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Abstract

Il molecular docking è una tecnica fondamentale nella biologia computazionale
e nella progettazione di farmaci, volta a prevedere la configurazione di inter-
azione più stabile tra un ligando e un recettore biologico. Negli ultimi anni,
l’interesse verso l’integrazione di paradigmi computazionali avanzati – come
il quantum annealing e il calcolo ad alte prestazioni – nei flussi di lavoro del
docking è cresciuto notevolmente, con l’obiettivo di migliorarne accuratezza
ed efficienza. Questa tesi contribuisce a tale ambito proponendo l’inclusione
di un termine in grado di catturare le interazioni di π-stacking all’interno
della funzione energetica globale (Hamiltoniana) utilizzata nei problemi di
docking ligando-recettore. Le interazioni di π-stacking, che derivano da forze
non covalenti tra sistemi aromatici, svolgono un ruolo cruciale nei processi di
riconoscimento biomolecolare, ma sono spesso trascurate o trattate in modo
semplificato nei modelli tradizionali. Nella prima parte del lavoro, sono state
eseguite simulazioni di chimica computazionale su infrastrutture HPC per
generare profili energetici dell’interazione tra anelli benzenici. Quindi, par-
tendo da modelli QUBO precedenti, basati su rappresentazioni a grafo del
docking molecolare, è stato formulato un nuovo termine hamiltoniano per
rappresentare le interazioni di π-stacking, rispettando i vincoli imposti dal
framework di ottimizzazione discreta. Particolare attenzione è stata rivolta
all’integrazione di questo termine in modo compatibile con la natura disc-
reta dei problemi di isomorfismo di sottografi. Infine, sono stati condotti
calcoli mediante simulated annealing per validare il modello. I test, effettuati
su sistemi in cui il benzene interagisce con residui aromatici come tirosina,
fenilalanina e triptofano, hanno confermato che il nuovo termine influisce
significativamente sulla configurazione di legame prevista. Questi risultati
dimostrano la rilevanza dell’inclusione delle interazioni di π-stacking nei mod-
elli di docking e aprono la strada a futuri miglioramenti nell’ottimizzazione
molecolare guidata da principi fisici.





Abstract

Molecular docking is a fundamental technique in computational biology and
drug design, aimed at predicting the most stable interaction configuration
between a ligand and a biological receptor. In recent years, there has been
growing interest in integrating advanced computational paradigms - such as
quantum annealing and high-performance computing (HPC) - into docking
workflows, with the goal of improving both accuracy and efficiency. This the-
sis contributes to this line of research by proposing the inclusion of a term
capable of capturing π-stacking interactions within the global energy function
(Hamiltonian) used in ligand–receptor docking problems. π-stacking interac-
tions, which arise from non-covalent forces between aromatic systems, play
a crucial role in biomolecular recognition processes but are often overlooked
or treated simplistically in traditional docking models. In the first part of
the work, computational chemistry simulations were performed on HPC in-
frastructures to generate detailed energy profiles of the interaction between
benzene rings. Building on previous QUBO models based on graph repre-
sentations of molecular docking, a new Hamiltonian term was formulated to
account for π-stacking interactions, while respecting the constraints imposed
by the discrete optimization framework. Particular attention was paid to
integrating this term in a way that is compatible with the discrete nature of
subgraph isomorphism problems. Finally, simulated annealing computations
were carried out to validate the extended model. Tests were conducted on
systems involving benzene interacting with aromatic residues such as tyro-
sine, phenylalanine, and tryptophan. The results confirmed that the newly
introduced term significantly influences the predicted binding configuration,
consistently guiding the ligand toward the correct spatial orientation. These
findings demonstrate the relevance of incorporating π-stacking interactions
into docking models and pave the way for future improvements in physically-
informed molecular optimization.





Introduction

Molecular docking is a computational technique widely used in structural
biology and drug discovery to predict the preferred orientation of two inter-
acting molecules, typically a small ligand and a larger biological receptor,
such as a protein. The primary goal of docking is to determine how these
molecules fit together in three-dimensional space to form a stable complex,
and to estimate the strength and nature of their interaction.

The ability to model and predict molecular binding with reasonable ac-
curacy makes docking an invaluable tool in modern scientific research. In
drug discovery, it allows for the virtual screening of vast chemical libraries,
helping researchers identify promising candidate molecules with high affinity
for a given biological target. This process significantly reduces both the time
and cost associated with experimental screening, accelerating the early stages
of drug development. Moreover, molecular docking contributes to a deeper
understanding of the molecular mechanisms underlying biological functions
and disease processes, providing essential insights for the rational design of
new therapeutics.

Numerous studies in recent years have focused on improving both the
methodologies and the accuracy of molecular docking. As the complexity
of biological targets and chemical libraries increases, researchers are turning
to increasingly sophisticated computational technologies to enhance dock-
ing performance and predictive power. In particular, advancements in High-
Performance Computing (HPC) and the emerging field of Quantum Comput-
ing are opening new possibilities for tackling the combinatorial and energetic
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challenges inherent in molecular docking.
The work presented in this thesis is part of an ongoing research effort

aimed at integrating these new computational paradigms into molecular
docking workflows. This research line was initiated with the study Molecu-
lar Docking via Weighted Subgraph Isomorphism on Quantum Annealers [1],
which approached the ligand-receptor docking problem by encoding geomet-
ric constraints into a Quadratic Unconstrained Binary Optimization (QUBO)
formulation, making it suitable for solution via quantum annealing. This ini-
tial work focused on geometric compatibility between ligand and receptor.

Building upon this foundation, a subsequent study is currently focus-
ing on the introduction of an additional physico-chemical constraint into
the total system Hamiltonian, thereby enhancing the physical realism of the
docking model. Both studies employed quantum and simulated annealing
techniques to identify the equilibrium configuration of the ligand-receptor
system, effectively minimizing the total energy as represented by the con-
structed Hamiltonian.

The primary objective of the present work is to further extend this re-
search direction by incorporating a specific term into the physical Hamilto-
nian that explicitly accounts for π-stacking interactions. These interactions,
which arise from non-covalent forces between aromatic rings, play a crucial
role in many biomolecular recognition processes. By modeling π-stacking
contributions within the Hamiltonian, the aim is to improve the energetic
description of the docking problem and increase the accuracy of the pre-
dicted binding configurations.

Structure of the Thesis

First and Second Chapter: Preliminaries

The first two chapters of this thesis provide the necessary theoretical
background to contextualize the research, simulations, and modeling work
presented in Chapters 3, 4 and 5. This preliminary section is designed
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to provide the reader with a clear understanding of the computational and
physical principles that underpin the subsequent developments.

The first chapter begins by introducing the concepts of Quadratic Uncon-
strained Binary Optimization (QUBO), simulated annealing, and quantum
annealing. These methodologies are described in detail, with particular em-
phasis on their practical applications, their relevance to optimization prob-
lems, and the interconnections between them. Leonardo supercomputer is
also introduced.

Following this, in the second chapter, a comprehensive overview of molec-
ular docking is presented. This section explains the fundamental principles of
docking and its significance in computational chemistry and drug discovery.
After briefly reviewing preliminary studies in the field, special attention is
devoted to the key reference work underpinning this thesis, namely Molec-
ular Docking via Weighted Subgraph Isomorphism on Quantum Annealers
[1]. Additionally, an overview is provided on ongoing research related to
the physico-chemical Hamiltonian, as this thesis aims to extend and further
develop that line of inquiry.

The chapter then proceeds with an in-depth discussion of π-stacking in-
teractions, starting with the foundational Hunter–Sanders model and moving
on to more recent developments in the theoretical understanding of these non-
covalent forces. This section highlights the role of π-stacking in biomolecular
recognition and its relevance to the present study.

Finally, the reader is introduced to the field of computational chemistry.
Particular attention is given to the theoretical foundations and practical ap-
plications of Density Functional Theory (DFT) and ab initio methods, both
of which have been essential for generating the reference data used in this
work.

Third Chapter: HPC simulations

The second chapter focuses on the computational simulations performed
in a High-Performance Computing (HPC) environment using the Leonardo



supercomputer at CINECA. An extensive set of simulations was conducted
to obtain a comprehensive and detailed characterization of the π-stacking in-
teraction. Although this interaction has been widely studied from a chemical
perspective to identify its dominant energetic contributions, no closed-form
physical equation currently exists to describe it quantitatively.

To address this gap, it was necessary to explore the interaction strength
across various spatial configurations and relative orientations between aro-
matic rings, as such structures are typically those that display this character-
istic behavior. In particular, simulations have been conducted using benzene
rings, the simplest form of aromatic structures. This systematic exploration
allowed us to gather the data required for developing an effective mathemat-
ical model of the interaction.

In section 3.1 and 3.2 we present the computational codes and simula-
tion protocols used throughout the study, including those implemented with
Quantum ESPRESSO and Q-Chem. This is followed by a detailed presen-
tation of the simulation results (3.3), highlighting the key features of the
energy landscapes obtained.

Finally, Section 3.4 is dedicated to the polynomial fitting of the calculated
energy surfaces. These fits were developed to provide continuous functional
representations of the interaction energy, which will later serve as input for
the Hamiltonian modeling stage of the project.

Fourth Chapter: Mathematical Modelling

The third chapter (3) represents the core of this work. Here, we address
the mathematical modeling required to incorporate the π-stacking contribu-
tion into the physical Hamiltonian introduced in the previously discussed
study.

This task presented several challenges. The original model for describing
ligand-receptor interactions [1] was primarily designed to account for atom-
istic interactions, such as electrostatics and van der Waals forces, where each
atom is represented as a node within a graph-based structure. While this
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graph formalism is well-suited for modeling interatomic forces, it is not inher-
ently designed to capture interactions between larger molecular fragments,
such as aromatic rings.

The central difficulty arose from the geometric constraints associated with
defining the position and orientation of an aromatic ring in three-dimensional
space. Accurately positioning a planar aromatic ring typically requires fixing
three of its constituent atoms. However, the QUBO formulation adopted in
the existing model allows for direct control over only two atoms at a time,
as the variables in the optimization process correspond to discrete positional
choices for individual atoms.

Fortunately, the results obtained from the computational simulations pro-
vided a solution to this limitation. The energy landscapes revealed that one
degree of freedom in the movement of the aromatic rings could be reason-
ably neglected without compromising the accuracy of the model. This in-
sight enabled the development of a modified Hamiltonian that incorporates
the π-stacking contribution while remaining compatible with the existing
framework. The resulting formulation successfully integrates into the origi-
nal optimization model, allowing for the inclusion of physically meaningful
π-stacking interactions within the ligand-receptor docking process.

Fifth Chapter: Annealing and Results

In Chapter 4, we carried out a series of simulated annealing computations
to test the validity and effectiveness of the model introduced in Chapter 3.
Specifically, our goal was to evaluate the impact of the π-stacking term in-
corporated into the global Hamiltonian used to describe the total energy of
the system. Through these calculations, we demonstrated that the inclusion
of the π-stacking contribution is essential for correctly predicting the spa-
tial configuration of a benzene fragment interacting with amino acids such
as tyrosine, phenylalanine, and tryptophan. By exploring a range of con-
figurations - altering both the pocketgrid and the spatial grid structure -
we obtained consistent and significant results that reinforce the central role



of π-stacking in determining the optimal binding arrangement. These find-
ings provide a robust computational foundation for modeling non-covalent
interactions involving aromatic systems within protein-ligand environments.
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Chapter 1

Computational Setup: Leonardo

and Annealing

1.1 Introduction to QUBO, Simulated and Quan-

tum Annealing

Quadratic Unconstrained Binary Optimization (QUBO) is a mathemati-
cal framework for modeling combinatorial optimization problems whose vari-
ables take binary values xi ∈ {0, 1}, and whose objective function is a
quadratic form in these variables. Formally, given a symmetric real-valued
matrix Q ∈ Rn×n, the goal is to find a binary vector x ∈ {0, 1}n that mini-
mizes the cost function

fQ(x) = x⊺Qx.

Due to the exponential growth of the solution space with the number
of variables, solving QUBO problems exactly becomes computationally in-
tractable for large instances [2]. This has led to the development of approx-
imate algorithms capable of finding near-optimal solutions efficiently.

In particular, QUBO problems can be effectively addressed using both
simulated annealing and quantum annealing [2], two optimization techniques
inspired by thermodynamic and quantum physical principles, respectively.

5



6 COMPUTATIONAL SETUP

Simulated annealing, which is introduced in Section 1.1.2, is a classical meta-
heuristic algorithm that explores the solution space probabilistically, allowing
for both downhill and uphill moves according to a temperature-dependent ac-
ceptance rule. This probabilistic flexibility enables the algorithm to escape
local minima and makes it particularly well suited to minimizing the energy
landscapes defined by QUBO objectives.

Quantum annealing, introduced in Section 1.1.3, relies on quantum me-
chanical effects such as tunneling and superposition to explore the solution
space. It operates on the same class of problems, and in fact, most physical
implementations of quantum annealers (e.g., D-Wave systems) natively solve
problems formulated as QUBO or equivalently Ising models.

In the following sections, we first present the definition and structure of
a QUBO problem, then we will introduce the simulated annealing algorithm
in detail, and subsequently explore its quantum analogue.

1.1.1 Quadratic Unconstrained Binary Optimization

(QUBO)

The Quadratic Unconstrained Binary Optimization (QUBO) is a central
mathematical framework used to express a wide range of discrete optimiza-
tion problems across domains such as finance, logistics, and machine learn-
ing [3].

Its relevance extends beyond classical computation: QUBO problems are
directly translatable into the Ising model, making them highly suitable for
solution methods based on quantum annealing and other adiabatic quantum
algorithms.

Let B = {0, 1} denote the binary set, and Bn the space of binary vectors
of length n ∈ N. Given a real symmetric matrix Q ∈ Rn×n, the standard
QUBO objective function takes the form

fQ(x) = x⊺Qx =
n∑

i=1

n∑
j=1

Qijxixj,
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where x ∈ Bn is the binary decision vector.
An alternative but equivalent formulation separates the purely quadratic

terms from the linear contributions:

fQ′,q(x) = x⊺Q′x+ q⊺x,

with Q′ ∈ Rn×n symmetric and q ∈ Rn. The two formulations are equivalent
by setting Q = Q′ + diag(q), taking advantage of the identity x2i = xi for
binary variables.

The optimization goal is to find x∗ ∈ Bn that minimizes the objective:

fQ(x
∗) ≤ fQ(x) ∀x ∈ Bn.

Since the number of candidate solutions is exponential in n, i.e., 2n, QUBO
problems are generally computationally intensive for large systems.

Nevertheless, specific QUBO instances admit efficient solutions under
structural constraints. For example if Qij > 0 for all i, j, the global min-
imum is trivially x∗ = 0, if Qij < 0 for all i, j, the minimum is x∗ = 1 and if
Q is diagonal, each variable decouples and can be optimized in linear time.

Overall, QUBO serves as a powerful and versatile framework for encoding
discrete optimization tasks, and is central to the development of quantum-
inspired and quantum-native algorithms.

Equivalence with the Ising Model

QUBO formulations are the matematical equivalent of the classical Ising
model from statistical mechanics, which describes systems of spins under
pairwise interactions and external magnetic fields.

In the Ising formulation, the energy of a spin configuration σ ∈ {−1,+1}n

is expressed as

H(σ) = σ⊺Jσ + h⊺σ =
∑
i,j

Jijσiσj +
∑
i

hiσi,

where J ∈ Rn×n encodes pairwise interactions (symmetric), and h ∈ Rn

represents the external field acting on each spin. To map an Ising model to
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a QUBO instance, we apply the transformation

σ = 1− 2x,

with x ∈ {0, 1}n. Substituting into H(σ), we obtain:

H(x) = (1− 2x)⊺J(1− 2x) + h⊺(1− 2x)

= 4x⊺Jx− 4(J1)⊺x+ const.

The constant term can be omitted from the optimization. Therefore, the
corresponding QUBO matrix isQ = 4J , and the linear term is q = −4J1+2h,
yielding a QUBO problem equivalent to the original Ising model.

The reverse mapping is also straightforward. Given a QUBO matrix Q,
we can define the Ising couplings and fields as:

J =
Q

4
, h = −Q1 +Q⊺1

4
.

The energy offset is
E0 =

1⊺Q1

4
.

This two-way mapping allows one to switch between the QUBO and Ising
representations depending on the solver or physical model being used.

1.1.2 Simulated Annealing

Simulated annealing (SA) is a probabilistic metaheuristic technique used
to approximate the global optimum of an objective function, particularly in
optimization problems characterized by a large and rugged search space with
many local optima. When the goal is to obtain a near-global optimum within
a limited computational budget, simulated annealing often outperforms de-
terministic methods like gradient descent or branch and bound. The method
was formalized by Kirkpatrick, Gelatt, and Vecchi in 1983 [4], building upon
ideas originating from the Metropolis–Hastings algorithm [5], a Monte Carlo
technique introduced in 1953 for simulating thermodynamic systems. Related
ideas had also appeared earlier in the work of Pincus [6] and Khachaturyan
et al. [7, 8].
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The algorithm draws its name from the physical process of annealing in
metallurgy, where a material is heated and then slowly cooled to reduce its
internal defects and minimize its thermodynamic free energy. This analogy
is central to the design of the algorithm: at high “temperatures,” the system
can accept worse solutions, thus exploring a wide region of the search space;
as the temperature decreases, the algorithm becomes increasingly selective,
favoring low-energy configurations and converging toward an optimum.

Simulated annealing has proven effective in situations where exact al-
gorithms are computationally infeasible or prone to becoming trapped in
suboptimal regions. Although convergence to the global minimum is not
guaranteed in practice, SA often produces high-quality solutions suitable for
real-world applications.

The algorithm

The algorithm begins with an initial state s and iteratively explores the
solution space. At each step, it generates a neighboring state s∗ through a
local perturbation of s, computes its energy E(s∗), and decides whether to
move to s∗ based on a probabilistic acceptance criterion. This process is re-
peated until a stopping condition is met—typically when a maximum number
of iterations is reached or when no significant improvement is observed.

The decision to accept a new state snew depends on the associated energies
e = E(s) and enew = E(snew), and on the current temperature T . The most
commonly used acceptance probability is given by the Metropolis criterion:

P (e, enew, T ) =


1, if enew < e,

exp

(
−enew − e

T

)
, if enew ≥ e.

This rule ensures that all energy-decreasing moves are accepted, while energy-
increasing moves are accepted with a probability that decays exponentially
with the increase in energy and the reduction in temperature. As a result, at
high temperatures, the algorithm explores widely, accepting worse solutions
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with high probability, while at low temperatures it becomes more selective
and converges locally.

The temperature T plays a critical role in controlling the balance between
exploration and exploitation. When T is large, the system is tolerant to en-
ergy increases, allowing it to escape local minima and explore distant regions
of the state space. As T decreases, the algorithm becomes increasingly con-
servative, accepting only moves that result in lower or slightly higher energy.
In the limit T → 0, SA behaves like a greedy local search algorithm.

The evolution of T is governed by the annealing schedule, which defines
how the temperature is reduced over time. A common schedule is geometric:

Tk = αkT0,

where α ∈ (0, 1) is the cooling rate, T0 is the initial temperature, and k is
the iteration count. Alternative schedules, such as logarithmic cooling, may
be used to meet theoretical convergence criteria, though they are often too
slow for practical use.

In contrast to greedy heuristics like hill climbing—which always move to
the best available neighbor and terminate at local optima—simulated anneal-
ing can accept worse solutions and therefore escape local traps. This makes
it especially effective in rugged or multimodal landscapes, where purely local
strategies are insufficient. The ability to probabilistically accept uphill moves
distinguishes SA from traditional local search and gives it global search ca-
pabilities, provided the temperature decreases slowly enough and the search
is allowed to run sufficiently long.

Simulated annealing has been shown to converge to the global optimum
with probability one under specific conditions. In particular, for a finite state
space and a logarithmic cooling schedule, it holds that:

lim
k→∞

P(sk ∈ S∗) = 1,

where S∗ denotes the set of global optima and sk is the state at iteration k.
However, the rate of convergence is extremely slow, and the time required to
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guarantee a high success probability is often impractical. In applied settings,
simulated annealing is valued for its ability to find high-quality solutions
efficiently, rather than for its asymptotic guarantees.

