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Abstract

Questa tesi illustra il progetto e I’implementazione di uno stack software com-
pleto per un veicolo elettrico Formula SAE Driverless di prima generazione,
stabilendo un’architettura di base per la navigazione su tracciati sconosciuti
delimitati da coni. L’architettura del sistema si fonda su classici algoritmi di
robotica, esplorando al contempo 1’integrazione di moderne tecniche di ma-
chine learning.

La pipeline di percezione utilizza una stereocamera con un rilevatore di
oggetti YOLOvV11n addestrato su misura e un algoritmo di stereo matching
potenziato da ORB per ricostruire I’ambiente 3D del tracciato. Per il controllo,
¢ stato formulato un modello dinamico del veicolo che funge da nucleo per
un framework di controllo predittivo basato su modello non lineare (NMPC)
progettato con il toolkit acados.

Un contributo chiave di questo lavoro ¢ ’esplorazione di una strategia di
controllo ibrida basata sul Reinforcement Learning. Un agente Proximal Pol-
icy Optimization (PPO) ¢ stato addestrato per eseguire il tuning online degli
iperparametri di un controllore PD di tracciamento della traiettoria, combi-
nando il machine learning con un framework classico e interpretabile.

La validazione sperimentale ne evidenzia I’efficacia potenziale, dimostrando
che I’agente PPO apprende con successo il compito di ottimizzazione e met-
tendo al contempo in luce 1 limiti di stabilita del controller classico sottostante.
Questo lavoro stabilisce una solida base software per le corse autonome e for-
nisce indicazioni chiare e basate sui dati per lo sviluppo futuro di percezione

e controllo ad alte prestazioni.



Abstract

This thesis details the design and implementation of a complete software stack
for a first-generation Formula SAE Driverless electric vehicle, establishing
a foundational architecture for navigating unknown, cone-delineated tracks.
The system’s architecture is built upon a foundation of classical robotics algo-
rithms while exploring the integration of modern machine learning techniques.

The perception pipeline utilizes a stereocamera with a custom-trained
YOLOv11n object detector and an ORB-enhanced stereo matching algorithm
to reconstruct the 3D track environment. For control, a dynamic vehicle model
was formulated to serve as the predictive core for a Non-linear Model Predic-
tive Control (NMPC) framework designed with the acados toolkit.

A key contribution of this work is the exploration of a hybrid control strat-
egy using Reinforcement Learning. A Proximal Policy Optimization (PPO)
agent was trained to perform online hyperparameter tuning of a PD path-
following controller, combining machine learning with a classical, interpretable
framework.

Experimental validation shows the potential efficacy of the training setup
and demonstrates that the PPO agent successfully learns its optimization task,
while also highlighting the stability limits of the underlying classical con-
troller. This work establishes a complete software foundation for autonomous
racing and provides clear, data-driven insights for future development in high-

performance perception and control.
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Chapter 1

Introduction

Autonomous driving has emerged as one of the most transformative tech-
nologies of the 21st century, promising to revolutionize transportation by en-
hancing safety, efficiency, and accessibility. The development of a fully au-
tonomous vehicle is an immensely complex undertaking, encompassing a wide
array of research fields from robotics and computer vision to control theory
and artificial intelligence. To accelerate innovation in this domain, a num-
ber of high-profile autonomous racing competitions have been established.
These events provide a challenging yet constrained environment, pushing the
boundaries of perception, planning, and control under extreme conditions and
serving as an ideal testbed for new technologies.

This thesis addresses the multifaceted challenge of developing a complete
autonomous driving system within the specific context of the Formula SAE
(FSAE) Driverless competition. The core objective of this competition is to
design, build, and program a race car capable of navigating an unknown track,
delineated by colored traffic cones, at the highest possible speed. Successfully
achieving this goal requires a tightly integrated software stack that can reliably
perform the fundamental tasks of an autonomous system: it must perceive the
environment to build a map of the track, plan an optimal trajectory through
that map, and execute that trajectory with high precision by controlling the

vehicle’s actuators.
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The work presented in this thesis details the design, implementation, and
validation of such a software stack for our team’s first electric driverless ve-
hicle. Our approach is built upon a foundation of robust, well-understood
algorithms, while also exploring the integration of modern machine learning
techniques to enhance performance. For perception, we developed a com-
plete stereocamera pipeline that uses a custom-trained YOLOv11n object de-
tector to identify track cones and a multi-stage matching algorithm, refined
with ORB features, to reconstruct their 3D positions. For control, we for-
mulated a high-fidelity dynamic bicycle model, validated against professional
simulation software, to serve as the predictive core for a Non-linear Model
Predictive Controller (NMPC) implemented using the acados toolkit.

Beyond these classical methods, this thesis also presents a novel investiga-
tion into combining traditional control with modern Al. We explore a frame-
work where Reinforcement Learning, specifically the Proximal Policy Opti-
mization (PPO) algorithm, is used not for direct end-to-end control, but to
perform online hyperparameter tuning of a classical PD path-following con-
troller. This hybrid approach aims to leverage the optimization power of RL
without sacrificing the safety and interpretability of a well-defined control sys-
tem.

The primary contributions of this work are the creation of a complete,
functional software architecture for an autonomous race car, including a ro-
bust system management framework; the development and validation of a
stereocamera-based perception system that demonstrates the value of feature-
based matching for 3D accuracy; the formulation of a dynamic vehicle model
and an NMPC framework suitable for high-performance driving; and a prac-
tical exploration of using Reinforcement Learning to enhance classical con-
trollers, providing valuable insights into the opportunities and challenges of
this emerging paradigm.

This thesis is structured as follows. Chapter 2 details the context of the

problem, describing the FSAE Driverless competition, its dynamic events,
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and the core software requirements. Chapter 3 provides the necessary theoret-
ical background, covering the key hardware and software principles, including
LiDAR, stereocameras, vehicle modeling, and the fundamentals of MPC and
Reinforcement Learning. Chapter 4 reviews the state-of-the-art by examining
related work from other autonomous racing competitions and in the specific
field of combining MPC with reinforcement learning. Chapter 5 presents the
core technical contributions of this work, detailing the design, implementa-
tion, and experimental validation of our perception pipeline, vehicle models,
and control strategies. Finally, Chapter 6 concludes the thesis by summarizing
the work, acknowledging its limitations, and outlining promising directions

for future research.



Chapter 2

Context

Autonomous driving represents a broad and rapidly evolving field, encom-
passing a diverse range of complex challenges. This thesis addresses these
challenges within the specific context of the Formula SAE (FSAE) Driver-
less competition. In this international competition, university teams design,
build, and develop both the hardware and software for a prototype race car.
The vehicle’s performance is evaluated across four distinct dynamic events,
or missions, which are conducted as time trials without direct competitors on
the track simultaneously [9].

The competition environment is defined by colored traffic cones that the
vehicle must perceive to navigate the course. A critical challenge across most
events is that the exact track layouts are unknown beforehand, requiring the
autonomous system to perform robustly in unseen environments.

The work presented in this thesis was developed as part of the UniBo Mo-
torsport team, specifically for its Driverless Division. The software stack'
is implemented on our prototype, named Athena, which, in accordance with
competition regulations, is built upon a newly designed chassis for the current
season, with the exception for teams that develop a Driverless car for the first

time (which is our case) [9]. The primary objective is to develop a system

'Throughout this work, terms such as codebase, stack, software, solution, and project,
unless otherwise specified, refer to the Formula SAE Driverless software developed by the
UniBo Motorsport team.



2.1 The FSAE Driverless Dynamic Events 5

capable of achieving the best possible performance in the competition.

Figure 2.1: Our prototype Athena.

2.1 The FSAE Driverless Dynamic Events

The competition comprises four dynamic events, each designed to test specific
aspects of the vehicle’s performance. A common rule for all events is that the
maximum distance between two consecutive cones of the same color on a track

boundary is five meters.

1. Acceleration: This event evaluates the vehicle’s maximum longitudi-
nal acceleration from a standstill. The track is a 75-meter straight line
marked by cones for visual guidance. The vehicle must accelerate from
a designated starting position, cross the finish line as quickly as possi-
ble, and come to a complete stop within a defined braking zone. The
track layout is predefined and known, allowing for oftline optimization

of acceleration and braking profiles.
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2. Skidpad: This event measures the vehicle’s quasi-steady-state corner-
ing capability at maximum lateral acceleration. The track consists of
two pairs of concentric circles forming a figure-eight pattern with pre-
cise, known dimensions. The vehicle must navigate a 3-meter wide cor-
ridor delineated by inner and outer cones, completing one timed lap on
the right-hand circle and one on the left-hand circle. Like Acceleration,

the Skidpad layout is fixed and known in advance.

3. Autocross: This event assesses the vehicle’s overall handling and agility
on a short, complex circuit. The Autocross is a single-lap event on a
closed-loop track whose layout is unknown to teams before the com-
petition. The track is defined by a series of blue cones marking the left
boundary and yellow cones marking the right boundary. The layout typ-
ically features a combination of short straights, chicanes, hairpin turns,

and slaloms.

4. Trackdrive: This is the main endurance event, designed to test the reli-
ability, consistency, and sustained performance of the autonomous sys-
tem. The event consists of ten consecutive laps on a closed circuit sim-
ilar in style to the Autocross track. The layout, with a typical lap length
between 200 m and 500 m, is also unknown beforehand and is delimited

by blue and yellow cones.

2.2 Generic Autonomous System Architecture

Any autonomous vehicle, including the FSAE Driverless prototype, is built
around a core set of interacting components that operate in a continuous feed-
back loop.

First, the vehicle must be equipped with a suite of sensors to perceive
its environment. Common examples include LiDARs, cameras, RADARs,

Global Navigation Satellite Systems (GNSS), Inertial Measurement Units (IMUs),
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and wheel encoders.

The data from these sensors is processed by an onboard computing unit,
which makes informed decisions about the vehicle’s next actions. Unlike in
conventional computing, the physical characteristics of this unit—its weight,
dimensions, and power consumption—are critical design constraints. These
factors directly impact the vehicle’s battery life, center of mass, handling dy-
namics, and even the necessity of processing the data coming from the IMU.

The decisions from the computing unit are formulated as control com-
mands, typically target values for speed and steering angle. These commands
are sent to the vehicle’s actuators (e.g., steering motor, throttle controller),
which physically execute the desired actions.

This entire process operates as a continuous feedback loop: perception in-
forms planning, planning generates commands, actuation executes them, and
the resulting change in the vehicle’s state is captured by the sensors in the next
cycle, thereby closing the loop. The loop continues until a stop condition is

met.

2.3 Core Software Requirements

To successfully operate within this feedback loop, the software algorithms

must adhere to several critical requirements.

* Real-time: The system must operate in real-time. This implies that the
entire sense-plan-act cycle must complete within a strict time budget,
typically dictated by the refresh rate of the primary sensors (e.g., a Li-
DAR operating at 20 Hz imposes a 50 ms budget). Exceeding this bud-
get leads to processing lag, where decisions are based on outdated in-
formation, potentially causing control instability. This constraint, com-
bined with actuator latency, necessitates that all critical code is written

in a high-performance, compiled language such as C++ or Rust.
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* Readable: High code readability is essential for effective debugging
and rapid troubleshooting, which is critical during on-track testing and
competition events. Understandable code allows team members to quickly

identify and resolve malfunctions.

* Maintainable: The codebase must be maintainable to facilitate itera-
tive development, adaptation to new hardware (e.g., sensor upgrades),

and reuse across different vehicle prototypes or competition seasons.

» Reliable: Reliability is paramount for competitive success. A reliable
system exhibits consistent and deterministic behavior across repeated
trials and in varying, unseen environments. Achieving this is often the

most significant challenge.

2.4 Development and Validation Challenges

Developing and validating an autonomous system that meets these require-
ments is a complex, multidisciplinary endeavor, requiring expertise in fields
ranging from low-level programming and control theory to machine learning
and vehicle dynamics.

While Deep Learning (DL) has shown remarkable success in specific do-
mains like object detection and Reinforcement Learning, it is not a panacea for
all autonomous driving challenges. For robust deployment, it is crucial that
such technologies are not only reliable but also interpretable or explainable.
Before being trusted in a real-world scenario, all algorithms, whether based
on DL or classical methods, must undergo rigorous testing and validation.

The validation process for this problem is non-trivial, but several methods

can aid development.

+ Simulation: A high-fidelity simulation environment is an indispens-
able tool. It allows for the early detection of logical and architectural

bugs in a safe, cost-effective, and repeatable manner. If the simulation
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accurately models vehicle physics, it can also be used to test and tune

control algorithms with greater confidence.

Data Replay: This technique involves recording real-time sensor data
from the physical vehicle (e.g., LIDAR point clouds and camera images
during human driving) and “replaying” it to the software stack. This
provides a perfect simulation for perception algorithms that rely only
on sensor data. However, it is an open-loop test; the control outputs
generated by the algorithm cannot influence the vehicle’s trajectory in

the playback, as that is dictated by the original recording.

On-Vehicle Testing: The ultimate validation is deploying the solution
on the real prototype. While successful operation is a strong indicator of
a robust system, this method presents challenges for quantitative eval-

uation due to the difficulty in establishing a ground truth. For instance:

— To measure the accuracy of map generation, one would need to
precisely survey the position of every cone on the track and com-
pare it against the map generated by the system. This process is

prohibitively time-consuming to repeat for every new track layout.

— To measure the accuracy of the vehicle’s localization, an external,

high-precision motion capture system would be required.

2.5 Macro-Areas of Any Autonomous Stack

The software stack for an autonomous race car is typically organized into three

interconnected macro-areas.

2.5.1 Software Infrastructure

This area encompasses the foundational elements that support the entire soft-

ware stack. It includes the choice of development frameworks (e.g., Robot
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Operating System 2 - ROS 2 [16]), version control systems (e.g., Git), and
continuous integration (CI) pipelines. While some elements like CI do not
run on the vehicle, they are vital to the development process. An example
of an infrastructure component on Athena is the state machine responsible for
managing the startup, execution, and shutdown of all necessary processes for a
selected mission, including anomaly detection and failure recovery. Handling

sensor drivers and framework updates also falls under this area.

2.5.2 Perception

The perception system is responsible for interpreting raw sensor data to build
a coherent understanding of the environment. Its primary tasks are to cre-
ate a map of the track and to continuously estimate the vehicle’s position and
orientation (localization) within that map. An example in our system is the Li-
DAR pipeline, which detects the 3D position of traffic cones. This is achieved
by leveraging a priori knowledge of cone dimensions and by applying simple
techniques to mitigate point cloud distortion caused by vehicle motion at high

speeds.

2.5.3 Motion Planning

Motion planning utilizes the world model from the perception system to com-

pute a safe and efficient path for the vehicle. This process can generate:

* Local Trajectories: When a complete map is not yet available, the
system can use the positions of nearby visible cones to generate a short-

term trajectory that keeps the vehicle within the track boundaries.

* Global Trajectories: Once a complete map of the circuit is built, the
system can compute a global trajectory, such as the track centerline or

a lap-time-optimized racing line.
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These planned trajectories are then translated into executable commands by a

controller. Controllers can be broadly categorized as:

* Geometric Controllers: These algorithms use the vehicle’s kinematic
properties to determine a target steering angle (6) to follow a path. They

typically do not compute throttle or torque commands.

* Physics-based Controllers: These more advanced controllers also con-
sider the vehicle’s dynamic properties (e.g., mass, inertia, tire forces).
This allows for more stable, precise, and efficient control, especially

near the limits of handling.



Chapter 3

Background

This chapter provides an overview of some of the key hardware and software

components that form the foundation of our autonomous system.

3.1 Autonomous System Unit (ASU)

The Autonomous System Unit (ASU) is the central onboard computer that
runs the high-level software stack, including perception, mapping, and mo-
tion planning. For our system, we chose to build the ASU using commercial
components rather than a specialized embedded platform like an NVIDIA Jet-
son.

This decision was driven by several key factors. Commercial components
provide complete control over the software environment, allowing us to install
a standard Linux distribution (Ubuntu 24.04) and manage dependencies freely.
This approach also benefits from extensive community support and documen-
tation, which simplifies troubleshooting. Furthermore, a desktop-class CPU
offers significantly higher single-core performance compared to typical em-
bedded ARM processors, which is advantageous for many of our algorithms.

The primary trade-offs for this increased performance and flexibility are
greater physical dimensions, higher weight, and increased power consump-

tion. A critical design challenge was thermal management. Since the vehicle
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must be capable of operating in the rain, traditional air cooling with open vents
was not a viable option due to the risk of water infiltration. To solve this, we
designed a custom, water-resistant plexiglass case for the ASU, which neces-
sitates the use of a dedicated water-cooling system.

