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Abstract

This thesis introduces a proof-of-concept for a Digital Twin supported by

technologies defined in the European ITS-G5 standard, primarily Coopera-

tive Awareness Messages (CAMs) and Decentralized Environmental Notifi-

cation Messages (DENMs), through a series of Roadside Units (RSUs) that

participate in vehicle communication and forward all received messages to

the system.

CAMs, used in Intelligent Transport Systems (ITS) to augment the per-

ception of all entities, enable the Twin to track the movement of cars on a

virtual map. DENMs, generated in the presence of hazardous situations, on

the other hand allow the system to detect adverse events in the network and

respond accordingly. To demonstrate the ability of the Twin to act on the

data it gathers, a new simulation tool is introduced to test optimal strategies

for redirecting traffic after a road closure. The system also features a compo-

nent to analyze the collected data, a web application to visualize it, and an

interface to configure the simulation environment by changing the network,

traffic scenario, and percentage of intelligent vehicles.

An introduction to ITS is followed by a background analysis of the available

technologies, the state-of-the-art of Digital Twins, and the chosen simulation

framework (the SUMO/Artery/OMNeT++ stack). The design of the custom

Twin is then described in detail.

Tests are conducted to assess the accuracy of the data collection strategy

and evaluate how decreasing the penetration rate of the Cooperative Aware-

ness (CA) service affects the creation of local traffic models. Use cases for

both the traffic simulation tool and the Twin itself are presented at the end

of the document.
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Chapter 1

Introduction

The revolution that, in recent decades, has transformed technologies re-

lated to the personal sphere, bringing us smartphones and smart homes, does

not yet seem to have fully reached the field of mobility. The heterogeneity

of environments and the entities that navigate them, the intrinsic chaos that

arises when a multitude of people are involved in the same activity, and the

necessary but overwhelming burden of bureaucracy all contribute to making

agreeing on standards — and even more so, deploying new technologies in

this field — a monumental task.

Smart vehicles are not a novelty [1], yet real examples of smart cities re-

main rare [2]. Although electric vehicle sales continue to increase [3], and

companies strive to perfect self-driving technology [4] or equip their vehi-

cles with increasingly powerful computers [5], a future in which all cars are

connected and cooperate still seems distant, if only due to the sheer scale of

the global urban network.

This raises the question: What can be done today? Given that the tech-

nology is largely available from a research standpoint, and the need for new

traffic management systems is clear [6], what can already be improved in

our cities? What role can smart vehicles already on the road play? What

does a real intelligent vehicular network look like, even on a small scale?

Urban mobility is slowly undergoing a profound transformation, driven by

the convergence of communication technologies, distributed sensing, and

the growing demand for smarter, safer, and more sustainable transportation
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Chapter 1. Introduction

systems. At the core of this transformation lies the concept of Intelligent

Transport Systems (ITS) [7], technological frameworks that integrate vehi-

cles, infrastructure, and control systems to optimize the movement of people

and goods.

A key enabler of ITS is Vehicle-to-Everything (V2X) communication [8],

which allows vehicles to exchange real-time information with other vehicles

(V2V), roadside infrastructure (V2I), pedestrians (V2P), and network ser-

vices (V2N). V2X provides the foundational capability for cooperation and

coordination on the road, enabling faster response to hazards, adaptive traf-

fic management, and efficient use of limited urban space.

These capabilities are supported by Vehicular Ad Hoc Networks (VANETs)

— decentralized, rapidly changing networks formed among moving vehi-

cles and fixed infrastructure [9]. Unlike traditional communication sys-

tems, VANETs must operate under high mobility, variable density, and unpre-

dictable conditions, while ensuring low latency and high reliability. Solving

these challenges is essential for unlocking the potential of Connected and

Automated Vehicles (CAVs), which rely on local sensing together with V2X

data to perceive their environment and make autonomous decisions.

In parallel, the concept of the Digital Twin (DT) has emerged. Simulations

remain the most viable approach to producing meaningful results while mit-

igating or avoiding the need for widespread adoption and massive upfront

investments. Numerous tools have been developed to manage the growing

complexity of networked and digital systems by mimicking traffic and testing

communication technologies, but among these the most powerful has proven

to be the Digital Twin [10]. DTs aim to create virtual replicas of physical

systems, updated in real time with data from their physical counterparts,

evolving alongside them throughout their life cycle. DT technology promises

to significantly enhance the capabilities of ITS, improving both safety and

mobility [11]. The virtual model needs quality data to be constructed ef-

ficaciously, which is usually sourced either from databases or captured in

real-time. In the context of urban mobility, a DT of a city aims at creating a

virtual representation of traffic conditions and vehicle behavior by analyzing

available data through simulations and machine learning. Many cities have

already adopted traffic detectors, like induction loops under the surface of

the most-used roads that count vehicles traveling above them. This kind of
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Chapter 1. Introduction

data is then periodically saved to a database and can be accessed through

an API. For example, the city of Bologna keeps track of the hourly counts for

its loops throughout the metropolitan area and makes them available in its

“OpenData” portal [12] every month. If freshness of data is a concern, an-

other strategy is to collect data directly, employing cellular technologies like

5G or sensors such as cameras and Lidars (light-based radars). The digital

counterpart can then enable the city administrations to test interventions,

monitor performance, and make proactive decisions, without relying solely

on large-scale deployment or costly infrastructure upgrades.

One tried and tested approach to defining or deploying DTs is sourcing data

directly from Roadside Units (RSUs). While their primary role is to aid ve-

hicle communication by providing a support infrastructure that is both static

and densely scattered, these same characteristics make them the perfect sub-

jects for research that moves beyond their V2X duties. DTs can leverage

RSUs as a data source either by mounting sensors on them [13][14] or by

taking advantage of their communication capabilities, by employing custom

protocols [15] and making predictions based on the received messages [16].

This thesis investigates how V2X communication and infrastructure-based

sensing can be integrated to build effective and cost-efficient Digital Twins

in complex urban environments, by creating a proof of concept for a DT with

those characteristics using existing V2X protocols and simulation tools to

bridge the gap between today’s roads and tomorrow’s smart cities, evaluating

the feasibility and accuracy of such a system even under partial adoption sce-

narios. The objective is to use Cooperative Awareness Messages (CAMs) and

Decentralized Environmental Notification Messages (DENMs) to retrieve ve-

hicle data. Cooperative Awareness (CA) is a core component of the “ITS-G5”

proposal for a European ITS standard, wherein messages are exchanged be-

tween CAVs to enhance their awareness of the surrounding environment.

Since the adoption of such a technology is still in the early stages, the matter

becomes how accurate traffic models generated from such data are. Despite

its relative simplicity, this approach is scarcely represented in the literature,

especially when applied to sophisticated networks such as city centers. By

comparing real data from simulations with data sensed by connected vehi-

cles, the analysis on how accurately traffic conditions are captured can be

carried out, simulating various penetration levels of connected vehicles, and
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Chapter 1. Introduction

comparing perceived versus actual traffic states. The potential for the pro-

posed system to be employed as a real DT is also demonstrated by show-

casing the ability to construct simulations from the collected data, using a

custom program to test traffic redirections after a road closure. Upon receiv-

ing sufficient event messages from the DENM protocol, the twin can request

the best course of action for the congested area given the current traffic situ-

ation.

The document is structured as follows. Chapter 2 presents the necessary

background for understanding the project. It begins with an introduction to

intelligent transportation systems and a concise overview of European stan-

dards for Vehicle-to-Everything communication, focusing on ITS-G5 and the

Cooperative Awareness and Decentralized Environmental Notification facil-

ities. This is followed by a discussion on Digital Twins, their architecture,

challenges, and real examples. The Artery-V2X simulation framework and

its key components — SUMO, the mobility simulator, and OMNeT++, the

network simulator — are then introduced.

Chapter 3 illustrates the actual project, a digital twin that tracks vehicles

based on Cooperative Awareness and Decentralized Environmental Notifica-

tion (DEN) messages, covering its architecture and noteworthy implementa-

tion choices. The chapter introduces all its components: the vehicle tracker

(Vesuva), a data analysis library (Tolaria), a visualization web app (Academy),

a graphical simulation manager (Dominaria), and a tool designed to test the

impact of traffic redirection named Agamotto.

Finally, Chapter 4 presents the results, and Chapter 5 depicts some note-

worthy use cases.
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Chapter 2

Background

2.1 Vehicle-to-Everything

ITS have increasingly gained interest from both academic researchers and

urban administrations due to their potential to drastically improve the expe-

rience and safety of all entities that make up vehicular networks. Tradition-

ally, many vehicle safety features have been designed to operate indepen-

dently, confined to onboard systems such as cruise control, ABS (Anti-Lock

Braking System), lane departure warnings, or autonomous emergency brak-

ing. Although these systems are undeniably useful, their capabilities are in-

herently limited by the quantity and quality of the information that vehicles

can collect through their sensors. To achieve higher degrees of automation

and safety, vehicles must go beyond their isolated perception capabilities and

engage in cooperative behavior through data sharing with external sources.

This necessity brings forth the concept of vehicular networks, which requires

a type of Mobile Ad Hoc Mobile Network (MANET) optimized for vehicle

communication: a VANET [17].

Vehicular Ad Hoc Networks are specifically designed for high mobility and

rapidly changing topologies, and have strict requirements for low latency

and high reliability. They provide the foundation for V2V and V2I communi-

cation, in which vehicles act as network nodes. However, modern ITS design

has expanded this scope even further with the emergence of the so-called

V2X paradigm, a “Internet of Vehicles” of some kind [18].

5



2.1. Vehicle-to-Everything Chapter 2. Background

2.1.1 V2X Overview

V2X refers to a family of communication technologies that allow vehicles to

interact not only with other cars (V2V), but also with roadside infrastructure

(V2I), pedestrians (V2P), and centralized networks such as cloud services

(V2N). The goal of V2X is to provide vehicles with an augmented view of

their environment, enabling more accurate and timely decisions for driving

safety and traffic coordination.

Although the basic ideas underlying V2X can be traced back to research in

the 1970s [19], it was not until 2010 that a widely accepted standard, IEEE

802.11p, was published [20]. This standard, referred to as Dedicated Short-

Range Communications (DSRC) in the US [21], was designed to facilitate

low-latency, direct wireless communication in vehicular environments. De-

spite this early standardization, the first mass-produced V2X-enabled vehicle

only appeared in 2016, introduced by Toyota [22].

The 3rd Generation Partnership Project (3GPP) consortium for interna-

tional mobile communications standards identifies several use cases for V2X

technology [23], categorized in 4 main groups [24]:

Vehicle Platooning supports the formation of a group of vehicles that are

interconnected in a virtual chain. This use case includes Platoon for-

mation, different levels of data resolution for Information Exchange,

Cooperative Driving, and Changing Driving-Mode.

Remote Driving allows vehicles to be controlled remotely, whether by hu-

mans or cloud/edge computing applications, in the event that an au-

tonomous vehicle is not able to drive autonomously, must operate in

dangerous and harsh conditions or just so that the driver does not have

to be physically present in the vehicle.

Extended Sensors enable the exchange of data (both raw and processed)

collected through local sensors, live video images, RSUs, pedestrian

devices, and V2X application servers. Vehicles can increase the aware-

ness of their environment beyond what their sensors can detect. This

group includes three use cases: Sensor and State Map sharing, Collec-

tive Perception of Environment, and Video Data sharing for Automated

Driving.

6



Chapter 2. Background 2.1. Vehicle-to-Everything

Advanced Driving enables a high Level of Automation (LoA) to reach fully

automated driving. Each entity shares data obtained from its local sen-

sors with vehicles in proximity and notifies its driving intentions, thus

allowing them to coordinate their trajectories and maneuvers. The ben-

efits of this use case group are safer traveling, collision avoidance,

and improved traffic efficiency. Use cases include Cooperative Col-

lision Avoidance, Emergency Trajectory Alignment, Cooperative Lane

Change, and 3D video composition.

Several technical challenges arise when considering these use cases and

the environment as a whole [19]. A central challenge of VANETs is that

no communication coordinator or handshaking protocol can be assumed.

Although some applications may involve the use of infrastructure, most of

them are expected to operate reliably using decentralized communication.

Given that many applications will be broadcasting information of interest to

all surrounding cars in a short period, the necessity of a single, shared control

channel can be derived, as making use of more than one channel would lead

to multi-channel synchronization and co-channel interference problems.

Other challenges include the dynamic network topology, which is based

on the mobility and speed of the vehicles, and the environmental impact on

radio propagation. The latter must take into account that the low antenna

heights and the attenuation/reflection of all the moving metal vehicle bodies

result in adverse radio channel conditions. Altogether, VANETs must work

properly in a wide range of conditions, including sparse and dense vehicular

traffic.

Two mainstream approaches emerged to support V2X and its demands for

highly efficient low-latency connections [25]:

• WLAN-based V2X: includes standards, such as the aforementioned

IEEE 802.11p, which enable direct and infrastructure-less communica-

tion between nodes, thanks to an approach to Medium Access Control

(MAC) based on Carrier Sense Multiple Access (CSMA).

• Cellular V2X (C-V2X): takes advantage of cellular networks (e.g., 4G,

5G) to provide V2X functionality. It enables both direct communication

and broader access to cloud services, with support for network slicing

and URLLC (ultra-reliable low-latency communication).

