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ABSTRACT
The origin of the 511 keV gamma-ray line from the Galactic Center has been one of the biggest
misteries and most enduring puzzles in astrophysics since its discovery. While conventional
astrophysical explanations struggle to account for both the intensity and morphology of the
signal, models involving light dark matter have emerged as promising candidates over the past
decades.

In this thesis we investigate dark matter models that are able to consistently explain the
511 keV line from the Galactic Center, going through their theoretical foundation and analyzing
their phenomenological consequences.
The core of this work focuses on two specific frameworks: one involving p-wave annihilation of
dark matter particles and another dealing with coannihilation between nearly-degenerate dark
matter states. We examine the compatibility of these models with experimental and observa-
tional constraints, such as those from direct detection experiments and collider searches, along
with bounds from the Cosmic Microwave Background (CMB), Supernova 1987A (SN 1987A)
and observations of the Bullet Cluster.

The results obtained in this master thesis show that viable dark matter scenarios can ex-
plain the 511 keV line and reproduce the observed dark matter relic abundance, while remaining
compatible with current experimental limits. Our analysis also identifies clear strategies to test
these potential dark matter explanations of the 511 keV line in the near future, using upcoming
experiments with enhanced sensitivity to sub-GeV dark matter.
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Introduction

Despite decades of intense research, the nature of dark matter (DM) remains one of the most
profound mysteries in modern physics and its nature still elusive. Although the Standard Model
successfully describes a vast array of phenomena, it does not contain any viable dark matter
candidates within it[1]. This limitation has led to the proposal of numerous BSM theories
aimed at explaining the observed properties of dark matter (see Sec. 2.2).

One of the most intriguing astrophysical misteries, which could find an answer in dark
matter models, is the 511 keV gamma-ray line observed from the Galactic Center of the Milky
Way. Initially detected by balloon-borne experiments[2] and later confirmed with greater preci-
sion by space-based missions such as INTEGRAL[3–5], this line is widely interpreted as arising
from the annihilation of non-relativistic electron-positron pairs via para-positronium forma-
tion[6]. However, the astrophysical origin of the positrons remains elusive. This motivates the
attempt to explain the spatial morphology and intensity of the lines with positrons produced
by dark matter.

This master thesis aims to investigate theoretical dark matter models, that can account for
the 511 keV gamma-ray line observed from the Galactic Center, while matching the observed
DM relic abundance.
The morphology of the 511 keV signal from the Galactic Center favours dark matter annihi-
lations into final states that eventually give rise to positrons, rather than DM decays, as the
latter would typically result in a broader spatial distribution of the resulting 511 keV emis-
sion[7, 8]. However, the intensity of the signal requires DM annihilation cross sections that
are significantly smaller than the canonical thermal relic value 〈σv〉 ' 10−26cm3/s. This is
to avoid an overproduction of positrons, which could lead to an excess of 511 keV photons
beyond what is observed by instruments such as INTEGRAL/SPI[9]. This motivates scenarios
where the annihilation cross section is large enough in the early universe to generate the correct
relic abundance, but it is suppressed at late cosmological times. Two well-motivated classes of
models that naturally realize this behaviour are:

• p-wave annihilating dark matter models, where the annihilation cross section depends on
the relative velocity between DM particles and is therefore suppressed at late times (see
Chapter 4);

• coannihilation models, which involve nearly degenerate DM states with a mass splitting

1



1. INTRODUCTION 2

δ ≡ mχ2 −mχ1 . This class of models is naturally late-time suppressed, as the number
density of the heavier DM component χ2 is Boltzmann suppressed relative to that of the
lighter state χ1, namely nχ2 ' nχ1e

−δ/T .

Moreover, to avoid an overproduction of 511 keV photons from the Galactic Center, the
injected positrons must be non-relativistic or mildly relativistic. This constrains their injection
energy to a few MeV or less[8, 9], which, in turn, implies that the mass of DM annihilating into
e−e+ pairs must satisfy MDM . 3 MeV. However, such light dark matter is severely constrained
by cosmological data and therefore a potential MeV dark matter interpretation of the 511 keV
signal observed from the Galactic bulge had been claimed excluded[10].
Recent progress has changed this picture. In particular, it has been shown that the positron
injection rate required to explain the 511 keV line can be enhanced by astrophysical features
such as dark matter density spikes near the supermassive black hole at the Galactic Center,
allowing the signal to be matched even for DM masses above 10 MeV[11, 12]. This opens up
novel avenues for testing dark matter explanations of the 511 keV line, which this thesis begins
to investigate.

In Chapter 2 we discuss the astrophysical evidence for dark matter and outline the key
properties that viable candidates must satisfy, in order to be consistent with observations.
We also give a general overview of the experimental and observational limits on dark matter
models. We then continue the discussion with Chapter 3, which introduces the 511 keV line
and its observational features, providing the astrophysical motivation for the models explored.
We also derived new best-fit values of the thermally-averaged DM annihilation cross sections,
needed to reproduce the 511 keV line. In addition, Chapters 4 and 5 are dedicated respec-
tively to the detailed construction and phenomenological analysis of the p-wave annihilation
and coannihilation models. In these two final chapters we show that that these two dark matter
scenarios can explain the 511 keV line and reproduce the observed DM relic abundance, while
remaining compatible with current experimental and observational limits. Finally, we present
new strategies to test these dark matter scenarios with upcoming experiments.

Furthermore, in App. A we review the thermal history of the early universe and the formal-
ism used to compute relic abundances, starting from the Boltzmann equation, while in App. B
we present some computations of cross sections and decay rates, relevant for this thesis. Con-
cluding, in App. C we analyze resonant enhancements of the dark matter annihilation cross
section, focusing on the velocity dependence near the resonance condition and its implications
for thermal freeze-out and positron injection rates.
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Dark matter

DM remains one of the most intriguing and persistent mysteries in modern physics. Although
it does not emit, absorb, or reflect light, its presence is evident through its gravitational in-
fluence on the Universe. We see its effects in the rotation curves of galaxies, the bending of
light through gravitational lensing, and the temperature fluctuations of the CMB. Yet, despite
decades of effort, we still do not know what DM is made of.
The Standard Model of particle physics, despite its empirical success, lacks a viable dark matter
candidate, strongly suggesting the need for new physics.
Numerous theoretical extensions have been proposed to explain dark matter, including axions
[13], sterile neutrinos [14], models involving dark sectors [15], weakly interacting massive par-
ticles (WIMPs)[16] and primordial black holes[17].
These frameworks offer a variety of potential experimental signatures, which have guided the
development of both direct and indirect detection strategies.

In this chapter, we present an in-depth study of dark matter evidence and its proper-
ties, also giving a general overview of current experimental and observational constraints on
dark matter models, as in the following chapters we will explore the possibility that dark mat-
ter could provide explain one the most puzzling astrophysical anomalies, which is the 511 keV
gamma-ray signal from the GC.

2.1 Dark matter evidence
Currently, discrepancies between the visible matter content and the gravitational behaviour
of large-scale structure strongly support the existence of DM. These observational evidence
for dark matter span a wide range of spatial scales, from rotation curves in spiral and dwarf
spheroidal galaxies, to cluster-scale phenomena like gravitational lensing in systems such as the
Bullet Cluster, extending eventually the analysis to cosmological scales, as revealed by precise
measurements of the Cosmic Microwave Background (CMB) anisotropies.

In the following, we present a brief overview of key observational pillars supporting the
dark matter hypothesis, hoping to convey to the reader the consistency of the evidence accu-
mulated over decades.

3



2. DARK MATTER 4

2.1.1 Galactic rotational curves

An historically strong evidence for the existence of DM comes from the study of galactic
rotational curves.
We can define the mean rotational velocity of the components of a gravitationally bound system,
as a function of the distance r from the Galactic Center (GC), as

v(r) =

√
GM(r)

r
, (2.1)

where G is the Newtonian gravitational constant, while M(r) is the mass enclosed within a
sphere of radius r. Eq. (2.1) comes from balancing gravitational and centrifugal forces.
If all the mass of a certain galaxy were accounted for by luminous matter like dust, stars and
gas, distribuited as an hard shell core of uniform density, then we would expect that within
a core of radius R, the mean rotational velocity increaseas linearly with radius as v(r) ∝ r,
since the mass inside a sphere of radius r and uniform density is M(r) ∝ r3. Outside the
core, instead, and thus for r > R, the mass would be M(R) ≈ const and therefore the mean
rotational velocity would go as v(r) ∝ r−1/2.
This suggests that any deviation from this behaviour is an indicator of the fact that luminous
matter does not actually constitute all the mass present in a galaxy.

In the early 1970s Vera Rubin, Kent Ford and collaborators showed that the rotational
velocities of stars and gas in spiral galaxies do not decrease at large radii, whereas they tend
to level off and remain roughly constant far beyond the region occupied by most of the visible
matter[18].
These so-called flat rotational curves have been observed in a wide range of galaxies of different
type and sizes, becoming particularly pronounced in galaxies with little luminous mass[19, 20].
The persistent presence of flat rotational curves in different galaxies strongly suggests that we
also have a dominant component of non-luminous matter that does not follow the distribution
of visible matter and this is a peculiar characteristic of galaxy dynamics and not rather confined
to individual cases.

In Fig. 2.1 we illustrate how a DM halo can allow to fit properly the observational data.

Dwarf spheroidal galaxies

Dwarf spheroidal galaxies (dSph) are among the most dark matter-dominated systems known
in the Universe. They are low-luminous galaxies with around 10-1000 stars and they are distant
20-200 kpc from us, so they are gravitationally linked to the Milky Way.
These galaxies have a mass MdSph & 107M� and a radius RdSph & 1kpc.
Typically DM velocity dispersion1 in dwarf spheroidal galaxies is vDM ≈ 3·10−5, so significantly
smaller compared to the one in larger galaxies like the Milky Way, where instead vDM ≈ 10−3.

2.1.2 Gravitational lensing and the Bullet Cluster

Gravitational lensing, a phenomenon predicted by Einstein’s theory of General Relativity, arises
due to the deflection of light by massive objects under the influence of gravity. In particular,

1In astrophysics velocity dispersion is a measure of how fast particles are moving relative to each other.
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Figure 2.1: Galactic rotational curve for NGC 6503 which shows disk and gas contribution in
addition to a DM halo component needed to match the observational data.
Reprinted from "Review of Observational Evidence for Dark Matter in the Uni-
verse and in upcoming searches for Dark stars", by Katherine Freese, Michigan
Center for Theoretical Physics, University of Michigan[21]

.

we can have three different types of gravitational lensing[22]:

• strong lensing, which results in pronounced distortions such as multiple images, arcs, and
Einstein rings, typically observed in galaxy clusters.

• weak lensing, which, differently from the strong lensing, is just able to modify and stretch
images.

• microlensing, which causes distortions too small to be detected, but the image may appear
brighter.

Over the past years, gravitational lensing has become a powerful observational tool in as-
trophysics and cosmology, because it allows to infer the total mass of a gravitationally bound
system, and then, comparing it with the distribution of visible matter, it is possible to find the
abundance of non-luminous matter. This makes it possible to study systems, where luminous
and dark matter could be spatially displaced. One of the most studied examples of such a
system comes from the Bullet Cluster, which consists of two galaxy clusters that have recently
collided, providing the opportunity to study rigorously the distribution of visible and invisible
matter[23].
During the merger, the hot gas plasma decelerates due to the frequent interactions, while
the galaxies themselves pass through undisturbed. Since most of the baryonic mass is in the
plasma, one might naively think that the gravitational potential is centered there, however this
is not the case. Indeed, one can study the distribution of the hot gas plasma by analyzing
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the X-ray emissions due to the significant interactions during the merger. In particular, weak
lensing analysis show that these X-ray emitting gas do not constitute the majority of the Bullet
Cluster’s mass, but rather coincide with the distribution of collisionless galactic components.
This implies that the majority of the mass is in regions associated to low X-ray emissions, as
it is depicted in Fig. 2.2.

Figure 2.2: A composite image of the Bullet Cluster obtained by the Chandra X-ray Obser-
vatory, showing the X-ray emission from the hot gas and the gravitational mass distribution,
traced by weak lensing, in green. The spatial separation of the gas and the mass distribution
supports the presence of dark matter in the cluster.
Reprinted from "A direct empirical proof of the existence of dark matter", by Dou-
glas Clowe et al., Steward Observatory, University of Arizona[23].

The spatial separation between the baryonic mass and the gravitational potential in the Bullet
Cluster strongly suggests that most of the mass is non-luminous, non-baryonic and it interacts
gravitationally but not electromagnetically.
Importantly, the Bullet Cluster is not an isolated case. Similar spatial offsets between luminous
matter and gravitational mass have been observed in several other merging clusters, such as
the Musket Ball Cluster[24] and Abell 520[25]. These observations further support the dark
matter hypothesis and highlight the need for a component of mass that interacts primarily
through gravity[1].

On galaxy cluster scales, evidence for dark matter arises not only from gravitational lensing
and merging clusters, but also from the application of the virial theorem, which shows that the
mass required to gravitationally bind the system, inferred from galaxy velocity dispersions, sig-
nificantly exceeds the mass of visible matter [26]. In this subection, however, we have focused
on a specific well-studied example of dark matter evidence at these scales, which is the Bullet
Cluster.
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2.1.3 Cosmological evidence: the CMB

Observations of the CMB provide some of the most precise evidence for the existence of dark
matter on cosmological scales.
The CMB is relic radiation from the early universe, emitted approximately 380,000 years after
the Big Bang during the epoch of recombination, when electrons combined with protons to
form neutral hydrogen, allowing photons to propagate freely across space.