The components of the ASU and its cooling system are listed below.

ASU Components:

* Motherboard: ASUS Z790-1

» CPU: Intel Core 17-12700K

RAM: G.SKILL 16GB DDRS5 7200MHz

GPU: ASUS DUAL-RTX4060TI-O8G

SSD: Samsung MZ-VOP1TOBW 1TB NVMe

* Power Supply Unit: HDPLEX 500W HiFi DC-ATX

ASU Cooling System:

» Radiator: Alphacool 14172
* Water Pump: WCP D5-VARIO
* Reservoir: Stealkey UNI 80

3.2 Vehicle Control Unit (VCU)

The Vehicle Control Unit (VCU) is a real-time, programmable microcontroller
that serves as the low-level interface between the ASU and the car’s physical
hardware. Our vehicle uses the Miracle?, a specialized automotive control
platform provided by Alma Automotive.

The core of the Miracle? is a National Instruments System-on-Module
(SOM), which combines a dual-core ARM processor for running logic with
a Xilinx Artix-7 FPGA for handling high-speed, parallel input/output tasks.
This architecture makes it ideal for the demands of real-time control and data
acquisition. The unit is programmed using the NI LabVIEW graphical toolchain.

In our system, the VCU acts as the central communication gateway. It



3.3 LiDAR Sensors 14

connects directly to critical vehicle components via standard protocols like

CAN and Ethernet, managing devices such as:

* The motor inverters

The GPS and steering angle sensors
* The steering wheel dashboard

* The autonomous steering and braking actuators

The communication between the ASU and the VCU is handled by a robust,
duplex TCP connection over Ethernet. This link creates a clear hierarchy of

control:

* The ASU sends high-level commands (e.g., ’set steering angle to 0.1 rad,”
’set rear torque to 50 Nm”) to the VCU.

» The VCU translates these commands into low-level electrical signals for
the actuators and simultaneously sends essential feedback signals (e.g.,

current steering angle, GPS data) back to the ASU.

This separation of tasks allows the ASU to focus on complex decision-making,
while the VCU handles the safety-critical, real-time control of the vehicle’s

hardware.

3.3 LiDAR Sensors

LiDAR, which stands for Light Detection and Ranging, is a crucial active
sensor technology used for environment perception in autonomous systems.
Unlike passive sensors like cameras that rely on ambient light, LIDAR systems
actively illuminate the environment with their own light source, making them

highly effective in a wide range of lighting conditions.

3.3.1 Principle of Operation: 2D LiDAR

The fundamental working principle of a LIDAR sensor is based on the concept

of Time-of-Flight (ToF). As illustrated in Figure 3.1, the process is as follows:
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1. The LiDAR unit emits a brief, focused pulse of laser light.

2. This pulse travels through the air at the speed of light (¢) until it strikes

an object.

3. A portion of the light is reflected off the object’s surface and travels
back to the LiDAR’s detector.

4. The sensor measures the total time (¢) taken for this round trip.

The distance to the object can then be calculated using a simple formula.
Since the measured time accounts for the journey to the object and back, the

one-way distance is half of the total distance traveled:

t
distance = % 3.1

A 2D LiDAR sensor performs this measurement thousands of times per
second while rotating around a central axis. This action sweeps the laser across
a single horizontal plane, generating a 360-degree “’slice” of the surrounding
environment as a series of distance measurements. Classic examples of such

sensors, often used in robotics, include devices made by SICK and Hokuyo.

LIDAR OBJECT

Laser pulse travelling at speed of light

e Xt

distance =

Figure 3.1: The Time-of-Flight (ToF) principle of a LiDAR sensor (left) and
the resulting single plane of 2D scan data (right).

3.3.2 Extension to 3D LiDAR

The principle behind 3D LiDAR is a direct extension of its 2D counterpart.
The key difference, as shown in Figure 3.2, is that a 3D LiDAR does not have
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just one laser emitter but an array of them. Each laser in the array is aimed at
a slightly different, fixed vertical angle.

As this entire array rotates, it creates not just one, but a stack of horizontal
scanning planes. This process rapidly builds a full three-dimensional map of
the environment. The output is no longer a simple 2D scan but a rich point
cloud, where each point represents a single laser reflection and has its own (x,
y, ) coordinate in space.

This 3D information is invaluable for autonomous racing. While a 2D
LiDAR could detect the presence of a cone on its scanning plane, a 3D LiDAR
captures the cone’s full shape and height. This allows algorithms to more
reliably distinguish cones from other objects and to accurately determine their

position on the track, which is fundamental for navigation and mapping.

.....
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Figure 3.2: A diagram showing the multiple vertical layers of a 3D LiDAR
(left) and a visualization of how these layers scan the track environment to
create a 3D point cloud (right).

3.4 Stereocameras

A stereocamera is a type of sensor that uses two or more lenses to simulate
human binocular vision. By capturing two separate images of the same scene
from slightly different viewpoints, the system can perceive depth and recon-

struct the 3D structure of its environment.
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3.4.1 Principle of Operation: Triangulation and Disparity

The principle behind stereo vision is analogous to a simple human experience:
if you hold a finger in front of your face and view it by closing one eye and then
the other, the finger appears to shift against the background. This apparent
shift is known as parallax.

In computer vision, this horizontal shift in an object’s pixel position be-
tween the left and right images is called disparity. As illustrated in Figure 3.3,
the magnitude of this disparity is inversely proportional to the object’s distance

from the cameras:
* Nearby objects exhibit a large disparity.
* Distant objects exhibit a small disparity.

Once the camera system is calibrated, the depth (or distance) to any point in
the scene can be calculated through triangulation. This relationship is captured

by the following formula:

f - baseline

Depth = (3.2)

disparity
where:

* Focal Length (f): An intrinsic property of the camera lenses, known

from calibration.

* Baseline: The fixed, precisely known distance between the centers of

the two camera lenses.

* Disparity: The measured difference (in pixels) of an object’s horizontal

position between the left and right images.

To calculate depth, a stereo system must first solve the correspondence

problem: finding the same point in both the left and right images to measure
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V4 = s -
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Stereo camera pail

Figure 3.3: The principle of stereo vision. The disparity, or shift in an object’s
pixel position, is larger for closer objects (green) and smaller for farther objects
(red).

its disparity. This matching process is a computationally intensive task. Un-
like active sensors like LIDAR, stereocameras are passive and rely on ambi-
ent lighting, making them less effective in low-light or uniform environments
where distinct features are scarce. However, their primary advantage is that
they provide rich color and texture information in addition to depth, which is
invaluable for tasks like object classification. Our system uses a ZED 2i, a

popular example of a pre-calibrated, industrial stereocamera.

3.5 ROS2

ROS (Robot Operating System) 2 [16] is a widely used, open-source frame-
work in robotics that provides a standardized way for different software com-
ponents to communicate. It operates on a system of nodes, which are indi-
vidual processes performing specific tasks (e.g., processing LiDAR data or
calculating control commands).

These nodes exchange information through a publish-subscribe messaging
system organized around named channels called topics. A node can act as a
publisher by sending data to a specific topic, or as a subscriber by listening
for data on that topic. The units of data exchanged on these topics are called

messages, which are strongly-typed data structures. For instance, a perception
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node might publish a message containing an array of detected cone positions to
a/cone_map topic, while the controller node subscribes to this topic to receive
the map data.

In addition to this continuous data streaming model, ROS 2 provides a
communication mechanism for remote procedure calls called services. Ser-
vices operate on a synchronous request-response model, similar to a client-
server architecture. A node acting as a service server can offer a specific
function, which another node, the service client, can call. When a client calls
a service, it sends a request message and waits for the server to process it and
return a response message. This two-way communication is ideal for tasks
that require a direct confirmation, such as asking a state management node to
switch the car into “autonomous mode” and waiting for a success or failure
response before proceeding.

While ROS 2 provides a rich library of standard message types (e.g., for
point clouds, images, and odometry), a key feature is the ability for develop-
ers to define custom messages. This allows for the creation of tailored data
structures that precisely fit the application’s needs, such as a custom mes-
sage to convey a complete vehicle state or a specific control command. This
modular, message-based architecture is exceptionally well-suited for the high-
frequency, asynchronous data exchange required for real-time autonomous

control.

3.6 Stereo Matching

After establishing the principles of stereo vision, we now focus on the core
computational task required to extract depth information: stereo matching.
The goal of any stereo matching algorithm is to solve the correspondence
problem: that is, for a given pixel in the left image, to find the exact same
corresponding pixel in the right image. Once this correspondence is found,

the disparity can be calculated, and from that, the depth can be determined.
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3.6.1 Image Rectification

Before a matching algorithm can be run efficiently, the pair of stereo images
must undergo a crucial preprocessing step called rectification. In a raw, un-
calibrated pair of images, a point visible in the left image could lie anywhere
along a diagonal line (known as an epipolar line) in the right image. Searching
along this diagonal line for every pixel would be computationally very slow.
Image rectification is a transformation process that warps both images
such that all epipolar lines become perfectly horizontal and aligned. This
means that a point appearing at pixel coordinates (z, y) in the rectified left im-
age is guaranteed to appear on the same horizontal scanline, ¥, in the rectified
right image. This powerful simplification reduces the search for a correspond-
ing point from a two-dimensional problem to a much faster one-dimensional

one.

3.6.2 Matching Algorithms

Once the images are rectified, the algorithm can proceed to find correspon-
dences along each horizontal scanline. Modern matching algorithms typically
do not match individual pixels, as a single pixel provides too little informa-
tion and can be highly ambiguous. Instead, they operate on small windows or
“patches” of pixels (e.g., a 7x7 square) around a point of interest.

To determine the best match for a patch from the left image, the algorithm
slides a candidate patch along the corresponding scanline in the right image
and computes a similarity score at each position. A common and efficient
metric for this is the Sum of Absolute Differences (SAD). This metric is

calculated as:

SAD = 114, 5) — Ir(i, j)] (3.3)

1,
where [}, and I are the intensity values of the pixels within the left and right
patches, respectively. The position that yields the lowest SAD score is con-

sidered the best match.
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3.6.3 The Disparity Map

The final output of the stereo matching process is a disparity map. This is a
new, single-channel image where the value of each pixel corresponds to the
calculated disparity for that location. High-intensity pixels represent large
disparities, indicating objects that are close to the camera. Conversely, low-
intensity pixels represent small disparities, indicating objects that are far away.
This disparity map serves as a direct, dense representation of the scene’s 3D
structure and can be converted into a depth map using the formula described

in Section 3.4.

3.6.4 Common Challenges

While powerful, stereo matching algorithms face several inherent challenges

that can affect the quality of the resulting disparity map:

* Textureless Regions: On surfaces with uniform color and no texture, like a
blank wall or a smooth patch of asphalt, many patches will have a similarly
low matching score, making it difficult to find a unique, correct correspon-
dence.

* Occlusions: Some parts of the scene may be visible to one camera but hid-
den from the view of the other. These occluded regions have no possible
correspondence, resulting in gaps or errors in the disparity map.

* Repetitive Patterns: Highly repetitive textures, such as a brick wall or a
chain-link fence, can cause the algorithm to find multiple good” matches,

leading to incorrect disparity estimates.

3.7 Feature Matching

While dense stereo matching algorithms aim to calculate a depth value for
every pixel in an image, another important technique in computer vision is

feature matching. Instead of processing the entire image, feature matching
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focuses on identifying and matching a sparse set of salient, distinctive points
between two images. These points, often called keypoints or features, typi-
cally correspond to corners, blobs, or unique textural patterns in the scene.
This sparse approach offers several advantages over dense methods. It is
significantly more computationally efficient, as it only processes a few hun-
dred keypoints instead of millions of pixels. Furthermore, the algorithms used
are often designed to be robust to changes in image scale, rotation, and light-
ing, making feature matching an ideal tool for tasks like object tracking, visual

odometry, and Simultaneous Localization and Mapping (SLAM).

3.7.1 The Feature Matching Process

The process of matching features between two images can be broken down

into three main steps, as illustrated in Figure 5.8.

1. Feature Detection

The first step is to identify keypoints in each image. A good keypoint is one
that can be reliably detected even if the image is transformed (e.g., rotated
or viewed from a different angle). Algorithms like Harris Corner Detector
or FAST (Features from Accelerated Segment Test) are designed to find such
stable points by analyzing local pixel intensity patterns. The output of this

stage is a list of pixel coordinates for all detected keypoints in each image.

2. Feature Description

Once a keypoint is detected, a numerical ”fingerprint” called a descriptor is
computed to represent the image patch surrounding it. This descriptor must
be distinctive enough to differentiate one keypoint from another, yet robust
enough to be consistent across different viewing conditions. Descriptors can
range from high-dimensional floating-point vectors (like in SIFT) to compact

binary strings (like in ORB).
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3. Descriptor Matching

With sets of descriptors from both images, the final step is to find correspon-
dences. The most straightforward method is Brute-Force Matching. For
each descriptor in the first image, the algorithm compares it to every descrip-
tor in the second image to find the one with the smallest ’distance” (e.g., Eu-
clidean distance for float vectors or Hamming distance for binary strings). The
pair with the minimum distance is considered a match. More sophisticated fil-
tering techniques, like the ratio test, are often used to discard ambiguous or

weak matches.

3.7.2 ORB: An Efficient Feature Algorithm

For real-time applications such as autonomous racing, computational effi-
ciency is paramount. One of the most popular algorithms that balances perfor-
mance and accuracy is ORB (Oriented FAST and Rotated BRIEF) [23]. ORB
1s widely used in robotics because it is effective and free from patents. As its

name suggests, it combines two key components:

* Oriented FAST for Detection: ORB uses the FAST algorithm to quickly
detect corner-like keypoints. It then improves upon standard FAST by
calculating an orientation for each keypoint based on the intensity of its
local neighborhood. By knowing the orientation, the system can achieve

robustness to in-plane rotation.

* Rotated BRIEF for Description: To describe the keypoint, ORB uses
a modified version of the BRIEF (Binary Robust Independent Elemen-
tary Features) descriptor. BRIEF creates a compact binary string by per-
forming a series of simple intensity comparisons between pairs of pixels
in the patch around the keypoint. This binary format is extremely fast
to compute and even faster to match using the Hamming distance. ORB

enhances BRIEF by “’steering” the pixel comparison pattern according
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to the keypoint’s orientation calculated in the first step. This makes the

resulting descriptor rotation-invariant.

The combination of a fast detector and a compact, efficient descriptor
makes ORB an excellent choice for our perception pipeline, where it is used

to find stable correspondences for robust 3D triangulation.

3.8 Convolutional Neural Networks

Convolutional Neural Networks (CNNs or ConvNets) are a class of deep neu-
ral networks that have become the de-facto standard for tasks in computer
vision. Their design is inspired by the organization of the animal visual cor-
tex. Unlike traditional machine learning models that require hand-engineered
features, the key strength of a CNN is its ability to automatically and hierar-

chically learn relevant features directly from raw pixel data.

3.8.1 Core Components

A CNN is constructed from a sequence of specialized layers. The most fun-

damental of these are the convolutional, activation, and pooling layers.

The Convolutional Layer

The convolutional layer is the core building block of a CNN. It operates by
sliding a small matrix of weights, known as a filter or kernel, over the in-
put image. At each position, the filter performs a convolution operation: an
element-wise multiplication with the underlying patch of the image, followed
by a summation of the results. This process produces a single value.

By sliding the filter across the entire image, a two-dimensional feature
map is created. This feature map indicates the presence of a specific feature
(e.g., a vertical edge, a corner, or a particular color) at different locations in

the image. During the training process, the network learns the optimal values
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for these filters, effectively teaching itself which features are important for the
given task. A typical CNN will have many such filters in each convolutional

layer, each one learning to detect a different feature.

The Activation Function (ReLU)

After each convolution, an activation function is applied to introduce non-
linearity into the model. Without non-linearity, a deep stack of layers would
behave like a single, simple layer, and would be unable to model the complex
patterns found in real-world data.

The most commonly used activation function is the Rectified Linear Unit
(ReLU). Its function is very simple: it replaces all negative pixel values in a

feature map with zero, while leaving positive values unchanged.

f(z) = max(0, z) (3.4)

ReLU is popular because it is computationally very efficient and helps mitigate

some common issues that can occur during the training of deep networks.

The Pooling Layer

The pooling layer is used to progressively reduce the spatial dimensions (width
and height) of the feature maps. This process, also known as down-sampling,
serves two main purposes: it reduces the number of parameters and compu-
tations in the network, and it makes the learned features more robust to small
variations in their position.