1.1.3 Quantum Annealing

Quantum annealing (QA) is a metaheuristic method inspired by quantum
mechanics and developed to solve optimization problems by exploiting the
quantum properties of physical systems. It shares important conceptual fea-
tures with adiabatic quantum computing (AQC), yet the two paradigms are
not equivalent. While AQC assumes a perfectly isolated system evolving uni-
tarily according to the Schrödinger equation, QA considers an open quantum
system interacting with its environment, where decoherence and dissipation
play a central role. The following discussion is based on the treatment pre-
sented in [9]. For further details and a deeper understanding, the reader is
referred to the following references: [10], [11], [12].

Adiabatic Quantum Computing

Adiabatic quantum computing is grounded in the adiabatic theorem of
quantum mechanics, which states that a quantum system initially prepared
in the ground state |ψ0⟩ of a Hamiltonian HI will remain close to the ground
state of a slowly evolving Hamiltonian H(t), provided that the evolution is
sufficiently slow and a nonzero spectral gap is maintained throughout the
evolution. The system evolves according to the Schrödinger equation:

i
d

dt
|ψ(t)⟩ = H(t)|ψ(t)⟩, t ∈ [0, T ], (1.1)

with initial condition |ψ(0)⟩ = |ψ0⟩.
By reparametrizing time with s = t/T ∈ [0, 1], the Hamiltonian can

be written as H̃(s) = H(Ts). Let E0(s) be the lowest eigenvalue of H̃(s)

and |0, s⟩ the corresponding eigenstate. Let us assume the non-degeneracy
of the initial ground state, dimHE0(0) = 1, where HE0(0) is the eigenspace
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corresponding to E0(0). If the spectral gap λ(s) = E1(s)− E0(s) > 0 for all
s ∈ [0, 1], then the adiabatic theorem ensures:

lim
T→∞

|⟨0, 1|ψ(T )⟩| = 1. (1.2)

This means the final state |ψ(T )⟩ is with high probability the ground state
of the final Hamiltonian HP = H(T ).

The required runtime T to ensure adiabaticity can be estimated as:

T ≫
maxs

∥∥∥dH̃(s)
ds

∥∥∥
op

mins λ(s)2
, (1.3)

where ∥ · ∥op denotes the operator norm. The standard adiabatic quantum
computing protocol consists of:

• Preparing the system in the ground state of a simple Hamiltonian HI .

• Slowly evolving the system under a Hamiltonian H(t) = (1−s(t))HI +

s(t)HP with s(0) = 0 and s(T ) = 1.

• Measuring the final state to obtain the ground state of the problem
Hamiltonian HP .

Quantum Annealing

In quantum annealing, the problem to solve is encoded in the ground
state of a Hamiltonian HP acting on the Hilbert space H of n qubits. The
system is driven toward this ground state via a time-dependent Hamiltonian:

H(t) = Γ(t)HD +HP , (1.4)

where HD is the transverse-field or "disordering" Hamiltonian, which induces
quantum fluctuations, and Γ(t) is a decreasing function of time.

Typically, the initial Hamiltonian HD is chosen so that its ground state
is a simple product state that can be easily prepared experimentally. A
common and practical choice is:
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HD = −
N∑
i=1

∆iσ
x
i ,

where ∆i > 0 are real coefficients and σx
i denotes the Pauli-X operator acting

on the i-th qubit. This Hamiltonian corresponds to a transverse magnetic
field that induces quantum transitions (bit flips) between the computational
basis states {|0⟩, |1⟩} of each qubit. This term introduces quantum fluctua-
tions that enable the system to:

• transition between different configurations by flipping the states of in-
dividual qubits;

• induce quantum tunneling between distinct local minima in the energy
landscape.

When the transverse field is strong, the system can freely explore a wide
range of configurations due to enhanced quantum fluctuations. As the field
is gradually reduced, the influence of the problem Hamiltonian becomes dom-
inant, and the system is guided toward the optimal solution encoded in its
ground state.

The ground state of HD in this case is a uniform superposition over all
possible computational basis states, given by:

|+ · · ·+⟩ = 1√
2N

∑
z∈{0,1}N

|z⟩,

where each qubit is in the eigenstate |+⟩ = 1√
2
(|0⟩ + |1⟩) of σx. This state

is highly symmetric and can be efficiently prepared in physical quantum
hardware by applying Hadamard gates to each qubit initialized in the state
|0⟩, where the Hadamard gate is a single-qubit gate defined in matrix form
with respect to the computational basis {|0⟩, |1⟩} as follows:

H :=
1√
2

(
1 1

1 −1

)
.
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Choosing such anHD ensures that the system starts in a delocalized quantum
state, from which the adiabatic or annealing evolution can begin to guide
it toward the ground state of the problem Hamiltonian HP . The problem
Hamiltonian has the form:

HP =
∑
i∈V

θiσ
z
i +

∑
(i,j)∈E

θijσ
z
i σ

z
j , (1.5)

where σz =

(
1 0

0 −1

)
is the Pauli Z matrix acting on qubit i, and θi, θij are

parameters representing local fields and couplings.
The eigenvalues of HP correspond to the cost function of the classical

Ising model:

E(z) =
∑
i∈V

θizi +
∑

(i,j)∈E

θijzizj, z ∈ {−1, 1}|V |, (1.6)

and the goal is to find the configuration z∗ that minimizes E(z):

z∗ = arg min
z∈{−1,1}|V |

E(z). (1.7)

During the annealing process, the system is initialized with Γ(0) large (domi-
nated byHD), and as Γ(t) decreases, the system is guided towards the ground
state of HP , ideally ending in the optimal configuration. The binary variables
zi are physically realized by the final measurement outcomes of the qubits.

Effectively applying quantum annealing requires translating the optimiza-
tion objective into the parameters θi and θij of the Ising model, which—as
shown in Section 1.1.1—is equivalent to the corresponding QUBO formula-
tion.

Simulated and Quantum Annealing with D-Wave

For the simulated annealing computations presented in Chapter 5, we em-
ployed the neal.SimulatedAnnealingSampler [13] from the neal Python
package. neal is part of the Ocean software development toolkit developed
by D-Wave Systems, which provides a suite of open-source tools designed to
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formulate, manipulate, and solve optimization problems -particularly those
expressed as QUBO models - on both quantum and classical hardware. The
Ocean ecosystem includes components for problem embedding, solver inter-
facing, and result analysis, and is widely used in quantum annealing research
and applications.

The SimulatedAnnealingSampler in neal is a classical solver that mim-
ics the physical process of annealing by iteratively searching for a configura-
tion of variables that minimizes the energy of a system. In our experiments,
this sampler utilizes a geometric beta schedule, which governs the progression
of the inverse temperature parameter β throughout the annealing process.

A geometric beta schedule increases β multiplicatively at each step, fol-
lowing the rule βk+1 = r · βk, where r > 1 is a constant scaling factor. This
approach ensures that the temperature decreases exponentially, allowing the
system to explore the solution space broadly at high temperatures and grad-
ually converge toward low-energy configurations as the temperature cools.
This type of scheduling is particularly effective in avoiding local minima and
improving convergence toward the global optimum in complex energy land-
scapes.

D-Wave Systems is also among the most prominent and commercially
available implementations of quantum annealing hardware. Unlike gate-
based quantum computers, which operate using quantum logic gates and
circuit models, D-Wave machines are designed specifically to perform quan-
tum annealing for solving combinatorial optimization problems. These de-
vices consist of thousands of superconducting qubits arranged according to a
fixed hardware topology with limited connectivity. As a consequence, trans-
lating a logical optimization problem onto the D-Wave hardware requires an
additional step known as embedding, which maps the problem variables onto
the available physical qubits while respecting their connectivity constraints.

The process of embedding is a crucial step in solving optimization prob-
lems on a D-Wave quantum annealer. Given the hardware constraints of the
machine, embedding is necessary to map the logical structure of the problem
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onto the physical layout of the qubits. A QUBO problem, or equivalently
its Ising formulation, can be represented as a graph where each node corre-
sponds to a binary variable and each edge represents a quadratic interaction
between variables. This logical graph reflects the connectivity required by
the problem. However, the physical qubits in a D-Wave machine are ar-
ranged according to a specific hardware topology, such as Chimera, Pegasus,
or Zephyr [14]. These topologies are sparse by design, meaning that not all
pairs of qubits are directly connected. As a result, the embedding process
involves finding a mapping between the logical variables and the available
physical qubits, taking into account the connectivity constraints of the de-
vice. When a logical variable requires connections to multiple other variables,
and these connections cannot be satisfied by a single physical qubit due to
limited connectivity, the embedding algorithm assigns the logical variable
to a chain of multiple physical qubits. These qubits are strongly coupled
to enforce that they behave coherently as a single logical entity during the
annealing process. This allows the hardware to simulate higher connectivity
than what is physically available.

To illustrate this concept, consider the following simple QUBO problem
defined over two binary variables:

Q = {(0, 0) : −1, (1, 1) : −1, (0, 1) : 2}.

The corresponding objective function is:

E(x0, x1) = −x0 − x1 + 2x0x1,

where x0 and x1 are binary variables. This problem can be represented as
a logical graph with two nodes connected by a single edge, reflecting the
quadratic interaction between x0 and x1. If the physical topology of the
D-Wave machine provides two qubits that are directly connected, the em-
bedding for this problem is straightforward: each logical variable is mapped
to a distinct physical qubit, and the coupling between them represents the
interaction term in the QUBO.
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Figure 1.1: Illustration of the difference between simulated annealing and
quantum annealing in escaping local minima. Simulated annealing relies on
thermal jumps to overcome energy barriers, while quantum annealing exploits
quantum tunneling. Image adapted from [15].

In more complex scenarios, where the required logical connectivity ex-
ceeds the available physical connections, the embedding process becomes
non-trivial. The embedding algorithm then identifies suitable chains of phys-
ical qubits to represent each logical variable while preserving the problem’s
connectivity. The quality of the embedding can significantly influence the
success of the annealing process, as longer chains are more susceptible to er-
rors such as chain breaks. Consequently, embedding optimization remains a
key aspect of practical quantum annealing on current hardware architectures.

Analogies between Quantum and Simulated Annealing

Quantum annealing can be meaningfully compared to simulated anneal-
ing, with an important analogy between their respective control parameters:
the temperature in simulated annealing plays a role analogous to the trans-
verse field strength in quantum annealing.
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In simulated annealing, the temperature governs the probability of ac-
cepting transitions to higher-energy configurations, allowing the system to
escape local minima by thermal activation. As the temperature is gradually
reduced, the system becomes increasingly selective, eventually converging to
a low-energy state.

In quantum annealing, quantum tunneling - induced by the transverse
field - enables the system to explore the energy landscape by coherently
modifying the amplitudes of many states in parallel. The strength of the
transverse field controls the extent of these quantum fluctuations and is grad-
ually decreased to guide the system toward the ground state of the problem
Hamiltonian.

Both methods aim to avoid local minima and reach the global optimum,
but use fundamentally different physical mechanisms: thermal jumps in sim-
ulated annealing versus quantum tunneling in quantum annealing. Analyt-
ical [12] and numerical [16] studies suggest that, under specific conditions,
quantum annealing can outperform simulated annealing, especially in prob-
lems with tall and narrow energy barriers, where quantum tunneling is more
efficient than thermal hopping.
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1.2 HPC and Leonardo Supercomputer

High-Performance Computing (HPC) refers to the use of supercomputers
and parallel processing techniques to solve complex computational problems
that require significant processing power and memory resources. HPC sys-
tems are characterized by their ability to perform trillions of calculations per
second, enabling the simulation, modeling, and analysis of large-scale scien-
tific, engineering, and industrial problems that would be intractable using
conventional computing systems.

A prominent example of HPC infrastructure in Europe is the Leonardo
supercomputer, located at CINECA in Bologna, Italy. Leonardo is part of the
EuroHPC Joint Undertaking initiative, aimed at developing a pan-European
supercomputing ecosystem. Operational since 2022, Leonardo is classified as
a pre-exascale system, capable of delivering peak performance exceeding 250
petaflops (quadrillions of floating-point operations per second).

Leonardo is built on a heterogeneous architecture that combines tradi-
tional CPU-based nodes with highly parallel GPU-accelerated nodes, mak-
ing it particularly suited for a wide range of applications including artificial
intelligence, big data analytics, and large-scale scientific simulations. Its
high-performance interconnect and large storage capacity allow efficient han-
dling of massive datasets and enable parallel execution of computationally
intensive workloads.

Within the context of computational chemistry and quantum simulations,
HPC systems like Leonardo provide the necessary computational resources to
perform ab initio calculations, molecular dynamics simulations, and quantum
Monte Carlo methods on systems of realistic size and complexity.





Chapter 2

Background: π-Stacking,

Quantum Molecular Docking &

Computational Approaches

2.1 An overview on Quantum Molecular Dock-

ing

Molecular docking is a key computational tool in structural biology and
drug design, aimed at predicting the binding configuration of two interacting
molecules, typically a small ligand and a larger biological target such as
a protein. By simulating the molecular recognition process, docking enables
the identification of energetically favorable binding poses and provides insight
into the strength and nature of molecular interactions. It plays a crucial role
in the rational design of therapeutic compounds and in the interpretation of
biochemical mechanisms at the molecular level.

In this chapter, we briefly present the general framework of molecular
docking and its formulation as an optimization problem. We then introduce
in details a first work which explores molecular docking from a quantum
computational perspective. Molecular Docking via Weighted Subgraph Iso-

21
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morphism on Quantum Annealers [1] indeed models the docking process as
a purely geometric problem, leveraging weighted subgraph matching tech-
niques. A second approch, currentely still being investigated, extends this
framework by incorporating physically motivated interaction terms into the
definition of the system’s Hamiltonian. Both approaches are designed to be
compatible with current quantum annealing hardware and provide innovative
formulations of molecular docking within the discrete optimization paradigm.

2.1.1 Classical Molecular Docking

Molecular docking is a computational technique used in molecular mod-
elling to predict the preferred orientation of two molecules when they interact
to form a stable complex. In most applications, the goal is to determine how
a small molecule ligand binds to a macromolecular target, such as a protein,
in a way that mimics biological recognition processes. Once a plausible bind-
ing configuration is identified, the strength of the interaction - commonly
referred to as binding affinity - can be estimated using appropriate scoring
functions.

This methodology is widely employed in structure-based drug design,
where it provides valuable insights into the binding behavior of candidate
compounds. Accurate prediction of ligand-target interactions is essential not
only for the rational design and optimization of new drug molecules, but also
for understanding key biochemical and pharmacological mechanisms. Molec-
ular docking is a cornerstone of virtual screening workflows, enabling the
evaluation of large chemical libraries to identify promising molecules for ex-
perimental validation. Furthermore, docking simulations serve as an effective
starting point for lead compound optimization and mechanistic studies.

From a biological perspective, docking plays a central role in modeling
the association between biologically relevant molecules, including proteins,
peptides, nucleic acids, carbohydrates, and lipids. The spatial arrangement
adopted by the interacting species can significantly influence the functional
outcome of the interaction. For example, different binding conformations
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may elicit agonistic or antagonistic responses in the target system. As such,
molecular docking not only assesses interaction strength but also contributes
to the interpretation of functional effects driven by molecular recognition.

Conceptually, molecular docking can be formulated as a geometrical and
energetic optimization problem. A classical analogy is the "lock-and-key"
model, in which the protein represents the lock and the ligand the key; the
objective is to identify the orientation in which the ligand best fits the bind-
ing site. However, because both ligands and receptors often exhibit confor-
mational flexibility, a more accurate representation is the "hand-in-glove"
model. In this scenario, both molecules undergo conformational changes to
achieve a better fit, a process known as induced fit. This mutual adaptation
stabilizes the resulting protein-ligand complex.

Docking algorithms attempt to simulate this molecular recognition pro-
cess by exploring a large number of potential configurations and evaluating
them according to energy-based criteria. The ultimate goal is to identify the
relative orientation and conformation of the interacting molecules that mini-
mizes the system’s free energy. This typically involves heuristic or stochastic
search strategies, which allow the efficient sampling of the configuration space
and the selection of energetically favourable binding poses.

In recent years, advances in quantum computing have opened new avenues
for addressing molecular docking through quantum-inspired methodologies.
Several studies have proposed quantum approaches to reformulate or support
various aspects of the docking process. Banchi et al. [17] introduced the use
of Gaussian Boson Sampling to tackle a rigid-body formulation of docking by
mapping the problem to the search for maximum cliques in a graph represen-
tation of the molecular structures. In a different context, Mensa et al. [18]
applied a quantum-enhanced machine learning strategy - Quantum Kernel
Estimation - to the problem of Ligand-Based Virtual Screening (LB-VS), a
technique closely related to docking.

More recently, Mato et al. [19] investigated the use of Quantum An-
nealing techniques (see Section 1.1.3) to support docking by focusing on the
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ligand expansion phase. Their study addressed the problem of identifying
torsional configurations of the ligand that maximize its molecular volume,
or equivalently, that maximize the internal atomic distances, thus promoting
favorable spatial arrangements for subsequent binding.

In the following section, we present the work Molecular Docking via
Weighted Subgraph Isomorphism on Quantum Annealers [1], which addresses
the entire Search and Construction (SC) phase of molecular docking by re-
formulating the problem in a manner more compatible with quantum anneal-
ing. Instead of relying on conventional methodologies based on rigid-body
roto-translations and fragment rotations, this approach introduces a novel
problem representation that aligns naturally with the structure of a QUBO
problem.

Subsequently, we discuss the ongoing research building upon the frame-
work proposed in [1]. This later work estends the original formulation by
incorporating constraints derived from the physico-chemical interactions be-
tween molecules, thereby going beyond purely geometric considerations and
enhancing the physical realism of the docking process.

2.1.2 Molecular Docking via Weighted Subgraph Iso-

morphism on Quantum Annealers

The approach proposed in [1] introduces a fully geometric formulation of
the molecular docking problem based on the identification of a set of rep-
resentative docking points inside the binding pocket. These points, referred
to as pocket probes, define the active region of the pocket and are selected
based on its shape and volume using established tools such as CAVIAR,
PASS, and POCASA [20]. The resulting probe points serve as the nodes of
a weighted spatial grid, providing a discrete approximation of the 3D cavity.
Edges between points are weighted by their Euclidean distance, yielding a
graph representation Ggrid = {v, eu,v, wu,v} where each node v corresponds
to a docking point, the terms eu,v represent the edges between one node and
another, and each edge weight wu,v is given by ∥u− v∥.



2.1 An overview on Quantum Molecular Docking 25

Ligands are encoded as weighted graphs Gmol = {i, ei,j, wi,j}, where each
node i corresponds to a ligand atom, the terms ei,j represent the edges be-
tween one node and another, and, as before, each edge weight wi,j is given
by ∥i − j∥. Ligands are designed to preserve both chemical and geometric
information. This includes atom connectivity, rotatable bonds, bond lengths,
and fixed bond angles. To construct these graphs, a pre-processing phase is
applied which performs the following simplifications:

• Removal of terminal hydrogens: Peripheral hydrogen atoms are ex-
cluded due to their minimal impact on the global shape of the ligand.

• Identification of rotatable bonds and fragments: The ligand is par-
titioned into rigid fragments determined by the location of rotatable
bonds.

• Fragment simplification: Structural simplifications were applied to the
ligand fragments to reduce complexity while preserving key geometric
features.

Following this, the ligand graph captures a simplified yet informative
molecular structure, where nodes represent atoms or fragments, and weights
encode geometric constraints such as bond lengths and angular relationships.

The docking task is then reformulated as a weighted subgraph isomor-
phism problem, where the objective is to find an optimal mapping between
the ligand graph Gmol and the spatial grid Ggrid. To model this as a QUBO
problem, binary variables xi,i′ ∈ {0, 1} are introduced to represent whether
a node i ∈ Gmol is mapped to a node i′ ∈ Ggrid. The mapping is constrained
to be injective through the penalty term:

H1 =
∑
i

(
1−

∑
i′

xi,i′

)2

.

To enforce structural consistency between the two graphs, a second term
penalizes invalid edge mappings, i.e., if an edge exists between nodes i and j
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in the ligand graph, but their corresponding images i′ and j′ are not connected
in the grid:

H2 =
∑

(i,j)∈Gmol

∑
(i′,j′)/∈Ggrid

xi,i′xj,j′ .

Together, these define the structural feasibility component:

Hiso = H1 +H2.