From the Planck satellite[27] and earlier missions, like WMAP[28], we can infer that the
Universe is spatially flat, which means that its total density parameter satisfies ΩTOT ≡ ρ

ρc
∼ 1.

Here, ρ is the energy density of the Universe, including all possible contributions, such as those
from matter, radiation and vacuum energy. On the other hand, ρc = 3H2

0
8πG is the critical density,

where H0 is the present-day value of the Hubble parameter, while G is the Newton’s gravita-
tional constant (see App. A for more details).
Moreover, detailed analysis of the CMB power spectrum reveals how the total energy content
of the Universe is partitioned among its constituents:

• 5% accounted for by baryonic matter =⇒ ΩB ∼ 0.05.

• 26% accounted for by dark matter =⇒ ΩDM ∼ 0.26.

• 69% accounted for by dark energy =⇒ ΩΛ ∼ 0.69.

The CMB is not perfectly uniform, but it exhibits tiny temperature fluctuations of the order
of δT

T ∼ 10−5, which are the fuel that drives the formation of all cosmic structure we see today,
such as galaxies and galaxy clusters. Their properties are encoded in the CMB angular power
spectrum, which displays acoustic peaks, reflecting oscillations in the baryon-photon plasma
before recombination. The height and spacing of these peaks, shown in Fig. 2.3, are sensitive
to the total matter density and the baryonic-to-dark matter ratio.

The temperature fluctuations in the Universe can be analysed as a function of the angular
separation between different points on the CMB sky map, and to accomplish this idea, we can
expand these fluctuations in terms of spherical harmonics:

δT (θ, φ)
T

=
∞∑
`=1

∑̀
m=−`

a`mY`m(θ, φ), (2.2)

where ` denotes the multipole moment.
We can notice that in Eq. (2.2), we do not consider the ` = 0 term, which represents the
monopole moment, because it constitutes the average CMB temperature, corresponding to
∼ 2.725 K. It is essentially a constant offset and, for this reason, we exclude it, since we are
interested in the analysis of temperature fluctuations as an indicator of CMB anisotropies. The
` = 1 term, which represents the dipole anisotropy, reflects, instead, the local motion of the
Solar System relative to the CMB rest frame. Therefore, it is dominated by the Doppler shift
caused by this kinematic effect, which overwhelms any intrinsic dipole anisotropy in the CMB
itself. As a consequence, the observed dipole is typically removed from the data and one can
consider in the analysis of the CMB anisotropies just the ` ≥ 2 terms.
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Figure 2.3: CMB angular power spectrum, as measured by the Planck satellite. The quan-
tity plotted is DTT

` = `(`+1)
2π CTT` , which represents the variance of temperature fluctuations

at multipole moment `. The distinct acoustic peaks reflect oscillations in the early universe’s
baryon-photon plasma and are highly sensitive to cosmological parameters such as the total
matter density and the baryon-to-dark matter ratio.
Reprinted from "Planck 2018 results.VI.Cosmological parameters", by Planck Col-
laboration[27].

It is possible to quantify the variance of temperature fluctuations in the CMB by defining
the temperature-temperature angular power spectrum, which is given by

CTT` = 1
2`+ 1

∑̀
m=−`

〈|a`m|2〉. (2.3)

However, usually the analised quantity is

DTT
` = `(`+ 1)

2π CTT` , (2.4)

which flattens the steep decay of CTT` in Eq. (2.3) and make the acoustic peaks clearly visible
and easier to interpret. For this reason, in Fig. 2.3 we plot DTT

` .
As already said, each peak in the CMB angular power spectrum in Fig. 2.3 reveals some
important cosmological information. In particular:

• The first peak reflects the total gravitational potential and gives us information about
the geometry of the Universe, confirming that it is spatially flat.

• The second peak, which is sensitive to the baryon-to-dark matter ratio and its height
relative to the first peak, reveals how much baryonic matter is present in the Universe.

• The third peak indicates, instead, the amount of dark matter in the Universe.
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In this sense, the CMB acoustic peak structure is a direct consequence of dark matter’s gravi-
tational role in shaping the primordial density fluctuations.
In addition, dark matter annihilation injects energy into the intergalactic medium, affecting
thus the ionization history of the universe and leaving detectable imprints on the CMB. These
signatures places significant constraints, relevant for light dark matter candidates capable of
producing positrons, such as those considered in explaining the 511 keV signal from the Galac-
tic Center. These constraints are discussed more in detail in Sec. 2.4.4.

On cosmological scales, DM leaves imprints not only in the CMB, but also in the forma-
tion and statistical distribution of large-scale structures, as revealed by observations of galaxy
clustering and baryon acoustic oscillations (BAO)[27, 29, 30]. However, in this subsection we
have focused on the CMB, as it provides the most direct probe of the matter content in the
early universe. In particular, its angular power spectrum strongly supports the existence of
cold, non-baryonic DM.[27, 31].

All the evidence for dark matter presented so far is compelling. Nevertheless, it is impor-
tant to acknowledge that alternative frameworks have been proposed to explain the observed
phenomena without invoking dark matter. One such example is Modified Newtonian Dynamics
(MOND), which will be discussed in the next subsection.

2.1.4 Modified Newtonian Dynamics (MOND)

The discrepancies between the visible matter content and the gravitational behaviour of large-
scale structure, discussed previously, arise if we assume Newtonian gravity to hold. We can thus
wisely think to solve these observational inconsistencies, not anymore by adding a non-luminous
matter component, as suggested earlier, but by modifying the gravitational framework in which
we work.
Therefore, we now briefly discuss how Modified Newtonian Dynamics (MOND) could provide
an alternative explanation for flat rotational curves in galaxies.

In Newtonian mechanics, given a star of mass m moving in a galaxy, its centripetal force is
given by

F = GM(r)m
r2 , (2.5)

where again G is the Newtonian gravitational constant and M(r) is the mass enclosed within
a sphere of radius r centered on the GC.
MOND, instead, as suggested by M. Milgrom in Ref. [32], propose that the Newton’s second
law ~F = m~a should be replaced by

~F = mµ

(
a

a0

)
~a, (2.6)

where m is the mass of a body, like a star, moving in a static field force ~F with acceleration ~a,
a0 ∼ 1.2 · 10−10 m

s2 is a constant and µ(x) is a function defined such that{
µ(x� 1) ≈ 1
µ(x� 1) ≈ x

. (2.7)
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Moreover, we have defined a ≡ |~a|. We thus notice from Eq. (2.6) that for accelearations much

larger than a0, we get that µ
(
a
a0

)
≈ 1 and, therefore, we recover the Newtonian dynamics,

while in the regime where a � a0, MOND predicts flat rotational curves in outer galactic
regions without the need of considering the presence of dark matter[33].

While MOND was originally proposed as a phenomenological modification of Newtonian
gravity[32], aimed at explaining the observed flat rotation curves of galaxies without dark mat-
ter, it is important to note that MOND itself is not a complete relativistic theory. Rather,
it just provides a phenomenological relation between the gravitational acceleration a and the
Newtonian potential φN , through the function µ

(
a
a0

)
.

In order to extend MOND to a consistent framework capable of addressing cosmological phe-
nomena, such as the CMB, a relativistic completion is required. One of the most developed
proposals is TeVeS (Tensor-Vector-Scalar gravity), introduced by Bekenstein[34], which gener-
alizes MOND into a relativistic theory involving additional gravitational fields. More recent
studies by Skordis and collaborators have explored refinements of such frameworks[35]. These
relativistic extensions attempt to provide a more fundamental basis for MOND-like behaviour
and allow for cosmological predictions.
However, despite these efforts, current relativistic MOND models still face challenges in re-
producing the detailed structure of the CMB power spectrum, unlike the standard ΛCDM
paradigm[23, 36, 37].

In the next section we present a general overview of DM properties, inferred from ex-
periments and observations.

2.2 Dark matter properties
The evidence for dark matter presented in Sec. 2.1 strongly supports its existence across a
wide range of astrophysical and cosmological scales. Understanding the nature of DM requires
identifying the key physical properties that any viable candidate must possess in order to be
consistent with current experimental observations. While the precise identity of DM remains
unknown, decades of data constrain its behaviour in both the early and late universe. Below
we summarize the main properties of DM inferred from observations:

• Cold and non-relativistic at structure formation: cosmological structure formation strongly
supports cold dark matter (CDM), which is DM that was non-relativistic when structure
began to form. Hot dark matter, such as neutrinos with eV-scale masses, suppresses
small-scale structures via free-streaming, leading to a top-down structure formation sce-
nario2 that is inconsistent with the observed galaxy clustering and the matter power
spectrum[38–40]. Cold dark matter, in contrast, allows hierarchical formation, with small
structures forming first and merging into larger halos, in agreement with N-body simu-
lations and large-scale surveys[27, 41].

2In top-down structure formation, predicted by hot dark matter, large structures form first and fragment into
smaller ones. This scenario is inconsistent with observations showing early formation of small-scale structures.
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• Gravitationally interacting: DM must inetract gravitationally, as it dominates the matter
content of the Universe and drives the growth of structure. Its gravitational effects
are evident from a wide range of phenomena, such as flat rotation curves at galactic
scales[19], virial mass discrepancy and gravitational lensing at cluster scales[23, 26] and
CMB anisotropies and large-scale structure formation at cosmological scales[27] (see Sec.
2.1 for a more detailed discussion on DM evidence).

• Electromagnetically neutral and dark: DM must be non-luminous and electrically neutral,
as it does not emit, absorb, or reflect light. Observations of the CMB and galaxy surveys
impose tight constraints on any charged or interacting DM component, as it would lead to
spectral distortions, excess radiation, or deviations from standard structure formation[42].

• Stable on cosmological timescales: to account for the observed matter density today, DM
must be stable on cosmological timescales. Some models allow for decaying dark matter,
provided the decay rate is slow enough to be consistent with bounds from gamma-ray,
neutrino, and positron backgrounds[43, 44].

• Non-baryonic: Big Bang Nucleosynthesis (BBN) and the CMB tightly constrain the
total baryonic content of the Universe, which accounts for only ∼ 5% of the total energy
density. The other 26% of the Universe’s matter density must be non-baryonic, ruling out
MACHOs and standard astrophysical objects as the dominant DM component[45, 46].

• Weakly coupled to the Standard Model: current bounds from direct detection, collider
experiments, and indirect searches, such as gamma-ray or cosmic-ray telescopes, imply
that DM either interacts very weakly with Standard Model particles or lies in a hidden
sector with suppressed couplings to the Standard Model sector[47].

• Broad mass range: there are several dark matter candidates spanning a broad mass range.
In particular, a thermal relic must have a mass roughly in the range 1 keV . MDM .
100 TeV to satisfy structure formation and unitarity bounds[48, 49].

• Self-interacting: even though it is not a general DM’s feature, some models allow for self-
interacting dark matter, which could alleviate small-scale structure issues such as the core-
cusp and missing satellites problems. However, astrophysical observations, particularly
from merging galaxy clusters like the Bullet Cluster, constrain the DM self-interaction
cross section to be σself

MDM
. 1 cm2

g [50, 51] (see Sec. 2.2.1 for a more detailed analysis of
self-interacting DM).

• Large-scale dominance: in large disk galaxies like the Milky Way, dark matter is sub-
dominant in the inner regions, that is within a few kiloparsecs of the GC, where baryonic
matter dominates the gravitational potential. However, at radii beyond ' 5 − 10 kpc,
DM becomes the dominant mass component, as indicated by flat rotation curves (see Sec.
2.1). In contrast, dSph galaxies are dark matter dominated even at small radii, with a
significant contribution already within ∼ 100 pc of the GC[52, 53].

To conclude the discussion on DM properties, DM could have been produced in the early
universe in two different ways, which are

• Thermal production: DM was in thermal equilibrium with the SM plasma and then
froze-out, becoming a relic[54].
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• Non-thermal production: in this case, DM was not originally in thermal equilibrium with
the SM plasma and, therefore, it was produced in other ways. An example is the freeze-in
mechanism[55].

In this thesis we focus on DM as a thermal candidate.

In the following section, we provide a general overview of self-interacting dark matter (SIDM)
models and discuss how they may help address some of the small-scale challenges associated
with the cold dark matter paradigm, such as the core-cusp problem and the missing satellite
problem.

2.2.1 SIDM models

The ΛCDM model succesfully explains large-scale structure formation, however, it faces sig-
nificant challenges at smaller scales, regime that it is nowadays investigated through N-body
simulations. In particular, over the decades, some discrepancies between CDM predictions and
observations have arisen, such as[56]

• Core-Cusp problem: according to Ref. [57–59], the mass density profile for CDM halos
scale approximately as ρDM ∝ r−1, increasing thus toward the center. However, many
observed rotation curves of disk galaxies prefer a constant "cored" density profile, that is
ρDM ∝ r0[60–62]. This behaviour is prevalent in DM-dominated envinronments, such as
dSph galaxies, which, therefore, represent promising targets to test CDM predictions.

• Diversity problem: in CDM models the formation of structures, like galaxies and their
DM halos, is self-similar, meaning that halos with the same total mass are predicted to
have very similar internal structures[59, 63]. However, nature seems to be inconsistent
with observations. Indeed, if we look at disk galaxies with the same maximum circular
velocity, which is an indicator of the total mass, they exhibit rotation curves that differ
more than expected[64].

• Missing satellites problem: from CDM predictions, structures in the Universe form hier-
archically, which means that smaller halos form first and then merge in order to create
larger ones. The former often survive as subhalos within the latter, which implies that,
for example, a halo with the dimension of the Milky Way is predicted to contain many
smaller subhalos orbiting within it[65]. However, again, CDM predictions do not seem to
match observations, since if we look at the Local Group3 we see far fewer small galaxies
than expected.

