
Alma Mater Studiorum · University of Bologna

SCHOOL OF SCIENCE
Degree Programme in Mathematics

Block encoding techniques:
an explicit quantum circuit for the Heisenberg

Hamiltonian

Master’s Thesis in Mathematics

Supervisor:
Prof. Giacomo De Palma

Co-supervisor:
Prof. Valeria Simoncini

Presented by:
Filippo Della Chiara

Academic Year 2024–2025

“Il tempo vola e porta con sé via tutto"

Contents

1 Introduction 1

2 Preliminaries on quantum computing 7

2.1 Quantum Bits . 7

2.2 Quantum measurament . 14

2.3 Quantum Circuit . 17

3 Quantum singular value transformation 23

3.1 Quantum signal processing . 24

3.2 Amplitude Amplification . 28

3.3 Quantum eigenvalue transform 31

4 Block encodings 37

4.1 General notion . 37

4.2 Fast Approximate Quantum Circuits for Block-Encodings . . . 45

4.3 Sparse matrices . 51

5 Efficient Block Encoding of Spin Hamiltonians 61

5.1 Fast One-Qubit Control Select LCU 62

5.2 Preparation of Dicke states . 70

5.3 Applications on spin models 80

5.4 Compression of PR for the Heisenberg Model 86

6 Conclusion 93

i

ii CONTENTS

Bibliography 95

List of Figures

2.1 Representation of a single-qubit pure state |ψ⟩ on the Bloch
sphere. 10

3.1 Illustration of amplitude amplification on the Bloch sphere:
starting from |B0⟩, controlled rotations about |B0⟩ (blue) and
|A0⟩ (black) drive the state toward the target |A0⟩ (north
pole). 29

4.1 A complete quantum circuit for the block encoding of a 8× 8

banded circulant matrix. 60

5.1 LCU block encoding . 63
5.2 Circuits representing FOQCS-LCU. 68
5.3 Circuit used to implement PR for the Heisenberg model. . . . 83
5.4 Decomposition of the gates in fig. 5.3. 88
5.5 Commutations of the controlled gates of fig. 5.4. 89
5.6 Compression of controlled Dicke gates. 89
5.7 Comapct implementation of PR for the Heisenberg model . . . 90
5.8 CNOT count from FOQCS-LCU, LCU, and FABLE for the

Heisenberg model, with FABLE evaluated at precisions ϵ =

10−3 and ϵ = 10−6. 92

iii

Abstract

Quantum computing leverages quantum mechanics to solve problems that
are intractable for classical computers. A central framework in this domain
is Quantum Singular Value Transformation (QSVT), which enables efficient
manipulation of matrix operations and underlies many quantum algorithms,
including those for solving linear systems and simulating quantum dynamics.

Block encoding is a key technique that embeds non-unitary matrices into
unitary operators, making them amenable to the QSVT. Among block encod-
ing methods, the Linear Combination of Unitaries (LCU) technique is widely
used, but its practical utility is limited by high gate overhead—particularly
from multi-controlled operations.

This thesis introduces a new formulation, FOQCS-LCU, which reduces
both practical and asymptotic circuit complexity. By exploiting the structure
of physically motivated Hamiltonians, we also develop efficient routines for
preparing Dicke states, which are superpositions over basis states with fixed
Hamming weight.

We demonstrate our method by constructing explicit block encoding cir-
cuits for the Heisenberg Hamiltonian, achieving an order-of-magnitude reduc-
tion in CNOT gate count compared to standard LCU approaches. Detailed
gate counts and numerical benchmarks confirm the efficiency of our tech-
nique. This work advances the feasibility of block encoding as a subroutine
for large-scale quantum algorithms and supports more efficient implementa-
tions on fault-tolerant quantum devices.

v

Chapter 1

Introduction

Quantum computing [1] is an emerging field at the intersection of com-
puter science, physics, and engineering. It leverages the principles of quan-
tum mechanics to address computational problems that are currently in-
tractable for even the most powerful classical supercomputers. Unlike classi-
cal computers—which rely on binary logic and conventional hardware—quantum
computers harness phenomena such as superposition and entanglement to
process information in fundamentally new ways. This enables quantum algo-
rithms to offer significant speedups for certain tasks. For instance, problems
that would take a classical computer thousands of years to solve may be
tackled by a quantum device in minutes or hours. While classical computers
are expected to remain the standard for most computational tasks, quan-
tum advantage becomes evident in solving highly complex problems. These
include simulating quantum systems such as molecules and materials, opti-
mizing large-scale systems, or modeling interactions in particle physics [2].
Such problems are challenging for classical machines due to the exponential
growth in computational resources required as the system size increases.

Quantum algorithms use the formalism of quantum circuits to describe
how quantum information is processed. A quantum circuit is formally de-
fined as a sequence of quantum operations (gates) applied to qubits. While
often represented using graphical diagrams, the circuit itself is the underly-

1

2 1. Introduction

ing sequence of unitary transformations and measurements. In this model,
qubits are represented by wires, and quantum operations are represented by
gates placed along these wires. As quantum information flows through the
circuit, gates transform the state of the qubits at specific positions, imple-
menting a sequence of quantum operations. Each quantum gate corresponds
to a unitary matrix, ensuring that the transformation preserves the norm
of the quantum state. This unitarity condition guarantees that the quan-
tum state remains normalized—i.e., with norm equal to 1—throughout the
computation.

We provide a detailed overview of the powerful framework known as
Quantum Singular Value Transformation (QSVT) [3, 4]. This framework
has become fundamental in the field, as it unifies many important quantum
algorithms under a single formalism. QSVT enables the application of poly-
nomial transformations to the singular values of a target matrix, which must
be embedded within a larger unitary operator to be processed on a quantum
computer.

QSVT provides a versatile and unified approach to realizing a wide range
of quantum algorithms. One of its most important applications is in solving
systems of linear equations, a fundamental computational problem. QSVT-
based algorithms generalize and improve upon the Harrow-Hassidim-Lloyd
(HHL) algorithm ([5]) by offering greater flexibility and better precision in
encoding and manipulating matrix operations. Another major application
is in quantum simulation [6, 7], particularly for simulating the time evo-
lution of quantum systems. In quantum mechanics, the time evolution of
a closed quantum system is governed by the Schrödinger equation, where
the Hamiltonian operator H determines the system’s dynamics. Simulating
time evolution amounts to implementing the unitary operator e−iHt, which
describes how a quantum state evolves after time t under the influence of
the Hamiltonian H. This task is computationally demanding for classical
computers, especially when H describes a many-body or interacting system.
QSVT enables efficient approximation of such exponential operators, opening

3

the door to practical quantum simulations of physical systems [8, 9], includ-
ing molecules, materials, and strongly correlated quantum matter. These
capabilities make QSVT a cornerstone of modern quantum algorithm design,
providing a practical tool for advancing quantum computing applications.

This thesis focuses on block encoding, which is a technique that enables
the efficient embedding of matrices into higher-dimensional unitary opera-
tors, which is the requirement for applying Quantum Singular Value Trans-
formation (QSVT). Block encoding allows a non-unitary matrix to be repre-
sented as a submatrix—typically in the top-left corner—of a unitary operator
that can be implemented as a quantum circuit. Block encoding not only fa-
cilitates the use of QSVT but is foundational to its operation: once a matrix
is block-encoded, QSVT can apply designed polynomial transformations to
its singular values. However, constructing a block encoding is not merely
a theoretical step—it requires an explicit quantum circuit implementing the
larger unitary operator. Finding a decomposition of this unitary into ele-
mentary quantum gates (such as single-qubit gates and CNOTs) is generally
non-trivial and often depends on the structure and properties of the target
matrix. This challenge motivates the development of algorithmic strategies
tailored to different matrix classes and decomposition schemes.

We explore various strategies for constructing explicit block encodings. In
particular, we review techniques for performing algebraic operations—such
as matrix addition and multiplication—on block-encoded operators. These
methods are especially useful when combining different techniques arising
from matrix decompositions or structural insights. We also present an algo-
rithm for block encoding a generic matrix by explicitly encoding each of its
elements, and we introduce a compression method that reduces the circuit
size while maintaining a desired accuracy threshold [10]. Furthermore, we
discuss a block encoding approach tailored to sparse matrices—i.e., matrices
with only a few non-zero entries [11]. Finally, we provide an explicit cir-
cuit construction for block encoding circulant matrices, a structured class of
matrices with efficient quantum representations.

4 1. Introduction

Building upon these foundational strategies for constructing block encod-
ings, we now turn to the Linear Combination of Unitaries (LCU) technique,
a powerful method for representing non-unitary matrices as linear combina-
tions of efficiently implementable unitary operators. The LCU framework en-
ables block encoding of such operators by preparing a quantum superposition
over control states and coherently applying a controlled selection of unitaries.
The general construction involves three quantum oracles: a black-box quan-
tum operation that performs a well-defined transformation. PR prepares the
coefficients of the linear combination in superposition; SELECT applies the
appropriate unitary conditioned on the control register; and PL uncomputes
the initial state preparation to ensure coherence.

The main contribution of this thesis is a novel and more efficient variant of
this framework, which we call Fast One-Qubit Control Select LCU (FOQCS-
LCU). This new formulation significantly reduces the computational cost
of block encoding circuits by an order of magnitude in practice and also
asymptotically; while maintaining the same high-level structure of the LCU
method. Additionally, by exploiting the structural properties of the target
Hamiltonians, we introduce a new class of efficient Dicke state- a quantum
state consisting of a superposition of all computational basis states with a
fixed number of qubits in the |1⟩ state [12]- preparation routines that substan-
tially reduce the cost of the PR and PL oracles. These improvements enable
an order-of-magnitude reduction in the total number of gates required, pro-
viding a practical advantage for quantum simulation and related applications.

To validate our approach, we construct explicit block encoding circuits
for the Heisenberg model. The Heisenberg model is a central object of study
in quantum many-body physics. It describes interacting spins-1

2
arranged on

a lattice and is defined by a Hamiltonian that is naturally expressed as a
sum of tensor products of Pauli operators. This formulation aligns directly
with the quantum computing framework, where qubits represent spin-1

2
par-

ticles: the computational basis states |0⟩ and |1⟩ correspond to the spin-up
and spin-down states, respectively. Because of this direct correspondence,

5

the Heisenberg Hamiltonian can be efficiently encoded in a quantum cir-
cuit using standard Pauli operations. We compute detailed, non-asymptotic
gate counts and conduct numerical benchmarks comparing our FOQCS-LCU
method with standard LCU and other known techniques. The results demon-
strate that FOQCS-LCU achieves an order-of-magnitude reduction in CNOT

gate count, highlighting its practical benefits for Hamiltonian simulation and
related quantum applications.

6 1. Introduction

Chapter 2

Preliminaries on quantum

computing

For the theoretical and technical foundations used throughout this chap-
ter, we refer to several key sources. Specifically, [13] and [14] are lecture
notes that provide a clear and modern treatment of quantum computing.
The references [1] and [15] are textbooks on quantum computation offer-
ing both theoretical background and practical insights. Finally, the article
[16] presents an introduction of quantum computing from a mathematical
perspective.

2.1 Quantum Bits

In classical computing, the bit, short for binary digit, is the basic unit of
information. A bit can exist in one of two distinct states, typically labeled
as 0 and 1, and can be physically realized using any system with two stable
states. There exist an analogous concept in quantum computation: the qubit
– short for quantum bit- is a mathematical representation of a two – state
quantum-mechanical system.

7

8 2. Preliminaries on quantum computing

Definition 2.1.1. The vectors

|0⟩ =
[
1

0

]
and |1⟩ =

[
0

1

]

are called the basis states of a quantum bit. Both vectors belong to the
Hilbert space C2.

The difference between bits and qubits is that a qubit can also be in a
state other than |0⟩ and |1⟩. Its generic state is a linear combination over
the complex numbers of both basis states.

Definition 2.1.2. A pure qubit state |ψ⟩ is a unit vector that is a linear
combination of the basis states:

|ψ⟩ = α |0⟩+ β |1⟩ =
[
α

β

]

where the coefficients α, β ∈ C are called the amplitudes of the state. More-
over proportional vectors represent the same quantum state, as global phases
have no physical significance in quantum mechanics.

The notation |⟩ is known as Dirac notation, and it is the standard for-
malism for representing quantum states. Specifically, |ψ⟩ denotes a column
vector (a state vector), while ⟨ψ| represents its conjugate transpose (also
called the dual vector). This allows us to write expressions such as:

⟨ψ|ψ⟩ = ∥ψ∥2,

where the inner product ⟨ψ|ψ⟩ gives the squared norm of the vector ψ in the
Euclidean (or 2-) norm.

The vectors |0⟩ and |1⟩ form an orthonormal basis of C2. From this point
onward, this basis will be referred to as the computational basis of a qubit.
However, other bases are also commonly used to represent qubit states. One

2.1 Quantum Bits 9

such example is the Hadamard basis, defined by:

|+⟩ := 1√
2
(|0⟩+ |1⟩) = 1√

2

[
1

1

]

|−⟩ := 1√
2
(|0⟩ − |1⟩) = 1√

2

[
1

−1

]
We remark that the fact that |ψ⟩ is a unit vector implies that |α|2+ |β|2 =

1. So we can rewrite |ψ⟩ as :

|ψ⟩ = eiγ
(
cos

θ

2
|1⟩+ eiϕ sin

θ

2
|1⟩
)
, θ, ϕ, γ ∈ R.

Ignoring the irrelevant global phase γ, the state is effectively:

|ψ⟩ = cos
θ

2
|1⟩+ eiϕ sin

θ

2
|1⟩ , 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π .

Thus, each single-qubit quantum state can be uniquely represented by a point
on the unit three-dimensional sphere, known as the Bloch sphere (fig. 2.1),
as:

a = (sin θ cosϕ, sin θ sinϕ, cos θ) .

The Bloch sphere is a useful tool for visualizing the state of a single qubit and
serves as an effective testbed for concepts in quantum computation and quan-
tum information. Many single-qubit operations can be naturally described
within this framework [1].

Extending from a single qubit to a multi-qubit system naturally involves
constructing a Hilbert space that combines multiple copies of C2. This is
achieved by taking the tensor product of the individual qubit spaces. Let
us first introduce the concept by explaining the case of two qubits. If these
were two classical bits, there would be four possible states: 00, 01, 10, and
11. Analogously, a two-qubit quantum system has four computational basis
states, denoted |00⟩, |01⟩, |10⟩, and |11⟩. Unlike classical bits, however, a
pair of qubits can exist in a superposition of these basis states. The general
quantum state of two qubits is described by a state vector of the form

|ψ⟩ = α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩ ,

10 2. Preliminaries on quantum computing

Figure 2.1: Representation of a single-qubit pure state |ψ⟩ on the Bloch
sphere.

where each αij is a complex amplitude. As in the single-qubit case, a mea-
surement yields one of the basis states |x⟩ (with x ∈ {00, 01, 10, 11}) with
probability |αx|2, and the state collapses to |x⟩ after the measurement. The
normalization condition, ∑

x∈{0,1}2
|αx|2 = 1 ,

ensures that the total probability sums to one.

After this explanation of how to describe a two-qubit system, it is nec-
essary to introduce the tensor product of two Hilbert spaces to continue the
introduction to multi-qubit systems. For this part, we refer to [16].

Definition 2.1.3. Let V and W be two vector spaces over the field F . One
consider first a vector space L that has the Cartesian product V × W as
a basis. That is, the basis elements of L are the pairs (v, w) with v ∈ V

and w ∈ W . To get the tensor product of V and W , one can define it as
the vector space of the functions V ×W −→ F that have a finite number of
nonzero values and identifying (v, w) with the function that takes the value 1
on (v, w) and 0 otherwise. Let R be the linear subspace of L that is spanned

2.1 Quantum Bits 11

by the elements of one of the forms:

(v1 + v2, w)− (v1, w)− (v2, w) ,

(v, w1 + w2)− (v, w1)− (v, w2) ,

(αv, w)− α(v, w) ,

(v, αw)− α(v, w) ,

where v, v1, v2 ∈ V , w,w1, w2 ∈ W and α ∈ F . Then, the tensor product is
defined as the quotient space:

V ⊗W = L/R ,

and the image of (v, w) in this quotient is denoted v ⊗ w.

A related definition is the concept of the tensor product between linear
operators.

Definition 2.1.4. Let A and B be linear operators defined on V and W

respectively, then the linear operator A ⊗ B operating on V ⊗ W is the
unique linear operator on V ⊗W such that :

(A⊗B)(v ⊗ w) = Av ⊗Bw

with v ∈ V and w ∈ W .

If A and B are n × m and ℓ × p matrices, respectively, that represent
linear operators A and B with respect to the canonical basis, then the linear
operator A ⊗ B (called the tensor product or Kronecker product of A
and B) has the following matrix representation with respect to the canonical
basis:

A⊗B =


a11B a12B · · · a1mB

a21B a22B · · · a2mB
...

...
. . .

...

an1B an2B · · · anmB

 ,

That is, each entry aij of matrix A is replaced by the scalar multiple aijB,
resulting in an nℓ×mp matrix.

12 2. Preliminaries on quantum computing

The definition of the inner product on a tensor product space arises nat-
urally from the inner product on the constituent spaces:

Definition 2.1.5. Let V and W be Hilbert spaces with inner products ⟨·, ·⟩V
and ⟨·, ·⟩W , respectively. On this tensor product, we can define an inner
product by setting

⟨v1 ⊗ w1, v2 ⊗ w2⟩ := ⟨v1, v2⟩V ⟨w1, w2⟩W

for v1, v2 ∈ V and w1, w2 ∈ W .

In particular, note that the tensor product of unit vectors is itself a unit
vector. The tensor product is fundamental for describing composite quantum
systems, as it allows us to represent the joint state of multiple qubits within
a single vector space.

Example 2.1.1. If |0⟩ and |1⟩ are the basis states of a quantum bit, the
tensor product |0⟩ ⊗ |1⟩ is given by:

|0⟩ ⊗ |1⟩ =
[
1

0

]
⊗
[
0

1

]
=


0

1

0

0


Remark 2.1.1. Given two bases for vector spaces V and W , say BV =

{v1, . . . , vn}, BW = {w1, . . . , wm}, respectively, the set

BV⊗W = {vi ⊗ wj | 1 ≤ i ≤ n, 1 ≤ j ≤ m}

is a basis of the tensor product space V ⊗W .

In our setting, these corresponding bases will be particularly useful for
representing integers. On a classical computer, a non-negative integer a ∈ N
such that a < 2n (i.e., it can be described using n bits) is typically expressed
in base-2 as:

a =
n−1∑
ℓ=0

aℓ2
ℓ, where aℓ ∈ {0, 1} are the binary digits of a. (2.1)

2.1 Quantum Bits 13

On a quantum computer, we can represent an integer a < 2n using n qubits
as:

|a⟩n = |a0a1 · · · an−1⟩ =
n−1⊗
ℓ=0

|aℓ⟩ .

For example, the number 27 can be represented with 5 qubits (since 29 < 25)
as:

|27⟩5 = |11011⟩ = |1⟩ ⊗ |1⟩ ⊗ |0⟩ ⊗ |1⟩ ⊗ |1⟩ .

In this way, integers are always represented by elements of the basis obtained
from tensor products of the single-qubit computational basis vectors. This
basis is subsequently referred to as the computational basis. In particular,
we remark that:

|2i⟩n = |0 · · · 0︸ ︷︷ ︸
i

1 0 · · · 0︸ ︷︷ ︸
n−i−1

⟩

Now we are ready to define a quantum state of a generic n-qubit system.

Definition 2.1.6 ([16] Def.3.5). The state |ψ⟩n of a generic n-qubit system
is a superposition (that is, a linear combination) of the 2n states of the
computational basis |0⟩n , . . . , |2n − 1⟩n with modulus 1. In particular,

|ψ⟩n =
2n−1∑
j=0

αj |j⟩n ,

with amplitudes αj ∈ C constrained to

2n−1∑
j=0

|αj|2 = 1 .

In the following, we will simply write |ψ⟩ instead of |ψ⟩n when the value
of n is clear from the context. In a multi-qubit quantum system, a quantum
state can be either a product state or an entangled state. A product state is
one that can be written as a tensor product of individual states. For example,
a two-qubit state |ψ⟩ is a product state if there exist single-qubit states |ψ1⟩
and |ψ2⟩ such that:

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ .

14 2. Preliminaries on quantum computing

For example:
|ψ⟩ = |0⟩ ⊗ |1⟩ = |01⟩ .