7



2.1. Vehicle-to-Everything Chapter 2. Background

2.1.2 Technologies

This Thesis focuses on WLAN-based V2X and particularly ETSI (European

Telecommunications Standards Institute) ITS-G5 [26], a standard based on

802.11p (a variant of Wi-Fi optimized for vehicular environments) that op-

erates in the 5.9 GHz band. ITS-G5 is designed to support low-latency, high-

reliability communication between vehicles and infrastructure, enabling ap-

plications such as traffic safety, traffic management, and infotainment.

ITSC, or Intelligent Transport System Communications, is a type of com-

munication system dedicated to transportation scenarios, as exemplified in

Figure 2.1. These systems form the backbone of modern ITS deployments,

enabling a wide range of cooperative functionalities in both urban and high-

way contexts.

Figure 2.1: Example of an ITS communication scenario including vehicles,
infrastructure, and pedestrians [27]

ITS-G5 meets the criteria of being a decentralized, broadcast-based archi-

tecture that allows vehicles to communicate directly with each other and

with RSUs in their radio range without relying on a central infrastructure.

ITS-G5 is especially suited for time-critical applications like hazard notifica-

8



Chapter 2. Background 2.1. Vehicle-to-Everything

tions and Cooperative Awareness, and as such supports various applications,

including CAMs, DENMs, and CPMs (Collective Perception Messages). This

Thesis will focus on CAMs, used to exchange information about the vehicle’s

status, and DENMs, used to notify vehicles of hazardous situations.

According to the standard [27], an ITS network is made up of multiple

types of ITS-Stations (ITS-S), such as:

• Vehicle ITS-S: Installed in cars, trucks, or buses.

• Roadside ITS-S: Installed on infrastructure such as RSUs.

• Central ITS-S: Part of backend traffic control or monitoring systems.

• Personal ITS-S: Found on user devices such as smartphones.

Each ITS-S follows a layered architecture derived from the OSI model, with

adaptations specific to ITS requirements. A simplified architectural model is

shown in Table 2.1.

ITS-S Layer Corresponding OSI Layers

Access Physical and Data Link (Layers 1-2)

Networking & Transport Network and Transport (Layers 3-4)

Facilities Session, Presentation, Application (Layers 5-7)

Table 2.1: Mapping between ITS-S architecture and OSI layers

The Facilities layer is the one of interest for this Thesis, as it is responsi-

ble for managing higher-level services such as message construction, event

detection, and communication policies, and contains the ITS applications of

interest.

CAM - Cooperative Awareness Messages

Cooperative awareness [28] within road traffic means that road users and

the roadside infrastructure are informed about each other’s position, dynam-

ics, and attributes. Information about the local environment is essential in

cooperative ITS systems, as applications require knowledge both on moving

objects, such as other vehicles nearby, and on stationary objects, such as traf-

fic road signs. Common information required by different applications can

9



2.1. Vehicle-to-Everything Chapter 2. Background

be maintained in a conceptual data store located within an ITS station called

a Local Dynamic Map (LDM), which contains information relevant to the safe

and successful operation of ITS applications [29].

Data can be received from a range of different sources and is organized

into four types:

• Type1: permanent static data, usually provided by a map data supplier.

• Type 2: transient static data, obtained during operation, e.g., changed

static speed limits.

• Type 3: transient dynamic data, e.g., weather situation, traffic informa-

tion.

• Type 4: highly dynamic data (CA).

The dynamic information to be exchanged for Cooperative Awareness is

packed up in the periodically transmitted CAM. The construction, manage-

ment, and processing of CAMs is done by the Cooperative Awareness base

service (CA base service), which is part of the facilities layer within the ITS

communication architecture. The CA base service is a mandatory facility for

all kinds of ITS-S, which take part in road traffic (vehicle ITS-S, personal

ITS-S, etc.) [28].

CAMs contain information about the vehicle’s position, speed, heading, and

other relevant data, allowing vehicles to be aware of each other’s presence

and status. Vehicles send updates typically every second, broadcasting to

cars and RSUs within the radio range to allow real-time awareness of the

surrounding environment. The information contained in the messages can

be used to detect potential collisions, monitor traffic conditions, and support

ADASs (advanced driver assistance systems).

CAMs are transmitted point-to-point, and received messages are never

propagated. Generation frequency is managed by the CA base service; it de-

fines the time interval between two consecutive creations, setting the upper

and lower limits at 100ms and 1000ms. Within these limits, CAM generation

is triggered depending on the originating ITS-S dynamics and the channel

congestion status. In case the formers lead to a reduced generation interval,

this is maintained for many consecutive messages.

10
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Two parameters govern the generation logic:

• T_GenCam_Dcc: Minimum interval between two consecutive CAMs.

• T_GenCam: Currently valid upper limit of the CAM generation inter-

val.

A CAM is immediately generated if:

1. The time elapsed since the last generation is ≥ T_GenCam_Dcc and

one of the following dynamics-related conditions is true:

• the absolute difference between the current and the previously

transmitted heading exceeds 4°;

• the distance between the current and the previously transmitted

position exceeds 4m;

• the absolute difference between the current and the previously

transmitted speed exceeds 0,5 m/s.

2. The time elapsed since the last generation is ≥ T_GenCam and ≥
T_GenCam_Dcc.

CAM data is stored in containers constructed by the CA base service. Some

include the highly dynamic information of the originating ITS-S and are

mandatory:

• basicContainer: Contains basic information about the vehicle, such as

its position, speed, and heading.

• highFrequencyContainer: Contains time-critical information that

changes frequently, including the vehicle’s acceleration, yaw rate, and

other dynamic attributes.

Additionally, a CAM may include optional data:

• lowFrequencyContainer: Contains information that is not time criti-

cal, for instance, vehicle dimensions, vehicle type, or other static at-

tributes.

• specialVehicleContainer: Contains information specific to certain

types of vehicles, such as emergency or public transport vehicles.

11



2.1. Vehicle-to-Everything Chapter 2. Background

Some of the mandatory and optional fields contained in a CAM are:

• Position: The position of the vehicle in the WGS84 coordinate system,

expressed as latitude and longitude.

• Speed: The speed of the vehicle in meters per second.

• Heading: The direction of the vehicle in degrees relative to true north.

• Vehicle Type: The type of vehicle, such as car, truck, or bus.

• Vehicle Length / Width / Height: The dimensions of the vehicle in

meters.

• Vehicle ID: A unique identifier for the vehicle.

• Timestamp: The time at which the CAM was generated.

The time field is called generationDeltaTime, but, despite the name, does

not represent the time elapsed since the last CAM generation. It is the time

of the reference position, considered as the time of the message creation.

Its value is set as the remainder of TimestampIts divided by 65536 (216),

where TimestampIts represents an integer value in milliseconds since 2004-

01-01T00:00:00:000Z. GenerationDeltaTime is thus a number of millisec-

onds wrapped to 65536, so it does not represent a moment in time by itself.

DENM - Decentralized Environmental Notification Messages

The DEN basic service [30] is another application support facility provided

by the Facilities layer that constructs, manages, and processes DENMs. The

construction of a message is triggered by an ITS-Station application and con-

tains information related to a road hazard or abnormal traffic conditions,

such as its type and position.

Examples of scenarios that trigger a DENM include:

• Detection of an obstacle or accident.

• Roadworks or temporary lane closures.

• Weather hazards (fog, ice, flooding).

• Emergency vehicle approaching.

12



Chapter 2. Background 2.1. Vehicle-to-Everything

Typically, a DENM is disseminated to ITS-S that are located in the same

geographic area. On the receiving side, the DEN basic service of a receiving

Station processes the received message and provides its content to an appli-

cation that may present the information to the driver if it is assessed to be

relevant.

DEN dissemination may be repeated and persist as long as the event is

present. A DENM may be forwarded (by the ITS Networking & Transport

layer) by intermediate stations in order to disseminate messages from the

originating ITS-S to the receiving ITS-S, if the receiving station is not lo-

cated in the direct communication range of the originating one. In addition,

the DEN basic service may provide forwarding functionality at the facilities

layer, to maintain the DENM retransmission in certain situations, for exam-

ple, when the originating ITS-S has lost the capability to repeat message

transmission. The messages appear to linger in an area, as they are repeat-

edly sent in the vicinity of the event until it is terminated.

Termination is either automatically achieved by the facilities layer, for ex-

ample, when a predefined expiry time is reached, or by an ITS-S application

that requests the generation of a message to notify that the event has termi-

nated.

The following DENM types are defined:

• New DENM: generated when an event is detected by an originating

ITS-S for the first time.

• Update DENM: includes update information of an event, sent by the

same originating ITS-S which had generated the event.

• Cancellation DENM: informs the termination of an event, sent by the

same originating ITS-S that had generated the event.

• Negation DENM: informs the termination of an event, sent by a dif-

ferent ITS-S than the one that had generated the event (in case the

originating station has left the zone).

To support dissemination, event identification is enabled by the parameter

actionID. Each time a new DENM is generated upon an application request,

a new actionID value is assigned.

13



2.2. Digital Twins Chapter 2. Background

Other parameters included in a message are:

• Event Position: The position of the event in the WGS84 coordinate

system, expressed as latitude and longitude.

• Event Type: The type of event, such as accident, roadworks, or traffic

jam.

• Relevance Distance: The distance at which event information is rele-

vant for the receiving ITS-S, starting from the event position.

• Detection Time: The time at which the event was first detected.

• Reference Time: The time at which a new or update DENM was gen-

erated.

• Validity Duration: Set by the originating ITS-S, it represents an esti-

mate of how long the event may persist. It translates to the duration

over which the DENM should be kept at the DEN basic service of the re-

ceiving station, and the DENM dissemination should be maintained in

the relevance or destination area. In case the expiry time of the event

cannot be estimated, a default value is used. This field may be renewed

if the preset expiry time has reached its limit and the originating station

detects that the event persists.

2.2 Digital Twins

A Digital Twin is a virtual model of a real object or system that can be

used to simulate and analyze its behavior. It is a powerful tool for under-

standing complex systems, as it allows the testing of different scenarios and

the prediction of outcomes without the need for physical experimentation.

Digital Twins are at the forefront of the Industry 4.0 revolution facilitated by

advanced data analytics and the Internet of Things (IoT) connectivity, which

has increased the volume of data usable from manufacturing, healthcare,

and smart city environments [31].

Formal ideas around Digital Twins have been around since the early 2000s,

with the first terminology given in a 2003 presentation at NASA (later doc-

umented in a white paper [32]) about a space vehicle twin. The concept

of a digital twin was later expanded to include more types of systems, with
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applications in predictive maintenance and fault detection in manufactur-

ing processes, anomaly detection in patient care, and traffic management in

smart cities.

Definitions can vary from one author to another, but the core idea remains

the same:

A Digital Twin is a virtual instance of a physical system (twin)

that is continually updated with the latter’s performance, main-

tenance, and health status data throughout the physical system’s

life cycle. [33]

There exist some misconceptions about digital twins, as not all digital

copies of real systems can be considered true twins. Depending on the dif-

ferent level of data integration between the physical and digital model, a

classification can be derived [34]:

• Digital Model: digital version of a preexisting or planned physical ob-

ject, with no automatic data exchange between the physical and digital

model. Once the digital model is created, a change made to the physi-

cal object has no impact on the digital model and vice versa.

• Digital Shadow: a virtual representation that has a one-way flow be-

tween the physical and digital object. A change in the state of the

physical object leads to a change in the digital object, but not the other

way.

• “True” Digital Twin: a virtual representation that has a two-way flow

between the physical and digital object. A change made to the physical

object automatically leads to a change in the digital object, and the

digital copy can (directly or indirectly) act on the physical counterpart.

The manufacturing sector saw the most significant impact of this technol-

ogy, which allows for the simulation of production processes, the optimiza-

tion of supply chains, and the prediction of equipment failures - all ways to

save time and money. The current trend follows the growth of the Industry

4.0 concept, coinciding with the fourth industrial revolution. This approach

connects devices and systems, generating a volume of unstructured, hetero-

geneous big data never seen before, opening up opportunities for smart man-
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ufacturing and making it possible to leverage Digital Twins to help monitor

and improve processes in real time [35].

The typical structure for DTs in construction applications is shown in Fig-

ure 2.2. It includes a multi-layered framework that integrates sensing, com-

munication, storage, analytics, and visualization capabilities.

Figure 2.2: Structure for a Digital Twin of a construction site [36]

Smart cities are the next big logical application for Digital Twins, and their

potential to be dramatically effective within a smart city is increasing due

to rapid developments in connectivity through IoT and the growing number

of smart cities developed. By analyzing the main challenges associated with

Digital Twins [31], it is possible to identify the main areas of research and

development that need to be addressed to make them a reality in smart cities:

• IT Infrastructure. A connected and well-thought-through infrastruc-

ture is needed to support the effective running of a Digital Twin. This

is also true for data analytics and privacy, which are crucial to ensure
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that the data collected is accurate and secure. A significant challenge

for IoT systems is connecting legacy machines to the IoT environment,

particularly in urban settings and the vehicular network as a whole.

• Quality of data. A successful system needs useful data that is noise-

free and provided in a constant, uninterrupted stream. If the data is

poor and inconsistent, it runs the risk of the Digital Twin greatly un-

derperforming. Planning and analysis of device use are hence needed

to ensure that the right data is collected and correctly filtered.

• Privacy. Within an industry or city setting, privacy and security as-

sociated with Digital Twins are a challenge. Sensitive system data is

at significant risk, aggravated by the sheer volume of information that

needs to be handled. To overcome this, the key enabling technologies -

data analytics and IoT - must follow the current practices and updates

in security and privacy regulations, like GDPR (General Data Protection

Regulation).