• Too-big-to-fail problem: in recent years, CDM simulations have suggested that the bright-
est satellite galaxies around the Milky Way are expected to live inside the most massive
DM subhalos, which should be large enough to form stars and create visible galaxies.
This expectation gave origin to the term too-big-to-fail. Once again, observations reveal
discrepancies with CDM predictions. Indeed, the most massive simulated subhalos are
too dense in the central region compared to what is inferred from the motion of stars in
the observed brightest dSph galaxies[66, 67].

3The Local Group is a collection of more than 20 galaxies, including the Milky Way and Andromeda.



2. DARK MATTER 13

These discrepancies between observations and predictions, though, are not limited to the
Milky Way, but studies of dSph galaxies within Andromeda[68] and the Local Group[69]
have found similar behaviours.

These issues, however, which arise in DM-only simulations, can be alleviated in the ΛCDM
framework if we include baryonic processes, such as gas cooling and star formation[70, 71].

Another possible solution to these issues is to consider warm DM particles, which are
quasi-relativistic during kinetic decoupling from the thermal bath in the early universe[38, 72].
In particular, recent simulations showed that warm DM may lead to a suppression of satel-
lite galaxies, providing a solution for the missing satellite and the too-big-to-fail problems[73–
75]. However, it should be noted that the mass range of warm DM is strongly constrained by
Lyman-α forest observations[48, 76] and, as a consequence, warm DM core are too small to
solve the core-cusp problem[77].

A valid alternative to collisionless CDM is self-interacting DM (SIDM), which was pro-
posed as possible solution to the core-cusp and the missing satellites problems[50].

Figure 2.4: Comparison of the density profiles (left panel), velocity dispersion profiles (central
panel) and minor-to-major axis ratio c

a for SIDM with σ
m = 1 cm2/g and its CDM counterpart

(right panel).
Reprinted from "Dark Matter Self-interactions and Small Scale Structure", by
Sean Tulin and Hai-Bo Yu[56].

DM self-interactions introduce significant deviations from CDM predictions, in particular:

• In CDM halos the DM velocity dispersion decreases toward the center and thus it is not
constant. On the other hand, self-interactions transfer heat from the hotter outer to the
cooler inner region of a DM halo, resulting in a thermalization of the inner halo and,
therefore, in a isothermal velocity dispersion, as it is illustrated in the left panel of Fig.
2.4[78].

• When we consider CDM, hierarchical structure formation produces halos with a universal
and cuspy density profile[58, 59]. In the SIDM framework, instead, collisions between DM
particles in the dense inner regions heat low-entropy particles. This redistributes energy
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and flattens the central density, producing, thus, a core-like structure, rather than a cusp,
as shown in the central panel of Fig. 2.4

• According to Ref. [57], CDM halos are triaxial4, while self-interactions between DM
particles tend to isotropize their velocities and, as a consequence, the minor-to-major
axis ratio c

a is closer to unity toward the center of SIDM halos, compared to CDM halos,
as we can see in the right panel of Fig. 2.4

Let us now consider two colliding galaxy clusters; the probability that DM in a cluster 1
collides with DM in a cluster 2 is given by

dP1
dt

= σself φ
DM
2 = σself

ρ2
MDM

vrel, (2.8)

where φDM
2 is the flux of incoming DM, while ρ2 is the DM mass density.

Using that x = vrel · t, we can now write that

dP1
dx

= 1
vrel

dP1
dt

= σself
ρ2

MDM
. (2.9)

Therefore, we obtain that [79]

P1 =
∫ Lcluster

0

dP1
dx

dx = σself
MDM

∫ Lcluster

0
ρ2dx '

σself
MDM

0.3 gr
cm2 . (2.10)

In order to avoid any offset in the observations, we should satisfy that P1 . 0.3 =⇒ σself
MDM

.

1 cm2

gr .

2.3 Dark Matter candidates
In this section we want to give a general overview of DM candidates, presenting briefly the
WIMP scenario as it has been extensively studied in recent years.

Despite decades of research, no particle within the Standard Model satisfies all the criteria
required of a dark matter candidate[1]. As a consequence, numerous extension to the SM have
been proposed, in order to include new particles and new mediators able to explain the unsolved
mistery of DM, remaining though consistent with experimental and observational constraints.
While its exact nature remains still unknown, numerous well-motivated candidates have been
proposed across a significant mass range, reflecting the diversity of theoretical models proposed
to explain its nature. Some of the main BSM candidates for DM are:

• Axions, which are extremely light particles originally introduced to solve the strong CP
problem in QCD and they also represent a viable non-thermal DM candidate, with a
mass MDM � 1 eV[13].

• Sterile neutrinos, which are SM singlets and a possible DM candidate, with a mass in the
range 1 keV .MDM . 100 keV. Sterile neutrinos are an example of WARM DM.[14]

4A triaxial object is a three-dimensional structure with three axes of different lengths.
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• Sub-GeV DM, which are particles with a mass MDM . 1 GeV, interacting with the SM
through new mediators like dark photons[80].

• WIMPs, which interact through the weak force and they are among the most well-studied
DM candidates. Even though they have not been detected yet, they remain a viable and
highly-motivated possibility. Their mass range is 1 GeV .MDM . 100 TeV[81].

• There are also heavier non-thermal DM candidate, an example are PBH[17].

After a brief overview of the potential DM candidates, which can be found in the literature,
we present in the next chapter the computation to derive the DM abundance.

2.3.1 Dark matter abundance

In this subection we want to derive the dark matter abundance, taking into acccount the impact
of the SM thermodynamics.
As already found in App. A.3, the DM number density evolves according to the Boltzmann
equation

dnDM
dt

+ 3HnDM = −〈σv〉(n2
DM − n2

DM,eq). (2.11)

In particulars, if MDM . 10 MeV, the DM annihilation after the neutrino decoupling modifies
the temperatures of the neutrinos and the photons. This leads to the shift of the effective
neutrino number ∆Neff and affects the DM abundance estimation.[82–85]The results proposed
here, as indicated by the authors of Ref. [54], are obtained neglecting this effect for simplicity.
The Boltzmann equation (2.11) can also be rewritten in terms of the DM yield, YDM ≡ nDM

s ,
and the mass-to-temperature ratio x = MDM

T , as

dYDM
dx

= − λ

x2 〈σv〉[Y
2

DM − (Y eq
DM)2], (2.12)

where λ = x3s
H(MDM) =

( 45
8π2
)−1/2

g
1/2
∗ MDMMp

5 is taken approximately constant and 〈σv〉 ' as +
bp〈v2

rel〉 is the thermally-averaged DM annihilation cross section. Indeed, the only temperature-
dependent term inside λ is g1/2

∗ , which is defined as in Eq. (A.27) and its behaviour with
temperature is shown in Fig. A.4. However, we can treat it as approximately constant, even
though around the QCD phase transition we need to be more cautious.
Moreover, since Y eq

DM is exponentially suppressed at later times, in first approximation we can
write the Boltzmann equation as

dYDM
Y 2

DM
= −

( 45
8π2

)−1/2 g
1/2
∗ MDMMp

x2 dx (2.13)

and, integrating both sides of the equation from FO until a temperature of T = 1 eV, we find
that

1
Y FO

DM
− 1
Y ∞

DM
' −

( 45
8π2

)−1/2 g
1/2
ρ MDMMp

xfo

(
as + 3 bp

xfo

)
, (2.14)

5Mp = Mpl√
8π is the reduced Planck mass, where Mpl = 1.2 · 1019 GeV.
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where we have used that 1/x∞ ' 0 and we have approximated g
1/2
∗ ≈ g

1/2
ρ (Tfo) since we are

treating it as constant. Here, gρ(T ) is defined as in Eq. (A.17).

We note that Y FO
DM ≡ Y eq

DM(x = xfo) and, as done typically in the literature, we can ne-
glect 1

Y FO
DM

, obtaining that

Y ∞
DM '

( 45
8π2

)1/2 xfo

g
1/2
ρ MDMMp

1
as + 3bp

xfo

. (2.15)

At this point, the DM abundance is approximately given by

ΩDMh2 = s0h
2MDMY

∞
DM

ρc
∼ s0h

2

ρc

[ 45
8π2gρ(Tfo)

]1/2 MDM

TfoMp

(
as + 3 bp

xFO

) , (2.16)

where s0 is the entropy density after the neutrino decoupling, ρc is the critical density at the
present time and Tfo is the freeze-out (FO) temperature.
In the instantaneous FO scenario, the FO temperature, Tfo, is fixed by

Γ(Tfo) = H(Tfo), (2.17)

where Γ(Tfo) is the DM interaction rate and H(Tfo) is the Hubble parameter, both evaluated
at T = Tfo and given by

Γ(Tfo) = nDM〈σv〉 = gDM

(
MDMT

2π

)3/2
e−MDM/T 〈σv〉

H(Tfo) =

√
π2gρ(Tfo)

90
T 2

fo
Mp

. (2.18)

Here, gDM counts the internal degrees of freedom of the WIMP particle under consideration.
Moreover, we have used the non-relativistic expression of the number density in Eq. (A.13),
under the well-motivated assumption that dark matter decoupled while non-relativistic.
Requiring that Γ(Tfo)

H(Tfo) ' 1, we find that6

gDM

g
1/2
ρ (Tfo)

3
(2π)3/2MpMDMx

1/2
fo e−xfo〈σv〉 ' 1, (2.19)

which defines Tfo

2.3.2 s- and p-wave annihilations

The annihilation rate of dark matter particles in the early universe plays a critical role in
determining their present-day abundance.

6Here 〈σv〉 has an implicit dependence on xfo. For example, for an s-wave dominated process we have 〈σv〉 = as,
while for a p-wave dominated process we can write 〈σv〉 = 6 bp

xfo
. Therefore, depending on the process we are

considering, the overall power of xfo changes.
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In the non-relativistic limit, where the relative velocity between DM particles satisfy that
vrel � 1, it is possible to expand the DM annihilation cross section times velocity as

σvrel ' as + bpv
2
rel, (2.20)

where as takes into account the s-wave contribution, independent of velocity, while bp captures
the p-wave contribution.
By taking the thermal average of the annihilation cross section, we obtain

〈σvrel〉 ' as + bp
6T
MDM

(2.21)

and, solving the Boltzmann equation 2.11, up to 1 eV, which corresponds to the CMB era, we
can compute ΩDMh

2.
By assuming to work with Majorana DM, which means that gDM = 2, and requiring to match
the observed relic DM abundance, that is ΩDMh

2 = 0.120±0.001[27], we can find the predicted
cross section for s- and p-wave annihilating DM necessary to be consistent with observations
in Fig. 2.5.

Figure 2.5: On the left we have the thermal average of the annihilation cross section times
velocity for an s-wave process and on the right the p-wave term bp, defined as in Eq. (2.20),
necessary to realize the observed DM relic abundance ΩDMh

2 = 0.120 ± 0.001[27], for respec-
tively an s-wave and a p-wave annihilating Majorana fermion DM. The red shaded region shows
the uncertainty from the thermodynamics of the SM, and the blue shows uncertainty of the
DM abundance measurement. In the figure there are also shown the results from Refs. [86–91].
Reprinted from "Precise WIMP Dark Matter Abundance and Standard Model
Thermodynamics", by Ken’ichi Saikawa and Satoshi Shirai[54].

The expansion of the thermally-averaged cross section in Eq. (2.21) gives good results only
for small relative velocities vrel, where the dark matter particles are non-relativistic and their
velocity distribution is well-approximated by a Maxwell-Boltzmann form. Near a resonance,
however, this expansion becomes inappropriate, as the annihilation cross section varies rapidly
with energy and cannot be accurately captured by a low-velocity Taylor series. In such cases,
the full relativistic thermal average must be used to avoid unphysical results, such as incorrect
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suppression of the relic density[92].
This will be important for the models studied in this thesis, specifically in Chapters. 4 and 5.
We will provide more details about this resonant regime in App. C.

Finally, we close this chapter by reviewing the current experimental and observational con-
straints on dark matter models.

2.4 Experimental constraints
Numerous experiments have been conducted in the search for direct signs of interactions be-
tween dark and ordinary matter, focusing on a range of theoretical candidates, from heavy
particles like WIMPs to lighter alternatives like axions. The quest to uncover its true nature
continues to drive much of today’s research in particle physics and cosmology.
Experimental constraints on DM come from multiple fronts:

• Direct detection experiments: these aim to observe the scattering of DM particles off
atomic nuclei or electrons in ultra-sensitive underground detectors. Leading experiments,
such as XENON1T[93, 94], SENSEI[95, 96] and DarkSide-50[97], search for nuclear recoils
or electron recoils caused by incident DM particles.

• Indirect detection experiments: these are sensitive to SM particles, such as gamma
rays[98], neutrinos[99, 100], or cosmic rays[101], which are produced by DM annihila-
tion or decay in regions of high DM density, like the GC.

• Collider searches: high-energy particle colliders such as the Large Hadron Collider (LHC)
can probe DM production through missing energy signatures. In particular, experiments
like NA64[102, 103] and LDMX[104] target light DM and dark sector particles, including
dark photons.

• Cosmological and astrophysical measurements: observations of the CMB[27], BBN[105,
106], large-scale structure formation[107], and stellar cooling mechanisms[108, 109] im-
pose stringent constraints on the properties of DM, especially on its mass and interaction
cross-sections. For instance, strong bounds exist on MeV-scale DM due to its potential
impact on BBN and recombination processes.