The most common form of pooling is Max Pooling. It involves sliding
a small window (e.g., 2x2) over the feature map and, for each window, out-
putting only the maximum value. This effectively summarizes the features

present in a neighborhood.
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3.8.2 Typical CNN Architecture

A typical CNN architecture for image classification consists of several stacked
blocks of ‘Convolution -> ReLLU -> Pooling* layers. The initial layers learn
simple, low-level features like edges and colors. Subsequent layers combine
these to learn more complex features, such as textures, patterns, and eventu-
ally, object parts.

After these convolutional blocks, the final feature maps are flattened” into
a one-dimensional vector. This vector is then fed into one or more standard
fully connected (or dense) layers, which perform the final classification by

mapping the learned high-level features to the output classes.

3.8.3 Application in Object Detection: YOLO

While the architecture described above is for classifying an entire image, ob-
ject detection is a more complex task that involves both classifying and lo-
calizing objects with bounding boxes. One of the most influential real-time
object detection models based on CNNs is YOLO (You Only Look Once)
[21].

Unlike older, two-stage detectors that were slow, YOLO is a “’single-shot”
detector. It treats object detection as a single regression problem, straight from
image pixels to bounding box coordinates and class probabilities. The core
idea is to divide the input image into a grid. For each grid cell, a CNN simul-

taneously predicts:

* A set of bounding boxes anchored to that cell.
» A confidence score for each box, indicating the likelihood that it contains
an object.

 The class probabilities for the object within each box.

This single-pass architecture makes YOLO and its subsequent versions ex-
tremely fast, enabling its use in real-time applications where high frame rates

are critical. For this reason, it forms the foundation of the cone detector used
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in our perception pipeline.

3.9 Vehicle Modeling

In autonomous driving, a mathematical model of the vehicle is a fundamental
tool. It allows algorithms to predict how the car will respond to control inputs,
which is essential for planning safe and efficient trajectories. The complexity
of these models can vary greatly, but they generally fall into two main cat-
egories: kinematic models and dynamic models. The choice between them
represents a critical trade-off between computational simplicity and physical

accuracy.

3.9.1 Kinematic Models

Kinematic models describe the vehicle’s motion based purely on geometry and
velocity, without considering the forces (like tire forces or inertia) that cause
the motion. They answer the question, ”If the vehicle is moving at a certain
speed and the wheels are turned to a certain angle, where will it be a moment
later?”

The most common kinematic representation is the kinematic bicycle model.
This model simplifies the car by collapsing the two front wheels into a single
wheel at the front axle and the two rear wheels into a single wheel at the rear
axle, as if it were a bicycle. Its motion is described by a simple set of equa-

tions:

& = vcos(f) (3.5)
y = vsin(0) (3.6)
.

0 = 17 tan(d) 3.7

where (x,y) is the position of the vehicle’s center of mass, 6 is its yaw an-

gle (heading), v is its longitudinal velocity, L is the wheelbase (the distance
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between the front and rear axles), and 0 is the steering angle.

The core assumption of kinematic models is the no-slip condition, which
presumes that the wheels always move perfectly in the direction they are point-
ing. This assumption holds reasonably well at low speeds and during gentle

mancuvers.

» Advantages: Kinematic models are simple, require very few parameters,
and are extremely fast to compute.

» Disadvantages: They become inaccurate at higher speeds or during ag-
gressive driving, where tire slip becomes significant. They cannot predict
effects like understeer or oversteer.

» Use Cases: They are well-suited for low-speed path tracking, parking ma-

neuvers, and as a simplified model for high-level trajectory planning.

3.9.2 Dynamic Models

Dynamic models, also called physical models, provide a more accurate repre-
sentation by incorporating the principles of physics, namely Newton’s second
law (F' = ma). These models consider the vehicle’s mass, its moment of
inertia, and the various forces acting upon it.

The dynamic bicycle model is a common extension of its kinematic coun-
terpart. It uses the same simplified geometry but adds the effect of forces. A
dynamic model can predict how the vehicle will accelerate, decelerate, and
turn in response to forces generated by the powertrain, brakes, and, most im-
portantly, the tires.

The key improvement is the modeling of lateral tire forces. Unlike the
kinematic model’s no-slip assumption, a dynamic model accounts for tire slip—
the difference between the direction a tire is pointed and its actual direction
of travel. This is crucial because it is the slip that generates the lateral forces
needed for cornering. These forces are typically described by complex, non-

linear tire models, such as the Pacejka Magic Formula, which capture how
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grip changes with factors like vertical load and slip angle.

* Advantages: Dynamic models are much more accurate, especially at high
speeds and near the vehicle’s handling limits. They can predict complex
phenomena like weight transfer and loss of grip.

+ Disadvantages: They are significantly more complex, require the identifi-
cation of many more physical parameters (e.g., mass, inertia, tire stiffness
coefficients), and are computationally more expensive.

» Use Cases: They are essential for high-performance controllers like Model
Predictive Control (MPC) and for creating high-fidelity simulations used

for testing and validation.

3.10 Path Following with a PD Controller

Once a desired path is known, a controller is needed to generate the steering
commands that keep the vehicle on that path. One of the most fundamental
and effective approaches for this task is a path-following controller. This sec-
tion describes the Proportional-Derivative (PD) controller used in our system,

which is a variation of the classic Pure Pursuit algorithm.

3.10.1 The PID Controller Framework

To understand our controller, it is first useful to understand the general Proportional-
Integral-Derivative (PID) control framework. A PID controller is a ubiquitous
feedback mechanism used in countless industrial control systems. Its goal is to
minimize the error between a measured process variable and a desired setpoint
by calculating a corrective output. It does this by combining three distinct

terms:

* Proportional (P) Term: This term produces an output that is directly
proportional to the current error. A larger error results in a larger cor-

rective action. It provides the primary response to the error.
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* Integral (I) Term: This term considers past errors by accumulating
them over time. Its purpose is to eliminate any residual steady-state
error that the proportional term alone cannot correct. However, in fast-
acting systems like vehicle steering, this term can cause overshoot and

instability. For this reason, it is omitted.

* Derivative (D) Term: This term acts on the rate of change of the er-
ror. It has a dampening effect, reducing overshoot and oscillations by

“predicting” the future error and tempering the control response accord-

ingly.

The combined output is a weighted sum of these three terms. Since the
integral term is often not needed for vehicle steering control, a simpler PD
controller is frequently used, providing a balance of responsiveness and sta-

bility.

3.10.2 The Race Line as a Reference

The “desired setpoint” for a racing context is not a single value but a contin-
uous path known as the race line. A race line is an optimized trajectory that
represents the fastest path around a given circuit. It is typically defined as a
sequence of discrete points, where each point contains not only a 2D position
(z, y) but also other critical information such as the path’s curvature and a tar-
get velocity profile. This race line serves as the reference trajectory that the
path-following controller must track. A good implementation for optimizing

the race line is present in [27].

3.10.3 Our PD Path-Following Implementation

Our controller continuously calculates the necessary steering angle to follow
the race line. The process is repeated at each time step and can be broken

down into two main stages.
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1. Finding the Target Point

Instead of trying to steer towards the closest point on the path (which can be

unstable), the controller looks ahead to a “’target point” further along the race

line. This is the core idea behind Pure Pursuit. The process is as follows:

1.

The vehicle’s current position is obtained from the localization system.
Our implementation uses the position of the rear axle as the reference

point for the car.

. A target point is selected on the race line at a specific ”lookahead dis-

tance”, d, from the vehicle’s current position.

. This lookahead distance is not fixed; it is dynamically adjusted based

on the vehicle’s current speed. A longer lookahead distance is used at
higher speeds to encourage smoother steering inputs. This is governed
by two tunable parameters: a minimum lookahead distance (dj, min) and

a velocity-dependent gain (gj,). The final formula is:

d=v - Gia + dla,min

This target point effectively becomes the short-term goal for the controller.

2. Computing the Steering Angle

Once the target point is identified, the controller computes the steering angle

(0) required to direct the vehicle towards it.

1.

The desired yaw angle, 0., is calculated. This is the angle of the

vector pointing from the car’s current position to the target point.

. The heading error, ¢, is computed as the difference between this de-

sired yaw angle and the car’s current yaw angle, 6.

€= Qtarget -0
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3. This error is then fed into a PD controller to calculate the final steering
angle command:
de

5target = kp ce+ kd : %

The proportional term (), - €) provides the primary steering action, turning the
wheels proportionally to the heading error. The derivative term (k, - de/dt)
acts as a damper, smoothing the steering response and preventing the rapid
oscillations that could arise from using a purely proportional controller. The
gains k, and k4 are the core tunable parameters that define the controller’s

responsiveness and stability.

3.11 Model Predictive Control (MPC)

While controllers like PD are reactive—meaning they correct errors based on
the current state—Model Predictive Control (MPC) is a more advanced, proac-
tive control strategy. Instead of just reacting to the present, MPC uses a model
of the vehicle to predict its future behavior and plans an entire sequence of op-
timal actions over a short time horizon. This ability to ”look ahead” allows it
to make much more intelligent decisions, especially in complex and dynamic

environments.

3.11.1 The Core Concept: Receding Horizon Control

The fundamental principle behind MPC is known as receding horizon con-
trol. It works in a cyclical fashion, constantly re-evaluating its plan at each
time step. Imagine a human driver navigating a series of corners: they don’t
just look at the road immediately in front of them; they look ahead to anticipate
the best line. MPC mimics this process digitally.

The process can be broken down into a few key steps:

1. Get Current State: The controller first measures the current state of

the vehicle (e.g., its position, velocity, and heading).
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2. Predict and Optimize: Using the vehicle’s dynamic or kinematic model,
the controller simulates many different possible sequences of control
inputs (e.g., steering and throttle commands) over a predefined predic-
tion horizon” (e.g., the next 2-3 seconds). It evaluates each resulting
trajectory against a cost function to find the one optimal sequence that
best achieves its goals (e.g., follows the race line, minimizes control

effort, etc.) while respecting all constraints.

3. Apply First Action: Although the controller has planned an entire se-
quence of actions, it only applies the very first action from that optimal

plan.

4. Repeat: At the next time step, the entire process is repeated. The hori-
zon “recedes” or moves forward, a new optimal plan is calculated based

on the new current state, and the first step of that new plan is applied.

This constant re-planning makes MPC highly robust to disturbances and changes
in the environment, as it is always correcting its plan based on the most recent

information.

3.11.2 Key Components of an MPC Formulation

To implement an MPC, three core components must be defined:

* Prediction Model: This is the mathematical model of the system, as
discussed in Section 3.9. The accuracy of the MPC’s predictions is di-

rectly dependent on the fidelity of this model.

* Cost Function: This function mathematically defines the ”goal” of the
controller. It assigns a numerical score (a cost) to a predicted trajec-
tory, which the controller then tries to minimize. A typical cost func-
tion might penalize deviation from a reference path, aggressive control

inputs, or low speeds.



3.11 Model Predictive Control (MPC) 34

* Constraints: These are the “rules” that the predicted trajectory must
obey. Constraints can represent physical limitations of the vehicle (e.g.,
maximum steering angle, maximum tire grip) or environmental rules

(e.g., staying within the track boundaries).

3.11.3 Linear vs. Non-linear MPC (NMPC)

The type of prediction model used distinguishes between two main families

of MPC.

* Linear MPC (LMPC): This approach uses a simplified, linearized ver-
sion of the vehicle model. The main advantage is computational speed.
The resulting optimization problem is a Quadratic Program (QP), which
can be solved extremely quickly, even on less powerful hardware. How-
ever, since a linear model is only an approximation, LMPC can become
inaccurate during aggressive maneuvers where the vehicle’s non-linear

dynamics (like tire slip) are significant.

* Non-linear MPC (NMPC): This is the more advanced approach, which
uses the full, non-linear dynamic model directly for its predictions. This
provides much higher accuracy, as the controller can reason about com-
plex physical effects like tire saturation. The trade-off is a significant
increase in computational complexity. Solving a non-linear optimiza-
tion problem in real-time is a much harder task and requires specialized,

highly efficient software solvers, such as acados [32].

The choice between LMPC and NMPC depends on the specific application.
For low-speed or simple path-tracking tasks, LMPC is often sufficient. For
high-performance autonomous racing, where operating near the physical lim-

its is necessary, the superior accuracy of NMPC is required.
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3.12 Markov Decision Process (MDP)

The majority of the following topics are based on the foundational text by
Sutton and Barto [26]. Reinforcement Learning provides a formal framework
for tackling sequential decision problems, where the outcome depends not on a
single action, but on a sequence of actions taken over time. In this paradigm, a
learning agent interacts with an environment. The agent must choose actions,
and the environment responds to those actions by presenting new situations,
or states, and giving rewards.

A state provides an unambiguous description of a situation within the en-
vironment. From any given state, a set of actions is available to the agent.
In many real-world scenarios, the outcome of an action can be uncertain. To
model this, we use a transition function, which defines a probability distri-
bution over the possible next states.

Let’s formalize these concepts!:

* S: A finite set of states.

A: A finite set of actions.
e T:5 x A — S: The transition function.

* P(s'|s,a): The probability of transitioning to state s’ after taking ac-
tion a in state s. This is drawn from a known probability distribution

over the state space.

The final component is the reward, which guides the agent’s learning process.

We assume a deterministic reward function:
e R: S5 x AxS — R: The reward function.

* rsas = R(s,a,s): The immediate reward received after transitioning

from state s to state s’ by taking action a.

!To simplify notation, we assume that the set of available actions is the same for all states
and that the probability distribution over next states is discrete.
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A Markov Decision Process (MDP) is formally defined as a tuple (S, A, T, R).
Figure 3.4 shows a classic example of an MDP known as a grid world. The
agent’s current state is s(31). The set of states S includes all white squares,
while the gray squares are unreachable. The star represents a terminal state,
which ends an episode. The available actions are A = {Up, Down, Left, Right}.
This environment could be either stochastic (e.g., a 20% chance of moving
right when the agent chooses to move up) or deterministic (the chosen action
is always executed perfectly). The dashed line represents the optimal policy
from state 53 1), as it is the path that yields the maximum possible cumulative

reward.

Figure 3.4: An example of an MDP: the grid world environment. Taken
from [17].

3.12.1 MDP Variants
Deterministic MDP

The stochastic MDP described above is a generalization of the simpler deter-
ministic MDP. In a deterministic MDP, the transition function is no longer

probabilistic:
e T': 5 x A — S: The deterministic transition function.

« ' = T'(s,a): From state s, taking action a leads to a single, uniquely

determined next state s’.
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Continuous MDP

In a continuous MDP, the problem becomes more complex as one or more of

its components are defined over continuous spaces:
* The state space .S can be continuous (e.g., vehicle position and velocity).

» The action space A can be continuous (e.g., steering angle and acceler-

ation).
* Both the state and action spaces can be continuous.

These variants are significantly more challenging to solve than their discrete

counterparts.

3.12.2 Policies and Value Functions

The agent’s decision-making logic is encapsulated in a policy, denoted by 7.
A policy is a function that maps states to actions, specifying which action the

agent should take in any given state:
TS —> A

The central goal of reinforcement learning is to find the optimal policy, 7*. To
do this, we must first define what makes one policy better than another. This
is achieved by using value functions, which estimate the ”goodness” of being
in a state or taking an action.

The state-value function, V™ (s), represents the expected total reward an
agent can collect starting from state s and following policy 7 thereafter. To
handle infinite-horizon problems, a discount factor, v € [0, 1), is introduced
to give more weight to immediate rewards over future ones. The state-value

function is defined by the Bellman equation:

VT(s) = Z P(s']5,7(5)) [Fame).e +7V7(5)]
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The optimal state-value function, V*(s), is simply the maximum value achiev-
able from state s over all possible policies: V*(s) = max, V7 (s).

Similarly, the action-value function, Q7 (s, a), is the expected total re-
ward after taking a specific action a in state s and then following policy 7
afterwards. The optimal action-value function is Q*(s, a) = max, Q™ (s, a).

These two value functions are closely related. The value of being in a state

is equal to the value of taking the best possible action from that state:
V*(s) = I?Ea,i(Q (s,a)

Once the optimal action-value function Q*(s, a) is known, the optimal policy
7m* can be determined by simply choosing the action that maximizes this value
in any given state:

7 (s) = argmax Q*(s, a)

a€A

3.12.3 Solving an MDP

Solving an MDP, especially a continuous one, can be a computationally de-
manding task. For discrete MDPs where the full model (i.e., the transition and
reward functions) is known, classical dynamic programming algorithms can
be used to find the optimal policy.