In this case, the qubits are uncorrelated. An entangled state is a state that
cannot be written as a product of individual qubit states. That is, there do
not exist single-qubit states |ψ1⟩ and |ψ2⟩ such that:

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩

A classic example of an entangled state is the Bell state:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩) (2.2)

This state cannot be separated into a tensor product of two single-qubit
states. Measurements on one qubit instantaneously affect the outcome prob-
abilities on the other as we will see later.

2.2 Quantum measurament

Quantum mechanics imposes fundamental limits on the amount of infor-
mation that can be extracted from a quantum state. When measuring a
qubit in the state |ψ⟩ = α |0⟩ + β |1⟩,the result is either 0, with probability
|α|2, or 1, with probability |β|2. Naturally, these probabilities must sum to
one: |α|2 + |β|2 = 1, which is why |ψ⟩ is a unit vector. Even though a sin-
gle qubit can exist in infinitely many possible states (you can imagine this
using the Bloch sphere), this doesn’t mean it can store an infinite amount
of information. When we measure a qubit, we only get one classical bit of
output—either a 0 or a 1. And once we measure it, the qubit’s original
state is lost, as the measurement causes it to “collapse" into one of those two
outcomes. A more subtle question is: how much information does a qubit
hold when we don’t measure it? This might seem strange, since unmeasured
information can’t be directly observed. However, during quantum evolution
(when the qubit changes according to unitary operations), it seems that Na-
ture keeps track of the exact details of the qubit’s state. In this way, we can

2.2 Quantum measurament 15

say the qubit holds a lot of "hidden information." But what does it actually
mean to measure a quantum state? To understand this, we need to be more
precise. In quantum mechanics, a measurement isn’t just checking the value
of a variable like in classical physics. Instead, we measure a quantum system
with respect to a special kind of object called a quantum observable. This
is where the formal framework of quantum mechanics begins to play a key
role. Quantum observables correspond to physical quantities that can be
measured from a quantum system, such as energy, position, or spin. Here,
we focus on their mathematical description.

Definition 2.2.1. A quantum observable always corresponds to a Hermitian
matrix M, which has the spectral decomposition:

M =
∑
m

λmPm ,

where λm ∈ R are the eigenvalues of M , and Pm are the projection operators
into the eigenspaces associated with λm, i.e, P 2

m = Pm.

Hermitian operators have real eigenvalues and a complete set of orthonor-
mal eigenvectors, making them suitable for modeling measurable physical
quantities. When a quantum state |ψ⟩ is measured by a quantum observ-
able M , the outcome of the measurement is always an eigenvalue λm with
probability:

pm = ⟨ψ|Pm |ψ⟩ .

After the measurement, the quantum state becomes :

|ψ⟩ → Pm |ψ⟩√
pm

.

The projector operators satisfy the completeness equation:∑
m

Pm = I .

The completeness equation expresses the fact that probabilities sum to one:∑
m

pm =
∑
m

⟨ψ|Pm |ψ⟩ = ⟨ψ|
(∑

m

Pm

)
|ψ⟩ = ⟨ψ|ψ⟩ = 1 .

16 2. Preliminaries on quantum computing

In quantum computing, we will measure our state by the following quantum
observable:

M =
2n−1∑
m=0

m · |m⟩ ⟨m|

In this case, the probability of measuring m will be:

pm = ⟨ψ|m⟩ ⟨m|ψ⟩ = α∗
mαm = |αm|2

It is also possible to measure just one part of the state. Let

M = 0 · |0⟩ ⟨0| ⊗ I + 1 · |1⟩ ⟨1| ⊗ I

be a quantum observable. Suppose we measure a quantum state of the form

|ψ⟩ = |0⟩ |ψ0⟩+ |1⟩ |ψ1⟩ .

Then, the probability of obtaining the outcome 0 is ∥ |ψ0⟩ ∥2, and the prob-
ability of obtaining the outcome 1 is ∥ |ψ1⟩ ∥2. If the measurement yields 0,
then the post-measurement (collapsed) state is

|0⟩ ⊗ |ψ0⟩
∥ |ψ0⟩ ∥

,

and similarly, if the outcome is 1, the resulting state is

|1⟩ ⊗ |ψ1⟩
∥ |ψ1⟩ ∥

.

This type of measure is very important when we have entangled qubit state,
like, for example, the Bell state in eq. (2.2).

Example 2.2.1. Suppose we perform a measurement only on the first qubit,
in the computational basis {|0⟩ , |1⟩}. To understand the effect of this mea-
surement, we rewrite the state:

|Φ+⟩ = 1√
2
(|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩)

This expression shows that:

2.3 Quantum Circuit 17

• With probability 1
2
, we obtain the outcome |0⟩ on the first qubit. In

this case, the full system collapses to:

|0⟩ ⊗ |0⟩ = |00⟩ ;

• With probability 1
2
, we obtain the outcome |1⟩ on the first qubit. Then,

the full system collapses to:

|1⟩ ⊗ |1⟩ = |11⟩ .

In both cases, the second qubit becomes perfectly correlated with the mea-
surement outcome of the first qubit. That is, if we measure |0⟩ on the first
qubit, the second qubit is guaranteed to be in |0⟩; if we measure |1⟩, the
second qubit is |1⟩.

2.3 Quantum Circuit

The quantum circuit model of computation represents quantum infor-
mation using wires and gates. Quantum information propagates along the
wires, while gates—placed at specific points on the wires—act to transform
the quantum state before passing it along the circuit. The quantum circuit
language provides a graphical and compact way to represent the application
of a sequence of quantum operators to a quantum state. The operator ap-
plied to a qubit is represented by a matrix that must preserve the norm of
quantum states, ensuring that the state remains normalized (i.e., with norm
equal to 1). Therefore, such an operator must be unitary.

Definition 2.3.1 (Def 4.4 [16]). A quantum gate operating on a space of
one qubit is represented by a unitary matrix U ∈ U(2). More generally,
a quantum gate acting on an n-qubit system is represented by a matrix
U ∈ U(2n).

In the quantum circuit language, time flows from left to right: the input
quantum state appears on the left, and each “wire" represents a qubit:

|ψ⟩ U U |ψ⟩.

18 2. Preliminaries on quantum computing

Some of the most important single-qubit gates are the Pauli matrices:

X =

[
0 1

1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0

0 −1

]
,

the Pauli matrices give rise to three useful classes of unitary matrices: the
rotation operators are defined as follows:

Rx(θ) =

[
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

]
,

Ry(θ) =

[
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

]
,

Rz(θ) =

[
e−i

θ
2 0

0 ei
θ
2

]
.

Other important quantum gates are the Hadamard gate (denoted by H), the
S-gate and the T -gate:

H =
1√
2

[
1 1

1 −1

]
, S =

[
1 0

0 i

]
, T =

[
1 0

0 ei
π
4

]

Let us now present some examples of simple quantum circuits:

|a⟩ H
1√
2
|0⟩+ (−1)a√

2
|1⟩

|a⟩ X |1⊕ a⟩

|0⟩ Ry(θ) cos
θ

2
|0⟩+ sin

θ

2
|1⟩

In order to construct more sophisticated quantum circuits, we introduce the
two-qubit gate known as the CNOT (controlled-NOT) gate, which is defined
as follows:

|a⟩ • |a⟩
|b⟩ |a⊕ b⟩

Where the “dot" means that the quantum gate connected to the dot only
becomes actives if the state of the first qubit, called the control qubit, is
a = 1. This is the reason of the name of the CNOT gate (controlled NOT).

2.3 Quantum Circuit 19

Another two-qubit gate used is the SWAP gate, which swaps the state of two
qubits:

|a⟩ × |b⟩

|b⟩ × |a⟩
By combining CNOT gates with single-qubit gates, it is possible to construct
any unitary transformation on an arbitrary number of qubits. This property
makes the set of CNOT and single-qubit gates universal. In quantum com-
puting, a set of gates is said to be universal if any unitary operation –and
thus any quantum algorithm –can be decomposed into a finite sequence of
gates from that set. The decomposition of a quantum operation into ele-
mentary gates is not unique, and finding a decomposition that minimizes the
number of qubits is a critical aspect of analyzing the computational cost of
quantum algorithms. Moreover, we introduce the following definition.

Definition 2.3.2. The depth of a quantum circuit is defined as the maximum
number of sequential steps required to execute all operations, from the initial
state preparation to the final measurement. Formally, it corresponds to the
length of the longest directed path through the circuit, where the path follows
the temporal order of gates along the qubit wires.

Intuitively, the circuit depth represents the minimum number of discrete
time steps needed to implement the circuit, under the assumptions that:

- gates acting on disjoint sets of qubits can be applied simultaneously,

- gates sharing at least one qubit must be executed at different time steps
and in the correct order.

In general, when evaluating the complexity of a quantum circuit, the follow-
ing factors are typically considered:

• The number of CNOT gates. These two-qubit gates are gener-
ally more error-prone and resource-intensive to implement on current
quantum hardware compared to single-qubit gates.

20 2. Preliminaries on quantum computing

• The depth of the circuit. It serves as a measure of the circuit’s
runtime and is directly related to susceptibility to decoherence and
time-dependent noise.

• The number of qubits used. The qubit count is a key resource met-
ric, especially on near-term devices where qubit availability is limited
and increasing the number of qubits may lead to higher error rates due
to noise, cross-talk, and hardware constraints.

In many quantum algorithms, we make use of oracles, which are abstract
black-box operations that encode information about a problem instance. For-
mally, an oracle is a unitary operator that performs a specific transformation
on quantum states, often depending on some hidden function or data. To
denote such operators, we may use the notation U for an n-qubit gate acting
on the state space C2n .

/
n

U

In particular, it is common to use the following notation to represent a con-
trolled gate: •

U

This denotes that the unitary gate U is applied to the target qubit if and
only if the control qubit is in the state |1⟩. It also may happen that we want
to apply the gate only if the controlled gate is in the state |0⟩. In this case
we write:

U

Such notation is especially useful for improving the readability of quantum
circuits, as it allows one to abstract away the full decomposition of the con-
trolled operation while maintaining a clear and concise circuit representation.
It is also possible for a quantum gate to be controlled by more than one qubit,
leading to multi-controlled operations. For example, one can use a controlled-
CNOT gate with two control qubits, commonly known as the Toffoli gate.
This gate applies a NOT operation to the target qubit if and only if both

2.3 Quantum Circuit 21

control qubits are in the state |1⟩.
|a⟩ • |a⟩
|b⟩ • |b⟩
|c⟩ |c⊕ ab⟩

More generally, a multi-controlled gate is an operation that applies a target
unitary U conditioned on the state of multiple control qubits. Specifically,
the gate acts as the identity unless all control qubits are in the state |1⟩, in
which case the unitary U is applied to the target qubit or register. These
gates are often denoted as Cn(U), where n is the number of control qubits:

|1⟩ • |1⟩
|1⟩ • |1⟩
|0⟩ |0⟩
|ψ⟩ U U |ψ⟩

Multi-controlled gates are very used in quantum algorithms since they can
be conceptually simple; however their implementation on real hardware is
not trivial since they need a decomposition in one and two qubit gates. In
the following we present some examples of decomposition of qubits gates into
sequences of CNOT and single-qubit gates.

Example 2.3.1. The SWAP gate can be implemented by 3 CNOT gates:

|a⟩ × |b⟩
|b⟩ × |a⟩

= |a⟩ • • |b⟩
|b⟩ • |a⟩

After the first CNOT gate, the state becomes:

|a⟩ |a⊕ b⟩ ,

then, after the second CNOT gate, we get:

|a⊕ a⊕ b⟩ |a⊕ b⟩ ,

where a⊕ a⊕ b is equal to b. Finally, after the third one, we have:

|b⟩ |a⊕ b⊕ b⟩ = |b⟩ |a⟩ .

22 2. Preliminaries on quantum computing

Example 2.3.2 ([1] Figure 4.9). The Toffoli gate can be implemented by 6
CNOT with the following circuit:

• • • T •
• • T T †

H T † T T † T H

Example 2.3.3. The controlled Z gate can be implemented by 1 CNOT
and 2 Hadamard gate:

•
Z

=
•

H H

Example 2.3.4. The controlled rotation y gate (C-Ry(θ)) can be imple-
mented by 2 CNOTs with the following circuit:

•

Ry(θ)
=

• •

Ry(
θ
2
) Ry(− θ

2
)

Example 2.3.5. The phase gate Pη is defined as:

Pη =

[
1 0

0 eiη

]
,

for a generic η ∈ [0, 2π]. The controlled phase gate can be implemented by 2
CNOTs with the following circuit:

•
Pη

=
• P η

2
•

P η
2

P− η
2

Chapter 3

Quantum singular value

transformation

Drawing on the works of Martyn et al.[4] and Gilyén et al.[3], this chapter
provides an overview of the framework of the quantum eigenvalue transfor-
mation algorithm. It enables the application of polynomial transformations
to the eigenvalues of a linear operator embedded within a unitary matrix.

The Quantum Singular Value Transformation (QSVT) generalizes the
quantum eigenvalue transform to the case of non-Hermitian operators, en-
abling polynomial transformations of singular values rather than just eigen-
values. This broader framework forms the foundation of many recent ad-
vances in quantum linear algebra and algorithm design. In this chapter,
however, we develop the theory only up to Quantum Eigenvalue Transfor-
mation, as this is sufficient for our purposes. Since we will be working ex-
clusively with hermitian matrices, it is not necessary to consider the more
general QSVT framework in detail.

These algorithms are particularly significant because they provide a uni-
fying framework that connects several foundational quantum algorithms, in-
cluding quantum search, quantum phase estimation, and Hamiltonian simu-
lation. These three algorithms are among the most powerful demonstrations
of quantum speed-up over classical computation and form the core arguments

23

24 3. Quantum singular value transformation

in favor of the potential advantages of quantum computers.

3.1 Quantum signal processing

Quantum Signal Processing (QSP) amounts to transforming an input
signal through a sequence of quantum operations. The signal is represented
by a matrix known as the signal-rotation operator. A typical example of such
an operator is:

W (a) =

[
a i

√
1− a2

−i
√
1− a2 a

]
, (3.1)

which is a Pauli x-rotation by the angle θ = 2arccos a. This unitary matrix
rotates the quantum state in a way that depends on the signal parameter a.
The aim of QSP is to modify the signal a by a polynomial transformation. In
order to do that, we alternate the operator W with an operator S(ϕ) known
as signal processing operator :

S(ϕ) = eiϕZ , (3.2)

with Z =

[
1 0

0 −1

]
. We remark that S(ϕ) is a Pauli z-rotation by an angle

2ϕ. Consider a sequence of phases ϕ⃗ = (ϕ0, ϕ1, . . . , ϕd) ∈ Rd+1. The QSP
operation sequence Uϕ⃗ is defined as

Uϕ⃗(a) = eiϕ0Z
d∏

k=1

(
W (a)eiϕkZ

)
. (3.3)

The QSP sequences can produce signal transformations, since the matrix
element

P (a) = ⟨0|Uϕ⃗(a) |0⟩ . (3.4)

is a polynomial function of a, whose degree is at most equal to the length of
the QSP phase sequence ϕ⃗. For example, for ϕ⃗ = (0, 0), we have P (a) = a;
for ϕ⃗ = (0, 0, 0), P (a) = 2a2 − 1; and for ϕ⃗ = (0, 0, 0, 0), P (a) = 4a3 − 3a.
These correspond to the Chebyshev polynomials of the first kind, and the
pattern continues accordingly. Specifically, we have the following theorem:

3.1 Quantum signal processing 25

Theorem 3.1.1 ([17]). The QSP sequence Uϕ⃗ produces a matrix that can
be expressed as a polynomial function of a:

eiϕ0Z
d∏

k=1

W (a)eiϕkZ =

[
P (a) iQ(a)

√
1− a2

iQ∗(a)
√
1− a2 P ∗(a)

]
, (3.5)

for a ∈ [−1, 1], and a ϕ⃗ exists for any polynomials P,Q in a such that:

1. deg(P) ≤ d, deg(Q) ≤ d− 1,

2. P has parity d mod 2 and Q has parity (d− 1) mod 2,

3. |P |2 + (1− a2)|Q|2 = 1.

Proof. “=⇒": For the k = 0 case the unitary on the left hand side of eq. (3.5)
is eiϕ0Z , so that P ≡ eiϕ0 and Q ≡ 0 satisfy the properties. Now we prove
the statement by induction. Suppose we have proved for d− 1 that

eiϕ0Z
d−1∏
k=1

W (a)eiϕkZ =

[
P̃ (a) iQ̃(a)

√
1− a2

iQ̃∗(a)
√
1− a2 P̃ ∗(a)

]
,

where P̃ , Q̃ are polynomials which satisfy 1-3. Then

Uϕ⃗(a) = eiϕ0Z
d−1∏
k=1

W (a)eiϕkZ

=

[
P̃ (a) iQ̃(a)

√
1− a2

iQ̃∗(a)
√
1− a2 P̃ ∗(a)

][
eiϕka ie−iϕk

√
1− a2

ieiϕk
√
1− a2 e−iϕka

]

=

 eiϕk
(
aP̃ (a) + (a2 − 1)Q̃(a)

)
ie−iϕk

(
aQ̃(a) + P̃ (a)

)√
1− a2

ieiϕk
(
aQ̃∗(a) + P̃ ∗(a)

)√
1− a2 e−iϕk

(
aP̃ ∗(a) + (a2 − 1)Q̃∗(a)

) ,

(3.6)

we define P (a) := eiϕk
(
aP̃ (a) + (a2 − 1)Q̃(a)

)
and Q(a) := e−iϕk

(
aQ̃(a) +

P̃ (a)
)
. These polynomials satisfy condition 1, since by the inductive hypoth-

esis we have deg(P̃) ≤ d− 1 and deg(Q̃) ≤ d− 2. Thus,

deg
(
a P̃ (a)

)
≤ d, deg

(
(a2 − 1) Q̃(a)

)
≤ d,

26 3. Quantum singular value transformation

and so deg(P) ≤ d. Similarly, deg(Q) ≤ d− 1. Condition 2 is also satisfied.
Since P̃ (a) has parity d − 1 mod 2, the term a P̃ (a) has parity d mod 2;
likewise, both a2 Q̃(a) and Q̃(a) have parity d mod 2, so P (a) has parity
d mod 2. For Q(a), we note that a Q̃(a) has parity d−1 mod 2 and P̃ (a) has
parity d− 1 mod 2, hence Q(a) has parity d− 1 mod 2, as required. Finally
note that the left hand side of eq. (3.5) is a product of unitaries, therefore
the right hand side is unitary too, which implies 3.
“⇐=": Suppose P (a), Q(a) satisfy properties 1–3. We first handle the trivial
case: if deg(P) = 0, then condition 3 implies |P (1)| = 1, so P (a) ≡ eiϕ0 for
some ϕ0 ∈ R, and hence Q(a) ≡ 0. Since Q must have parity (d− 1) mod 2,
it follows that d must be even. In this case, we may take

ϕ⃗ =
(
ϕ0,

π
2
, . . . , π

2

)
∈ Rd+1,

which yields the desired sequence. This case also serves as the base for our
induction.

Now, assume the result holds for degree d− 1, and let us prove the step
for d. Condition 3 can be rewritten as:

∀a ∈ [−1, 1] : P (a)P ∗(a) + (1− a2)Q(a)Q∗(a) = 1.

Since this equation holds on an infinite set, it must be an identity of poly-
nomials. Suppose deg(P) = ℓ ∈ [1, d], then necessarily deg(Q) = ℓ − 1

and |pℓ| = |qℓ−1| so that the highest-degree terms cancel out in the above
expression.

Let ϕd ∈ R be such that e2iϕd = pℓ
qℓ−1

. Define:[
P̃ (a) iQ̃(a)

√
1− a2

iQ̃∗(a)
√
1− a2 P̃ ∗(a)

]
:=

[
P (a) iQ(a)

√
1− a2

iQ∗(a)
√
1− a2 P ∗(a)

]
e−iϕdZW †(a)

=

[
P (a) iQ(a)

√
1− a2

iQ∗(a)
√
1− a2 P ∗(a)

][
e−iϕda −ie−iϕd

√
1− a2

−ieiϕd
√
1− a2 eiϕda

]

=

[
P̃ (a) iQ̃(a)

√
1− a2

iQ̃∗(a)
√
1− a2 P̃ ∗(a)

]
,

3.1 Quantum signal processing 27

where:

P̃ (a) = e−iϕdaP (a) + eiϕd(1− a2)Q(a) = e−iϕd
(
aP (a) +

pℓ
qℓ−1

(1− a2)Q(a)

)
,

Q̃(a) = eiϕdaQ(a)− e−iϕdP (a) = e−iϕd
(
pℓ
qℓ−1

aQ(a)− P (a)

)
.