In the following subsections, we present a more detailed discussion of each class of con-
straints.

2.4.1 Direct detection constraints

Direct detection experiments aim to observe interactions between DM particles and ordinary
matter by measuring the recoil energy transferred to target particles, which are typically nuclei
or electrons, within ultra-sensitive detectors. The energy deposits from WIMP-nucleus scatter-
ing, for WIMPs in the GeV-TeV mass range, are expected to be of the order of Erecoil ∼ keV.
Experiments such as XENON1T[110], LUX[111], and PandaX[112] have placed extremely strin-
gent bounds on the DM-nucleon scattering cross section, excluding spin-independent interac-
tions with σSI & 10−47 cm2 for DM masses around 20− 60 GeV.
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However, the direct detection of DM becomes more challenging as the DM mass decreases,
indeed for sub-GeV DM, the nuclear recoil energies fall below current detection thresholds. As
a result, attention has shifted toward DM-electron scattering, where sub-GeV DM can deposit
sufficient energy to ionize electrons. Therefore, a new generation of experiments with ultra-low
thresholds has emerged, designed specifically to probe sub-GeV DM candidates. Experiments
such as SENSEI, DAMIC, SuperCDMS, and EDELWEISS have pioneered the use of low-
noise silicon and germanium to search for DM-induced electron recoils. Both SENSEI[95] and
DAMIC[113] employ Skipper-CCD technology, which enables the detection of single-electron
events with exceptional precision.
The XENON10 experiment provided the first bounds on DM-electron scattering using ionization-
only events[114], later refined by XENON100 and XENON1T, which extended sensitivity to
higher-mass regimes and lower cross sections[93]. Complementary searches from EDELWEISS
have probed similar parameter space with cryogenic Ge detectors[115].

In the context of sub-GeV DM models that aim to explain the 511 keV gamma-ray line
observed by INTEGRAL in the GC, direct detection constraints provide essential bounds.
Numerous models suggest that DM particles annihilate into low-energy positrons, which, sub-
sequently interacting with the electrons in the interstellar medium, produce the observed 511
keV gamma-ray line observed in the GC. If DM couples to electrons with sufficient strength
to explain this signal, the same interactions could, in principle, be probed by direct detection
experiments. This creates the opportunity to test in the laboratory DM models that explain
the 511 keV line signal, which we will explore in Chapters 4 and 5. Consequently, direct detec-
tion experiments play a crucial role in evaluating the viability of models aimed at explaining
indirect astrophysical signals such as the 511 keV line, also providing essential constraints on
sub-GeV DM parameter space.

2.4.2 Indirect detection constraints

Indirect detection experiments aim to identify signatures of DM through its annihilation or
decay products in astrophysical environments. Unlike direct detection, which searches for DM
interactions with detectors on Earth, indirect detection experiments search for an excess in the
flux of cosmic particles, such as gamma rays, positrons, antiprotons or neutrinos, that may
originate from DM interactions in regions with high DM density, like the GC, dSph galaxies or
galaxy clusters[116, 117].
In the standard WIMP framework, DM particles with masses in the GeV-TeV range can anni-
hilate into SM particles, leading to detectable fluxes of gamma rays and charged cosmic rays.
This approach has led to numerous constraints from instruments like Fermi-LAT[118, 119],
AMS-02[120, 121], H.E.S.S.[122, 123], and IceCube[99, 124]. However, the absence of signals
that can be clearly attributed to DM, rather than known astrophysical sources, has driven
increasing interest in light or sub-GeV DM, which may produce distinct indirect signatures,
particularly in the MeV energy range, which for now remains relatively unexplored[101].

As already mentioned, one of the most intriguing observations, possibly linked to light
DM, is the 511 keV gamma-ray line, detected by INTEGRAL/SPI from the GC, interpreted as
evidence of positron annihilation. Injecting too many positrons would lead to an excess in the
observed flux; consequently, stringent bounds on the DM annihilation cross section have been
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placed over the years, using approximately 16 years of INTEGRAL/SPI data[125].

Additional constraints on sub-GeV DM come from soft gamma-ray and X-ray observa-
tions. When DM particles annihilate or decay into e−e+ pairs, the resulting electrons and
positrons can upscatter7 photons from the interstellar radiation field and the CMB via inverse
Compton scattering, leading to potentially observable X-ray emission. A reanalysis of INTE-
GRAL data that includes this effect has placed stringent limits on DM models, particularly for
particle masses MDM & 20 MeV[126, 127].

Cosmic-ray measurements also contribute to indirect detection constraints. In particu-
lar, by analyzing the scattering of cosmic rays off DM particles, one can place bounds on the
DM-electron and DM-proton scattering cross sections, for DM masses below 1 GeV[128, 129].
In the near future, next-generation gamma-ray telescopes, such as AMEGO and e-ASTROGAM,
will significantly increase the sensitivity to MeV-scale gamma rays, particularly those originat-
ing from DM annihilation into light mesons or leptons[130, 131]. These missions are expected
to probe cross-sections well below current limits, significantly improving our ability to test light
DM models relevant to the 511 keV line[132].

2.4.3 Collider constraints

Collider experiments offer a complementary strategy for probing DM, independent of astro-
physical assumptions such as halo density profiles or cosmic-ray rays propagation models.
At high-energy facilities such as the LHC, it is possible to search for dark matter by looking
for missing transverse energy signals, associated with visible particles, recoiling against invisi-
ble states. These searches include mono-jet, mono-photon, mono-Z/W, and mono-Higgs final
states8, as well as signatures involving long-lived particles or displaced vertices9 when DM in-
teracts via a light mediator.
In the conventional WIMP framework, where dark matter has masses in the GeV-TeV range,
collider experiments can probe dark matter interactions by searching for signals of its produc-
tion, either through effective contact operators or via explicit mediators, such as dark photons
or scalar portals. Limits on the strength of the interaction, derived by these experiments, are
often expressed in terms of the cutoff scale Λ or the mediator mass.
The LHC has placed stringent bounds on the production cross-section of such DM candidates,
excluding significant portions of parameter space, particularly when the mediator is accessible
on-shell.

When considering sub-GeV DM, instead, collider searches face kinematic limitations due

7When a high-energy electron or positron collides with a low-energy photon, from the CMB or interstellar radi-
ation, it can transfer part of its energy to the photon. This phenomenon is called inverse Compton scattering,
because it is the reverse of the standard Compton scattering, where a high-energy photon transfers part of its
energy to an electron.

8Mono-X searches are events where one visible particle X is detected and the rest of the event shows missing
transverse energy (MET), which could indicate particles that are invisible to the detector, such as dark matter.
For example, in a mono-jet event we have a single energetic jet, from a quark or gluon, recoiling against missing
energy.

9Displaced vertices refer to particle decay points that occur significantly away from the primary collision vertex,
often indicating the presence of long-lived particles.
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to its relatively small mass and suppressed couplings to visible states. However, dedicated low-
energy experiments and fixed-target setups, such as NA64[102, 103], BaBar[133], Belle II[134,
135], and future electron-positron colliders, play a crucial role in probing this regime. These
experiments look for missing energy signals or displaced decays of long-lived particles, partic-
ularly in scenarios with light mediators, like dark photons or scalars coupled to electrons.
The NA64 experiment, in particular, utilizes a fixed-target setup at CERN to actively search for
dark sector particles, including dark photons and axion-like particles, by detecting signatures
of missing energy in the detector. It provides strong sensitivity to sub-GeV DM models and
light mediators by exploiting the high-intensity SPS10 beam, offering potential complementary
constraints on DM models.[136].

In the context of the 511 keV line observed by INTEGRAL, models involving sub-GeV
DM annihilation into e−e+ pairs have gained attention and collider constraints are essential
to test such models, since the required annihilation cross sections are typically small. Experi-
ments such as BaBar and Belle II constrain the dark photon V parameter space through visible
and invisible decay searches, limiting the kinetic mixing parameter ε and the mediator mass.
These bounds are particularly relevant for DM masses MDM . 100 MeV, because they directly
constrain models that aim to explain the 511 keV gamma-ray signal through annihilation into
electron-positron pairs.

2.4.4 Cosmological and astrophysical constraints

Cosmological and astrophysical observations provide some of the most stringent constraints on
the properties of DM, particularly in the sub-GeV mass range. These constraints come from a
variety of probes, including the CMB[27], BBN[105, 106], structure formation[107], and stellar
cooling mechanisms[108, 109].
These comsological processes are highly sensitive to the thermal history and energy injection
mechanisms in the early universe, therefore, they allow to exclude wide regions of DM parame-
ter space that are difficult to access with terrestrial experiments. Indeed, energy injection from
DM annihilation can affect both the abundance of light elements produced during BBN and
the ionization history of the universe probed by the CMB. In particular, DM annihilation into
electromagnetically interacting final states, such as e−e+ or photons, can increase the ionization
fraction11 at recombination and modify the CMB anisotropy spectrum. Consequently, mea-
surements from Planck have been used to set strong bounds on the annihilation cross-section
of light DM[27, 137]. Similarly, light DM particles that remain in thermal equilibrium with
the SM plasma during BBN can alter the expansion rate or change the neutron-to-proton ratio
nn
np

, thus affecting the primordial helium and deuterium abundances. This limits both the mass
and interaction strength of thermal sub-GeV DM candidates[105, 138].

The matter power spectrum, inferred from galaxy surveys and Lyman-α forest observations,

10SPS stands for Super Proton Synchrotron, which is one of the major particle accelerators at CERN.
11The ionization fraction refers to the proportion of atoms or molecules in a gas that are ionized. In the context of

cosmology and dark matter studies, particularly around the time of recombination, the ionization fraction usually
denotes the fraction of free electrons relative to the total number of baryons in the early universe, indicated as
xe = ne

nH
.
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is sensitive to the free-streaming length of dark matter12. Models of warm or semi-relativistic
dark matter, which have longer free-streaming lengths, lead to a suppression of small-scale
structure, in contrast to the CDM predictions, which, instead, supports structure formation on
all scales. Sub-GeV DM models with non-negligible thermal velocities or late kinetic decoupling
can thus be constrained by requiring consistency with observed large-scale structure[107]. For
example, models with dark matter-photon or dark matter-neutrino scattering may delay struc-
ture formation in ways that are now testable with high-redshift galaxy observations[139–141].

DM particles with significant couplings to electrons or nucleons can be produced inside stel-
lar interiors or supernova cores, carrying away energy and modifying standard cooling rates.
Furthermore, observations of white dwarfs, red giants, and supernova SN 1987A constrain
the production and escape of such particles[108, 142, 143]. These constraints typically limit
the coupling strength of sub-GeV DM to SM particles, particularly in the MeV-GeV mass range.

Overall, cosmological and astrophysical data impose powerful and often model-independent
constraints on the properties of sub-GeV dark matter. These bounds are especially relevant
for scenarios aiming to explain astrophysical anomalies, such as the 511 keV line from the GC,
where annihilation into electrons is a key feature.
An in-depth study of supernova cooling mechanisms, discussed below, is worthwhile, since it
plays a central role in constraining the p-wave dark matter model discussed in Chapter. 4.

2.4.5 Supernova cooling constraints

The search for new physics beyond the Standard Model has been a driving force in modern
particle physics and cosmology. Among the various proposed extension, light scalar particles
play a central role, because they can act as mediators of interactions between DM particles and
the SM[144, 145], they can be DM themselves[146, 147], they can contribute in the generation
of neutrino masses[148] and they may also solve the electroweak hierarchy problem[149, 150].

Supernovae, and in particular SN 1987A, are a useful tool to constrain these hypothet-
ical scalar particles. Indeed, when a massive star’s core collapses, it releases an enormous
amount of energy primarily in the form of neutrinos, whose emission from SN 1987A lasted
about 10 seconds. This is consistent with the leading theoretical model of core-collapse super-
novae based on the delayed neutrino mechanism[151]. Therefore, it is clear that any additional
energy loss, due to the emission of BSM particles, may potentially alter the observed neutrino
signal.
Indeed, neutrinos interact only weakly with SM particles and this allows them to escape from
supernovae, contributing to the cooling of the core; for the same mechanism, if there were BSM
particles with sufficiently weak couplings with SM particles, then they may be able to escape
the core contributing to the supernovae cooling, too.
In order to preserve agreement with observations, the Raffelt criterion constrains the emission
rate of BSM particles from the supernova core, thus stating that new particles cannot carry
away more energy than neutrinos do. Therefore, we have an upper bound on the average

12The free-streaming length of dark matter corresponds to the distance over which dark matter particles can travel
before remaining gravitationally bound.
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luminosity of the protoneutron star (PNS) in the form of BSM particles of[109]

LBSM . (2− 3) · 1052 erg/s13 (2.22)

We can observe that Eq. (2.22) is satisfied for sufficiently strong couplings to the SM sec-
tor. This is because, in this regime, called trapping regime, BSM particles interact frequently
with the dense stellar plasma inside the PNS, preventing them from escaping freely. As a
result, these particles remain confined within the star, behaving similarly to neutrinos, which
are confined to the inner regions and only emitted from the surface, too. Consequently, their
contribution to the total energy loss is reduced, because they are not emitted anymore from
the bulk, as it happens for sufficiently weak couplings, and this leads to a decrease in LBSM,
which thus satisfy the Raffelt criterion.
On the other hand, for sufficiently weak couplings to the SM sector, BSM particles do not
interact significantly with the interior of PNS and thus they can free-stream leading to an
increase of LBSM. Indeed, in this regime, called free-streaming regime, BSM particles would be
emitted directly from the interior of PNS, while it is known that neutrinos are emitted solely
from the surface.