The two main algorithms are Value Iteration and Policy Iteration. Both
methods repeatedly apply the Bellman equation to iteratively update the value
function estimates until they converge to the optimal values, from which the
optimal policy can be derived [19]. However, these classical methods are not
used in this thesis, as they are not applicable to problems where the model is

unknown or the state-action spaces are continuous.
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3.13 Proximal Policy Optimization (PPO)

The classical methods for solving MDPs, like Value Iteration, are not practical
for problems with continuous state or action spaces. For these more complex
scenarios, modern RL algorithms use function approximation, typically with
deep neural networks, to learn a policy. Proximal Policy Optimization (PPO)

[24] is one of the most popular and effective algorithms in this category.

3.13.1 Policy Gradient Methods

PPO belongs to a family of algorithms known as policy gradient methods.
Unlike value-based methods (like Q-learning) which first learn an action-value
function and then derive a policy from it, policy gradient methods learn a
parameterized policy directly.

The policy, my(als), is represented by a neural network with parameters
6. The goal is to find the optimal parameters 6* that maximize the expected
total reward, an objective function denoted as J(my), which represents the
overall performance of the policy averaged across all possible starting states.
This is achieved by performing gradient ascent on the objective function. At
each step, the algorithm adjusts the policy parameters in the direction of the
’policy gradient”, V.J(my), which points in the direction of steepest increase

in performance. The basic update rule is:
0k+1 = Qk + OéV.gJ(ﬂ'@)

where « is the learning rate.

A major challenge with this basic approach is its instability. A single up-
date step that is too large can drastically change the policy, leading to a col-
lapse in performance from which it may not recover. PPO was specifically

designed to address this stability issue.
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3.13.2 The PPO Clipped Objective Function

The key innovation of PPO is its use of a clipped surrogate objective func-
tion. The goal of this function is to prevent the new, updated policy (7y) from
moving too far away from the old policy (7 ,) in a single update step.

This is achieved by first calculating the probability ratio between the new

and old policies: (o5
mo(ag|sy
) s
This ratio, r;(6), measures how likely the new policy is to select a certain
action compared to the old one. If r, > 1, the action is more likely under the
new policy; if r; < 1, it is less likely.
Instead of directly optimizing the standard policy gradient objective, PPO

optimizes a clipped version. The simplified objective function is:
LP(9) = I, [min (Tt<9)At, clip(ry(0),1 — e, 1+ G)Atﬂ

Let’s break down this formula:

« A,: This is the Advantage function, which estimates how much better
an action was compared to the average action from that state. A positive

advantage means the action was good; a negative one means it was bad.

* clip(r4(f),1 — €, 1 + €): This function constrains the probability ratio
r.(0) to stay within the range [1 — €, 1 + €. The hyperparameter € is a

small value (e.g., 0.2) that defines the size of this “trust region.”

e min(...,...): The use of the minimum operator is the crucial part. It
takes the smaller of two values: the normal policy objective and the
clipped one. This has the effect of creating a pessimistic bound on the
update. If an action was good (A, > 0), the objective is capped, prevent-
ing the policy from becoming ’too greedy” and increasing the probabil-

ity of that action too much. If an action was bad (flt < 0), the penalty
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is also limited.

By taking this minimum, PPO ensures that the policy updates are conservative

and small, which dramatically improves learning stability.

3.13.3 The Actor-Critic Architecture

In practice, PPO is almost always implemented using an Actor-Critic archi-

tecture, which involves two separate neural networks.

* The Actor: This network represents the policy, my(als). It takes the
current state as input and outputs the action (or a probability distribution

over actions) for the agent to take.

* The Critic: This network represents a state-value function, Vj(s). It
takes the current state as input and outputs a single value that estimates

the expected total future reward from that state.

The two networks work together. The Actor is responsible for acting, while the
Critic is responsible for evaluating those actions. The Critic’s value estimate
is used to compute the Advantage function (flt), which in turn is used to train
the Actor via the PPO clipped objective. This setup is more stable and data-

efficient than using the raw sum of rewards to train the policy.



Chapter 4

Related Work

This chapter provides an overview of existing research and projects in the
field of autonomous racing, as well as in the specific domain of combining
Model Predictive Control with Reinforcement Learning. This review serves

to position our thesis within the broader context of the state-of-the-art.

4.1 Autonomous Racing Platforms

Academic and industrial research in autonomous driving has greatly benefited
from competitions that push the boundaries of technology. We will review the

literature from four key tiers of autonomous racing.

4.1.1 FSAE Driverless

The Formula Student Driverless competition serves as a foundational proving
ground for university teams to develop full autonomous driving stacks from
scratch. The primary challenge—navigating unknown, cone-defined tracks—
has produced a wealth of public research on system architectures.

A common approach, detailed by multiple teams including KA-Racelng
from Karlsruhe Institute of Technology [2], involves a modular software stack

built on ROS. These systems typically feature a LiDAR-based perception pipeline
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for cone detection, a SLAM algorithm for mapping, a distinct trajectory plan-
ning module, and a controller for execution. The work by the AMZ team from
ETH Zurich [11] is particularly influential, presenting a highly successful soft-
ware stack that uses a MPC for control. Their work emphasizes the importance
of an accurate vehicle model and demonstrates that a well-formulated MPC
can achieve state-of-the-art performance in path tracking at the limits of han-
dling.

These papers highlight a consensus on the general architecture for the com-
petition, focusing on robust perception and state estimation as the bedrock for

reliable planning and predictive control.

4.1.2 RoboRacer

The RoboRacer (formerly known as FITENTH) competition is a 1/10th scale
autonomous racing series that provides an accessible, low-cost platform for
research in agile robotics. The small scale and high relative speeds make it an
ideal testbed for advanced control algorithms.

Much of the research in RoboRacer focuses on comparing different control
strategies. The classic path-following algorithm, Pure Pursuit, is often used as
a baseline due to its simplicity and effectiveness. More advanced approaches,
such as the use of Model Predictive Control, are also widely explored. Very
influential work from ForzaETH is [3]. Papers like [12], show that MPC,
combined with RL, can provide superior performance by explicitly accounting
for vehicle dynamics and optimizing over a future horizon, leading to faster
and more stable lap times. The RoboRacer community has also produced a
wide range of works on perception, using both 2D LiDAR and cameras to
navigate the track and avoid static or dynamic obstacles.

Also the UniBo Motorsport team has been working for the last three years
on this challenge. Latest results are a 3rd place at CDC 2024 Milan, and a

Ist place at ICRA 2025 Atlanta, both against the strongest teams, including
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ForzaETH.

4.1.3 Indy Autonomous Challenge (IAC)

The Indy Autonomous Challenge (IAC) represents a significant step up in
complexity from FSAE, featuring full-scale race cars competing head-to-head
at speeds exceeding 270 km/h. The research from this competition necessarily
focuses on challenges unique to high-speed and multi-agent scenarios.

Teams like PoliMOVE from Politecnico di Milano [7] and TUM Autonomous
Motorsport [4] emphasize the need for maximum sensor detection range and
reliable handling of multi-vehicle situations. Their work highlights the use of
robust MPC for motion control under uncertainty and fast, low-level feedback

loops to handle the vehicle’s dynamics at the limit.

4.1.4 Abu Dhabi Autonomous Racing League (A2RL)

The A2RL is the newest and most ambitious competition in this domain, uti-
lizing modified Super Formula cars, which are recognized as the fastest single-
seaters outside of Formula 1. The first official race was held in April 2024,
and as such, the body of peer-reviewed academic literature is still emerging.
Initial technical reports and presentations from participating teams [8] de-
scribe the league’s software challenges, which build directly upon the foun-
dations laid by the IAC. Teams must develop software for a common vehicle
platform to handle time trials, head-to-head overtaking, and multi-car races.
The key focus remains on robust, high-speed perception and predictive con-
trol capable of handling extreme vehicle dynamics. Given its recency, A2RL
represents the current frontier of autonomous racing research, and its future

development will likely produce significant advancements in the field.
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4.2 Combining MPC and Reinforcement Learn-
ing

The integration of traditional control theory with modern machine learning
is a highly active area of research. Our work on using RL to tune controller
hyperparameters is inspired by an emerging paradigm that seeks to combine
the strengths of MPC and RL.

This approach, applied to drones, is detailed in [22]. In this methodology,
the MPC controller is not a static component but a parameterized policy that
can be adapted online. The MPC acts as both the policy provider, comput-
ing the optimal action for the environment, and as a function approximator
for the RL agent’s value function. Concurrently, an RL algorithm is used to
tune the parameters of the MPC—such as the weights of its cost function or
the parameters of its internal model—to continuously improve the controller’s
performance based on experience.

This synergy allows the system to leverage the key benefits of both ap-
proaches. From MPC, the ability to explicitly handle system constraints (e.g.,
actuator limits, friction ellipse) and to guarantee stability and safety through its
model-based predictions. While from RL, the ability to learn and adapt from
data, optimizing complex, non-linear objectives without requiring a perfect
model of the environment.

This framework provides a structured and safe way to apply learning-based
methods to real-world control problems. Our thesis applies a similar philoso-
phy, using PPO to tune the hyperparameters of a classical controller, thereby
leveraging RL’s optimization power within a safe and well-understood control

architecture.



Chapter 5

Technical Contributions

5.1 Athena’s Autonomous Stack

In the following section we are going to give a general explanation of the whole
Driverless stack running on our prototype. This will allow to understand how
the more detailed contributions in the following sections are placed within the

project. Our imposed time budget for the whole pipeline is 20 ms (50 Hz).

5.1.1 Software Infrastructure

The software stack running on the Autonomous System Unit (ASU) is built
on ROS 2 [16]. Because in ROS each node is a separate program, team mem-
bers can develop and test different parts of the system independently. This
modularity was crucial for the efficient development of our software stack.
The stack 1s primarily written in C++17 to take advantage of its performance,
which is essential for low-latency perception and control tasks. For rapid pro-
totyping of complex algorithms, such as path planning or state estimation, we
initially use Python. Once an algorithm is validated, it is rewritten in C++ for
optimal performance on the vehicle.

For version control and collaboration, we use Git and host our repositories

on GitHub. Our development process is issue-driven: every new feature or
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bug fix begins as an issue. A corresponding branch is created for development,
and changes are submitted via a Pull Request (PR). Each PR is reviewed by
team members and must pass automated checks before being merged into the
main branch.

We use GitHub Actions for Continuous Integration (CI). This automated
pipeline builds and pushes updated Docker images whenever the configuration
changes, ensuring that our deployments are consistent. Additionally, a linter is
automatically run on every PR to enforce a common coding style and maintain
code readability. This structured workflow ensures code quality and simplifies
testing.

The VCU is responsible for executing low-level commands and interfac-
ing with the vehicle’s actuators. The ASU communicates with the VCU over
a TCP socket, which provides a reliable, low-latency connection. High-level
commands—such as target throttle, brake pressure, and steering angle—are

computed by a control node on the ASU and sent to the VCU.

The ASU Manager: A Supervisory Node

As already mentioned in Section 2.5.1, our software stack includes a central
supervisory node responsible for managing the lifecycle of all other processes
required to complete a mission. This component, named the ASU Manager
node, acts as a master controller and state machine for the entire autonomous
system.

It is implemented as a ROS 2 node but is managed at the operating system
level for maximum robustness. Upon boot of the ASU, which runs Ubuntu
24.04, the manager is automatically launched as a background process (or
daemon) by a system service. This service ensures its reliability: if the man-
ager process terminates for any reason, the service automatically restarts it
after ensuring all previously launched child processes are terminated. This is
handled by a Linux kernel feature known as a control group (CGroup), which

allows a set of related processes to be managed and terminated as a single unit.
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Initialization and Startup Upon launch, the manager first reads a configu-
ration file in YAML format. This file defines which software components are
considered core “startup” processes, essential for basic system operation. The
manager then uses the fork() and execvp() system calls to spawn these core
ROS 2 nodes as child processes. After launching them, it performs a crucial
readiness check. It communicates with each critical node via dedicated ROS
2 services (e.g., /<node _name>/is_ready) to confirm that the node has initial-
ized successfully and is ready to operate. The system will not proceed until
all essential startup nodes report a ready state, ensuring a stable foundation

before any mission-specific logic is initiated.

Mission Management and State Transitions The manager’s primary role
during operation is to act as a state machine, responding to commands from the
VCU and internal system events. It subscribes to a /vcu/data topic to receive
status updates, including the selected mission (e.g., Acceleration, Trackdrive)
and the state of the Autonomous System Master Switch (ASMS), a physical
key placed on the car’s chassis that is turned on when we want to activate the
autonomous system. The system is designed to wait for two conditions to be
met: the selection of a mission and the activation of the ASMS, both actions
performed by the human. Once both are true, the manager proceeds to launch
the specific set of ROS 2 nodes required for that mission, again referencing the
YAML configuration file to determine which processes to start. Once these
mission-specific nodes are launched and report their readiness, the manager

signals to the VCU that the ASU is fully ready to begin the mission.

Process Supervision and Fault Tolerance A key function of the manager
is process supervision. Its main loop continuously monitors the status of all
its child processes using a non-blocking waitpid() call. If any node terminates
unexpectedly, whether due to a crash or a normal exit, the manager interprets

this as a critical system event that requires a full system reset. It immediately
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initiates a teardown sequence.

During teardown, the manager sends a SIGKILL signal to all remaining
child processes to ensure a clean and immediate stop. It then exits, which in
turn triggers the operating system service to restart the entire stack from a clean
slate. This same robust teardown procedure is also triggered by custom ROS
2 diagnostic messages, such as an emergency message sent by any node or

a mission-finished message indicating a successful run, ensuring a consistent

m

and safe shutdown pathway for all scenarios.
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Figure 5.1: A high-level overview of the software stack architecture.

5.1.2 Perception

The prototype is equipped with a sensor suite designed for robust perception
and localization. This suite includes a StereoLabs ZED 2i stereo camera, a
SICK multiScan136 3D LiDAR, a GNSS/IMU unit, rear wheel encoders, and

a steering angle sensor. The main goal of the perception stack is to detect
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cones, estimate vehicle motion (odometry), build a map of the environment,
and localize the car within it.

The LiDAR pipeline processes raw point cloud data received from the sen-
sor over an Ethernet connection. The incoming points are first clustered, and
ground points are filtered out. To remove remaining false positives, we apply
a filter based on a point density estimation formula [11]. A Least Squares re-
gression is then used to find the center of each valid cone cluster. These 3D
coordinates are then passed to the SLAM module.

The stereo camera pipeline is inspired by the work presented in [11]. The
stereo image is split into left and right frames, and a YOLO-based object de-
tector identifies cones in each frame, producing a set of bounding boxes. To
estimate the distance to a cone, a stereo matching algorithm is used. For each
bounding box in the left image, the algorithm searches for a corresponding
box in the right image along the epipolar line. Once a match is found, trian-
gulation is used to compute the 3D coordinates of the cone, which are then
published for use by the SLAM system.

All perception data is fed into a Simultaneous Localization and Mapping
(SLAM) system. SLAM is a core algorithm in robotics that allows a vehicle
to build a map of an unknown environment while tracking its own position
within that map. Our SLAM implementation uses the detected cone positions
from both LiDAR and the camera as landmarks.

To track its position between landmark sightings, the vehicle uses a motion
model that fuses measurements from the IMU, wheel encoders, and steering
sensor using an Extended Kalman Filter (EKF). This provides an estimate of
the vehicle’s current state, but this estimate accumulates error (drifts) over
time. The SLAM system corrects this drift by comparing the predicted posi-
tion with the actual observations of known cones, which maintains an accurate
estimate of both the vehicle’s pose and the map. Over the course of a lap, the
map becomes more complete, and at the end of the lap, a loop closure step

aligns the start and end points to create a globally consistent map.
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5.1.3 Motion Planning

The planning module uses the cone map from SLAM to generate a race-
optimal trajectory. The first step is to estimate the track’s centerline. We do
this by applying Delaunay triangulation to the cone positions. This algorithm
creates a mesh of triangles connecting the cones, and the centerline is then
calculated from the midpoints of the triangle edges that span the track.

Once the centerline is determined, we compute the optimal raceline using
Model Predictive Control (MPC). MPC is an advanced control method that
solves an optimization problem at each time step to find the best possible se-
quence of actions. It uses a dynamic bicycle model of the vehicle to predict
its future behavior. The objective is to minimize lap time while respecting
constraints such as track boundaries and the vehicle’s physical limits.

For real-time vehicle control during a lap, we also use MPC. The frame-
work is nearly identical to the one used for raceline generation, but the ob-
jective is changed from minimizing lap time to accurately following the pre-

computed optimal raceline. The dynamic constraints remain the same.

Figure 5.2: Delaunay triangulation of detected cones used to calculate the
track centerline.
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5.1.4 Simulator

A key component of our development workflow is a custom simulator built
with the Unity game engine [30]. We chose Unity for its user-friendly inter-
face, powerful physics engine, and fast deployment capabilities. The main
purpose of the simulator is to provide a controlled environment for offline
testing and debugging of the entire software stack.