• Trust. An often-overlooked aspect, trust is crucial for the success of

any new technology, both for organizations and the end users. This

comes from adequate discussion and explanation at a foundation level

and from demonstrating that Digital Twins can perform at the expected

level of quality. Setting and managing expectations are thus necessary.

• Standardization. From initial design to the final product, there needs

to be a standard approach to ensure domain and user understanding

while ensuring information flow between each stage of the develop-

ment and implementation of a Digital Twin. Since the models of the

physical world that compose the digital twin belong to different do-

mains, they require different tools and formalisms whose interoper-

ability can only be achieved with great effort.

• Domain Modeling. As a result of the need for standardization, ensur-

ing that information related to domain use is transferred to each devel-

opment and functional stage of a Digital Twin’s modeling guarantees

compatibility with domains such as IoT and data analytics.
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The architecture of an urban DT closely resembles the example of Fig-

ure 2.2, related to the construction field. In fact, it is possible to synthesize

the layers [36] present in any Digital Twin (Figure 2.3) as:

• Perception layer: responsible for the collection and management of

data from the physical world. Depending on the deployment strategy,

it can provide light filtering or full-on analysis before committing data

to storage. It contains two additional layers:

– Sensing layer: the first and most fundamental layer of any DT ar-

chitecture, that encompasses one or more types of data-acquisition

devices responsible for collecting raw data from the physical envi-

ronment in which they are deployed.

– Communication layer: it serves as the bridge between the physi-

cal site and its digital representation, facilitating the transmission

of the data collected by the sensing layer and transferring it to the

digital hub to be stored, processed, and visualized.

• Storage layer: once data is collected and transmitted, it needs a se-

cure and scalable storage infrastructure. The storage layer stores vast

amounts of sensing data along with historical records, project docu-

mentation, and other relevant information that can collectively be an-

alyzed to draw insights.

• Analytics layer: it forms the intelligence hub of the digital twin system,

responsible for processing and translating the data. Here, advanced

algorithms, machine learning models, and statistical analytical tools

process the raw data to derive insights.

• Visualization layer: the DT frontend, where the processed data gets

presented in insightful and proper formats that enable easy access for

quick decision-making.

• Player: the end-user of a Digital Twin is whoever is responsible for

deployment and decision making. In the urban environment, city ad-

ministrators and law enforcement typically fulfill this role.
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Figure 2.3: Digital Twin architecture

There are very few examples of already working (or planned) real Digi-

tal Twins for cities around the world. The approach is usually to strive to

obtain the most accurate digital version of the source, to help city planning

through simulations. For example, the Boston Digital Twin [37] has the

goal of aiding the design of next-generation 6G networks, and is capable of

instantaneous rendering and programmatic access to the building models,

and can accurately represent the electromagnetic propagation environment

in the real-world city of Boston. The nation of Singapore is also developing

a DT to simulate the areas most at risk of flooding [38], while in Helsinki,

the ever-evolving “Helsinki-3D” project [39] helps planning sustainable ur-

ban expansions. There are also Twins designed with traffic prediction and

increased road safety in mind. A monumental effort of mapping the largest

city in China led to the creation of the Shanghai Twin [40], assisting the lo-

cal police during emergencies by overlaying live surveillance footage, traffic

movement, and heat maps.

The goal of this Thesis is to analyze the level of quality achieved by using

an unconventional source for the data, such as Cooperative Awareness Mes-

sages, for a Digital Twin. CAVs, or smart vehicles, are not a rare sight, but
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their diffusion is probably far from ideal to guarantee the required flow of

data. Still, the cost-effectiveness of such a solution compared to those that

rely on computer vision and sensor-based sensing is worth looking into, as

the accuracy of traffic models starting from partial data may turn out to be

adequate for most applications.

2.3 Simulation environment

Complex fields benefit significantly from the use of simulations, which can

generate large amounts of valuable data without the need to deploy in the

real world test solutions that would require several thousand entities.

This work deals with both traffic analysis and novel telecommunications

technologies: simulated vehicles need to traverse an urban network while

accurately simulating radio communication. Fortunately, many tools have

been developed to assist in these tasks. Among them, one joins two of the

most used applications for testing traffic and wireless networks: Artery-V2X.

2.3.1 Artery-V2X

Artery-V2X (from here on referred to as “Artery”) is a simulation frame-

work based on ETSI ITS-G5 protocols like GeoNetworking and BTP (Basic

Transport Protocol). The project initially started as an extension of “Veins”

(Vehicles in Network Simulation), which put emphasis on the US counterpart

of ITS-G5, WAVE (Wireless Access in Vehicular Environments). Artery simu-

lations see two main programs working together, as shown in Figure 2.4.

One is OMNeT++ [41], an extensible, modular, component-based C++ sim-

ulation library and framework, primarily for building network simulators.

The other is SUMO [42], the popular open-source traffic simulator suite de-

veloped initially by the German Aerospace Center in 2001 and since 2018

a project of the Eclipse Foundation. SUMO allows modeling of inter-modal

traffic systems - including road vehicles, public transport, and pedestrians. A

wealth of supporting tools, many developed by the community, are bundled

with the program and help automate core tasks for the creation, execution,

and evaluation of traffic simulations, such as network import, route calcula-

tions, visualization, and emission calculation.
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Figure 2.4: Artery-V2X architecture

OMNeT++ is responsible for driving the simulation forward, controlling

SUMO through its “TraCI” interface. Artery also does not provide any simu-

lation model of wireless communication itself, but employs existing models,

such as INET’s IEEE 802.11 implementation [43].

2.3.2 OMNeT++

OMNeT++, or OMNeTpp, is a discrete event simulator written in C++ [41].

It supports a wide range of domains, including sensor networks, wireless ad-

hoc networks, Internet protocols, performance modeling, photonic networks,

and more. It has gained widespread popularity as a simulation platform for

communication networks in both academic and industrial settings, resulting

in a large user base.

OMNeT++ provides a flexible, component-based architecture for building

models. Components - called modules - are implemented in C++ and can

be composed into larger hierarchical systems using a high-level topology de-

scription language called NED (NEtwork Description). OMNeT++ also fea-

tures an Eclipse-based IDE, a command-line interface, interactive graphical

simulation tools, and various result processing utilities.
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The most commonly used protocol library for OMNeT++ is the INET Frame-

work, which provides models for a wide variety of Internet protocols and

wireless technologies. INET is often extended or customized to suit the spe-

cific needs of a simulation study, for example, with extensions like Artery for

simulating V2X communications.

Workflow

The official OMNeT++ documentation [44] outlines a typical workflow to

develop and run simulations:

1. Build an OMNeT++ model from components (modules) that commu-

nicate by exchanging messages. When creating the model, the system

needs to be organized into a hierarchy of communicating modules.

2. Define the model structure in the NED language. NED files can be

edited in a text editor or in the graphical editor of the Eclipse-based

OMNeT++ Simulation IDE.

3. Program the active components of the model (simple modules) in C++,

using the simulation kernel and class library. Classes that represent

protocol headers are described in MSG files, which are then translated

into C++ code.

4. Provide a suitable omnetpp.ini file to hold OMNeT++ configuration and

parameters for the model. One .ini file may hold several configurations

that can build on one another, and may even contain parameter studies.

5. Build the simulation program and run it. Code is linked with the sim-

ulation kernel and one of the user interfaces OMNeT++ provides, such

as CMDEnV (command line), and QTEnv (GUI).

6. Simulation results are written into the output vector and output scalar

files. These can be analyzed and plotted using the Analysis Tools pow-

ered by Pandas and Matplotlib in the Simulation IDE. Result files are

text-based, so they can be processed by any tool.
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Messages and Signals

OMNeT++ uses messages to represent events, sent from one module to an-

other - this means that the place where the “event will occur” is the message’s

destination module, and the model time when the event occurs is the arrival

time of the message. Events like “timeout expired” are implemented by the

module sending a message to itself.

Signals are similar to messages, since they are also sent from one module to

another, but they are used to broadcast information. Signals can be used to

notify other modules about events without requiring the explicit sending of

a message. Signals are emitted by components (modules and channels) and

propagate on the module hierarchy up to the root. At any level, listeners can

be registered (objects with callback methods). These listeners will be notified

by calling their appropriate methods whenever a signal value is emitted.

The result of upwards propagation is that listeners registered at a compound

module can receive signals from all components in that submodule tree, and

a listener registered at the system module can receive signals from the whole

simulation.

Simulation signals can be used for:

• exposing data for statistics collection purposes, without specifying how,

where, and whether to record them.

• receiving notifications about simulation model changes at runtime, and

acting upon them.

• implementing a publish-subscribe pattern of communication among

modules.

• emitting information for other purposes, for example, as input for cus-

tom animation effects.

NED Files

The NED (Network Description) language is used in OMNeT++ to define

the static structure of a model — its components, how they are connected,

and how they are nested. NED files have a ‘.ned‘ extension and support both

graphical and textual editing within the OMNeT++ IDE.
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Modules, whose logic is defined in C++ files, can be either simple or com-
pound. Each module can declare parameters, gates (input/output ports for

message passing), and more. Simple modules are then wired together in

compound modules to form a complete network.

1 module Host {
2 parameters:
3 int capacity;
4 gates:
5 input in;
6 output out;
7 sub modules:
8 tcp: TCP;
9 ip: IP;

10 connections:
11 tcp.ipOut --> ip.tcpIn;
12 tcp.ipIn <-- ip.tcpOut;
13 }

Listing 2.1: .ned file example

Parameters are variables that belong to a module. Parameters can be used

in building the topology (number of nodes, etc.), and to supply input to C++

code that implements simple modules and channels. Parameters can get their

value from NED files or from the configuration (omnetpp.ini file).

NED files can be organized into packages, which are directories that con-

tain NED files and other resources. Packages can be imported into other NED

files using the ‘import‘ statement, allowing for modular design and reuse of

components, thanks to the ability to inherit from previously defined modules,

extending their functionality.

omnetpp.ini file

The omnetpp.ini file serves as the main configuration file for a simulation

run. It defines global and module-specific parameters, selects which net-

work to instantiate, and configures output options, random seed settings,

and more. The file is written in an INI-style format with key-value pairs

grouped under named configurations.
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Keys may be classified according to their syntax:

• Keys without dots (e.g., ‘sim-time-limit’) represent global or per-run

configuration options.

• Keys with dots (e.g., ‘*.module.parameter’) represent per-object config-

uration options.

• Otherwise, the key represents a parameter assignment.

1 [General] # section heading
2 network = Foo # configuration option
3 debug -on-errors = false
4 sim -time -limit = 500s
5

6 # per -object configuration options with wildcards
7 **. vector -recording = false
8 **. app*. typename = "HttpClient"
9 **. app*. interval = 3s

10

11 [Config Test1]
12 **. app*. interval = 5s
13 # overwrites the previously set value
14 if this configuration is selected

Listing 2.2: omnetpp.ini example

Parameters can be specified using wildcard expressions (e.g., *.speed = 25)

to apply settings across multiple modules, navigating the entire hierarchy.

OMNeT++ allows multiple named configurations within the same INI file

using headers such as [Config Test1]. These configurations can inherit from

others using the “extends” keyword, to factor out the common parts of sev-

eral configurations into a “base” configuration, and to reuse existing config-

urations without copying, by using them as a base.

The omnetpp.ini file plays a central role in reproducibility and experimen-

tation, allowing users to easily switch between scenarios, toggle logging set-

tings, and perform parameter studies — all without changing the simulation

code or topology.
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2.3.3 SUMO - Simulation of Urban MObility

SUMO [42] is not simply a building block of Artery; it is also at the core of

the project developed for this Thesis.

SUMO is an open-source, microscopic, multi-modal traffic simulation

framework [45]. It allows for the simulation of how a given traffic demand,

consisting of single vehicles, moves through a given road network. The sim-

ulation allows for addressing a large set of traffic management topics, and it

is purely microscopic: each vehicle is modeled explicitly, has its own route,

and moves individually through the network. Simulations are deterministic

by default, but there are various options for introducing randomness.

The following Section defines the nomenclature adopted throughout the

remainder of this document. SUMO models road networks as a directed

graph, where nodes, or “junctions”, represent intersections, and “edges” rep-

resent roads or streets. Every street (edge) is a unidirectional entity that

includes a collection of lanes, along with their position, shape, and speed

limit. The allowed turns from one lane to another when at a junction are

called “connections”. Junctions, under the hood, contain “internal edges”

and “internal junctions”, which aid with more granular control of vehicle

behavior at an intersection. Right-of-way is also correctly modeled, and net-

works can also contain working traffic light definitions.

A simulation is run in a series of “steps” of 1 second by default. After every

step, vehicles are moved, and data is collected.

Configuration

SUMO networks can be fully described by a collection of XML files. The

list can either be passed to the sumo command in the terminal or bundled

inside a configuration file (.sumocfg). Networks must use Cartesian, metric

coordinates where the leftmost node is at x=0 and the node that is most at

the bottom is at y=0. This means that, when being imported, if the original

network was not using Cartesian and/or metric coordinates, it needs to be

projected to the correct system.

Networks are useless without vehicles traversing them. Traffic can be mod-

eled in many ways, depending on the amount of information required to gov-
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ern the visited edges. A trip is a vehicle movement from one place to another

defined by the starting edge (street), the destination edge, and the departure

time. A route is an expanded trip that contains not only the first and the last

edge, but all edges through which the vehicle will pass. When the simulation

is running, routing algorithms will decide how trips are converted to routes.