Following Ref. [109], we can see that BSM scalar particles φ can be generated through

• continuum production;

• resonant production, which is dominant if mφ < ωp
14 ' O(10 MeV).

Let us consider lepthophilic BSM scalars, namely particles that couple only to leptons through
an interaction term yeφēe. From Ref. [109] it is clear that the production rate of φ depends on
the square of the coupling y2

e , so that the smaller the value of ye is, the fewer scalar particles
are produced, resulting in a decrease of the luminosity LBSM. Therefore, there exists a mini-
mum coupling ye, below which the production rate is so low that the energy loss through BSM
particles is completely negligible compared to the one due to neutrinos.
This implies that SN 1987A constrains only a band in the mass-coupling parameter space of
a given candidate BSM particle and, as already said, couplings ye corresponding to the lower
region of such a band lead to the free-streaming regime, while those corresponding to the upper
part lead to the trapping regime.

In Ref. [109], authors calculate the rate of resonant production of leptophilic scalars with
an interaction yeφēe, as already mentioned, and they plot the resulting constraints, as shown in
Fig. 2.6. It is possible to see that in this case couplings ye are sufficiently weak that if φ decays
only to SM particles, then for mφ & 2m̃e, where m̃e is the effective in-medium electron mass15,
we have no bounds due to the Raffelt criterion, because decays to electrons are sufficiently fast.

131 erg = 10−7 J.
14ωp is the plasma frequency, which is defined as ω2

p = 4αe
3π

(
µ2
e + 1

3 π2T 2
)

, where αe is the fine structure constant,

while µe is the electron chemical potential[152].
15The thermal effective mass m̃e is defined as m̃e = me

2 +
√

m2
e

4 + m2
eff, where m2

eff = πα
2

(
T 2 + µ2

e
π2

)
[153]
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Figure 2.6: SN 1987A constraints for a lepthophilic scalar φ with a yeφēe interaction term.
The red area corresponds to theories in which φ decays quickly to some additional dark sector
particles that do not interact with the SM, while the blue area refer to theories in which we do
not have such decays.
Reprinted from "Supernova bounds on new scalars from resonant and soft emis-
sion", by Edward Hardy, Anton Sokolov and Henry Stubbs, Rudolf Peierls Centre
for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU,
UK [109].

Building on the previous discussion of dark matter and its experimental constraints, the fol-
lowing chapter focuses on the 511 keV gamma-ray line from the GC and examines the potential
of dark matter to account for this as-yet unexplained astrophysical anomaly.



3

Dark matter models for the 511 keV
line

In this chapter we aim at building the necessary framework to analyze more in detail two
different dark matter models, which are the p-wave annihilation and the coannihilation mod-
els, discussed respectively in Chapters 4 and 5, proposed to explain the origin of the 511 keV
gamma-ray line observed in the GC. This particular phenomenon, first detected some decades
ago, remains one of the most intriguing astrophysical anomalies, and its persistence continues
to motivate theoretical interpretations beyond standard astrophysical sources, see Ref. [154]
for a recent review.
Ref. [155] was the first to propose sub-GeV dark matter as dominant source of positrons re-
sponsible for the 511 keV line emission, suggesting thus that DM may not only play a centrale
role in the large-scale structure formation but also leave imprints at sub-galactic scales, through
indirect signals like the 511 keV line.

Specifically, in this chapter we start discussing the morphology and intensity of the 511
keV line emission from the Galactic Center and we conclude focusing on the concept of dark
matter density enhancements, so called spikes, induced by the presence of the supermassive
black hole at the center of our galaxy, Sgr A∗. These spikes can significantly boost the annihi-
lation rate of dark matter particles even for small annihilation cross sections, making them a
key ingredient in models aiming to explain the 511 keV line.
At the end of this chapter, we also present some original plots concerning the thermally-averaged
cross section for DM annihilating into e−e+, needed to explain the 511 keV gamma-ray signal,
for different DM density profiles, discussed in the following.

3.1 The 511 keV line
One of the most puzzling problems in astrophysics over the last 50 years is certainly the 511
keV line, observed from the inner regions of our Galaxy.

The 511 keV line was discovered by Ref. [2] in a balloon flight in 1970 and it was con-
firmed over the years by space-based missions, such as the one related to the INTEGRAL
(International Gamma-Ray Astrophysics Laboratory) satellite[3–5].

25
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3.1.1 Morphology and intensity of the signal

The entire flux of 511 keV photons in the Milky Way was recently estimated to be (2.74±0.25) ·
10−3 photons cm−2 s−1[156, 157]. This signal, observed by the INTEGRAL/SPI experiment,
is due to the annihilation of ' 2.5 · 1042 e+ s−1 in a region within ∼ 4 kpc of the GC[11]. The
line emission is mostly attributed to para-positronium annihilation of thermal or near-thermal
positrons[158, 159].

Para-positronium annihilation

We define positronium as a bound system composed of an electron and a positron, whose an-
nihilation produces two photons, which result in a single gamma-ray line at 511 keV. If the
electron and positron form instead positronium, their subsequent annihilation results in two
or more photons depending on the quantum numbers of the positronium bound state, and
give rise overall to a lower energy photon continuum and a 511 keV line[6, 160]. According to
Ref. [161], in the conditions of the interstellar medium, most positrons would annihilate after
positronium formation.

Electrons and positrons are spin-1
2 fermions, one the antiparticle of the other. There-

fore, from quantum mechanics principles, we know that the total spin S of positronium would
be

|s1 − s2| ≤ S ≤ s1 + s2, (3.1)

where s1 = s2 = 1
2 are the spins of electron and positron. It is thus straightforward to notice

that, depending on the relative orientations of the spins of electron and positron, the ground
state of positronium can have as total spin S = 0, 1. In particular, we denote the singlet state,
namely the one with total spin S = 0, as 1S0 and we call it para-positronium. On the other
hand, we denote the triplet state, namely the one with total spin S = 1, as 3S1 and we call it
ortho-positronium.
Since we have a 2S + 1 degeneracy associated to each state, we can understand easily that
positronium will be 1

4 of the times in the singlet state and 3
4 of the times in the triplet state.

We now aim to determine the number of photons produced in the decay of each positronium
state.
For a system of free particles, the C-parity16 is defined as the product of the C-parities of each
single particle.
The C-parity of a bound system, composed by a fermion f and its antiparticle f̄ , is defined as

C |ff̄〉 = (−1)L+S |ff̄〉 , (3.2)

where L takes into account the orbital angular momentum of the pair, while S the spin part
of the wave function.
Let us consider the decay of 1S0 into photons. We analyze the process in the rest frame of
para-positronium, where its total orbital angular momentum is Lin = 0. Moreover, we have
already said that 1S0 has total spin Sin = 0, therefore para-positronium has C-parity equal to

16Charge conjugation parity (C-parity) is a quantum number describing how the wave function of an electrically
neutral system transforms under charge conjugation, which is the operation that replaces all particles with their
corresponding antiparticles.
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(−1)Lin+Sin = (−1)0 = 1. Since electromagnetic interactions, like the one analyzed, preserve
C-parity, we should have a final state with total C-parity equal to 1, in order to have a con-
sistent process. In particular, we know that photons have intrinsic C-parity equal to ηC = −1
and, therefore, this allows to conclude that para-positronium decays into two photons, that is
1S0 → γγ, in such a way that the total final C-parity is (ηC)2 = (−1)2 = 1.
We can repeat the same procedure with 3S1, which has total spin Sin = 1 and, for the
same reason as before, analyzing the process in the rest frame of ortho-positronium, the
total orbital angular momentum is equal to Lin = 0, which implies that its C-parity is
(−1)Lin+Sin = (−1)1 = −1. Therefore, from this follows that, in order to have an electromag-
netically consistent process, ortho-positronium decays into three photons, that is 3S1 → γγγ,
in such a way that the total final C-parity is (ηC)3 = (−1)3 = −1.
Recalling that the electron’s rest mass is me ' 0.511 MeV = 511 keV and that we are looking
for 511 keV photons, we can now conclude that the bright line emission coming from the GC
is due to the para-positronium decay into two photons.

One of the most intriguing aspects of the so called "positron line puzzle" is that observations
clearly show that the 511 keV line emission is highly concentrated in the Galactic bulge, with
only a small component coming from the Galactic disk, as we can see from Fig. 3.1. However,
most of the known sources of positrons, such as core-collapse supernovae or massive stars, are
primarily found in the Galactic disk. This phenomenon obviously raises several questions:

• Where do all these positrons come from?

• Why is the GC so different from other regions of the Milky Way?

• What mechanism could produce such large quantities of positrons?

These questions will be examined in the upcoming sections.

Figure 3.1: Longitude profile of the photon flux from electron-positron annihilation emission
in the energy range 508.25-513.75 keV, as measured by SPI/INTEGRAL. The plot shows the
distribution along the Galactic longitude l for Galactic latitudes |b| < 8o, where b denotes the
angle above or below the Galactic plane.
Reprinted from "On the morphology of the electron-positron annihilation emission
as seen by SPI/INTEGRAL", by L. Bouchet, J.P. Roques and E. Jourdain, CESR-
UPS/CNRS, 9 Avenue du Colonel Roche, 31028 Toulouse Cedex 04, France[162].
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3.1.2 Known potential sources of positrons for the 511 keV line

If we want to consistently model the 511 keV line originating from DM annihilation, we should
account for all potential sources of positrons that could contribute to the observed 511 keV
emission in the GC.
There are several different sources that can explain the emission from the Galactic disk, like
cosmic rays (CR) interactions, pulsars injecting e± or sources able to synthetize radioactive
elements which then produce positrons via β+ decay. Examples are 56Ni, produced in su-
pernovae 1A, 26Al, produced in massive stars and eventually 24Ti, produced in core-collapse
supernovae[163]. Since these positron sources are closely linked to stellar populations, it is rea-
sonable to conclude that they contribute predominantly to the disk component of the observed
signal, and much less to the bulge component.
In particular, it is easier to keep track of the positrons produced from the 26Al decay, rather
than 44Ti or 56Ni. Indeed, from 26Al decay we produce 26Mg∗, via

26Al→ 26Mg∗ + e+ + νe, (3.3)

which then de-excites producing a 1809 keV γ-ray through

26Mg∗ → 26Mg + γ. (3.4)

The morphology of this signal has been mapped by the INTEGRAL/SPI experiment[164].
Moreover, it is relatively easy to calculate the fraction of 511 keV photons originated by 26Al,
because each decay produces a positron and a 1809 keV γ-ray. Ref. [3] showed that 26Al
accounts for half of the disk component of the 511 keV signal. It is, instead, more complicated
to model the 511 keV signal coming from 44Ti and 56Ni, because of their shorter lifetime.

In the following, we investigate how dark matter might account for the 511 keV line.

3.2 511 keV line from dark matter annihilations
As we have said previously, there are several astrophysical sources that may account for the
emission observed from the Galactic disk. However, no known astrophysical sources located
near the Galactic Center are capable of accounting for the high positron injection rate observed
in the inner regions of the Milky Way[3, 6, 157, 165].
This motivates the development of quantum field theory models of dark matter that could ex-
plain the 511 keV line emission from the Galactic Center and reproduce the required positron
injection rate in the central regions of the Galaxy.

The morphology of the 511 keV gamma-ray signal is not compatible with DM decays unless
the DM density profile scales as ρ(r) ∝ r−1.8 or in a steeper way toward the Galactic Center,
as shown for example in Refs. [166] and [167]. However, such steep profiles are not supported
by any N-body simulation, which instead find inner slopes no steeper than r−1.3[168]. This
tension disfavors decay scenarios and motivates consideration of dark matter signals that scale
as ρ(r)2. Proposals realizing this idea are for example:

• Annihilation of light DM particles into e±[155];
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• Excited DM models (XDM) in which we have excited states of heavy DM χ, denoted as
χ∗, which are produced in χ−χ collisions and subsequently decay into the ground state,
with the formation of an e± pair[169, 170];

• Coannihilation models, where we have two DM particles χ1 and χ2, separated by a small
mass splitting δ, which coannihilate to produce an e± pair[171].

In the following subsection, we will focus on the formation of dark matter density spikes
around the supermassive black hole at the center of the Milky Way. These analysis will serve
as the foundation for building dark matter models, presented in Chapters 4 and 5, which may
provide an explantion for the 511 keV line.

3.2.1 Dark matter density profiles and spikes

The supermassive black hole (SMBH) Sgr A∗ at the center of the Milky Way plays a central role
in the evolution and cosmological history of DM within our Galaxy, dramatically increasing its
density profile over the years.
In particular, following Ref. [11], we can parametrise the DM density profile in the Milky Way
as

ρ(r) =
(

1− 2RS
r

)3/2



0 r < 2RS

ρsat

(
r

Rsat

)−0.5
2RS ≤ r < Rsat

ρspike(r) Rsat ≤ r ≤ Rsp

ρhalo(r) r ≥ Rsp

, (3.5)

where

• r is the distance from Sgr A∗, which in the analysis is assumed to be exactly at the center
of the Milky way;

• ρhalo(r) is the halo DM mass density;

• Rsp and ρspike are respectively the radial extension and the mass density profile for the
DM spike;

• Rsat and ρsat are respectively the saturation radius and mass density of the spike due to
DM annihilation;

• RS = 2GMBH
c2 = 2.95

(
MBH
M�

)
is the Schwarzschild radius for a BH of mass MBH.