Developing and diagnosing issues on the physical car is often difficult and
time-consuming. The simulator offers a fast and safe feedback loop, allowing
developers to test code changes immediately without needing access to the
track or car. All simulator logic is implemented in C#, and we use Unity’s
built-in physics engine to handle collisions and object interactions. The vehi-
cle model in the simulation is the same dynamic bicycle model used for plan-
ning and control. While simulated dynamics do not perfectly match the real
world, using the same model ensures that control logic tested in simulation
behaves predictably on the real vehicle.

The latest version of our simulator can also emulate LiDAR data, generat-
ing 3D point clouds similar to those from the real sensor. This feature allows
us to develop and test our perception and SLAM algorithms entirely within

the simulation.

5.1.5 Actuator Systems

The autonomous software stack’s decisions are translated into physical mo-
tion by two critical hardware components: the steering and braking actuators.
From a computer science perspective, these systems are the final output layer
of the control loop, converting digital commands into mechanical force and

displacement.
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Figure 5.3: A view of the simulated LiDAR point cloud within the Unity en-
vironment.

Steering Actuator

The steering actuator is an electro-mechanical system responsible for translat-
ing a computed steering command from the motion planning software into a
physical angle of the front wheels.

The core of the system is a high-torque electric motor coupled with a ball
screw mechanism. This configuration efficiently converts the motor’s rota-
tional motion into the high linear force required to actuate the vehicle’s steer-
ing rack. The design was constrained by the available electrical power and
physical packaging space within the chassis. The resulting assembly, shown
in Figure 5.4, provides precise and rapid control over the vehicle’s heading,
which is fundamental for accurate path tracking. The control software inter-
faces with this system by sending a target position or velocity command to the

motor controller.
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Figure 5.4: The integrated electric motor and ball screw assembly for steering
actuation.

Braking System

The vehicle is equipped with a dual-actuation braking system, designed to be
independent of the driver’s brake pedal. This architecture provides both fine-
grained control for performance driving and a robust fail-safe for emergency

situations. The two systems are:

* Autonomous System Brake (ASB): This is the primary service brake
used for normal autonomous operation. It consists of a linear electric
actuator that provides precise, proportional control over the braking
force. This allows the motion planning and control algorithms to mod-
ulate deceleration for tasks like corner entry and stopping at a target

location.

* Emergency Brake System (EBS): This is a safety-critical, pneumatic
system designed for maximum, non-proportional braking. It is trig-
gered by the main vehicle safety circuit in the event of a critical system
failure or an emergency stop command. Its function is to bring the vehi-

cle to a halt as quickly as possible, serving as a crucial safety override.
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As shown in Figure 5.5, both the electric ASB actuator and the pneu-
matic EBS cylinders are integrated into a single mechanical unit. They act
on the same master cylinders, which transmit pressure to the hydraulic brake
calipers. The hydraulic circuits are managed by shuttle valves, which ensure
that whichever system generates the higher pressure—be it the ASB, the EBS,
or the manual driver’s pedal—is the one that actuates the brakes, preventing

interference between the independent inputs.

Figure 5.5: The combined assembly housing the electric Autonomous Sys-
tem Brake (ASB) actuator and the pneumatic Emergency Brake System (EBS)
cylinders.

5.2 Stereocamera Pipeline

The perception system relies on a stereocamera to detect the track layout and
reconstruct the 3D positions of the cones. This process begins with acquiring
images from the sensor and concludes with a list of 3D landmarks, complete

with color information, in the vehicle’s coordinate system.
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5.2.1 Sensor Characteristics and Operational Limits

Our system utilizes a ZED 2i stereocamera, fitted with polarizing filters to
mitigate glare. The camera is configured with the following operational pa-

rameters:
* Resolution & Framerate: 2x (1280x720) at 60 fps
* Focal Length: 4 mm
* Baseline: 12 cm
* Field of View (FOV): 72° (H) x 44° (V) x 81° (D)
* RGB Sensors: Dual 1/3” 4AMP CMOS, 2um pixel size, rolling shutter

* Motion Sensors: Integrated Accelerometer and Gyroscope. The mag-
netometer cannot be used, as its readings are heavily compromised by

interference from the vehicle’s nearby metallic main hoop!.
* Physical Specs: 175.3 x30.3 x43.1 mm, 229 g
* Power: 380 mA at 5V, supplied via USB-C

The manufacturer’s specifications on depth perception provide critical in-
sight into the system’s operational limits. The ideal depth range is stated as
1.5 m to 20 m, with depth accuracy degrading significantly with distance. At
2 m, the accuracy is better than 0.4% (<8 mm), but at 20 m, it falls to less than
7%, which corresponds to a potential error of 1.4 meters. This is a significant
margin of error that implies that the performance of our perception algorithms

will inherently be less reliable for cones detected at longer distances.

'The main hoop is a mandatory element that each car needs to have [9].
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5.2.2 Image Acquisition and Preprocessing Node

The pipeline’s first stage is a custom ROS 2 node that wraps an open-source
driver [15] to interface with the camera. This node is responsible for acquiring
the raw image data and performing initial validation and processing.

A significant operational challenge identified during testing is the camera’s
default automatic exposure setting. When faced with a bright sky, the camera
often underexposes the lower portion of the image, making the traffic cones
difficult to discern. To address this, future work will focus on implementing
manual control over the camera’s exposure settings.

This node’s primary responsibility, however, is to handle a data corruption
issue observed in practice. At a non-negligible rate, the camera driver outputs
a 7shifted” frame, where the left and right images are not correctly placed

side-by-side (Figure 5.6).

Figure 5.6: Example of a corrupted output from the camera driver. Instead
of a single, sharp discontinuity at the center, multiple misaligned seams are
present.

Processing such a frame would lead to erroneous depth calculations. To
prevent this, a data validation algorithm is implemented as a sanitation check.
It exploits the fact that a correctly formed stereo image has a sharp visual dis-

continuity along the central vertical seam. The algorithm operates as follows:

1. Itisolates a narrow vertical strip at the horizontal center of the incoming

stereo frame.

2. It calculates the column-wise Sum of Absolute Differences (SAD) in

pixel intensity directly on the central seam, as well as on the columns
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immediately to its left and right.

3. It computes a ratio of these sums to determine if the visual difference at
the seam is significantly larger than in the adjacent, continuous parts of

the image.

If the difference at the seam is not pronounced, the algorithm identifies the
frame as corrupted, and it is subsequently discarded. Testing of this valida-
tion algorithm showed a perfect F1 score, both on-track and off-track. Once a
frame is validated, it is rectified using the precise manufacturer-provided cal-
ibration matrices for our specific camera unit. The resulting pair of rectified
images, along with the corresponding calibration data, are then published to

the ROS local network for consumption by the downstream perception nodes.

5.2.3 Cone Detection with YOLO

Once the synchronized left and right image frames are received, the first step in
the perception pipeline is to detect the traffic cones within each image. This
task is performed by a custom-trained You Only Look Once (YOLO) deep
neural network. The network version used is yoloviin [10]. To achieve the
real-time performance required for autonomous racing, the inference process
is accelerated using hardware-specific optimization frameworks. The system
is designed to leverage either the NVIDIA TensorRT engine [29] for NVIDIA
GPUs or the OpenVINO toolkit [28] for Intel hardware?. The selection of the
framework has to be done before the pipeline compilation.

The detection process for each stereo pair follows these steps:

1. Image Preprocessing: The raw left and right images are first prepro-
cessed to match the fixed input dimensions required by the YOLO model
(i.e., 640x640 pixels). To avoid distorting the objects, the original as-

pect ratio is maintained. Each image is resized to fit within the model’s

20penVINO has been chosen also as a way to debug the pipeline if only an Intel CPU was
available. Though, on the ASU, TensorRT is the main framework.
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input dimensions, and the remaining space is filled with black padding.

2. Batched Inference: A key performance optimization is the use of batched
inference. The preprocessed left and right images are stacked into a
single batch of size two. This batch is then fed to the inference engine
(TensorRT or OpenVINO) in a single pass, which is significantly more

efficient than processing the two images sequentially.

3. Post-processing and Filtering: The raw output from the neural net-
work is a list of potential object detections with associated confidence
scores. This output is post-processed to yield the final set of bounding
boxes. First, all detections with a confidence score below a predefined
threshold are discarded. Then, Non-Maximum Suppression (NMS) is
applied. NMS is a crucial algorithm that eliminates redundant, overlap-
ping bounding boxes for the same object, ensuring that only the single

best bounding box for each detected cone is retained.

Figure 5.7: YOLO output after NMS. The numbers represent the confidence
(or probability) of the detections.

The output of this stage consists of two independent lists of 2D bounding
boxes: one for the cones detected in the left image and one for the cones
detected in the right image. Each bounding box contains the pixel coordinates,

dimensions, and class ID (e.g., blue cone, yellow cone) of a detected cone.
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5.2.4 Stereo Matching of Detections

After detecting cones in both images, the next critical step is to solve the data
association problem: determining which bounding box in the left image cor-
responds to which bounding box in the right image. This stereo matching
process is fundamental for 3D pose estimation. Our pipeline employs a multi-

stage approach to find robust and accurate correspondences.

1. Geometric Candidate Filtering: For each bounding box in the left
image, a search is performed to find potential matching candidates in
the right image. This search is heavily constrained by geometric rules
derived from the stereo camera setup. A right-image bounding box is
considered a valid candidate only if it satisfies several conditions rela-

tive to its left-image counterpart:

* The bounding boxes’ vertical centers must be very similar, in ac-

cordance with the epipolar constraint of a rectified stereo system.
* The height of the bounding boxes must be comparable.

* The horizontal center of the right-image box must be to the left
of the left-image box’s center, and the difference in their positions
(the disparity) must fall within a plausible range. This range is
dynamically adjusted based on the object’s vertical position in the

image, allowing for larger disparities for closer objects.

* The algorithm includes special logic to handle cones that are par-

tially visible at the edges of the frame, which improves robustness.

2. Template Matching for Refinement: If one or more candidates are
found, the matching is refined using template matching. The image
patch defined by the left bounding box is used as a template. This tem-
plate is then searched for within a constrained horizontal region of the
right image, defined by the positions of the candidate boxes. Template

matching is used to find the location of the best match. To achieve
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higher precision, the disparity is refined to sub-pixel accuracy by fitting

a parabola to the template matching scores around the peak response.

3. Feature-Based Correspondence: Inspired by [11], to further improve
the robustness of the 3D position estimate, an optional feature-matching
step can be enabled. For each matched pair of bounding boxes, an ORB
(Oriented FAST and Rotated BRIEF) [23] feature detector is used to
find multiple stable keypoints within each box’s image patch. These
keypoints are then matched between the left and right patches. This
provides a set of multiple, spatially distributed correspondence points
for a single cone, which is more resilient to minor inaccuracies in the
bounding box itself. If this step is disabled or fails to find matches,
the system falls back to using the sub-pixel-refined center point of the

bounding boxes as the single correspondence point.

Figure 5.8: Example of ORB feature matching on a pair of left-right bounding
boxes.

The result of this stage is a list of matched cone pairs. Each pair contains a set
of corresponding 2D points (one or more) from the left and right images that

belong to the same physical cone.

5.2.5 3D Landmark Triangulation

The final step in the pipeline is to use the 2D matched points to reconstruct
the 3D position of each cone relative to the camera. This process is known as

triangulation.
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For each matched cone, the set of corresponding 2D keypoint pairs and the
camera’s pre-calibrated projection matrices are passed to the standard OpenCV
[6] triangulation (cv::triangulatePoints) function. This function uses a linear
triangulation method to compute the 3D coordinates for each keypoint pair.
This results in a small 3D point cloud for each cone.

To obtain a single, robust 3D position estimate from this point cloud, the
median of the X, Y, and Z coordinates is calculated. Using the median is a
highly effective technique for rejecting outlier points that may have resulted
from incorrect feature matches, leading to a more stable final position esti-
mate?.

Furthermore, the system also estimates the uncertainty of this 3D posi-
tion. The variance of the position is calculated based on the estimated depth
and the known uncertainty of the disparity measurement in pixels. This pro-
vides a covariance matrix for each landmark, which is essential information
for downstream probabilistic filters, such as the SLAM system.

Finally, the calculated 3D point, now in the camera’s coordinate system,
is transformed into the vehicle’s reference frame using the known extrinsic
calibration (the position and orientation of the camera on the car’s chassis).
The final output of the stereocamera pipeline is a list of 3D landmarks, each
with a position and an associated covariance, ready to be used for mapping

and navigation.

5.2.6 Experiments and Results
Custom YOLO training

The cone detection model was trained and evaluated using the publicly avail-
able FSOCO (Formula Student Objects in Context) dataset [33]. The model
was trained for 300 epochs, and its final performance was measured on a test

split, which comprises 1,968 images containing a total of 36,123 annotated

3 A likely more accurate way to do this would be to compute the geometric median, at the
cost of solving an optimization problem.
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cone instances. The dataset composition is shown in Table 5.1, while the per-
formance metrics are summarized in Table 5.2.

The primary metrics are defined as follows:

* Precision: Measures the accuracy of the detections. Of all the predic-
tions made by the model, this is the fraction that were correct. A high

precision indicates a low rate of false positives.

* Recall: Measures the model’s ability to find all relevant objects. Of
all the actual cones present in the images, this is the fraction that the
model successfully detected. A high recall indicates a low rate of false

negatives.

* mAP50: The mean Average Precision calculated at an Intersection over
Union (IoU) threshold of 0.50. This metric evaluates how well the
model can both classify an object and localize it with a bounding box

that overlaps at least 50% with the ground truth box.

* mAPS0-95: The mAP averaged over a range of IoU thresholds from
0.50 t0 0.95. This is a much stricter metric, as it requires highly accurate

bounding box placement to score well.

As shown in the 4/l Classes summary row, the model achieves an overall
mAPS50 of 0.824, indicating strong general performance. The precision of
0.849 suggests that when the model detects a cone, it is correct about 85%
of the time, while the recall of 0.765 means it successfully identifies roughly
77% of all cones present in the dataset.

The per-class breakdown reveals further insights. The model performs
exceptionally well on the primary cone classes: Blue, Yellow, and Orange.
The precision for these classes is very high (above 0.92), meaning there are
very few incorrect classifications. The mAP50 scores for these classes are also
excellent, nearing 0.90, which confirms the model’s ability to reliably detect

and localize the main track boundary markers.
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The Large Orange Cone class achieves the highest mAP scores (0.908
for mAP50 and 0.710 for mAP50-95). This is likely because these cones are
larger and more visually distinct, making them an easier target for the detector.

Conversely, the Unknown Cone class exhibits significantly lower perfor-
mance across all metrics (mAP50 of 0.547). This result is expected, as this
class serves as a catch-all for heavily occluded, blurry, or poorly illuminated
cones that are difficult to classify even for a human annotator. The model’s
struggle with this ambiguous class is acceptable, as its primary function is to
accurately identify the well-defined track boundaries. Overall, the results con-

firm that the custom-trained model is highly effective for its intended purpose.

Table 5.1: Composition of the FSOCO test split used for model evaluation.

Class Images Instances
All Classes 1968 36123
Blue Cone 1416 12720
Yellow Cone 1638 15605
Orange Cone 850 5462
Large Orange Cone 428 1263
Unknown Cone 178 1073

Table 5.2: Performance metrics of the trained cone detector on the FSOCO
test split.

Class Precision Recall mAPS50 mAPS0-95
All Classes 0.849 0.765  0.824 0.570
Blue Cone 0.922 0.806  0.896 0.615
Yellow Cone 0.926 0.794  0.892 0.608
Orange Cone 0.925 0.787  0.877 0.603
Large Orange Cone 0.868 0.873  0.908 0.710
Unknown Cone 0.603 0.566  0.547 0.315

Performance and Timing Analysis

To evaluate the real-world performance of the stereocamera pipeline, its tim-

ing characteristics were benchmarked using data recorded during a manually
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driven lap at the Rioveggio Karting Circuit. The test was executed on a high-
performance machine with hardware comparable to the vehicle’s ASU, fea-
turing an AMD Ryzen 9 6900HX CPU and an NVIDIA GeForce RTX 3080
Mobile GPU.

The pipeline was benchmarked across four distinct configurations to as-
sess the impact of both the inference engine (TensorRT vs. OpenVINO) and
the feature matching strategy (sub-pixel refined center point vs. ORB fea-
tures). The timing statistics, averaged over 1870 frames, are presented in Ta-

ble 5.3 and Table 5.4.

Table 5.3: Mean and standard deviation of processing times (in milliseconds)
for the TensorRT configuration, running on an NVIDIA RTX 3080 GPU. In
parenthesis the standard deviation.