The highest-order terms cancel, so deg(P̃) ≤ ℓ− 1 ≤ d− 1 and deg(Q̃) ≤
ℓ−2 ≤ d−2. Thus, P̃ , Q̃ satisfy conditions 1 and 2 for degree d−1. Condition
3 is preserved because W †(a) and e−iϕdZ are unitary transformations.

By the induction hypothesis, there exists ˜⃗
ϕ ∈ Rd such that:[

P̃ (a) iQ̃(a)
√
1− a2

iQ̃∗(a)
√
1− a2 P̃ ∗(a)

]
= U ˜⃗

ϕ
(a).

It follows that the original Uϕ⃗(a) is given by appending ϕd:

Uϕ⃗(a) = U ˜⃗
ϕ
(a)W (a)eiϕdZ ,

where ϕ⃗ := (ϕ̃0, ϕ̃1, . . . , ϕ̃d−1, ϕd) ∈ Rd+1.
Hence, the claim holds for all d.

When we define P (a) = ⟨0|Uϕ⃗ |0⟩, we are constrained to polynomials P for
which there exists a corresponding polynomial Q satisfying the conditions of
theorem 3.1.1. This requirement can be restrictive in practice. For instance,
when a = ±1, the entire QSP sequence reduces to a single z-rotation, which
implies that |P (±1)| = 1. Consequently, the class of admissible polynomials
is limited to those that satisfy this boundary constraint. To address this
limitation, we consider an alternative observable:

Poly(a) = ⟨+|Uϕ⃗ |+⟩ = Re[P (a)] + iRe[Q(a)] ·
√
1− a2.

This transformation expands the class of achievable polynomial transforma-
tions. In particular, it can be shown [4] that using this construction, one can
approximate any real-valued polynomial Poly(a) with parity d mod 2, degree
at most d, and bounded in magnitude by 1 over the interval [−1, 1], i.e.,
|Poly(a)| ≤ 1 for all a ∈ [−1, 1]. This is achieved by selecting an appropriate
P such that Re[P (a)] approximates the desired function, and a Q with a
sufficiently small real component to control the imaginary part.

28 3. Quantum singular value transformation

3.2 Amplitude Amplification

An application of Theorem 3.1.1 is the following problem, known as am-
plitude amplification. Suppose we are given a unitary operator U , its inverse
U †, and two phase oracle operators Aϕ and Bϕ, each of which applies a phase
shift to a specific, privileged state:

Aϕ = eiϕ|A0⟩⟨A0|, (3.7)

Bϕ = eiϕ|B0⟩⟨B0|. (3.8)

The objective is to construct a quantum circuitQ using the oracles {U,U †, Aϕ, Bϕ}
such that

| ⟨A0|Q |B0⟩ | → 1,

under the assumption that the original matrix element ⟨A0|U |B0⟩ is nonzero.
We now show that this problem can be solved without prior knowledge of
the specific value of ⟨A0|U |B0⟩. The solution follows directly from theo-
rem 3.1.1. The key insight lies in recognizing that the problem naturally
gives rise to two concentric Bloch spheres: one associated with the action of
U on the privileged subspace defined by |B0⟩, and the other associated with
measurements in the |A0⟩ basis (Figure 3.1).

Specifically, the quantum state U |B0⟩ has a non-zero component along
|A0⟩ and another component orthogonal to it. We define:

|A⊥⟩ = α (I − |A0⟩ ⟨A0|)U |B0⟩ ,

where α is the normalization factor that ensures |A⊥⟩ is a unit vector. Then,

U |B0⟩ = a |A0⟩+
√
1− a2 |A⊥⟩ ,

with a = ⟨A0|U |B0⟩. Moreover, we define a state |B⊥⟩ such that:

U |B⊥⟩ = −a |A⊥⟩+
√
1− a2 |A0⟩ .

Therefore, the action of U on the two-dimensional Hilbert space spanned by

3.2 Amplitude Amplification 29

|A0〉

|A⊥〉
|B0〉

|B⊥〉

U |B0〉

U |B⊥〉

θ
exp{iφ|B0〉〈B0|}

exp{iφ|A0〉〈A0|}

Figure 3.1: Illustration of amplitude amplification on the Bloch sphere: start-
ing from |B0⟩, controlled rotations about |B0⟩ (blue) and |A0⟩ (black) drive
the state toward the target |A0⟩ (north pole).

{|B0⟩ , |B⊥⟩} and {|A0⟩ , |A⊥⟩} can be represented in matrix form as:

U = R(a) =

[|B0⟩ |B⊥⟩

|A0⟩ a
√
1− a2

|A⊥⟩
√
1− a2 −a

]
, (3.9)

It is now clear how U maps a state in the {|B0⟩ , |B⊥⟩} basis to a state in
the {|A0⟩ , |A⊥⟩} basis.

Finally, we can state the following theorem:

Theorem 3.2.1. Given a unitary U , its inverse U †, and phase operators
defined as

Aϕ = eiϕ|A0⟩⟨A0|, Bϕ = eiϕ|B0⟩⟨B0| ,

we have:

⟨A0|

 d
2∏

k=1

UBϕ2k−1
U †Aϕ2k

U |B0⟩ = P (a) , (3.10)

30 3. Quantum singular value transformation

where P (a) is a degree-d polynomial in a = ⟨A0|U |B0⟩ that satisfies the
constraints of Theorem 3.1.1.

Proof. We begin by rewriting eq. (3.10) in the basis we are working with, in
order to express it in a form analogous to eq. (3.5). First, we observe that:

U † =

[|A0⟩ |A⊥⟩

|B0⟩ a
√
1− a2

|B⊥⟩
√
1− a2 −a

]
. (3.11)

We then define the operators ZA and ZB as the Pauli-Z matrices expressed
in the {|A0⟩ , |A⊥⟩} and {|B0⟩ , |B⊥⟩} bases, respectively. Correspondingly,
we define the Z-rotations as:

Aϕ = eiϕZA , Bϕ = eiϕZB .

These rotations act as phase shifts around the Z-axis in each respective basis.
Note that these definitions are equivalent to the operators in eq. (3.7), up to a
global phase, which is physically irrelevant and can be safely ignored. There-
fore, there is no ambiguity or inconsistency in the notation when referring to
Aϕ and Bϕ in either form.

We now express the matrix W (a) from eq. (3.1) in terms of our chosen
basis:

U = −i eπ
4
ZA W (a) ei

π
4
ZB , (3.12)

and similarly, its adjoint is given by:

U † = i e−i
π
4
ZB W (a) e−i

π
4
ZA . (3.13)

We use the same notation W (a) in both cases, as the basis in use is clear
from the context.

Finally, we rewrite eq. (3.10) as:

⟨A0|
[d

2∏
k=1

(
−i eiπ4ZAW (a)ei

π
4
ZB
)
Bϕ2k−1

(
−i eiπ4ZBW (a)ei

π
4
ZA
)
Aϕ2k

]
U |B0⟩ ,

(3.14)

3.3 Quantum eigenvalue transform 31

which can be rewritten in the compact form:

⟨A0|
(
eiϕ

′
0Z

d∏
k=1

W (a)eiϕ
′
kZ

)
U |B0⟩ , (3.15)

where the modified phases {ϕ′
k} are linear combinations of the original phases

{ϕk}.

3.3 Quantum eigenvalue transform

As demonstrated in Theorem 3.2.1, we can apply a polynomial trans-
formation to a matrix element, namely ⟨A0|U |B0⟩. This technique extends
to transformations over an entire vector space. In particular, we show that
the same algorithm can be used to transform all eigenvalues of an hermitian
matrix H, once it has been embedded into a unitary matrix U . To perform
such an embedding, we introduce an ancilla qubit, an auxiliary qubit used
to control the application of quantum operations. We suppose we have the
unitary U :

U =

[0 1

0 H ·
1 · ·

]
. (3.16)

We note that the indices adjacent to the matrix representation of U indicate
how the Hamiltonian H is encoded. Specifically, we have H = ⟨0|U |0⟩. Since
H is encoded in a unitary matrix, we have the constraint that ∥H∥ ≤ 1. This
may seem like a strong limitation, but we can always scale the Hamiltonian
by its norm and encode H

∥H∥ instead of H. The Hamiltonian operator H can
be decomposed into its eigenspace as:

H =
∑
λ

λ |λ⟩ ⟨λ| . (3.17)

We now proceed by focusing on a specific unitary U for clarity. In particular,
we complete the missing block as:

U =

[
H

√
I −H2

√
I −H2 −H

]
, (3.18)

32 3. Quantum singular value transformation

where: √
I −H2 =

∑
λ

√
1− λ2 |λ⟩ ⟨λ| .

However, a general U does not need to take this specific form, although even
a general one takes a structure similar to eq. (3.18) [9]. Thus, we assume
that U takes this form; in particular, it can be expressed as a sum of two
tensor products:

U = Z ⊗H +X ⊗
√
I −H2 ,

and it acts as:

U |0⟩ |λ⟩ = λ |0⟩ |λ⟩+
√
1− λ2 |1⟩ |λ⟩ ,

U |1⟩ |λ⟩ =
√
1− λ2 |0⟩ |λ⟩ − λ |1⟩ |λ⟩ ,

This indicates that U acts on a qubit basis (i.e., {|0⟩ |λ⟩ , |1⟩ |λ⟩}) for each
eigenvalue of H. Consequently, U can be expressed as a direct sum over
separate Bloch spheres:

U =
⊕
λ

[
λ

√
1− λ2√

1− λ2 −λ

]
⊗ |λ⟩ ⟨λ|

=
⊕
λ

R(λ)⊗ |λ⟩ ⟨λ| ; (3.19)

Here, R(λ) is defined as in eq. (3.9). In this way, we can reformulate the
problem in a manner reminiscent of amplitude amplification. However, in-
stead of operating within two concentric Bloch spheres, we are dealing with
N independent two-dimensional subspaces—each associated with a different
eigenvalue—that evolve in parallel. In each subspace, the evolution corre-
sponds to a phase rotation induced by the operator U . Nevertheless, there
are still distinct vector spaces in which the input and the output of H exist.
This vector space is defined by the projector Π = |0⟩ ⟨0| acting on the ancilla
qubit. Generalizing the way in which amplitude amplification uses the phase
shift Aϕ acting on a one dimensional vector space |A0⟩ ⟨A0|, we may now
define a projector-controlled phase-shift operation Πϕ:

Πϕ := ei2ϕΠ ,

3.3 Quantum eigenvalue transform 33

which gives a phase of ei2ϕ to the entire subspace determined by Π. Note
that we may define this operator as eq. (3.7):

Πϕ := eiϕZ . (3.20)

These two definitions are equivalent since they differ only by a global phase
that may be neglected. The Πϕ operator can be implemented in a quantum
circuit by employing two instances of projector-controlled-not-gates around
a single-qubit z-rotation by angle ϕ on one extra ancilla qubit:

|0⟩ eiϕZ

|ψ⟩ /
N+1

Π Π

In particular, in the simple case of eq. (3.16), the projector-controlled-not

gate reduces to a standard CNOT gate. Therefore, the circuit becomes:

|0⟩ eiϕZ

• •
/N

|ψ⟩

It is important to observe that on each eigenspace of eq. (3.19), Πϕ acts as a
z-rotation:

Πϕ =
⊕
λ

eiϕZ ⊗ |λ⟩ ⟨λ| .

Finally, having established the intuitive basis, we now state the following
theorem.

Theorem 3.3.1. Given a block encoding of Hamiltonian H =
∑
λ

λ |λ⟩ ⟨λ|

in a unitary matrix U :

U =

[Π

Π H ·
· ·

]
,

with the location of H determined by projector Π and given the ability to
perform Π-controlled-not operations to realize projection-controlled phase-

34 3. Quantum singular value transformation

shift operations Πϕ, then, for even d:

Uϕ⃗ =

 d
2∏

k=1

Πϕ2k−1
U †Πϕ2kU

 =

[Π

Π Poly(H) ·
· ·

]
,

where
Poly(H) =

∑
λ

Poly(λ) |λ⟩ ⟨λ| ,

is a polynomial transform of the eigenvalues of H. The polynomial is of degree
at most d and obeys the conditions on P from Theorem 3.1.1. Similarly, for
d odd:

Uϕ⃗ = Πϕ1U

 d−1
2∏

k=1

Πϕ2kU
†Πϕ2k+1

U

 =

[Π

Π Poly(H) ·
· ·

]
,

where Poly(H) has an analogous interpretation.

The idea of the proof is to use eq. (3.19) and apply Theorem 3.2.1 inde-
pendently to each Bloch sphere. In this way, we obtain:

Uϕ⃗ =
⊕
λ

 d
2∏

k=1

eiϕ2k−1ZR(λ)eiϕ2kZR(λ)

⊗ |λ⟩ ⟨λ| , (3.21)

where we used the fact that R†(λ) = R(λ) in eq. (3.19), as in eq. (3.11).
Finally, we can apply Theorem 3.2.1 to each Bloch sphere component inde-
pendently.

This algorithm can be generalized to matrices that are not hermitian
by using their singular value decomposition (SVD) instead of the eigenvalue
decomposition:

A = WΣV † =
∑
k

σk |wk⟩ ⟨vk| , (3.22)

Using this decomposition, we can apply the same idea introduced in eq. (3.17)
to perform polynomial transformations on the singular values. This general-
ization allows us to apply these transformations to arbitrary linear operators.

3.3 Quantum eigenvalue transform 35

Within this broader framework, we can unify and generalize a wide range
of quantum algorithms by viewing them as instances of polynomial trans-
formations on the spectrum of an operator embedded in a unitary matrix.
This includes quantum search algorithms, such as Grover’s algorithm, which
amplifies the amplitude of a marked state; eigenvalue thresholding, where the
goal is to project onto a subspace defined by eigenvalues above or below a
certain threshold; quantum phase estimation, which extracts eigenvalue infor-
mation with exponential precision; and function evaluation problems, where
the goal is to compute a function of a Hermitian operator, such as the sign,
exponential, or inverse. These seemingly different problems can be tackled
using a unified polynomial-based approach. For an in-depth treatment of
these applications and the underlying framework, we refer the reader to [4].

36 3. Quantum singular value transformation

Chapter 4

Block encodings

In this chapter, we introduce the concept of block encoding for matrices
and examine the key features of the quantum circuits used to implement
it. Our aim is to develop a clear and practical understanding of how such
circuits can be constructed, combined, and manipulated.

The central goal is to study quantum circuits UA that encode a matrix
A in such a way that, when applied to an input state |ψ⟩, they produce
an output state proportional to A |ψ⟩. This capability is fundamental for
realizing more advanced quantum algorithms based on the Quantum Singular
Value Transformation (QSVT) framework introduced in the previous chapter.

4.1 General notion

Block-encoding is a technique for embedding a properly scaled nonunitary
matrix A ∈ CN×N , with N = 2n (i.e a n-qubit matrix) into an n + 1-qubit
unitary matrix UA of the form:

UA =

[0 1

0 A ∗
1 ∗ ∗

]
. (4.1)

where the symbol ∗ denotes matrix blocks whose values are not yet specified.
This structure is useful since if we want to apply A to a state |ψ⟩ we can

37

38 4. Block encodings

apply the unitary matrix UA to the state |0⟩ |ψ⟩ and get:

UA |0⟩ |ψ⟩ =
[
Aψ

∗

]
|0⟩ |ψ⟩ UA−→ |0⟩ (A |ψ⟩) + |⊥⟩ . (4.2)

Here, the (unnormalized) state |⊥⟩ can be written as |1⟩ |ξ⟩ for some (un-
normalized) state |ξ⟩, which is irrelevant to the computation of A |ψ⟩. In
particular, it satisfies the following orthogonality relation:

(⟨0| ⊗ In) |⊥⟩ = 0 . (4.3)

Then, if we measure the state |0⟩ on the first register and get the outcome 0,
we will get A |ψ⟩. This process can be summarized by the following quantum
circuit:

|0⟩
UA

0
|ψ⟩ A|ψ⟩

∥A|ψ⟩∥
(4.4)

Note that the output state is normalized after the measurement takes
place, and note that the probability of success is ∥A |ψ⟩ ∥2. It is important to
remark that a necessary condition for the existence of the unitary operator
UA is that ∥A∥ ≤ 1. However, the constraint on the norm of A is not a
problem, indeed it is possible to find a sufficiently large scaling factor α such
that we encode Â = 1

α
A. Nevertheless the factor α will lower the probability

of success, as it holds that:

p =
∥A |ψ⟩ ∥2

α2
.

So if α is chosen to be too large, the probability of obtaining |0⟩ from the
measurement can be vanishingly small. We may not need to restrict the
matrix UA to be an (n + 1)-qubit matrix. If we can find any (n +m)-qubit
matrix UA such that :

UA =


1
α
A ∗ . . . ∗
∗ ∗ . . . ∗
...

. . .

∗ . . . ∗

 ,

4.1 General notion 39

Here, each ∗ stands for an n-qubit matrix, and there are 2m block rows
and columns in UA. The relation above can be written compactly using the
bracket notation as :

1

α
A = (⟨0m| ⊗ In)UA (|0m⟩ ⊗ In) . (4.5)

Moreover, it can be difficult to find UA to block encode A exactly, for this
reason it may be sufficient to construct UA to block encode A up to some
error ϵ. Finally we give the formal definition of block encoding.

Definition 4.1.1 (Def 43 [3]). Let a, n,m ∈ N,m = a+n. Then an m−qubit
unitary U is a (α, a, ϵ)−block encoding of an n−qubit linear operator A if

∥α
(
⟨0⊗a| ⊗ In

)
U
(
|0⊗a⟩ ⊗ In

)
− A∥ ≤ ϵ . (4.6)

In this case, the unitary operator UA is referred to as an (α,m, ϵ)-block-
encoding of the matrix A. When ϵ = 0 the block-encoding is said to be
exact and the unitary matrix is called an (α,m)-block-encoding of A. We
denote the set of all (α,m, ϵ)-block-encodings of A by BEα,m(A, ϵ), and define
BEα,m(A) = BEα,m(A, 0) as the set of all exact (α,m)-block-encodings of A.

Remark 4.1.1. The following statements are equivalent:

1. U is an (α, k)-block-encoding of A ;

2. For every n-qubit state |ψ⟩, we have

U |0⊗k⟩ |ψ⟩ = 1

α
|0⊗k⟩A |ψ⟩+ |⊥⟩ ;

3. For every 0 ≤ i, j ≤ N − 1 we have(
⟨0⊗k| ⊗ ⟨i|

)
U
(
|0⊗k⟩ ⊗ |j⟩

)
=
aij
α
.

The following example is called unitary dilation of A and it is a general-
ization of block-encoding shown in eq. (3.18):

40 4. Block encodings

Example 4.1.1. For any n-qubit matrix A with ∥A∥ ≤ 1, the singular value
decomposition (SVD) of A is denoted by A = UΣV †, where all singular
values in the diagonal matrix Σ belong to [0, 1]. Then, we may construct an
(n+ 1)-qubit unitary matrix UA as follows:

UA :=

[
U 0

0 In

][
Σ

√
In − Σ2

√
In − Σ2 −Σ

][
V † 0

0 In

]

=

[
A U ·

√
In − Σ2

√
In − Σ2 · V † −Σ

]
(4.7)

which is a (1, 1)-block-encoding of A.

However, this method is not practical in general, as it requires explicit
knowledge of the singular value decomposition of A. Furthermore, it does
not provide any guidance on how to implement the resulting unitary UA

efficiently as a quantum circuit.
We are now interested in studying how we can compute the operations

between block-encoding matrices. The first two lemmas can be found in [3].
We start with linear combination of block-encoded matrices. To formalize
the subsequent result, we need the following definition.

Definition 4.1.2 (State preparation pair). Let y ∈ Cm with ∥y∥1 ≤ β. A
pair of unitaries matrices (PL, PR) is called a (β, b, ϵ)-state preparation pair
if the following conditions hold:

1. PL |0⊗b⟩ =
∑2b−1

j=0 cj |j⟩ ,

2. PR |0⊗b⟩ =∑2b−1
j=0 dj |j⟩ ,

such that
m−1∑
j=0

∣∣β c∗jdj − yj
∣∣ ≤ ϵ, (4.8)

and for all j ∈ {m, . . . , 2b − 1}, it holds that c∗jdj = 0.

This definition closely resembles that of block-encoding; however, there
are important differences: here we are working with vectors rather than

4.1 General notion 41

matrices, we aim to construct two quantum states (via state preparation
unitaries) instead of a single quantum gate, and the relevant quantity is the
1-norm rather than the operator norm.

