implies a general inward
movement. Therefore, this apparent paradox can be explained by assuming that at least
at the beginning the outward motion is in fact apparent and due to the fact that the left
part of the forebulge collapses faster than the right one [Brandes et al., 2025].
Finally, by comparing the maximum rate of subsidence (changed in sign, so as to obtain
the corresponding rising in sea level) with PSMSL annual trend, it is possible to establish
that TABOO predictions overestimate the contribution of post glacial isostasy to Rising
Sea Level. In fact, in New York area the vertical land movement related to post glacial
isostasy should be (2.90 ± 0.12) mm/yr − (1.3 ± 0.7) mm/yr = (1.6 ± 0.2) mm/yr, in
contrast to the 3.3 mm/yr predicted by TABOO. Therefore, while TABOO can still be
used to qualitatively predict the forebulge time evolution and its characteristics, both
the Laurentide Ice Sheet and Earth model need to be improved in order to obtain reliable
and precise predictions.

3.3 Controlling Parameters of the Forebulge

Load History

From Figure 3.5a it is possible to deduce that the removal of equilibrium at the Last
Glacial Maximum has a great influence on the forebulge shape, as it produces a larger
and taller upheaval, with a peak of 27 meters. On the other hand, the loading time does
not seem to affect the forebulge shape significantly, while it has an important influence
on the distribution of the rates of radial displacement (Figure 3.5b). However, the most
realistic scenario, which corresponds to a loading time of 90 kyrs, reproduces similar
results to model 0.
Then, model 0 was compared with a more realistic time history for the Laurentide Ice
Sheet (Figure 3.6). These graphs are consistent with what was found in the previous
investigation:

1. The number of glaciations in addition to the last deeply affects the forebulge shape,
since for n = 8, the forebulge is about 27 m high;
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Figure 3.5: Comparison between the radial displacements (3.5a) and the corresponding
rates (3.5b) at t = 15 kyrs of model 0 (green) and model 1, which uses the saw tooth
load history with one glaciation in addition to the last and three three different loading
times: τ1 = 10 (red) kyrs, τ2 = 30 (yellow) kyrs and τ3 = 90 kyrs (blue).
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Figure 3.6: Comparison between the radial displacements (3.6a) and the corresponding
rates (3.6b) at t = 15 kyrs of model 0 (green) and model 2 (red), which uses a more
realistic time history for the Laurentide Ice Sheet: 9 glaciations, 90-kyrs-long loading
phases and 10-kyrs-long deglaciations.
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2. even though the loading time affects the distribution of rates of subsidence, for t
= 90 kyrs the differences between model 0 and model 2 are negligible, which was
stated by the previous graph.

Therefore, the removal of equilibrium at the Last Glacial Maximum is fundamental for
determining the forebulge shape, but can be neglected when computing the subsidence
rates.

Load Geometry

Figure 3.7 shows that the load geometry has a significant impact on both radial displace-
ments and rates of radial displacement in the region that the load had covered and on
what had been the edge of the load.
Concerning the radial displacements:

1. The disk load produces a less deep depression because with equal heights, the
parabolic load has less mass than a disk load. As a consequence, in order to satisfy
the condition of equal masses, the disk maximum height is smaller, which results
in a less deep depression;

2. the depression produced by the disk load is flat, which comes from the fact that
the load’s height is constant at its maximum value. On the contrary, the depth of
a depression induced by a parabolic load smoothly decreases as it departs from the
center of the load, where it reaches its maxmimum depth;

3. the deformations computed at the edge of the disk load results form the step-edge
of this kind of load, which is quite unrealistic.

However, in both cases the discrepancies in the forebulge region are trivial.
Then, a simulation was performed by varying the load amplitude. In particular, Figure
3.8 shows that the forebulges induced by a 10°-wide ice cap (model 0) and a 5°-wide one
(model 4) are basically identical: the second one is just shifted to the left, accordingly
to the different load amplitudes. On the contrary, there is a significant difference in the
deformations induced in the depression: this is due to the fact that the maximum height
for the two ice sheets is the same; therefore the load of model 4 has a steeper profile,
which then affects the induced deformations.
Instead, it is more interesting to analyze the impact on the rates of radial displacement,
which were shown in Figure 3.9. In this case, in addition to the discrepancies in the
depression and in addition to the shift towards left, there is also a significant difference
in the absolute values of rates of subsidence in the forebulge region. In particular, a
narrower glacier produces smaller (in absolute value) rates of subsidence.
However, one must keep in mind that this analysis has the sole purpose of investigating
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the role of the ice sheet’s amplitude in determining the radial displacements and their
rates, as 5° is not a realistic value for the Laurentide Ice Sheet.
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Figure 3.7: Comparison between the radial displacements (3.7a) and the corresponding
rates (3.7b) at t = 15 kyrs of model 0 (green) and model 3 (red), which uses a disk load
of the same mass and amplitude as model 0.
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Figure 3.8: Comparison of the radial displacements induced by model 0 (green), an ice
cap 10° wide, and model 4 (red), a 5°-wide one, at t = 15 kyrs.
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Figure 3.9: Comparison of the rate of radial displacements induced by model 0 (green),
an ice cape 10° wide, and model 4 (red), a 5°-wide one, at t = 15 kyrs.
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Make Model

Figure 3.10 shows the dependence of radial displacements and rates of radial displace-
ments on the lithospheric thickness.
In particular, a thicker lithosphere is less susceptible to radial deformations, as it better
balances the load. Therefore, the forebulge is shorter and farther away from the load. On
the contrary, a thin lithosphere is subject to significant deformations, as the forebulge
is taller and closer to the load. The rates of radial displacement vary consequently: the
thicker the lithosphere, the slower the measured rates of subsidence are, and vice versa.
A similar result was found by varying the viscosity of the three mantle layers accordingly
to model 6, which was explained in the Method. In particular, the higher the viscosity,
the higher the deformations: this is due to the fact that more viscous the mantle layers
are, the longer the deformations remain impressed in the lithosphere (and vice versa),
as shown in Figure 3.11a. The same results were found by varying the topmost layer
only. In particular, the radial displacements induced accordingly to the two scenarios
were compared in Figure 3.11:

