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Abstract

Slope winds are thermally-driven atmospheric phenomena occurring over inclined ter-
rains, playing a crucial role in local microclimates, pollutant dispersion, and wildfire
propagation. Among these, anabatic (upslope) winds are generated by surface heat-
ing, which induces convective motions. While the foundational analytical model was
established by Prandtl for laminar flows, real-world occurrences are inherently tur-
bulent, necessitating advanced numerical tools for their accurate description.
This study employs Large-Eddy Simulation (LES) to investigate the turbulent struc-
ture of anabatic flows developing over an infinite, uniformly heated slope. The pri-
mary objective is to elucidate how the slope inclination angle influences the flow
dynamics and transport mechanisms. The numerical simulations were conducted us-
ing a modified version of the buoyantBoussinesqPimpleFoam solver in OpenFOAM
6, incorporating a rotated coordinate system and specific adjustments to handle pres-
sure boundary conditions on an infinite domain. Three different slope angles were
examined: 15°, 30°, and 45°.
The results for the 30° case were successfully validated against benchmark Direct
Numerical Simulation (DNS) data, confirming the accuracy of the LES setup in cap-
turing the mean flow and turbulent statistics. The analysis of instantaneous fields
revealed the presence of coherent structures, such as thermal plumes and longitudinal
vortices, which are responsible for vertical heat and momentum transport. The com-
parative analysis across slope angles suggests that the observed flow characteristics
may be influenced by multiple factors. Several possibilities could explain the results,
including the specific choice of subgrid-scale modeling approach, the selected compu-
tational parameters, and the statistical convergence criteria employed. These findings
highlight the complexity of numerically simulating stratified flows over sloping terrain
and indicate the need for further investigation to fully isolate the role of topographic
inclination on anabatic flow dynamics.
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Introduction

Slope winds are fluid phenomena that occur in the presence of inclined topographic
surfaces, such as hills or mountain slopes. In particular, thermally-driven slope winds
are divided into two categories: katabatic (katábasis, “descending”) and anabatic
(anábasis, “ascending”). The study of these flows is particularly important for regions
isolated from synoptic-scale phenomena: in these areas, such winds are crucial for
characterizing local microclimates.

The effects of thermally driven winds can be highly varied. For example, they
are important for pollen dispersal [Alba et al., 2000] and pollutant dispersion
[Sabatier et al., 2020], for CO2 transport in forested areas [Feigenwinter et al., 2010],
and even for the migration of certain insect species [Drake and Farrow, 1988]. They
also play a role in wildfire development, either spreading flames or confining fires to
certain elevations [Sharples, 2009], and contribute to climatic processes by affecting
Antarctic ice variability [Mezgec et al., 2017].

Katabatic winds are generated when surface air is colder than the surrounding
air, causing the colder layer to descend along the slope, with warmer air occupying
the vacated space. They form in shaded areas or during nighttime hours.

Anabatic winds are caused by higher boundary layer temperatures compared to
air away from the surface at the same altitude, generating convective motion. The
main difference between these two wind types lies in their stability: the former are
generally associated with stable flows, while the latter are associated with turbulent
motions due to the convective nature of the phenomenon [Whiteman, 2000].

The first analytical study was conducted by Prandtl [Prandtl et al., 2013], mod-
eling one-dimensional laminar flows over uniformly heated or cooled inclined surfaces.
The model solution is exact when using the Boussinesq approximation, revealing a
linear relationship between downslope flow velocity, surface temperature difference,
and heat flux. Although under certain conditions the model predictions are largely
correct, some fundamental aspects of the phenomenon are neglected, particularly its
turbulent nature.

To address this problem, various types of numerical simulations have been per-
formed. Schumann [Schumann, 1990], building on Prandtl’s work, conducted a LES
(Large-Eddy Simulation) of a stratified fluid along an infinite, uniformly heated sur-
face, paying attention to surface roughness. The emergence of coherent structures
was observed, such as longitudinal vortices and Kelvin-Helmholtz waves, depending
on the slope angle. Fedorovich and Shapiro [Fedorovich and Shapiro, 2009a] per-
formed a DNS (Direct Numerical Simulation) of the same case, imposing a surface
heat flux and studying Reynolds number dependence, observing how the mean flow
behavior corresponds to that obtained by Prandtl. Subsequently, Giometto et al.
[Giometto et al., 2017] studied the behavior at high Grashof numbers, again using
DNS, focusing particularly on TKE (Turbulent Kinetic Energy) structure, identi-
fying the division of the boundary layer into four distinct regions. More recently,
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Xiao and Senocak [Xiao and Senocak, 2020] combined DNS with LSA (Linear Sta-
bility Analysis), introducing a new parameter called the stratification perturbation
number, emphasizing perturbation growth and observing their persistence over time.
Cintolesi et al. [Cintolesi et al., 2021], analyzing a double slope configuration using
LES, detected thermal plumes and analyzed their role in vertical heat and momentum
transport.

Experimentally, researchers have used various types of setups for studying the
phenomenon. Reuten et al. [Reuten et al., 2007] used a sloped surface immersed in a
water tank, comparing the results with data obtained by numerical models and field
campaigns, observing agreement between them.

Princevac and Fernando [Princevac and Fernando, 2007], using a tank filled with
a water-glycerin solution, studied how the slope angle and heat flux influenced the
generation of turbulent flows, finding that the deflection of thermal plumes from the
slope is inversely proportional to the Prandtl number and directly proportional to the
slope angle, explaining the observations made by Hunt [Hunt et al., 2003]. Goldshmid
and collaborators [Hilel Goldshmid et al., 2018], using a similar setup, studied how
the presence of a plateau at the top of the slope influenced the flow, discovering a
relation between the length of the slope, the width of the plateau, and the effective
slope angle, a parameter used in this case to verify if the flow separated when reaching
the apex.

For field observations, we recall the work of Whiteman et al.[Whiteman, 1982],
who studied the atmospheric conditions of deep mountain valleys in Western Colorado
via weather balloon, and the work done by Griffiths et al. [Griffiths et al., 2014], who
observed the concentration of radon-222 hourly to detect the presence of anabatic
winds at Jungfraujoch, a saddle in Switzerland.