Processing Stage Center Point ORB Features

Preprocessing 0.34 (0.08) 0.34 (0.07)
Inference 6.78 (2.45) 6.78 (2.05)
Postprocessing 0.38 (0.08) 0.38 (0.08)
BBox Matching 0.38 (0.27) 0.40 (0.28)
Feature Matching  0.00 (0.00) 1.41 (4.27)
Triangulation 0.02 (0.01) 0.11 (0.07)
Sending 0.04 (0.02) 0.04 (0.01)
Total 7.95 (2.57) 9.46 (6.35)

Table 5.4: Mean and standard deviation of processing times (in milliseconds)
for the OpenVINO configuration, running on an AMD Ryzen 9 CPU. In paren-
thesis the standard deviation.

Processing Stage Center Point ORB Features

Preprocessing 1.31(0.19) 0.37 (0.08)
Inference 24.72 (1.61) 24.30 (1.25)
Postprocessing 0.59 (0.07) 0.60 (0.06)
BBox Matching 0.50 (0.36) 0.49 (0.35)
Feature Matching  0.00 (0.00) 1.76 (2.69)
Triangulation 0.03 (0.01) 0.15 (0.08)
Sending 0.05 (0.01) 0.05 (0.01)
Total 27.20 (1.74) 27.72 (3.50)
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The results highlight several key aspects of the pipeline’s performance:

* Inference Engine Impact: The most significant factor influencing to-
tal processing time is the inference engine. The GPU-accelerated Ten-
sorRT configuration is approximately 3.6 times faster at the core infer-
ence task than the CPU-based OpenVINO configuration (6.78 ms vs.
24.72 ms). This demonstrates the critical importance of GPU hardware

acceleration for running deep learning models in a real-time context.

* Feature Matching Overhead: The choice of matching strategy intro-
duces a clear trade-off between performance and robustness. Using
ORB features adds a noticeable overhead, increasing the total process-
ing time by about 1.41 ms in the TensorRT case and 1.76 ms in the
OpenVINO case. The Feature Matching and Triangulation stages take
significantly longer, as they must process multiple keypoints per cone
instead of a single center point. This additional processing time is the
cost of achieving a potentially more stable 3D position estimate by rely-
ing on multiple geometric correspondences. It is also worth noting the
high standard deviation of the feature matching stage, which is expected
as the computation time is directly proportional to the number of times

ORB is executed*, a value that varies significantly from frame to frame.

* Real-Time Capability: All four configurations operate well within the
time budget required for our 60 fps camera, which is approximately
16.7 ms per frame. The TensorRT configurations are fast, with the full
pipeline completing in under 10 ms. This leaves a margin (even though
not too comfortable) for all other processes running on the ASU, such
as SLAM and MPC. The OpenVINO configuration, while slower, still
operates at an acceptable speed (27 ms, or 37 Hz), making it a viable

fallback option if dedicated GPU hardware is unavailable.

“ORB is executed sequentially for each pair of bounding boxes. Future work could focus
on executing ORB on GPU if it is a non-negligible advantange.
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3D Position Estimation Validation

To validate the 3D accuracy of the perception pipeline, a series of static tests
were conducted outdoors on an asphalt surface. With the stereocamera fixed
in place, a standard yellow competition cone was positioned at four known
ground truth distances along the camera’s forward-facing Z-axis: 5 m, 10 m,
15 m, and 20 m. For each position, 17 consecutive measurements were recorded
to evaluate the stability and accuracy of the depth estimation for both the cen-
ter point and ORB features methods.

The results of this experiment, showing the mean and standard deviation

of the estimated Z-distance, are summarized in Table 5.5.

Figure 5.10: Yellow cone placed at 10 m in the experiment.

The analysis of these results provides several important insights into the

pipeline’s real-world performance:

* Accuracy and Precision Decrease with Distance: For both methods,
the accuracy (how close the mean is to the ground truth) and the pre-

cision (the consistency of the measurements, indicated by the standard
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Figure 5.12: Yellow cone placed at 20 m in the experiment.

deviation) degrade as the distance to the cone increases. At 5 m, the es-
timates are highly accurate and stable. However, at 20 m, the mean es-
timation error approaches 2 meters, and the standard deviation exceeds

1 meter, indicating significant uncertainty and noise in the predictions.

* Consistency of ORB vs. Center Point: The key difference between
the two methods lies in their consistency. At every tested distance, the
standard deviation of the ORB-based method is significantly lower than
that of the center point method. For instance, at 15 m, the ORB method’s
standard deviation (0.68 m) is nearly half that of the center point method
(1.16 m). This demonstrates that using multiple feature points and tak-
ing the median provides a more stable and robust estimate, as it is less

susceptible to noise and minor errors in the bounding box detection.

* Confirmation of Sensor Limits: The observed errors are consistent
with the camera manufacturer’s specifications, which state a depth ac-

curacy of less than 7% at 20 m (an error of up to 1.4 m). Our results,
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Table 5.5: Mean and standard deviation (in meters) of the estimated Z-distance
for a cone placed at known ground truth distances. Results are shown for both
the Center Point and ORB feature matching methods.

Ground Truth Estimated Z-Distance: Mean (Std. Dev.)

Distance Center Point ORB
5m 5.07 (0.19) 5.08 (0.11)
10 m 9.56 (0.46) 9.87 (0.28)
15m 14.25 (1.16) 13.95 (0.68)
20 m 18.04 (1.37) 18.35(1.13)

with mean errors around 1.7-2.0 m at 20 m, align with this physical lim-
itation. This confirms that for long-range perception tasks, the inherent
accuracy of the sensor itself is a primary constraint on the system’s per-

formance.

In conclusion, while both methods provide comparable accuracy on av-
erage, the ORB feature-based approach offers a clear advantage in terms of

measurement stability and reliability, especially at medium to long distances.

5.3 The Stack’s Vehicle Dynamics Model

An accurate vehicle dynamics model is essential for developing both simu-
lation environments and advanced control algorithms like Model Predictive
Control (MPC). This section presents the single-track (or bicycle) model used
in our software stack. The model is heavily inspired by the work of ETH
Zurich’s AMZ racing team [31, 25] but has been adapted to fit the specific

characteristics of our vehicle, Athena.

5.3.1 Model Formulation

The model describes the vehicle’s motion using a state-space representation.
It operates in a vehicle-centric coordinate frame, with the X-axis pointing for-

ward, the Y-axis to the left, and the Z-axis upward, originating at the vehicle’s
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center of mass.
The state vector x defines the condition of the vehicle at any given mo-

ment and consists of eleven variables:
T
X = [37 Ty by Ugy Uy, T, E,F; F?",F7 E,Ra Fr,Ra 5]

The components of the state vector are:

* s,n, u: The vehicle’s position relative to a predefined race line. s is the
progress along the path, n is the lateral deviation (error) from the path,

and y 1s the heading angle error relative to the path’s tangent.

* v,, vy, 1 The vehicle’s longitudinal velocity, lateral velocity, and yaw

rate, respectively, in the body-fixed frame.

* Fip,F.p, I Rr, I, r: The longitudinal forces applied to the front-left,

front-right, rear-left, and rear-right wheels.

* 0: The steering angle of the front wheel. In this single-track model,
this represents the steering angle for the combined front axle. A more
complex four-wheel model would use the Ackermann steering geometry
to calculate slightly different angles for the inner and outer front wheels,

which is how a real car like Athena operates.

The input vector u represents the changes applied to the system by the
controller:

u= [AFZ,Fy AFT,F) AFZ,R, AFr,Ra A5]T

By defining the inputs as the rate of change of forces and steering angle, we
can directly impose constraints on how quickly these values can change within
the MPC algorithm. This helps generate smoother and more physically real-

istic control actions.
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The dynamics of the system are described by the following set of differ-

ential equations:

. Uz COS (L — Uy Sin fi

5.1
1 —nk(s) G-
N = U, Sin {4 + v, COS L, (5.2)
fi=1—r(s) 5, (5.3)
1
@MZQEF+E$nm5+Eﬁ+Rﬂ—@fmw (5.4)
m
+muyr — Ffric)a (5.5)
: 1 .
by = — ((FlF + F,.p)siné + F, pcosd + Fy p —mu, T>, (5.6)
m
. 1 .
i = 1 (((Fir + Frp)sing + By pcosd) e = Fyaln), (5.7)

Fp=AFp, Fp=AF.p, EFr=AFpg F.r=AFg (58)

5= A4 (5.9)

Figure 5.13: A diagram of the single-track (bicycle) model, showing the key
state variables and forces. The forces Fif, F}¢, F,, F;, in the diagram are
actually F} p, I, p, Fi r, F}. g in the dynamics equations.
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The key parameters defining the model’s geometry and physics include
{r and [, the distances from the vehicle’s center of mass to the front and rear
axles, respectively; k(s), the curvature of the reference path at a given progress
s; and I, the vehicle’s yaw moment of inertia. The terms muv,r and muv,r are
inertial (centripetal) forces that naturally arise when applying Newton’s laws

in a rotating, body-fixed frame.

5.3.2 Longitudinal Force Modeling

The longitudinal forces acting on the vehicle are a combination of powertrain-

generated forces and resistance forces.

Resistance Forces

The primary resistance forces are rolling resistance (F}.,;) and aerodynamic

drag (Fjcro), which combine to form the total friction force, F'y,jc.

Fr‘oll - Crollmg
1
Faero = <2POdA> U?y = aerovi

Ffm'c = Froi + Faero

Here, p is the air density, Cj is the drag coefficient, and A is the vehicle’s

frontal area.

Powertrain Forces

Athena is a rear-wheel-drive electric vehicle. When a torque command is is-
sued, the inverters draw DC power from the battery pack, convert it to AC, and
drive the two rear motors. Consequently, propulsive forces are only applied
to the rear wheels, so F; r and F;. r are always zero. These terms are kept in
the model to facilitate a future transition to a four-wheel-drive system.

To accurately model the conversion from electric torque to longitudinal
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force at the wheels, the effect of vertical load on the tire radius must be con-

sidered. The model for this is as follows:

F.p=mglg/(lr +1r) and F.r=mglp/(lr +Ir)

R.p=Ry— (F.r/C.)- D, -arctan(B.)

R.r =Ry — (F.r/Ce) - D, - arctan(B.)
kf=i,-n/Rer and k. =i4-1n/Rep

-FI/T,F = Tir,F " kf and E/T’,R = Ti/r,R" k'r

First, the static vertical loads on the front and rear axles, F, p and F’, , are
calculated. These loads compress the tires, reducing their radius. The effec-
tive rolling radius, R,  and R, r, is then calculated using a Pacejka-like
formula, where Ry is the unloaded tire radius and B., C., D, are empirical co-
efficients. This effective radius is then used to compute the reduction gains,
k¢ and k., which convert the input electric torques (7) into longitudinal forces
at the wheels, accounting for the gear ratio (i,) and drivetrain efficiency (7).
Since these gain values depend only on static parameters, they can be pre-

calculated to improve computational performance.

5.3.3 Lateral Force Modeling

The lateral forces, I, » and I}, r, generated by the tires during cornering are
highly non-linear and less straightforward to compute than longitudinal forces.
To achieve a realistic estimation, we use the well-established Pacejka Magic
Formula [18]. This analytical formula provides a robust and widely used ap-
proximation of tire behavior by fitting a curve to experimental data.

The core of the formula is the tire’s slip angle, «, which is the difference

between the direction a wheel is pointing and its actual direction of travel. For
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our model, the front and rear slip angles are calculated as:

vy + lpr
ap = arctan (”) -
Uy

v, — lgr
ap = arctan | ———
UZL'

These slip angles are then fed into a specific variant of the Pacejka formula to

determine the lateral force generated by each axle:
F, = F,Dsin (C arctan (Ba — E(Ba — arctan(Ba))))

Here, F, is the vertical load on the axle, and B, C, D, E are the Pacejka param-
eters that define the specific shape of the tire’s force curve. These parameters
are typically determined from experimental tire testing data. In our case, these
equations are:

F,

Y

F,

Y

F = Fz,F-DF sin (CF arctan (BFO[F — EF(BFO[F — arctan(BpaF)))

r = F, rRDpsin | Crarctan (BRaR — Er(Brag — arctan(BRaR)))>

5.3.4 Model Parameters

The physical parameters used in the model are a combination of measured
values from the vehicle and estimates from prior work. The complete list of

parameters is provided in Table 5.6.

5.3.5 Model Justification and Variants

Justification for a Simplified Model The choice of a single-track model
represents a deliberate trade-off between realism and computational expense.
While more complex models (e.g., four-wheel models that include load trans-
fer and Ackermann steering) offer higher fidelity, they also introduce many

more parameters that are difficult to identify accurately without extensive
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Table 5.6: Parameters of the vehicle dynamics model.

Parameter Value Unit
Vehicle Parameters

Mass (m) 250.00 kg
Gravitational Acceleration (g) 9.81 m/s?
Yaw Moment of Inertia (1) 107.03 kg-m?
Unloaded Tire Radius (Ry) 0.23 m
Distance CoM to Front Axle (Ir) 0.89 m
Distance CoM to Rear Axle (Ig)  0.64 m
Resistance Parameters

Rolling Resistance Coeff. (C}.;)  0.01 -
Aerodynamic Drag Coeff. (Cyerp) 0.88 kg/m
Drivetrain Parameters

Gear Ratio (i4) 11.5 -
Drivetrain Efficiency (7)) 0.95 -
Effective Radius Parameters

Shape Factor (B.) 20,000.00 -
Stiffness Factor (C.) 77,117.00 N/m
Peak Factor (D) 0.28 -
Pacejka Tire Parameters

Stiffness Factor (Br/r) 16.30 -
Shape Factor (Cr/r) 1.35 -
Peak Factor (D) r) 2.50 -
Curvature Factor (Er/r) 0.00 -

physical testing. The bicycle model is simple enough to be computationally
efficient for real-time MPC, yet it captures the most important dynamic effects

needed for high-performance path tracking.

Cartesian Coordinate System Variant While the path-relative coordinate
system (s, n, i) 1s ideal for the path-tracking formulation used in our MPC,
the model can easily be adapted for use in a fixed Cartesian world frame for
general-purpose simulation. To do this, the first three state equations gov-
erning path-relative motion (i.e., Equations 5.1-5.3) are replaced with the fol-

lowing, where (x,y) is the vehicle’s global position and @ is its global yaw
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angle:

& = vy cos ) — v, sinf (5.10)
Y = vy sinf 4 v, cos 0 (5.11)
0=r (5.12)

The remaining dynamic equations remain unchanged.

5.3.6 Model Validation

While the bicycle model is computationally efficient, it is crucial to validate its
accuracy against a more realistic representation of the vehicle. To this end, the
model’s predictions were compared against those from a high-fidelity, multi-
body simulation of Athena created in the professional software suite VI-grade
CarRealTime. This validation focuses on one of the most critical aspects of
vehicle dynamics: the generation of lateral tire forces.

The experiment involved simulating the vehicle at various constant longi-
tudinal speeds (v,) and steady-state steering angles (9) in both models. The
resulting lateral forces generated at the front (£, r) and rear (I}, r) axles were
then recorded and compared. The results of this comparison are shown in
Table 5.7.

The analysis of these results reveals two key trends:

1. Agreement at Low to Medium Speeds: At lower speeds and moder-
ate slip angles, the simplified bicycle model shows excellent agreement
with the high-fidelity simulation. For instance, at 10 m/s with a steer-
ing angle of 0.1221 rad, the predicted forces from our model (846 N and
1160 N) are very close to the VI-grade results (820 N and 1195 N). This
indicates that in the linear and early non-linear regions of tire behav-
1or, our model effectively captures the vehicle’s fundamental cornering

dynamics.
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Table 5.7: Comparison of steady-state lateral tire forces (in Newtons) between
the custom bicycle model and the high-fidelity VI-grade simulation under var-
1ous test conditions.

Test Condition Bicycle Model VI-grade Simulation
vy (m/s) 0 (rad) F,p(N) F,r(N) F,p(N) F,r(N)

3.00  0.1000 62 86 - -
3.00  0.3000 200 263 - -
10.00  0.0550 378 521 368 550
10.00  0.1000 691 949 - -
10.00  0.1221 846 1160 820 1195

10.00 03000 2154 2842 - -
20.00  0.0500 1373 1894 -
25.00 0.0174 746 1031 1145 1693
30.00  0.0200 1235 1706 - -

2. Divergence at High Speeds: As the vehicle approaches its handling
limits (e.g., the 25 m/s test case), a significant divergence between the
models becomes apparent. Our model predicts much lower lateral forces
(746 N and 1031 N) compared to the VI-grade simulation (1145 N and
1693 N). This discrepancy is expected and arises because the VI-grade
model accounts for complex physical phenomena that our simplified
model omits for computational reasons. These phenomena include dy-
namic vertical load transfer during cornering (which increases the grip
of the outer tires), more sophisticated tire thermal models, and detailed

suspension kinematics.