Moreover, by defining ρsat as

ρsat = mχ

〈σv〉tBH
' 3.17 · 1011 GeV cm−3 mχ

10 TeV
1025cm3s−1

〈σv〉
1010 yr
tBH

, (3.6)

where the lifetime of Sgr A∗ is tBH = 1010 yr, we can compute Rsat by imposing that ρsat =
ρspike(Rsat), in such a way that we have continuity of the DM density profile, in Eq. (3.5), in
correspondence of r = Rsat.
Since DM particles’ orbit are non-circular, the DM density profile continues to grow at r < Rsat,



3. DARK MATTER MODELS FOR THE 511 KEV LINE 30

too. Furthermore, the slope ∼ r−0.5 in Eq. (3.5), for 2RS ≤ r < Rsat, is found by assuming
s-wave DM annihilations[172, 173]. The spike density profile, instead, can be modeled as

ρspike(r) = ρhalo(Rsp)
(

r

Rsp

)−γsp(r)
, (3.7)

where γsp(r) is the spike’s slope.
The halo distribution can be written as the usual NFW profile[58]

ρNFW
halo (r) = ρs

(
r

rs

)−1(
1 + r

rs

)−2
, (3.8)

with rs = 18.6 kpc and ρs = ρ�

(
R�
rs

)(
1 + R�

rs

)2
, where R� = 8.2 kpc is the Sun position and

ρ� = 0.42 GeV/cm3 is the local DM mass density[174].

Finally, the prefactor
(

1− 2RS
r

)3/2
accounts for DM capture by the BH[175].

It is possible to find the radius at which the spike begins to grow, following Refs. [176, 177],
according to which Rsp = 0.2Rh. Here, Rh = GMBH

v2
0

is the radius of gravitational influence of
the SMBH that we are considering, which in this case is Sgr A∗ and v0 is the dispersion in
velocity of the stars populating the inner halo. Therefore, by using MBH = 4.3 · 106M�, as
mass of Sgr A∗[178] and v0 = (105± 20) km s−1 [179], then we can find that Rsp ' 0.34 pc.

We now examine various benchmark DM density profiles in the vicinity of Sgr A∗

Gondolo-Silk spike configuration

Under the assumption of adiabatic growth of a peaked DM halo density around a central
SMBH, neglecting all possible interactions with stars surrounding the BH, the value of γsp is
predicted to be

γGS
sp (γ > 0) = 9− 2γ

4− γ , (3.9)

which is valid for inner slopes in the range 1.5 ≥ γ > 0[175, 180].
Using the usual NFW density profile in Eq. (3.8), which corresponds to

ρNFW
halo (r) = ρ�

(
R�
rs

)γ(
1 + R�

rs

)3−γ( r
rs

)−γ(
1 + r

rs

)γ−3∣∣∣∣
γ=1

, (3.10)

we find out that, in the Gondolo-Silk (GS) case, we have a spike slope of γsp = 9−2γ
4−γ

∣∣∣∣
γ=1

= 7
3 .

Maximal stellar heating (∗MAX) spike configuration

If we account for the presence of baryonic matter, such as stars, close to Sgr A∗, the gravitational
interactions between DM and baryons tend to soften the spike density. According to Refs. [176,
181, 182] we can have a spike configuration with

γ∗MAX
sp = 1.5, (3.11)

which essentially represents a modification of the GS case, due to the presence of baryonic
matter in the vicinity of Sgr A∗.
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Minimal stellar heating (∗MIN) spike configuration

According to Refs. [183, 184], since the mean separation between nuclear cluster stars is about
0.01 pc. Therefore, in this region we have minimal scattering between DM and stars, which
allows to preserve the DM spike. This scenario of minimal stellar heating scenario is denoted
as ∗MIN, with

γ∗MIN
sp =


7
3 r < 0.01 pc

1.5 r ≥ 0.01 pc
, (3.12)

Based on this framework, we can compute the expected positron injcetion rate within a
sphere of radius r arounf the GC.

3.2.2 Positron injection and propagation

According to Refs. [11, 185], we can find that the rate of positrons injected by DM in a sphere
of radius r and originated by annihilating self-conjugate DM, is given by the volume integral
of the following source term

Qe(~x,Ee) = 〈σv〉2

(
ρχ(~x)
mχ

)2dNann
e

dEe
, (3.13)

where ρχ(~x) is the DM density at the position ~x, while dNann
e

dEe
= δ(E − mχ) is the positron

injection yield in the direct χχ̄→ e+e− channel.
Using now Eqs. 3.5 and 3.13, it is possible to plot the DM density as a function of radial
positions from the GC and the rate of positrons injected by DM within a sphere of radius r,
as shown in Fig. 3.2.

It is now possible to repeat the same procedure as before, by choosing, however, a more
peaked NFW density profile toward the GC, which can be obtained just by modifying the inner
slope γ.
In particular, by adopting a generalized NFW density profile

ρNFW
halo (r) = ρ�

(
R�
rs

)γ(
1 + R�

rs

)3−γ( r
rs

)−γ(
1 + r

rs

)γ−3
, (3.14)

with γ > 1, we basically enhances the central density of DM compared to the standard NFW
case, whose inner slope is γ = 1. For instance, choosing γ = 1.2 results in a steeper inner
profile, which significantly increases the DM density at small radii near the GC.
Recalling that the DM density profile is defined as in Eq. (3.5) and the spike configuration is
defined as in Eq. (3.7), it is clear that, by using the generalized NFW density profile in Eq.
(3.14), we end up with a different positron injection in the GC.
Specifically, the GS spike in Eq. (3.9) depends on the NFW’s inner slope γ, so that for the
generalized NFW density profile that we will consider in the following (with slope γ = 1.2), we
get for GS that

γGS
sp = 9− 2γ

4− γ

∣∣∣∣
γ=1.2

= 2.357. (3.15)

The ∗MAX scenario, instead, represents a modification of the GS spike configuration, due
to the gravitational heating caused by the nuclear star cluster and, therefore, due essentially to
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Figure 3.2: On the left, there is plotted the DM density as a function of radial positions from the
GC and on the right, there is, instead, the rate of positrons injected by DM within a sphere of
radius r, obtained by using an NFW halo density profile with γ = 1. In both figures, there are
displayed the GS density profile in orange, the NFW density profile in black dotted, the ∗MIN
density profile in dashed blue and the ∗MAX density profile in dash-dotted blue. Moreover,
we take a DM mass mχ = 10 MeV and an annihilation cross section 〈σv〉 = 10−31 cm3/s.
Eventually, in the left-hand plot the gray lines represent the saturation of DM density induced
by different choices of mχ and 〈σv〉.
Reprinted from "511 keV Galactic Photons from a Dark Matter Spike", by Pedro
De la Torre Luque, Shyam Balaji, Malcom Fairbairn, Filippo Sala and Joseph
Silk[11].

the presence of baryonic matter surrounding Sgr A∗. This implies that, even by exploting a gen-
eralized NFW density profile with slope γ = 1.2, the ∗MAX slope will remain as low as γ = 1.5.

Eventually, the ∗MIN slope will be modified within a sphere of radius r ' 0.01 pc of
the GC. In particular, we will have that

γ∗MIN
sp =


9− 2γ
4− γ

∣∣∣∣
γ=1.2

r < 0.01 pc

1.5 r ≥ 0.01 pc
. (3.16)

By using again Eqs. 3.5 and 3.13, we can plot the DM density as a function of radial positions
from the GC and the rate of positrons injected by DM within a sphere of radius r, by using a
steeper NFW density profile (γ = 1.2), as shown in Fig. 3.3.

In the following subsection we will see that, fixing the positron injection rate within a
sphere of radius r around the GC to be ' 2.5 · 1042 s−1[11], we can find the best-fit values of
the thermally-averaged DM annihilation cross section, needed to explain the 511 keV line.
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Figure 3.3: On the left, there is plotted the DM density as a function of radial positions
from the GC and on the right, there is, instead, the rate of positrons injected by DM in a
sphere of radius r, obtained by using a generalized NFW halo density profile with γ = 1.2. In
both figures, there are displayed the GS density profile in orange, the NFW density profile in
black dotted, the ∗MIN density profile in dashed blue and the ∗MAX density profile in dash-
dotted blue. Moreover, we take a DM mass mχ = 10 MeV and an annihilation cross section
〈σv〉 = 10−31 cm3/s. Eventually, in the left-hand plot the gray lines represent the saturation
of DM density induced by different choices of mχ and 〈σv〉.

3.2.3 DM annihilation cross sections for the 511 keV line

We now fix the thermally-averaged DM annihilation cross section 〈σv〉, for self-conjugate DM
annihilating into e−e+, to reproduce the 511 keV line for each of the DM profiles and spikes
discussed in Sec. 3.2.1. This is achieved by requiring that the positron injection rate within a
sphere of radius r . 4 kpc around the GC satisfies[11]∫

d3x Qe(~x,Ee)
∣∣∣∣
r.4 kpc

' 2.5 · 1042 s−1, (3.17)

where Qe(~xe, Ee) is the source term defined in Eq. (3.13). Due to significant astrophysical
uncertainties, we also compute the best-fit values of the thermally-averaged DM annihilation
cross section 〈σv〉 under the assumption that the positron injection rate within the same region
is ∫

d3x Qe(~x,Ee)
∣∣∣∣
r.4 kpc

' 1043 s−1. (3.18)

The results are plotted in Fig. 3.4.
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Figure 3.4: Thermally-averaged cross section 〈σv〉 for DM annihilating into e−e+, needed to
reproduce the 511 keV line, as a function of MDM and for different density profiles. We present
〈σv〉 for the standard (with NFW’s inner slope γ = 1) ∗MIN density profile in red, the Gondolo-
Silk density profile in blue, the generalized ∗MIN and the generalized Gondolo-Silk density
profiles, both based on an NFW halo configuration with inner slope γ = 1.2, respectively in
green and in orange. These results are obtained by requiring that the positron injection rate
within a sphere of radius r arounf the GC is ' 2.5 · 1042 s−1. The best-fit values of 〈σv〉 for
a positron injection rate of ' 1043 s−1 within the same region are similar in magnitude and,
therefore, we do no present them.

Alternative best-fit values for the dark matter annihilation cross section can be found in the
literature. An example can be found in Ref. [167], which focus on two DM density profiles
which are the Einasto profile, written as

ρ(r) = ρsexp
(
−
[ 2
α

(
r

rs

)α
− 1

])
(3.19)

and the generalized NFW configuration, written in Eq. (3.14).

In both cases r represents the distance from the GC, while ρs = ρ�

(
R�
rs

)γ(
1+ R�

rs

)3−γ
is fixed

by the requirement to reproduce the local dark matter density ρ� ' 0.4 GeV/cm3 at the Sun
position R� ' 8.5 kpc. Moreover, to fit the Via Lactea II simulation Ref. [167] fixes α = 0.17,
rs = 25.7 kpc for the Einasto profile and γ = 1.2, rs = 26.2 kpc for the generalized NFW
configuration.
In particular, here we present the results for the the best-fit DM annihilation cross section
found by Ref. [167] for the Einasto profile and the generalized NFW configuration, including
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in both scenarios the disk component from radioactive isotopes:

〈σv〉χ = 5.1 · 10−25
(
mχ

GeV

)2
cm3/s for Einasto + Disk contribution

〈σv〉χ = 6.1 · 10−26
(
mχ

GeV

)2
cm3/s for NFW + Disk contribution

. (3.20)

An alternative present in the literature is the work conducted by Ref. [11]. Here authors
compare the predicted in-flight annihilation emission for DM masses of 2 to 50 MeV, with SPI
and COMPTEL data in the |l| < 30o and |b| < 15o region of the sky, for a Gondolo-Silk and
a *MIN DM spike benchmarks, both constructed using Eq. (3.5) and based on an NFW halo
configuration with inner slope γ = 1. For each DM mass, they then perform a χ2 fit to the 511
keV longitudinal profile and normalize the 〈σv〉 value to the best-fit, including the astrophysical
disk component from stars.

We can summarize in Table 3.1 the best-fit DM annihilation cross section of Refs. [167]
and [11] with our results, displayed in Fig. 3.4.

prova 2 MeV 5 MeV 10 MeV 20 MeV 50 MeV
Einasto + Disk 2.0 · 10−30 1.3 · 10−29 5.1 · 10−29 2.0 · 10−28 1.3 · 10−27

gNFW + Disk 2.4 · 10−31 1.5 · 10−30 6.1 · 10−30 2.4 · 10−29 1.5 · 10−28

Gondolo-Silk (γ = 1) 5.1 · 10−34 5.6 · 10−33 3.4 · 10−32 2.0 · 10−31 2.0 · 10−30

∗MIN(γ = 1) 1.5 · 10−31 1.4 · 10−30 7.5 · 10−30 9.6 · 10−29 3.3 · 10−28

Gondolo-Silk (γ = 1.2) 2.7 · 10−36 1.2 · 10−34 2.7 · 10−33 6.3 · 10−32 4.0 · 10−30

∗MIN(γ = 1.2) 9.8 · 10−32 8.3 · 10−31 3.7 · 10−30 1.6 · 10−29 1.1 · 10−28

Table 3.1: Values of self-conjugate DM thermally-averaged annihilation cross sections 〈σv〉
in units of cm3s−1 for different DM density profiles. Specifically, the first two lines of the
table report the values of 〈σv〉 for the Einasto and the generalized NFW profile with inner
slope γ = 1.2, taken from Ref. [167] and both including the disk component from radioactive
isotopes. The third and fourth line of the table report values of 〈σv〉 for the Gondolo-Silk and
the ∗MIN density profiles, taken from Ref. [11], both based on an NFW halo configuration with
inner slope γ = 1 and including the disk component from stars. Eventually, in the last two
lines we present the values of 〈σv〉 for the Gondolo-Silk and the ∗MIN density profiles, obtained
through the procedure delined in Sec. 3.2.3 and both based on an NFW halo configuration
with inner slope γ = 1.2. Our result represents an extension of the work presented in Ref. [11].