The present study aims to investigate the influence of slope inclination on the
turbulent dynamics and transport mechanisms of anabatic flows over uniformly heated
infinite surfaces. Through Large-Eddy Simulation (LES) methodology implemented
in OpenFOAM 6, we seek to elucidate how variations in slope angle (α = 15, 30, 45)
affect the fundamental characteristics of thermally-driven upslope flows.
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Chapter 1

Computational Fluid Dynamics

1.1 Navier-Stokes Equations

1.1.1 Generalities

The motion of Newtonian fluids as a continuum is governed by the Navier-Stokes
equations:

ρ
Dui

Dt
= − ∂p

∂xi

+ ρgi +
∂

∂xj

[
2µeij −

2

3
µ(∇ · u)δij

]
, (1.1)

where ρ denotes the fluid density, p the pressure, u = (ui) the velocity field, gi the
gravitational acceleration, µ the dynamic viscosity, eij = 1

2
(∂ui/∂xj + ∂uj/∂xi) the

strain-rate tensor, while δij is the Kronecker delta. In this equation appears the
material derivative, representing the time rate of change following a fluid element, is
defined as:

D

Dt
=

∂

∂t
+ uj

∂

∂xj

(1.2)

In various cases, it’s possible to consider the fluid incompressible, reducing Eq.1.1 to:

∇ · u = 0

ρ
Du

Dt
= −∇p+ ρg+ µ∇2u

(1.3)

In Eq.1.3 the first equation is the continuity equation for incompressible fluids and
the second one the momentum equation. It’s possible to rewrite Eq.1.3 in a non-
dimensional form; to do so we need to select the appropriate scale for Eq.1.1 form a
set of non-linear coupled partial differential equations. The non-linearity emerge from
the convective term of the material derivative (Eq.1.2) and has various implications:
from a pure physical standpoint, the most notable is the emergence of turbulence at
high Reynolds numbers.

1.1.2 The Boussinesq approximation

For systems with incompressible fluids where relative density variations satisfy ∆ρ/ρ0 ≪
1%, the Boussinesq approximation yields:
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∇ · u = 0

Dui

Dt
= −∂Π

∂xi

+
ρ− ρ0
ρ0

gi +
∂

∂xj

(ν
∂ui

∂xj

)

DT

Dt
=

∂

∂xj

(κ
∂T

∂xj

)

ρ = ρ0[1− α(T − T0)]

(1.4)

where Π denotes the kinematic pressure deviation, ν the kinematic viscosity, κ the
thermal diffusivity, α the thermal expansion coefficient and ρ0, T0 the reference density
and temperature. The Boussinesq approximation applies if the temperature differ-
ences in the fluid are small and the vertical scale of the flow is not too large. Eq.1.4
are composed of the continuity equation for incompressible fluids, the momentum
equation, the heat equation and the equation of state.

1.2 Turbulence

1.2.1 Characteristics of turbulent flows

Turbulent flows, unlike laminar flows, are chaotic, nonlinear and highly sensitive to
initial conditions [Kundu et al., 2012]. Such flows must exhibit the following charac-
teristics:

• Randomness: Fluctuations in flow quantities (e.g., velocity, pressure) are
stochastic and irregular.

• Nonlinearity: Small perturbations grow exponentially due to nonlinear inter-
actions, governed primarily by the Reynolds number (Re), which quantifies the
ratio of inertial to viscous forces.

• Diffusivity: Turbulent flows exhibit enhanced transport of momentum, heat,
and mass compared to laminar flows.

• Vorticity: The flow contains coherent, rotating structures called eddies with
a broad range of scales. The largest eddies dominate the kinetic energy, while
smaller eddies contribute to energy cascading.

• Dissipation: Energy is transferred from larger to smaller eddies through vortex
stretching until viscous effects dissipate it into heat (Kolmogorov’s dissipation
scale).

1.2.2 Energy cascade and Kolmogorov Hypotheses

Turbulent flows are fundamentally characterized by the energy cascade process: en-
ergy enters the system through the largest eddies, is transferred to progressively
smaller scales, and is ultimately dissipated by viscous effects at the smallest scales.
To quantify this phenomenon, we define the following quantities: l the characteristic
size of an eddy, u(l) the characteristic velocity scale of an eddy of size l, τ(l) = l/u(l)
the turnover (or dynamical) timescale of an eddy and l0 the integral scale (size of the
largest energy-containing eddies). Andrey Kolmogorov in 1941 created a theory that
rests on two key hypotheses:
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1. Local isotropy: At sufficiently small scales (l ≪ l0), turbulence becomes
statistically isotropic (direction-independent).

2. Universality: In the inertial subrange (scales smaller than l0 but larger than
the dissipation scale η), the energy spectrum depends only on the energy dissi-
pation rate per unit mass ε and the wavenumber k ∼ 1/l.

While we won’t examine the reasoning behind these hypotheses, their consequences
are profound. The Kolmogorov microscales emerge from dimensional analysis of the
dissipative range, defined by the following fundamental relations:

η =

(
ν3

ε

)1/4

(1.5)

uη = (νε)1/4 (1.6)

τη =
(ν
ε

)1/2

(1.7)

where: η is the Kolmogorov length scale uη is the Kolmogorov velocity scale τη is the
Kolmogorov time scale ν is the kinematic viscosity ε is the energy dissipation rate
per unit mass
These scales describe the regime where viscous forces finally overcome inertial mo-
tions, converting kinetic energy into heat. The length scale η represents the physical
size below which turbulent eddies cannot persist - it marks the ultimate limit of the
energy cascade where all remaining motion becomes smooth and laminar. The corre-
sponding velocity scale uη indicates how fast these smallest eddies rotate before being
annihilated by viscosity, while τη gives their characteristic lifetime before energy is
completely dissipated.

1.2.3 Energy Spectrum and Turbulent Kinetic Energy

The turbulent kinetic energy (TKE), denoted k, represents the mean kinetic energy
per unit mass contained in velocity fluctuations and serves as a fundamental measure
of turbulence intensity. This quantity is defined as:

k =
1

2
u′
iu

′
i =

1

2
(u′2 + v′2 + w′2) (1.8)

where: k is the turbulent kinetic energy · indicates Reynolds (temporal) averaging u′
i

are velocity fluctuations relative to the mean flow (u′
i = ui − ui)

The energy distribution across scales is described by the spectrum E(kw), which
relates to TKE through:

k =

∫ ∞

0

E(kw) dkw (1.9)

where E(kw) is the energy spectrum as a function of wavenumber and kw is the
wavenumber (kw ∼ 1/l).
The dissipation rate ε, governing energy conversion to heat, is determined by the
fluctuating strain rate:

ε = 2νS ′
ijS

′
ij, S ′

ij =
1

2

(
∂u′

i

∂xj

+
∂u′

j

∂xi

)
(1.10)
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where: S ′
ij is the fluctuating strain rate tensor.