Despite these high-speed discrepancies, this validation confirms that our
simplified bicycle model provides a sufficiently accurate representation of the
vehicle’s behavior for its intended application in the NMPC. Its computational
efficiency is paramount for real-time operation, a task for which the high-
fidelity VI-grade model would be far too slow. The model is most accurate in
the operational regimes where the car will spend most of its time, making it a

well-justified choice for the controller.
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5.4 NMPC with the acados Library

This section provides a high-level overview of the implementation of a Non-
linear Model Predictive Controller (NMPC) for autonomous racing using the
acados optimization library. We will first introduce the acados framework and
our chosen development workflow, followed by the problem formulation for

both a simplified kinematic model and the full dynamic model.

5.4.1 The acados Framework

The acados library [32] is highly flexible, offering several workflows for im-

plementing an MPC. The main options are:

1. Direct C Implementation: This involves defining the Optimal Con-
trol Problem (OCP) and the vehicle model directly in C. This method
offers the most control but requires a deep understanding of the library’s

internal workings.

2. Python/MATLAB Interface with C Code Generation: In this work-
flow, a high-level language like Python is used to define the OCP. aca-
dos then automatically generates highly optimized C code that solves
this specific problem. This C code can then be easily linked into a larger

C/C++ application, such as a ROS 2 node.

3. High-Level Interface Only: This option allows for the entire process,
from OCP definition to solving, to be handled within a high-level lan-
guage like Python or MATLAB. This is ideal for rapid prototyping but
is not suitable for embedding the controller into a real-time C++ appli-

cation.

Our team selected the second option, using the Python interface for code

generation, for several practical reasons:
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* Development Time and Knowledge Transfer: A pure C implementa-
tion would require a significant time investment to master. The Python
interface, which uses the CasAD:i library for symbolic mathematics, ab-
stracts much of this complexity. This makes it faster to develop the con-

troller and easier for other team members to understand and contribute.

* Performance: Since the Python interface is only used for offline code
generation, the final solver that runs on the vehicle is highly optimized
C code. This approach avoids the performance overhead of interpreted
languages during real-time execution, which is critical for meeting our

tight time budgets.

* System Integration: Our controller must be a C++ ROS 2 node. The
code generation workflow is perfectly suited for this, as it produces a
self-contained C solver that can be seamlessly integrated into our exist-

ing C++ stack.

An important operational constraint is that the solver code must be com-
piled offline, before a mission begins. The on-board ASU lacks the power
budget to perform code compilation during a run.

Ultimately, acados handles the complex numerical tasks, such as integrat-
ing the model dynamics over the prediction horizon. Our main task is to ac-
curately define the OCP, which consists of the vehicle model, a cost function,

and a set of constraints.

5.4.2 Kinematic Model Formulation

To introduce the OCP formulation, we first consider a simplified kinematic

bicycle model.
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Model Dynamics

The equations for the kinematic single-track model are given as:

T =wvcosf (5.13)
Yy =wvsinf (5.14)
0 = = a0 (Barger) (5.15)
U = Kp(Vtarget — V) (5.16)

The state vectoris x = [x,y, 0, v]”, and the input vector is U = [Viarget, Starget)” -

This model is purely kinematic, meaning it operates in a fixed Cartesian
frame and does not account for forces, inertia, or tire slip. The state consists of
the vehicle’s 2D position (x, y), its absolute yaw angle (6), and its longitudinal
velocity (v). The vehicle’s wheelbase is represented by [. The change in veloc-
ity is governed by a simple proportional controller with gain K p, which drives
the current velocity v towards the target velocity vya.get. The target steering
angle diarget 1S assumed to be achieved by the actuator instantaneously.

A key feature of acados is its ability to work directly with non-linear,
continuous-time models like this one. The MPC must ensure that the ve-
hicle’s predicted trajectory adheres to these dynamic equations. Instead of
requiring the user to manually linearize or discretize the model, acados em-
ploys advanced numerical integration techniques (such as Runge-Kutta meth-
ods) to accurately simulate the model’s behavior over the prediction horizon.
This approach provides a more precise representation of the non-linear dy-
namics compared to simplified, linearized models, which is crucial for high-
performance control.

If we define Equations 5.13-5.16 as X = fi,(x, u), this system of equa-

tions forms the primary equality constraint for our OCP.
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State and Input Constraints

The OCP must operate within a set of defined constraints. These ensure that
the controller’s solution is physically feasible and adheres to the vehicle’s lim-
its.

The primary state constraint is the initial condition. At the beginning of
each control cycle, the MPC’s prediction must start from the vehicle’s current,
most up-to-date state. We enforce this by setting x(0) = x(¢y) = X, where x
is the current state estimate provided by the localization system. In the acados
framework, this is implemented by setting the lower and upper bounds for the
initial state x(0) to be equal to X. These bounds are then updated at every
iteration before the solver is called.

The inputs are constrained at every step of the prediction horizon. We
define simple ’box constraints,” which set a fixed minimum and maximum

value for each input:

Utarget,min S Utarget(t> S Utarget,max

5target,min S 5target (t> S 5target,max

These constraints limit the requested target velocity and steering angle to val-

ues that are safe and achievable by the vehicle’s actuators.

Cost Function

The cost function defines the goal of the OCP. The solver’s objective is to
find a control sequence that minimizes this cost while respecting the model
dynamics and constraints. The acados framework uses a standard structure

composed of two parts: a path cost and a terminal cost.

* The path cost (or Lagrange term), denoted y, (x(t), u(t)), is applied at

each step along the prediction horizon.

¢ The terminal cost (or Mayer term), denoted my,(x(7)), is applied only
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at the final step of the horizon, 7.

The path cost is a quadratic function that penalizes the deviation of the

predicted state and input from a desired reference trajectory:

X<t> YX,ref<t) 2

Yu,ref(t)

lkin(x(t)a u<t)) =

DO | —
c
—~
~
SN—

w

This formula calculates the squared error between the predicted state/input
vector and the reference vector, weighted by the matrix . Let’s break down

the components:

* yxrer(t): This is the reference state trajectory. For our problem, the ref-
erence positions (z, y) are sampled directly from the pre-calculated race
line. Before each solver call, we find the closest point on the race line
to the car’s current position and then sample the next /V points along the
line to serve as the positional reference for the horizon. The reference

values for heading (#) and velocity (v) are left unspecified.

* Vuret(t): The reference for the control inputs is set to zero. This encour-
ages the solver to find solutions that use minimal control effort, leading

to smoother and more efficient driving.

« W: This is a diagonal weight matrix. The values on the diagonal deter-
mine how heavily the cost function penalizes deviations for each cor-
responding state and input variable. For example, a high weight on the
positional error forces the controller to follow the race line closely. A
weight of zero means a variable is not considered in the cost function;
we use this for the f and v states, as we do not have an explicit reference

for them.

The terminal cost has a similar structure but applies only to the final state,

x(T): X
muin(<(T)) = 5 1%(T) = ycae(T) [y
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This cost uses a separate terminal weight matrix, W°, which typically has
larger weights to heavily penalize any deviation from the reference path at the
end of the horizon, promoting stability.

The total cost, Ji;,, that the solver seeks to minimize is the sum of the path

costs over the horizon plus the final terminal cost:

T = (Z Lan (1), u(ti))> + g (x(tw)) (5.17)

where t; = ¢At and At is the time interval between each step (or shooting
node) <. At, for this problem formulation, is constant over the whole predic-

tion horizon.

Optimal Control Problem Formulation

The concepts described in the previous sections can be combined into a formal
Optimal Control Problem (OCP). The goal of the OCP is to find the optimal
sequence of control inputs that minimizes the cost function while satisfying
all constraints. Using a discrete-time formulation with N steps over the pre-

diction horizon, the problem can be written as follows:

I)Ellél Jiin (5.18)
s.t. X(t2‘+1) = Fkin(x(tz’)y u(tz)), Vi € [0, N — 1] (519)
x(0) = % (5.20)

u(t;) € U, Vie[0,N —1] (5.21)

Each component of this formulation corresponds to the concepts we have

discussed:

* Objective Function (5.18): The primary objective is to find the state
trajectory ({x(t;) € X |7 € [0, N]}) and control trajectory ({u(t;) €
Ui € [0, N — 1] }) that minimize the total cost Jy;,, which is the sum



5.4 NMPC with the acados Library 84

of the path and terminal costs.

* System Dynamics (5.19): This is the core equality constraint. It man-
dates that the state at the next step, x(¢;;1), must be the result of ap-
plying the control input u(t;) to the current state x(¢;). The function
Fiin represents the discrete-time system dynamics, which is the result

of integrating the continuous-time model fi;, over a single time step,

At.

* Initial State Constraint (5.20): This constraint initializes the OCP by
forcing the first state of the prediction horizon, x(0), to be equal to the
vehicle’s current estimated state, X. This anchors the prediction to the

real world.

* Input Constraints (5.21): This requires that the control input at every
step, u(t;), must lie within the set of admissible inputs U. In our case,
this corresponds to the defined box constraints on target velocity and

steering angle.

In summary, the acados solver searches for the sequence of control inputs
u(ty),...,u(ty_1) that steers the system along a trajectory x(to), ..., x(tx)
that adheres to the vehicle’s dynamics and limits, while minimizing the cost

of deviating from the desired race line.

Experiments and Results

To evaluate the performance of the kinematic NMPC, it was compared against
a standard Proportional-Derivative (PD) path-following controller. Both con-
trollers were tested in a simulation environment using the same predefined
race line. The primary performance metric was the lateral deviation from this

reference path.

Controller Parameters The NMPC was configured with the following pa-

rameters:
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* Proportional gain for velocity: Kp = 10.0
* Prediction horizon: N = 40 steps
* Time step: At =0.05s

* Input constraints (U): vyreer € [—8.0,8.0] M/, darger € [—0.46, 0.46]

rad

* Cost function weights: The diagonal of the weight matrix 1/ was set to
[50.0,50.0, 0,0, 1.0, 1.0] for the state errors (x,y, #,v) and input errors
(Vtarget, Otarget), T€Spectively. The terminal weight matrix W¢ was set to

10 x W.

The PD controller was configured with a proportional gain k, = 0.9 and a
derivative gain k; = 0.0. Its lookahead distance was dynamically calculated

based on the vehicle’s speed.

Experimental Conditions A key aspect of this experiment is the low con-
stant speed of 1 m/s. This speed is not an arbitrary choice but a direct con-
sequence of the OCP formulation. The reference trajectory for the MPC is
sampled from a race line where points are spaced 0.05 m apart. With a predic-
tion horizon of N = 40 steps, the total reference path length over the horizon
is 40 x 0.05 m = 2.0 m. The total time for this horizon is 7' = N x At =
40 x 0.05 s = 2.0 s. To minimize the tracking cost, the solver is naturally
incentivized to find a solution that covers 2.0 meters in 2.0 seconds, which re-
sults in an average speed of 1.0 m/s. For a fair comparison, the PD controller’s

target speed was therefore also fixed at 1 m/s.

Results The performance of both controllers is summarized in Table 5.8.
The NMPC controller demonstrates a marginal but consistent improve-

ment over the PD controller across all metrics. It achieves a lower maximum

deviation (0.055 m vs. 0.061 m) and a slightly better mean deviation and stan-

dard deviation. This suggests that even with a simplified kinematic model,
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Table 5.8: Comparison of lateral deviation from the race line between the
NMPC and a PD controller at a constant speed of 1 m/s.

Controller Max Deviation Mean Deviation Std. Dev.
NMPC (Kinematic) 0.055m 0.021 m 0.014 m
PD Controller 0.061 m 0.023 m 0.015m

the predictive nature of MPC allows it to generate smoother and more precise
control actions compared to the purely reactive PD controller.

While these results are promising, it is important to note that this com-
parison is performed at a very low speed. The true advantages of MPC, par-
ticularly its ability to handle constraints and complex non-linear dynamics,
become much more apparent at higher speeds, which will be explored using

the full dynamic model.

5.4.3 Dynamic Model Formulation

We now extend the NMPC formulation to use the more realistic dynamic bicy-
cle model presented in Section 5.3. This model allows the controller to account
for forces and tire slip, which is essential for generating control actions that

operate closer to the vehicle’s physical handling limits.

Constraints

With the dynamic model, we can impose more sophisticated constraints that

directly relate to the vehicle’s physical limits.

* Track Boundaries: To ensure the vehicle remains entirely within the
track, we apply heading-dependent geometric constraints. These con-
straints define a “’safe” corridor for the vehicle by ensuring its corners
do not cross the track boundaries. The allowable lateral deviation, n,

becomes smaller as the vehicle’s heading error, u, increases. This is
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Figure 5.14: The NMPC controller operating in simulation. The vehicle (blue
rectangle) follows an optimal state trajectory (blue line) computed by the
acados solver. The controller’s objective is to track the reference race line
(red line) while respecting the vehicle’s kinematic constraints.

expressed as:

L, W.
n— ?sin|,u| + 5 cosp < Np(s)

L. . We
—n+ ?smm\ + - cosp < Ng(s)

where L. and W, are the total length and width of the car, and N (s)
and Ng(s) are the distances from the race line to the left and right track

boundaries, respectively, at progress s.

* Friction Ellipse: To prevent the controller from demanding forces that
the tires cannot physically produce, we apply a friction ellipse con-

straint. This constraint ensures that the combination of longitudinal and
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lateral forces on each axle does not exceed the maximum available tire

grip. The general form of the constraint is [5]:

2 2
(o) (k) =
,U/sz ,U/sz

This inequality is applied independently to both the front and rear axles.

For each axle:

F, is the total longitudinal force on the axle (e.g., F; p + F,  for
the front).

F, is the total lateral force on the axle (e.g., I, r for the front).

F, is the total vertical load on the axle.

1, 1s coefficient of sliding friction between the tire and the ground

in the longitudinal direction.

— 1y 1s coefficient of sliding friction in the longitudinal direction.

* Input Constraints: As with the kinematic model, we apply box con-
straints to the control inputs. These limit the rate of change of the lon-
gitudinal forces and the steering angle to ensure smooth and physically

achievable commands:

AFl,F,min S AE,F(ti S Fl,F,max

Afﬁr,F,min S A-Fr,F tz S Fr,F,max

) <A
(t:) <A
A]'?Z,R,min S A-FZ,R(tz) S A-Fl,R,maX
AF, pmin < AF, g(t;) <A

S F, r,R,max

A(Smin S A(S(tz) § A§max

Cost Function

The objective for the dynamic model is to minimize lap time while maintaining

stability. The total cost, Jyy,, 1s composed of a path cost /4y, and a terminal
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cost mgyn. The path cost is a weighted sum of four key components:
layn(X(ti), u(ts)) = —wss(t:) Fwan(ti)*+ws(Bayn(ti) = Fan(t:))*+ults)" Rult;)

Each term has a specific purpose:

* —wg$: This term maximizes the progress rate along the path, s, effec-
tively minimizing the time taken to cover a certain distance. The weight

w, controls the aggressiveness of the controller.

» w,n?: This term penalizes the lateral deviation, n, from the reference

race line, ensuring the vehicle follows the desired race line.

* wg(Bayn(ti) — Bin(ti))?: This term penalizes vehicle side slip. Instead
of directly penalizing the individual front and rear tire slip angles, it
minimizes the difference between the actual dynamic side slip angle
of the vehicle body (34yn) and an idealized kinematic one (n). The
dynamic angle is calculated from the vehicle’s velocity components
as B4yn = arctan(v,/v,), while the kinematic angle is an approxima-
tion based on the steering angle and vehicle geometry, given by Sy, =
arctan(d lg/(lp+1g)). This encourages the vehicle to behave in a more

stable and kinematically predictable manner.

« u’ Ru: This term penalizes large control efforts, encouraging smooth

changes to the steering angle and applied forces.

The terminal cost, Mgy, (x(7")), is similar to layn(x(t;), u(t;)):
Mayn(X(T)) = won(T)* + ws(Bayn(T) — Ban(T))”

The total cost J4y, has the same structure of Equation 5.17. The only necessary

step is to replace the kinematic cost terms with the dynamic ones.
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Optimal Control Problem Formulation

Combining the dynamic model, the new constraints, and the time-minimizing

cost function, we can define the full OCP for high-performance driving:

min  Jygn (5.22)

st X(tiy1) = Fan(x(t;),u(t;)), Vie{0,...,N—-1}  (5.23)
x(to) = % (5.24)
u(t;) € U, Vie{0,...,N—1}  (5.25)
x(t;) € Xrack Vie{l,...,N} (5.26)
x(t;) € Xg, Vie{l,...,N} (5.27)

where Fyy, is the discrete-time representation of the dynamic vehicle model,
and X, and Xpg represent the feasible sets defined by the track bound-
ary and friction ellipse constraints, respectively. This formulation directs the
solver to find a control policy that maximizes progress along the track, while
respecting the vehicle’s dynamic limits, staying within the track boundaries,

and avoiding tire slippage.