In the next proposition, we will use it to derive a block-encoding con-
struction.

Lemma 4.1.1 ([3]). Let A =
∑m

j=1 yjAj be an s-qubit operator, and let
ϵ ∈ R+. Assume that (PL, PR) is a (β, b, ϵ1)-state-preparation-pair for the
vector y, and let

W =
m−1∑
j=0

|j⟩ ⟨j| ⊗ Uj +

(
I −

m−1∑
j=0

|j⟩ ⟨j|
)

⊗ Ia ⊗ Is

be an (s+ a+ b)-qubit unitary operator such that for all j ∈ {0, . . . ,m− 1},
the operator Uj is an (α, a, ϵ2)-block-encoding of Aj.

Then, it is possible to implement an (αβ, a+b, αϵ1+αβϵ2)-block-encoding
of A using a single application of W , PR, and P †

L.

Proof. Observe that W̃ = (P †
L⊗ Ia⊗ Is)W (PR⊗ Ia⊗ Is) is a (αβ, a+ b, αϵ1+

αβϵ2)−block-encoding of A :∥∥∥A− αβ
(
⟨0⊗b| ⊗ ⟨0⊗a| ⊗ I

)
W̃
(
|0⊗b⟩ ⊗ |0⊗a⟩ ⊗ I

)∥∥∥
=

∥∥∥∥∥∥A− αβ

2b−1∑
k=0

c∗k ⟨k| ⊗ ⟨0⊗a| ⊗ I

(m−1∑
j=0

|j⟩ ⟨j| ⊗ Uj +

(
I −

m−1∑
j=0

|j⟩ ⟨j|
)

⊗ Ia ⊗ Is

)
·

·

2b−1∑
i=0

di |i⟩ ⊗ |0⊗a⟩ ⊗ I

∥∥∥∥∥∥
=

∥∥∥∥∥A− α

(
m−1∑
j=0

β(c∗jdj)
(
⟨0⊗a| ⊗ I

)
Uj
(
|0⊗a⟩ ⊗ I

))
+

+αβ

2b−1∑
j=m

(c∗jdj)
(
⟨0⊗a| ⊗ I

) (
|0⊗a⟩ ⊗ I

)∥∥∥∥∥∥
The second term will be the sum of zeros since we have by definition

42 4. Block encodings

c∗jdj = 0 for all j ∈ {m, . . . , 2b − 1}. Then we have:∥∥∥∥∥A− α

(
m−1∑
j=0

β(c∗jdj)
(
⟨0⊗a| ⊗ I

)
Uj
(
|0⊗a⟩ ⊗ I

))∥∥∥∥∥
We can add and subtract the term

∑m−1
j=0 yj (⟨0⊗a| ⊗ I)Uj (|0⊗a⟩ ⊗ I) and,

using the triangle inequality and the property that
∑m−1

j=0

∣∣β c∗jdj − yj
∣∣ ≤ ϵ1

we get :

≤ αϵ1 +

∥∥∥∥∥A− α

(
m−1∑
j=0

yj
(
⟨0⊗a| ⊗ I

)
Uj
(
|0⊗a⟩ ⊗ I

))∥∥∥∥∥
Now we use the triangle inequality again with the fact that we can write
A =

∑m−1
j=0 yjAjand we get:

≤ αϵ1 + α
m−1∑
j=0

|yj|∥Aj − (⟨0⊗a| ⊗ I) Uj
(
|0⊗a⟩ ⊗ I

)
∥

≤ αϵ1 + α
m−1∑
j=0

|yj|ϵ2 ≤ αϵ1 + αβϵ2

The circuit will have the following general form :

PR

•

P †
L

0
• 0

· · · · · ·
• • 0

|0⊗b⟩

|0⊗a⟩
U0 U1 Um−1

0

· · ·
|ψ⟩

(4.9)

Remark 4.1.2. One of the most widely used techniques for constructing
block encodings is based on the Linear Combination of Unitaries (LCU)
method, which expresses a target matrix as a weighted sum of unitary ma-
trices. A common and practical choice is to use tensor products of Pauli
matrices, not only because they are inexpensive to implement on quantum

4.1 General notion 43

hardware, but also because many Hamiltonians are already naturally written
in this form. This avoids the need to explicitly compute the decomposition.
Moreover, this approach does not require additional ancilla qubits beyond
those used to encode the coefficients. However, the main drawback of LCU
is that it often requires implementing multi-controlled unitary operations,
whose decomposition into elementary gates is resource-intensive and scales
poorly with the number of controls.

The following operation is the product of block-encoded matrices. In
general if we want to take the product of two block encoded matrices we
need to treat their ancilla qubits separately. In this case as the following
lemma shows the errors simply add up and the block encoding does not
introduce any additional errors.

Lemma 4.1.2 ([3]). Let U be an (α, a, δ)−block-encoding of an n-qubit
operator A, V be an (β, b, ϵ)−block-encoding of an n-qubit operator B, and
S the SWAP operation between the ancilla qubits:

S |ψ⟩ |ξ⟩ = |ξ⟩ |ψ⟩ , ∀ |ψ⟩ ∈ C2a , |ξ⟩ ∈ C2b (4.10)

then (Ib⊗U)(S⊗ In)(Ia⊗V) is a (αβ, a+ b, αϵ+βδ)- block-encoding of AB.

Proof.

∥AB − αβ(⟨0⊗a+b| ⊗ In)(Ib ⊗ U)(S ⊗ In)(Ia ⊗ V)(|0⊗a+b⟩ ⊗ In)∥
=∥AB − αβ(⟨0⊗a| ⊗ Is)U(|0⊗a⟩ ⊗ In)(⟨0⊗b| ⊗ In)V (|0⊗b⟩ ⊗ Is)∥
=∥AB − ÃB̃∥
=∥AB − ÃB + ÃB − ÃB̃∥
≤∥A− Ã∥β + α∥B − B̃∥
≤αϵ+ βδ

44 4. Block encodings

Another way to prove is to check whether the circuit will output |0⊗b⟩ |0⊗a⟩ Ã
α
B̃
β
|ψ⟩

(Ib ⊗ U)(S ⊗ In)(Ia ⊗ V)(|0⊗a+b⟩ |ψ⟩)

=(Ib ⊗ U)(S ⊗ In)(|0⊗a⟩ (|0⊗b⟩
B̃

β
|ψ⟩+ |⊥⟩)

=(Ib ⊗ U)(|0⊗b⟩ |0⊗a⟩ B̃
β
|ψ⟩+ |⊥⟩)

= |0⊗b⟩ |0⊗a⟩ Ã
α

B̃

β
|ψ⟩+ |⊥⟩+ |⊥2⟩

Then our final operator will be Ã
α
B̃
β

with an error αϵ+ βδ

The circuit will have the following general form:
|0⊗b⟩ /b ×/a 0
|0⊗a⟩ /a

U
×/b

V
0

|ψ⟩ /n
(4.11)

The following operation creates a block-encoding of a Kronecker product
of two matrices from the block-encodings of the individual matrices [18].

Lemma 4.1.3. Let Un and Um be (α, a, ϵ1)- and (β, b, ϵ2)-block-encodings of
As and At, respectively, and S defined as in eq. (4.10). Then,

S (Un ⊗ Um)S

is an (αβ, a+ b, αϵ2 + βϵ1 + ϵ1ϵ2)-block-encoding of As ⊗ At.

Proof.

∥As ⊗ At − αβ(⟨0⊗a+b| ⊗ Is ⊗ It)Sn+m (Un ⊗ Um)S
†
n+m(|0⊗a+b⟩ ⊗ Is ⊗ It)∥

=∥As ⊗ At − αβ(⟨0⊗a| ⊗ Is ⊗ ⟨0⊗b| ⊗ It) (Un ⊗ Um) (|0⊗a⟩ ⊗ Is ⊗ |0⊗b⟩ ⊗ It)∥

=∥As ⊗ At −
Ãs︷ ︸︸ ︷

α(⟨0⊗a| ⊗ Is)Un(|0⊗a⟩ ⊗ Is)⊗
Ãt︷ ︸︸ ︷

β(⟨0⊗b| ⊗ It)Um(|0⊗b⟩ ⊗ It) ∥
=∥As ⊗ At − Ãs ⊗ Ãt∥
≤∥(Ãs + ϵ1I)⊗ (Ãt + ϵ2I)− Ãs ⊗ Ãt∥
=∥Ãs ⊗ ϵ2It + ϵ1Is ⊗ Ãt + ϵ1Is ⊗ ϵ2It∥
≤ϵ2∥Ãs∥+ ϵ1∥Ãt∥+ ϵ1ϵ2

≤αϵ2 + βϵ1 + ϵ1ϵ2

4.2 Fast Approximate Quantum Circuits for Block-Encodings 45

where we used that ∥Ã∥ ≤ α and analogous result for Ãt.

The circuit will have the following general form:

|0⊗a⟩ /a
Us

0
|0⊗b⟩ /b×/s ×/b 0

/s×/b
Ut

×/s
/t

|ψ⟩

(4.12)

These operations can also be combined with each other, allowing us to block-
encode matrices with more sophisticated structures.

4.2 Fast Approximate Quantum Circuits for Block-

Encodings

The following section closely follows the treatment presented in [10].

Definition 4.2.1. The matrix query operation OA of a matrix A applies:

OA |0⟩ |i⟩ |j⟩ →
(
âij |0⟩+

√
1− |âij|2 |1⟩

)
|i⟩ |j⟩

with âij =
aij

∥A∥∞ .

The following theorem shows how to construct a block-encoding with in
terms of a matrix query oracle OA

Theorem 4.2.1. The circuit in eq. (4.13) is an (1
2n·∥A∥∞ , n+1)-block-encoding

of A. |0⟩
OA

0

|0⊗n⟩ /n H⊗n × H⊗n 0

|ψ⟩ /n ×
(4.13)

Proof. The circuit UA can be written in matrix notation as

UA = (I1 ⊗H⊗n ⊗ In)(I1 ⊗ S)OA(I1 ⊗H⊗n ⊗ In) .

To prove that UA is an (1
2n·∥A∥∞ , n+ 1)-block-encoding of A we just need to

verify that
⟨0| ⟨0⊗n| ⟨i|UA |0⟩ |0⊗n⟩ |j⟩ =

1

2n · ∥A∥∞
aij

46 4. Block encodings

On the one hand, we have

|0⟩ |0⊗n⟩ |j⟩ H
⊗n

−→ 1√
2n

2n−1∑
k=o

|0⟩ |k⟩ |j⟩

OA−→ 1√
2n

2n−1∑
k=o

(
âkj |0⟩) +

√
1− |âkj|2 |1⟩

)
|k⟩ |j⟩

S−→ 1√
2n

2n−1∑
k=o

(
âkj |0⟩+

√
1− |âkj|2 |1⟩

)
|j⟩ |k⟩ ,

while, on the other hand, we get

|0⟩ |0⊗n⟩ |i⟩ H
⊗n

−→ 1√
2n

2n−1∑
l=o

|0⟩ |l⟩ |i⟩ .

Combining both yields :

⟨0| ⟨0⊗n| ⟨i|UA |0⟩ |0⊗n⟩ |j⟩ =
1

2n

(
2n−1∑
l=o

⟨0| ⟨l| ⟨i|
)(

2n−1∑
k=o

(
âkj |0⟩+

√
1− |âkj|2 |1⟩

)
|j⟩ |k⟩

)

=
1

2n

2n−1∑
k=o

2n−1∑
l=o

âkj ⟨l|j⟩ ⟨i|k⟩

=
1

2n
âij =

1

2n · ∥A∥∞
aij.

We present how the oracle OA can be implemented in simple 1− and 2−
qubit gates for arbitrary matrices [10]. We first consider real-valued matrix.
In this case, for given row and column indices i and j, OA acts on the |0⟩
state of the first qubit as an Ry gate with angle

θij = 2arccos(aij) (4.14)

i.e.,

Ry(θij) =

[
cos(

θij
2
) − sin(

θij
2
)

sin(
θij
2
) cos(

θij
2
)

]
A first naive implementation of the oracle uses N2 multi-controlled Ry gates.
We will denote by Cn(Ry) an Ry gate with n control qubits. The circuit

4.2 Fast Approximate Quantum Circuits for Block-Encodings 47

construction for OA uses one Cn(Ry) gate for each matrix entry aij where the
control qubits encode the row and column indices |i⟩ |j⟩ of the corresponding
entry. The circuit illustrated below rapresent the oracle OA for the encoding
of a 2× 2 real matrix using 3 qubits and 4 C2(Ry) gates.

Ry(θ00) Ry(θ01) Ry(θ10) Ry(θ11)

• •

• •

(4.15)

The major disadvantage of this naive approach is that it requiresN2C2n(Ry)

gates to implement the OA oracle for A ∈ RN×N . However, every C2n(Ry)

requires O(N2) 1- and 2-qubits gates to be implemented [19]. This brings
the total gate complexity of this circuit to O(N4) which is excessive as it
is quadratically worse than the classical representation cost. Than we can
use the FABLE (Fast Approximate Quantum Circuits for Block-Encodings)
implementation [10] to have a quadratic reduction in gate complexity. We
can rewrite the circuit with another structure as derived in [20]. Let us first
see before the construction for a small-scale example of A ∈ R2×2.

Ry(θ̂0) Ry(θ̂1) Ry(θ̂2) Ry(θ̂3)

• •

• •

(4.16)

In eq. (4.16), the angles θ̂0, θ̂1, θ̂2, θ̂3 are computed from the data A ∈ R2×2

as we will explain later. We analyze the action of the above circuit based on
the following two elementary properties of Ry rotations:

Ry(α)Ry(β) = Ry(α + β)

XRy(α)X = Ry(−α)

48 4. Block encodings

Then it follows that the first qubit is rotated as

00 : Ry(θ̂3) ·Ry(θ̂2) ·Ry(θ̂1) ·Ry(θ̂0) = Ry(θ̂3 + θ̂2 + θ̂1 + θ̂0)

01 : Ry(θ̂3) ·X ·Ry(θ̂2) ·Ry(θ̂1) ·X ·Ry(θ̂0) = Ry(θ̂3 − θ̂2 − θ̂1 + θ̂0)

10 : X ·Ry(θ̂3) ·Ry(θ̂2) ·X ·Ry(θ̂1) ·Ry(θ̂0) = Ry(−θ̂3 − θ̂2 + θ̂1 + θ̂0)

11 : X ·Ry(θ̂3) ·X ·Ry(θ̂2) ·X ·Ry(θ̂1) ·X ·Ry(θ̂0) = Ry(−θ̂3 + θ̂2 − θ̂1 + θ̂0)

where the rotation angle depends on the state of the control qubits as in-
dicated above. To implement an OA oracle with angles θ00, θ01, θ10, θ11, as
given by 4.14, we vectorize A in row-major such that vec(A)i+j·N = aij to
obtain relabeled angles (θ0, . . . , θ3). It is clear from the system of equations
above that these angles have to satisfy:

θ0

θ1

θ2

θ3

 =


1 1 1 1

1 −1 −1 1

1 1 −1 −1

1 −1 1 −1



θ̂0

θ̂1

θ̂2

θ̂3

 , (4.17)

the linear system can also be written as
θ0

θ1

θ2

θ3

 =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1



1

1

0 1

1 0



θ̂0

θ̂1

θ̂2

θ̂3

 , (4.18)

= (Ĥ ⊗ Ĥ)PG


θ̂0

θ̂1

θ̂2

θ̂3

 , (4.19)

where Ĥ =

[
1 1

1 −1

]
is a scalar multiple of the Hadamard gate and PG is the

permutation matrix that transforms binary ordering to Gray code ordering
(an ordering of the binary numeral system such that two consecutive values
differ in only one bit). This algorithm generalizes to OA oracle for matrices

4.2 Fast Approximate Quantum Circuits for Block-Encodings 49

A ∈ RN×N . The corresponding circuit structure consists of a gate sequence of
length 22n alternating between Ry and CNOT gates. Note that Ry gates only
act on the first qubit, which is also the target of the CNOT gates, and the
control qubit for the l-th CNOT is determined by the bit where the l-th and (l
+ 1)-th Gray code differs. For an oracle OA with angles θ = (θ0, . . . , θ22n−1)

given by (4.14), the new angles θ̂ = (θ̂0, . . . , θ̂22n−1) are related to θ through
the linear system (

Ĥ⊗2nPG
)
θ̂ = θ (4.20)

This linear system can be efficiently solved by a classical algorithm in O(N2 logN2)

time using a fast Walsh–Hadamard transform [21]. The gate complexity of
implementing OA with this approach is O(N2) for A ∈ RN×N , where N2

CNOT and N2 single-qubit Ry gates are required. For the complex case,
see [10]. We next illustrate the idea of the circuit compression algorithm for
uniformly controlled rotation gates. The compression algorithm uses a cutoff
threshold δc ∈ R+, that is it considers all θ̂i ≤ δc to be negligible: this means
that the respective single qubit rotations can be removed from the circuit.
The algorithm consists of two steps:

1. Remove all rotation gates for angles θ̂i ≤ δc from the circuit;

2. Perform a parity check on the control qubits of the CNOT gates in each
series of consecutive CNOT gates: keep one CNOT gate with control
qubit i if there are an odd number in the series, otherwise remove all
CNOT gates with control qubit i.

Example 4.2.1. We illustrate the idea of the circuit compression algorithm
for controlled rotation gate with 8 angles:

50 4. Block encodings

Assume for example that θ̂2, θ̂3, θ̂4, θ̂5, θ̂6 ≤ δc, then the respective single
qubit rotations can be removed from the circuit, yielding:

The resulting circuit includes a sequence of consecutive CNOT gates that
can be simplified, since they commute with each other and act on the same
target qubit. Within such a sequence, any pair of CNOT gates sharing the
same control qubit will effectively cancel one another out. As a result, in the
given example, a total of 5 single-qubit rotations and 4 CNOT gates can be
eliminated, leading to a more compact version of the circuit.

This procedure can be considered as data sparsification since it allows us
to represent the block encoding matrix with fewer than N2 parameters.
However, since we perform a sparsification on the θ̂ angles after the Wash-
Hadamard transform, it doesn’t mean that θ and A are sparse in the usual
sense of containing many zeros. The following theorem relates the cutoff
threshold δc withe the error ϵ on the block-encoding.

Theorem 4.2.2 ([10]). For an n-qubit matrix A ∈ R2n×2n , the FABLE
(Fast Approximate Quantum Circuits for Block-Encodings) circuit with cut-
off compression threshold δc ∈ R+ gives an (1

2n·∥A∥∞ , n + 1, N3δc + O(δ3c))-
block-encoding of A.

4.3 Sparse matrices 51

Proof. We start with the linear system in eq. (4.19) that relates the angles of
the uniformly controlled rotations to the angles of the matrix query oracle.
After thresholding the parameters θ̂ with cutoff δc, the uniformly controlled
rotation is constructed with parameters θ̂ + δθ, where |δθi| ≤ δc. It follows
that ∥δθ̂∥ ≤ Nδc. This perturbs the angles in OA from θ to :

θ̃ = (Ĥ⊗2nPG)(θ̂ + δθ).

By linearity, the error on OA thus becames:

η = θ̃ − θ = (Ĥ⊗2nPG)δθ

and we get
∥η∥ ≤ ∥Ĥ⊗2n∥ · ∥PG∥ · ∥δθ∥ ≤ N2δc

as PG is a unitary matrix and ∥Ĥ⊗2n∥ = N . This implies that the element
wise error is now only bounded by |ηi| = |θi − θ̃i| ≤ N2δc This relates to the
element-wise error on ai as :

|δai| = |ai − ãi| = | cos(θi)− cos(θ̃i)|
= | cos(θi)− cos(θi + ηi)|

=
∣∣∣2 sin(ηi

2

)
sin
(
θi +

ηi
2

)∣∣∣
≤ 2

∣∣∣sin(ηi
2

)∣∣∣ ≤ N2δc +O(δ3c)

In the final approximation, we used the Taylor series of the sine function.
We thus have that ∥δa∥ ≤ N3δc. As ∥A∥ ≤ ∥A∥F = ∥ vec(A)∥, we get the
upper bound.

4.3 Sparse matrices

This section closely follows the constructions presented in [11]. For an
alternative construction, we also refer the reader to [22]. We consider the
block-encoding of sparse matrices, that is, matrices where most entries are
zero. We begin by introducing some notation that will be used throughout.

52 4. Block encodings

Definition 4.3.1. A matrix A ∈ Cn×m is called s-sparse if each row and
each column of A contains at most s nonzero entries. In other words,

∀i ∈ {1, . . . , n} : |{j : Aij ̸= 0}| ≤ s,

∀j ∈ {1, . . . ,m} : |{i : Aij ̸= 0}| ≤ s.