To preserve geometric accuracy, a third term Hopt penalizes discrepancies
between ligand edge weights and their mapped counterparts in the spatial
grid:

Hopt =
∑

(i,j)∈Gmol

∑
(i′,j′)∈Ggrid

(wi,j − wi′,j′)
2 xi,i′ xj,j′ .

The total QUBO Hamiltonian becomes:

HQUBO = AHiso +BHopt,

where A ≫ B ensures that hard constraints are always prioritized. With-
out loss of generality, B can be set to 1 and A treated as the main tuning
parameter.

This formulation is particularly well suited for implementation on quan-
tum annealers. One of the key strengths of this method lies in its natural
compatibility with the QUBO formalism. The study then evaluates the per-
formance of this geometric approach on quantum hardware and compares
it with classical techniques such as simulated annealing, highlighting both
the current capabilities and limitations of quantum annealing for practical
molecular docking tasks.

2.1.3 Adding Physicochemical Constraints into the Ge-

ometric Hamiltonian

While the previous article primarily focused on optimizing the geomet-
ric compatibility between the ligand and the binding pocket, the authors of
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this work propose an extended formulation that incorporates both geomet-
ric and physicochemical properties. In contrast to approaches that rely on
pharmacophoric points [21]—which serve only as indirect representations of
key ligand-protein interactions [22]—this method preserves a stronger depen-
dence on the ligand’s full structure.

Building upon the geometric Hamiltonian formulation proposed in [1],
this new research extends the model by introducing physicochemical interac-
tion terms such as Coulomb and van der Waals. These terms aim to enhance
the biological realism of the docking formulation and are later embedded into
a QUBO Hamiltonian.

To incorporate such interactions, the protein is no longer treated solely as
a static surface defining the pocket. Instead, its atomic structure is used to
compute the influence each protein atom exerts on the surrounding 3D space.
These effects are precomputed and encoded in the weights of the spatial grid
Ggrid.

• Coulomb Interaction: The electrostatic potential generated by the pro-
tein is modeled as a sum over Coulomb potentials. For a given point
j ∈ Ggrid, the potential is computed as:

Vj =
1

4πε

∑
k

qk
rjk

,

where qk is the charge of protein atom k, rjk is its distance from point
j, and ε is the dielectric constant. This scalar potential is used to as-
sign an electrostatic weight to each grid node j, while ligand atoms are
annotated with their corresponding charges. The electrostatic contri-
bution of each atom–grid mapping is then simply the product of these
quantities.

• van der Waals Interaction: The van der Waals contribution is modeled
using the Lennard-Jones potential:

U ik
LJ =

∑
k

εik

[(
Rmin,ik

rik

)12

− 2

(
Rmin,ik

rik

)6
]
,
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where rik is the distance between atoms i (ligand) and k (protein), εik
the well depth, and Rmin,ik the distance at which the potential reaches
its minimum. The mixing parameters are calculated using the Lorentz-
Berthelot rules: εik =

√
εiiεkk and Rmin,ik =

1
2
(Rmin,ii +Rmin,kk).

Given that the number of atom types is finite the authors precompute,
for each grid point j, a vector U j,α

LJ that stores the potential energy
values for all atom types α. Ligand atoms are then associated with a
one-hot vector wα

i to select the corresponding van der Waals energy via
a scalar product with the precomputed grid vector.

Collectively, these features define the weighted graphs used in the model.
For the ligand:

Gmol = {Nmol, Emol,W
N
mol,W

E
mol},

where WN
mol includes charge wq

i , van der Waals type vector wα
i , and WE

mol

stores bond distances.
For the pocket:

Ggrid = {Ngrid, Egrid,W
N
grid,W

E
grid},

where node weights WN
grid encode precomputed Coulomb wq

j , van der Waals
wvdw

j,α , , while edge weights WE
grid represent spatial distances.

This enriched representation enables the formulation of an interaction-
aware QUBO objective function that incorporates geometric compatibility
along with biologically relevant interaction terms.

To incorporate physicochemical interactions into the optimization frame-
work, additional terms are introduced into the geometric Hamiltonian of [1],
among which is the interaction term investigated in this thesis. Each contri-
bution is weighted and encoded using precomputed atom-level or grid-level
descriptors.

The electrostatic interaction between a ligand atom i and a pocket point
j is modeled as:

Hel =
∑

i∈Gmol

∑
j∈Ggrid

wq
i w

el
j x

2
ij,
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where wq
i is the atomic charge of ligand atom i and wel

j is the Coulomb
potential at grid node j.

The van der Waals contribution is computed using the scalar product
between the ligand’s atom-type vector wα

i and the Lennard-Jones potential
vector at the grid node:

Hvdw =
∑

i∈Gmol

∑
j∈Ggrid

wα
i · wvdw

j x2ij.

Combining all contributions, the full Hamiltonian becomes:

H = Hgeom +HPh-Ch = λ1Hgeom + λ2Hel + λ3Hvdw + λ4Hπ, (2.1)

where λ1, . . . , λ4 are tunable parameters controlling the influence of each
physicochemical term during the annealing process and Hπ is the interaction
term that models π−stacking interactions, which represents the core focus
of this work.
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2.2 Theoretical Nature of the π-Stacking Inter-

action

π-Stacking interactions are a class of noncovalent interactions occurring
between aromatic systems, such as benzene rings, polycyclic aromatic hydro-
carbons, and aromatic residues in biomolecules. The term π-stacking derives
its name from the involvement of π electrons - those occupying delocalized
molecular orbitals perpendicular to the plane of the aromatic ring. When
two such systems are brought into proximity, favorable interactions between
these π electron clouds can occur, leading to stacked arrangements that are
energetically stabilized. These interactions play a fundamental role in a wide
range of phenomena, including molecular recognition, protein folding, DNA
stability, and the self-assembly of supramolecular structures. Although ini-
tially explained through purely electrostatic models, our understanding of π-
stacking has evolved considerably, owing to the development of more refined
quantum chemical approaches and a better grasp of the interplay between
attractive and repulsive forces acting at the molecular level.

2.2.1 Phenomenological Description and Energy Com-

ponents

From a geometrical standpoint, π-stacking interactions commonly occur
in three principal configurations, particularly well exemplified by the benzene
dimer, as shown in Figure 2.1. These can be examined along a parallel-
displacement or “sliding” coordinate, either in a parallel or a perpendicular
orientation between the monomers.

• Parallel-displaced (or slip-stacked), where the two aromatic rings are
oriented in a roughly parallel fashion, but laterally offset. This ge-
ometry allows for significant surface contact while avoiding direct su-
perposition of the electron clouds. The typical interplanar distance in
this arrangement is approximately 3.4/3.5 Å while the displacement is
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Figure 2.1: The three most common geometries of the benzene dimer: (a)
T-shaped, (b) sandwich (cofacial) configuration , and (c) parallel-displaced.
Image adapted from [23].

usually 1.7 Å, corresponding to a local energy minimum.

• T-shaped, where one ring lies approximately perpendicular to the plane
of the other, forming a "T" configuration. The hydrogen atoms of one
ring often point toward the center of the π-cloud of the other, leading
to a favorable spatial arrangement. In this case, the center of one
monomer is typically located about 5.0 Å from the plane containing
the other ring.

• Sandwich (cofacial), where the two rings are aligned face-to-face with
minimal offset. Despite maximizing the overlap between π-systems,
this configuration is relatively rare due to strong short-range repulsion.
It corresponds to a saddle point with an interplanar distance of about
3.8 Å.

Each of these configurations is stabilized or destabilized by a combination
of physical forces. Although these forces will be discussed in greater detail
in later sections, we introduce them briefly here to define their fundamental
nature:

• Electrostatic interactions, arising from the distribution of static or in-
duced charges within molecules. Aromatic rings, such as benzene, pos-
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sess quadrupole moments resulting from the anisotropic distribution of
π-electrons.

• London dispersion forces, a form of van der Waals interaction, result
from transient fluctuations in electron density that create instantaneous
dipoles.

• Pauli (exchange) repulsion, a short-range quantum mechanical repul-
sion that occurs when the electron clouds of closed-shell systems over-
lap, due to the Pauli exclusion principle.

• Induction effects, involving the polarization of the electron cloud of one
molecule in response to the electrostatic field of another, generating a
stabilizing interaction. This contribution becomes more significant in
polar or heteroaromatic systems.

These energy terms do not act independently but in concert, generating
a complex potential energy surface that governs the preferred geometry and
stability of the interacting dimers.

2.2.2 Electrostatic Model and the Hunter–Sanders

Framework

One of the most influential early models for describing π-stacking in-
teractions is the electrostatic framework introduced by Hunter and Sanders
[24]. This model attributes the preferred geometries of aromatic dimers to
quadrupole–quadrupole electrostatics. In particular, it views benzene and
similar aromatic systems as possessing a positively charged σ-framework
sandwiched between two negatively charged π-clouds. Within this picture,
electrostatic repulsion between the delocalized π-electrons of two cofacial
rings renders the face-to-face arrangement unfavorable. Instead, offset ge-
ometries such as the parallel-displaced and T-shaped conformations emerge
as means to minimize repulsive interactions.
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The Hunter–Sanders model was introduced as an improvement over ear-
lier, less satisfactory explanations. The solvophobic model [25], for instance,
suggested that stacking is driven by entropic effects in solution; however, this
theory fails to account for experimental observations in nonpolar solvents and
often predicts maximal π–π overlap, which is not consistent with observed
geometries. Another hypothesis, the electron donor–acceptor (EDA) model
[26], links stacking to charge-transfer interactions. Yet this mechanism is
only applicable to specific heterodimers and does not generalize to neutral
aromatic systems like the benzene dimer. Similarly, the atomic charge model
[27], based on partial atomic charges, fails to reproduce correct interaction
energies and often underestimates binding by an order of magnitude.

By contrast, the Hunter–Sanders electrostatic model provides an intuitive
and computationally simple way to rationalize geometrical preferences. In
their formulation, the total interaction energy is decomposed into an electro-
static term and an attractive van der Waals (vdW) component, with induc-
tion considered negligible. The vdW term is not geometry-selective and does
not explain why offset geometries are favored. Electrostatics, in this model,
dominate the directional behavior of the interaction.

Subsequent studies, such as that by Swart et al. [28], have supported the
importance of electrostatic interactions in π-stacking. Using a detailed en-
ergy decomposition analysis, these authors confirmed that quadrupolar elec-
trostatics play a critical role in stabilizing the observed geometries, alongside
Pauli repulsion and bonding orbital interactions. The Hunter–Sanders model
remains a cornerstone of supramolecular chemistry, frequently cited for its
conceptual clarity and predictive value.

2.2.3 Recent Developments and the Limitations of the

Electrostatic Paradigm

Despite its success, the Hunter–Sanders model has faced increasing scrutiny
from high-level quantum chemical studies. In particular, recent work by
Carter-Fenk and Herbert [29] challenges the notion that electrostatics alone
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dictate the slip-stacked arrangement of aromatic dimers. Their findings re-
veal that classical quadrupole-based models may misrepresent the true phys-
ical driving forces behind π-stacking, especially at the short intermolecular
distances typical of these interactions.

Using ab initio methods that include charge penetration effects and ac-
curate electron correlation, the authors show that electrostatics can in fact
be attractive in cofacial geometries—contradicting the predictions of the
Hunter–Sanders model. Moreover, studies on substituted dimers, such as
C6H6/C6F6, demonstrate that both electron-withdrawing and electron - do-
nating groups tend to increase interaction strength, regardless of their effect
on quadrupole moments. This observation is incompatible with a model
based solely on electrostatic potential maps.

These inconsistencies have led to a revised interpretation: the primary
forces controlling π–π geometries are not electrostatics and dispersion, but
rather the competition between London dispersion and Pauli repulsion. In
this view, offset geometries such as the slip-stacked configuration emerge not
to minimize quadrupolar repulsion, but to balance the attractive dispersion
with the repulsive exchange forces that dominate at close contact. A simple
van der Waals potential model, grounded in this idea, aligns closely with
computational data and offers a more universal explanation for aromatic
stacking behavior.

This vdW-based perspective explains why parallel-displaced configura-
tions are consistently favored across systems with vastly different electro-
static profiles. It also accounts for the observation that electrostatics play
only a minor role at close range, where charge densities overlap significantly.
Consequently, the modern understanding of π-stacking places greater em-
phasis on quantum mechanical effects like electron correlation and exchange
repulsion, challenging classical electrostatic frameworks.
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2.3 Computational Chemistry: An Overview

Computational chemistry is a discipline that employs theoretical models
and numerical algorithms to address chemical problems through computer-
based simulations. It enables the prediction of molecular properties, elec-
tronic structures, chemical reactivity, and intermolecular interactions, thereby
reducing the reliance on laboratory experiments, which are often costly or dif-
ficult to perform. By integrating concepts from quantum mechanics, molecu-
lar mechanics, and statistical dynamics, computational chemistry represents
a multidisciplinary field at the intersection of chemistry, physics, and com-
puter science.

In recent decades, advances in theoretical methods and the continuous
growth in computational power have significantly expanded the scope of
computational chemistry. It is now possible to simulate complex systems,
including crystalline materials, biomolecules, catalysts, and molecular sys-
tems in both gas and condensed phases. Computational results often show
good agreement with experimental data, making this discipline an essential
tool in both academic research and industrial innovation.

To investigate the electronic structure and properties of molecular sys-
tems, a wide range of computational methods has been developed. Among
these, two main families dominate the landscape of quantum chemistry:
ab initio methods [30] and Density Functional Theory (DFT) [31]. These
approaches differ in their theoretical foundations, computational cost, and
range of applicability, yet both play a central role in modern computational
investigations.

2.3.1 Density Functional Theory

Density Functional Theory (DFT) [31] is one of the most widely used
theoretical framework in computational quantum chemistry and condensed
matter physics for studying the electronic structure of many-body systems.
Its central concept is to describe the properties of an interacting electron sys-
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tem in terms of its total electron density ρ(r), rather than the more complex
many-electron wavefunction. This reformulation dramatically reduces com-
putational complexity, as the electron density depends only on three spatial
coordinates, regardless of the number of electrons in the system.

The theoretical foundation of DFT is provided by the two Hohenberg-
Kohn theorems [32], formulated in 1964. The first theorem establishes that
the ground-state properties of a many-electron system are uniquely deter-
mined by its ground-state electron density, implying that all observables,
including the total energy, can be expressed as functionals of the density.
The second theorem introduces a variational principle, stating that the cor-
rect ground-state electron density minimizes the total energy functional.

However, the exact form of the functional that maps the electron den-
sity to the total energy remains unknown, particularly for the exchange-
correlation component, which encapsulates all many-body quantum effects
beyond classical electrostatics and the non-interacting kinetic energy.

To make DFT practically solvable, the Kohn-Sham [33] formalism in-
troduces a fictitious system of non-interacting electrons that reproduces the
exact ground-state density of the original interacting system. This leads to
the Kohn-Sham equations, a set of single-particle Schrödinger-like equations
that are solved iteratively within a self-consistent field (SCF) procedure.

The Kohn-Sham Equations

The Kohn-Sham (KS) equations are a cornerstone of modern computa-
tional chemistry, providing a practical and efficient way to apply DFT to
many-electron systems. Introduced by W. Kohn and L. J. Sham in 1965 [33],
this approach replaces the complex, interacting N -electron problem with an
equivalent system of N non-interacting electrons moving in an effective po-
tential.

In this formulation, the total energy of the system is expressed as a func-
tional of the electron density ρ(r), incorporating contributions from the ki-
netic energy of the non-interacting system, the classical Coulomb (Hartree)
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interaction, the external potential (typically due to nuclei), and the exchange-
correlation energy:

E[ρ] = Ts[ρ] + Eext[ρ] + EH[ρ] + Exc[ρ], (2.2)

where Ts[ρ] is the kinetic energy of the non-interacting system, Eext[ρ] is the
interaction with the external potential, EH[ρ] is the classical electron-electron
repulsion, and Exc[ρ] accounts for exchange and correlation effects.

The Kohn-Sham equations are derived by minimizing this total energy
functional under the constraint that the electron density integrates to the
correct number of electrons. This leads to the following set of equations:[

−1

2
∇2 + Veff(r)

]
ψi(r) = ϵiψi(r), (2.3)

where ψi(r) are the Kohn-Sham orbitals, ϵi are the corresponding orbital
energies, and Veff(r) is the effective potential, defined as:

Veff(r) = Vext(r) + VH(r) + Vxc(r), (2.4)

with Vext(r) representing the external potential, VH(r) the Hartree poten-
tial, and Vxc(r) the exchange-correlation potential, obtained as the functional
derivative of the exchange-correlation energy:

Vxc(r) =
δExc[ρ]

δρ(r)
. (2.5)

Despite the approximations involved in modeling the exchange-correlation
energy, the Kohn-Sham equations, when combined with suitable functionals,
have proven highly effective in accurately describing the ground-state prop-
erties of atoms, molecules, and solids at a reasonable computational cost.

2.3.2 Ab Initio Methods

Ab initio methods [30] constitute a class of quantum chemical approaches
that aim to solve the electronic Schrödinger equation starting solely from
first principles, without the use of empirical parameters. These methods
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provide systematically improvable approximations to the electronic structure
of molecular systems and are particularly valued for their ability to offer
detailed insights into the nature of electronic interactions.

In the context of this work, special attention is given to two distinct yet
complementary ab initio approaches: the Hartree-Fock (HF) method [34]
[35], introduced in Section 2.3.2, and Symmetry-Adapted Perturbation The-
ory (SAPT) [36], introduced in Section 2.3.2, including its extended variant
XSAPT. The Hartree-Fock method serves as the foundation for many post-
Hartree-Fock techniques and provides reference wavefunctions for perturba-
tive treatments. SAPT-based methods, by contrast, are specifically designed
to compute intermolecular interaction energies and offer a physically mean-
ingful decomposition of these interactions into distinct components such as
electrostatics, exchange, induction, and dispersion.

The following sections present the theoretical foundations and practical
aspects of both Hartree-Fock and SAPT-based approaches, emphasizing their
respective roles in the accurate modeling of non-covalent interactions.

Hartree-Fock

The Hartree-Fock (HF) [34] [35] method is one of the most fundamental
and widely used ab initio approaches in quantum chemistry for determining
the electronic structure of atoms, molecules, and solids. Developed by D.
R. Hartree and later refined by V. Fock, the method provides an approxi-
mate solution to the many-electron Schrödinger equation using a mean-field
approach.

In Hartree–Fock theory, the total wavefunction of a molecular system
is approximated by a single Slater determinant [37], representing the state
of a non-interacting electronic system. This approximation is obtained by
applying the variational principle to minimize the system’s total energy. This
procedure minimizes the total electronic energy with respect to the orbitals,
subject to the constraint that they remain orthonormal. The resulting set
of eigenvalue equations, known as the Hartree-Fock equations, describes how
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each electron moves in the average field generated by all other electrons:

HHFψi(r) = ϵiψi(r), (2.6)

where HHF is the Hartree-Fock Hamiltonian, ψi(r) is the i-th molecular or-
bital, and ϵi is its associated energy.

The Hartree-Fock Hamiltonian includes both the one-electron Hamilto-
nian - accounting for kinetic energy and electron-nucleus attraction - and a
mean-field representation of the electron-electron repulsion, captured by the
Coulomb and exchange terms. Notably, the Hartree-Fock method does not
include dynamic electron correlation effects, making it a mean-field approxi-
mation.

The solution of the Hartree-Fock equations is obtained through a self-
consistent field (SCF) procedure, where an initial guess for the molecular
orbitals is iteratively refined until convergence is achieved.

Despite its limitations, especially regarding the neglect of electron corre-
lation, the Hartree-Fock method remains a cornerstone of electronic structure
theory. It serves as the reference point for more advanced post-Hartree-Fock
methods such as Møller-Plesset perturbation theory (MP2), Configuration
Interaction (CI), Coupled Cluster (CC), and perturbative approaches like
SAPT, which systematically improve upon the Hartree-Fock approximation
by incorporating electron correlation effects.