In the inertial subrange (1/l0 ≪ kw ≪ 1/η), Kolmogorov’s theory predicts the uni-
versal scaling:

E(kw) = αkε
2/3k−5/3

w (1.11)

where αk ≈ 1.5 is the Kolmogorov constant.
The −5/3 exponent reflects the constant energy flux through the cascade. The spec-
trum transitions from energy-containing scales (kw ∼ 1/l0) through the inertial range
to the dissipation range (kw > 1/η), where viscous effects dominate.

1.3 Large-Eddy Simulation

Large-Eddy Simulation represents a computationally efficient approach to model-
ing turbulent flows by exploiting the inherent scale separation in turbulence. This
methodology addresses the fundamental challenge of turbulence modeling: the pro-
hibitive computational cost of resolving all scales of motion while maintaining suffi-
cient accuracy for practical applications. The theoretical foundation of LES rests on
Kolmogorov’s energy cascade theory, which demonstrates that large-scale eddies con-
tain most of the turbulent kinetic energy and exhibit strong dependence on boundary
conditions and geometry, while smaller scales display more universal characteristics.

1.3.1 Theoretical Foundation and Filtering Operation

The motivation for LES emerges from the computational scaling properties of tur-
bulent flows. Direct Numerical Simulation requires resolution of all turbulent scales
from the energy-containing eddies down to the Kolmogorov microscale η, resulting in
computational requirements that scale as Re9/4 for high Reynolds number flows. This
scaling renders DNS impractical for most engineering applications involving complex
geometries or atmospheric flows.
LES circumvents this limitation by recognizing that large eddies (l > ∆, where ∆
is the filter width) carry most of the turbulent kinetic energy and Reynolds stresses
while being highly dependent on flow-specific boundary conditions. Conversely, small
eddies (l < ∆) in the inertial and dissipative ranges exhibit universal behavior de-

scribed by Kolmogorov’s k
−5/3
w spectrum. This scale separation justifies resolving only

the large, energetic scales while modeling the universal small-scale motions through
subgrid-scale (SGS) models.
The filtering operation that defines LES can be expressed mathematically for any
field variable ϕ as:

ϕ̄(x, t) =

∫
Ω

G(r, x)ϕ(x− r, t)dr (1.12)

where ϕ̄(x, t) represents the spatially filtered field, G(r, x) is the filter kernel satis-
fying

∫
Ω
G(r, x)dr = 1, and Ω is the integration domain. The decomposition of the

instantaneous field follows:

ϕ(x, t) = ϕ̄(x, t) + ϕ′′(x, t) (1.13)

where ϕ′′(x, t) denotes the subgrid-scale component, fundamentally distinct from the
temporal fluctuations ϕ′ in Reynolds-averaged approaches.
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Applying the spatial filtering operation to the incompressible Navier-Stokes equations
yields the filtered momentum and continuity equations:

∂uj

∂xj

= 0 (1.14)

∂ui

∂t
+

∂ujui

∂xj

= − ∂p

∂xi

+
∂

∂xj

[
ν
∂ui

∂xj

]
−

∂τ rij
∂xj

(1.15)

The central challenge in LES lies in modeling the residual stress tensor τ rij = uiuj −
ūiūj, which represents the influence of unresolved subgrid scales on the resolved mo-
tion. This tensor cannot be computed directly from the resolved fields and requires
closure modeling. The turbulent kinetic energy in LES naturally decomposes into
resolved and subgrid-scale components:

ktotal = kresolved + ksgs =
1

2
u′
iu

′
i +

1

2
u′′
i u

′′
i (1.16)

This decomposition emphasizes the physical interpretation of LES filtering: the re-
solved field ϕ represents the component observable by a hypothetical detector of size
∆, while the subgrid component accounts for all unresolved motions smaller than the
filter scale.

1.3.2 The Smagorinsky Model and Scalar Transport

The most widely employed closure for the residual stress tensor is the Smagorinsky
model, which applies the eddy viscosity hypothesis:

τ rij = −2νtS̄ij +
1

3
τ rkkδij (1.17)

where the resolved strain rate tensor Sij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
characterizes the deforma-

tion of the resolved flow field. The isotropic component 1
3
τ rkkδij is typically absorbed

into a modified pressure term.
The subgrid-scale viscosity follows the mixing-length formulation:

νt = (CS∆)2|S| (1.18)

where CS ≈ 0.17 is the Smagorinsky coefficient, ∆ represents the filter width (typ-
ically related to grid spacing as ∆ = (∆x∆y∆z)1/3), and |S̄| =

√
2S̄ijS̄ij measures

the magnitude of the resolved strain rate.
The physical interpretation of this model assumes that the most energetic unresolved
eddies have characteristic length scale ls = CS∆ and participate in local equilibrium
between production and dissipation of subgrid-scale energy. The energy transfer rate
from resolved to subgrid scales is:

Psgs = 2νt|S̄|2 = 2(CS∆)2|S̄|3 ≥ 0 (1.19)

This formulation ensures that the model is purely dissipative, always extracting en-
ergy from the resolved scales. While this behavior is generally correct for the forward
energy cascade, it cannot represent the physically important phenomenon of energy
backscatter from small to large scales that occurs intermittently in real turbulent
flows.
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Near solid boundaries, the model requires modification to account for the damping
effects of viscous forces. The Van Driest damping function provides this correction:

ls = CS∆

[
1− exp

(
− y+

A+

)]
(1.20)

where y+ = yuτ/ν represents the dimensionless wall distance in wall units, uτ is the
friction velocity, and A+ ≈ 25 is an empirical constant. This formulation ensures
that the SGS viscosity approaches zero at the wall, where viscous effects dominate
turbulent motions.
The extension of LES to scalar transport follows the same filtering principles ap-
plied to momentum equations. For a passive scalar θ, the filtered transport equation
becomes:

∂θ

∂t
+

∂ujθ

∂xj

=
∂

∂xj

[
κ
∂θ

∂xj

]
− ∂qj

∂xj

+ Sθ (1.21)

where qj = ujθ − ujθ represents the subgrid-scale scalar flux requiring closure mod-
eling. The gradient-diffusion hypothesis provides the most common closure:

qj = −κt
∂θ

∂xj

(1.22)

where the turbulent scalar diffusivity κt = νt/Prt relates to the SGS viscosity through
the turbulent Prandtl number Prt ≈ 0.9. This relationship assumes that momentum
and scalar transport exhibit similar behavior in the subgrid scales, an approxima-
tion that proves adequate for most atmospheric applications including anabatic flow
simulations.