Additionally, we introduce a function that returns the location of the ℓ-th
nonzero entry in a specified row or column.

Definition 4.3.2. Let A ∈ Cn×m be a s-sparse matrix, we define

c : {1, . . . , s} × {1, . . . ,m} −→ {1, . . . , n} ,

as the function that gives the row index of the ℓ-th nonzero matrix element
in the j-th column.

We now assume that A is a square matrix, i.e., A ∈ CN×N with N = 2n

and s = 2m for somem≪ n. Under these assumptions, the following theorem
provides a method for constructing a block encoding of A.

Theorem 4.3.1 (Theorem 4.1 [11]). Let c(ℓ, j) as defined in definition 4.3.2
of an s-sparse matrix A ∈ CN×N . Let Oc be a unitary such that:

Oc |ℓ⟩ |j⟩ = |ℓ⟩ |c(ℓ, j)⟩ ,

and OA be a unitary such that

OA |0⟩ |ℓ⟩ |j⟩ =
(
Ac(ℓ,j),j |0⟩+

√
1− |Ac(ℓ,j),j|2 |1⟩

)
|ℓ⟩ |j⟩ ,

then
UA = (I2 ⊗H⊗m ⊗ IN)(I2 ⊗Oc)OA(I2 ⊗H⊗m ⊗ IN) ,

is a (s,m+ 1)-block encoding of A.

Remark 4.3.1. The unitaries Oc and OA in Theorem 4.3.1 always exist.
However, what is nontrivial in practice is whether these unitaries can be
implemented in an efficient way. The applicability of this block encoding ap-
proach ultimately depends on our ability to efficiently construct and execute
Oc and OA for a given matrix A.

4.3 Sparse matrices 53

Proof. We will show that ⟨0| ⟨0⊗m| ⟨i|UA |0⟩ |0⊗m⟩ |j⟩ = 1
s
Aij. We first apply

H⊗m, OA, Oc to |0⟩ |0⊗m⟩ |j⟩:

|0⟩ |0⊗m⟩ |j⟩ I2⊗H⊗m⊗IN−−−−−−−−→ 1√
s

s−1∑
ℓ=0

|0⟩ |ℓ⟩ |j⟩ ,

OA−−→ 1√
s

s−1∑
ℓ=0

(
Ac(ℓ,j),j |0⟩+

√
1− |Ac(ℓ,j),j|2 |1⟩

)
|ℓ⟩ |j⟩ ,

I2⊗Oc−−−→ 1√
s

s−1∑
ℓ=0

(
Ac(ℓ,j),j |0⟩+

√
1− |Ac(ℓ,j),j|2 |1⟩

)
|ℓ⟩ |c(ℓ, j)⟩ ,

and we apply I2 ⊗H⊗m ⊗ IN first to |0⟩ |0⊗m⟩ |i⟩, that is

|0⟩ |0⊗m⟩ |i⟩ I2⊗H⊗m⊗IN−−−−−−−−→ 1√
s

s−1∑
k=0

|0⟩ |k⟩ |i⟩ .

Finally, taking the inner product we get

⟨0| ⟨0⊗m| ⟨i|UA |0⟩ |0⊗m⟩ |j⟩ =
1

s

s−1∑
k=0

s−1∑
ℓ=0

Ac(ℓ,j),j ⟨k|ℓ⟩ ⟨i|c(ℓ, j)⟩ =
1

s
Aij

The quantum circuit associated with this block encoding has the following
general form:

|0⟩
OA

0

|0⊗m⟩ /m H⊗m
Oc

H⊗m 0

|ψ⟩ /n

(4.21)

This block-encoding can be regarded as a special case of Theorem 4.2.1.
However, due to the sparsity of A, it suffices to use only m+1 ancilla qubits
instead of n + 1. Moreover, if A possesses additional structure, the oracles
Oc and OA can often be implemented efficiently. In the following, we focus
on a specific class of structured matrices and provide explicit constructions
of the corresponding quantum circuits.

A sparse matrix A can naturally be interpreted as the adjacency matrix of
a directed graph. In this context, we define a vertex set V corresponding to
the column indices {j} of A, and an edge set E ⊆ V × V consisting of index

54 4. Block encodings

pairs (i, j) such that Aij ̸= 0. Each nonzero entry Aij represents a directed
edge from vertex j to vertex i, with the value of Aij specifying the weight
of that edge. In the case of undirected graphs, the corresponding adjacency
matrix is symmetric, satisfying Aij = Aji. In contrast, for directed graphs,
this symmetry condition does not hold in general. Now, we focus our study
on the special case where the sparse matrix A corresponds to the adjacency
matrix of a directed cyclic graph. As an illustrative example, we consider
a cyclic graph with N = 8 vertices, whose associated adjacency matrix is a
banded circulant matrix.

2

1
0

7

6

5
4

3

A =



α γ 0 · · · β

β α
. . .

. . . 0

0 β
. . . γ

...
...

. . .
. . . α γ

γ 0 · · · β α


. (4.22)

The structure of the matrix corresponds to a directed graph in which each
vertex j, for 0 ≤ j ≤ N − 1, has two outgoing edges. Specifically, the edges
(mod(j + 1, N), j) and (j,mod(j − 1, N)) are included in the edge set E.
The weights associated with these directed edges are denoted by β and γ,
respectively. In addition to these directed edges, each vertex j is assigned
a weight α, which can be interpreted as the weight of a self-loop edge from
vertex j to itself. As a result, the corresponding adjacency matrix A takes
on a nearly tridiagonal structure, with:

- α along the diagonal,

- γ along the superdiagonal,

- β along the subdiagonal.

The cyclic nature of the graph is reflected by the nonzero entries AN−1,0 = γ

and A0,N−1 = β, which complete the wraparound connectivity of the cycle.
Each column of the matrix contains exactly three nonzero elements. To

4.3 Sparse matrices 55

encode the row indices of these nonzero elements, we requirem = ⌈log2 3⌉ = 2

ancilla qubits. An additional ancilla qubit is used to encode the numerical
values of the matrix entries. When applying Theorem 4.3.1 to construct the
corresponding block-encoding circuit, we use s = 2m = 4 and thus treat the
matrix as 4-sparse, even though each column actually contains only three
nonzero elements.

In order to construct an explicit block encoding, we first need to define the
function c(j, ℓ) introduced in Definition 4.3.2, which returns the row index of
the ℓ-th nonzero entry in the j-th column of the matrix. For the adjacency
matrix associated with a cyclic graph, this function can be specified explicitly
as follows:

c(ℓ, j) =


(j − 1) mod N if ℓ = 0

j if ℓ = 1 or ℓ = 3

(j + 1) mod N if ℓ = 2

(4.23)

Therefore we need to construct a quantum circuit to map |j⟩ to |(j − 1) mod N⟩,
|j⟩ or |(j + 1) mod N⟩, depending on the value of ℓ. These cyclic addition
and subtraction mappings correspond to left and right shift permutation op-
erators, which we define as follows:

L =


0 1

1 0

. . .
. . .

1 0

 , R =


0 1

. . .
. . .

0 1

1 0

 . (4.24)

Here, the matrix L performs a cyclic left shift (i.e., subtraction by 1 mod

N), and R performs a cyclic right shift (i.e., addition by 1 mod N). These op-
erations can be implemented efficiently in quantum circuits using multiqubit
controlled-NOT gates.

Lemma 4.3.1. We define the Cn-NOT gate as the n-qubit multi-controlled
NOT gate acting as:

Cn-NOT |jn−1⟩ · · · |j1⟩ |j0⟩ = |jn−1 ⊕
(
n−2∏
k=0

jk

)
⟩ · · · |j1⟩ |j0⟩ . (4.25)

56 4. Block encodings

Analogously, we define the negatively-controlled version, denoted C̃n-NOT,
as:

C̃n-NOT |jn−1⟩ · · · |j1⟩ |j0⟩ = |jn−1 ⊕
(
n−2∏
k=0

(1⊕ jk)

)
⟩ · · · |j1⟩ |j0⟩ . (4.26)

Then the left and right cyclic shift operators introduced in Eq. (4.24) can
be constructed as:

L = (I2n−1 ⊗X) ·
(

n∏
p=1

Cp-NOT

)
, (4.27)

R = (I2n−1 ⊗X) ·
(

n∏
p=1

C̃p-NOT

)
. (4.28)

Then L implements modular addition by 1, and R implements modular sub-
traction by 1:

L |j⟩ = |(j + 1) mod 2n⟩ , R |j⟩ = |(j − 1) mod 2n⟩ .

Proof. We proceed by induction on n. For the base case n = 1, we have:

L = X,

which acts as:
L |0⟩ = |1⟩ , L |1⟩ = |0⟩ ,

corresponding to modular addition modulo 2, as required. Now suppose the
claim holds for some n = k, i.e., the operator

Lk = (I2k−1 ⊗X)

(
k∏
p=1

Cp-NOT

)

implements:
Lk |j⟩ = |(j + 1) mod 2k⟩ .

We now prove the result for n = k + 1. Define:

Lk+1 = (I2k ⊗X) ·
(
k+1∏
p=1

Cp-NOT

)
= Lk · Ck+1-NOT.

4.3 Sparse matrices 57

The gate Ck+1-NOT is activated only on states of the form |jk⟩ |1 · · · 1⟩, where
the last k qubits are all 1. These correspond to the numbers of the form:

jk · 2k + (2k − 1).

On such states, we have:

Lk+1 |jk⟩ |1 · · · 1⟩ = Lk · Ck+1-NOT |jk⟩ |1 · · · 1⟩
= Lk |jk ⊕ 1⟩ |1 · · · 1⟩
= |jk ⊕ 1⟩ |0 · · · 0⟩ ,

which corresponds to the state |jk · 2k⟩, i.e., (j + 1) mod 2k+1. For all other
basis states |j⟩ = |jk⟩ |jk−1⟩ · · · |j0⟩, where the last k bits are not all ones, the
Ck+1-NOT gate is inactive, so:

Lk+1 |j⟩ = Lk |j⟩ = |(j + 1) mod 2k+1⟩ .

Hence, the induction step holds and Lk+1 performs modular addition by one.
The proof for R is analogous, using negatively-controlled gates instead.

In the case n = 4, the circuit representation of L is:

|j3⟩

L
|j2⟩
|j1⟩
|j0⟩

=
•
• •
• • • X

(4.29)

Similarly, the circuit for R is:

|j3⟩

R
|j2⟩
|j1⟩
|j0⟩

=

X

(4.30)

To construct Oc we have to control the L and R gates which must be activated
only when ℓ = 0 and ℓ = 2. The final circuit for Oc is :

|ℓ1⟩
Oc|ℓ0⟩

|j⟩
=

•

L R

(4.31)

58 4. Block encodings

It is important to remark that the construction of Oc depends on how c(ℓ, j)

is defined, which is not unique. For example, instead of using eq. (4.23), we
might use the following definition:

c(ℓ, j) =


j if ℓ = 0 or ℓ = 3

(j − 1) mod N if ℓ = 1

(j + 1) mod N if ℓ = 2

(4.32)

resulting into the Oc circuit:

|ℓ1⟩
Oc|ℓ0⟩

|j⟩
=

•
•
L R

=

•
•
L R

(4.33)

that can further be simplified because the L-shift and R-shift cancel each
other for ℓ = 3. For circulant matrices, the matrix elements of A depend
solely on the value of ℓ. Consequently, when using controlled rotations to
encode the nonzero matrix elements, the control qubits are conditioned only
on those qubits that encode the state |ℓ⟩. To encode the diagonal entry α,
we apply a controlled rotation Ry(θ0) conditioned on ℓ = 0. Similarly, the
controlled rotations Ry(θ1) and Ry(θ2) are used to encode the sub-diagonal
and super-diagonal elements β and γ, respectively, corresponding to ℓ = 1

and ℓ = 2.

Lemma 4.3.2. The rotation angles are given by:

θ0 = 2arccos(α− 1), θ1 = 2arccos(β), θ2 = 2arccos(γ).

Proof. These expressions are derived by evaluating the amplitude

⟨0| ⟨00| ⟨i|UA |0⟩ |00⟩ |j⟩ , for i ∈ {j − 1, j, j + 1},

where UA is the operator defined in Theorem 4.3.1. We apply the operator
(I2 ⊗ Oc)OA(I2 ⊗ H ⊗ H ⊗ In) to the state |0⟩ |00⟩ |j⟩, and we apply the
operator I2 ⊗ H ⊗ H ⊗ In to the state |0⟩ |00⟩ |i⟩. We then compute their

4.3 Sparse matrices 59

inner product.

(I2 ⊗Oc)OA(I2 ⊗H ⊗H ⊗ In) |0⟩ |00⟩ |j⟩

=
1

2
(I2 ⊗Oc)OA |0⟩ (|00⟩+ |01⟩+ |10⟩+ |11⟩) |j⟩

=
1

2
(I2 ⊗Oc) (Ry(θ0) |0⟩ |00⟩+Ry(θ1) |0⟩ |01⟩+Ry(θ2) |0⟩ |10⟩+ |0⟩ |11⟩) |j⟩

=
1

2

(
Ry(θ0) |0⟩ |00⟩ |j⟩+Ry(θ1) |0⟩ |01⟩ |j − 1⟩+Ry(θ2) |0⟩ |10⟩ |j + 1⟩+ |0⟩ |11⟩ |j⟩

)
.

(4.34)

On the other hand, we have:

|0⟩ |00⟩ |i⟩ I2⊗H⊗H⊗In−−−−−−−→ 1

2
|0⟩ (|00⟩+ |01⟩+ |10⟩+ |11⟩) |i⟩ . (4.35)

Now, computing the inner product for i ∈ {j − 1, j, j + 1} gives:

⟨0| ⟨00| ⟨i|UA |0⟩ |00⟩ |j⟩ =


cos
(
θ0
2

)
+ 1 if i = j,

cos
(
θ1
2

)
if i = j − 1,

cos
(
θ2
2

)
if i = j + 1.

It is then sufficient to solve the following equations:

⟨0| ⟨00| ⟨i|UA |0⟩ |00⟩ |j⟩ =


α if i = j,

β if i = j − 1,

γ if i = j + 1,

from which the expressions for θ0, θ1, and θ2 follow.

This design leads to the following orthogonal array (OA) quantum circuit
structure, where the rotations are activated only for the appropriate values
of ℓ to ensure that the correct matrix elements are encoded.

|0⟩
OA

|ℓ1⟩
|ℓ0⟩
|j⟩

=

Ry(θ0) Ry(θ1) Ry(θ2)

•

•
(4.36)

60 4. Block encodings

|0⟩ Ry(ϕ0) Ry(ϕ1) Ry(ϕ2) Ry(ϕ3) 0

|0⟩ H • • • H 0

|0⟩ H • • • H 0

|ψ⟩ L R

Figure 4.1: A complete quantum circuit for the block encoding of a 8 × 8

banded circulant matrix.

To avoid the use of multi-controlled gates, we can apply a Walsh–Hadamard
transformation of angles, as described in eq. (4.20). Then, the circuit OA

with the angles {ϕ0, ϕ1, ϕ2, ϕ3}, can be implemented in the following way:

|0⟩
OA

|ℓ1⟩
|ℓ0⟩
|j⟩

=

Ry(ϕ0) Ry(ϕ1) Ry(ϕ2) Ry(ϕ3)

• •

• •

The complete circuit for a block encoding of A/4, where A is an 8 × 8

circulant matrix of the form given in eq. (4.22), is shown in Figure 4.1. The
total number of Hadamard gates and controlled rotations scales proportion-
ally with log(s), which remains small for sparse matrices. Similarly, the
number of controlled-R and controlled-L shift operations is O(log s). Each
of these shift operations is implemented as a general multi-qubit controlled
(Toffoli) gate, which can be decomposed into a polynomial number of two-
qubit gates. Consequently, the overall gate complexity of the UA circuit is
poly(n), making the construction asymptotically efficient.

Chapter 5

Efficient Block Encoding of Spin

Hamiltonians

In this chapter, we present the main result of the thesis: an efficient
framework for the block encoding of spin Hamiltonians, a class of matrices
characterized by their structured sparsity and symmetry. We introduce a
novel formulation of the Linear Combination of Unitaries (LCU) method
that the SELECT oracle using only n CNOT and n cZ gates, along with a
linear number of ancilla qubits. By carefully exploiting the structure inherent
to spin Hamiltonians, we also reduce the cost of the state preparation oracle.
This is achieved through the design of a new family of efficient routines for
Dicke state preparation, a special class of quantum states.

To demonstrate the practicality of our framework, we explicitly construct
block-encoding circuits for a representative case: the Heisenberg Hamilto-
nian. We provide detailed, non-asymptotic gate counts for all components
of the circuit and support our analysis with numerical benchmarks. These
results validate the effectiveness of our method—referred to as the FOQCS-
LCU technique—by showing a substantial reduction in CNOT gate count,
achieving an order-of-magnitude improvement over conventional LCU-based
approaches.

61

62 5. Efficient Block Encoding of Spin Hamiltonians

5.1 Fast One-Qubit Control Select LCU

In the Linear Combination of Unitaries (LCU) method (see Remark 4.1.2),
a target matrix H is expressed as a weighted sum of unitary operators:

H =
M−1∑
m=0

αmUm; , (5.1)

where the αm are (generally complex) scalar coefficients, and each Um is a
unitary matrix.

This decomposition provides a flexible and general framework for encod-
ing arbitrary operators. While in the worst case the number of terms M may
grow exponentially with system size, in many physically relevant settings (for
example condensed matter systems and molecular Hamiltonians in quantum
chemistry) M scales only polynomially, or even linearly. Due to its general-
ity and scalability in structured problems, the LCU method remains one of
the most widely used and theoretically grounded strategies for implementing
efficient block encodings in quantum simulation tasks.

We now proceed to examine the standard LCU method in detail, before
introducing our variant. We will highlight the key differences between our ap-
proach and the original formulation presented above. The LCU method uti-
lizes three oracles: a state preparation pair (PR,PL)(Def 4.1.2) and SELECT.
PR and PL only act on the ⌈log2(M)⌉ ancillae and prepare respectively the
following states:

|0⊗⌈log2(M)⌉⟩ PR−→ 1√
N

M−1∑
m=0

√
αm |m⟩ , (5.2)

|0⊗⌈log2(M)⌉⟩ PL−→ 1√
N

M−1∑
m=0

√
αm

∗ |m⟩ , (5.3)

where |m⟩ denotes the computational basis state corresponding to the binary
representation of the integer m and N is the normalization:

N = ∥α∥1 =
M−1∑
m=0

|αm| . (5.4)

5.1 Fast One-Qubit Control Select LCU 63

PR

•

P†
L

0
• 0

· · · · · ·
• • 0

|0⊗⌈log2(M)⌉⟩

U0 U1 UM−1· · ·

|ψ⟩

Figure 5.1: LCU block encoding

The SELECT oracle, on the other hand, applies M multi-controlled uni-
taries acting on the system registry, with each unitary controlled by the
associated ancillary state |m⟩:

SELECT =
M−1∑
m=0

|m⟩ ⟨m| ⊗ Um +

⌈log2(M)⌉−1∑
m=M

|m⟩ ⟨m| ⊗ I (5.5)

The complete LCU circuit starts with the preparation of the state eq. (5.2),
followed by the application of SELECT, and then the inverse of PL, as shown
in Fig 5.1.

Note that the main difference between this method and the block encoding
presented in eq. (4.9) lies in the absence of ancillary qubits |0⊗a⟩ in the current
formulation. These ancillae are not required here, since the operators Um are
already unitary.

If we consider the most generic implementation of LCU, assuming for
simplicity that U consists of Pauli strings (i.e tensor product of Pauli ma-
trices), the overall gate count scales as O(ωM logβ (M)) [9, 23], where ω is
the maximum Pauli weight (i.e the maximun number of Pauli matrices that
are not the identity in the tensor product) and the greatest contribution is
given by the multi-controlled gates of the SELECT oracle. However, this
asymptotic cost can be substantially reduced by introducing additional an-
cillae and exploiting the algebraic or physical structure of the problem at
hand. We contribute to this line of research by fully exploiting the under-
lying structures of target Hamiltonians, particularly those within a broad

64 5. Efficient Block Encoding of Spin Hamiltonians

Pauli (i, j)

I (0, 0)

Z (0, 1)

X (1, 0)

Y (1, 1)

Table 5.1: check-matrix formalism.

class of quantum spin models. Moreover, we develop a novel formulation of
LCU that eliminates the need for costly multi-controlled operations in the
SELECT oracle.