SAPT and XSAPT

Symmetry-Adapted Perturbation Theory (SAPT) [36] is a well-established
ab initio method specifically developed for the study of intermolecular inter-
actions. Unlike traditional supermolecular approaches, which compute in-
teraction energies as simple differences between total energies of monomers
and complexes, SAPT provides a physically meaningful decomposition of the
interaction energy into distinct components. This decomposition offers valu-
able insights into the nature of non-covalent interactions such as π-stacking,
hydrogen bonding, and van der Waals forces.
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The total SAPT interaction energy up to second order can be expressed
as:

Eint = E
(1)
elst + E

(1)
exch + E

(2)
ind + E

(2)
exch-ind + E

(2)
disp + E

(2)
exch-disp, (2.7)

where the terms correspond to:

• E
(1)
elst: First-order electrostatics, arising from interactions between charge

distributions of the isolated fragments;

• E
(1)
exch: First-order exchange, representing Pauli repulsion due to anti-

symmetrization of the wavefunction;

• E
(2)
ind: Second-order induction, accounting for the polarization of one

fragment induced by the other;

• E
(2)
exch-ind: Exchange correction to the induction energy;

• E
(2)
disp: Second-order dispersion, resulting from correlated electronic fluc-

tuations between fragments;

• E
(2)
exch-disp: Exchange correction to the dispersion energy.

To improve both the accuracy and scalability of SAPT for larger systems,
the Extended SAPT (XSAPT) method has been developed. XSAPT intro-
duces several key modifications while retaining the physically transparent
decomposition of the interaction energy. One major improvement lies in the
treatment of induction: XSAPT employs an electrostatic embedding scheme,
allowing each fragment to polarize in the presence of the static electric field
generated by the surrounding fragments. This more realistic description of
the molecular environment enhances the accuracy of induction energy calcu-
lations, particularly in large and complex systems.

Another important feature of XSAPT is the optional incorporation of
many-body dispersion effects via the MBD (Many-Body Dispersion) model.
In the XSAPT+MBD framework, the standard SAPT dispersion term is
replaced by the MBD contribution:

Edisp = EMBD, (2.8)
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providing a more accurate description of long-range non-local dispersion in-
teractions.

The calculation of the XSAPT interaction energy typically requires at
least two distinct computational steps. The first is a conventional second-
order SAPT calculation on the entire system without charge embedding,
yielding the electrostatic, exchange, and (if MBD is not used) dispersion
terms. The second step involves performing SAPT calculations with charge
embedding for each monomer pair, allowing the induction energy to be cor-
rected for the influence of the surrounding environment.

The final induction energy in XSAPT is obtained by summing the original
SAPT induction term and the difference between the total SAPT energies
with and without embedding:

Eind = E
(2)
ind + E

(2)
exch-ind + δEHF, (2.9)

where δEHF, known as the δHF correction, is evaluated through a Hartree-
Fock calculation on the dimer. This term estimates induction effects be-
yond second order in perturbation theory and is particularly important when
strong polarization effects are present.

The overall XSAPT energy, especially when combined with the MBD
correction, provides a computationally efficient yet physically detailed de-
scription of intermolecular interactions. By allowing for environmental po-
larization and many-body dispersion, XSAPT extends the applicability of
SAPT to larger molecular systems, such as molecular clusters and biomolec-
ular complexes, while preserving the desirable feature of energy decompo-
sition into physically interpretable components. For a more comprehensive
overview of the theoretical background underlying the SAPT method, the
reader is referred to reference [36].





Chapter 3

High-Performance Computing

Simulations for QUBO Model

Development

To quantify the intensity of the π-stacking interaction, we conducted an
extensive set of ab initio computational chemistry simulations, leveraging
the resources of the Leonardo supercomputer (1.2). We chose to pursue
this research direction because, to the best of our knowledge, a systematic
analysis of π-stacking energy as a function of the relative positions of the
two molecules had not yet been performed. In particular, no explicit formula
exists in the literature that allows one to determine the interaction energy
directly from the geometric configuration of the involved molecules.

For this reason, it was necessary to rely on numerical simulations in com-
putational chemistry in order to obtain a quantitative characterization of the
phenomenon. These simulations allowed us to analyse in detail how varia-
tions in position and orientation of the molecules influence the interaction
energy, thus providing a solid empirical basis for defining the energetic con-
tribution associated with the π-stacking interaction.

Our analysis initially followed the work of Carter et al. [29]. Subsequently,
we referred to a more recent publication by the same authors [23], which

45
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offered a robust starting point for the simulations carried out in this study.

These works are considered authoritative references in the study of π-
stacking interactions between aromatic rings and were thus deemed an ideal
starting point for validating our computational approach. Our initial ob-
jective was to accurately reproduce the interaction energies reported in the
article using the same molecular setup. Specifically, our aim was to replicate
the results related to the interaction energy between two benzene molecules
in the parallel-displaced configuration, with an interplanar vertical distance
of 3.4 Å and a variable displacement in the interval [−2.9, 2.9]. Obtaining
results consistent with those published allowed us to validate the setup of our
simulations from both a theoretical and numerical perspective, ensuring that
the model was capable of correctly capturing the physical characteristics of
the phenomenon.

Only after completing this validation phase, we extended the study to
geometric configurations different from those analysed in [23], exploring new
orientations and distances between the molecules with the goal of charac-
terizing the interaction energy more comprehensively as a function of their
relative spatial arrangement.

For our initial simulations, we first chose to use the software package
Quantum ESPRESSO [38], which is one of the most widespread an reli-
able code for DFT, as it allows for results to be obtained relatively quickly
and with limited use of computational resources. We considered the use of
Quantum ESPRESSO appropriate in the preliminary phase, since density
functional theory based methods generally provide a good approximation of
the results achieved with more accurate, but also more expensive, ab initio
techniques.

However, the results obtained using Quantum ESPRESSO turned out to
be inconsistent with both those reported in [23] and the values theoretically
expected based on the literature. This highlighted the need to adopt a more
sophisticated approach, capable of treating non-covalent interactions with
greater accuracy.
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3.1 QE Simulations

Quantum ESPRESSO is an integrated suite of open-source codes for mod-
eling materials from the perspective of density functional theory (DFT),
introduced in Section 2.3.1. It is widely used to study crystalline materi-
als, surfaces, structural defects, phonon vibrations, and many other physical
properties.

An input file for Quantum ESPRESSO consists of a series of structured
sections, each defining physical parameters, computational settings, and data
related to the system to be simulated. The syntax is simple and block-based,
with each block preceded by the symbol & (e.g., &CONTROL, &SYSTEM, ...) and
terminated by a slash /.

3.1.1 Code Settings

For each simulations, we selected the following parameters:

• calculation = ’scf’, as we intended to perform a self-consistent field
(SCF) calculation, which determines the electronic ground-state den-
sity that satisfies the Kohn–Sham equations:

F̂ [ρ]φi = εi φi, (3.1)

where F̂ [ρ] is the Kohn–Sham operator (dependent on the electronic
density ρ), {φi} are the Kohn–Sham orbitals, and εi the corresponding
eigenvalues. The electronic density ρ is iteratively updated until self-
consistency is reached, i.e., until the input and output densities match
within a predefined tolerance threshold.

• Pseudopotentials: we used norm-conserving pseudopotentials because,
in quantum mechanical calculations, electronic wavefunctions exhibit
strong oscillations near the nucleus, where core electrons reside. Accu-
rately describing these oscillations requires very large and dense basis
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sets, significantly increasing computational cost. To overcome this dif-
ficulty, pseudopotentials are used to replace the full Coulomb potential
with a smoother effective potential that only acts on valence electrons.

Norm-conserving pseudopotentials are a specific class designed to pre-
serve the norm of the wavefunction near the nucleus. This means
the electronic charge density in that region is the same for both the
all-electron and the pseudized wavefunction. This condition ensures
accurate reproduction of physical properties such as energy, forces, and
charge distribution.

The main advantage of norm-conserving potentials lies in their physical
reliability and transferability: they can be used across different chemi-
cal environments without modification. However, they typically require
relatively high kinetic energy cutoffs (ecutwfc) to achieve numerical
convergence, making the calculations still computationally demanding.

• ibrav = 0 and CELL_PARAMETERS=[15.0 0.0 ...] were used because
the system consists of two isolated benzene molecules without any pe-
riodic crystalline structure. Quantum ESPRESSO inherently performs
calculations with periodic boundary conditions (PBC) in all directions.
Even in simulations of isolated molecules, a simulation cell must be
defined, and it is assumed to repeat periodically.

By setting ibrav = 0, we discard the use of predefined cell types (cu-
bic, triclinic, hexagonal, etc.) and manually specify the three cell vec-
tors in the CELL_PARAMETERS section. This allows us to construct an
arbitrary simulation cell, large enough to minimize spurious interac-
tions between periodic images of the molecules.

This choice is essential for non-periodic systems to avoid artifacts due to
image-image interactions. A cell that is too small would cause overlap
between replicated images and introduce significant errors in energy
and electron density calculations.

• vdw_corr is used to account for van der Waals interactions. We tested
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both ‘grimme-d3’ and ‘MBD’ corrections. ‘grimme-d3’ applies an
empirical damping correction with negligible computational cost and
pre-calibrated parameters.
‘MBD’ uses a many-body model of coupled harmonic oscillators with
density-based electronic screening, including higher-order contributions.
Grimme-D3 is ideal for fast simulations on isolated molecules, while
MBD offers greater accuracy for extended systems at higher compu-
tational cost. We used both schemes, and the results obtained are
reported in the next section.

• ecutwfc=110 Ry sets the kinetic energy cutoff for the plane-wave basis
of the electronic wavefunctions, ensuring convergence. ecutrho=880

sets the cutoff for the charge density and exchange-correlation po-
tentials. Typically, ecutrho is set at ≈ 8 × ecutwfc to capture high-
frequency components. These values were chosen empirically through
total energy convergence tests to balance numerical accuracy and com-
putational cost.

• conv_thr = 1.0d-8 sets the SCF convergence threshold to 10−8 Ry,
ensuring sufficiently high energy accuracy.

• K_POINTS: Sets the grid for the calculation. For isolated molecules, a
single-point grid 1 1 1 0 0 0 is used.

3.1.2 Comparison Between Obtained and Expected Re-

sults

Below, we report the results obtained from simulations performed using
the Quantum ESPRESSO software, concerning the parallel-displaced config-
uration between two benzene molecules. Specifically, the vertical distance
between the molecular planes is fixed at 3.4 Å, while the horizontal displace-
ment varies within the interval [−2.9, 2.9] Å.
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Figure 3.1: Comparison between results from Quantum ESPRESSO simula-
tions (red) and data from [23] (blue), related to π-stacking interaction in the
parallel-displaced configuration.

In Figure 3.1, we compare the interaction energy values reported in [23]
(in blue) with those obtained from our simulations (in red).

As observed, the curve obtained from our simulations is slightly shifted
downward compared to the one reported in the literature. Moreover, the
positions of minima and maxima do not align perfectly, and the tails of our
curve show a gentler slope than those of the reference curve.

In Figure 3.2, we instead report the interaction energy values obtained
using the vdw_corr = ‘MBD’ parameter within the interval [−1.6, 1.6] Å. We
observe that with this correction, the maximum of the curve coincides with
the reference, but the energy values at the minima are not consistent with
theoretical expectations or with those reported by [23].

As evidenced by the results shown above, the energy values obtained from
the Quantum ESPRESSO simulations do not reproduce the data reported
in [23] with sufficient accuracy. In particular, significant discrepancies are
observed in the position and magnitude of the interaction energy minima
and maxima, which play a central role in our analysis, as they define the
most stable and relevant spatial configurations for modeling purposes.
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Figure 3.2: Comparison between results from MBD-corrected simulations
(red) and data from [23] (blue).

For this reason, we decided to perform a second study of the interaction
energy using the Q-Chem software, with the aim of obtaining a more reliable
estimate of the energetic values and verifying the consistency of the results
with those reported in the literature.

3.2 Q-Chem Simulations

Q-Chem is one of the most advanced commercial software packages for
quantum chemistry, particularly suited for studying the electronic structure
of molecules in the gas phase, liquid phase, or in solution. Compared to
Quantum ESPRESSO, Q-Chem is more focused on isolated molecular sys-
tems and small organic molecules, although it is also capable of treating
larger systems using approximate methods. Q-Chem includes a wide range
of computational techniques, from DFT to post-Hartree-Fock methods (such
as MP2, CCSD, EOM-CC), as well as advanced tools for studying excited
states, electronic transitions, and non-covalent interactions.

Specifically, to compute the π-stacking interaction energy between two
benzene rings, Ref.[23] uses a method known as XSAPT+MBD, introduced
in Section 2.3.2.
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3.2.1 Code Settings

The input file for running an XSAPT calculation is organized into three
main sections: $rem, $xpol, and $sapt. The $rem section includes the gen-
eral calculation parameters, such as job type, functional, basis set, and con-
vergence criteria. The $xpol section specifies the treatment of fragment
polarization, while $sapt defines the settings for energy decomposition ac-
cording to SAPT theory. For jobs with and without embedding, an addi-
tional $lrc_omega section sets the value of ω used in the range-separated
functional.

The key parameters used in the SAPT job with embedding are:

• jobtype xsapt: specifies that an XSAPT analysis is to be performed.

• method lrc-wpbe: sets the density functional to LRC-ωPBE, suitable
for treating non-local interactions.

• basis def2-tzvpd: selects the def2-TZVPD basis set, which includes
diffuse and polarization functions.

• lrc_dft true: enables the use of a range-separated functional in the
DFT context.

• scf_guess autosad: uses the AutoSAD method for the initial SCF
guess, which is robust for multi-fragment systems.

In the $xpol section, the parameter embed charges activates electro-
static embedding, meaning fragments are polarized by the field generated by
the charges of other fragments. The option dft-lrc indicates that polariza-
tion is calculated using the range-separated functional specified in $rem.

In the $sapt section, the SAPT calculation is performed using the atomic
orbital formalism (algorithm ao) and limited to second-order perturba-
tion theory (order 2). A projected basis is used for decomposition (basis
projected), and dispersion is treated via the MBD (Many-Body Dispersion)
correction, which improves the description of non-local interactions.
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Finally, the $lrc_omega section sets the value ω = 0.34 bohr−1, obtained
using the global density-dependent (GDD) tuning procedure.

In the SAPT job without embedding, the main difference lies in the treat-
ment of electrostatic embedding in the $xpol section, where embed none

is specified. This implies that no electrostatic embedding is applied dur-
ing the polarization calculation of the fragments, unlike the previous job
where embed charges was used. As a result, the induction energy does
not account for the field generated by charges of the other fragments. All
other parameters—including the functional, basis set, MBD correction, and
ω value—remain unchanged.

The following job is used to compute the δHF correction to the induc-
tion energy within an extended XSAPT procedure. This calculation aims to
account for higher-order induction effects not captured by standard pertur-
bative methods. It is therefore an optional but recommended step to improve
the accuracy of the π-stacking interaction in critical configurations. For this
job, the parameters in the $rem section are:

• jobtype xsapt: specifies that this is an XSAPT job, although in this
case it is used solely to obtain the δHF correction;

• method HF: sets Hartree-Fock theory for computing the total electronic
energy;

• basis 6-311G: specifies the basis set, which is simpler than those used
previously, since the δHF calculation does not require an extended basis
to yield qualitatively correct results;

In the $xpol section, electrostatic embedding is disabled (embed none),
as the δHF correction is computed without accounting for polarization induced
by external fragments.

The $sapt section activates the actual δHF computation. Key directives
include:



54 HPC SIMULATIONS

• cphf: enables solving the Coupled Perturbed Hartree-Fock (CPHF)
response equations;

• dscf: activates the explicit calculation of the difference between the
full SCF energy of the dimer and the sum of the SCF energies of the
monomers, which constitutes the δHF correction;

• algorithm ao, order 2, basis dimer: specify that SAPT is carried
out in atomic orbital representation, up to second order, using a basis
centered on the dimer;

• Dispersion MBD: although this term does not directly affect δHF, it is
still treated using the Many-Body Dispersion model.

Overall, this job provides the δHF contribution, which is added to the
induction energy obtained from the standard XSAPT jobs, thus improving
the overall accuracy of the interaction energy.

Finally, we used the xsapt_data_collection.py script to extract the
relevant interaction energies (see [39]).

3.3 Simulation Results

In this section, we present the results obtained from the simulations car-
ried out using the Q-Chem software. The code used for the calculations was
kindly provided by the authors of [23], which allowed us to exactly reproduce
the energy results reported in the reference article.

It is important to note that the atomic coordinates of the benzene frag-
ments used in the simulations, including carbon and hydrogen atoms, were
provided directly by the authors of [23]. All details regarding the geometric
optimization of the monomers are available in the supplementary material
attached to the article. Starting from these optimized geometries, we intro-
duced controlled modifications to the relative positions of the two molecules
in order to explore a wide range of spatial configurations and to analyze in
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Figure 3.3: Interaction energy as a function of lateral displacement and ver-
tical separation

greater detail the dependence of the π-stacking interaction on the distance
and mutual orientation of the fragments.

3.3.1 parallel-displaced: translations

In this section, we present only the results obtained by translating the
two molecules with optimized geometry. In particular, the translations were
performed by shifting the center of one benzene fragment—and consequently
all its atoms—via a rigid displacement, while keeping the other fixed. As
a first step, we report the interaction energy values as a function of the
vertical distance between the planes containing the two benzene molecules
and the horizontal displacement between them. In Figure 3.3, x denotes the
displacement (i.e., the horizontal distance between the centers of the two
parallel molecules), and z is the vertical distance between the planes of the
aromatic rings.

The first observation that emerges from the analysis of the plot is the
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perfect symmetry with respect to zero for the horizontal displacement. This
behavior was expected, as it reflects the intrinsic symmetry of the system
composed of two identical benzene molecules.

Moreover, it can be seen that for vertical distance values z less than 3.4 Å,
the interaction energy increases very rapidly for small displacement values,
indicating a strong sensitivity of the interaction to lateral displacement in
the short-range regime. It is also observed that, regardless of the vertical
distance z, the region of space corresponding to displacement values around
1.7 Å represents a minimum zone for the interaction energy. This indicates
that such a lateral configuration is energetically favorable across the entire
range of distances considered. Additionally, for large values of vertical dis-
tance z, the energy surface progressively flattens out, with the interaction
energy gradually approaching zero. This behavior reflects the progressive
cancellation of the π-stacking interaction, which becomes negligible as the
distance between the molecular planes increases. In such configurations, the
overlap of electronic densities and non-covalent interactions are significantly
weakened, eventually disappearing beyond a certain threshold.

To ensure better readability of the plot, in Figure 3.4 we have removed
from the visualization the energy values for z = 3 Å and z = 3.1 Å, which
exhibit very high “peaks” that flatten the scale of the entire graph.

We then extended the simulations by also including translations of the
molecule along the axis orthogonal to the displacement axis, which for consis-
tency we denote by the letter y. This direction, distinct from the horizontal
displacement, allows us to explore additional configurations. In particular,
we chose to focus the new simulations on configurations characterized by
displacement values between 1.0 and 2.9 Å and vertical distances z between
3.2 and 4.0 Å. Configurations outside these intervals were excluded from the
analysis, as they are associated with interaction energies too weak to support
a stable π-stacking interaction. We chose to perform the new simulations by
considering y values between 0 and 1.6 Å. This interval was chosen empiri-
cally, in line with what was previously noted.
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Figure 3.4: Interaction energy as a function of lateral displacement with
vertical separation ≥ 3
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We observed a strong correlation between energy, vertical distance, and
planar radial distance, defined as√

x2 + y2, (3.2)

i.e., the distance between the centers of the two molecules in the plane parallel
to their aromatic rings.

In Figure 3.5 we show the plot representing the interaction energy as
a function of the planar radial distance and the vertical distance between
the molecular planes. In particular, this graph displays all values collected
from the simulations. From the plot, it can be observed that in cases where
the planar radial distance does not depend solely on the displacement along
the x-axis, but also involves translations along the y-axis (i.e., for x values
greater than 1), the points appear slightly scattered compared to the main
curve. Nevertheless, the overall trend remains consistent, confirming that the
dependence of the interaction energy on the planar radial distance retains a
coherent structure.

To better display the results obtained, in Figure 3.6 (a) we consider only
values of z > 3.2, thus excluding excessively high energy values that limit
the clarity of the graphical representation. In 3.6 (b) and (c), we report
the interaction energy as a function of the planar radial distance for a fixed
vertical distance of z = 3.5 Å. Figure 3.6 (b) shows the full set of simulated
values, while 3.6 (c) represents only configurations with energy ≤ -2 kcal/mol.