1.3.3 Implementation Considerations and Model Limitations

The practical implementation of LES depends critically on the relationship between
the computational grid and the implicit filtering operation. In most applications,
the filter width is implicitly defined by the grid spacing, with ∆ = (∆x∆y∆z)1/3

providing a representative measure. This implicit filtering means that the numerical
discretization scheme directly influences the effective filter characteristics.
High-order numerical schemes with minimal numerical dissipation provide sharp spec-
tral cutoffs that approximate the ideal LES filter. Conversely, lower-order schemes
introduce numerical dissipation that can overwhelm the subgrid-scale model, leading
to excessive damping of turbulent fluctuations. The choice of discretization scheme
therefore represents a crucial consideration in LES implementation.
Grid anisotropy presents another significant challenge in LES applications. When the
grid stretching ratio exceeds approximately 3:1, the assumption that ∆ represents a
characteristic length scale in all coordinate directions becomes questionable. This
anisotropy can introduce artificial directional bias in the subgrid stresses, potentially
degrading the simulation accuracy. For anabatic flow simulations, where near-wall
resolution requirements often necessitate significant grid stretching in the wall-normal
direction, careful attention to these grid effects becomes essential for maintaining sim-
ulation fidelity.
The standard Smagorinsky model exhibits several well-documented limitations that
become particularly relevant in the context of stratified flows like anabatic circulation.
Its purely dissipative nature prevents representation of energy backscatter, while its
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dependence on the local strain rate leads to insufficient SGS viscosity in regions with
weak velocity gradients, such as flow separation zones or the core regions of large
eddies where active subgrid-scale turbulence may still exist.
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Chapter 2

Large-Eddy Simulation of anabatic
flow at different inclination

2.1 Problem Definition

2.1.1 Governing equations

To simulate anabatic flows effectively, we adopt a rotated reference frame, follow-
ing the methodologies of [Schumann, 1990], [Fedorovich and Shapiro, 2009b], and
[Giometto et al., 2017]. The coordinate system (x̂, ŷ, ẑ) is derived by rotating a con-
ventional Cartesian frame (x̂′, ŷ′, ẑ′) by an angle α about the ŷ′-axis. In this way, we
will have the gravitational acceleration opposite to the ẑ′-axis, with ẑ-axis normal to
the inclined plane, x̂ alongside the stream-wise direction and ŷ alongside the span-wise
direction. The potential temperature θ is decomposed into the background profile θR

and its fluctuations θ′′ (following [Prandtl et al., 2013] and [Giometto et al., 2017]),
allowing the Brunt-Väisälä frequency to be defined as:

N ≡
√

β
dθR

dz′
, (2.1)

where β ≡ g/θ0 is the buoyancy parameter, with g denoting the gravitational ac-
celeration magnitude and θ0 a reference constant temperature. Considering air and
temperature variations of 15K, is possible to adopt the Boussinesq approximation,
having errors less than 1% ([Kundu et al., 2012]). The set of Eq.1.4 in our coordinate
system and using the new notations becomes:

∂uj

∂xj

= 0 (2.2)

∂ui

∂t
+

∂ujui

∂xj

= −kiβθ
′′ − ∂Π

∂xi

+
∂

∂xj

(
ν
∂ui

∂xj

)
(2.3)

∂θ′′

∂t
+

∂ujθ
′′

∂xj

= −∂ujθ
R

∂xj

+
∂

∂xj

(
κ
∂θ′′

∂xj

)
(2.4)

where ki = −(sin(α), 0, cos(α)) is the gravity unity vector and Π = (P − ρ0gixi)/ρ0
is the deviation from the kinematic hydrostatic pressure.
Eq.2.2, 2.3, 2.4 can be rewritten using the buoyancy b ≡ βθ′′ and considering that θR
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only depends on z′, obtaining:

∂uj

∂xj

= 0

∂ui

∂t
+

∂ujui

∂xj

= −kib−
∂Π

∂xi

+
∂

∂xj

(
ν
∂ui

∂xj

)
∂b

∂t
+

∂ujb

∂xj

= N2ujkj +
∂

∂xj

(
κ
∂b

∂xj

) (2.5)

Following [Giometto et al., 2017], it is convenient to introduce a set of characteristic
parameters to normalize the governing equations. The normalization is based on the
surface buoyancy bS > 0 and the Brunt-Väisälä frequency N , defining the following
characteristic scales:

T ≡ N−1, L ≡ |bS |
N2 ,

B ≡ |bS|, U ≡ |bS |
N

(2.6)

Using these scales, the following dimensionless variables are introduced:

t∗ ≡ t
T
, x∗

i ≡ xi

L
, b∗ ≡ b

B
,

u∗
i ≡ ui

U
, Π∗ ≡ Π

U2

(2.7)

Substituting these dimensionless variables into the governing Equations 2.5, we obtain
the dimensionless form:

∂u∗
j

∂x∗
j

= 0

∂u∗
i

∂t∗
+

∂u∗
ju

∗
i

∂x∗
j

= −kib
∗ − ∂Π∗

∂x∗
i

+Gr−1/2 ∂

∂x∗
j

(
∂u∗

i

∂x∗
j

)
∂b∗

∂t∗
+

∂u∗
jb

∗

∂x∗
j

= u∗
jkj + (Gr−1/2Pr−1)

∂

∂x∗
j

(
∂b∗

∂x∗
j

) (2.8)

where two important dimensionless numbers appear:
- The Prandtl number : Pr = ν/κ, representing the ratio between the hydrodynamic
boundary layer and the thermal boundary layer thickness.
- The Grashof number : Gr ≡ b4S/ν

2N6, representing the ratio between buoyancy
forces and viscous forces.
The Grashof number is particularly significant in anabatic flows as it characterizes the
relative importance of buoyancy-driven convection compared to molecular diffusion.
Large values ofGr indicate that buoyancy forces dominate over viscous effects, leading
to more vigorous convective motions along the slope.
For the analysis of turbulent processes in anabatic flows, it is useful to derive the
conservation equation for the dimensionless turbulent kinetic energy k′∗ ≡ k′/U2,
where k′ = 1