If trips are to be used by many vehicles, they can be organized into flows:

the departure time will be distributed according to a chosen heuristic, but all

vehicles will depart and arrive at the same edges.

If the frequency of updates is too low, SUMO can be told to increase the

number of steps it simulates in a second. This is governed by the field

step-length, which, like all configuration options, can either be passed to

the terminal command or written in the sumocfg file. Reducing the time sim-

ulated in every step enables achieving greater fidelity, albeit at the expense

of execution speed.

TraCI

SUMO can be enhanced with custom models and provides various APIs to

control the simulation remotely. TraCI, or “Traffic Control Interface”, gives

access to a running road traffic simulation, allowing to retrieve values of

simulated objects and to manipulate their behavior “online”. TraCI bindings

are available for many programming languages and can act upon almost the

totality of the entities of the simulation. This is the interface used by Artery

to control the SUMO simulation from OMNeT++, and it is made available to

custom-defined scenarios too.

TraCI operates using a client-server architecture: SUMO acts as the server,

while external applications (clients) connect to it via a TCP socket. During

the simulation, the client can issue commands to SUMO at each simulation

step, such as adding or removing vehicles, changing routes, modifying traffic

light states, or retrieving information about the current state of the simula-

tion (e.g., vehicle positions, speeds, emissions, etc.).

The typical workflow involves starting SUMO in TraCI server mode, then

running a client script (often written in Python using the traci library) that

connects to SUMO, steps the simulation forward, and interacts with the sim-

ulation as needed. This enables advanced use cases such as closed-loop con-

27



2.3. Simulation environment Chapter 2. Background

trol, online data collection, and integration with other simulators or opti-

mization algorithms.

Some of the main features accessible via TraCI include:

• Vehicle control: Add, remove, reroute, or modify vehicles in real time.

• Traffic light management: Dynamically change traffic light phases,

durations, or programs.

• Edge and lane manipulation: Retrieve or modify properties of roads

and lanes.

• Subscription mechanism: Monitor changes in simulation objects over

time.

• Simulation control: Pause, resume, or step the simulation, and syn-

chronize with external processes.

Other tools

A tool that can significantly speed up network generation is OSMWebWiz-

ard.py, a web tool to construct networks with data from the free and open-

source Open Street Map [46] project. Some random routes are included, but

SUMO is bundled with a series of much better tools to generate routes, that

span from completely random to determined from density and turn proba-

bility data. The latter are the exact data this Thesis aims to generate, so it is

best to investigate those that use that. Among the available tools, there are:

• Duarouter: Creates routes from demand files.

• Dfrouter: Creates routes according to induction loop counts. It re-

quires data for each edge and lacks support for complex networks.

• Flowrouter: Drop-in replacement for Dfrouter that tries to deduce traf-

fic information for missing induction loop data.

• Jtrrouter: Creates routes from vehicle flows and turn probabilities for

each junction.

• RouteSampler: Picks routes from an existing source to satisfy given

metrics.
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2.3.4 Scenarios and services

Artery simulations are defined in folders called “scenarios”. These con-

tain all the files necessary to run a simulation, including SUMO networks,

OMNeT++ NED files, and configuration files.

The omnetpp.ini file must contain the field ‘*.traci.launcher.sumocfg’ to in-

form the middleware of the SUMO scenario to launch. Additional OMNeT

files can be provided, such as services.xml, to specify the services that vehi-

cles and other entities will run. Custom services can be placed directly in the

scenario folder alongside other files.

Traffic scenarios modeled with SUMO are usually “static”. Even though

vehicles are moving around, traffic density varies, and traffic jams may build

up, SUMO has no notion of sudden changes. However, V2X use cases often

depend on said sudden changes, for example, unexpected heavy rain slowing

down traffic in one region of the map, or accidents and vehicle breakdowns

happening. Those quite dynamic changes in the environment can be mod-

eled with Artery’s storyboard feature. The ‘storyboard’ module integrates a

Python interpreter and loads a storyboard script, supplied in the scenario

folder, with the function createStories(board), which the storyboard will

invoke at the beginning. Multiple stories can be registered via this script,

each consisting of conditions and effects.

Conditions are properties that are evaluated at runtime and need to be

fulfilled. Effects are applied to the matching vehicle when the related con-

ditions are fulfilled. They can even be signals, which can be used to trigger

events in the vehicle’s services - further linking the SUMO simulation to the

OMNeT++ simulation.
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Chapter 3

System Design

3.1 Overview of the project

As discussed in the previous chapters, the goal for this Thesis is to develop

the proof of concept for a Digital Twin that is supported by data provided by

the technologies in the ITS-G5 standard, like CAM and DENM, with messages

streamed from RSUs scattered throughout the urban network. Cooperative

Awareness Messages are used to create local traffic models, through an anal-

ysis akin to how induction loops in real cities are employed to count vehicles

on the streets. Receiving DENMs also allows the DT to act on hazardous

events, as exemplified in Chapter 5.

The core of the project is thus the creation of a competent simulation en-

vironment that can track real vehicles on a virtual map. Data, saved in a

database, will be used to extract traffic models that can be analyzed by ex-

ternal programs or directly adopted by the DT itself to reason about the

current situation in the city.

Since real-world testing was not feasible, all vehicles and infrastructures

were simulated; however, work on the Twin was carried forward as if the

source of data were a real city. This adds some complexity when thinking

about the problem at hand: the Twin needs to support an environment that,

due to its simulated nature, is unrealistically precise and has a flow of time

that is uneven and different from the real world. However, the resulting solu-

tion is more elegant and could actually be deployed in a real urban scenario.
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The following requisites can thus be outlined:

• The “City” hosts some RSUs. They receive all Cooperative Awareness

Messages from vehicles in their radio range.

• The RSUs must also be able to receive Decentralized Environmental

Notification Messages.

• RSUs must stream all data through a single WebSocket.

• Simulated RSUs must send the “true” position of every vehicle in the

network.

• The Twin supports all message types sent by RSUs.

• The Twin maps vehicles on a SUMO network, to track their movements.

• The Twin must run in parallel with the simulation, without blocking it.

• The Twin must save all data to a database.

• The Twin must be able to launch external tools, for example, to react

to DEN events.

• The Twin must be modular, so that it can be reused in other projects.

• A standalone application must be able to analyze the data received and

provide a way to visualize it.

Figure 3.1 shows a coarse overview of the logical architecture of this The-

sis’s work, which can be directly compared with the general structure of

Figure 2.3.

Figure 3.1: Abstract overview of the architecture
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The project is divided into two distinct environments, the city and the DT.

The virtual urban network sends messages to the Twin thanks to a series of

custom OMNeT++/Artery services. Upon arrival, the data is analyzed and

then saved in a database for easy access by a custom analysis library. A

simple web application provides a frontend to better investigate the results

of the simulations. A simulation manager is also included to streamline the

process of preparing and launching simulations.

The project is thus divided into the following components:

• Data source, the (simulated) city

• Vesuva, the vehicle tracker and core of the twin

• Tolaria, the data analysis library

• Academy, the data visualization frontend

• Dominaria, the simulation manager

Since high performance was not a requirement, the language of choice for

the project was Python, which has the best version of the library available to

work with SUMO networks: libsumo.

There was no constraint on the kind of database to be used. Periodic in-

formation sent by vehicles could be seen as time-series data, and as such,

an optimized database like InfluxDB or AWS Timestream could be appro-

priate. However, this project had needs that go beyond the ones that most

dedicated time-series databases can fulfill. Hence, the choice fell on a more

general-purpose, self-hostable solution: MongoDB.
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3.2 Data source

This Thesis focuses on vehicles capable of sending Cooperative Awareness

Messages, and wants to study the quality of the information exchanged by

recording them through Roadside Units. Artery already includes a service

that models the basic functionality of CA both for vehicles and RSUs. The

matter becomes how to make that data readily available to an external entity.

Thinking about deployment in a real environment, one can imagine two

scenarios:

• Centralized model, with all RSUs sending data to a single system.

• Distributed model, where either single RSUs or a federation of nodes

all host part of the digital twin service.

The simulation setting lends itself well to both of these approaches: the uni-

fied environment allows no latency in the aggregation of data; at the same

time, entities are all modeled individually and correctly separate concerns

and areas of influence, so a distributed pattern is perfectly feasible. Since

some pre-processing from the side of RSUs can greatly improve the efficiency

of the system, by acting as a filter for unimportant data, the solution chosen

for this Thesis is a middle ground between the two models (shown in Fig-

ure 3.2). Data from each RSUs is streamed to the external entity, with some

logic left in Roadside Units themselves. Building a true distributed model

would have been outside the scope of the project, but it is a notable future

extension opportunity.

Figure 3.2: Overview of the communication between the entities
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The desired features can be implemented following two different ap-

proaches: extending the existing Artery services to stream data to an external

entity, or creating a new scenario that includes all the required components

and services. The first solution has several drawbacks, including the need to

reapply all changes on a new Artery release and a lack of portability. There-

fore, the second approach was chosen, bundling all new features into a new

self-contained scenario with all custom components.

3.2.1 Components

Figure 3.3: Components used in the Artery simulation

The component that streams data externally is a custom service called

WebSocketServer. As the name suggests, it manages a WebSocket and han-

dles client connections to which it sends all data provided by the other com-

ponents.

Artery already features services for Cooperative Awareness, one for vehi-

cles (CaService) and one for RSUs (RsuCaService). Whilst the first can be

used as-is, since it already generates the messages in the form we need (fol-

lowing the CAM standard), the latter had to be enhanced, as it needed to

call the WebSocket service to stream all the data it gathers. Following the

rationale discussed in the previous Section, instead of modifying the existing
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service, the choice was taken to create a new component that complements

RsuCaService and extends it with the required functionality.

The new service, called RsuStreamerService, subscribes to the signals

emitted by RsuCaService to capture all CAM received, forwarding them to

the server. Additionally, each time a CAM is sent by the RSU itself, that mes-

sage also needs to be sent outside, to notify about the geographic position

and status of the Unit. The WebSocketServer does not send messages as they

are; instead, a JSON message is constructed to send only the information of

interest to the Twin.

Running simulations in Artery, which has a SUMO environment attached,

presents the bonus of being able to easily stream, alongside the messages

captured by the RSUs, the real movement data from all the vehicles. Thanks

to OMNeT++’s feature of component hierarchy traversal, which allows direct

access between modules, the TraCI interface controlling the urban simulation

is available to all services. By using that, after every SUMO step, all vehicle

movements and updates can be collected and sent outside. The data can

then be used to compare the accuracy of the inferred data, using only one

connection and making sure that the basis for comparison is reliable. A ser-

vice to gather this data is thus required, and is modeled in the TraciSnooper

component.

Introducing support for DENM functionality in RSUs is not straightforward.

Since DENM communication usually does not involve Roadside Units, Artery

does not include a DenService for RSUs, only for vehicles. To avoid creating

yet another service, the ability to receive DEN messages is included in the

already presented RsuStreamerService as a small technical debt to speed

up development. Forwarding all received messages as they are would have

resulted in too many streams, most of which duplicates. This is due to the

nature of DEN: disseminated messages linger for some time in the proximity

of the event that generated them. Moreover, Artery’s DenService does not

provide a parameter, like other services, to limit the frequency of message

generation.

The first problem was solved by introducing a memory system in

RsuStreamerService to avoid sending duplicates, akin to the one already fea-

tured in vehicles. By only sending messages with increasing IDs, it is possible
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to completely prevent repetition and save bandwidth. A simple extension of

the DenService for vehicles called CustomDenService was then introduced

to limit the DEN generation frequency by adding a parameter modifiable in

the omnetpp.ini file.

To summarize, the new components introduced in the scenario are:

• WebSocketServer: made available to all services to send data through

a WebSocket.

• RsuStreamerService: subscribes to signals emitted by RsuCaService

to forward all received messages. It also acts as the DenService for the

RSUs.

• TraciSnooper: gathers all movement data from vehicles after each

SUMO step and sends it through the websocket.

• CustomDenService: simple extension to the existing DenService for

vehicles, to limit DEN message frequency.

3.2.2 Scenario

The complete scenario outlined in Figure 3.3 has the folder structure

shown in Figure 3.4. At the root level, the following configuration files are

present:

• omnetpp.ini: the main configuration for the OMNeT++ simulation, as

explained in Section 2.3.2.

• services.xml: definition of the services mounted on simulated vehicles.

• rsuservices.xml: definition of the services that are mounted on simu-

lated RSUs. Both “services.xml” and “rsuservices.xml” are referenced

in the main configuration file, omnetpp.ini.

• WorldWithStreamer.ned: the definition of the network. It extends the

default “World” network with the WebSocket Server and the TraciS-

nooper component, both of which are thus registered at the highest

level of the component hierarchy.

• CMakeLists.txt: the build configuration file for the scenario, which

compiles all custom services and links them to the Artery libraries.
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A service, to be correctly compiled and usable in the simulation, needs,

alongside the C++ source and header, an .ned file to register it in OMNeT++.