As can be seen, when we closely examine the plot, we observe more scat-
tered values at the tails, while near the minimum the values are more con-
centrated. A fundamental aspect of our study concerns the definition of
an energy threshold below which the π-stacking interaction can be consid-
ered sufficiently effective to be relevant for modeling purposes. To this end,
we chose to adopt a threshold value of −2 kcal/mol. This choice is moti-
vated by the fact that, in the literature, the typical interaction energy at
equilibrium—such as in the parallel displaced arrangement of two benzene
molecules—is around −3 kcal/mol. Our simulations show that this value is
not fixed, but varies continuously with the relative position and orientation
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Figure 3.5: Interaction energy as a function of the planar radial distance and
the vertical distance

of the aromatic fragments. In other words, the interaction is not present in a
discrete manner but gradually weakens as a function of spatial translations
and rotations. For this reason, it is necessary to introduce a conventional
threshold that can consistently and rigorously distinguish spatial configura-
tions that should be considered as effectively interacting from those where the
interaction is negligible. Choosing −2 kcal/mol as the lower limit allows us
to include in the model all configurations with significant interaction, while
excluding those that, although showing a weak residual attraction, do not
contribute substantially to the stabilization of the system.

In Figure 3.7 we show the plots of interaction energy as a function of
planar radial distance and z, considering only the points with energy less
than or equal to -2 kcal/mol.

As can be seen, by restricting the analysis to a limited energy inter-
val, data dispersion becomes more evident and the overall trend deviates
more from a smooth and well-defined curve. In particular, small fluctua-
tions around the expected energy profile emerge more clearly, which were
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(a)

(b)

(c)

Figure 3.6: Interaction energy as a function of the planar radial distance
with: (a) vertical distance > 3.2 Å; (b) fixed vertical distance z = 3.5 Å; (c)
z = 3.5 Å and energy ≤ −2.
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Figure 3.7: Interaction energy as a function of planar radial distance and z,
with energy ≤ −2 kcal/mol

not immediately visible in the broader energy range.

This effect is especially pronounced for smaller vertical distance values z,
where the interaction between the fragments is more intense and sensitive
even to slight spatial variations. Moreover, the most significant deviations
are observed for displacement values greater than the minimum of each curve,
i.e., in regions where the interaction starts to weaken but is not yet entirely
negligible. This behavior suggests that, outside the energy minimum, the
dependence of the interaction energy on small changes in relative geometry
becomes more complex and less predictable.

In Figure 3.8, we report the plots of interaction energy considering only
configurations with vertical distance z ≥ 3.4 Å. As can be observed, the
energy surface in this case appears much more regular and well-defined.

For completeness, in Figure 3.9 we show the results obtained for the values
z = 3.2, 3.3, and 3.4 Å.

In these cases, we observe a much more pronounced scattering of points
and a less clear overall energy surface, especially in the final part of the curves,
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Figure 3.8: Interaction energy as a function of the planar radial distance with
vertical distance ≥ 3.4 and energy ≤ −2



3.3 Simulation Results 63

Figure 3.9: Interaction energy for z = 3.2, 3.3, and 3.4 Å.

where energy varies less regularly. This behavior is consistent with what was
previously highlighted: for smaller vertical distances, the sensitivity of the
interaction to spatial variations increases significantly, making the energy
surface more complex and less predictable.

We observe that in the equilibrium parallel-displaced configuration, the
molecules are translated along a carbon–carbon axis. Therefore, a plausible
reason for the planar radial dependence could be related to the fact that, by
shifting the molecule along the y-axis for x values smaller than the equilib-
rium value, one may approach an equilibrium position along another axis.
Indeed, in the equilibrium configuration—i.e., when the center of the second
molecule is located at (1.7, 0, 3.5)—the energy value is −2.944 kcal/mol and
the radius, introduced in equation 3.2, is, of course, equal to 1.7 Å. On the
other hand, when the center of the second molecule is located at (1.4, 1, 3.5),
the energy value is −2.942 kcal/mol and the radius is 1.720 Å.
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3.3.2 Parallel-displaced: rotations

After obtaining sufficiently representative results regarding spatial trans-
lations between the two benzene fragments, we extended the analysis to
include rotations, in order to better understand how the interaction energy
varies with the relative orientation of the molecules. This in-depth investi-
gation is essential to gaining a comprehensive view of the π-stacking phe-
nomenon, as aromatic interactions are highly sensitive not only to distance
but also to the alignment of molecular planes. As a starting point, we chose
the equilibrium configuration corresponding to the parallel-displaced arrange-
ment, characterized by a horizontal displacement of 1.7 Å, a vertical distance
z = 3.5 Å, and zero translation along the y-axis. From this geometry, we
performed rotations of the second molecule around the three main axes. In
particular, we kept fixed the molecule centered at (1.7, 0.0, 3.5) Å and ro-
tated the one centered at the origin, in order to observe how the interaction
energy varies with the orientation of the ligand’s benzene fragment relative
to the position of the protein’s molecule.

It is immediately observed that rotating the molecule within its own plane
does not significantly affect the overall interaction energy. To quantitatively
analyse this behavior, we initially studied how the energy varies with the
rotation angle around the z-axis, i.e., the axis perpendicular to the benzene
fragment’s plane. Due to the hexagonal symmetry of the benzene molecule,
we considered rotation angles between 0◦ and 30◦. It is sufficient to anal-
yse this interval, since a 60◦ rotation corresponds to perfect overlap with
the initial configuration, while larger angles are equivalent to smaller rota-
tions in the opposite direction. For instance, rotating the molecule by 40◦ is
equivalent, by symmetry, to a 20◦ rotation in the opposite direction. This
consideration allows us to reduce the configuration space to be explored,
without losing generality in the energetic description of the planar rotation
behavior. In Table 3.1 we report the interaction energy values as a function
of the in-plane rotation.

Regarding the rotations around the other two main axes, we initially
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In-plane rotation Energy

0° -2.944 kcal/mol
5° -2.943 kcal/mol
10° -2.942 kcal/mol
15° -2.940 kcal/mol
20° -2.938 kcal/mol
25° -2.937 kcal/mol
30° -2.937 kcal/mol

Table 3.1: Interaction energy as a function of the in-plane rotation

analysed the trend of the interaction energy for angles of 0◦, 30◦, and 60◦.
However, it was observed that even with a 30◦ rotation, the interaction en-
ergy decreases significantly, compromising the effectiveness of the π-stacking
interaction. For this reason, to analyse with greater precision the behav-
ior in the energetically relevant region, we restricted the study to rotations
between 0◦ and 15◦. In Table 3.2 (a) we report the results obtained for ro-
tations around the x-axis , followed by those for rotations around the y-axis
(3.2 (b)). In the latter case, the rotation lacks symmetry with respect to the
initial configuration, so the simulations were conducted for angles between
−15◦ and 15◦, with an incremental step of 5◦. Even for very small angles,
we observe that the energy decreases rapidly with respect to the interac-
tion, highlighting that the parallel component is fundamental for π-stacking
interactions. As expected, the rotations of the vertically oriented molecule
around the x and y axes cause a significant reduction in the interaction en-
ergy. This effect is attributable to the loss of optimal alignment between the
two aromatic fragments, which compromises the efficiency of the π-stacking.

In Table 3.2 (c) we report the interaction energy values corresponding to
the combined rotations around both axes.
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Table 3.2: Interaction energies for different rotations: (a) around the x-axis,
(b) around the y-axis, and (c) combined x- and y-axis rotations.

(a)

x-axis rotation Energy (kcal/mol)

0° -2.944
5° -2.892
10° -2.722
15° -2.409

(b)

y-axis rotation Energy (kcal/mol)

-15° -2.258
-10° -2.666
-5° -2.880
0° -2.944
5° -2.887
10° -2.738
15° -2.505

(c)

x-axis rotation y-axis rotation Energy (kcal/mol)

5° 5° -2.840
5° 10° -2.693
5° 15° -2.460
10° 5° -2.687
10° 10° -2.550
10° 15° -2.317
15° 5° -2.408
15° 10° -2.288
15° 15° -2.063
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Figure 3.10: Spatial representation of the T-shaped configuration used in the
simulations.

3.3.3 T-shaped: translations

We now present the results related to the interaction energy in the T-
shaped configuration. The starting point is the equilibrium configuration, in
which one benzene molecule lies on the xy-plane with its center at the origin,
while the second molecule is oriented perpendicularly to the plane, with its
center in (0, 0, 5).

Starting from this reference geometry, we translated the vertically ori-
ented molecule along the three Cartesian axes, in order to explore how the
interaction energy varies with the relative position of the two fragments. To
facilitate the understanding of the molecular orientation used in the simula-
tions, we show a graphical representation in Figure 3.10.

It is observed that the energy values associated with the T-shaped config-
uration, at the equilibrium position, are slightly more favorable than those
obtained for the parallel-displaced configuration. In particular, the minimum
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energy calculated for the parallel-displaced configuration is −2.944 kcal/mol,
whereas for the T-shaped configuration the minimum value is slightly lower,
reaching −3.101 kcal/mol. Although this difference is modest, it highlights
that the T-shaped configuration is energetically more stable in the context
of our simulations.

In Figure 3.11 (a) we show the trend of the interaction energy as a function
of the translations along the x and z-axes, while 3.11 (b) we show the plot
related to translations along y and z.

It can be seen that the interaction energy is more sensitive to translations
along the y-axis than along the x-axis, particularly for small values of the
vertical distance z. This behavior can be attributed to the geometric asym-
metry introduced by the perpendicular arrangement of the molecules, which
makes the lateral component along y more relevant for electronic overlap
between the two fragments.

As done previously for the parallel-displaced configuration, in Figure 3.12
we report the interaction energy as a function of the vertical distance z and
the planar radial distance between the centers of the two molecules. In this
representation, only energy values less than or equal to −2 kcal/mol are
considered, in order to more clearly highlight the energetically significant
configurations and avoid introducing excessive data dispersion.

3.3.4 T-shaped: rotations

In Table 3.3 we report the results related to the rotations of the vertically
oriented molecule in the T-shaped configuration. A first evident aspect is that
the total interaction energy remains practically unchanged as the rotation
angle around the z-axis varies, i.e., the vertical axis along which the upper
molecule is oriented.

The slight differences in the values obtained can likely be attributed to
numerical uncertainties inherent to the simulation process, rather than to
actual variations in the physical interaction between the molecules.

In Table 3.4 (a) we report the interaction energy values corresponding to



3.3 Simulation Results 69

(a)

(b)

Figure 3.11: Interaction energy as a function of translation along: (a) x and
z; (b) y and z.
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Figure 3.12: interaction energy as a function of the vertical distance z and
the planar radial distance, with Energy ≤ −2 kcal/mol
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z-axis rotation Energy (kcal/mol)

0° -3.101
5° -3.103
10° -3.103
15° -3.103
20° -3.102
25° -3.102
30° -3.102

Table 3.3: Interaction energy for different rotations around the z-axis

different rotations around the x-axis, while in 3.2 (b) we show the results
for rotations around the y-axis. We observe that the T-shaped configuration
is significantly less sensitive to rotations compared to the parallel-displaced
configuration. In fact, even with 15° rotations, the intensity of the interaction
does not decrease significantly, especially with respect to rotations around
the y-axis.

In Table 3.4 (c) we also report the energy values for combined rotations
around both the x- and y-axes.
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Table 3.4: Interaction energies for different rotations: (a) around the x-axis,
(b) around the y-axis, and (c) combined x–y rotations.

(a)

x-axis rotation Energy (kcal/mol)

0° -3.101
5° -3.072
10° -2.980
15° -2.827

(b)

y-axis rotation Energy (kcal/mol)

0° -3.101
5° -3.081
10° -3.025
15° -2.940

(c)

x-axis rotation y-axis rotation Energy (kcal/mol)

5° 5° -3.052
5° 10° -2.998
5° 15° -2.918
10° 5° -2.963
10° 10° -2.917
10° 15° -2.854
15° 5° -2.814
15° 10° -2.785
15° 15° -2.742
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3.4 Polynomial Fit

In an effort to determine an explicit and analytically manageable func-
tional form for the computed energy surfaces, we decided to perform a sys-
tematic fitting procedure. Specifically, we explored both polynomial and
rational functions as potential candidates for representing the underlying
energy landscape. The goal of this approach is to obtain a continuous math-
ematical expression capable of accurately reproducing the calculated data
points, while remaining simple enough to facilitate further analysis and po-
tential incorporation into computational models. In particular, we chose to
accept only those fits for which the coefficient of determination (R2) exceeded
0.95. This threshold was selected to ensure a high level of accuracy in the
representation of the computed energy surfaces.

3.4.1 Parallel-displaced: Displacement Surface Fitting

As a first step, we present a fit of the surface representing the interaction
energy as a function of the lateral displacement and the vertical distance
between the benzene fragments in parallel-displaced configuration.

After several trials with different functional forms, we opted for third-
degree polynomials, which provided a sufficiently accurate approximation of
the surface while maintaining a reasonable level of complexity. Higher-degree
polynomials or more elaborate functional forms were deliberately avoided to
preserve interpretability.

We restricted our analysis to configurations where z values lie between
3.3 Å and 4 Å, and where the interaction energy is less than or equal to −2

kcal/mol. This selection criterion was adopted to focus on the most physically
relevant region of the energy landscape, thereby avoiding the influence of
extreme or non-representative data points. By doing so, we aimed to produce
a fit that is both effective and meaningful for the energy range of interest.

For illustrative purposes, in Figure 3.13 we also present the result ob-
tained using a second-degree polynomial, which, despite its simplicity, offers
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a qualitatively reasonable description of the energy surface.
The quadratic polynomial obtained from the fitting procedure is:

E(d, z) = 0.412 d2 + 3.279 z2 + 0.785 dz − 4.296 d− 24.797 z + 45.270,

where d represents the lateral displacement and z the vertical distance be-
tween the benzene fragments. The coefficient of determination (R2) for this
fit is 0.912, indicating a good correlation between the fitted surface and the
computed data points. However, it is important to note that the minima of
the energy surface are not accurately captured by this quadratic fit. For this
reason, we proceeded to perform a third-degree polynomial fitting, which is
presented in Figure 3.14, in an attempt to achieve a more accurate repre-
sentation of the energy landscape, particularly in the regions close to the
minima. The third-degree polynomial obtained from the fitting procedure is:

E(d, z) = −0.092 d3 − 3.951 z3 − 1.001 d2z − 1.563 dz2 + 4.601 d2

+ 49.543 z2 + 15.848 dz − 39.418 d− 207.327 z + 287.824.

The coefficient of determination (R2) for this cubic fit is 0.964, indicating a
significant improvement in the accuracy of the surface approximation, espe-
cially in the regions near the energy minima.

3.4.2 Parallel-displaced: Radial Surface Fitting

In Figure 3.15, we present the fitting results for the interaction energy as
a function of both the radial distance and the vertical separation between
the planes of the benzene fragments. Also in this case, restricted our analysis
to configurations where z values lie between 3.2 Å and 4 Å, and where the
interaction energy is less than or equal to −2 kcal/mol. The third-degree
polynomial obtained from the fitting procedure is:

E(d, z) = −0.178 d3 − 4.544 z3 − 0.905 d2z − 1.432 dz2 + 4.688 d2

+ 55.842 z2 + 14.549 dz − 37.063 d− 229.286 z + 313.113.

The R2 coefficient for this cubic fit is equal to 0.956.
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Figure 3.13: Quadratic interpolation of the interaction energy as a function
of lateral displacement and vertical separation
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Figure 3.14: Cubic interpolation of the interaction energy as a function of
lateral displacement and vertical separation
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Figure 3.15: Cubic interpolation of the interaction energy as a function of
radial distance and vertical separation
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3.4.3 T-shaped: x and y displacement fits

In Figure 3.16 (a) we present the fitting of the energy surface correspond-
ing to the T-shaped configuration, where the interaction energy is expressed
as a function of the displacement along the x-axis and the vertical distance
between the centers of the benzene fragments.

The third-degree polynomial obtained from the fitting of the T-shaped
configuration is:

E(d, z) = − 0.331 d3 − 3.632 z3 − 0.209 d2z + 1.106 dz2 + 1.922 d2

+ 57.868 z2 − 12.294 dz + 33.943 d− 305.206 z + 530.162.

The coefficient of determination (R2) for this cubic fit is 0.995, indicating
an excellent agreement between the fitted surface and the computed energy
data for the T-shaped configuration.

In Figure 3.16 (b), instead, we represent the interaction energy as a func-
tion of the displacement along the y-axis and the vertical distance z between
the centers of the benzene fragments.

The interpolating third-degree polynomial for this surface is:

E(d, z) = − 0.269 d3 − 4.002 z3 − 0.335 d2z + 1.116 dz2 + 2.563 d2

+ 63.013 z2 − 12.041 dz + 32.316 d− 328.813 z + 565.826.

The coefficient of determination (R2) for this cubic fit is 0.999, confirming
an excellent level of agreement between the interpolating polynomial and the
computed energy values.

3.4.4 T-shaped: Radial Surface Fitting

In Figure 3.17 we present the fitting of the surface obtained by plotting
the interaction energy as a function of the radial distance within the plane
and the vertical separation between the centers of the benzene rings for the
T-shaped configuration.
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(a)

(b)

Figure 3.16: Interpolation of the interaction energy as a function of the
displacement along the (a) x-axis; (b) y-axis.
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Figure 3.17: Interaction energy as a function of the radial distance within
the plane and the vertical separation
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The third-degree polynomial corresponding to this surface is:

E(d, z) = − 0.347 d3 − 4.060 z3 + 0.151 d2z + 0.748 dz2 + 0.168 d2

+ 64.453 z2 − 9.071 dz + 26.761 d− 338.774 z + 586.878.

The coefficient of determination (R2) for this cubic fit is 0.990, indicating
a very good agreement between the polynomial model and the computed
energy data points.





Chapter 4

π-stacking mathematical

modelling

Our goal is to understand and define how to integrate the π-stacking inter-
action into the physical Hamiltonian introduced in Section 2.1.3. This inte-
gration presents a specific challenge: introducing an interaction of molecular
nature into a model designed to naturally handle atomic-level interactions.

In fact, the use of a graph to represent the positions of the atoms in the
protein and the possible positions occupied by the ligand’s atoms makes the
model naturally suited to describe interatomic forces - such as electrostatic
or Van der Waals interactions - but not intuitive for representing molecular-
level interactions. For this reason, several steps were necessary to achieve a
consistent modeling.

4.1 Identification of Benzenic Fragments in the

Protein

The first step is to identify the benzenic fragments of the protein that are
sufficiently close to the binding pocket. This allows us to determine which
benzene molecules in the protein can actually be subject to a π-stacking
interaction, in case another benzenic fragment is placed in the pocket. The

83
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Figure 4.1: Selecting the benzene fragment near the pocketgrid

idea behind this approach is that if a benzene molecule is far from the pocket,
the π-stacking interaction will be negligible.

To identify such molecules, the following procedure is applied: all ben-
zenic fragments within the protein are identified, the center C of the aromatic
ring is determined, and a sphere of radius r centered at C is constructed. A
benzenic fragment is considered relevant if the sphere intersects at least one
node of the pocket graph Ggrid, as presented in Figure 4.1. Otherwise, the
fragment is disregarded.

After identifying, through the previous analysis, the benzenic fragments
of the protein potentially involved in π-stacking interactions, the next step
is to identify the vertices of the graph Ggrid that could be affected by such
interaction. In other words, we are interested in determining which nodes
of the pocketgrid (4.2) are sufficiently close to a benzenic fragment of the
protein, such that if a benzene molecule from the ligand were placed there,
a significant π-stacking interaction would occur.

In the following discussion, we focus on the case of the parallel displaced
interaction, noting that the modeling for the T-shaped configuration follows
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Figure 4.2: Nodes of the pocketgrid sufficiently close to a benzenic fragment

an entirely analogous procedure.

4.2 First Modeling Approach

Let C = {C(1), C(2), . . . , C(6)} be a benzenic fragment in the protein
identified as potentially interacting with the pocket. The goal is to determine
a collection of sets of six vertices D = {D(1), D(2), . . . , D(6)}, such that, if a
benzene molecule from the ligand were placed at those vertices, a significant
energy contribution due to the π-stacking interaction would be generated.

Since the graph Ggrid is a discretization of three-dimensional space, the
ligand molecule cannot be placed in an arbitrary position, but is constrained
to the vertices of the graph. It is therefore essential to determine not only
which nodes can give rise to a π-stacking interaction, but also how much
they deviate from the ideal position, that is, the one that minimizes the
interaction energy.