2
⟨u′

iu
′
i⟩ and u′

i = ui − ⟨ui⟩ represents the velocity fluctuations. Following
the derivation in [Giometto et al., 2017], the dimensionless TKE equation reads:

∂k′∗

∂t∗
= −⟨b′∗u′∗

j ⟩kj −
∂⟨Π′∗u′∗

z ⟩
∂z∗

− ⟨u′∗
x u

′∗
z ⟩

∂⟨u∗
x⟩
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′∗
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′∗
z ⟩
)
+Gr−1/2∂

2k′∗

∂z∗2
−Gr−1/2

〈
∂u′∗

i

∂x∗
j

∂u′∗
i

∂x∗
j

〉 (2.9)
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2.2 Numerical Setup

2.2.1 Geometry and computational mesh

The computational mesh employed for the simulation is orthogonal, static, and struc-
tured, with a grid resolution of 96× 96× 256 cells in the three coordinate directions.
Following the configuration adopted by [Giometto et al., 2017], the computational do-
main spans normalized dimensions of [0, 0.0241]× [0, 0.0241]× [0, 0.0324]. For clarity,
we identify the slope surface as the floor and the opposing boundary as the ceiling. To
better resolve near-surface phenomena, the mesh incorporates hyperbolic stretching
along the ẑ-direction, providing enhanced refinement near the floor boundary.

Figure 2.1: Computational mesh structure

2.2.2 Parameters

The case was simulated for three distinct slope inclination angles α: 15◦, 30◦, and
45◦. These configurations will be referred to as α15, α30, and α45, respectively. All
simulations employed identical physical parameters, as documented in Table 2.1.

ν (m2/s) bs (m/s2) N (s−1) Gr

1.5× 10−5 1 0.526 2.1× 1011

Table 2.1: Physical parameters used in the simulation

The simulation duration was determined based on the characteristic period of internal
gravity waves, defined as Tp = 2π/ sin (α) ([McNider, 1982]). Following the method-
ology of [Giometto et al., 2017], the total simulation time was set to exceed 6Tp to
ensure complete flow development and statistical stationarity. For consistency across
all cases, a fixed duration of 288 seconds was adopted.
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2.2.3 Initial and boundary conditions

The fluid is initially at rest, with all internal field variables set to zero as the initial
condition. The boundary conditions applied to the system are summarized in Ta-
ble 2.2.

Face ui b Π νt κt

Floor ui = 0 b = bS zero-gradient zero-gradient zero-gradient

Ceiling zero-gradient b = 0 Π = 0 zero-gradient zero-gradient

Vertical faces cyclic cyclic cyclic cyclic cyclic

Table 2.2: Boundary conditions

The physical interpretation of the applied boundary conditions is as follows:

• Floor Boundary

– ūi = 0: No-slip condition
The fluid velocity is zero at the floor.

– b̄ = bS: Fixed buoyancy
Maintains constant density difference at the boundary, representing a heat
source.

– Zero-gradient for Π̄, ν̄i, κ̄i:
No transport through the wall.

• Ceiling Boundary

– b̄ = 0: Neutral buoyancy
Sets reference density state.

– Π̄ = 0: Reference pressure
Fixes pressure baseline to prevent numerical drift.

– Zero-gradient for ūi: Free-slip
Allows fluid to move parallel to the surface without friction.

• Vertical Boundaries

– Cyclic conditions :
Connects opposite boundaries to simulate infinite horizontal extent, elim-
inating edge effects.

2.2.4 Solver Modifications and Numerical Schemes

The simulation was conducted using a modified version of OpenFOAM’s
buoyantBoussinesqPimpleFoam solver, adapted specifically for anabatic flows. The
key modifications were necessary to handle the physics of stratified flows on an inclined
plane while ensuring compatibility with cyclic boundary conditions that simulate an
infinite slope.
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Main Solver Structure

The modified solver follows the PIMPLE algorithm, which combines the SIMPLE
and PISO methods for pressure-velocity coupling in transient flows. This approach
allows for larger time steps while maintaining numerical stability, which is essential
for LES simulations where computational efficiency is crucial.
The solution procedure consists of a time loop with nested correction loops:

1 while (pimple.loop())

2 {

3 #include "UEqn.H" // Momentum equation

4 #include "bEqn.H" // Buoyancy equation

5

6 while (pimple.correct ())

7 {

8 #include "pEqn.H" // Pressure correction

9 }

10

11 if (pimple.turbCorr ())

12 {

13 turbulence ->correct (); // Update SGS model

14 }

15 }

Listing 2.1: Main time-stepping loop structure.

This structure ensures proper coupling between momentum, buoyancy, and pressure
fields. The outer loop handles the predictor steps for velocity and scalar transport,
while the inner loop corrects the pressure field to satisfy continuity. The turbulence
model is updated according to the Smagorinsky formulation.

Critical Modification: Pressure Treatment for Cyclic Boundaries

The most important modification addressed a fundamental issue with the original
solver’s pressure formulation. The standard approach included position-dependent
hydrostatic terms that violated the periodicity required for cyclic boundary condi-
tions on an infinite inclined plane.
The solution involved redefining the pressure variable to match our theoretical frame-
work:

p rgh =
P − ρ0gixi

ρ0
= Π (2.10)

This removes the hydrostatic pressure component, preserving only the dynamic pres-
sure deviations that can properly satisfy periodic boundary conditions. For infinite
domains with cyclic boundaries, the hydrostatic component must be treated as an
explicit body force rather than a pressure gradient to maintain mathematical consis-
tency.
The modification required removing the hydrostatic term phig from the pressure
equation:

1 // Remove the hydrostatic contribution for cyclic boundaries

2 // surfaceScalarField phig(-rAUf*khf*fvc:: snGrad(rhok)*mesh.magSf())

;

3

4 surfaceScalarField phiHbyA

5 (

6 "phiHbyA",
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7 fvc::flux(HbyA)

8 + MRF.zeroFilter(rAUf*fvc:: ddtCorr(U, phi))

9 // + phig // This term is removed for cyclic compatibility

10 );

Listing 2.2: Removal of hydrostatic contribution in pressure equation.

Momentum Equation with Buoyancy Forcing

To compensate for removing the hydrostatic pressure gradient, the buoyancy force
term −bk was added explicitly to the momentum equation. This ensures gravitational
effects are correctly represented while maintaining cyclic compatibility:

1 fvVectorMatrix UEqn

2 (

3 fvm::ddt(U)

4 + fvm::div(phi , U)

5 + turbulence ->divDevReff(U)

6 ==

7 - b*k // Explicit buoyancy forcing

8 + fvOptions(U)

9 );

Listing 2.3: Explicit buoyancy forcing in momentum equation.