It then needs to be included in the CMakeLists.txt file.

custom_scenario/
rsu .........................RSUs to be spawned in the network

RSU.xml
network ...............................Example SUMO scenario

routes.rou.xml
example.net.xml
example.sumocfg
trips.xml

services.......................................Custom services
websocketutility

MessageStreamerWebSocket.cc .h .ned
MessageStreamerWebSocketServer.cc .h .ned

CustomDenService.cc .h .ned
RsuStreamerService.cc .h .ned
TraciSnooper.cc .h .ned

......................................Artery Configuration files
omnetpp.ini
services.xml
rsuservices.xml
WorldWithStreamer.ned
CMakeLists.txt

Figure 3.4: Folder structure of the custom Artery scenario
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3.3 Vesuva

The name “Vesuva” refers to the main component at the core of the whole

Digital Twin, with the actual tracking on the virtual map done by an internal

module. It was designed to be a reusable piece of software that could support

other applications. To underline the modularity of the system, it defines some

interfaces to describe how it interacts with storage, concurrent execution of

tools, and a GUI. Vesuva then implements those interfaces to support the

needed use cases.

Since receiving messages and saving data to the database are I/O proce-

dures that, if not handled well, can introduce latency and even data loss,

a significant effort was put into preserving the asynchronicity of all compo-

nents.

Figure 3.5: Vesuva architecture

As shown in Figure 3.5, the most important components are the Twin (the

CAM tracking module), the TraCITracker (that handles the source of truth

messages captured by the simulation) and the Manager (which starts all

other components, manages their life cycle and constructs the communica-

tion hierarchy). Data from the WebSocket is automatically handled by the

correct entity associated with their data type. A Persistence Scheduler com-

ponent backs up data every minute to prevent losing data due to crashes.

Lastly, the Tool Orchestrator makes it easy to launch other tools (even ex-

ternal scripts) in the background.
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In the following sections, all components will be analyzed in-depth, in the

order that best reflects the flow of data.

3.3.1 Messages

A WebSocket client is responsible for the communication with the data

source. To avoid blocking the reception of messages when they need to be

processed or other blocking operations have priority, instead of a callback

approach in which the client itself notifies the Twin for new messages, a

push/pull model was preferred. The WebSocket puts all messages it receives

in a shared asyncio library’s Queue. If the connection to the server is lost or

canceled, the client periodically tries to reconnect.

Data is read from the Queue by the Manager and directly passed to the

MessageDispatcher class. This simple component holds a collection of Han-

dlers associated with a data type, along with a method that, given a message,

calls the appropriate handler.

1 class MessageDispatcher:
2 def __init__(self):
3 self.handlers = {}
4

5 def register_handler(self , message_type: str , handler):
6 """ Register a handler for a specific message type """
7 self.handlers[message_type.upper()] = handler
8

9 async def dispatch(self , message: Dict[str , Any]):
10 """ Route incoming messages to the appropriate

↪→ handler """
11 message_type = message.get('type', 'missing ').upper()
12

13 if message_type in self.handlers:
14 await self.handlers[message_type ]. handle(message)

Listing 3.1: src/vesuva/dispatcher.py

Handlers are specializations of the abstract class MessageHandler. Four

handlers are defined: CAMHandler, RSUHandler, DENHandler, TraCIHan-

dler.
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1 class MessageHandler(ABC):
2

3 @abstractmethod
4 async def handle(self , message: Dict[str , Any]) -> None:
5 """ Process the message """

Listing 3.2: src/vesuva/handlers.py

Each handler simply calls the correct method in either the Twin or

TraCITracker component.

Separation of concerns is almost exasperated, and as the project stands,

this implementation choice could be seen as overkill: messages are simply

forwarded to the correct function. However, the philosophy of this work

is to be as modular and as extensible as possible, and the combination of

a MessageDispatcher class that manages some Message Handlers is a great

forward-looking solution. It allows, for example, the easy introduction of a

parser if messages change in structure.

3.3.2 Twin

The Twin is the most important component in the entirety of the Vesuva

project, as it is responsible for tracking the vehicles on the virtual map. As al-

ready touched upon in Section 3.1, it was designed with reusability in mind.

The requisites were:

• Be agnostic to the data source attached.

• Support Cooperative Awareness Messages.

• Support Decentralized Environmental Notification Messages.

• Map vehicles on a SUMO network.

• Launch external tools while the Twin is running.

• Interface with any storage solution and graphical application.

CAM

The Twin manages a virtual map, formed by a collection of “Features”. At

the base, there is a SUMO network that includes the area of interest covered
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by the RSUs. Features are an extension of SUMO edges and junctions, pre-

loaded and analyzed to improve vehicle tracking.

Cooperative Awareness Messages already include the position of the vehi-

cle at each timestamp, but that information is not enough. This Thesis needs

to analyze traffic in a way akin to how underground induction loops count

vehicles. This means that each vehicle needs to be accurately tracked on the

streets of the city.

Map Matching is a problem tackled by many researchers [47], but out of

the scope of this work since the process, for the task at hand, can be fa-

cilitated by a small amount of “cheating” on the premise of the complete

agnosticism of the Twin. Vehicle GPS information, in fact, is impossibly ac-

curate in this scenario, since a simulated environment is supplying that data.

SUMO already provides a method to locate the nearest edge in a network

from a given position. The combination of these two facts means that by

matching the network both in the data source and in the Twin, the process

of reverse geocoding (that is, finding features from coordinates) is trivial.

The libsumo library provides the methods getNeighboringEdges() and

getNeighboringLanes(). Tracking on the specific lanes that form an edge

is an effort that would be hard in the event of a real scenario, so even if

the task at hand benefits from high precision, it is better to settle for just

edge mapping. However, the getNeighboringEdge() method searches in a

given radius, ordering results by the distance from the middle segment of

the edge; if a wide edge, with many lanes, is next to a narrow edge, vehicles

in the outer-most lane of the wide edge would be incorrectly assigned to the

narrow edge, since it is closer in distance. An example of this phenomenon

is given in Figure 3.6.
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Figure 3.6: Since the vehicle is in the outermost lane of the wide edge, it is
closer to the small edge than to the middle segment of the wide edge. This

would lead to an incorrect assignment of the vehicle to the small edge

Searching by lane is thus much more precise, because lanes are generally

the same size. The edge is then easy to find since all lanes include a reference

to the one they belong to.

Vesuva tracks vehicles by assigning each CA message to a LocationUpdate

object. This class holds all information assigned to the notification of move-

ment, along with the ID of the RSU that received the message. The Twin

ensures that duplicates are discarded and that messages forwarded by multi-

ple Roadside Units are merged. This happens if the radio range of two RSUs

overlap.

LocationUpdate searches for features in the vicinity of the sent point. First,

coordinates need to be translated from longitude and latitude to the correct

projection on the SUMO map. Then, lanes are searched with a radius that

increases until matches are found. Vesuva correctly identifies vehicles on

junctions by searching for internal edges too (Section 2.3.3). This process

is sped up by the augmented virtual map briefly discussed at the beginning

of this Section: internal edges are not directly available with libsumo, since

some are actually computed at runtime if not defined in the network configu-

ration file; so, on Twin initialization, a Map is created with all those features

pre-computed.

Vesuva models the entities it tracks as Vehicle objects, which keep the list
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of all LocationUpdates in a “route”. Since there is no way to know when

a vehicle leaves the network, either because it arrives at its destination or

because it never crosses a RSU again, periodically, vehicle routes are flushed

to storage. Keeping track of the whole route could be useful if heuristics were

to be introduced for map matching, but as it stands, there is no real reason

to keep the entire route, as the last Update is enough to detect duplicates.

RSU

Another duty of the Twin is to keep track of the passing of time. The

moment a message is received can be greatly distant from when it was actu-

ally sent. Unfortunately, as discussed in Chapter 2.1, Cooperative Awareness

does not provide a straightforward way to know the precise timestamp of

its messages. Vesuva takes advantage of the fact that RSUs send CA mes-

sages at a fixed rate to track the passage of time. By doing so, RSUs become

a sort of clock that tracks when an “overflow” happens (remembering that

CA messages send timestamps in modulo 216). This has the added bonus

of providing simple support for simulated environments, since there is no

need to synchronize time between the Twin and the Simulation. SUMO and

OMNeT++ can run at the pace that is needed for the complexity of the simula-

tion, but timestamps will still be correctly tracked (also thanks to OMNeT++’s

internal clock).

RSUs are assigned to LocationUpdates, but since CA messages from Road-

side Units are periodic, on startup, some vehicles may already be streaming

when no information is known about the RSUs in the network. Also, RSUs

could be added while the simulation is running, if testing more dynamic sce-

narios. When a message arrives from an “unknown” RSU, it is saved in a list

of pending messages to be resolved once information about the Unit arrives.

RSUs are the core of this Thesis, which aims to test their role as more than

just a Cooperative Awareness augmentation entity. Using just CA messages

is a novel approach in the field, which usually sees RSUs equipped with

cameras [13] or LiDARs [14]. But relying solely on RSUs, of course, has

some drawbacks. The problem of finding the best placement for this type

of entity is an ongoing research topic [16], but it is realistic to assume that

a complete coverage of a large area would be a rarity, especially when the
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technology is still being tested. In a setting in which 100% of the vehicles are

equipped with the required communication stack, the area covered by a RSU

radio range would yield 100% accurate results, and 0% about the immediate

surroundings. This would make each of these areas a sort of separate, smaller

map in which all information is available. This is the real source of data for

traffic modeling, since in the rest of the network there is no certainty about

the vehicles’ movements. This remains true even in a more realistic scenario,

with a much lower penetration of intelligent vehicles.

Each RSUs is not an independent entity in the Digital Twin, but rather a

part of a larger system. RSUs with overlapping radio ranges could share

information, since together they cover a larger area and could be considered

as a single entity. With a sufficiently dense grid, the size and the quality of

the information of the actual covered map results larger that the sum of the

individual parts.

Vesuva models the areas that have information available as “Observed

Zones”. They are an abstraction of RSUs, simply portions of the network

in which vehicles are sensed; they can be formed by more than one RSU, if

they overlap.

The ObservedZone class keeps a list of all RSUs that are part of the zone,

and provides the logic to test if new ones can be added. To understand if

two RSUs overlap is a matter of querying (using libsumo) the radio range

of each RSU, and checking if there are edges in common. A distinction is

made between internal edges (which are fully covered) and fringe edges

(those that lead in or out of the zone, only partially in the radio range). In

Figure 3.7, fringe edges are orange and internal edges are green.

Vesuva recognizes internal edges by checking the connections (incoming

and outgoing) of each edge, and checking if all connections of a given edge

are also in the radio range of the RSU. If so, the edge is considered internal.

A fringe edge has at least one connection that is not visible by the RSU. When

an RSU is added to an ObservedZone, all fringe edges are computed again,

while the list of internal edges can simply be merged. If two zones share a

fringe edge (pointed at in Figure 3.7), that can be considered internal when

the areas are joined, since even if not fully covered, all of its connections are

now covered.
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Figure 3.7: In green, the internal edges, in orange, the fringe edges. While
merging the two RSUs into one observed zone, the shared fringe edge will

be considered internal

DENM

The last task the Twin is responsible for is handling DEN messages. When

an event is happening in the network, a large number of messages are gen-

erated, captured by the RSU, and sent to Vesuva. To showcase action in

the Twin, that is, demonstrate that the application provides a framework for

decision-making, Vesuva, after a certain amount of DEN messages, launches

an external tool called Agamotto.

Agamotto (which is fully showcased in its own Section - 3.6 - at the end of

this chapter) is a Python tool to test the impact of road closures by simulating

in parallel many scenarios of traffic redirection. It launches a series of SUMO

simulations, gathers data, and presents the results to find out, according to

the chosen metric (traffic, pollution, noise, etc.), the best strategy to redirect

vehicles when a road is closed. To work, it needs a complete SUMO config-

uration, together with some routes; to compute these, all data gathered by

the running Vesuva instance can be used.

The tool of choice to pair with Agamotto was Jtrrouter, selected among

those presented in Section 2.3.3. First, flows and turn probabilities are com-

puted, then saved in temporary .xml files to be passed to the router. When
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the tool is done running, Agamotto is launched.

The sequence of

1. Creating flows.xml file,

2. Creating turns.xml file,

3. Generating routes with Jtrrouter,

4. Writing the SUMO config file,

5. Launching Agamotto

all happens in the background while Vesuva is running, thanks to the

ToolOrchestrator class. Output from the external scripts is even redirected

to the same display interface that Vesuva uses, so that it can be shown on

screen if a GUI is attached.

3.3.3 Orchestrator

The Orchestrator class is a powerful tool for the execution of background

activities. It is a fully modular and independent component that can be used

in any project that needs to run external scripts or Python coroutines in the

background. It was designed to handle either Python coroutines or external

scripts, and even a mix of both in sequence.

All tasks are assigned an ID to track and control their life cycle indepen-

dently. A Task object has an optional “dependencies” field that can be used

to chain tasks together by providing the list of task IDs it depends on, so that

a task is only executed after all its dependencies have been completed. This

ensures that the order of execution is respected, without the need to man-

ually manage it. Once tasks are registered, the Orchestrator oversees their

execution in the background, while the main thread is Agamotto.

The external script task is the most complex one. In addition to the com-

mand to launch, it accepts the definition of the working directory and even-

tual environment variables. All process output is captured using an asyncio

subprocess Pipe, which redirects standard input (“stdin”) and standard out-

put (“stdout”) to a coroutine that reads all data and forwards it to any com-

patible display, according to an interface.
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All tasks have a status to better monitor their life cycle:

• Pending: initialized but waiting to be started

• Running: started and currently executing.

• Completed: done running and exited with success.

• Failed: execution terminated due to an error.

• Canceled: execution halted by the user.

3.3.4 Storage

As briefly touched upon in Section 3.3.2, Vesuva periodically commits ve-

hicle data to storage. This happens when vehicles have not received updates

for some time, and according to a scheduled action. The PersistenceSched-

uler class hosts a task that periodically gets hold of the data lock, triggers a

save, then lets execution resume. Both CAM and TraCI information is saved,

to make sure that recent data is always available on the database.