The DM annihilation cross sections presented in Fig. 3.4 are significantly smaller than
those required for thermal freeze-out in s-wave annihilation models, which are of the order of
〈σv〉 ∼ 10−26cm3/s to reproduce the observed DM relic abundance[54].
This discrepancy implies that either the annihilation mechanism must be velocity-suppressed,
like in the case of p-wave annihilation model, or that dark matter interacts via more complex
mechanisms inducing a late-time suppression of the annihilation rate, such as the one involving
coannihilation between nearly-degenerate DM states.
We will explore these possibilities respectively in Chapters 4 and 5, updating and extending
the work of Ref. [171].
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It is worth noting that other mechanisms could also allow to explain the 511 keV gamma-
ray line from the GC while matching the observed DM relic abundance. For instance, e−e+

annihilation might be only one of the annihilation channels open to dark matter.
Alternatively, as discussed in Ref. [186], a thermally produced light DM candidate may an-
nihilate into axion-like particles, whose subsequent decay produces multiple e−e+ pairs. This
significantly reduced the kinetic energy of the injected positrons, making this scenario compat-
ible with observational constraints. In this framework, DM annihilation proceeds via a p-wave
channel, χχ̄ → aa, which dominates during freeze-out due to a sufficiently high DM relative
velocity, and via an s-wave channel, χχ̄→ aaa, which is relevant at late times.

In the following Chapters we will use the results obtained so far to present two classes
of DM models which could explain the 511 keV line from the GC, while simultaneously repro-
ducing the observed DM relic abundance and remaining compatible with current experimental
and observational constraints. Specifically, we discuss a p-wave annihilation DM model in
Chapter 4 and a coannihilation DM model, involving nearly-degenerate DM states in Chapter
5.



4

p-wave annihilation model

The persistent observation of the 511 keV gamma-ray line from the GC, nowadays firmly at-
tributed to electron-positron annihilation into photons via para-positronium formation, remains
one of the most intriguing and puzzling astrophysical anomalies. In the same way, the nature
of DM remains elusive and represents a central open question in physics. Therefore, given these
two misteries, it is natural to entertain the possibility that they are somehow interconnected.

According to Refs. [166–168], the morphology of the signal excludes DM decays in fa-
vor of annihilations.
Building QFT models, which explain DM annihilation into pairs of electrons and positrons,
represents thus an interesting way to explain the signal in the GC. However, s-wave annihila-
tion models face strong observational constraints, as they typically lead to an overproduction
of low-energy positrons. This would result in a 511 keV flux significantly exceeding what is
observed by experiments such as INTEGRAL/SPI, making such models incompatible with cur-
rent data.
In order to overcome this problem, it is natural to think at models in which DM annihiliation
into e−e+ pairs are late-time suppressed.
For example, we can realize this idea with models where the DM relic abundance is set by
p-wave annihilations, whose cross section is velocity-dependent, which means that 〈σv〉 ∝ v2.
This velocity suppression naturally reduces the annihilation rate at late times, making it con-
sistent with cosmological observations and with the idea that DM models may explain the
511 keV signal in the GC.

4.1 p-wave dark matter model for the 511 keV Line
In this section, we analyze a p-wave annihilation dark matter model capable of simultaneously
explaining the measured DM relic density and the 511 keV gamma-ray emission observed from
the GC, ensuring consistency with experimental and observational constraints.

4.1.1 Relic abundance and 511 keV line

In Sec. 3.1.1 we have said that the observed 511 keV signal in the GC, attributed to e−e+

annihilation into photons via para-positronium formation, is strongly peaked and corresponds
to a flux of ' 10−3 photons cm−2 s−1.

37
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In Sec. 3.2.1 we discussed different benchmarks for the DM density profile and their impli-
cations for the DM annihilation cross section. In the following, we start discussing the p-wave
model under consideration employing the same DM density profile of Ref. [171], as later we
will update that study with new limits that were not considered there, such as those from
supernovae and DM self-interactions, and updating limits that improved in the meantime like
those from NA64.
Therefore, using the best-fit provided in Ref. [167] for an NFW DM density profile, it is possi-
ble to explain the 511 keV signal in the GC, through self-conjugate DM annihilations into an
e−e+ pair with

〈σv〉511 ' 5 · 10−31
(
MDM
3 MeV

)cm3

s . (4.1)

However, as discussed in Sec. 3.2.1, it is also possible to entertain the idea that DM density
is accreted by the supermassive black hole at the center of the Milky Way, forming a density
spike. In this case, we can parametrize the DM density profile as in Eq. (3.5). As discussed in
Sec. 3.2.3 and following Ref. [11], we impose that the positron injection rate within a sphere
of radius r . 4 kpc around the GC satisfies Eq. (3.17). For each DM density profile discussed
in Sec. 3.2.1, this condition allows to find the best-fit values of the thermally-averaged self-
conjugate DM annihilation cross section, needed to reproduce the 511 keV line. The results
obtained from this procedure are displayed in Fig. 4.4 and they can be used to extend the
discussion of Ref. [171].

For a p-wave dominated process we can write the thermally-averaged annihilation cross
section as 〈σv〉 = bp〈v2

rel〉, where bp is independent of vrel, which is the relative velocity between
DM particles. The constant term bp is fixed by the requirment of realizing the observed DM
abundance and its behaviour in terms of MDM is plotted in the right panel of Fig. 2.5.

We can fit both the observed DM abundance and the 511 keV gamma-ray line from the GC
by imposing that

bp〈v2
rel〉 = 〈σv〉511. (4.2)

4.1.2 A concrete setup

Let us realize a model in which we consider a Majorana fermion χ as DM candidate, which
interacts with electrons via a real scalar S as described by the following Lagrangian written in
2-component spinor notation[171]:

L = 1
2yDχ

2S + geeLe
†
RS + h.c. (4.3)

Following the procedure delined in App. B, we can rewrite this latter Lagrangian in 4-
component spinor notation as:

L = 1
2yDψ̄DMψDMS + geēeS. (4.4)

We prefer to make this conversion because it is preferable to work in 4-component spinor no-
tation since calculations of cross sections are clearer.
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On the basis the Lagrangian written in Eq. (4.4), we can compute the cross section for
the DM annihilation into e−e+ as

σvχχ→e−e+ = v2
rel

(yDge)2

8π

M2
DM

(
1− m2

e

M2
DM

)3/2

(m2
S − 4M2

DM)2 +m2
SΓ2

S

, (4.5)

with the decay rate of S which is defined as

ΓS = ΓS→χχ + ΓS→e−e+ = g2
e

8πmS

(
1− 4m2

e

m2
s

)2
+ y2

D

16πmS

(
1−

4m2
χ

m2
S

)2
, (4.6)

where we have used Eqs. B.93, B.96 and mχ ≡ MDM. Moreover, the full computation of Eq.
(4.5) can be found in App. B.2.1.

The cross section for the χe± → χe± is

σχe±→χe± = (yDge)2

π

µ2
eDM
m4
S

, (4.7)

where mS is the mass of the new scalar, added in the toy model whose Lagrangian is written
in Eq. (4.4), while µeDM = meMDM

me+MDM
is the DM− e reduced mass.

The corresponding full computation can be found in App. B.2.1.

We are going to exploit the cross sections written in Eqs. (4.5) and (4.7) to study the
phenomenology of the p-wave model we are analyzing to explain the 511 keV gamma-ray line
from the GC. First, however, we quickly go through the experimental and observational limits
that constrain the p-wave model we are anlyzing.

4.1.3 Accelerator, direct detection, self-interactions and cosmology

In Sec. 2.4, we reviewed the various observational and experimental limits, such as those from
direct detection experiments, collider searches and astrophysical observations, that constrain
the properties and interaction cross sections of dark matter candidates across a range of masses.
Here, we briefly discuss the specific constraints that apply to the p-wave annihilation model
under consideration.

Collider searches

As briefly mentioned in Sec. 2.4.3, the NA64 experiment at the CERN SPS is a powerful
fixed-target experiment designed to search for light, weakly interacting particles such as dark
photons. By analyzing events with large missing energy, indicative of particles that escape
detection, NA64 has set some of the strongest constraints on invisibly decaying dark photons
in the MeV-GeV mass range [102]. These limits are particularly relevant for models where dark
matter couples to Standard Model particles through a light mediator.

In the context of the p-wave annihilation model we are analyzing, the mediator is not a



4. p-WAVE ANNIHILATION MODEL 40

dark photon but a scalar S, which decays predominantly into dark matter particles. Since
the original NA64 bounds are derived for dark photons, they cannot be directly applied to
our scalar case. However, as proposed in Ref. [171], these constraints can be recast for scalar
mediators by relating their coupling ge to the effective dark photon kinetic mixing parameter
ε.
Specifically, in Ref. [102], an upper bound on the kinetic mixing ε < εlimit(mV ) is derived as a
function of the dark photon mass mV . In analogy, Ref. [171] translates this into a bound on
the scalar coupling ge by imposing

ge(mS) < CS e εlimit(mS), (4.8)

where e is the elementary electric charge, while CS is a proper dimensionless coefficient com-
puted in Ref. [171] and set equal to CS = 1.6.

These recast limits are shown in Fig. 4.1, and represent stringent experimental constraints
on the scalar coupling ge in the MeV-scale regime, significantly narrowing the viable parameter
space of the p-wave annihilation model.

Direct detection constraints

The p-wave annihilation model, characterized by a velocity-suppressed cross section, is sub-
ject to direct detection constraints primarily from experiments such as XENON1T, SENSEI,
and DAMIC-M. These experiments search for dark matter-electron scattering signals and set
strong upper limits on the dark matter-electron elastic scattering cross section, particularly in
the sub-GeV mass range.

In the following sections we present direct detection limits taken from Ref. [97], along
with projected sensitivities for SENSEI[95], DAMIC-M[187], Obscura[188] and JUNO[189].

For a more detailed discussion about direct detection limits refer to Sec. 2.4.1.

Limits on dark matter self-interactions

As discussed in Sec. 2.2.1, DM self-interactions may play a central role in solving some astro-
physical issues, such as the core-cusp, the diversity, the missing satellites and the too-big-to-fail
problems. However, in order to solve those tensions with DM self-interactions and be at the
same time consistent with cluster limits, one should have self-interactions which depend on the
environment, like for example on the DM velocity[56]. This is not the case in the p-wave model
we are considering. Therefore, here, we just impose the limit from Bullet Cluster data. In
particular, to remain consistent with those observations, we should require that σself

MDM
. 1 cm2

g ,
where we recall that σself and MDM are respectively the self-interacting DM cross section and
its mass. Specifically, we can compute σself, as derived in App. B.2.1

σχχ→χχ = y4
DM

2
DM

8πm4
S

,
σself
MDM

. 1cm2

g =⇒ y4
D .

8πm4
S

MDM

cm2

g (4.9)

This allows to obtain further limits which significantly constrain the phenomenology of the
p-wave model we are analyzing, as we can see from the right panel of Fig. 4.1.
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Supernova bounds

Moreover, following the analysis in Ref. [109] and in Sec. 2.4.5, it is possible to further con-
strain the phenomenology of the p-wave model under consideration, based on supernova cooling
studies.

We recall very quickly that, as discussed in Sec. 2.4.5, supernova cooling limits are de-
rived on the basis of the Raffelt criterion, which constrains the emission rate of BSM particles
from the supernova core. Therefore, new BSM particles cannot carry away more energy than
neutrinos do.
In the context of models discussing leptophilic scalars φ, which couple only to leptons through
an interaction term yeφēe, Ref. [109] derived bounds on the electrons-to-scalars coupling ye,
which are particularly stringent in the resonant production regime, which corresponds to the
region of the DM parameter space where the mass of the scalar satisfies mφ < ωp ' O(10 MeV).

In the p-wave model under consideration we have a scalar S, which couples to SM elec-
trons through an interaction term of the form geSēe. Therefore, we can apply to this model
SN 1987A constraints, discussed in Sec. 2.4.5 and derived in Ref. [109].

The results of this procedure are displayed in the right panel of Fig. 4.1.

Non-perturbativity of the dark coupling

Least but not last, the computation of the cross sections in Eqs. (4.5) and (4.7) relies on
the application of Feynman rules within the framework of perturbative quantum field theory.
Therefore, it is essential to remain within the perturbative regime to ensure the validity of these
calculations. This implies that the coupling constants involved in the interactions must be suf-
ficiently small for the perturbative expansion to converge, and higher-order loop corrections are
assumed to be subdominant compared to the leading tree-level contributions. Deviations from
this regime could invalidate the perturbative approach and require more advanced treatment
beyond the scope of standard Feynman diagram analysis.

To this end, in order to remain safely within the perturbative regime, we impose that the
dark coupling satisfies yD . 3. As we will see in the following sections, the scalar-to-electron
coupling ge is always significantly smaller than yD and thus easily remains within the pertur-
bative regime.

After this brief introduction, we are now ready to delve into the phenomenology of the
p-wave dark matter model under consideration.

4.2 Phenomenology of the p-wave model for the 511 keV line
Having established the theoretical framework of the p-wave model introduced in Sec. 4.1.2, we
now proceed to analyze its phenomenological implications and confront it with current experi-
mental and observational constraints. This section aims at identifying the viable regions of the
parameter space that are consistent with both the observed dark matter relic abundance and
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the 511 keV gamma-ray line from the GC.