Finally, we introduce a new LCU implementation circuit based on the
check-matrix formalism [1], where we assume the unitaries to be Pauli strings.
Since the Pauli matrices form a basis for the space of 2×2 complex matrices,
such a decomposition can always be found. The key feature of this new LCU
variant is that the SELECT subroutine requires no multi-controlled gates.
Therefore, we refer to this method as Fast One-Qubit Control Select LCU
(FOQCS-LCU), pronounced “Focus”.

First we present a simple example of a generic 2× 2 matrix, to illustrate
how our implementation works. After that, we describe how to extend this
approach to general matrices of dimension 2n × 2n.

We start with the single-qubit case of any complex matrix A ∈ C2×2

which can be written as:

A = α00I + α01Z + α10X + α11Y, (5.6)

= α00I + α01Z + α10X − iα11ZX , (5.7)

where we assume ∥α∥1 = 1 and use the identity Y = −iZX, noting that the
coefficients α are generally complex. This notation recalls the check-matrix
formalism in table 5.1 [1], so that the coefficient αij corresponds to the pair
(i, j).

By using a state preparation pair (PR,PL), such that each prepares the

5.1 Fast One-Qubit Control Select LCU 65

following state on two ancillae:

|00⟩ PR−→√
α00 |00⟩+

√
α01 |01⟩+

√
α10 |10⟩+

√
−iα11 |11⟩ , (5.8)

|00⟩ PL−→√
α00

∗ |00⟩+√
α01

∗ |01⟩ +
√
α10

∗ |10⟩+
√
−iα11

∗ |11⟩ , (5.9)

where the square root of a complex number z ∈ C as its principal value,
denoted by

√
z, and given by

√
z =

√
|z| ei arg(z)/2 ,

where |z| is the modulus of z and arg(z) ∈ (−π, π] is its principal argument.
Then, we can realize a modified LCU block encoding for A, where the X and
Z contributions are activated respectively by the first and second ancilla:

|0⟩
PR

•
P†

L

0

|0⟩ • 0

|ψ⟩ Z
A|ψ⟩

∥A|ψ⟩∥

(5.10)

Theorem 5.1.1. The circuit in eq. (5.10) is a (2, 0) block-encoding for A in
eq. (5.6).

Proof. Given a starting one-qubit state |ψ⟩ on which A is applied:

A |ψ⟩ = (α00I + α01Z + α10X − iα11ZX) |ψ⟩ ,

the circuit yields the following outcomes at each step:

|00⟩ |ψ⟩ PR−→
(√

α00 |00⟩+
√
α01 |01⟩+

√
α10 |10⟩+

√
−iα11 |11⟩

)
|ψ⟩

CNOT−→√
α00 |00⟩ |ψ⟩+

√
α01 |01⟩X |ψ⟩+√

α10 |10⟩ |ψ⟩+
√
−iα11X |11⟩ |ψ⟩

cZ−→√
α00 |00⟩ |ψ⟩+

√
α01 |01⟩X |ψ⟩+√

α10 |10⟩Z |ψ⟩+
√
−iα11ZX |11⟩ |ψ⟩ .

Finally, before measuring the ancillae, we apply the gate P†
L, whose action is

defined as:

|00⟩ PL−→ √
α00

∗ |00⟩+√
α01

∗ |01⟩+√
α10

∗ |10⟩+
√
−iα11

∗ |11⟩ ,

66 5. Efficient Block Encoding of Spin Hamiltonians

That is, by applying the conjugate transpose, we obtain:

⟨00|P†
L =

√
α00 ⟨00|+

√
α01 ⟨01|+

√
α10 ⟨10|+

√
−iα11 ⟨11| ,

since the complex conjugate of the complex conjugate of α is α itself, so we
get:

(⟨00| ⊗ I2) · P†
L · SELECT · PR |00⟩ |ψ⟩ = α00 |ψ⟩+ α01X |ψ⟩+ α10Z |ψ⟩ − iα11ZX |ψ⟩

= A |ψ⟩ .

The circuit in eq. (5.10) can be easily generalized for n qubits for any
linear combination of Pauli strings. Given the standard LCU decomposition
in Pauli strings:

H =
M−1∑
m=0

αm

n−1⊗
ℓ=0

σmℓ
(5.11)

where σmℓ
∈ {I,X, Y, Z} and ∥α∥1 = 1, we can map every σmℓ

to a tuple
(iℓ, jℓ) by following the check-matrix formalism in table 5.1. As a result, we
get the following identity:

σmℓ
= (−i)iℓ·jℓ ZjℓXiℓ , (5.12)

where Xiℓ and Zjℓ are defined as:

Xiℓ =

I if iℓ = 0

X if iℓ = 1
(5.13)

Next, we combine the indices iℓ and jℓ for ℓ = 0, . . . , n− 1 to get the binary
representation of two indices i and j as in eq. (2.1).

i = [i0, i1 . . . , in−1] , j = [j0, j1, . . . , jn−1] , (5.14)

so that every m in eq. (5.11) corresponds to a tuple of integers (i, j).

5.1 Fast One-Qubit Control Select LCU 67

Finally, by expanding the summation over every i and j ∈ {0, . . . , 2n−1}
(where αij = 0 if there is no corresponding αm in the original summation)
and by absorbing the complex coefficients:

α̃ij = (−i)
∑

ℓ iℓ·jℓαij (5.15)

we get the check-matrix LCU decomposition of H:

H =
2n−1∑
i=0

2n−1∑
j=0

α̃ij

n−1⊗
ℓ=0

ZjℓXiℓ . (5.16)

Note that even if we are now summing over 4n ≥ M terms, the normal-
ization constraint stays the same as the new coefficients α̃ij are either equal
to the old ones up to a complex phase or to 0.

Starting from eq. (5.16), we can then define the action of PR for the
n-qubit case:

PR |0⊗n⟩ |0⊗n⟩ =
2n−1∑
i=0

2n−1∑
j=0

√
α̃ij |i⟩ |j⟩ , (5.17)

while PL prepares the complex conjugate:

PL |0⊗n⟩ |0⊗n⟩ =
2n−1∑
i=0

2n−1∑
j=0

√
α̃ij

∗ |i⟩ |j⟩ . (5.18)

Subsequently, the SELECT oracle can simply be realized by n CNOT
and n cZ gates, as shown in Fig 5.2.

Theorem 5.1.2. The circuit in Fig 5.2 with PR defined in eq. (5.17) and PL

defined in eq. (5.18) is a (2n, 0)-block encoding for H defined in eq. (5.16).

Proof. First we fix the two n-qubit ancillary registers as |i⟩ = |i0, . . . , in−1⟩
and |j⟩ = |j0, . . . , jn−1⟩. Applying the n CNOTs of the SELECT oracle will
result in the following state:

|i0, . . . , in−1⟩ |j0, . . . , jn−1⟩
(
Xi0 ⊗Xi1 ⊗ . . .⊗X in−1

)
|ψ⟩ . (5.19)

68 5. Efficient Block Encoding of Spin Hamiltonians

PR

•

P†
L

0

• 0

· · · · · · · · ·
• 0


|0⊗n⟩

• 0

• 0

· · · · · · · · ·
• 0


|0⊗n⟩

Z

Z

· · · · · ·
Z

|ψ⟩

Figure 5.2: Circuits representing FOQCS-LCU.

Then, after the controlled Z, we get:

−→|i0, . . . , in−1⟩ |j0, . . . , jn−1⟩
(
Zj0Xi0 ⊗ Zj1Xi1 ⊗ . . .⊗ Zjn−1X in−1

)
|ψ⟩

= |i⟩ |j⟩
n−1⊗
ℓ=0

ZjℓXiℓ |ψ⟩ , (5.20)

which proves the result for fixed |i⟩ and |j⟩.

If we now consider the PR and P†
L gates, whose actions were defined

respectively in eq. (5.2) and eq. (5.3), we can now prove that the circuit in

5.1 Fast One-Qubit Control Select LCU 69

Fig 5.2 implements the block encoding of A:

⟨0⊗n| ⟨0⊗n|P†
L · SELECT · PR |0⊗n⟩ |0⊗n⟩ |ψ⟩

=

[
2n−1∑
i′=0

2n−1∑
j′=0

√
α̃i′j′ ⟨i′| ⟨j′|

]
SELECT

[
2n−1∑
i=0

2n−1∑
j=0

√
α̃ij |i⟩ |j⟩

]
|ψ⟩

=

[
2n−1∑
i′=0

2n−1∑
j′=0

√
α̃i′j′ ⟨i′| ⟨j′|

][
2n−1∑
i=0

2n−1∑
j=0

√
α̃ij |i⟩ |j⟩

n−1⊗
ℓ=0

ZjℓXiℓ

]
|ψ⟩

=
2n−1∑
i=0

2n−1∑
j=0

α̃ij

n−1⊗
ℓ=0

ZjℓXiℓ |ψ⟩

= A |ψ⟩ (5.21)

A key advantage of this implementation is that it requires no multi-
controlled gates, achieves constant circuit depth (equal to 2), and is com-
pletely independent of the specific matrix being encoded. This marks a
significant departure from standard LCU constructions, where SELECT is
often the most resource-intensive component due to the overhead of decom-
posing multi-controlled unitaries into elementary gates. In contrast, our ap-
proach shifts all matrix-specific complexity to the state preparation oracles,
PL and PR. These oracles consistently require 2n ancillae, compared to
the ⌈log2(M)⌉ ancillae needed in standard LCU. In the worst-case scenario,
where M = 4n, the ancilla requirements and computational costs of both
methods become comparable. However, in many physically relevant cases
where M is small, our method results in a significantly sparser representa-
tion of the new coefficients α̃. A natural first step toward simplifying the
implementation of PR and PL is to leverage quantum state preparation al-
gorithms tailored for sparse input states. These methods offer complexities
ranging from O(Mn) to O(Mn/ log n), provided that additional ancillary
qubits are available [24, 25, 26]. Moreover, if the target Hamiltonian exhibits
additional structure, this can be systematically exploited to further reduce

70 5. Efficient Block Encoding of Spin Hamiltonians

the cost of state preparation. We demonstrate this in the following sections
for the Heisenberg and spin glass Hamiltonians. In summary, our method
replaces the costly SELECT oracle of standard LCU with a highly efficient,
structure-independent implementation of constant depth.

5.2 Preparation of Dicke states

Before exploring the practical applications of the FOQCS-LCU block en-
coding, we introduce a set of foundational subroutines that will be used
throughout the remainder of this chapter. In particular, we highlight key
results from the literature on the preparation of Dicke states |Dn

k ⟩—a family
of quantum states that are symmetric under qubit permutations and have
exactly ν excitations (i.e qubit in the |1⟩ state) among n qubits [12, 27].

Both the standard Dicke states and certain newly derived variants will
play a crucial role in the construction of the PR and PL oracles for the spin
Hamiltonians.

Definition 5.2.1. The Dicke state |Dn
1 ⟩, also known as the W -state, is de-

fined as:

|Dn
1 ⟩ =

1√
n
(|100 · · ·⟩+ |010 · · ·⟩+ · · ·+ |· · · 001⟩) ,

=
1√
n

n−1∑
ℓ=0

|2ℓ⟩ . (5.22)

To construct the corresponding circuit, we rely on two auxiliary compo-
nents: the Γ(θ) and ∆n subroutines.

Definition 5.2.2. The Γ(θ) subroutine is defined as :

Γ(θ) =
Ry (θ) •

•
(5.23)

and it acts on the basis state in the following way:

|00⟩ Γ(θ)−−→ |00⟩ |01⟩ Γ(θ)−−→ cos
θ

2
|01⟩+ sin

θ

2
|10⟩

|10⟩ Γ(θ)−−→ |11⟩ |11⟩ Γ(θ)−−→ − sin
θ

2
|01⟩+ cos

θ

2
|10⟩ (5.24)

5.2 Preparation of Dicke states 71

Lemma 5.2.1. The Γ(θ) subroutine can be implemented by using just 2
CNOT with the following circuit:

S H Rz(
π
2
− θ

2
) • H • S H

Rz(
θ
2
− π

2
) H S∗

(5.25)

Proof. We now show that the two circuits implement the same transforma-
tion on computational basis states. Now we compute the action of the circuit
in eq. (5.25) on the basis states. Let start with |00⟩, we have:

|00⟩ (Rz(
π
2
− θ

2
)·H·S)⊗I2−−−−−−−−−−−→ e−i(

π
4
− θ

4
)

√
2

|00⟩+ ei(
π
4
− θ

4
)

√
2

|10⟩

CNOT−−−→ e−i(
π
4
− θ

4
)

√
2

|00⟩+ ei(
π
4
− θ

4
)

√
2

|11⟩

I2⊗Rz(
θ
2
−π

2
)−−−−−−−→ e−i(

θ
4
−π

4
) · e

−i(π
4
− θ

4
)

√
2

|00⟩+ ei(
θ
4
−π

4
) · e

i(π
4
− θ

4
)

√
2

|11⟩ ,

we observe that e−i(
θ
4
−π

4
) · e−i(π4 − θ

4)
√
2

|00⟩ + ei(
θ
4
−π

4
) · ei(

π
4 − θ

4)
√
2

|11⟩ = 1√
2
|00⟩ +

1√
2
|11⟩, so

1√
2
|00⟩+ 1√

2
|11⟩ H⊗H−−−→ 1√

2
|00⟩+ 1√

2
|11⟩

I2⊗S∗
−−−→ 1√

2
|00⟩ − i√

2
|11⟩

CNOT−−−→ 1√
2
|00⟩ − i√

2
|10⟩

S⊗I2−−−→ 1√
2
|00⟩+ 1√

2
|10⟩

H⊗I2−−−→ |00⟩ . (5.26)

For |10⟩ we have, in a similar way:

|10⟩ (Rz(
π
2
− θ

2
)·H·S)⊗I2−−−−−−−−−−−→ i

e−i(
π
4
− θ

4
)

√
2

|00⟩ − i
ei(

π
4
− θ

4
)

√
2

|10⟩

CNOT−−−→ i
e−i(

π
4
− θ

4
)

√
2

|00⟩ − i
ei(

π
4
− θ

4
)

√
2

|11⟩

I2⊗Rz(
θ
2
−π

2
)−−−−−−−→ e−i(

θ
4
−π

4
) · i · e

−i(π
4
− θ

4
)

√
2

|00⟩ − ei(
θ
4
−π

4
) · i · e

i(π
4
− θ

4
)

√
2

|11⟩ ,

72 5. Efficient Block Encoding of Spin Hamiltonians

where e−i(
θ
4
−π

4
) · i·e−i(π4 − θ

4)
√
2

|00⟩ − ei(
θ
4
−π

4
) · i·ei(

π
4 − θ

4)
√
2

|11⟩ = i√
2
|00⟩ − i√

2
|11⟩, so

i√
2
|00⟩ − i√

2
|11⟩ H⊗H−−−→ i√

2
|01⟩+ i√

2
|10⟩

I2⊗S∗
−−−→ 1√

2
|01⟩ − i√

2
|10⟩

CNOT−−−→ 1√
2
|01⟩ − i√

2
|11⟩

S⊗I2−−−→ 1√
2
|01⟩ − 1√

2
|11⟩

H⊗I2−−−→ |11⟩ . (5.27)

For |01⟩ we get:

|01⟩ (Rz(
π
2
− θ

2
)·H·S)⊗I2−−−−−−−−−−−→ e−i(

π
4
− θ

4
)

√
2

|01⟩+ ei(
π
4
− θ

4
)

√
2

|11⟩

CNOT−−−→ e−i(
π
4
− θ

4
)

√
2

|01⟩+ ei(
π
4
− θ

4
)

√
2

|10⟩

I2⊗Rz(
θ
2
−π

2
)−−−−−−−→ ei(

θ
4
−π

4
) · e

−i(π
4
− θ

4
)

√
2

|01⟩+ e−i(
θ
4
−π

4
) · e

i(π
4
− θ

4
)

√
2

|10⟩ ,

we have that ei(
θ
4
−π

4
) · e−i(π4 − θ

4)
√
2

|01⟩ + e−i(
θ
4
−π

4
) · ei(

π
4 − θ

4)
√
2

|10⟩ = −i·ei θ2√
2

|01⟩ +
i·e−i θ2√

2
|10⟩, so

−i · ei θ2√
2

|01⟩+ i · e−i θ2√
2

|10⟩ H⊗H−−−→ 1√
2

(
sin

θ

2
|00⟩+ i cos

θ

2
|01⟩ − i cos

θ

2
|10⟩ − sin

θ

2
|11⟩

)
I2⊗S∗
−−−→ 1√

2

(
sin

θ

2
|00⟩+ cos

θ

2
|01⟩ − i cos

θ

2
|10⟩+ i sin

θ

2
|11⟩

)
CNOT−−−→ 1√

2

(
sin

θ

2
|00⟩+ cos

θ

2
|01⟩ − i cos

θ

2
|11⟩+ i sin

θ

2
|10⟩

)
S⊗I2−−−→ 1√

2

(
sin

θ

2
|00⟩+ cos

θ

2
|01⟩+ cos

θ

2
|11⟩ − sin

θ

2
|10⟩

)
H⊗I2−−−→ cos

θ

2
|01⟩+ sin

θ

2
|10⟩ . (5.28)

5.2 Preparation of Dicke states 73

Finally, for |11⟩ we have:

|11⟩ (Rz(
π
2
− θ

2
)·H·S)⊗I2−−−−−−−−−−−→ i

e−i(
π
4
− θ

4
)

√
2

|01⟩ − i
ei(

π
4
− θ

4
)

√
2

|11⟩

CNOT−−−→ e−i(
π
4
− θ

4
)

√
2

|01⟩ − ei(
π
4
− θ

4
)

√
2

|10⟩

I2⊗Rz(
θ
2
−π

2
)−−−−−−−→ ei(

θ
4
−π

4
) · i · e

−i(π
4
− θ

4
)

√
2

|01⟩ − e−i(
θ
4
−π

4
) · i · e

i(π
4
− θ

4
)

√
2

|10⟩ ,

where ei(
θ
4
−π

4
) · i·e−i(π4 − θ

4)
√
2

|01⟩ − e−i(
θ
4
−π

4
) · i·ei(

π
4 − θ

4)
√
2

|10⟩ = ei
θ
2√
2
|01⟩ + e−i θ2√

2
|10⟩,

so

ei
θ
2√
2
|01⟩+ e−i

θ
2√
2
|10⟩ H⊗H−−−→ 1√

2

(
cos

θ

2
|00⟩ − i sin

θ

2
|01⟩+ i sin

θ

2
|10⟩ − cos

θ

2
|11⟩

)
I2⊗S∗
−−−→ 1√

2

(
cos

θ

2
|00⟩ − sin

θ

2
|01⟩+ i sin

θ

2
|10⟩+ i cos

θ

2
|11⟩

)
CNOT−−−→ 1√

2

(
cos

θ

2
|00⟩ − sin

θ

2
|01⟩+ i sin

θ

2
|11⟩+ i cos

θ

2
|10⟩

)
S⊗I2−−−→ 1√

2

(
cos

θ

2
|00⟩ − sin

θ

2
|01⟩ − sin

θ

2
|11⟩ − cos

θ

2
|10⟩

)
H⊗I2−−−→ − sin

θ

2
|01⟩+ cos

θ

2
|10⟩ . (5.29)

With this, we have completed the proof.

Definition 5.2.3. The ∆n subroutine is defined as :

∆n
...

... =

Γ(θ2)

· · ·
Γ(θn−1)

Γ(θn)

(5.30)

where the angles θℓ used in eq. (5.30) are given by:

θℓ = 2arccos

√
1

ℓ
, ℓ ∈ {2, 3 . . . , n} . (5.31)

74 5. Efficient Block Encoding of Spin Hamiltonians

Remark 5.2.1. We remark that ∆n exhibits a recursive structure:

∆n
...

... = ∆n−1· · ·

Γ(θn)

(5.32)

Theorem 5.2.1 ([27]). The Dicke state |Dn
1 ⟩ can then be prepared by lever-

aging these subroutines, using the following circuit :

|0⊗n⟩ Dn
1 |Dn

1 ⟩ (5.33)

where:

/
n
Dn

1 =
/
n−1

∆n

X
(5.34)

Proof. We prove the statement by induction. For n = 1, after applying the
X gate to |0⟩, we obtain the state |1⟩, which is precisely |D1

1⟩. Assume the
statement holds for n = k. We now prove it for n = k + 1. Starting with
the state |0⊗k+1⟩, applying the X gate yields |0⊗k⟩ |1⟩. Next, after applying
Γ(θk+1), the state becomes

cos
θk+1

2
|0⊗k−1⟩ |01⟩+ sin

θk+1

2
|0⊗k−1⟩ |10⟩ .