In Section 3.1, it was mentioned that MongoDB is the database of choice

for the project. The Twin presents a generic interface for storage, to allow

compatibility with different solutions. Vesuva implements the Storage inter-

face to support Mongo. Being a document-oriented database, it is a good

match with data that partially comes from JSON messages.

All entries are associated with a unique ID representing the current “run”.

Since the outer layer of Vesuva is aware of the simulated environment, this

makes sure that data from different runs is not mixed up. Both CAM and

TraCI updates are saved with an InsertMany call. The advantage of saving

periodically is that it can be done in batches, greatly reducing the amount of

DB writes required. RSU details are also saved.

The collections and their fields in the database are:

Runs Run ID, Time of creation, and a description (scenario, CAM penetra-

tion, and optional text).

Updates Vehicle ID, Position (lat, lon), SUMO feature (edge or junction with

ID), List of RSUs that received the update, Timestamp.

RSUs RSU ID, Run ID, Position (lat, lon), Range.
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3.3.5 Manager

The Manager class is the entry point for Vesuva. It handles the instancing

and composition of all other components and manages their life cycle. The

outer layer of Vesuva is allowed to know that the data source is an Artery

environment, hence it is responsible for creating both the Vesuva Twin and

the TraciTracker instances. To forward messages to the correct entity, a series

of Message Handlers is defined, each with its own callback function and

recognized message type. They are registered in a MessageDispatcher class

for easier access and greater abstraction.

The Manager handles both simple asynchronous tasks and fully fledged

background processes, adding to the complexity of managing the life cycle

of all pieces of the system. It is a requirement that some parts of the ap-

plications keep running while others wait for operations to complete, for

example, receiving messages and saving data to the database are two expen-

sive operations that: a) must not block execution and b) must not lose any

data. Since data that is being written to the database cannot change while a

save is in progress, analysis of incoming messages needs to be stopped every

time a backup is requested. This is possible thanks to a shared lock, that only

when released can then be taken control of by any component that needs it,

pausing the others.

To summarize, the Manager:

1. Receives simulation settings

2. Initiates the MongoDB connection

3. Creates the Twin instance and the TraciTracker instance

4. Starts a Persistence Scheduler component to periodically back up data

5. Creates the Message Dispatcher and registers all Handlers

6. Creates a queue for incoming messages

7. Starts the WebSocket client

8. Starts a process to read messages from the queue

9. Correctly stops all processes on closure
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3.4 Dominaria

Dominaria is the simulation manager. It launches and monitors the life cy-

cle of Vesuva instances, the actual Digital Twins. It also provides an interface

to configure the simulation environment, such as the SUMO scenario and the

penetration rate of intelligent vehicles in the network. Having a GUI is not

a requirement, but it greatly helps with the development and testing of the

Twin.

Dominaria implements the display interfaces defined in Vesuva to provide

a simple way to visualize the data being processed by the Twin. A robust

framework is needed to allow the user to start and stop simulations, config-

ure the environment, and visualize the data being processed. Furthermore,

Dominaria needs to display both Vesuva’s and the remote Simulation’s output

to have a complete understanding of the state of the simulation.

To speed up the process of designing the GUI, the Textual [48] Python li-

brary was used. It allows to create Terminal User Interfaces (TUIs) with a rich

set of widgets. It supports a set of advanced features such as asynchronous

input and output, which is a requirement for the project since Vesuva needs

to run in the background while the user interacts with the interface.

Thanks to the introduction of a series of custom widgets, Dominaria can

display the state of the Twin, the current simulation, and all running tools.

It also allows starting and stopping Vesuva instances and configuring the

simulation environment. A counter for all message types incoming from the

simulation is also displayed to provide a quick overview of the amount of

data being processed.

The interface shown in Figure 3.8 has the following component:

(1) Buttons for connecting to the remote server and adding a simulation

(2) Simulation configuration form (collapsed)

(3) Simulation control button

(4) Received messages statistics

(5) Vesuva debug

(6) Remote simulation debug

(7) Remote OMNeT++ program output
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Figure 3.8: Dominaria’s TUI while a simulation is running

Figure 3.9: Simulation configuration form in Dominaria’s TUI

The configuration form, shown in Figure 3.9, once open reveals the follow-

ing options:

(1) SUMO config file selector

(2) Penetration of the CA Service in simulated vehicles

(3) Duration of the simulations in seconds

(4) Seconds between RSU CAM generation

(5) SUMO steps in a second

(6) Toggle to generate a scenario from Bologna’s official induction loop

data

51



3.4. Dominaria Chapter 3. System Design

(7) Toggle to enable DEN events

(8) Toggle to gracefully stop the simulation on any WebSocket error

(9) Optional text description for the run

Dominaria oversees all operations needed to launch both the Artery simu-

lation and Vesuva.

Artery requires a scenario folder, with the required files explained in Sec-

tion 2.3.4. Dominaria first generates this and then moves it to the correct

location. The base structure of the scenario is the one showcased in Sec-

tion 3.2.2, with some changes made according to the values in the configu-

ration form of Figure 3.9:

• the SUMO scenario is the one chosen in the form dropdown.

• the penetration rate of the CA service is set by adding a filter to ser-

vices.xml definition, as shown in Listing 3.3.

• the presence of the DEN service is governed by the same type of fil-

ter as the point above, modeling True and False values as penetration

100 and 0. To actually generate adverse conditions in the network, a

“storyboard” is also copied.

• the omnetpp.ini file sees the simulation time and SUMO config path

changed to the requested values. The generation interval for RSUs

messages is also set here.

• if the “Traffic from Detectors” option is selected, the SUMO scenario’s

route file is generated from scratch instead of being copied over from

the original scenario, as later explained in its own paragraph 3.4.

• in the sumo config, the step-length parameter is set as 1 over the num-

ber of steps-per-second inserted
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1 <service type="artery.application.CaService" name="CA">
2 <listener port="2001" />
3 <filters >
4 <penetration rate="[PENETRATION]" />
5 </filters >
6 </service >

Listing 3.3: src/scenario/services.xml

Artery may be running on a remote server. To copy all required files from

the local folder to the remote one, an SSH connection is opened with the

paramiko Python library. Copying files over SSH/SCP works even if the tar-

get host is the same as the one from which the files are being sent, so every

configuration is supported, even deployment on the same machine. After the

complete folder is sent, Vesuva is launched. Once it is ready, a command is

issued, via SSH, to the machine hosting Artery. Output is set to be automat-

ically redirected to the display by continuously reading from the buffer and

appending lines to a Textual widget ( (7) in Figure 3.8 ). Vesuva needs to

start before Artery so as not to lose any message.

While the program is running, the tally of all processed messages is dis-

played. There are five fields:

• Messages received by the WebSocket. This number increases even

when Vesuva is not processing messages, thanks to the Queue mech-

anism explained in Section 3.3.1.

• Vehicle CAMs.

• RSU CAMs.

• Vehicle DENMs.

• TraCI location messages.

Traffic from Detectors While many tools exist to convert real urban net-

works to their digital counterpart, traffic modeling is arguably the most

complex task when using SUMO, as huge amounts of data and adequate

algorithms are needed. This Thesis aims to address this problem by utiliz-

ing real-time data from vehicles on the road, but alternative approaches are
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also viable. For instance, many cities have underground induction loops to

count vehicles, and some make this data available to anyone, though most

with some delay (e.g., updating it every week or month). For example, the

OpenData portal of the city of Bologna [12] provides an extensive API to re-

trieve information about many aspects of the urban administration, including

hourly counts of the detectors spread throughout the city, usually updating

the portal on a monthly basis.

To run Vesuva with a realistic flow of traffic and test its accuracy against a

real source, Dominaria is capable of generating routes from Bologna’s induc-

tion loops’ data. This is an operation that can be greatly facilitated by using a

preexisting and tested program. SUMO is bundled with flowrouter.py [49],

which takes as input the position of the detectors and their total, and outputs

a “routes” file and a “flow” file that tries to match the requirements.

To retrieve the data from Bologna’s API, generate the required input files,

and call the program, the Orchestrator class comes in handy, as despite be-

ing blocking, all operations need to happen asynchronously to preserve the

responsiveness of the TUI.

First, a series of calls are made to the API. Data is paged in rows of 100,

so multiple fetches are needed to retrieve all information. Then, a file con-

taining the position of the detectors is generated. To do so, the position is

projected to the SUMO map of the chosen scenario, and then, since SUMO

models induction loops lane-wise, for each detector in the API, multiple vir-

tual loops are positioned. The vehicle count is distributed so that the to-

tal matches the real data. Detectors are saved in a detector.xml file, and

the counts in a flows.csv file. These are passed as input to the flowrouter

command, along with the time windows that need to be considered. Since

Bologna’s Open Data saves hourly sums of the detected vehicles, flowrouter

is informed that the data should be organized in groups of 60 minutes.

The results are two files, ready to be saved in the scenario folder to be

sent to Artery. One is a routes.xml file with the definition of a series of trips

vehicles can take (as a list of edges). The other is a flows.xml file that defines

the actual flow of vehicles that will inhabit the network (number of vehicles

to be generated in a given time frame, taking a certain route).
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3.5 Tolaria

The final element of the Digital Twin’s architecture is Tolaria, the data anal-

ysis library. It is a Python package that pulls from the MongoDB database and

provides a set of tools to analyze the data generated by Vesuva and Domi-

naria. It is the key to understanding the impact of the penetration rate of

intelligent vehicles in the network, and to evaluating the quality of the in-

formation exchanged by RSUs. It is accompanied by Academy, a simple web

application that provides a graphical interface to visualize the data processed

by Tolaria.

Tolaria is thus divided into three parts: the analysis layer, the frontend

layer, and a simple API to interface the two.

3.5.1 Analysis

Vesuva makes it possible to generate traffic models from the information

on the number of vehicles counted. Tolaria can compute, from that data, two

main metrics:

• The number of vehicles in the network, and their distribution.

• The turn probability for each junction.

Combining density information with the probability of a vehicle taking a

certain turn can already yield a good model of traffic, since the hierarchy of

roads is respected and simulated vehicles follow realistic patterns. Turn prob-

ability is, in any case, computed directly from the edge-counting data, and as

such, it is as accurate as the other metric is. The peculiarity of the proposed

Digital Twin solution is that tracking the specific entity is straightforward,

as CA messages themselves already contain identification of the vehicle that

is sending it. This feature greatly helps with the analysis. It would not be

available using Radars while it would be very complex to obtain only relying

on computer vision.

The operations of extracting density and turn probabilities can be per-

formed at the same time, since they both require the same data. The first

step is to gather all routes for all vehicles in the network, and to compute

how many are in each edge. This is done by iterating over all LocationUp-
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date objects in the database and counting how many times each edge is

visited by a vehicle. To help gather Update data from the database, a custom

MongoDB query is used. Mongo has a useful feature to aggregate data into

“views”. They allow the creation of a virtual collection that can be queried

as if it were a normal collection, but with the data already aggregated. A

route view is created that contains all LocationUpdates for each vehicle and

the edges they visited. This allows for the quick computation of the number

of cars on each edge.

Density is computed for all edges covered by each RSU’s radio range. The

number of vehicles in each edge is then divided by the total number of cars in

the area to obtain a percentage-based metric of density. This is done because

it is the fairest way to compare the data from the two sources: CAM and

TraCI. The former is available only for a selection of streets, while the latter

covers the whole network. By providing a normalized metric, it is possible

to compare the two sources and understand how much information is lost

when the penetration rate of intelligent vehicles decreases.

The turn probabilities are computed by iterating over all routes and count-

ing how many vehicles take each edge when at an intersection. This is also

a percentage, but of just the vehicles that reach the junction.

Thanks to the data visualization web application Academy, showcased in

the following Section (3.5.2), it is possible to visualize the routes of all vehi-

cles. It is immediately noticeable how many edges, despite being traversed

by many vehicles, cannot be counted using just the basic approach, for the

sake of the above analysis. This is because, since location updates are sent

periodically, if a vehicle is moving at a sufficient speed and edges are short

enough, the vehicle may not send any update while traversing that edge,

effectively skipping it.

Some heuristics can be applied to mitigate this problem, such as assuming

that if a vehicle visited the edge before and after, it must have traversed the

one in the middle too. This approach can be applied to junctions too (an edge

between two junctions is always traversed) and many other combinations.

The process of extending the amount of inferred data could introduce some

errors, so for this Thesis, it was decided to limit the depth of research of

skipped edges to just one level.
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Figure 3.10: The edge between update #3 and #4 is skipped, since the
vehicle did not send any update. It still can be inferred to have been

traversed, since the vehicle was on the edge before and after

3.5.2 Academy

Academy is a simple web application that provides a graphical interface

to visualize the data processed by Tolaria. It features an interactive map on

which all data gathered by Vesuva can be visualized.

The app is built using the deck.gl library, which allows the creation of

a stack of layers on top of a map. Each layer can be configured to display

different data, such as the density of vehicles in each edge or the turn prob-

ability for each junction. A simple selector allows the user to choose the

simulation run for which to display the data. The available data, fetched

with the Tolaria API, is:

• List of all RSUs in the network, with their radio range.

• Routes of all vehicles, both from CAM and TraCI.

• Density of vehicles in each edge covered by RSUs.

• Turn probability for each junction covered by RSUs.