Here, the gravity vector k = (− sin(α), 0, cos(α)) accounts for the inclined coordinate
system, directly implementing the term −kib from the filtered momentum equation.

Buoyancy Transport with Stratification Effects

The buoyancy equation required significant modification to include the background
stratification source term N2ujkj. This term represents the crucial interaction be-
tween the flow and the ambient atmospheric stability, arising from the advection of
the background potential temperature profile.

1 {

2 alphat = turbulence ->nut()/Prt;

3 volScalarField alphaEff("alphaEff", turbulence ->nu()/Pr + alphat

);

4 volScalarField source("source", N2*(U & k));

5

6 fvScalarMatrix bEqn

7 (

8 fvm::ddt(b)

9 + fvm::div(phi , b)

10 - fvm:: laplacian(alphaEff , b)

11 ==

12 fvm::Sp (0.25* source , b) // Implicit contribution

13 + source *(1.0 - 0.25*b) // Explicit contribution

14 + fvOptions(b)

15 );

16

17 bEqn.solve();

18 }

Listing 2.4: Buoyancy equation with stratification source.

The effective thermal diffusivity alphaEff combines molecular (ν/Pr) and turbulent
(νt/Prt) contributions, where Prt = 0.9. The mixed implicit-explicit treatment of the
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stratification source term (75% explicit, 25% implicit) enhances numerical stability by
improving the diagonal dominance of the coefficient matrix while avoiding potential
instabilities from fully explicit treatment.

Numerical Discretization

Second-order accuracy was maintained throughout the simulation using carefully se-
lected discretization schemes:

Temporal Schemes:

• Time derivatives: Second-order backward Euler (SOUE) for all transient
terms

• This provides good stability properties while maintaining temporal accuracy for
LES applications

Spatial Schemes:

• Gradients and Laplacians: Gaussian integration with linear interpolation

• Advection terms:

– Bounded Gamma scheme for momentum transport to prevent oscillations

– MUSCL scheme for buoyancy transport to ensure monotonicity

The Gamma scheme automatically switches between second-order central differencing
in smooth regions and first-order upwinding near sharp gradients, making it well-
suited for turbulent flows. The MUSCL scheme provides similar adaptive behavior
for scalar transport while keeping the buoyancy field physically bounded.

Sub-Grid Scale Model Implementation: The Smagorinsky model implementa-
tion follows the formulation described in Section ??, with near-wall damping applied
using:

νt = (Cs∆)2|S|
[
1− exp

(
− y+

A+

)]2
(2.11)

where the squared damping function provides more accurate representation of the
viscous-turbulent transition compared to the linear form.

Linear System Solution: The discretized equations are solved using efficient al-
gebraic methods:

• Pressure correction: GAMG (Generalized Algebraic Multi-Grid) solver with
geometric-algebraic coarsening

• Momentum and scalar equations: BiCGStab with diagonal incomplete-LU
preconditioning

The structured orthogonal mesh eliminates the need for non-orthogonal correc-
tions, simplifying the numerical setup and improving computational efficiency. The
mesh quality ensures that surface-normal vectors align with coordinate directions,
avoiding iterative corrections required for skewed cells.
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2.3 Results

This section presents the analysis of the simulation results, beginning with a rigorous
validation against the benchmark DNS data from [Giometto et al., 2017] for the α30

slope case. This is followed by a comparative investigation of the flow characteristics
across the three different slope angles. All profiles are presented with the normalized
height z/L on the ordinate axis, where L denotes the characteristic length scale
of the flow domain. This normalization allows for a consistent comparison across
different flow configurations and facilitates the identification of scaling relationships
in the turbulent boundary layer development. The validation serves to establish the
credibility of the present numerical setup and methodology, while the subsequent
parametric analysis aims to elucidate the sensitivity of anabatic flow dynamics to
variations in slope inclination.

2.3.1 Validation against DNS Benchmark Data

The numerical results for the α30 case were quantitatively compared against the
benchmark DNS data from [Giometto et al., 2017]. Figure 2.2 shows the comparison

(a) Vertical profile of normalized mean
streamwise velocity.

(b) Vertical profile of normalized mean buoy-
ancy.

Figure 2.2: Comparison of mean profiles from the present α30 and the reference DNS
data.

of the first-order statistics. The mean streamwise velocity profile (Fig.2.2a) exhibits
excellent agreement with the DNS benchmark. The present LES accurately captures
the key features: the near-wall velocity increase, the magnitude and position of the
velocity maximum at z/L ≈ 6× 10−3, and the subsequent decay towards zero in the
outer layer, including the faint back-flow region around z/L ≈ 0.1. The normalized
mean buoyancy profile ⟨b̄⟩/B (Fig.2.2b) also shows very good agreement. The simu-
lation correctly replicates the strong positive buoyancy at the wall (⟨b̄⟩/B = 1), the
steep gradient in the immediate vicinity of the surface (z/L < 3 × 10−3), and the
subsequent gradual decrease with height. The comparison of the second-order statis-
tics, shown in Figures 2.3 and 2.4, demonstrates the capability of the present LES to
capture the turbulent structure of the flow. The vertical distribution and magnitude
of the velocity fluctuations are well reproduced. The RMS of the streamwise veloc-
ity component (Fig.2.3a) is slightly under-predicted in the region of its peak value
(2 × 10−3 < z/L < 8 × 10−2). The spanwise velocity fluctuations (Fig.2.4a) are ac-
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(a) Streamwise velocity fluctuations (b) Buoyancy fluctuations

Figure 2.3: Comparison of RMS values of ux and b from the present α30 and the
reference DNS data.

curately captured across the entire domain height. The vertical velocity fluctuations
(Fig.2.4b) show good agreement in the outer region but are slightly under-predicted
in the near-wall region (z/L < 5 × 10−2). The buoyancy fluctuations (Fig.2.3b) are
accurately captured in the outer layer, including the pronounced maximum.

(a) Spanwise velocity fluctuations (b) Vertical velocity fluctuations

Figure 2.4: Comparison of RMS values of uy and uz from the present α30 and the
reference DNS data.
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2.3.2 Analysis of Slope Angle Effects

The Large Eddy Simulation results for the three slope angles reveal the fundamental
flow characteristics of anabatic boundary layers. All quantities are normalized using
the characteristic parameters defined in Section 2.1.1, with vertical profiles presented
on logarithmic scales to emphasize the different flow regions.