5.5 Online Hyperparameter Tuning with RL

Reinforcement Learning (RL) is a powerful paradigm within machine learning
that enables an agent to learn optimal behavior by interacting with an environ-
ment. While applying RL for direct end-to-end vehicle control is currently
infeasible for our project due to significant challenges in safety, interpretabil-
ity, and generalization, its exceptional ability to find complex patterns can still
be harnessed.

Our approach, therefore, is to use RL not to replace our classical con-

trollers but to enhance them. We treat a trusted controller, like the PD path
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follower, as part of the environment. An RL agent is then tasked with observ-
ing the vehicle’s state and dynamically adjusting the controller’s hyperparam-
eters to optimize its performance in real-time. This hybrid method allows us to
leverage the pattern-matching capabilities of deep learning without sacrificing
the safety and predictability of a well-understood control algorithm.

This section details the application of this concept to the PD path-following

controller.

5.5.1 Markov Decision Process for PD Controller Tuning

To apply any RL algorithm, we must first formally define the problem as a
Markov Decision Process (MDP). This involves specifying the state space,
action space, transition function, and reward function.

A crucial design choice is the use of a relative state representation. Instead
of using the vehicle’s absolute coordinates on the track, the state is defined
relative to the geometry of the upcoming race line. This approach allows the
agent to learn generalizable behaviors that are independent of any specific

track layout.

State Representation

The state vector, s, is composed of the vehicle’s immediate condition relative
to the race line, as well as a lookahead buffer describing the path’s future
geometry.

Np,

T T
5= [n, Ry VUgy Uy, Uy T, dnext] % EB[”R,J‘, NLj, Khj, Auh,p Uref,j]
j=1

where the @ and @ symbols mean vector concatenation in this context. The

components are:

* n, Kk, 4. The current lateral deviation, path curvature, and relative head-

ing error with respect to the closest point on the race line.
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* v, vy, 7: The vehicle’s longitudinal velocity, lateral velocity, and yaw

rate.

* dnext: The Euclidean distance from the car’s current position to the next

point on the race line (therefore, the one at progress s + 1).

» The second part of the state vector describes the path for a horizon of
N, future points, spaced by a distance of As;, along the race line. For

each future point j, the state includes:

— ngj,nr;: The distance from the race line to the right and left track

boundaries.
— kp;: The curvature of the race line.

— Ayt The change in the race line’s yaw angle relative to the cur-

rent race line point heading (the one at progress s).

— Urerj: The pre-calculated target speed from the race line’s speed

profile.

Action Space

The agent’s action, a, is a continuous vector corresponding to the hyperpa-

rameters of the PD controller:

a= [kpa kda dClip7 la, dla,mim gv]T

where:
* k,, kq: The proportional and derivative gains of the controller.
* dgip: A limit applied to the derivative action to prevent instability.

* gi: A gain multiplied by the current velocity, v,, to compute the looka-

head distance.

* djamin: The minimum lookahead distance.
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* g,: A multiplicative gain applied to the reference speed from the pre-

calculated race line.

What about the dynamic model? If we had to use the same approach for

the dynamic MPC formulation in 5.4.3, the action vector would change to:
a = [ws, wn, ws]” @ vec(R)
where vec(R) is the vectorization of the matrix R.

Transition Function

The environment’s transition from one state to the next is handled by a de-
terministic physics simulator, which is based on the single-track model from

CommonRoad [1]. A single step in the MDP unfolds as follows:

1. The RL agent observes the current environment state s and outputs an

action a, which is the set of new hyperparameters.
2. The PD controller’s parameters are updated with the values from a.

3. The newly configured PD controller computes a control command (e.g.,

a target steering angle).

4. This command is translated into the inputs required by the physics sim-

ulator (e.g., steering velocity and longitudinal acceleration).

5. The simulator integrates the vehicle’s physics model over one time step,

advancing the physical state from x to x’.

6. The new environment state, s, is then calculated based on the new phys-

ical state x’ and its relation to the race line.
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Reward Function

The reward function, R(s,a,s’), is designed to be smooth and to encourage

maximizing progress along the track while penalizing collisions:

As — (Wym|p| +w,e) if collision occurs
R(s,a,s’) =

As otherwise

Here, As is the progress made along the race line during the transition, di-
rectly rewarding the agent for moving forward. If the car collides with a track
boundary, a penalty is applied, which consists of a constant term w,, . and a
term proportional to the vehicle’s heading error p at the moment of impact.
It is important to distinguish the environment state vector, s, from the scalar

progress, s.

5.5.2 Algorithm Choice: Proximal Policy Optimization (PPO)

For this continuous control problem, we selected the Proximal Policy Opti-
mization (PPO) algorithm [24]. PPO is a policy gradient method, making it
well-suited for problems with continuous state and action spaces, which are
key features of our MDP.

The primary advantage of PPO lies in its clipped surrogate objective func-
tion. In practice, this mechanism prevents the algorithm from making exces-
sively large changes to the policy during a single training update. Tuning a
controller’s parameters online is a sensitive task; aggressive adjustments can
lead to unstable or oscillatory vehicle behavior. PPO’s clipped objective en-
sures that learning proceeds in small, stable steps, which is critical for main-
taining robust control.

Furthermore, PPO offers an excellent balance between implementation
simplicity, computational efficiency, and performance. It provides many of

the stability benefits of more complex algorithms like Trust Region Policy
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Optimization (TRPO) but is significantly easier to implement and tune. As an
on-policy algorithm, PPO learns from data generated by its most recent policy,
which integrates seamlessly with our simulation-based training workflow.

In summary, PPO’s ability to handle continuous actions, its inherent sta-
bility, and its practical design make it a strong choice for the task of optimizing

controller hyperparameters in our simulated environment.

5.5.3 Experiments and Results

To evaluate the PPO agent’s ability to tune the PD controller, a series of exper-
iments were conducted in a simulation environment. The agent was trained
using a set of five distinct maps, with an additional sixth map reserved exclu-
sively for testing to measure generalization performance. To avoid overfitting
to a specific direction of travel, the race lines for the training maps were used
in clockwise or counter-clockwise orientations. During training, each episode
was initialized by placing the agent at a random position on the track with
a heading roughly parallel to the race line, with small Gaussian noise added
to encourage robustness. An episode finishes after a collision with the track

boundaries or after having completed two laps.

Experimental Setup and Parameters

The experiments were configured with the following MDP and PPO parame-

ters. For the PPO training, the library RL Baselines3 Zoo [20] has been used.

MDP Parameters:

+ Reward Weights: w,,,,, = 10/7, w, . = 20.

» Update Frequency: 1. The PPO agent updates the PD controller’s param-
eters at every control step.

+ State Horizon: Horizon steps [V;, = 25, with a spacing of As, = 0.2 m

between points.
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PPO Parameters:

* Discount Factor (v): 0.99

» Network Architecture: The Actor and Critic networks both use a Multi-
Layer Perceptron (MLP) architecture with three hidden layers of 256 neu-
rons each and ReL U activation functions.

+ Learning Rate: 3 x 10~*

* Parallel Environments (1¢py): 16

* Transition function steps per PPO update (7eps): 2048 X 7enys

* Clip Range (¢): 0.2

We now present the results from four different experimental configura-

tions. Each validation run was performed over 50,000 simulation steps.

Baseline: Hand-Tuned PD Controller

The first experiment establishes a baseline using a single set of hand-tuned
PD parameters (a = [0.9,0.0,0.2,0.2, 0.4, 1.0]), which remain fixed across all
tracks. The goal is to demonstrate the limitations of a non-adaptive controller.
The results are shown in Table 5.9 (for all the tables of this section, the "Mean
Reward” column is the mean cumulative reward per episode without ).

Table 5.9: Performance of the baseline PD controller with fixed, hand-tuned

parameters on all six tracks. Standard deviation in parenthesis. Laps are mea-
sured in seconds.

Track Mean Reward Collision Rate Best Lap Mean Lap
Atlanta -6.77 (12.12) 100.0% - -

CUSB 58.66 (31.85) 13.9% 7.67 7.85 (0.18)
London 72.65 (40.03) 15.6% 8.90 9.10 (0.20)
Milan 50.96 (25.63) 11.4% 6.19 6.38 (0.19)
Workshop  -11.47 (8.43) 100.0% - -

Test Track  -6.81 (9.98) 100.0% 6.68 6.71 (0.02)

The results clearly show that a single set of parameters is not optimal for

all conditions. While the controller performs reasonably well on the CUSB,
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London, and Milan tracks, it fails completely on the more challenging Atlanta
and Workshop tracks, where it crashes in every episode. Even on the test track,
it is highly unstable. This demonstrates the need for an adaptive approach, if

we don’t want to finetune the parameters manually for every track.

Single-Track Specialization

In this experiment, a separate PPO agent was trained for each of the five train-
ing maps. The goal was to verify that the agent is capable of learning to opti-
mize the controller for a specific, known environment. The results are shown
in Table 5.10.

Table 5.10: Performance of PPO agents trained and evaluated on a single,
specific track after 2.5 million transition function steps. Standard deviation in
parenthesis. Laps are measured in seconds.

Track Mean Reward Collision Rate Best Lap Mean Lap

Atlanta  43.34 (58.54) 96.2% 30.56  30.96 (0.27)
CUSB 59.32 (31.00) 13.3% 6.00  6.24(0.20)
London  65.22 (45.66) 22.6% 9.99  10.23(0.19)
Milan 46.62 (29.98) 16.9% 431 4.60(0.25)
Workshop ~ 66.76 (53.77) 27.8% 18.25  18.54(0.38)

The results show a marked improvement. The PPO agent successfully
learns to tune the PD controller to complete laps on all tracks, including the
difficult Workshop track where the baseline failed. Furthermore, on the tracks
where the baseline already succeeded (CUSB and Milan), the PPO agent achieves
significantly faster lap times. This confirms that the PPO agent can effectively

solve the hyperparameter optimization problem for a known track.

Generalization Across Multiple Tracks

This experiment tests the agent’s ability to generalize. A single agent was
trained on all five maps simultaneously and then evaluated on the unseen test
map. The performance was recorded at different stages of training. The results

are shown in Table 5.11.
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Table 5.11: Performance of a single PPO agent on the unseen test map after
being trained on five other maps. Standard deviation in parenthesis. Laps are
measured in seconds.

Training Steps Mean Reward Collision Rate Best Lap Mean Lap

2.5 Million 36.91 (34.34) 26.5% 6.53  6.83(0.26)
5.0 Million 16.79 (32.32) 67.0% 464  4.99 (0.24)
7.5 Million -11.66 (8.25) 100.0% 509  5.14(0.06)
10.0 Million _14.87 (7.11) 100.0% 456  4.56(0.00)

These results reveal a critical trend. As training progresses, the agent be-
comes more aggressive in pursuit of higher rewards. This is evident from the
”Best Lap Time,” which improves consistently, from 6.53s to an impressive
4.56s. However, this increase in speed comes at a severe cost to stability. The
collision rate rises dramatically, from 26.5% to 100%, indicating that the agent
is learning to push the controller beyond its stable operating limits. The agent
likely learns to increase the speed gain (g,) to maximize the As reward term,
but the simple PD controller cannot handle the resulting high speeds, leading

to frequent crashes.

Generalization with State Normalization

The final experiment investigated whether normalizing the state vector—a
common technique in RL to stabilize training—could mitigate the instability

observed in the previous experiment. The results are shown in Table 5.12.

Table 5.12: Performance on the test map of an agent trained with state nor-
malization. Standard deviation in parenthesis. Laps are measured in seconds.

Training Steps Mean Reward Collision Rate Best Lap Mean Lap

2.5 Million -5.44 (5.40) 99.5% 6.00  6.37(0.24)
5.0 Million -6.30 (3.31) 100.0% 6.07  6.22(0.17)
7.5 Million -6.51 (2.06) 100.0% - -

The results indicate that state normalization did not solve the underlying

problem. The agent remains highly unstable, with collision rates near 100%
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across all training stages. This suggests that the issue is not with the learning
process itself, but rather with the fundamental limitations of the PD controller
being tuned and maybe too simple definition of the MDP state s and reward
function. The agent correctly learns that higher speed leads to higher rewards,

but the simple controller it is tuning cannot safely handle those speeds.
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(a) Atlanta Map (b) CUSB Map

(c) London Map (d) Milan Map

(f) The Test map used for
(e) Workshop Map validation.

Figure 5.15: The six race track maps used in these experiments. The purple
line indicates the calculated race line.



Chapter 6

Conclusions and Future Work

This thesis has detailed the design, implementation, and validation of a com-
prehensive software stack for an autonomous race car, developed in the con-
text of the Formula SAE Driverless competition. As the first iteration of a
driverless system for our team’s electric vehicle, this work established a foun-
dational architecture and explored key challenges in perception, planning, and
control. This chapter summarizes the primary contributions of this research,
discusses its current limitations, and outlines promising directions for future

development.

6.1 Summary of Contributions

The main contributions of this thesis are distributed across several core ar-
eas of the autonomous stack. A robust, supervisory node, the ASU Manager,
was designed and implemented to manage the lifecycle of all software pro-
cesses, providing a reliable foundation for starting, stopping, and restarting
the system. In the perception domain, a complete stereocamera pipeline was
developed to detect and localize track cones in 3D. This pipeline includes a
custom-trained YOLO object detector and a multi-stage stereo matching algo-
rithm, where we demonstrated that incorporating ORB feature matching pro-

vides more stable 3D position estimates than using only bounding box centers.
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On the modeling front, a high-fidelity dynamic bicycle model was formu-
lated, incorporating a non-linear Pacejka tire model. This model, validated
against a professional simulation suite, serves as a first iteration for a future
accurate and computationally efficient basis for advanced control algorithms.
This led to the design of a complete NMPC framework using the acados
toolkit, for which formulations were developed for both a simple kinematic
model and the full dynamic model. The kinematic NMPC was implemented
and tested, demonstrating a performance improvement over a classical PD
controller. Finally, this thesis explored a novel approach to controller en-
hancement by using a PPO reinforcement learning agent to dynamically tune
the hyperparameters of a PD path-follower, providing valuable insights into
the challenges and potential of applying learning-based optimization to clas-

sical control systems.

6.2 Limitations and Future Work

While this work establishes a solid foundation, several areas have been iden-
tified for improvement and further investigation. These represent the logical
next steps for the project.

In perception, the current stereo matching pipeline is constrained by the
physical limits of the sensor and classical computer vision techniques, with
depth accuracy degrading significantly beyond 15 meters. A promising av-
enue for future work is to investigate end-to-end, deep learning-based ap-
proaches for depth estimation. Models like CREStereo [13] or RAFT-Stereo [14]
could potentially learn to produce more robust and accurate depth maps by
leveraging learned priors about the scene, especially in challenging lighting
conditions.

In control, while the NMPC framework was fully formulated for the dy-
namic vehicle model, only the simplified kinematic version was implemented

and tested. The low-speed nature of these tests did not fully showcase the
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advantages of MPC. Therefore, the immediate next step is to implement and
integrate the NMPC using the full dynamic model with acados. This will be
the key to unlocking high-speed performance, as the controller will be able to
reason about tire forces and vehicle dynamics at the limits of handling.

Regarding the reinforcement learning experiments, our results showed that
the agent successfully optimized for speed but consequently pushed the sim-
ple PD controller into unstable regimes. This highlights a limitation not in the
learning algorithm, but in the system it was tasked to optimize. The RL ap-
proach therefore requires further refinement. The reward function should first
be augmented to include penalties for instability, such as high lateral accel-
eration or aggressive control inputs, to encourage the agent to find a balance
between speed and stability. A more powerful application of this concept
would then be to use the RL agent to tune the NMPC itself. The agent could
learn to adjust the weights of the NMPC'’s cost function in real-time, adapting
the controller’s behavior to different sections of the track.

In conclusion, this thesis represents a successful first step in the develop-
ment of a competitive driverless race car. The software architecture, percep-
tion pipeline, and control formulations presented here provide a robust and
well-understood platform upon which future development can be built. The
challenges encountered and the lessons learned have paved a clear path for-
ward for achieving higher levels of performance and reliability in future com-

petition seasons.
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