The RSUs are shown as circles on the map, with a radius accurate to their
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radio range (or better, the average range of vehicles that can reach it). Routes

are shown as a collection of points (the Location Updates) connected by lines,

with a random color for each vehicle. Density is shown as a column at the

center of each edge, with a height proportional to the number or percentage

of vehicles. The columns for CAM and TraCI are at a slight offset, so that they

can be compared side by side. Turn probability is shown as an arc connecting

pairs of edges at a junction, with a width proportional to the probability of

taking that turn. The arcs are colored according to the probability, with a

gradient from black (low probability) to orange (high probability).

Deck.gl allows a definition of a tooltip for each layer, so that when hover-

ing over a feature, the user can see more information about it. For example,

hovering over a RSU shows its ID, position and radio range; hovering over a

vehicle update shows the ID, visited edge, coordinates and timestamp; hover-

ing over a density column shows the number of vehicles and the percentage

of the total; hovering over a turn probability arc shows the probability of

taking that turn.

Vehicles can be filtered by their ID, so that only the updates for a specific

vehicle are shown on the map. This is useful to track a specific vehicle and

see its route, or to compare the data from CAM and TraCI for that vehicle.

Figure 3.11: Screenshot of the Academy web application showing density
data on each edge
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3.6 Agamotto

Agamotto is a Python tool developed to assist with the simulation of urban

environments with the purpose of better understanding how to manage traf-

fic when one or more roads are closed, by generating and running multiple

what-if scenarios of traffic redirection. Agamotto is a standalone tool that is

not designed to be used solely in Vesuva; rather, it is an example of a Vesuva-

compatible tool that can be launched in the background while the Twin is

running. In the context of this Thesis, it showcases the potential for the DT

to make decisions based on the data obtained.

SUMO is used to test several variations of the same scenario, with Ag-

amotto acting as a middleware that automatically prepares and launches

simulations and then gathers and presents all relevant data. Since the num-

ber of simulations needed to test all possible combinations of configurations

of a scenario can increase rapidly depending on the settings, Agamotto dis-

tributes runs on available cores to parallelize execution. Runs are compared

based on diverse statistics, including traffic density, vehicle emissions, or

mean duration of routes, all metrics that can then be plotted as human-

readable output like heatmaps.

The direct interaction with SUMO means that all its configuration options

are supported. Additional settings are available to tune Agamotto’s specific

behavior and test strategies. For example, many roads can be closed at a

time, and weights can be specified to control how likely a driver knows,

before reaching a junction, that their route is affected.

Overview

The effect of different strategies of traffic redirection is evaluated by run-

ning many different environments and comparing them. Since the number

of combinations to try can be very large, the first optimization strategy is

to execute simulations in parallel. After deciding on the scenarios and dis-

tributing them on the available threads, simulations can start. They execute

in batches to reduce the overhead of launching more SUMO instances than

necessary. When all simulations have completed, the results are collected.

When roads are closed in everyday life, alternative routes are suggested (or
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imposed) to drivers. They include the roads that are immediately reachable

from the junction that vehicles are currently at when they find the closure. In

Agamotto, a list of edges can be marked as closed at the same time. Scenar-

ios are then constructed according to that list by looking at all edges that are

connected to them. To interact with the network, two tools, the usual sus-

pects, are available: traci, to send commands while a simulation is running,

and sumolib, to analyze the network offline.

To simulate traffic redirection, for each closed edge, alternatives need to

be found for every road that is connected to it. Since this operation must be

done before simulations are run, sumolib directly analyses the network from

the corresponding file. For each closed edge, the function get_options() is

called. This operation finds the list of the incoming connections (an edge

leading into the closed edge) and for each of them:

• If there are alternatives to passing through a closed edge, all of them

are marked as possible options (if they are not already).

• If only closed edges are available, the connection itself is marked as

closed, and the function is recursively called with the updated list.

Once this simple algorithm has produced the complete list of options, all

possible combinations of redirections are taken by computing their Cartesian

product. Each of these combinations is put into a dictionary containing the

“origin” node (a closed edge connection) and “destination” node (the redi-

rection to take to avoid any closed edge).

Agamotto models two strategies that can be applied to each environment:

when a road is closed in the real world, some drivers either know in advance

(perhaps because they read it on the newspaper or are using a navigation

app) or are made aware when they are in its proximity, thanks to a sign or

a policeman. Virtual drivers are distributed between these two categories by

a weight system that assigns a given percentage of vehicles to each strategy.

A list of weight pairs can be provided, and a scenario is run for every one of

them. Figure 3.12 shows Agamotto running and the progress of the different

concurrent simulations.
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Figure 3.12: Agamotto running in the terminal

SUMO simulations in Python are launched and interacted with using the

traci Python library. Since starting the application requires some overhead,

instead of running a new instance for each simulation, TraCI can be used

to switch scenarios on the fly, allowing a simulation to be restarted on an

already running instance.

Batches share the SUMO config (thus the network) and simulation options.

Additionally, each simulation requires the following parameters:

• IDs to recognize the thread and current run.

• List of closed edges (which are kept the same among all runs).

• Specific environment settings, like weights and combinations.

• The folder where to save all simulation output.

Output is either directly collected by SUMO and printed in files in the spec-

ified folder (granular data for all vehicles, such as emissions and routes) or

collected by Agamotto itself. A directory for each scenario is created inside

the run folder, with its index for the name.

Commands can be issued between traci requests of steps in the SUMO

simulation. Before the first step happens, closed edges need to be marked

as such. To do so, they are set as disallowed for vehicles with the ‘custom1’

class. SUMO handles vehicle access with a class system that, beyond the

default ones, includes two custom classes that are available to developers.

‘Custom1’ is arbitrarily chosen as the class that indicates vehicles that cannot

pass through a closed edge. Figure 3.13 shows an example of a scenario

running in SUMO-GUI. Red edges are closed, green ones are “origin”, while
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blue edges are “destination”. We have already established that two strategies

are available for “communicating” to drivers that a road closure is happening.

At the beginning of each step, all vehicles currently in the simulation are

queried using traci as a list of IDs. For each of them, their route is taken,

and if it starts from a closed edge, they are removed from the simulation

to simplify the scenario. If they are kept in the simulation, a strategy is

randomly chosen between the two according to the scenarios’ weights, then

they are assigned the “custom1” class. Since vehicles have a predefined route

when they enter the simulation, classes do not have an effect until a reroute

is requested.

If the chosen strategy is navigation (drivers know a priori about the road

closure), rerouting is performed until a correct path is found. It is an it-

erative process, as redirections need to be enforced directly by a setVia()

command, and adding them one at a time can lead to loops. If there is no

way to enforce the combination for a given vehicle, it is removed from the

simulation. The number of removed vehicles is then available in the output

of the program.

If the strategy is sign (drivers find out about the road closure by looking at

a sign when in proximity), they are added to a list and acted upon at a later

stage, to optimize the program, since they can all be checked at the same

time. To know if a vehicle is near a closed edge, all “origin” edges in the

scenario’s combinations are checked for the current list of vehicles passing

on them. If a match is found, they are rerouted through a “destination” edge

(shown as green in Figure 3.13). Since some combinations may create loops

if vehicles cannot reach their destination, each vehicle route is checked for

duplicate edges and removed from the simulation if a loop is found.
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Figure 3.13: Scenario rendered in SUMO-GUI

Agamotto makes available all output in the form of text files, generated by

SUMO and containing details about the single simulation, and images gener-

ated by the program itself. The latter are heatmaps and comparison graphs

that show the distribution of vehicles in the network or the impact of the

redirection strategies according to many metrics (traffic, fuel consumption,

emissions, etc.). They are all generated using the matplotlib library.

There is no mechanism in Vesuva to close roads in the running simulation

automatically. While SUMO can mark streets as closed at run-time, in the

real world, that would require human intervention. It is possible, however,

to use Vesuva to gather data and then run Agamotto on the same network to

test the impact of the redirection strategies. Furthermore, in a fully-fledged

and integrated twin of a real city, control over traffic lights and other traffic

management systems could be implemented, allowing for data sourced from

Agamotto to apply changes to the network in real time.
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Chapter 4

Results and findings

This Chapter presents the results obtained from the testing and evaluation

of the proposed system, focusing on the accuracy of the Digital Twin in var-

ious conditions and highlighting the limitations encountered during density

estimation.

4.1 Overview

The proposed system Vesuva and its accompanying tools were designed

with the goal of creating accurate traffic models. Without delving into the

field of Artificial Intelligence, a summary estimate of the characteristics of

traffic in the city can be obtained by carefully analyzing the data provided by

the application. There are many ways to test the accuracy of such models,

and a series of tests can be conducted.

While using simulated data is convenient, it can also lead to wrong con-

clusions if the environment is not correctly set up. For the majority of tests,

the same SUMO scenario was adopted. It is a portion of map just outside

the center of the city of Bologna. Around the outermost ring of medieval

walls, large roads of two to four lanes host the majority of the traffic on a

typical day. It is the perfect testing ground for the system at hand for several

reasons:

• The topology is more streamlined compared to the intricate mesh of

narrow roads at the very center of the city, while complex enough to
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distance itself from simple formations, e.g., a highway.

• The administration provides real traffic data collected by induction

loops under the roads.

• Those roads are realistic candidates for a real deployment of RSUs, due

to their importance and flow of traffic.

The SUMO scenario was generated using the OSMWebWizard Python tool.

As for the vehicles, despite the veracity of the data being of scarce interest,

routes were generated from real induction loop data for the city of Bologna.

The locations of the RSUs were chosen arbitrarily, ensuring a mix of highly

congested zones, residential areas, groups of very close Units, and a com-

bination of semaphore-controlled crossroads and roundabouts. The areas

covered by these RSUs and their IDs can be seen in Figure 4.1.

Figure 4.1: Screenshot from the Academy web app of some of the RSUs used
for testing

Tests were conducted with fewer than two hundred vehicles in a time win-

dow of 30 minutes. There is no real need for more vehicles or greater time

spans - short periods realistically convey the use case for this kind of Twin:

punctual traffic information, as if an induction loop were counting cars pass-
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ing above it. All simulations were run on a Debian virtual machine with

16GB of RAM and a 12-core CPU, while Vesuva was deployed on a Windows

10 machine with 16GB of RAM and a 4-core Intel i7-7700K CPU.

Slight differences from one run to the other, even with identical starting

conditions, can arise from differences in probability-based processes or due

to loss of data (either in CAM generation or their transmission through the

WebSocket). To reduce variance, tests were conducted in “batches”, with

each run repeated a minimum of five times, and the average of all their

results computed. Comparing runs with the same configuration, it is no-

ticeable that a small percentage of them deviate from the baseline, as some

CAM messages are missing compared to other (apparently) identical runs.

The average-based approach is thus preferable to have no doubt about the

robustness of the data source.

The best metric to understand the accuracy of the tracking, among those

that are available given the proposed system, is the density, measured as the

number of cars on an edge in a set time frame. Although it is not the sole

indicator of a city’s traffic situation, Vesuva’s measurement, combined with

real data from TraCI, makes it a relevant and reliable source of information.

Tests aimed to compare how the performance of the Twin changes as the

number of vehicles that participate in the communication decreases. The

statistical expectation is that the lower the percentage (or “penetration”) of

cars equipped with the Cooperative Awareness service in the network is, the

lower the number of correctly tracked vehicles will be. A baseline of the

accuracy of the system is given by comparing the TraCI data with the CAM-

sourced data at full penetration of the CA service. Once that is established,

tests on a decreasing percentage of communicating vehicles give insight into

the feasibility of the solution to create realistic traffic models.

4.2 Test results

In the following comparisons, all figures show three plots. On the x-axis

are the IDs of the edges in the range of a given RSU. The first graph is

CAM-sourced data, the result of the tracking provided by Vesuva, and the

second is TraCI-sourced data, the ground truth taken directly from the SUMO

simulation. To better present the differences between the two measurements,
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on the third plot, the delta between them is drawn, with a value close to zero

meaning high fidelity.

Figure 4.2 shows how many vehicles traversed each edge of RSU “#7” in

the given time frame. It is a Roadside Unit that oversees more edges than av-

erage because it contains a roundabout, which SUMO models as several small

tracts connected by just as many junctions. It is also located in a congested

area, and indeed, peaks of 60 vehicles are present. At 100% penetration, the

expectation is for CAM and TraCI data to be very similar, and this is reflected

in the plots.

Figure 4.2: Vehicle count RSU#7. Penetration rate of 100% of the
Cooperative Awareness service

At a glance, the curves in the first two plots look very similar. The two

uppermost plots show on the y-axis the number of vehicles on each edge

in the runtime of the simulation. The third chart shows that, on average,

there is an absolute difference of 10 to 15 cars between the two sources,
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so they are not being counted by CAM (TraCI will always count at least the

same number of vehicles or more). The impact of this loss of data can be

better understood by analyzing the density. It is computed RSU-wise as a

percentage of vehicles per edge divided by the total number of all vehicles

counted by the RSU. This method provides a relative representation of data

that suggests a hierarchy between the streets and can be interpreted as a sort

of heatmap of the “most popular” edges in the area covered by the Roadside

Unit.