Mean Flow Structure

(a) Vertical profile of normalized mean
streamwise velocity

(b) Vertical profile of normalized mean buoy-
ancy

Figure 2.5: Mean profiles of the fundamental quantities

The mean streamwise velocity profiles (Figure 2.5a) demonstrate the classical an-
abatic flow structure across all three slope angles. The near-wall acceleration region
(z/L < 10−3) shows velocity increase due to positive buoyancy forcing, followed by a
fully developed region (10−3 < z/L < 10−1) containing the velocity maximum, and
an outer decay region (z/L > 10−1) where velocity approaches zero.
The mean buoyancy profiles (Figure 2.5b) confirm the three-layer structure charac-
teristic of stratified flows ([Pope, 2000]): a high-gradient near-wall region, an inter-
mediate region with local minimum corresponding to maximum turbulent activity,
and an outer layer returning to neutral stratification. The negative values observed
at z/L ≈ 10−1 in both velocity and buoyancy fields represent the back-flow region,
arising from mass conservation requirements within the confined domain. A closer
inspection of the velocity profiles reveals a consistent, albeit modest, reduction in the
maximum streamwise velocity for the α = 45◦ case compared to the shallower slopes.
This observed trend is physically consistent with the expected dynamics: on steeper
slopes, a larger component of the buoyancy force acts to pull the fluid parcel directly
away from the surface (in the wall-normal direction, ẑ), rather than accelerating it
along the slope (in the streamwise direction, x̂). Consequently, for a fixed surface
buoyancy bS, the effective acceleration driving the upslope flow is reduced as the
slope angle α increases, leading to a lower peak velocity
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Turbulence Characteristics

(a) Streamwise velocity fluctuations (b) Spanwise velocity fluctuations

(c) Vertical velocity fluctuations

Figure 2.6: Vertical profiles of the velocity component standard deviations (RMS).

Figure 2.7: Vertical profile of normalized turbulent kinetic energy

The velocity fluctuation profiles (Figures 2.6a-2.6c) exhibit typical boundary layer
anisotropy, with horizontal components exceeding vertical fluctuations, particularly
near the wall. The turbulent kinetic energy distribution (Figure 2.7) peaks in the
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intermediate region (10−2 < z/L < 10−1), indicating maximum turbulence production
through combined shear and buoyancy effects.

Turbulent Transport Mechanisms

(a) Vertical turbulent momentum flux (b) Vertical turbulent buoyancy flux

Figure 2.8: Vertical profiles of the turbulent fluxes.

The turbulent momentum flux (Figure 2.8a) maintains positive values throughout
the boundary layer, confirming net upward momentum transport characteristic of
anabatic flows. Similarly, the turbulent buoyancy flux (Figure 2.8b) shows positive
values across the domain, validating the gradient-diffusion hypothesis:

⟨b̄′ū′
z⟩ = −ΓT

∂⟨b̄⟩
∂z

(2.12)

Given that the mean buoyancy gradient ∂⟨b̄⟩/∂z is negative while the flux ⟨b̄′ū′
z⟩ is pos-

itive, this confirms downgradient transport with positive turbulent diffusivity ΓT > 0.

(a) Buoyancy fluctuations (b) Horizontal turbulent buoyancy flux

Figure 2.9: Profiles of buoyancy fluctuations and horizontal turbulent flux

The buoyancy fluctuations (Figure 2.9a) peak in the near-wall region where the
mean buoyancy gradient is steepest, decreasing with height as the mean gradient
weakens. The horizontal turbulent buoyancy flux (Figure 2.9b) shows significant
values only in the near-wall region.
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2.3.3 Instantaneous Flow Field Analysis

The analysis of instantaneous flow fields from the LES reveals the three-dimensional
turbulent structures characteristic of anabatic flows. Unlike the time-averaged statis-
tics presented previously, these fields capture the dynamic and intermittent nature of
convective transport processes.

Vortical Structures and Thermal Plumes

The instantaneous vorticity field (Figure 2.10) reveals organized rotational structures
that develop from surface heating. These structures manifest as thermal plumes - co-
herent columns of buoyant fluid rising from the heated surface and transporting heat
and momentum vertically through the boundary layer. The plumes exhibit signifi-

Figure 2.10: Vertical section showing instantaneous vorticity field

cant deformation from perfect vertical alignment due to interactions with the mean
shear flow and neighboring turbulent structures. Vorticity generation occurs primar-
ily through baroclinic production, where misaligned density and pressure gradients
create fluid rotation according to:

Dω

Dt
=

1

ρ2
∇ρ×∇p+ viscous terms (2.13)

where ω is the vorticity vector representing local fluid rotation, ρ is the fluid density
varying with temperature, and p is the pressure field. The cross product ∇ρ × ∇p
generates vorticity when density gradients (from heating) are not parallel to pressure
gradients, causing fluid elements to spin.
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Surface Flow Characteristics and Near-Wall Dynamics

The surface flow analysis reveals the fundamental mechanisms driving anabatic cir-
culation. Figure 2.12 presents multiple aspects of the surface flow dynamics through
different field variables that illuminate near-wall convective processes. The vertical

(a) Vertical velocity field w at the surface

(b) Vorticity field at the surface

Figure 2.11: Vertical velocity w and Vorticity at the surface

velocity field at the surface (Figure 2.11a) demonstrates discrete nucleation points
where thermal plumes originate. Regions of positive vertical velocity (red) indicate
plume initiation sites where buoyancy forces overcome viscous constraints imposed by
the no-slip condition. The patchy distribution reflects the inherent instability of the
heated boundary layer, where small perturbations amplify through buoyancy feed-
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(a) U divergence field at the surface

(b) U gradient field at the surface

Figure 2.12: Flow field of U at the surface (z/L = 0).
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back.
The surface vorticity field (Figure 2.11b) reveals rotational dynamics associated with
flow separation and thermal plume formation. High vorticity regions coincide with
strong velocity gradients where upward-moving fluid creates shear with adjacent flow
regions.
The velocity divergence field (Figure 2.12a) illustrates flow expansion patterns. The
divergence ∇ · u measures the rate of volumetric expansion of fluid elements - pos-
itive values indicate regions where heated fluid accelerates away from the surface,
while negative values show convergence zones where cooler fluid flows toward thermal
instability sites.