To construct the set D , we adopt a vector-based approach. Let C denote
the center of the benzenic ring C , computed as the midpoint between two
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Figure 4.3: Graphical representation of C and D

opposite carbon atoms:

C = C(1) + 1
2

(
C(4) − C(1)

)
.

We then define a vector Ĉ, orthogonal to the plane of the ring, obtained
by normalizing the cross product of two in-plane vectors and multiplying by
the equilibrium vertical distance:

Ĉ = ± 3.5
(C(1) − C)× (C(2) − C)∥∥(C(1) − C)× (C(2) − C)

∥∥ ,
where the sign ± is chosen according to the desired orientation.

Based on this, for each vertex C(i), we construct a corresponding point
D

(1)
i lying in the translated plane of the second molecule, defined as:

D
(1)
i = Ĉ +

1.7

1.4
(C(i) − C) .

Since the nodes of Ggrid do not cover space continuously, it is unlikely that
a vertex exists exactly at each point D(1)

i . For each point D(1)
i , we therefore

consider a sphere of radius r̂ centered at D(1)
i and check whether it contains

at least one node of the graph. If such a node exists, it is selected as a
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candidate and the search proceeds for the other five corresponding vertices,
following the pattern of the benzenic molecule.

Now, suppose a vertex has been identified near D(1)
i . We then proceed to

determine the remaining five vertices of the hexagon. In particular, the point
D(4) is searched as the intersection between Ggrid and a sphere centered at
D(1) + (C(4) − C(1)). Then, a plausible arc is defined to search for D(2), and
the same criterion is applied to find the remaining vertices.

Once three non-aligned vertices are identified, the position of the remain-
ing ones is uniquely determined. This is because three points in space define
a plane, and the hexagonal structure of benzene imposes fixed distances be-
tween atoms.

At this point, it is possible to assess how much the obtained configuration
deviates from the ideal one. Recall that the optimal conditions for the π-
stacking interaction require that the second molecule:

• is parallel to the first molecule;

• is rotated with respect to the first by an angle equal to a multiple of
60◦;

• is located at a vertical distance of 3.5Å;

• has a horizontal distance from the center of the first molecule equal to
1.7Å.

Let D denote the geometric center of the set D . We then verify the
following geometric conditions:

• Orthogonality with respect to the vertical direction:

(D(4) −D(1)) · (Ĉ − C) = 0, (D(2) −D(1)) · (Ĉ − C) = 0;

• Orthogonality between corresponding sides:

(C(2) − C(1)) · (D(2) −D(1)) = 0;
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• Horizontal distance: ∣∣(D − C) · (C(4) − C)
∣∣

∥C(4) − C∥
= 1.7;

• Vertical distance: ∣∣(D − C) · (Ĉ − C)
∣∣

∥Ĉ − C∥
= 3.5;

• Alignment between the benzene orientation and the horizontal axis:

(D(1) − Ĉ) · (C(4) − C)∣∣(D(1) − Ĉ) · (C(4) − C)
∣∣ = 1.

For each of the conditions above, we can estimate a numerical value indi-
cating how well it is satisfied. Based on these measures, we define an intensity
coefficient I ∈ [0, 1], which quantifies the degree of alignment between the
actual configuration and the ideal one. The energy associated with such an
interaction is then given by:

E = −2.94 · I .

It is important to highlight that the value −2.94 represents the minimum
interaction energy obtained from the simulations discussed in Section 3.2.
This value corresponds to the total energetic contribution associated with
the interaction between aromatic rings in a specific configuration and there-
fore includes multiple components of different physical nature. In this chap-
ter, the Hamiltonian will refer to the total interaction energy. However, in
Chapter 5, we will instead focus on a residual molecular contribution — an
effective interaction term that excludes the main atomistic components, such
as Coulomb and Van der Waals forces.

In the case where, for a given benzenic fragment of the protein, multiple
plausible configurations are identified (i.e., multiple sets of six nodes in Ggrid),
all of them must be considered, introducing one variable I for each.
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To enrich the molecular representation within the protein graph Gmol, we
introduce new labels useful for identifying benzenic fragments. Specifically,
to each node i we assign a label ci, defined as:

ci =

1, if i is a carbon atom belonging to a benzenic fragment,

0, otherwise.

In addition, we associate to node i an ordered pair {i1, i2}, which identifies
the two carbon atoms adjacent to i in the benzenic ring. If i does not belong
to any benzenic ring, we conventionally set i1 = i2 = i.

The graph Gmol is thus extended as follows:

Gmol = {i, eij, wij, qi, ci, {i1, i2}} .

Similarly, the graph Ggrid, which represents the spatial discretisation of
the protein pocket, is also enriched with new information.

To each node i′, we assign a label Ii′ , which represents the intensity of the
interaction in the case where i′ coincides with one of the nodes D(1)

i defined
previously. If the node i′ does not belong to any set D , we simply set Ii′ = 0.

As in the previous case, we also associate a pair {i′1, i′2} to the node i′,
according to the same criterion adopted for Gmol, to maintain structural
consistency between the two graphs.

The extended graph Ggrid thus takes the form:

Ggrid = {i′, ei′j′ , wi′j′ , Vi′ , Ii′ , {i′1, i′2}} . (4.1)

We now introduce a variable λii′ , defined as the product between the
indicator of belonging to a benzenic ring ci and the interaction intensity Ii′

at node i′:
λii′ := ciIi′ .

This expression takes a positive value only when node i belongs to a ben-
zene molecule and i′ is a node in the graph Ggrid that experiences a significant
π-stacking interaction. In all other cases, λii′ = 0, and the associated energy
contribution is null.
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Based on the definition of λii′ , we express the Hamiltonian term associated
with the π-stacking interaction in Equation 4.2:

Hπ =
∑
i,i′

(−2.94)λii′ xii′
(
xi1i′1i2i′2 + xi2i′1i1i′2

)
, (4.2)

where:

• the binary variable xii′ equals 1 if node i in the graph Gmol is mapped
to node i′ in the graph Ggrid, and 0 otherwise;

• the variable xi1i′1i2i′2 equals 1 if i1 is mapped to i′1 and simultaneously
i2 is mapped to i′2. Similarly, xi2i′1i1i′2 accounts for possible 180-degree
rotations in the ligand.

This expression contributes negatively to the system’s energy only when
the correspondence between nodes respects the local structure of benzene,
thus favoring alignments consistent with a π-stacking interaction. The term
Hπ therefore describes the negative (favorable) energy contribution that
arises when a carbon atom belonging to a benzenic ring is correctly posi-
tioned in a region of the pocket where a π-stacking interaction is observed,
and its adjacent atoms are also positioned coherently with the benzene struc-
ture.

In the case where the graph Ggrid contains only a very limited number
of hexagonal configurations compatible with the π-stacking interaction, the
problem is relatively easy to handle - in particular, if there is an almost one-
to-one correspondence between each carbon atom in the protein’s benzenic
fragments and a possible position for the second benzene molecule in the lig-
and. However, when many potentially compatible configurations are present
in the pocket, it becomes necessary to adopt a more complex approach. This
occurs, for example, when around a single node of the graph Ggrid, a potential
candidate for a vertex D(1), multiple sets of six nodes forming valid hexagons
are identified, as shown in Figure 4.4.

To properly handle this situation, we introduce a new labeling system for
the nodes of the graph Ggrid [4.3]. Specifically, to each node i′ we assign:
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Figure 4.4: Example of a grid region where multiple hexagonal structures
can be identified around a single node D1.

• an integer li′ , equal to twice the number of hexagons that include the
node i′ as a possible vertex D(1);

• an ordered list {i′1, i′2, i′3, . . . , i′li′}, in which each pair {i′2k−1, i
′
2k} repre-

sents the two vertices adjacent to i′ in one of the compatible hexagons;

• a set of values Ii′i′2k−1i
′
2k

, which measures the intensity of the interaction
corresponding to each identified configuration.

If the node i′ does not participate in any hexagonal configuration, we
conventionally set li′ = 1 and i′1 = i′2 = i′, in order to maintain a uniform
graph structure.

The extended graph Ggrid is thus described by the following structure:

Ggrid =
{
i′, ei′j′ , wi′j′ , Vi′ , li′ , {i′1, i′2, . . . , i′li′}, {Ii′i′1i′2 , . . . , Ii′i′li′−1i

′
li′
}
}
.

(4.3)

To correctly include the energy contribution due to multiple possible local
configurations, we also extend the definition of the Hamiltonian Hπ. We
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introduce the term:

λii′i′2k−1i
′
2k

:= ci · Ii′i′2k−1i
′
2k
, for k ∈

{
1, 2, . . . ,

li′
2

}
, (4.4)

where ci represents, as before, the indicator that node i belongs to a benzenic
ring.

The general form of the interaction term becomes:

Hπ =
∑
i,i′

li′
2∑

k=1

(−2.94)λii′i′2k−1i
′
2k
xii′
(
xi1i′2k−1i2i

′
2k
+ xi2i′2k−1i1i

′
2k

)
, (4.5)

where the binary variables xii′ and xi1i′2k−1i2i
′
2k

have the same meanings as
previously defined, with the only difference being that we now consider, for
each node, all possible combinations consistent with the presence of multiple
local hexagons. This formalism allows for an accurate modeling even in
complex cases where the geometry of the pocket features a significant variety
of local configurations compatible with π-stacking interactions.

4.3 Second Modeling Approach

At this point, given the impossibility of accurately representing the exact
spatial position of the molecule, we opted for an alternative approach: once
a benzene molecule in the protein sufficiently close to the pocket is fixed, we
select certain regions of space Ggrid within which, if a benzenic fragment of
the ligand were positioned, a π-stacking interaction would occur.

Within these regions — which will be more precisely defined later — we
consider a constant average energy. In other words, if a benzenic fragment of
the ligand falls into one of these predefined zones, we assume that an average
energy contribution is added to the total Hamiltonian of the system.

Specifically, for each benzenic fragment of the protein, we define two new
subgraphs of Ggrid, Gcenter and Gbenzene.

• Gcenter represents the set of points in Ggrid which, if occupied by the
center of an aromatic ring, would give rise to a π-stacking interaction,
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assuming the molecule is in a favorable configuration and satisfies the
previously imposed constraints.

• Gbenzene is the set of points in Ggrid corresponding to the positions of
the carbon atoms of the benzenic fragment, in the case where its center
is located at a point of Gcenter. In other words, Gbenzene is a graph that
includes Gcenter and is used to fix the spatial arrangement of the carbon
atoms of the benzenic fragment.

In Figure 4.5, we show the subgraphs Gcenter and Gbenzene related to a ben-
zenic fragment of the protein. Specifically, in this case, we show only the re-
gion involved in the π-stacking interaction along a particular carbon–carbon
axis of the aromatic ring of the protein. Given the symmetry of the problem,
the two graphs will ultimately be represented by two tori, both having the
same central circumference and different radii.

We introduced new labels for both the molecular graph Gmol and the
spatial grid Ggrid, with the aim of explicitly modeling the presence and spatial
arrangement of benzenic fragments involved in the π-stacking interaction.
For Gmol, we associate the following labels with each node i:

• a variable ĉi, which is equal to 1 if node i represents the center of a
benzenic fragment, and 0 otherwise;

• a variable cij, which is equal to 1 if node i is a carbon atom belonging
to the benzenic fragment centered at node j, and 0 otherwise.

The enriched structure of the molecular graph is thus:

Gmol = {i, eij, wij, qi, ĉi, cij} . (4.6)

Similarly, for the grid Ggrid, we introduce:

• a label ĉi′ , which is equal to 1 if vertex i′ belongs to the subgraph
Gcenter, i.e., if it can represent the center of a benzenic fragment, and 0
otherwise;
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Figure 4.5: Graphical representation of Gcenter and Gbenzene, corresponding
to the benzenic fragment within the protein structure.

• a variable ci′j′ , which is equal to 1 if vertex i′ belongs to the subgraph
Gbenzene and j′ belongs to the corresponding Gcenter subgraph, and 0
otherwise.

The structure of the grid graph is therefore:

Ggrid = {i′, ei′j′ , wi′j′ , Vi′ , ĉi′ , ci′j′} . (4.7)

Based on these labels, we can finally define the contribution to the total
Hamiltonian, via the term Hπ, given by:

Hπ =
∑
i,i′

∑
j,j′

Ê

6
ĉi ĉi′ cji cj′i′ xii′ xjj′ , (4.8)

where Ê represents a constant average energy value associated with the
benzene-benzene interaction.
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We now rewrite Equation 4.8 in a clearer form and provide a more detailed
analysis:

Hπ =
Ê

6

∑
i,i′

ĉi ĉi′xii′
(∑

j,j′

cji cj′i′ xjj′
)
. (4.9)

We observe that, in the first summation, the term ĉi ĉi′ xii′ takes the value
1 if and only if the center of a benzenic fragment i is positioned on a node
i′ belonging to the subgraph Gcenter. This occurs because ĉi = 1 indicates
that i is indeed the center of a benzenic fragment, while ĉi′ = 1 implies that
node i′ of the grid belongs to the subgraph Gcenter. The second summation
contributes to the Hamiltonian by adding a term equal to 1 every time a
carbon atom j, belonging to a benzenic fragment centered at i, is assigned
to a node j′ of the grid that belongs to the subgraph Gbenzene associated with
node i′ ∈ Gcenter. In this way, we account for the full presence of the ligand’s
benzenic fragment in a spatial region that allows for π-stacking interaction.

Note that, if all six carbon atoms of a benzenic fragment are positioned
within the subgraph Gbenzene, the total contribution of the second summation
is equal to 6. For this reason, the Hamiltonian is multiplied by a normal-
ization factor of 1/6, to ensure that the total energy associated with a fully
inserted fragment in the interaction region equals the desired average energy
value. This energy value is given by the coefficient Ê, which represents the
average interaction energy when the ligand’s benzenic fragment is located in
a favorable interaction region.

In Figure 4.6, we show a graphical representation of a benzenic ring sat-
isfying the imposed conditions. Specifically, the benzene on the lower plane
represents a benzenic fragment of the protein, while the one on the upper
plane is a benzenic fragment of the ligand. The red spatial region represents
Gcenter, while the yellow region represents Gbenzene.

However, this modeling presents several limitations. The first concerns
the lack of control over the molecule’s rotation within its own plane. The
second relates to the fact that, if the molecule undergoes a generic rotation,
it may happen that only part of its atoms lie within the subgraph Gbenzene,
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Figure 4.6: Benzenic fragment of the ligand represented within Gcenter and
Gbenzene.
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while others remain outside.
As a consequence, the contribution provided by the second summation in

Equation 4.9, namely ∑
j,j′

cji cj′i′ xjj′ ,

may range between 0 and 6, but it does not correctly reflect the actual quality
of the interaction. In particular, spatial configurations where the π-stacking
interaction should be negligible can still produce a positive energy contribu-
tion, leading to a distortion in the overall evaluation of the Hamiltonian.

From the results obtained through numerical simulations presented in
Section 3.3.2, we observe that the rotation of the molecule within its own
plane has a relatively limited effect on the overall energy of the π-stacking
interaction. In contrast, rotations around the other two spatial axes - that
is, those altering the orientation of the molecule’s plane relative to the inter-
action surface - lead to a significant reduction in interaction energy.

To account for this behavior and appropriately penalize unfavorable spa-
tial configurations, we introduced a new subgraph of Ggrid, called the penalty
grid. This subset of the grid represents the set of points where, if a carbon
atom of the benzenic fragment is positioned, a negative energy contribution
(i.e., a positive term in the Hamiltonian) is assigned, simulating the effect of
an undesired rotation or poor overlap between aromatic planes.

The modified Hamiltonian takes the following form:

Hπ =
Ê

6

∑
i,i′

(ĉi ĉi′)xii′

(∑
j,j′

(cj′i′ − P c̃j′i′) cji xjj′

)
, (4.10)

where c̃j′i′ is a new label assigned to the vertices of Ggrid [4.7], equal to 1
if node j′ belongs to the penalty grid associated with the center i′ ∈ Gcenter

(Figure 4.5), and 0 otherwise. The parameter P represents a penalty coeffi-
cient.

Determining the optimal value of P is not straightforward: ideally, it
should cancel the positive energy contributions from configurations that are
formally allowed within the subgraph Gbenzene, but correspond to spatial
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arrangements unfavorable for actual π-stacking interaction. In other words,
P should be chosen to neutralize false positive energy contributions due to
spatial placements not consistent with a truly significant interaction.

To clarify how the model works, we provide a practical example. Suppose
that a benzenic fragment of the ligand is positioned with its center inside the
subgraph Gcenter, two of its carbon atoms fall into Gbenzene, and the remain-
ing four are instead located in the penalty grid Gpenalty. In this case, the
Hamiltonian contribution [4.9] becomes:

Hπ =
Ê

6
(2− 4P ) .

To ensure that such a configuration - considered unfavorable for π-stacking
- does not contribute to the total energy, we require Hπ = 0. This implies
that the optimal value for the penalty parameter should be P = 1

2
.

However, this approach has some limitations. For example, if three carbon
atoms fall into Gbenzene and three into Gpenalty, the Hamiltonian would be:

Hπ =
Ê

6
(3− 3P ) =

Ê

6
· 3
2
=
Ê

4
,

which corresponds to a positive energy contribution of unjustified intensity.
This result highlights a structural weakness of the proposed model, as it
assigns energy to geometrically incompatible configurations that we would
prefer to neglect.

Another issue arises when the benzenic fragment of the ligand is posi-
tioned orthogonally to the aromatic fragment of the protein, while its center
remains inside Gcenter. Although such an orientation does not favor any π-
stacking interaction in reality, the six carbon atoms may still fall within the
penalty grid Gpenalty, thus generating a “penalising” energy contribution.

In light of these observations, we deemed it appropriate to abandon this
model, as it does not adequately capture the geometric dependence of the
π-stacking interaction.
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4.4 Third Modeling Approach

We therefore opted for a model that allows us to constrain the benzenic
fragment of the ligand exclusively to spatial configurations where it is nearly
parallel to the benzenic ring of the protein. To impose this constraint, we
adopted a modeling strategy that fixes the normal vector to the plane con-
taining the ligand’s benzenic fragment, thus giving up the information related
to possible in-plane rotations. However, as already pointed out earlier, the
energy variation due to rotation within the fragment’s plane is negligible
compared to the total interaction energy. Therefore, this approximation is
consistent with the assumptions of the overall model and does not signifi-
cantly compromise the accuracy of the computed π-stacking Hamiltonian.

The adopted strategy consists of adding, for each benzenic fragment of
the ligand, a new vertex to the molecular graph Gmol. In particular, for
each aromatic ring, we introduce an additional node such that the segment
connecting it to the center of the fragment is perpendicular to the plane of the
ring itself, as shown in Figure 4.7 This mechanism allows us to geometrically
represent the direction of the normal vector to the benzenic fragment’s plane,
enabling us to constrain the spatial orientation of the molecule.

As before, we modify the node labels in the molecular graph Gmol, asso-
ciating the following variables to each node i:

• a variable ĉi, which equals 1 if node i represents the center of a benzenic
fragment, and 0 otherwise;

• a variable cij, which equals 1 if node i is the additional vertex that, to-
gether with the center j, defines a segment orthogonal to the fragment’s
plane, and 0 otherwise.

The enriched structure of the molecular graph thus becomes:

Gmol = {i, eij, wij, qi, ĉi, cij} . (4.11)

As already introduced in the previous modeling approach, we consider a
subgraph of Ggrid, denoted Gcenter, representing the set of grid vertices where
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Figure 4.7: Additional node placed along the normal vector to the aromatic
plane

the center of a benzenic fragment can be placed to give rise to a favorable π-
stacking interaction, provided the fragment’s orientation is also compatible.

For each vertex i′ ∈ Gcenter, we define a subset of vertices

{j′1, j′2, . . . , j′n} ⊆ Ggrid,

such that the segment i′j′k forms an angle with the plane of the protein’s ben-
zenic fragment lying in the interval

[
π
2
− α, π

2
+ α

]
, where α > 0 is a tunable

parameter that controls the tolerance with respect to perfect orthogonality.
In Figure 4.8, we show a benzenic fragment of the ligand (in green) with

its center located within Gcenter and the additional vertex placed inside a
sphere representing the set of nodes {j′1, . . . , j′n}. We observe that, for small
rotations of the benzene molecule, the new vertex remains inside the sphere.
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Figure 4.8: Illustration of a benzene fragment from the ligand (in green)
with its center placed in Gcenter and an auxiliary node positioned within the
relative sphere.