Figure 4.3: Density for RSU#7. Penetration rate of 100% of the Cooperative
Awareness service

The comparison plot in Figure 4.3 shows a low difference in percentage for

most edges. In all density comparison charts, the difference is not absolute:

a negative value means that TraCI has a higher percentage than CAM. And

there is one clear outlier, edge “RSU7.E22”. Figure 4.4 shows the RSU topol-

ogy with a side-by-side view of Tolaria and SUMO, with the edge pointed at

with the black arrow being the one with the worst accuracy. If a street is right
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at the border of the radio range, the likelihood of the RSU capturing less ac-

curate data increases. A simple reason for this is that there is less information

to base the inference of visited edges. This could be easily solved by ignor-

ing all the outermost edges, even if partially covered by the RSU, or, a more

sensible approach, defining, Unit by Unit, a list of edges to ignore, if they

are deemed as not fit for the desired level of precision. Unfortunately, many

tests on edge-quality classification proved that this classification would have

to be conducted by hand, analyzing the average accuracy of the edges after

many example runs. Ordering the results by distance from the RSU, by edge

length, by permitted speed, and by number of connections did not delineate

a clear trend. It is, however, confirmed that some characteristics of the road

are more likely to provide less accurate results, and will be discussed later.

(a) SUMO-GUI (b) Tolaria

Figure 4.4: View of RSU#7’s roads, with the least accurate edge indicated

Finally, Figure 4.5 shows the comparison between vehicle counts for four

different levels of penetration of the Cooperative Awareness Service: 100%,

90%, 80%, and 70%. The similarities between the plots are a welcome sign

- it means that despite having less data to work with, the Digital Twin still

has a good view of the situation in the network. Still, some clear differences

can be made out. For instance, the line representing 70% penetration in the

“delta” plot is clearly above the rest, demonstrating poor accuracy.
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Figure 4.5: Vehicle count for RSU#7. Comparison of decreasing penetration
rates of the Cooperative Awareness service

To exclude that an error is causing this outcome and the penetration of the

service is correctly reflected in the simulation, tests were conducted with low

penetration rates. Figure 4.6 shows rates of 40%, 25%, and 10% compared

to 100%, and results are in line with the forecast: low penetration leads to

poor accuracy. Nevertheless, the curves still follow the overall trend, and this

speaks volumes about the effectiveness of the system.
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Figure 4.6: Comparison of low penetration rates of the Cooperative
Awareness service for RSU#7

The next figures show two more example RSUs. The first, “#6”, is near

a simple junction. Figure 4.7 shows the count and 4.8 the density. The

other, “#2”, overlooks the most congested junction of the network taken into

consideration. Figure 4.9 shows the count and 4.10 the density.

Both demonstrate that while a penetration of 70% is less accurate than

higher rates, it still manages to at least capture the trends. Especially Fig-

ure 4.7 makes it clear, thanks to the low number of edges, that the expected

statistical behavior is reflected.
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Figure 4.7: Vehicle count for RSU#6. Comparison of decreasing penetration
rates of the Cooperative Awareness service
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Figure 4.8: Density for RSU#6. Comparison of decreasing penetration rates
of the Cooperative Awareness service
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Figure 4.9: Vehicle count for RSU#2. Comparison of decreasing penetration
rates of the Cooperative Awareness service
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Figure 4.10: Density for RSU#2. Comparison of decreasing penetration
rates of the Cooperative Awareness service

To investigate how the characteristics of the roads and the position of the

RSUs affect accuracy, Figure 4.11 shows the mean absolute error of all edges

for each Unit, ordered on the x-axis by the number of roads they oversee.

Plot a) shows the average number of vehicles that are not getting counted

by Vesuva, while plot b) shows the average delta between the sensed density

and the real one. It is interesting to notice how, despite some RSUs, like #7,

showing poor accuracy in the absolute count, density is almost perfect across

the board.
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(a) Count

(b) Percentage

Figure 4.11: Comparison of average deltas between runs for each RSU

4.3 Discussions

Despite promising results, especially in the comparison of sensed density

with real data, there are still some key areas where simple precautions could

yield more accurate outcomes. Before discussing those, it is best to consider

some peculiarities of the problem at hand.

The first matter is one of network characteristics. This thesis has focused
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on dense, urban networks - those usually found in city centers. Compared to

simpler topologies like highways, city streets are smaller and more intercon-

nected. Buildings surround most roads, deteriorating radio signals both for

communication (on which the Digital Twin fully depends) and positioning

purposes (GPS information is the main tool used for map matching in this

design).

Another problem is that the source of data for the tests was simulated. It is

not just a matter of risking having used unrealistic data, as all analysis of the

resulting traffic models remains valid since a relative comparison was being

drawn, not an evaluation of the correlation with real data. In Section 3.3.2, it

was claimed that the accuracy of the data provided to the Twin is unrealistic.

It is true that Artery can correctly model, if supplied with sufficient data, the

impact of buildings and other causes of transmission degradation. However,

since SUMO governs the vehicle simulation itself, the precision obtained is

far greater than what can be expected in a real scenario. This contrasts with

the first problem listed, rendering it a non-issue in the case of the simulation.

However, it is important to keep in mind that all results and conclusions were

not based on the real environment.

Even in the presence of a perfect communication environment and a very

accurate virtual map, the limitations of the chosen technologies undoubtedly

hinder the accuracy that can be reached. In Section 3.5.1, the problem of

skipped edges and junctions was explained and shown in Figure 3.10. The

way the standard is constructed, there is no feasible way to avoid this at

the source, only strategies to mitigate the problem, inferring the missing

data from what is available. Despite all these considerations, the value of

the results is not to be minimized. The last problem discussed is precisely

the focus of the work, which wanted to ask the question of how limited the

technology actually is.

The suspicions in actuality were proven to be true: the chosen technology is

limited and requires careful use to provide good results. Simple GPS tracking

is not sufficient for accurate analysis of traffic. Heuristics to extrapolate more

information from what RSUs provide can greatly increase the quality of the

data, going beyond simple inference like the one presented in this work. By

combining the areas of RSUs close to each other, as detailed in Section 3.3.2,

the system has more information to work with to deduce skipped edges. Co-
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operative Awareness Messages also contain additional useful information to

deduce traffic that goes beyond position: for example, a lower mean vehicle

speed compared to the norm can indicate that a road is congested.

In the areas where the network topology was more complex, the system

showed poorer accuracy in testing. The quality of the virtual map can help

improve all operations of map matching, but it is clear that a simple road

structure can lead to better results. The radio range did not prove to be

a limitation, but, as discussed at the beginning of this Chapter, in the real

world, GPS is inevitably less accurate.

The source of data investigated in this Thesis, CA messages, from a Dig-

ital Twin standpoint, is better suited for traffic model creation for testing

purposes, rather than precise traffic analysis of the city. To accurately count

vehicles, an approach based on induction loops or cameras is preferable;

tests on low penetration rates showed that the overall trend of traffic is fol-

lowed even when few vehicles participate in the communication, but it is a

metric that, unsurprisingly, is far from accurate from an absolute point of

view. However, the ability to also receive event messages is very powerful.

Chapter 5 will look at some use cases that better convey the usefulness of the

solution in this regard.
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Chapter 5

Use cases

The potentialities of the proposed system can be better grasped by looking

at some realistic use cases.

5.1 Assisting in traffic redirection decisions

In the general context of Digital Twins, a simulation is only as useful as

the features it makes available. Even a perfect virtual copy of a city has little

value if the administration cannot use it to test real-world decisions. Vesuva

addresses this need by supporting Agamotto, a tool that can act directly on

the data that Vesuva gathers. This makes it possible to move from simple

monitoring to actively experimenting with scenarios. The most basic use

case is to take traffic models generated via Vesuva/Tolaria and use them to

test different traffic situations inside Agamotto.

For example, an urban administrator might want to test the effects of

closing a street before deciding how to redirect traffic. This is a common

need: cities deal with this almost every day, whether due to accidents that

require the presence of police, emergency infrastructure repairs, or construc-

tion work that changes road layouts for days or weeks.

Agamotto enables decision makers to simulate various strategies and select

the one that best aligns with their goals, which can vary depending on the sit-

uation. In some cases, the most crucial factor might be reducing the average

travel time. In others, it might be minimizing emissions, avoiding congestion
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near key areas, or keeping public transport on time. Agamotto supports this

kind of what-if analysis using only real, up-to-date data collected from the

city.

(a) CO2 emissions

(b) Average route length

Figure 5.1: Example result plots for Agamotto

By helping administrations explore different options and compare out-

comes (like in Figure 5.1) before acting, this system could make it easier

to make informed and thoughtful decisions, not based on guesswork, but on

data that accurately reflects the current state of the city.
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5.2 Automatic accident detection

The ability of Vesuva to correctly receive and manage Decentralized Envi-

ronmental Notification Messages brings forth some use cases that showcase

the potential of a Digital Twin that can leverage this kind of data. The previ-

ous use case asserted that Agamotto is a tool that could prove to be valuable

in the day-to-day administration of a city. Its combination with real-time data

is powerful, and it is worth being discussed further.

By participating in DENM communication, the DT gains access not only to

the usual data, like vehicle positions and speeds, but also to reports of what

is actually happening on the road network. This includes events such as

accidents, sudden hazards, road work, or traffic congestion. Having this layer

of information improves the reliability and relevance of any analysis the Twin

performs. It allows the system to confirm events that might otherwise only

be guessed from indirect information, or to discover problems that would go

entirely unnoticed.

Figure 5.2: ]

Example sequence for DT action based on DENM reception

Being quickly informed of emergency situations becomes even more potent

if the Digital Twin can act, directly or indirectly, in response. For example,

as shown in Figure 5.2, Agamotto could be triggered as soon as the Twin

receives a relevant DENM, treating the affected area as a set of temporar-
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ily closed roads. This would allow it to automatically simulate redirection

strategies and prepare possible responses without delay.

In systems where the Twin is also connected to infrastructure (like traffic

lights), it could go a step further and take immediate action, changing signal

patterns to ease traffic flow or redirect vehicles. Otherwise, it can still provide

a detailed report of the best available strategies to the city administration,

allowing them to make the final decision but significantly reducing the time

between detecting the issue and responding to it.

5.3 Long-term urban planning

Beyond reacting to day-to-day changes in the city, a Digital Twin like

Vesuva also holds potential as a planning tool for long-term infrastructure

projects. By simulating proposed changes to the road network, Vesuva and

Agamotto can assist administration in making informed decisions before con-

struction even begins.

Typical examples include the addition of a new road, the removal of an

intersection, or the creation of limited traffic zones. These are not simple

changes, and their effects can propagate across the entire city. Predicting

those effects in advance, especially in a realistic and data-driven way, is one

of the most valuable contributions a Digital Twin can offer to urban planning,

and one of the usual use cases for existing examples in the real world.

In this context, Vesuva provides the baseline by collecting and aggregating

real traffic data. Combined with Tolaria’s ability to analyze data over time, a

detailed picture of the current situation emerges. This picture then becomes

the foundation for Agamotto to simulate hypothetical changes, taking ad-

vantage of its ability to test many scenarios in parallel. City planners can use

this approach to evaluate multiple strategies before committing to one. Each

alternative can be tested against all the metrics that Agamotto provides, such

as average travel time, congestion levels in key areas, and environmental im-

pact. Over time, this allows for better planning decisions that are backed by

measurable outcomes.
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Conclusions

This thesis has focused on Intelligent Transport Systems (ITS) and the state

of the art of Digital Twins, asking how to bridge the gap between the current

adoption of smart vehicles and the level of data quality needed to feed the

twins themselves.

An unexplored approach was employed to collect data: instead of mount-

ing sensors and cameras on Roadside Units (RSUs), the solution takes ad-

vantage of their role in the communication stack, streaming all messages

directly to the twin. By analyzing the obtained Cooperative Awareness

Messages (CAMs) and Decentralized Environmental Notification Messages

(DENMs)—both part of the European standard for WLAN-based Vehicle-to-

Everything (V2X) communication “ITS-G5”—it is possible to correctly track

Connected and Automated Vehicles (CAVs).

The design and implementation details for a proof of concept of this novel

kind of Digital Twin were presented. The devised system closely resembles

the structure of a classic Twin and is composed of the following components:

a WebSocket client for receiving messages, a Tracker component for map

matching, an asynchronous Storage solution to save all parsed data, and a

Scheduler for tools running in the background. The data source was a traffic

simulation run in Artery, an application that bundles the widespread frame-

works SUMO and OMNeT++. This allowed the collection of actual vehicle

movement data, which is convenient for testing the effectiveness of the solu-

tion. A component inside the Twin manages that information, which served

as the ground truth for all tests.

A data analysis library and a graphical interface for data visualization com-

plete the Digital Twin picture. Simulations are managed by a custom Termi-

nal User Interface, which can control instances running on different hosts.
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To showcase the Twin’s ability to act on the collected data—and the value

of being notified of hazardous events through DENMs—a tool was developed

that simulates different scenarios of traffic redirection when a road is closed.

Some use cases for the tool in conjunction with the Twin were illustrated.

The vehicle tracking accuracy was tested against decreasing penetration

rates of intelligent vehicles in the network, to understand the impact that

such a solution would have under low but realistic adoption—ultimately an-

swering the question of how far current technology is from being viable in

our cities.

Tests confirmed the statistical expectation: accuracy inevitably decreases

when fewer vehicles participate in the communication. However, all results

showed that the overall trend is still captured, even with low penetration of

the service in the network. A clear hierarchy of the roads in an area covered

by an RSU can be delineated by computing a density metric as the number

of sensed vehicles on each street over the total. Such information is useful

to create local traffic models that can either be employed for simulations or

to visualize traffic trends. Some observations on the challenges faced and

how to improve accuracy concluded the analysis of the results, asserting that

many corrective actions would be needed to reliably use the solution for real

traffic measurements, which as it stands is only fit for high-level evaluations.
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