By definition, θk+1 = 2arccos
√

1
k+1

, so that

cos
θk+1

2
=

√
1

k + 1
and sin

θk+1

2
=

√
k

k + 1
.

Thus, the state becomes

1√
k + 1

|0⊗k⟩ |1⟩+
√

k

k + 1
|0⊗k−1⟩ |1⟩ |0⟩ .

Now, applying the induction hypothesis to the state |0⊗k−1⟩ |1⟩, we obtain

|Dk
1⟩ =

1√
k

(
|100 · · ·⟩+ |010 · · ·⟩+ · · ·+ |· · · 001⟩

)
.

5.2 Preparation of Dicke states 75

Therefore, the final state is

1√
k + 1

|0⊗k⟩ |1⟩+
√

k

k + 1

1√
k

(
|100 · · ·⟩+ |010 · · ·⟩+ · · ·+ |· · · 001⟩

)
|0⟩ ,

which is exactly |Dk+1
1 ⟩.

Moreover, this circuit can be generalized to represent any unbalanced su-
perposition of states with exactly ν = 1 excitations. We denote as unbalanced
Dicke states:

|Dn
1 (α)⟩ =

n−1∑
ℓ=0

αℓ |2ℓ⟩ (5.35)

with ∥α∥ = 1. We start by considering only the absolute value of αℓ =

eiηℓ |αℓ|, where the phase factor is fixed at a later stage.

In particular, we prove that by defining the angles θℓ within the circuit
in eq. (5.33) as:

θ̂n−1 = 2arccos |αn−1| (5.36)

θ̂ℓ = 2arccos
|αℓ|√

1−∑n−1
j=ℓ+1 |αj|2

ℓ = n− 2, . . . , 1 (5.37)

we obtain the state in eq. (5.35) up to some relative phases.

Corollary 5.2.1. The unbalanced Dicke state defined in eq. (5.35) can be
implemented by the following circuit:

Γ(θ̂1)
Pη0

Pη1

.

Γ(θ̂n−2)

Γ(θ̂n−1)
Pηn−2

X Pηn−1

(5.38)

76 5. Efficient Block Encoding of Spin Hamiltonians

Proof. First of all, it is important to observe the outcome of the CNOT and
controlled Ry couple on the initial two-qubit state |01⟩:

|· · · 01⟩ −→ cos
θ̂n−1

2
|· · · 01⟩+ sin

θ̂n−1

2
|· · · 10⟩

= |αn−1| |2n−1⟩+
√

1− |αn−1|2 |2n−2⟩ . (5.39)

Subsequently, we get to the second step:

−→ |αn−1| |· · · 001⟩+ cos
θ̂n−2

2

√
1− |αn−1|2 |· · · 010⟩+ sin

θ̂n−2

2

√
1− |αn−1|2 |· · · 100⟩

= |αn−1| |2n−1⟩+ |αn−2| |2n−2⟩+
√

1− |αn−2|2 − |αn−1|2 |2n−3⟩ , (5.40)

where we have used the following relations:

cos
θ̂n−2

2
=

|αn−2|√
1− |αn−1|2

, (5.41)

sin
θ̂n−2

2
=

√√√√1−
(
cos

θ̂n−2

2

)2

=

√
1− |αn−2|2

1− |αn−1|2
=

√
1− |αn−2|2 − |αn−1|2√

1− |αn−1|2
.

(5.42)

In a recursive manner, we can then extract the final state:

−→

√√√√1−
n−1∑
ℓ=1

|αℓ|2 |20⟩+
n−2∑
ℓ=0

|αℓ| |2ℓ⟩ , (5.43)

where it is sufficient to observe that:√√√√1−
n−1∑
ℓ=1

|αℓ|2 = |α0| , (5.44)

since ∥α∥2 = 1, to get the state in eq. (5.35) up to some relative phases.
Finally, in order to correct the phases, it is sufficient to apply a phase

gate:

Pηℓ =

[
1 0

0 eiηℓ

]
(5.45)

on each qubit.

5.2 Preparation of Dicke states 77

We now introduce a new, more specialized class of Dicke states with ν = 2,
subject to a nearest-neighbour constraint; that is, the two |1⟩ excitations
must be adjacent to each other.

Definition 5.2.4. The |Dn
2NN

⟩ state is defined as:

|Dn
2NN

⟩ = 1√
n− 1

n−2∑
ℓ=0

|2ℓ + 2ℓ+1⟩

=
1√
n− 1

n−2∑
ℓ=0

|0 . . . 0︸ ︷︷ ︸
ℓ

11 0 . . . 0︸ ︷︷ ︸
n−2−ℓ

⟩ (5.46)

Lemma 5.2.2. The |Dn
2NN

⟩ state can be constructed by first preparing the
|Dn−1

1 ⟩ state and then applying a CNOT-ladder, denoted by CL1, defined as

CL1

...
... =

•

· · ·
•

•
(5.47)

thus, the final circuit will be:

|0⊗n⟩ Dn
2NN

|Dn
2NN

⟩ (5.48)

Where:

/
n
Dn

2NN =

/
n−2

∆n−1

CL1X (5.49)

Proof. We have that each CNOT gate in the ladder is activated by exactly
one component of the state vector:

|2ℓ⟩ CL1−−→ |2ℓ + 2ℓ+1⟩ , (5.50)

so that, by linearity, the entire superposition evolves into the correct target

78 5. Efficient Block Encoding of Spin Hamiltonians

state:

|Dn−1
1 ⟩ |0⟩ = 1√

n− 1

n−2∑
ℓ=0

|2ℓ⟩

CL1−−→ 1√
n− 1

n−2∑
ℓ=0

|2ℓ + 2ℓ+1⟩

= |Dn
2NN

⟩ (5.51)

Definition 5.2.5. The Dicke state with ν = 2 but with k-th nearest neigh-
bour constraint is defined as:

|Dn
2kN

⟩ = 1√
n− k

n−k−1∑
ℓ=0

|2ℓ + 2ℓ+k⟩ . (5.52)

Lemma 5.2.2 can then be generalized by considering the subroutines ∆n−k

and CLk, which consists of n− k CNOTs of length k, with final circuit:

|0⊗n⟩ Dn
2kN

|Dn
2kN

⟩ (5.53)

where:

/
n
Dn

2kN =

/
n−k−1

∆n−k
CLkX

/
k

(5.54)

Finally, we introduce the double variant of Dicke states by entangling them
with a second register of n qubits.

Definition 5.2.6. The double Dicke state with ν = 1 is defined as:

|D n
1 ⟩ =

1√
n

n−1∑
ℓ=0

|2ℓ⟩ |2ℓ⟩ . (5.55)

so that:

|0⊗2n⟩ D n
1 |D n

1 ⟩ (5.56)

5.2 Preparation of Dicke states 79

This state can be constructed by first preparing the single-excitation
Dicke state |Dn

1 ⟩ on the first register of n qubits, and then entangling it
with the second register via n CNOTs, each acting between corresponding
qubits of the two registers:

/
2n D n

1 =

/
n−1

∆n

ECX

/
n

(5.57)

where EC stands for element-wise CNOT and is defined as :

EC
...

... =

•
•
. . .

•

. . .

(5.58)

Note that the n CNOTs in EC can be performed in parallel.

Definition 5.2.7. The double version of the |Dn
2kN

⟩ states is defined as:

|D n
2kN

⟩ = 1√
n− k

n−k−1∑
ℓ=0

|2ℓ + 2ℓ+k⟩ |2ℓ + 2ℓ+k⟩ , (5.59)

The state |D n
2NN

⟩ is the special case k = 1.

Equation (5.59) can be prepared with the same strategy as eq. (5.56) by
appending an EC entangling gate:

|0⊗2n⟩ D n
2kN

|D n
2kN

⟩ (5.60)

where:

/
2n D n

2kN =

/
n−k−1

∆n−k
CLk

EC
X

/
k

/
n

(5.61)

To conclude this section, we evaluate the computational cost of the prepa-
ration circuits discussed above, measured in terms of the number of CNOT
gates. A summary of these results is provided in table 5.2.

80 5. Efficient Block Encoding of Spin Hamiltonians

Dicke Double Dicke

State # CNOTs State # CNOTs

Dn
1 2n− 2 D n

1 3n− 2

Dn
2NN

3n− 5 D n
2NN

4n− 5

Dn
2kN

3n− 3k − 2 D n
2kN

4n− 3k − 2

Table 5.2: CNOT gate count for every Dicke state subroutine

5.3 Applications on spin models

We begin by considering the Heisenberg model of quantum spins arranged
on a one-dimensional chain. The spin chain consists of n sites, where each site
hosts a spin-1

2
particle (such as an electron). A spin-1

2
particle is a two-level

quantum system, meaning its spin degree of freedom can be described by a
qubit with basis states |0⟩ and |1⟩, corresponding to spin up and spin down
along a chosen axis. Each electron can be in a spin-up or spin-down state, and
therefore its quantum state is described by a linear combination a |↑⟩+ b |↓⟩,
spanning a two-dimensional local Hilbert space. When we consider N such
particles, the total Hilbert space in which the physical states reside is given
by the tensor product of the local spaces, namely H = (C2)

⊗n.

Definition 5.3.1. The one-dimensional Heisenberg Hamiltonian with open
boundary conditions is defined as

H =
n−1∑
ℓ=0

gxXℓ + gzZℓ + gyYℓ

+
n−2∑
ℓ=0

JxXℓXℓ+1 + JzZℓZℓ+1 + JyYℓYℓ+1 , (5.62)

where Xℓ = I ⊗ · · · ⊗ I︸ ︷︷ ︸
ℓ

⊗X ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
n−1−ℓ

.

The constants Jx, Jy, and Jz represent the coupling strengths along the
respective spin directions. In the isotropic case, where Jx = Jy = Jz = J ,
the model is called the XXX Heisenberg model. If only two components are

5.3 Applications on spin models 81

Operator α̃ij |i⟩ |j⟩
gxXℓ gx |2ℓ⟩ |0⊗n⟩
gzZℓ gz |0⊗n⟩ |2ℓ⟩
gyYℓ −igy |2ℓ⟩ |2ℓ⟩

JxXℓXℓ+1 Jx |2ℓ + 2ℓ+1⟩ |0⊗n⟩
JzZℓZℓ+1 Jz |0⊗n⟩ |2ℓ + 2ℓ+1⟩
JyYℓYℓ+1 −Jy |2ℓ + 2ℓ+1⟩ |2ℓ + 2ℓ+1⟩

Table 5.3: Mapping between every Pauli string in eq. (5.62) to the coefficient
and ancilla in the formalism from eq. (5.16) and eq. (5.17).

equal, e.g., Jx = Jy ̸= Jz, it is referred to as the XXZ model. The Heisenberg
model captures essential features of quantum magnetism and plays a central
role in the study of condensed matter systems, particularly in the context of
quantum phase transitions and entanglement.

The Hamiltonian in eq. (5.62) is already expressed as a linear combination
of Pauli strings, as in eq. (5.11). To construct the check-matrix formalism
introduced in eq. (5.16), and to implement the corresponding PR and PL

oracles, we map each term in eq. (5.62) to a coefficient-state pair of the
form (α̃ij, |i⟩ |j⟩). Here, the register |i⟩ encodes the support of the X and Y
components, while |j⟩ encodes the support of the Z components, enabling
the implementation of the SELECT operator as described previously.

Example 5.3.1. The term gxXℓ is mapped to (gx, |2ℓ⟩ |0⟩):

gxXℓ = I ⊗ · · · ⊗ I︸ ︷︷ ︸
ℓ

⊗ (gxX)⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
n−1−ℓ

→ (gx, |0 . . . 0︸ ︷︷ ︸
ℓ

1 0 . . . 0︸ ︷︷ ︸
n−1−ℓ

⟩ ⊗ |0⊗n⟩)

= (gx, |2ℓ⟩ |0⊗n⟩) . (5.63)

Table 5.3 summarizes the mapping for all terms in eq. (5.62). As a con-
sequence, the oracle PR must prepare the following complex state on the 2n

82 5. Efficient Block Encoding of Spin Hamiltonians

ancillae:

1√
N

[
n−1∑
ℓ=0

√
gx |2ℓ⟩ |0⊗n⟩+√

gz |0⊗n⟩ |2ℓ⟩+
√

−igy |2ℓ⟩ |2ℓ⟩

+
n−2∑
ℓ=0

√
Jx |2ℓ + 2ℓ+1⟩ |0⊗n⟩+

√
Jz |0⊗n⟩ |2ℓ + 2ℓ+1⟩

+
√
−Jy |2ℓ + 2ℓ+1⟩ |2ℓ + 2ℓ+1⟩

]
, (5.64)

where N is the same normalization factor as LCU:

N = n (|gx|+ |gy|+ |gz|) + (n− 1) (|Jx|+ |Jy|+ |Jz|) (5.65)

Analogously, PL prepares the same state but with complex conjugate coeffi-
cients.

Remark 5.3.1. Grouping the one-body terms in eq. (5.64) by equal coeffi-
cients reveals that each group corresponds, up to normalization, to a Dicke
state. More specifically, eq. (5.64) can be reformulated as:

1√
N

(√
ngx |Dn

1 ⟩ |0⊗n⟩+
√
ngz |0⊗n⟩ |Dn

1 ⟩+
√
−ingy |D n

1 ⟩

+
√

(n− 1)Jx |Dn
2NN

⟩ |0⊗n⟩+
√

(n− 1)Jz |0⊗n⟩ |Dn
2NN

⟩

+
√
−(n− 1)Jy |D n

2NN
⟩
)
, (5.66)

where each of the states |Dn
1 ⟩, |D n

1 ⟩, |Dn
2NN

⟩ and |D n
2NN

⟩ can be implemented
with linear gate count, as shown in the previous section.

In order to construct efficient circuits for PR and PL, we augment the
system with six ancilla qubits. Since Dicke states admit efficient implementa-
tions, our approach is to design a subroutine, denoted subPR, which prepares
the desired coefficient amplitudes by generating an unbalanced Dicke state.

5.3 Applications on spin models 83

|0⟩

subPR

• gx

|0⟩ • Jx

|0⟩ • gz

|0⟩ • Jz

|0⟩ • gy

|0⟩ • Jy

|0⊗n⟩ Dn
1

D n
1

Dn
2NN D n

2NN|0⊗n⟩ Dn
1 Dn

2NN

Figure 5.3: Circuit used to implement PR for the Heisenberg model.

Definition 5.3.2. The subroutine subPR prepares the following state:

1√
N

(√
ngx |100000⟩+

√
(n− 1)Jx |010000⟩

+
√
ngz |001000⟩+

√
(n− 1)Jz |000100⟩

+
√

−ingy |000010⟩
√
−(n− 1)Jy |000001⟩

)
, (5.67)

it can be implemented by a circuit as shown in eq. (5.38).

Lemma 5.3.1. The circuit in fig. 5.3 prepares the state:

1√
N

(√
ngx |100000⟩ |Dn

1 ⟩ |0⊗n⟩+
√
ngz |001000⟩ |0⊗n⟩ |Dn

1 ⟩+
√
−ingy |000010⟩ |D n

1 ⟩

+
√
(n− 1)Jx |010000⟩ |Dn

2NN
⟩ |0⊗n⟩+

√
(n− 1)Jz |000100⟩ |0⊗n⟩ |Dn

2NN
⟩

+
√
−(n− 1)Jy |000001⟩ |D n

2NN
⟩
)
, (5.68)

Proof. We begin with the initial state

|0⊗6⟩ |0⊗n⟩ |0⊗n⟩ .

After applying the subPR circuit, the system is prepared in the following

84 5. Efficient Block Encoding of Spin Hamiltonians

superposition:

1√
N

(√
ngx |100000⟩ |0⊗n⟩ |0⊗n⟩+

√
(n− 1)Jx |010000⟩ |0⊗n⟩ |0⊗n⟩

+
√
ngz |001000⟩ |0⊗n⟩ |0⊗n⟩+

√
(n− 1)Jz |000100⟩ |0⊗n⟩ |0⊗n⟩

+
√

−ingy |000010⟩ |0⊗n⟩ |0⊗n⟩+
√

−(n− 1)Jy |000001⟩ |0⊗n⟩ |0⊗n⟩
)
.

Next, we sequentially apply the controlled Dicke operations. Each control
qubit is associated with exactly one Dicke state gate, and only one of them
is active for each term in the superposition. For example, after applying the
first controlled Dicke gate (conditioned on the first control qubit), we obtain:

1√
N

(√
ngx |100000⟩ |Dn

1 ⟩ |0⊗n⟩+
√
(n− 1)Jx |010000⟩ |0⊗n⟩ |0⊗n⟩

+
√
ngz |001000⟩ |0⊗n⟩ |0⊗n⟩+

√
(n− 1)Jz |000100⟩ |0⊗n⟩ |0⊗n⟩

+
√

−ingy |000010⟩ |0⊗n⟩ |0⊗n⟩+
√

−(n− 1)Jy |000001⟩ |0⊗n⟩ |0⊗n⟩
)
.

Proceeding similarly, each controlled Dicke operation modifies only the cor-
responding term in the superposition, preparing either Dn

1 , Dn
2NN

, D n
1 and

D n
2NN

. At the end of this process, the full state matches the expression in
equation (5.68), as claimed.

Remark 5.3.2. PL is constructed in an analogous way by considering the
complex conjugate of the coefficients in the subPR.

Proposition 5.3.1. The circuit UH = PR · SELECT ·P†
L is a (2n+ 6, N, 0)-

block encoding of the Heisenberg Hamiltonian defined in eq. (5.62).

Proof. As shown in lemma 5.3.1, the application of the PR circuit prepares
the state in (5.64), tensored with an arbitrary input state |ψ⟩. This state can

5.3 Applications on spin models 85

be written explicitly as:

1√
N

[
n−1∑
ℓ=0

√
gx |100000⟩ |2ℓ⟩ |0⊗n⟩+√

gz |001000⟩ |0⊗n⟩ |2ℓ⟩

+
√

−igy |000010⟩ |2ℓ⟩ |2ℓ⟩

+
n−2∑
ℓ=0

√
Jx |010000⟩ |2ℓ + 2ℓ+1⟩ |0⊗n⟩+

√
Jz |000100⟩ |0⊗n⟩ |2ℓ + 2ℓ+1⟩

+
√
−Jy |000001⟩ |2ℓ + 2ℓ+1⟩ |2ℓ + 2ℓ+1⟩

]
⊗ |ψ⟩ ,

where we used the definition of Dicke states to cancel the
√
n and

√
n− 1

factors. Next, we apply the SELECT operator. This applies a Pauli operator
to |ψ⟩ depending on the computational basis states in the ancillary registers.
The resulting state is:

1√
N

[
n−1∑
ℓ=0

√
gx |100000⟩ |2ℓ⟩ |0⊗n⟩Xℓ |ψ⟩

+
√
gz |001000⟩ |0⊗n⟩ |2ℓ⟩Zℓ |ψ⟩

+
√
−igy |000010⟩ |2ℓ⟩ |2ℓ⟩ZℓXℓ |ψ⟩

+
n−2∑
ℓ=0

√
Jx |010000⟩ |2ℓ + 2ℓ+1⟩ |0⊗n⟩XℓXℓ+1 |ψ⟩

+
√
Jz |000100⟩ |0⊗n⟩ |2ℓ + 2ℓ+1⟩ZℓZℓ+1 |ψ⟩

+
√
−Jy |000001⟩ |2ℓ + 2ℓ+1⟩ |2ℓ + 2ℓ+1⟩ZℓXℓZℓ+1Xℓ+1 |ψ⟩

]
.

We now apply PL to the state |0⊗6⟩ |0⊗n⟩ |0⊗n⟩. This gives:

1√
N

[
n−1∑
ℓ=0

√
gx

∗ |100000⟩ |2ℓ⟩ |0⊗n⟩+√
gz

∗ |001000⟩ |0⊗n⟩ |2ℓ⟩

+
√
−igy∗ |000010⟩ |2ℓ⟩ |2ℓ⟩

+
n−2∑
ℓ=0

√
Jx

∗ |010000⟩ |2ℓ + 2ℓ+1⟩ |0⊗n⟩+
√
Jz

∗ |000100⟩ |0⊗n⟩ |2ℓ + 2ℓ+1⟩

+
√
−Jy∗ |000001⟩ |2ℓ + 2ℓ+1⟩ |2ℓ + 2ℓ+1⟩

]
.