Regarding the grid Ggrid, we introduce the following labeling system:

• A variable ĉi′ , which takes the value 1 if vertex i′ belongs to the sub-
graph Gcenter, i.e., if it can represent a possible center for positioning a
benzenic fragment of the ligand. Otherwise, ĉi′ = 0.

• A variable cj′i′ , which represents the geometric interaction intensity
associated with the pair of vertices j′ and i′, where i′ belongs to the
subgraph Gcenter. Thanks to the numerical simulations performed (Sec.
3.3.2), we are able to estimate the interaction energy for each relative
configuration between two benzene molecules. In particular, by fixing
the position of the benzene molecule in the protein and assigning the
center of the ligand’s benzenic fragment to a point i′, we can precisely
calculate how the interaction energy varies with the orientation of the
ligand’s fragment - that is, as a function of its spatial rotations. Once
the direction of the normal to the ligand’s benzenic fragment is fixed
- corresponding to the direction of the oriented segment i′ → j′ - we
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obtain an energy interval associated with possible in-plane rotations
of the aromatic ring. By computing the average of this energy inter-
val, we can assign a single scalar value to the pair (j′, i′) that reflects
the average interaction intensity in that configuration. The variable
cj′i′ is therefore defined as the magnitude of this average energy value,
and expresses how effectively the direction j′i′ supports a π-stacking
interaction. In this way, the label cj′i′ compactly and continuously en-
codes the energetic information obtained from simulations, providing
a quantitative basis for assessing the spatial orientation of the ligand’s
benzenic fragment relative to the protein.

If j′ does not belong to the previously introduced set {j′1, . . . , j′n} rel-
ative to i′, we set cj′i′ = 0, effectively excluding the possibility of a
favorable interaction in that direction.

This modeling allows for a more nuanced representation of the spatial align-
ment quality of the ligand’s benzenic fragment with respect to the protein,
overcoming the rigidity of a purely binary (acceptable/unacceptable) ap-
proach. Thus, the model can assign an energy contribution proportional to
the degree of geometric alignment, improving sensitivity in capturing inter-
mediate configurations.

The structure of the grid graph then becomes:

Ggrid = {i′, ei′j′ , wi′j′ , Vi′ , ĉi′ , ci′j′} . (4.12)

We can now define the new Hamiltonian:

Hπ =
∑
i,i′

ĉi ĉi′ xii′

(∑
j,j′

cij ci′j′ xjj′

)
. (4.13)

Regarding the T-shaped configuration, the simulations shown in Fig-
ure 3.3.4 clearly demonstrate that the interaction energy remains nearly con-
stant as the rotation angle of the vertical molecule around the z-axis varies.
This behavior suggested a simplification of the model by fixing this axis as
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Figure 4.9: Visualization of the T-shaped configuration with fixed vertical
axis

the preferred direction for the interaction, similarly to what was already done
for the parallel-displaced configuration.

We therefore proceed by introducing, for each vertex i′ ∈ Gcenter associ-
ated with the T-shaped configuration, a set of nodes

{j′1, j′2, . . . , j′n} ⊆ Ggrid,

such that, if the center of the ligand’s benzenic fragment is positioned at i′

and one of its carbon atoms lies at a node j′k (as represented in Figure 4.8),
then a favorable condition for π-stacking interaction occurs.

Based on this construction, we define the following Hamiltonian associ-
ated with the T-shaped configuration:

Hπ,T-shaped =
∑
i,i′

ĉi ĉi′ xii′

(∑
j,j′

cij ci′j′ xjj′

)
,
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where the involved labels have the following meanings:

• ĉi = 1 if node i is the center of a benzenic fragment in the ligand, and
0 otherwise;

• ĉi′ = 1 if node i′ belongs to the subset Gcentri T-shaped;

• cij = 1 if node j represents a carbon atom of the benzenic fragment
centered at i;

• ci′j′ is a continuous variable representing the geometric interaction in-
tensity between node j′ and center i′, as a function of orientation and
distance with respect to the target molecule.

This formulation allows us to coherently model the π-stacking interaction
in the T-shaped configuration, constraining geometries to physically mean-
ingful configurations according to the evidence provided by the simulations.



Chapter 5

Results

In this chapter, we present the results obtained from the simulated an-
nealing computations carried out using different test molecules.

For the simulated annealing computations presented in this work, we em-
ployed the neal.SimulatedAnnealingSampler from the neal Python pack-
age 1.1.3.

5.1 QUBO Coefficient

We now proceed to perform both simulated and quantum annealing cal-
culations, as previously introduced. The central objective is to compute the
molecular arrangement that yields the minimum energy for the Hamiltonian
introduced in Section 2.1.3, which is enhanced with an additional term that
aims to capture the effects of π-stacking.

We chose to include in this thesis only the results related to the parallel-
displaced configuration, as those corresponding to the T-shaped configuration
are entirely analogous.

It is important to note that the Hamiltonian described in Section 4.4
was parametrized based on the interaction energies obtained from Q-Chem
simulations described in Section 3.2. These simulations provide the total
interaction energy between the two benzene fragments, which inherently in-

105
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cludes all pairwise atomic interactions, as well as any collective contributions
arising from molecular effects.

For the purposes of the annealing calculations, we are specifically inter-
ested in isolating the portion of the interaction energy that cannot be directly
attributed to individual atom-atom interactions. This is necessary because
the original Hamiltonian from Section 2.1.3 already explicitly includes atom-
istic interaction terms, such as Coulomb and van der Waals contributions,
in closed-form expressions. Including these contributions again from the Q-
Chem-derived π-stacking term would result in double counting.

To address this, we subtract from the total interaction energy obtained
from the Q-Chem simulations the analytically known atomistic contribu-
tions, namely the Coulomb and van der Waals terms. The resulting quantity,
which we refer to as the latent energy, or molecular energy, represents the
residual component of the interaction energy that cannot be explained by
simple pairwise atomic forces. This latent energy is assumed to capture the
molecular-level effects, including those arising from π-stacking, that are not
explicitly accounted for in the original Hamiltonian.

It is also important to clarify that we do not subtract the contributions
associated with other known contributions, such as hydrogen bonding or hy-
drophobic interactions. This is due to that fact that, in two benzene rigs,
these contributions do not occur. In particular, hydrogen bonding does not
occur, as carbon atoms lack sufficient electronegativity to participate in such
interactions. Similarly, hydrophobic interactions are a solvent-mediated phe-
nomenon that occurs in aqueous environments, where nonpolar molecules
tend to aggregate to minimize their contact with water. Since the Q-Chem
simulations were conducted in vacuum conditions, removing a hydrophobic
term would be inappropriate, as this interaction is not present in the simu-
lation data to begin with.

This correction procedure ensures that the π-stacking term incorporated
into the annealing Hamiltonian reflects only the non-atomistic, collective
contributions relevant to the molecular system under investigation.
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To quantify the Coulomb and van der Waals components, we developed a
computational code capable of calculating all individual atom-atom interac-
tion terms for each spatial configuration and orientation of the two benzene
molecules, using the parameters derived from MMFF94 [40]. By summing
these pairwise contributions, the code computes the total electrostatic plus
van der Waals energy associated with each configuration. This calculated
energy is then subtracted from the total interaction energy obtained from
the Q-Chem simulations, isolating the residual contribution relevant for our
modeling purposes.

5.1.1 Calculation of coefficients and results

We chose to perform these calculations only for configurations where the
total interaction energy from the simulations was lower than −2 kcal/mol.
This threshold was selected to ensure that only configurations exhibiting a
significant and physically meaningful π-stacking interaction were considered.
As shown in Figure 3.3, this threshold effectively excludes the local maxima
of each energy–displacement curve at constant vertical separation. In fact,
all curves exhibit a peak at zero lateral displacement, and a less stringent cut-
off (e.g. −1 kcal/mol) would cause some of these peaks to be retained in the
dataset. We therefore discard such contributions in order to focus exclusively
on those configurations that are genuinely favorable for each fixed interplanar
distance. Moreover, including higher-energy configurations, where the inter-
action is weak or negligible, could introduce noise and obscure the energetic
signature of π-stacking , as stated in section 3.3.1 .

It is important to note that the simulation results display a continuous
energy trend with respect to molecular displacement. As the system de-
viates from its equilibrium configuration, the interaction energy gradually
decreases in magnitude. Therefore, setting an energy threshold was neces-
sary to discriminate between configurations where the π-stacking interaction
dominates.

We chose to compute the electrostatic interaction component and van
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Figure 5.1: Variation of molecular energy with respect to lateral displacement
and vertical distance

der Waals fluctuations by performing calculations for each individual config-
uration previously sampled in our simulations. Subsequently, we subtracted
these computed energetic contributions from the total interaction energies
obtained via simulation. This procedure yielded a set of values represent-
ing the molecular energy, which we used to determine the coefficients of our
QUBO formulation. In Figure 5.1, we provide a graphical representation of
the intensity of the resulting residual molecular energy.

The data points obtained were then fitted using a third-degree polynomial
in the variables d (displacement) and z (interplanar distance). The resulting
polynomial model is given by:

f(d, z) = − 0.413 d3 + 12.322 z3 − 0.730 d2z + 4.638 dz2 + 5.341 d2

− 150.773 z2 − 33.423 dz + 55.572 d+ 613.092 z − 827.530.

The goodness of fit is confirmed by the coefficient of determination, which is
R2 = 0.998.

Since the modeling approach presented in 4.4 does not account for rota-
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tions of the two molecules around the z-axis in the construction of the Hamil-
tonian, we chose to rely exclusively on the interaction energy as a function
of the lateral displacement and the vertical distance between the molecular
planes. In particular, we decided not to use the energy expressed as a function
of the planar radial distance, because modifying the y-coordinate of one of
the two molecules effectively corresponds to a combination of increasing the
interplanar distance and applying a rotation around the z-axis. Such a trans-
formation does not alter the intrinsic interaction in a way that is consistent
with the assumptions of our Hamiltonian, and would introduce rotational
effects that are deliberately excluded from our current model. Therefore, to
preserve coherence with the theoretical framework adopted, we restrict our
analysis to configurations parameterized only by vertical and lateral displace-
ments within the plane.

Due to the high computational cost and the time required to obtain reli-
able results, we chose to compute the interaction energy associated with rota-
tional configurations only at the equilibrium position. From the correspond-
ing simulations, we estimated the percentage variation in energy attributable
to molecular rotations. Assuming that this variation remains approximately
constant across all spatial configurations considered, we extrapolated the in-
teraction energy for each configuration by scaling the energy obtained at the
molecular center by the previously determined rotational correction factor.
This approximation allowed us to efficiently incorporate the effect of rota-
tions into the model while significantly reducing the number of simulations
needed. In any case, in the next stage of research, we reserve the possibil-
ity of conducting more extensive simulations that would allow us to validate
our current assumption and, if necessary, obtain more accurate and reliable
results.

In Figure 5.2 the percentage variations in interaction energy associated
with rotations around the x-axis -corresponding to the direction of lateral
displacement - denoted by the angle α, and around the y-axis, denoted by
the angle β. Due to the symmetry of the molecular configuration with respect
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Figure 5.2: Percentage variations in interaction energy associated with rota-
tions around the x and y-axis

to positive and negative rotations around the displacement axis, the values
of α are taken to be strictly positive. In contrast, the angle β also includes
negative values, as no such symmetry constraint applies to rotations around
the y-axis.

The following polynomial equation interpolates the latent energy data
presented above: The following polynomial equation interpolates the latent
energy data presented above:

g(α, β) = − 8.95× 10−6 α3 + 1.57× 10−5 β3 + 1.34× 10−5 α2β − 2.54× 10−6 αβ2

− 6.71× 10−4 α2 − 9.15× 10−4 β2 − 4.79× 10−5 αβ

+ 6.64× 10−4 α + 5.15× 10−4 β + 1.00.

The coefficient of determination is R2 = 0.999.
In conclusion, to determine the coefficients ci′j′ in accordance with the

notation introduced in Section 4.13, we proceed through the following steps:

• We identify all benzene fragments sufficiently close to the binding pocket
and compute their centroids C along with the normal vectors to the
corresponding aromatic planes.
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• For each such fragment, we search for all grid points P whose vertical
distance z from the aromatic plane lies between 3.2 Å and 4 Å, and
whose planar radial displacement d lies between 1 Å and 3 Å. The
computation of these distances is carried out relative to the plane of
the protein’s aromatic fragment and its associated normal vector.

• Once these points P are identified, we check for the existence of suit-
able anchor points in the vicinity, denoted by V . These anchor points
represent the additional vertical nodes required to define the rotation
of the aromatic fragment. We consider as valid anchors those located
within a distance of 1–2 Å from the corresponding point P , and for
which the segment connecting P and V forms an angle of at most 15
degrees with respect to both the displacement axis and its orthogo-
nal direction, when projected onto the plane orthogonal to the normal
vector of the protein fragment. These angles are denoted by α and β,
respectively.

• Finally, we assign the coefficient ci′j′ as the product f(d, z) · g(α, β),
where f and g are those previously defined.

5.2 Simulated Annealing Calculations

To test the proposed model, we chose to perform calculations on small
test molecules, allowing for a direct and immediate verification of the results.
Indeed, when evaluating the model, it is common to use protein pockets -
fragments of the protein that surround the binding site and typically contain
hundreds of atoms. Within such environments, identifying the dominant in-
teraction mechanisms becomes particularly challenging due to the complexity
and density of atomic contributions.

A central role in addressing this issue is played by the multiplicative pa-
rameters λ, introduced in Section 2.1.3, whose purpose is to appropriately
rescale the different energetic contributions in order to make them compara-
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ble and meaningful. For instance, the geometric contribution in the Hamilto-
nian typically attains very large values (on the order of 50), especially when
the grid points do not precisely match the atomic positions of the ligand. In
contrast, the contribution introduced in this work - modeling the π-stacking
interaction - takes values ranging approximately from −7 to 0. Without the
introduction of a suitable λ-parameter, this term would remain largely negli-
gible when compared to other dominant components of the energy function.
Therefore, identifying the optimal values of λ is essential to correctly account
for the π-stacking contribution within the QUBO formulation.

In the experimental phases following the publication of this thesis, we
intend to focus on calibrating the λ parameters to properly balance and
integrate the energetic terms proposed herein.

5.2.1 Ligand, and pockets

To validate our model, we first examined the interaction between two
benzene rings, which served as a reference system. We then extended our
analysis to the interaction between a simple benzene fragment and three
aromatic amino acids: tyrosine, phenylalanine, and tryptophan. These amino
acids, which explicitly feature aromatic rings, are among the most frequently
reported in the literature for their involvement in π-π interactions. Several
studies have highlighted the role of aromatic amino acids in non-covalent
interactions. In particular, Shao et al. [41] and Burley and Petsko [42] have
shown that tyrosine, tryptophan, and phenylalanine frequently participate
in such interactions.

At first, we added the aromatic center and the vertical anchoring node
to the ligand structure. Naturally, these nodes - being fictitious, i.e., not
corresponding to actual atoms - do not carry any physical contributions such
as partial charges or van der Waals parameters. The vertical node was placed
at a distance of 1.5 Å from the center of the benzene ring.

We present a graphical representation of the ligand in Figure 5.3

For what regards amino acids, tyrosine is an amino acid that plays a
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Figure 5.3: Benzene ligand with auxiliary nodes

crucial role in the human body, acting as a precursor to important molecules
such as neurotransmitters, melanin, and thyroid hormones. Its molecular
formula is C9H11NO3, and its three-dimensional structure is shown in figure
5.4 (a).

Tyrosine contains a phenol functional group, consisting of a benzene ring
substituted with a hydroxyl group (OH) in the para position relative to the
side chain. Note that in aromatic chemistry, the para position refers to the
1,4-substitution pattern on a benzene ring. That is, when two substituents
are located on carbon atoms separated by two positions (e.g., positions 1 and
4), they are considered to be in para configuration.

To further validate the proposed model, we repeated the calculations by
replacing the tyrosine fragment with a phenylalanine fragment C9H11NO2

(Figure 5.4 (b)).

Phenylalanine features a phenyl group (C6H5) directly attached to the
side chain. Unlike tyrosine, it lacks substituents on the benzene ring. It is
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a purely hydrophobic aromatic system capable of engaging in π-stacking
interactions. Lastly, we also carried out the calculations for the trypto-
phan–benzene interaction. Tryptophan (C11H12N2O2, Figure 5.4 (c)) is an
essential amino acid and it is a fundamental component of proteins and plays
a crucial role in the synthesis of important biological compounds, including
serotonin and melatonin. Tryptophan contains an indole group, which con-
sists of a benzene ring fused to a five-membered nitrogen-containing pyrrole
ring. The aromatic benzene fragment is thus embedded within a larger con-
jugated system, making it chemically distinct from an isolated phenyl ring.

All three amino acids considered in this study contain an aromatic moiety,
that is, a structurally distinct portion of the molecule characterized by a
conjugated ring system with delocalized π electrons.

It is important to note that amino acids do not contain isolated ben-
zene molecules; rather, they possess aromatic fragments integrated into their
molecular structure. These aromatic moieties, such as phenyl groups in
phenylalanine, phenol groups in tyrosine, or indole systems in tryptophan,
are responsible for enabling π-stacking interactions. Although structurally
embedded within larger frameworks, these fragments retain the characteris-
tic electronic properties of aromatic systems and significantly contribute to
non-covalent interactions relevant in biomolecular contexts.

5.2.2 Pocketgrids

To rigorously evaluate our model, we designed a synthetic pocketgrid
centered around the pocket molecule.

Initially, we constructed a minimal grid configuration including only the
specific nodes that we intended to be occupied by the ligand. This allowed
us to work with a highly simplified and controlled environment, suitable for
verifying the correctness of our modeling assumptions. We will refer to this
setup as Grid A.

More precisely, Grid A consists of 14 nodes: 6 nodes correspond to the
positions of the carbon atoms in the aromatic ring, 6 nodes to the associated
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(a)

(b)

(c)

Figure 5.4: (a) Tyrosine (b) Phenylalanine (c) Tryptophan. Images
created using BIOVIA Discovery Studio Visualizer.
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hydrogen atoms, 1 node represents the center of the aromatic fragment, and
1 node is placed vertically above the center to serve as an anchoring point
for controlling ring orientation. The center node was positioned at a radial
distance of approximately 1.7 Å from the aromatic plane and a vertical offset
of about 3.4 Å, with the segment connecting the center to the vertical node
aligned parallel to the normal vector of the molecule aromatic fragment.

Subsequently, in order to relax the spatial constraints imposed on the
ligand and simulate a more realistic docking scenario, we enriched the pocket
by adding several additional nodes in its vicinity. In particular, we randomly
inserted 26 extra nodes, including a replica of the original 14-node ligand-
compatible arrangement described above, effectively introducing a second
ideal candidate position for the aromatic fragment. We will refer to this
extended configuration as Grid B.

To further expand the search space and assess the robustness of our model
under more complex conditions, we then introduced a third set of 14 nodes,
also structured to represent another geometrically favorable position for the
benzene fragment. This step was instrumental in testing the model’s ability
to consistently identify optimal binding poses even in the presence of multiple
plausible interaction sites. We will refer to this configuration as Grid C.

5.2.3 Calculations and results

Regarding the energetic contributions considered, we included the geo-
metric term, the electrostatic interaction, the van der Waals term, and, of
course, the molecular term, mainly accounting for π-stacking interaction. In
this initial test case, we chose to neglect both the hydrogen bonding and
hydrophobic contributions.

Benzene - Benzene

Initially, we chose to consider only a benzene fragment as pocket, neglect-
ing all other atoms.
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Table 5.1 summarizes the results obtained for a test configuration where
both the ligand and the molecule are benzene, and the pocketgrid used is
Grid A - a minimal configuration designed to tightly fit the ligand.

The simulation was performed using a set of Lambda Weights equal to
[1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0], where each value controls the relative contribu-
tion of one of the physical or geometric energy terms in the global Hamil-
tonian. The annealing process was carried out with 100 reads and 2000
sweeps, which proved sufficient for achieving convergence in this simplified
environment.