1. The forebulge that rises if only the topmost layer has a high viscosity (model
7) is much taller than the forebulge of model 6 (with high viscosity). This result
implies that the viscosity of the upper layer influences the structure of the forebulge
significantly;

2. the depression that forms when using model 6 (with high viscosity) is extremely
more pronounced than the one obtained by using model 7 (with high viscosity).
Thus, this allows to conclude that the viscosity of the lowest layers majorly influ-
ences the depression underneath the load.

There are no significant differences concerning model 6 and 7 with low viscosity.
In Figure 3.12, the rates of radial displacement obtained using both model 6 and 7 were
shown. In particular, it is evident that the computed rates are lower than the ones
foreseen by model 0 both for a higher-viscosity-model and for a lower-viscosity-one (and
for both model 6 and 7). In particular, this results from two aspects:

1. If the viscosity is high, the rates at which the deformations occur is slower. This
is why a high-viscosity model produces lower rates of radial displacement;

2. if the viscosity is low, the rates at which the deformations occur is faster; how-
ever, since the analysis is computed at the same instant t, the involved piece of
lithosphere is closer to a configuration of equilibrium than in the case of Model
0. This is why a low-viscosity-model produces slower rates of radial displacement
than model 0.

Furthermore, for both models 6 and 7, and for both the cases of low and high viscosity,
the region of subsidence (negative rates of radial displacements) is interested by smaller
(≈ 0) rates of subsidence.
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Figure 3.10: Comparison between the radial displacements (3.10a) and the corresponding
rates (3.10b) of three different values for the lithospheric thickness: 70 km (green), 40
km (red) and 120 km (yellow), at t = 15 kyrs.
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Figure 3.11: Comparison between the radial displacements induced accordingly to the
two different configurations for model 6 (Figure 3.11a) and for model 7 (Figure 3.11b),
at t = 15 kyrs.
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Figure 3.12: Comparison between the rates of radial displacements induced accordingly
to the two different configurations for model 6 (Figure 3.12a) and for model 7 (Figure
3.12b), at t = 15 kyrs.
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Conclusions

The forebulge is a dynamic structure which, during the load deglaciation, keeps moving
inward and growing until it reaches its maximum amplitude (28.6 m). At this point,
the forebulge starts collapsing and the rates of radial displacement change in sign, until
the minimum rate of subsidence is reached (-3.5 mm/yr). This happened about two
thousands years ago according to the time conventions used for this investigation. In
the next thousands of years, the forebulge will continue to collapse while migrating
outward. At present time, the lowest rate of subsidence in North America was predicted
to be -3.3 mm/yr, and was found close to the peak of the forebulge. However, thsi
value is not compatible with th current annual trend of rising sea level measured at
New York The Battery station, which is known to be on the top of the LIS-related
forebulge. In particular, monthly data from this station establish an annual trend of
(2.90 ± 0.12) mm/yr, of which ∼ (1.3 ± 0.7) mm/yr are due to climate change and ice
melting. Therefore, TABOO rates overestimate the land movement due to post glacial
isostasy, and both the Earth and ice model need to be improved in order to make reliable
predictions. In fact, the features of the post-glacial forebulge and of subsidence rates
highly depend on both the load and the Earth characteristics, and TABOO can still be
used to identify these dependencies. In particular, considering the radial deformations
and their rates computed at t = 15 kyrs (which, according to the time convention used
for this investigation, corresponds to present time):

1. The removal of equilibrium at LGM, that is to say the addition of one or more
glaciations in addition to the last, determines a taller and larger forebulge, with
a peak reaching around 27 m. However, this variation does not influence the
corresponding rates significantly. On the contrary, time of load formation has a
greater impact on the rates of subsidence: the shorter the building time, the smaller
the subsidence rate (in absolute value). However, by choosing a realistic building
time like 90 kyrs, one obtains the same rates distribution as if the building time had
been neglected. Therefore, the removal of equilibrium at LGM can be neglected
when analyzing the subsidence rates;

2. a different geometry mainly affects the depression and the immediately adjacent
region. In particilar, here a disk geometry can produce unrealistic results that can
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be improved by choosing the parabolic shape, which has a less steep edge than a
disk one;

3. the load half-amplitude does not influence the forebulge shape significantly. In-
stead, it has a more significant impact on the forebulge depression, which is deeper
for narrower loads (with equal load heights), and on the subsidence rates, which
are higher (in absolute values) for wider loads;

4. the lithospheric thickness has an obvious impact on the forebulge shape, as a
thinner lithosphere shows a more significant flexural response to a surface load
than a thicker one. Consequently, a thinner lithosphere shows higher rates of
subsidence (in absolute value) than a thicker one;

5. the viscosity of the topmost mantle layer has an important impact on the forebulge
shape that today is measured. In particular, the higher the viscosity, the taller
and wider the forebulge measured today. The viscosity of the lower mantle layer
majorly affects the depth of the depression, which is higher for higher-viscosity
mantle models; on the other hand, the subsidence rates are in general lower (in
absolute value) for both high and low viscosity models.
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cura che dedicate a coltivare il nostro rapporto. Infine, ringrazio la mia migliore amica
Valentina, per le grosse risate e per le infinite sessioni di gossip; per le serate passate a
giocare ai videogiochi e per essere da sempre la persona che più mi capisce. Ele, Lau,
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