86 5. Efficient Block Encoding of Spin Hamiltonians

Finally, we compute the overlap:

⟨0⊗6| ⟨0⊗n| ⟨0⊗n|P†
L · SELECT · PR |0⊗6⟩ |0⊗n⟩ |0⊗n⟩ |ψ⟩ .

Since the complex conjugate of the conjugate is the original value, we obtain:

1

N

[
n−1∑
ℓ=0

gxXℓ |ψ⟩+ gzZℓ |ψ⟩ − igyZℓXℓ |ψ⟩

+
n−2∑
ℓ=0

JxXℓXℓ+1 |ψ⟩+ JzZℓZℓ+1 |ψ⟩ − JyZℓXℓZℓ+1Xℓ+1 |ψ⟩
]
.

Finally, using the identity Y = −iZX, we recover the action of the Heisen-
berg Hamiltonian defined in (5.62), completing the proof.

5.4 Compression of PR for the Heisenberg Model

We present a step-by-step derivation of an optimized quantum circuit,
starting from the original construction shown in fig. 5.3. The primary goal
is to reduce the overall circuit complexity, with particular emphasis on min-
imizing the number of controlled operations. We begin by stating auxiliary
lemmas that will be instrumental in the derivations and constructions that
follow.

Lemma 5.4.1. If the initial state is |0⊗n⟩, the controlled gate Dn
1 is equiva-

lent to controlling only the initial X gate while the subroutine ∆n does not
need to be controlled:

•
|0⊗n⟩ Dn

1

=

• •
|0⊗n−1⟩

∆n

|0⟩ X

=

•
|0⊗n−1⟩

∆n

|0⟩
(5.69)

Proof. Let apply the circuit to the state (a |0⟩+ b |1⟩) |0⊗n⟩:

(a |0⟩+ b |1⟩) |0⊗n⟩ CNOT−−−→ a |0⟩ |0⊗n⟩+ b |1⟩ |0⊗n−1⟩ |1⟩
∆n

−−→ a |0⟩ |0⊗n⟩+ b |1⟩ |Dn
1 ⟩ , (5.70)

since ∆n |0⊗n⟩ = |0⊗n⟩.

5.4 Compression of PR for the Heisenberg Model 87

Lemma 5.4.2. If the control register is prepared in a superposition state
with exactly ν = 1 excitation—that is, an unbalanced Dicke state—then
multiple controlled Dn

1 operations (sharing the same target) can be efficiently
compressed. Specifically, it suffices to apply the ∆n gate only once, as shown
below:

•
•

|0⊗n−1⟩
Dn

1 Dn
1|0⟩

|D2
1 (α)⟩

=

•
•

|0⊗n−1⟩
∆n

|0⟩

|D2
1 (α)⟩

(5.71)

Moreover, given the recursive property from eq. (5.32) and the fact that
Γ(θn) |00⟩ = |00⟩, we get:

•
•

|0⊗n−1⟩
Dn

1

Dn−1
1

|0⟩

|D2
1 (α)⟩

=

•
•

|0⊗n−2⟩
∆n−1

|0⟩
Γ(θn)|0⟩

|D2
1 (α)⟩

(5.72)

Proof. If we apply the left circuit to the state (a |01⟩ + b |10⟩) |0⊗n⟩, we get
the state (a |01⟩ + b |10⟩) |Dn

1 ⟩. We get the same state even if we apply the
right circuit we get:

(a |01⟩+ b |10⟩) |0⊗n⟩ CNOT1−−−−→ a |01⟩ |0⊗n⟩+ b |10⟩ |0⊗n−1⟩ |1⟩
CNOT2−−−−→ a |01⟩ |0⊗n−1⟩ |1⟩+ b |10⟩ |0⊗n−1⟩ |1⟩
∆n

−−→ a |01⟩ |Dn
1 ⟩ |1⟩+ b |10⟩ |Dn

1 ⟩ (5.73)

Lemma 5.4.3. Let C be an arbitrary quantum gate acting on a target
register. Then, when the control state is an unbalanced Dicke state with a
single excitation, the following circuit identity holds:

•
•

|ψ⟩ C C

|D2
1 (α)⟩

=

• •
•

|ψ⟩ C

|D2
1 (α)⟩ (5.74)

88 5. Efficient Block Encoding of Spin Hamiltonians

|0⟩

subPR

• gx

|0⟩ • • Jx

|0⟩ • gz

|0⟩ • • Jz

|0⟩ • • gy

|0⟩ • • • Jy

|0⊗n⟩ Dn
1 Dn

1

EC
Dn−1

1 CL1 Dn−1
1 CL1

EC
|0⊗n⟩ Dn

1 Dn−1
1 CL1

Figure 5.4: Decomposition of the gates in fig. 5.3.

Proof. If we apply the left circuit to the state (a |01⟩ + b |10⟩) |0⊗n⟩, we get
the state (a |01⟩+ b |10⟩)C |0⊗n⟩. We get the same state even if we apply the
right circuit we get:

(a |01⟩+ b |10⟩) |0⊗n⟩ CNOT1−−−−→ a |01⟩ |0⊗n⟩+ b |11⟩ |0⊗n⟩
controlled-C−−−−−−−→ a |01⟩C |0⊗n⟩+ b |11⟩C |0⊗n⟩
CNOT2−−−−→ a |01⟩C |0⊗n⟩+ b |10⟩C |0⊗n⟩ (5.75)

This lemma is particularly useful in simplifying subroutines that apply
the same gate multiple times to a common target, but with different control
qubits. In such cases, when the control register is restricted to the single-
excitation subspace (i.e., an unbalanced Dicke state), the number of con-
trolled operations can be reduced. Notably, this simplification is employed
in the implementation of the CLk subroutine, which appears in both theDn

2kN

and D n
2kN

state preparation protocols. It is also used in the construction of
the EC subroutine, which is responsible for duplicating a Dicke state effi-
ciently. We proceed with the compression of the circuit presented in fig. 5.3.
We begin by decomposing the Dicke state oracles Dn

2NN
, D n

1 , and D n
2NN

. Each
oracle is split into two parts: the preparation of the state |Dn

1 ⟩, and either a
CL1, a EC, or both, depending on the specific oracle. The resulting circuit
is shown in fig. 5.4. Since the |subPR⟩ state on the six additional ancillae
is an unbalanced Dicke state with a single excitation, the gates in fig. 5.4

5.4 Compression of PR for the Heisenberg Model 89

|0⟩

subPR

• gx

|0⟩ • • Jx

|0⟩ • gz

|0⟩ • • Jz

|0⟩ • • gy

|0⟩ • • • Jy

|0⊗n⟩ Dn
1 Dn

1 Dn−1
1 Dn−1

1 CL1 CL1

EC EC
|0⊗n⟩ Dn

1 Dn−1
1 CL1

Figure 5.5: Commutations of the controlled gates of fig. 5.4.

• gx

• Jx

• gz

• Jz

• gy

• Jy



|D6
1 (α)⟩

|0⊗n−1⟩
Dn

1 Dn
1

Dn−1
1 Dn−1

1

|0⟩

|0⊗n−1⟩
Dn

1

Dn−1
1

|0⟩

=

• gx

• Jx

• gz

• Jz

• gy

• Jy


|D6

1 (α)⟩

|0⊗n−2⟩
∆n−1

|0⟩
Γ(θn)|0⟩

|0⊗n−2⟩
∆n−1

|0⟩
Γ(θn)|0⟩

Figure 5.6: Compression of controlled Dicke gates.

can be rearranged as shown in fig. 5.5. In this new configuration, we can
apply the compression techniques from lemma 5.4.3 to reduce the number
of CL1 and EC operations, respectively. Furthermore, the portion of the
circuit responsible for preparing balanced Dicke states can also be simplified
by combining lemma 5.4.1 and lemma 5.4.2 as shown in fig. 5.6. This se-
quence of optimizations leads to the final, compressed implementation of the
PR circuit for the Heisenberg model shown in fig. 5.7.

Finally, we estimate the computational cost of implementing the FOQCS-
LCU algorithm for the Heisenberg model. We then compare its performance
with other block-encoding techniques, such as LCU and FABLE. As a re-
source metric, we consider the number of CNOTs required in the respective
circuits. Specifically, we first report the number of Toffoli gates and two-
qubit gates separately. At the final stage, we decompose these gates into

90 5. Efficient Block Encoding of Spin Hamiltonians

|0⟩

subPR

• gx

|0⟩ • • • Jx

|0⟩ • gz

|0⟩ • • Jz

|0⟩ • • • gy

|0⟩ • • • Jy

|0⊗n−2⟩
∆n−1

CL1

EC

|0⟩
Γ(θn)|0⟩

|0⊗n−2⟩
∆n−1

CL1|0⟩
Γ(θn)|0⟩

Figure 5.7: Comapct implementation of PR for the Heisenberg model

CNOTs to obtain the total CNOT count.

Theorem 5.4.1. The FOQCS-LCU block encoding of the Heisenberg Hamil-
tonian with n sites requires 6n−4 Toffoli gates and 10n+32 two-qubit gates,
resulting in a total of 46n+ 8 CNOT gates.

Proof. We analyze the circuit in fig. 5.7 that implements the oracle PR (with
PL exhibiting exactly the same complexity). This circuit is composed of the
following components:

• The subPR subroutine (on 6 qubits): this subroutine contains 5

Γ(θ). We show in lemma 5.2.1 how to construct each Γ(θ) using 2

CNOTs, yielding a total of 10 CNOTs.

• Two Γ(θn) subroutines: for a total of 4 CNOTs.

• Two ∆n−1 subroutines: each ∆n−1 consists of n−2 subroutines Γ(θ).
We need then 2(n − 2) CNOTs for each ∆n−1, resulting in a total of
4(n− 2) CNOTs.

• Two controlled CL1 gates: each CL1 involves n− 1 CNOTs. When
controlled, these gates become n−1 Toffoli gates each, totaling 2(n−1)

Toffolis.

• One controlled EC: this gate includes n CNOTs, and when con-
trolled, these become n Toffolis.

5.4 Compression of PR for the Heisenberg Model 91

• Ten additional CNOT gates.

In total, the subroutine PR requires then 3n − 2 Toffoli gates and 4n + 16

CNOTs (and the same applies to PL).

The SELECT part consists only of 2n CNOTs, since cZ is implemented
with one CNOT and two Hadamard gates. Thus, the total number of Toffoli
gates is 6n− 4 and the total number of CNOTs is 10n+ 32 for the FOQCS-
LCU block encoding of the Heisenberg Hamiltonian. If we further decompose
the Toffoli gates, each Toffoli would require 6 CNOTs so that the overall cost
in terms of CNOTs becomes:

6 · (6n− 4) + (10n+ 32) = 46n+ 8. (5.76)

We finally compare our approach with the standard LCU method and
with the Fast Approximate Block Encodings (FABLE) algorithm [10], eval-
uated at two different accuracy thresholds. All circuits were generated using
the qiskit software [28].It is an open-source quantum computing framework
developed by IBM, which provides tools for designing, simulating, and ex-
ecuting quantum circuits on both simulators and real quantum hardware.
For standard LCU, we implemented the circuit shown in fig. 5.1, where the
PR and PL subroutines, defined in eq. (5.2) and eq. (5.3) respectively, were
instantiated through qiskit’s default state initialization routine [29]. To fur-
ther refine the resulting circuits, we applied post-compilation optimization
with the Berkeley Quantum Synthesis Toolkit (BQSKit) [30], which performs
state-of-the-art circuit depth reduction and gate cancellation. BQSKit was
applied to all data points for the Heisenberg model. BQSKit provides only
modest improvements, as the generic LCU implementation does not exploit
the algebraic or physical structure of the Hamiltonian. As a result, it exhibits
poorer scaling compared to our FOQCS-LCU method, which explicitly lever-
ages problem structure in its design. In fact, the LCU algorithm applied to
the Heisenberg Hamiltonian has a gate complexity of O(n logβ n), while our

92 5. Efficient Block Encoding of Spin Hamiltonians

21 22 23 24

102

103

104

105

106

Number of sites n

C
N

O
T

co
un

t

CNOT count for the Heisenberg model

FOQCS-LCU
LCU (w. BQSKit)
FABLE (ϵ = 10−3)
FABLE (ϵ = 10−6)

Figure 5.8: CNOT count from FOQCS-LCU, LCU, and FABLE for the
Heisenberg model, with FABLE evaluated at precisions ϵ = 10−3 and
ϵ = 10−6.

Fast One-Qubit Control Select LCU approach achieves a strictly linear scal-
ing of O(n) CNOT gates by fully exploiting the underlying structure of the
problem.

In conclusion, our FOQCS-LCU implementation achieves more than an
order-of-magnitude improvement in the CNOT count relative to the standard
and structure-agnostic LCU. This gain arises from two key advantages: (i)

the replacement of multi-controlled operations in the SELECT subroutine of
fig. 5.1 with singly-controlled X and Z gates, as shown in fig. 5.2, and (ii)

the use of structured state preparation based on Dicke states.

Chapter 6

Conclusion

In the final chapter, we presented the main contribution of this thesis:
a novel block encoding framework, denoted Fast One-Qubit Control Select
LCU (FOQCS-LCU), which addresses a key limitation of the standard LCU
approach—namely, the reliance on deep and costly multi-controlled oper-
ations in the SELECT oracle. In our formulation, the SELECT operator
is implemented using only n CNOT and n cZ gates, significantly reducing
circuit depth and complexity. We then introduced an efficient method for
preparing Dicke states—quantum superpositions of basis states with a fixed
number of qubits in the |1⟩ state—which are used to optimize the state prepa-
ration and uncomputation oracles. To demonstrate the practical utility of
our method, we constructed an explicit FOQCS-LCU circuit for the Heisen-
berg Hamiltonian and proposed a circuit compression strategy that exploits
gate structure to further reduce the CNOT count. The CNOT gate is a
standard two-qubit entangling gate that is both more resource-intensive and
more error-prone than single-qubit gates on most quantum hardware. As a
result, the number of CNOT gates in a quantum circuit serves as a prac-
tical and widely accepted measure of its overall complexity and feasibility
for near-term implementation. This compression was achieved by identifying
redundant applications of the same gates and replacing them with a single
modified version, exploiting the structure of the matrix and the one-to-one

93

94 6. Conclusion

mapping between basis states and tensor products of Pauli operators.
Finally, we have demonstrated through numerical benchmarks that our

method reduces the total CNOT gate count by an order of magnitude com-
pared to existing LCU-based techniques. This result is particularly encour-
aging, as the reduced cost suggests the possibility of implementing this al-
gorithm on early fault tolerant quantum devices. Moreover, this work has
laid the foundation for studying other models with similar structure. Looking
ahead, a particularly promising direction is the application of this framework
to fermionic systems, such as the Fermi-Hubbard model [31], where exploiting
structure could similarly lead to efficient quantum circuit implementations.

Bibliography

[1] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information: 10th Anniversary Edition. Cambridge University
Press, 2010.

[2] Richard P Feynman. Simulating physics with computers. International
journal of theoretical physics, 21(6/7):467–488, 1982.

[3] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum
singular value transformation and beyond: exponential improvements
for quantum matrix arithmetics. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC ’19, page 193–204.
ACM, June 2019.

[4] John M. Martyn, Zane M. Rossi, Andrew K. Tan, and Isaac L. Chuang.
Grand unification of quantum algorithms. PRX Quantum, 2(4), Decem-
ber 2021.

[5] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algo-
rithm for linear systems of equations. Physical Review Letters, 103(15),
October 2009.

[6] I.M. Georgescu, S. Ashhab, and Franco Nori. Quantum simulation.
Reviews of Modern Physics, 86(1):153–185, March 2014.

[7] Bruce M. Boghosian and Washington Taylor. Simulating quantum me-
chanics on a quantum computer. Physica D: Nonlinear Phenomena,
120(1–2):30–42, September 1998.

95

96 BIBLIOGRAPHY

[8] Guang Hao Low and Isaac L. Chuang. Optimal hamiltonian simulation
by quantum signal processing. Physical Review Letters, 118(1), January
2017.

[9] Guang Hao Low and Isaac L. Chuang. Hamiltonian simulation by qubiti-
zation. Quantum, 3:163, July 2019.

[10] Daan Camps and Roel Van Beeumen. Fable: Fast approximate quantum
circuits for block-encodings. In 2022 IEEE International Conference
on Quantum Computing and Engineering (QCE), page 104–113. IEEE,
September 2022.

[11] Daan Camps, Lin Lin, Roel Van Beeumen, and Chao Yang. Explicit
quantum circuits for block encodings of certain sparse matrices, 2023.

[12] R. H. Dicke. Coherence in spontaneous radiation processes. Phys. Rev.,
93:99–110, Jan 1954.

[13] Ronald de Wolf. Quantum computing: Lecture notes, 2023.
https://arxiv.org/abs/1907.09415.

[14] Lin Lin. Lecture notes on quantum algorithms for scientific computation,
2022. https://arxiv.org/abs/2201.08309.

[15] W. Scherer. Mathematics of Quantum Computing: An Introduction.
Springer International Publishing, 2019.

[16] J. Ossorio-Castillo and José M. Tornero. Quantum computing from a
mathematical perspective: a description of the quantum circuit model,
2025. https://arxiv.org/abs/1810.08277.

[17] Guang Hao Low, Theodore J. Yoder, and Isaac L. Chuang. Methodology
of resonant equiangular composite quantum gates. Physical Review X,
6(4), December 2016.

[18] Daan Camps and Roel Van Beeumen. Approximate quantum circuit
synthesis using block encodings. Phys. Rev. A, 102:052411, Nov 2020.

BIBLIOGRAPHY 97

[19] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVin-
cenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A. Smolin,
and Harald Weinfurter. Elementary gates for quantum computation.
Physical Review A, 52(5):3457–3467, November 1995.

[20] Mikko Möttönen, Juha J. Vartiainen, Ville Bergholm, and Martti M. Sa-
lomaa. Quantum circuits for general multiqubit gates. Physical Review
Letters, 93(13), September 2004.

[21] Fino and Algazi. Unified matrix treatment of the fast walsh-hadamard
transform. IEEE Transactions on Computers, C-25(11):1142–1146,
1976.

[22] Christoph Sünderhauf, Earl Campbell, and Joan Camps. Block-
encoding structured matrices for data input in quantum computing.
Quantum, 8:1226, January 2024.

[23] Martina Nibbi and Christian B. Mendl. Block encoding of matrix prod-
uct operators. Physical Review A, 110(4), October 2024.

[24] Emanuel Malvetti, Raban Iten, and Roger Colbeck. Quantum circuits
for sparse isometries. Quantum, 5:412, March 2021.

[25] Xiao-Ming Zhang, Tongyang Li, and Xiao Yuan. Quantum state prepa-
ration with optimal circuit depth: Implementations and applications.
Phys. Rev. Lett., 129:230504, Nov 2022.

[26] Lvzhou Li and Jingquan Luo. Nearly optimal circuit size for sparse
quantum state preparation, 2025.

[27] Andreas Bartschi and Stephan Eidenbenz. Deterministic Preparation of
Dicke States, page 126–139. Springer International Publishing, 2019.

[28] Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J.
Wood, Jake Lishman, Julien Gacon, Simon Martiel, Paul D. Nation,

98 BIBLIOGRAPHY

Lev S. Bishop, Andrew W. Cross, Blake R. Johnson, and Jay M. Gam-
betta. Quantum computing with Qiskit, 2024.

[29] Raban Iten, Roger Colbeck, Ivan Kukuljan, Jonathan Home, and
Matthias Christandl. Quantum circuits for isometries. Phys. Rev. A,
93:032318, Mar 2016.

[30] Ed Younis, Costin C Iancu, Wim Lavrijsen, Marc Davis, Ethan Smith,
and USDOE. Berkeley quantum synthesis toolkit (bqskit) v1, 04 2021.

[31] Wikipedia contributors. Hubbard model — wikipedia, the free encyclo-
pedia, 2025. https://en.wikipedia.org/wiki/Hubbardmodel, [Accessed :

2025− 07− 12].

	Introduction
	Preliminaries on quantum computing
	Quantum Bits
	Quantum measurament
	Quantum Circuit

	Quantum singular value transformation
	Quantum signal processing
	Amplitude Amplification
	Quantum eigenvalue transform

	Block encodings
	General notion
	Fast Approximate Quantum Circuits for Block-Encodings
	Sparse matrices

	Efficient Block Encoding of Spin Hamiltonians
	Fast One-Qubit Control Select LCU
	Preparation of Dicke states
	Applications on spin models
	Compression of PR for the Heisenberg Model

	Conclusion
	Bibliography