In simulated annealing the term “sweep” denotes the fixed number of
move-attempts performed at a single temperature before that temperature
is reduced. Each sweep typically consists of a sequence of proposals - one
per degree of freedom or a constant multiple thereof - so as to allow the
system to equilibrate locally and to overcome energy barriers characteristic
of the current thermal stage. By contrast, a “read” designates an entire an-
nealing trajectory, from the initial high temperature down to the final low
temperature, executed from a given random or predefined starting config-
uration. Multiple reads, each with its own sequence of temperature steps
and associated sweeps, are carried out in order to sample different regions
of the solution space and to reduce the risk of entrapment in suboptimal
local minima. The collection of final states obtained from all reads is then
examined and the configuration with the lowest recorded energy is selected
as the approximate global optimum.

The problem size includes 196 non-zero linear terms and 11,101 non-zero
quadratic couplings, for a total of 11,297 active terms in the QUBO formula-
tion. The selected couplers highlight the optimal pairwise node assignments
between the ligand and the pocketgrid, indicating a correct and coherent
mapping of the benzene atoms onto the grid.

Immediately below the line “Total non zero terms" we can observe the
ligand-to-grid node matchings corresponding to the optimal configuration.
The ligand node indices follow the same numbering as figure 5.3, while the
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grid nodes are indexed such that nodes 0–5 represent the positions for the
carbon atoms, nodes 6–7 correspond to the aromatic center and the vertical
anchor, and nodes 8–13 to the hydrogen atoms.

From an energetic perspective, the system achieved a total energy of
approximately −3.39 kcal/mol. The breakdown of the contributions is as
follows: the geometric energy is near zero (∼ 0.003), indicating excellent
structural compatibility with the ideal geometry; the van der Waals term
contributes −2.31, and the molecular term, mainly accounting for π-stacking
interactions, contributes significantly with −2.66. The electrostatic energy,
while slightly positive (+1.58), does not overcome the stabilizing effects of
the other components.

This result confirms that, in the controlled setting of Grid A, the model
correctly identifies the intended pose of the ligand, with the molecular term
playing a central role in stabilizing the configuration.

From the results shown in Table 5.1, we observe that the geometric energy
is nearly zero - as expected - and the sum of the molecular term, van der
Waals, and electrostatic contributions is close to −3 kcal/mol, which matches
the energy predicted by the simulations shown in Section 3.2.

Then, we repeated the calculation using Grid B, increasing the number
of reads and sweeps to 500 and 10,000, respectively, in order to identify the
optimal configuration. As the size of the pocket grid increases, the simulated
annealing algorithm requires more time to converge to the global minimum
of the Hamiltonian. In Table 5.2, we observe that the optimal position of the
ligand remains essentially unchanged compared to the previous case, with
the only noticeable difference being a rotation of the ligand around the axis
defined by the aromatic center and the vertical node - an axis for which
we explicitly chose not to apply any rotational penalty. Importantly, the
energetic contributions remain virtually unaltered, confirming the robustness
of the interaction under the added degrees of spatial freedom.

Grid C causes the simulated annealing process to struggle in identifying
the global minimum when the number of reads and sweeps is kept constant.
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Table 5.1: Results of the Simulated Annealing computation performed using
a benzene ligand, a benzene molecule, and Pocketgrid A.

Configuration

Lambda Weights [1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0]
Number of Reads 100
Number of Sweeps 2000

Problem Size

Non-zero linear terms 196
Non-zero quadratic terms 11 101
Total non-zero terms 11 297
Selected couplers {(9, 13), (0, 3), (10, 9), (11, 8), (12, 6), (13, 7), (1, 4)

(2, 2), (7, 12), (3, 5), (4, 1), (5, 6), (6, 11), (8, 10)}

Energies

Best Energy -3.3938571373910733
Geometric Energy 0.003140345434058167
vdW Energy -2.314786993062496
Electrostatic Energy 1.5819669974230242
Molecular Energy -2.664177487185666

In particular, while the minimum-energy configuration itself does not change
with the increased number of nodes, the algorithm requires a greater number
of steps to successfully locate the global minimum. This highlights the grow-
ing complexity of the energy landscape as the dimensionality of the system
increases, and suggests the need for tuning annealing parameters accordingly.
In Table 5.3 we observe that the simulated annealing algorithm fails to iden-
tify the optimal ligand placement by incorrectly mapping ligand node 10 to
grid node 44 and node 7 to node 37.

Nonetheless, it correctly fixes the aromatic center and the vertical anchor-
ing node in the expected positions, thereby preserving the favorable contribu-
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Table 5.2: Results of the Simulated Annealing computation performed using
a benzene ligand, a benzene molecule, and Pocketgrid B.

Configuration

Lambda Weights [1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0]
Number of Reads 500
Number of Sweeps 10000

Problem Size

Non-zero linear terms 574
Non-zero quadratic terms 92 289
Total non-zero terms 92 863
Selected couplers {(0, 1), (5, 4), (10, 11), (11, 12), (4, 3), (13, 7), (1, 0)}

{(12, 6), (2, 2), (6, 9), (7, 8), (3, 5), (8, 10), (9, 13)}

Energies

Best Energy -3.388727580462687
Geometric Energy 0.008269724178869398
vdW Energy -2.314786993062496
Electrostatic Energy 1.5819669974230242
Molecular Energy -2.664177487185666

tion from the derived from the molecular term. This indicates that, although
geometric alignment may be partially compromised, the algorithm still prior-
itizes key interaction features when guided by dominant energetic terms. In
order to preserve the ligand geometry more strictly, it would be sufficient to
increase the corresponding multiplicative parameter λ. This would enhance
the weight of the geometric term in the Hamiltonian, effectively penalizing
any deviations from the ideal spatial arrangement and guiding the optimiza-
tion process toward configurations that maintain the structural integrity of
the ligand. Indeed, setting the multiplicative coefficient of the geometric
Hamiltonian equal to 3 is sufficient to obtain a mapping analogous to the
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Table 5.3: Results of the Simulated Annealing computation performed using
a benzene ligand, a benzene molecule, and Pocketgrid C.

Configuration

Lambda Weights [1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0]
Number of Reads 500
Number of Sweeps 10000

Problem Size

Non-zero linear terms 770
Non-zero quadratic terms 165 382
Total non-zero terms 166 152
Selected couplers {(0, 4), (2, 3), (11, 9), (10, 44), (4, 2), (1, 5), (3, 0)}

{(12, 6), (13, 7), (8, 11), (5, 1), (6, 12), (7, 37), (9, 8)}

Energies

Best Energy -1.3872916321860629
Geometric Energy 2.5486193260826497
vdW Energy -2.4237688636220103
Electrostatic Energy 1.1520353925389477
Molecular Energy -2.664177487185666

one achieved with Grid B. In Figure 5.5, we show the actual placement of
the ligand within pocketgrid Grid C. The green nodes represent the benzene
molecule used to define the pocket, the light blue nodes correspond to the
pocketgrid, and the red nodes indicate the final position of the ligand after
the simulated annealing procedure.

Tyrosine - Benzene

We now present the results of the simulated annealing using a tyrosine
fragment as pocket. At first, we did the calculations using Grid B. In Table
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Figure 5.5: Final placement of the ligand within pocketgrid Grid C after
simulated annealing. Green nodes represent the benzene molecule used to
define the pocket, light blue nodes indicate the pocketgrid, and red nodes
correspond to the ligand.
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Table 5.4: Results of the Simulated Annealing computation performed using
a benzene ligand, a tyrosine molecule, and Pocketgrid B.

Configuration

Lambda Weights [1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0]
Number of Reads 500
Number of Sweeps 10000

Problem Size

Non-zero linear terms 574
Non-zero quadratic terms 92 289
Total non-zero terms 92 863
Selected couplers {(11, 8), (0, 3), (4, 1), (1, 4), (5, 0), (13, 7), (12, 6), (2, 2)

(7, 12), (3, 5), (10, 9), (6, 11), (8, 10), (9, 13)}

Energies

Best Energy -4.632910852359592
Geometric Energy 0.003140345434058167
vdW Energy -3.057246531658616
Electrostatic Energy 1.08563439979714635
Molecular Energy -2.664177487185666

5.4, we observe a slight variation in the energy values; however, the ligand po-
sitions itself on the grid in such a way as to activate the molecular interaction
term.

Moreover, convergence is achieved without the need to modify the anneal-
ing parameters, as the addition of atoms to the molecule does not significantly
increase the complexity of the optimization process. What primarily influ-
ences the computational effort is instead the number of ligand atoms and the
number of grid nodes.

After adding additional nodes to the pocket to construct Grid C, we
observe - consistent with previous examples - that the simulated annealing
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Table 5.5: Results of the Simulated Annealing computation performed using
a benzene ligand, a tyrosine molecule, and Pocketgrid C.

Configuration

Lambda Weights [1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0]
Number of Reads 500
Number of Sweeps 10000

Problem Size

Non-zero linear terms 770
Non-zero quadratic terms 165 382
Total non-zero terms 166 152
Selected couplers {(0, 3), (11, 41), (1, 4), (12, 6), (13, 7), (10, 9), (2, 2)}

{(3, 5), (7, 12), (4, 1), (5, 0), (6, 11), (8, 10), (9, 21)}

Energies

Best Energy -4.017530851045716
Geometric Energy -1.2784469779583828
vdW Energy -3.155647987894283
Electrostatic Energy 0.5238713452739902
Molecular Energy -2.664177487185666

algorithm has difficulty finding the minimum-energy configuration, as can be
seen in Table 5.5.

However, it can be seen in Table 5.6 that by imposing the multiplicative
coefficient λgeom = 3.0, while keeping the number of reads and sweeps fixed,
we are still able to recover the minimum-energy configuration.

In Table 5.7, we present the results obtained by performing the computa-
tion while explicitly neglecting the molecular term term - that is, by forcing
its contribution to zero. As a result, it becomes immediately evident that
the aromatic fragment occupies a different position within the grid. In this
case as well, we constrained the ligand geometry by setting the corresponding



5.2 Simulated Annealing Calculations 125

Table 5.6: Results of the Simulated Annealing computation performed using
a benzene ligand, a tyrosine molecule, and Pocketgrid C (with λgeom = 3.0).

Configuration

Lambda Weights [3.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0]
Number of Reads 500
Number of Sweeps 10000

Problem Size

Non-zero linear terms 770
Non-zero quadratic terms 165 382
Total non-zero terms 166 152
Selected couplers {(3, 1), (10, 13), (11, 8), (0, 3), (9, 9), (12, 6), (13, 7)}

{(1, 2), (2, 4), (7, 10), (4, 5), (5, 0), (6, 11), (8, 12)}

Energies

Best Energy -4.626367382727482
Geometric Energy -0.092442053302174501
vdW Energy -3.0572465361585616
Electrostatic Energy 1.0856393979746346
Molecular Energy -2.664177487185666

multiplicative coefficient to 3, in order to assess the placement of the benzene
ring under strict geometric constraints. From this result, we can infer that
the molecular term plays a decisive role in determining the optimal position-
ing of the aromatic fragment with respect to the interacting molecule. As an
additional test, we performed the calculations neglecting the molecular term
and without enforcing strict geometric constraints - that is, by setting the
multiplicative coefficient λ = 1 for the geometric term. As in previous cases,
the simulated annealing algorithm fails to identify the minimum-energy con-
figuration when using the same number of reads and sweeps, as can be seen
in Table 5.8. Moreover, even under these relaxed geometric conditions, the
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Table 5.7: Results of the Simulated Annealing computation performed using
a benzene ligand, a tyrosine molecule, and Pocketgrid C (with λgeom = 3.0

and λmol = 0.0).

Configuration

Lambda Weights [3.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0]
Number of Reads 500
Number of Sweeps 10000

Problem Size

Non-zero linear terms 770
Non-zero quadratic terms 165 379
Total non-zero terms 166 149
Selected couplers {(5, 41), (3, 46), (0, 44), (10, 50), (11, 49), (13, 48), (12, 47)}

{(8, 51), (1, 45), (7, 53), (2, 43), (4, 42), (6, 52), (9, 54)}

Energies

Best Energy -3.127581039752514
Geometric Energy 0.094238755649100843
vdW Energy -2.785603726443116
Electrostatic Energy -0.35136755309100084
Molecular Energy 0.0

ligand does not localize within the region expected for favorable π-stacking
interactions. This further highlights the critical importance of the molecular
term contribution, which proves to be essential even in systems involving
small molecules.

Phenylalanine - Benzene

As can be seen in Table 5.9, the phenylalanine fragment also yields results
consistent with previous cases, as the molecular term remains the dominant
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Table 5.8: Results of the Simulated Annealing computation performed using
a benzene ligand, a tyrosine molecule, and Pocketgrid C (with λgeom = 1.0

and λmol = 0.0).

Configuration

Lambda Weights [1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0]
Number of Reads 500
Number of Sweeps 10000

Problem Size

Non-zero linear terms 770
Non-zero quadratic terms 165 379
Total non-zero terms 166 149
Selected couplers {(9, 50), (0, 46), (10, 52), (11, 51), (2, 45), (12, 35), (13, 48)}

{(1, 34), (3, 42), (4, 44), (5, 43), (6, 54), (7, 14), (8, 53)}

Energies

Best Energy -0.9405758111578422
Geometric Energy 3.018710537609026
vdW Energy -2.6461049468682454
Electrostatic Energy -1.3131769120839338
Molecular Energy 0.0

factor in determining the spatial configuration of the aromatic moiety.

As with tyrosine, neglecting the molecular term, in the case of pheny-
lalanine results in a different minimum-energy configuration, as presented in
Table 5.10.

Tryptophan - Benzene

Also for tryptophan the results clearly highlight the significant role played
by the molecular term, as presented in Table 5.11.
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Table 5.9: Results of the Simulated Annealing computation performed using
a benzene ligand, a phenylalanine molecule, and Pocketgrid C (with λgeom =

3.0).

Configuration

Lambda Weights [3.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0]
Number of Reads 500
Number of Sweeps 10000

Problem Size

Non-zero linear terms 770
Non-zero quadratic terms 165 381
Total non-zero terms 166 151
Selected couplers {(11, 8), (0, 3), (1, 4), (12, 6), (13, 7), (10, 9), (2, 2)}

{(3, 5), (7, 12), (4, 1), (5, 0), (9, 13), (6, 11), (8, 10)}

Energies

Best Energy -4.70099515883253
Geometric Energy -0.0924410633642175
vdW Energy -3.657509237261247
Electrostatic Energy 0.6431992581567876
Molecular Energy -2.296025576075945

When the molecular term is artificially set to zero, the resulting minimum-
energy configuration changes once more, as can be seen in Table 5.12, further
confirming the essential role of the interaction term introduced in our model.
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Table 5.10: Results of the Simulated Annealing computation performed using
a benzene ligand, a phenylalanine molecule, and Pocketgrid C (with λgeom =

3.0 and λmol = 0.0).

Configuration

Lambda Weights [3.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0]
Number of Reads 500
Number of Sweeps 10000

Problem Size

Non-zero linear terms 770
Non-zero quadratic terms 165 379
Total non-zero terms 166 149
Selected couplers {(5, 41), (3, 46), (0, 44), (10, 50), (11, 49), (13, 48), (12, 47)}

{(8, 51), (1, 45), (7, 53), (2, 43), (4, 42), (6, 52), (9, 54)}

Energies

Best Energy -2.8897342861621154
Geometric Energy 0.009423875546901828
vdW Energy -2.74464882884347
Electrostatic Energy -0.15461126112561147
Molecular Energy 0.0
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Table 5.11: Results of the Simulated Annealing computation performed using
a benzene ligand, a tryptophan molecule, and Pocketgrid C (with λgeom =

3.0).

Configuration

Lambda Weights [3.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0]
Number of Reads 100
Number of Sweeps 2000

Problem Size

Non-zero linear terms 770
Non-zero quadratic terms 165 382
Total non-zero terms 166 152
Selected couplers {(0, 0), (2, 5), (11, 11), (10, 12), (3, 2), (7, 9), (12, 6), (13, 7)}

{(1, 1), (8, 13), (4, 4), (5, 3), (6, 8), (9, 10)}

Energies

Best Energy -4.346754590768584
Geometric Energy 0.0094215480205753365
vdW Energy -3.275729484362571
Electrostatic Energy 1.31605458889251902
Molecular Energy -2.3908170354769775
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Table 5.12: Results of the Simulated Annealing computation performed using
a benzene ligand, a tryptophan molecule, and Pocketgrid C (with λgeom = 1.0

and λmol = 0.0).

Configuration

Lambda Weights [3.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0]
Number of Reads 100
Number of Sweeps 2000

Problem Size

Non-zero linear terms 770
Non-zero quadratic terms 165 379
Total non-zero terms 166 149
Selected couplers {(5, 42), (6, 53), (3, 43), (0, 45), (10, 49), (2, 46), (11, 50), (13, 48)}

{(12, 47), (9, 16), (1, 44), (4, 41), (8, 54), (7, 52)}

Energies

Best Energy -1.8167994010083414
Geometric Energy 0.4506786219562666
vdW Energy -2.5807720222992677
Electrostatic Energy 0.313204300343465454
Molecular Energy 0.0





Conclusions

This thesis addressed the mathematical modeling of molecular interac-
tions through a discrete Hamiltonian framework, explicitly written in QUBO
form, in which all interaction terms and constraints are expressed using only
binary variables and quadratic expressions. The use of this formulation was
motivated by its compatibility with quantum annealing algorithms, which are
designed to efficiently solve combinatorial optimization problems. In partic-
ular, our objective was to apply this approach to molecular docking, where
the goal is to determine the most favorable configuration of a small molecule
(ligand) within the binding pocket of a target protein. In this context, the
lowest-energy configuration is assumed to correspond to the biologically rel-
evant binding pose.

The focus of the work was on modeling non-covalent π-stacking interac-
tions between aromatic rings. The central aim was to define a Hamiltonian
that is both mathematically well-posed and physically meaningful, capable
of encoding the essential features of π-stacking in a structure suitable for
discrete optimization over graph-based representations.

To inform and calibrate the construction of the model, we carried out a
series of quantum chemical simulations on representative molecular systems,
including benzene dimers and interactions with aromatic amino acids. These
simulations provided reference energy landscapes against which the structure
and coefficients of the Hamiltonian were tuned. The final model extends the
geometric formulation proposed by Triuzzi et al [1] by introducing a new
interaction term that captures both the directional and distance-dependent
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nature of π-stacking interactions.

The resulting QUBO Hamiltonian was tested using classical simulated an-
nealing, due to the temporary unavailability of the D-Wave quantum annealer
for technical reasons. Despite this limitation, the methodology proved effec-
tive: the simulated annealing algorithm successfully identified low-energy
configurations consistent with the reference data, validating the correctness
and applicability of the model. Future work will involve repeating the simu-
lations using quantum annealing hardware, with the aim of evaluating both
the performance and scalability of the proposed model in a realistic quan-
tum computational setting. In particular, the use of a quantum annealer
such as the D-Wave system will allow us to explore the advantages and lim-
itations of quantum optimization when applied to high-dimensional energy
landscapes associated with molecular docking. A central objective of this
next phase will be to assess whether the quantum annealer is capable of
consistently identifying low-energy configurations comparable to those ob-
tained via classical simulated annealing, especially in the presence of a larger
number of binary variables and more intricate molecular geometries. We
plan to apply the model to a broader class of ligands and binding pockets,
including larger aromatic systems and flexible molecules, in order to test
the generalizability of the Hamiltonian formulation and the robustness of
the optimization pipeline. These future developments will help clarify the
practical role of quantum annealing in computational chemistry workflows
and contribute to the development of hybrid classical-quantum methods for
molecular modeling. In the coming months, we also plan to carry out the
calculations related to the T-shaped configuration, which have not yet been
reported. Furthermore, to further validate the proposed model, we are inter-
ested in conducting new simulations aimed at investigating the energy profile
associated with the spatial rotations of the benzenic fragment. Another key
challenge that emerged concerns the trade-off between model accuracy and
computational cost. Unlike the formulation in [1], the model presented in
this thesis explicitly includes hydrogen atoms in the optimization process.
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While this choice improves the level of chemical detail, it also significantly
increases the number of variables involved, making the annealing procedure
more computationally demanding. A potential future direction will therefore
be the search for simplified yet chemically consistent formulations that retain
predictive power while reducing resource consumption.

In conclusion, this work shows that discrete Hamiltonians in QUBO form,
when grounded in physical data and carefully structured, offer a promising
mathematical framework for approximating molecular interactions. From a
mathematical standpoint, this thesis demonstrates the potential of combining
graph-based modeling, empirical parametrization, and discrete optimization
techniques to address relevant challenges in molecular docking and compu-
tational chemistry more broadly.
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