Boundary Layer Development and Thermal Structure

At elevated positions within the boundary layer (z/L = 0.15), the flow transitions
from immediate surface influence into regions where thermal plumes establish their
characteristic structure (Figure 2.13). The vertical velocity field (Figure 2.13a) shows
the organization of thermal plumes into more coherent structures. During ascent,
plumes entrain ambient fluid through turbulent mixing, progressively diluting their
thermal anomaly while increasing their mass flux and momentum transport capacity.
The buoyancy gradient field (Figure 2.13b) identifies interfaces between ascending
warm fluid and ambient air. The gradient magnitude |∇b| quantifies the strength of
density variations - large gradients mark plume boundaries where molecular diffusion
and turbulent transport compete to homogenize the thermal field.

Three-Dimensional Thermal Structure Analysis

The vertical velocity distribution on a constant buoyancy isosurface (Figure 2.14) pro-
vides insight into the complex three-dimensional geometry of thermal plumes. The
isosurface topology reveals that plumes are not simple cylindrical structures but ex-
hibit complex morphologies with branching, merging, and splitting behaviors. The
irregular surface geometry reflects nonlinear dynamics governing plume evolution,
where individual rising elements interact through pressure perturbations, leading to
mutual attraction or repulsion depending on their relative phase and separation dis-
tance.
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(a) Vertical velocity field w at z/L = 0.15

(b) Buoyancy gradient field at z/L = 0.15

Figure 2.13: Fluid dynamic fields in the boundary layer (z/L = 0.15).
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Figure 2.14: Vertical velocity field w at the b = 0.1bmax isosurface

2.3.4 Critical Analysis of Slope Angle Sensitivity

The most striking outcome of this parametric study is the unanticipated insensitivity
of the flow statistics to changes in slope inclination. This result presents a significant
divergence from the foundational work of [Prandtl et al., 2013] and the high-fidelity
DNS data of [Giometto et al., 2017], both of which establish a clear dependence of
anabatic flow structure on the slope angle.
Quantitative analysis reveals that the differences in mean velocity, buoyancy, turbu-
lent kinetic energy, and flux profiles between the α = 15◦, 30◦, and 45◦ cases are
negligible and fall within the margin of statistical uncertainty inherent to the LES
approach. This suggests that the present computational framework, while success-
fully capturing the global characteristics of anabatic flow, fails to resolve the specific
physical mechanisms through which topography modulates these dynamics.
Two principal constraints of the current methodology are hypothesized to be respon-
sible for this limitation:

1. Inherent Deficiencies of the SGS Closure: The standard Smagorinsky
model is notoriously dissipative and isotropic. Its tendency to overdamp tur-
bulent fluctuations likely suppresses the smaller-scale, energy-containing eddies
that are most responsive to changes in the orientation of the buoyancy force
relative to the slope. This excessive damping effectively filters out the nuanced
dynamics that differentiate steeper from shallower slopes, homogenizing the
simulated flow fields.

2. Computational and Parametric Constraints: The selected Grashof num-
ber (Gr = 2.1 × 1011), while substantial, may not be sufficiently high to force
the flow into a fully turbulent regime where inertial effects decisively dominate
viscous constraints across all scales. In this transitional state, the flow’s re-
sponse to topographic forcing might be muted. Furthermore, the possibility of
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numerical artifacts or insufficient statistical convergence for the extreme angles
(α = 15◦, 45◦) cannot be entirely discounted, as their unique flow structures
may require longer simulation times to achieve true stationarity.

Consequently, the immediate priority for future work must be to recompute the
α = 15◦ and α = 45◦ cases with extended temporal averaging and stringent con-
vergence monitoring. This will serve to conclusively eliminate inadequate sampling
as a potential cause. Should the lack of sensitivity persist, it will robustly indict the
SGS model’s limitations.
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Chapter 3

Conclusions

This thesis has detailed the implementation and results of a Large-Eddy Simulation
study designed to investigate the influence of slope angle on anabatic flow dynamics.
A numerical framework was established within OpenFOAM, incorporating a rotated
coordinate system and critical solver modifications to accurately represent the physics
of a stratified flow on an infinite inclined plane with cyclic boundaries.
The simulation successfully reproduced the canonical features of anabatic flows. The
instantaneous flow fields revealed the formation and evolution of coherent structures,
such as thermal plumes and longitudinal vortices, which are the hallmark of convec-
tive boundary layers driven by surface heating. The validation of the α = 30◦ case
against the DNS benchmark of [Giometto et al., 2017] demonstrated excellent agree-
ment for both first and second-order statistics, confirming the model’s capability to
capture the mean flow structure and turbulent quantities for a specific configuration.
However, the central finding of this study is the surprising absence of a clear sen-
sitivity to slope inclination. The comparative analysis showed that the statistical
properties of the flow were virtually identical for angles of 15◦, 30◦, and 45◦. This
lack of dependence is unexpected, not in agreement with theoretical and high-fidelity
numerical evidence. A few hypotheses are formulated to explain this result: the exces-
sive dissipation inherent in the standard Smagorinsky model, which likely suppresses
the scale-specific turbulent interactions crucial for topographic modulation, the po-
tential influence of the selected Grashof number and, possiby, of numerical issues in
the simulations of the extreme angles, requiring verification through recomputation,
are also acknowledged as contributing factors.
Based on these considerations, an additional work is needed, specifically exploring
the following points:

1. Verification and Validation: The paramount next step is to re-run the
α = 15◦ and α = 45◦ simulations to ensure statistical robustness and rule
out numerical artifacts, thereby confirming the result’s validity.

2. Advanced Turbulence Modeling: Subsequent studies should employ ad-
vanced SGS closures, such as Dynamic or Anisotropic Minimum Dissipation
models, to mitigate excessive dissipation and better capture the physics of strat-
ified flows over complex topography.

3. Extended Parameter Study: Exploring a higher Grashof number regime
would help bridge the gap towards more realistic atmospheric conditions and
potentially amplify turbulent scaling effects.
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In summary, this work provides a validated LES framework for simulating anabatic
flows and successfully captures their characteristic coherent structures. Yet, it also ex-
poses a possible vulnerability of standard subgrid-scale models in simulating topographically-
sensitive turbulence. It underscores the necessity of meticulous model selection and
paves the way for more sophisticated numerical experiments to truly elucidate the
role of slope angle in governing anabatic wind systems.
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