The annihilation cross section in Eq. (4.5) is velocity-dependent and therefore can be written
as

〈σv〉χχ→e−e+ = bχχ→e−e+v2
rel, (4.10)

where vrel is the relative velocity between DM particles.
Following the procedure delined in Sec. 4.1.1, we fix the bχχ→e−e+ by imposing to match the
observed DM relic abundance, see the right panel of Fig. 2.5. Thereafter, we ask to fit the 511
keV signal from the GC by imposing

bχχ→e−e+ 〈v2
rel〉bulge︸ ︷︷ ︸

(1.1·10−3)2

= 〈σv〉511, (4.11)

where, as in Ref. [171], we have used the value obtained from the velocity dispersion in the
bulge, that is σ ' 140 km/s[190].
The requirement of fitting both the DM relic abundance, as in Eq. (4.10), and the 511 keV
gamma-ray line from the GC, as in Eq. (4.11), selects a unique value of MDM. Specifically, by
using 〈σv〉(p)

relic(MDM = 2 MeV) ' 2.2 · 10−25v2
rel cm3/s from Ref. [54], we get that

M
(p)
DM ' 2 MeV

〈v2
rel〉

1/2
bulge

1.1 · 10−3 , (4.12)

where we have normalised 〈v2
rel〉

1/2
bulge to σ ' 140 km/s from Ref. [190].

Once the annihilation cross section σvχχ→e−e+ and the DM mass MDM are fixed by the
requirement to fit respectively the 511 keV line and the observed DM relic abundance, we only
have two left parameters to fix, which we can choose as ge and mS . The result obtained from
Ref. [171] is plotted in the left panel of Fig. 4.1.

Ref. [171] also mentions that the fact to have MDM and mS of few MeV is not in conflict
with cosmological data, provided to have a small injection of neutrinos in the early universe in
a proportion ∼ 1 : 104 to the electron injection[84, 85].
As proposed in Ref. [171], this can be obtained by adding a coupling with neutrinos, of the
form gν ν̄νS of size gν ∼ 10−2ge, where ge ∼ 10−6, which is in the region allowed by the variuos
limits in Fig. 4.1.
In particular, it is possible to obtain the couplings to neutrinos and electrons through electroweak-
invariant completion of the Lagrangian in Eq. (4.4) (see App. B of Ref. [171]).

In this thesis we have introduced some corrections to the previous work presented in Ref.
[171]. First of all, we have derived expressions for the cross sections in Eqs. (4.5) and (4.7)
that are identical in form to those presented in Ref. [171]. However, in our derivation, we have
corrected an inconsistency in the normalization of the DM-S interaction term in Eq. (4.4),
where we have included the appropriate factor of 1

2 . This ensures the correct normalization
of the Lagrangian and leads to accurate cross section results. In contrast, Ref. [171] uses a
Lagrangian without this normalization factor, which introduces an overall error of a factor of
4 in the final expressions for the cross sections.
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Figure 4.1: The phenomelogy of the model is completely determined by the mass of the scalar
mS and the coupling to electrons ge once we require to fit both the 511 keV line as in Eq. (4.1)
and the observed DM relic abundance as in Eq. (4.12). In the plot there are several constraints:
the gray area delimits the region of the parameter space where the dark coupling yD is no longer
perturbative, the green area represents the recast of NA64 dark photon limits[102]. Moreover,
orange lines are contours of constant σχe±→χe± ≡ σe, while the gray lines are contours of
constant dark coupling yD. In these plots, NA64 constraints are updated with respect to the
ones used in Ref. [171]. In the right panel we have furter constraints from SN 1987A (pink
area) and DM self-interactions (cyan area).

Furthermore, we have updated the results obtained by Ref. [171] by adding further constraints,
such as those from SN 1987A and DM self-interactions and updating limits that improved in
the meantime, like NA64.
Finally, the plots shown in Fig. 4.1 rely on the cross sections in Eqs. (4.5) and (4.7), which
are obtained by performing a Taylor expansion around vrel ' 0. However, as discussed in Sec.
2.3.2, this procedure is no longer valid near a resonance, like in the scenario depicted in Fig.
4.1.
To address this issue, we provide an updated treatment in Secs. 4.2.2, where we properly ac-
count for the DM resonant behaviour, based on the procedure delined in App. C and reported
in part in Sec. 4.2.2.

Before delving into the discussion of the dark matter resonant behaviour in Sec. 4.2.2,
we first briefly examine the range of dark matter masses that could account for the 511 keV
line from the GC within the p-wave model under consideration.

4.2.1 DM masses predicted by the p-wave model

In Sec. 4.1.1 we claimed that the requirement to fit both the observed DM abundance and the
511 keV gamma-ray line from the GC is satisfied by Eq. (4.2), where, as done above, we use
vrel ' 1.1 · 10−3 as relative velocity between DM particles and the coefficient bp is fixed by the
requirement of mathcing the observed DM abundance for a p-wave dominated process (see the
right panel of Fig. 2.5).
This procedure allows to select a unique value of MDM for each analyzed benchmark of the DM
density profile, which realizes consistently the scenario in the non-resonance regime, discussed



4. p-WAVE ANNIHILATION MODEL 44

more in detail later in Sec. 4.2.2.
Near the resonance, instead, the treatment will be quite different, as we will see more in detail
later.

A general lesson that we can take from Ref. [11] is that only DM masses in the range
1 MeV . MDM . 20 MeV can account for the 511 keV gamma-ray line from the GC. Indeed,
Fig. 6 of Ref. [11] shows the predicted diffuse gamma-ray emission from the DM signals fitted
to the 511 keV line profile, compared to experimental measurements by SPI and COMPTEL
in the region |b| < 15o and |l| < 30o.
It is possible to notice that masses up to MDM ∼ 20 MeV seem to be well compatible with the
current measurements of the diffuse gamma-ray galactic flux, while higher masses will signif-
icantly exceed the experimental data, such as those from COMPTEL observations. For this
reason, we restrict the DM parameter space to masses 1 MeV .MDM . 20 MeV.

We present in Table 4.1 some of the possible DM masses, in the range 1 MeV . MDM .
20 MeV, which could succesfully explain the 511 keV line, while matching the observed DM
abundance.

DM density profile DM mass (MeV)
∗MIN(γ = 1.2) 2.90

Gondolo-Silk (γ = 1) 3.79
Gondolo-Silk (γ = 1.1) 9.62
Gondolo-Silk (γ = 1.17) 20.00

Table 4.1: Dark matter masses selected to consistently reproduce both the observed DM relic
abundance and the 511 keV gamma-ray line from the Galactic Center, for different benchmark
dark matter density profiles. These values are obtained in the non-resonant regime by imposing
Eq. (4.2), with the relative velocity between DM particles fixed at vrel ' 1.1 ·10−3, correspond-
ing to the velocity dispersion in the Galactic bulge (σ ' 140 km/s)[190]. Furthermore, the
coefficient bp is fixed by the requirement of matching the observed DM relic abundance for a
p-wave dominated process (see the right panel of Fig. 2.5). Here, we use the best-fit values
of the thermally-averaged DM annihilation cross sections 〈σv〉 derived by requiring that the
positron injection rate within a sphere of radius r around the GC is ' 2.5 · 1042 s−1. These
best-fit values of 〈σv〉 are plotted in Fig. 3.4.

This procedure generalises the study of Ref. [171] by allowing to derive more general lessons
from it, that take into account the astrophysical uncertainties.
Moreover, we can notice that for specific choices of DM density profiles, it is possible to select
DM masses MDM > 10 MeV, which in general do not need an extra injection of neutrinos in
the early universe to be consistent with cosmological data, as discussed in Sec. 4.2.

4.2.2 Exploring resonant annihilation in dark matter p-wave models

In App. C, we discuss resonant enhancements of the dark matter annihilation cross section,
focusing on how the velocity dependence near the resonance condition affects thermal freeze-
out and positron injection rates. We introduce a small parameter ε � 1, which parametrizes
deviations from unity in the ratio mS

2MDM
, such that mS

2MDM
= 1 + ε.
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Depending on the value of ε, different approximations are used to compute the DM thermally-
averaged annihilation cross section. Specifically, three main regimes are identified:

• Large-ε regime (ε ≥ 0.27): for those value of ε the system is far enough that the usual
low-velocity expansion around vrel ' 0 is valid. In this case, the expressions for the
cross sections in Eqs. (4.5) and (4.7) can be safely used to match the observed DM relic
abundance and explain the 511 keV gamma-ray line from the GC.

• Intermediate-ε regime (0.0064 . ε ≤ 0.27): in this region neither the low-velocity nor the
resonant approximation works well. A full thermal average of the DM annihilation cross
section must be performed numerically without relying on expansions.

• Small-ε regime (5.3 · 10−5 . ε . 0.0064): for those values of ε the system is very close
to the resonance region, and the low-velocity expansion breaks down. In this case, the
thermally-averaged DM annihilation cross section can be approximated as:

〈σv〉511 '
y2
Dg

2
e

2πM2
DM

(
1− m2

e

M2
DM

)3/2 〈v2
rel〉

64ε2 , 〈v2
rel〉 ' (1.1 · 10−3)2;

〈σv〉fo '
y2
Dg

2
e

2πM2
DM

(
1− m2

e

M2
DM

)3/2〈 1
v2

rel

〉
,

〈 1
v2

rel

〉
= xfo

2 .

, (4.13)

as derived in App. C. Specifically, 〈σv〉511 and 〈σv〉fo are used respectively to fit the 511
keV line today and the observed DM relic abundance.

We consider ε ∼ 5.3 · 10−5 as lower limit of the small-ε regimes, because for ε smaller
than that value we cannot explain anymore the 511 keV line, while matching the observed
DM abundance, as we would have 〈σv〉511 & 〈σv〉fo, which is not what we desire in this
thesis.

In this work we do not focus on the intermediate-ε regime, but rather on the large- and
small-ε regime, both discussed in the following paragraphs.

Moreover, as already mentioned in Sec. 4.1.1, assuming that DM form a density spike
toward the GC due to Sgr A∗ accretion, for each DM density profile discussed in Sec. 3.2.1 we
can find the best-fit values of 〈σv〉511 requiring that the positron injection rate within a sphere
of radius r around the GC satisfies Eq. (3.17).
Specifically, for the work presented in the following paragraphs, we adopt as benchmark choices,
both in the 5.3 · 10−5 . ε . 0.0064 and the ε ≥ 0.27 regimes, the best-fit values of 〈σv〉511
obtained for the Gondolo-Silk density profile, which is based on an NFW halo configuration
with inner slopes γ = 1.1 and γ = 1.14. In particular, we choose these profiles because they
allow for larger values of MDM (compared to the MDM ' 2 MeV scenario discussed in Sec.
4.2), when matching the observed dark matter relic abundance, while still remaining within
the preferred mass range 1 MeV .MDM . 20 MeV.
Furthermore, DM density profiles based on an NFW halo configuration with inner slope
γ > 1.14 would yield DM parameter spaces which are highly constrained in the small-ε regime,
where 5.3 · 10−5 . ε . 0.0064. To better analyze the phenomenological implications of these
steeper DM density profiles we should go to the 0.0064 . ε . 0.27 regime, which, however,
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is not discussed in this thesis. For this reason we present the analysis for Gondolo-Silk den-
sity profiles based on an NFW halo configuration with inner slopes γ = 1.1 and γ = 1.14 as
benchmark choices.

The non-resonance regime

In this paragraph we focus on the large ε regime (ε ≥ 0.27), where the system is far enough
from the resonance condition and, therefore, we can safely expand the DM annihilation cross
section around vrel ' 0 as it is usually done.

We manage to obtain the observed DM relic abundance and explain the 511 keV gamma-ray
line from the GC, by essentially following the procedure delined in Sec. 4.1.1 and in a more
detailed way in Sec. 4.2. A difference, though, stays in the fact that instead of adopting the
best-fit value of 〈σv〉511, provided in Ref. [167] and written in Eq. (4.1), we employ the up-
dated values derived using the procedure delined in Sec. 3.2.3, specifically for the Gondolo-Silk
density profile based on an NFW configuration with inner slopes γ = 1.1 and γ = 1.14, for the
reason explained above. The results obtained from this procedure are shown in Fig. 4.2.

Figure 4.2: The phenomelogy of the model is completely determined by the mass of the scalar
mS and the coupling to electrons ge once we require to fit both the 511 keV line and the observed
DM relic abundance. In the plot there are several constraints: the cyan area represents limits
coming from the requirement that the DM self-interacting cross section satisfies σsel

MDM
. 1 cm2

g ,
the gray area delimits the region of the parameter space where the dark coupling yD is no
longer perturbative, the green area represents the recast of NA64 dark photon limits[102] and
the magenta area represents direct detection limits[97]. Moreover, orange lines are contours of
constant σχe±→χe± ≡ σe, while the gray lines are contours of constant dark coupling yD. We
assume that DM follows a Gondolo-Silk density profile based on an NFW halo configuration
with inner slope of γ = 1.1 (left panel) and γ = 1.14 (right panel). We also assume that the
positron injection rate within a sphere of radius r . 4 kpc around the GC is ' 2.5 ·1042s−1. We
notice that the p-wave model under consideration is significantly constrained by experimental
limits in the large-ε regime. For this reason, we should analyze the model in the small-ε regime
to capture physical information.
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The resonance regime

In this paragraph, we focus on the regime 5.3 · 10−5 . ε . 0.0064, where the phenomenological
treatment differs significantly from the one used in previous analyses. In this region, the
low-velocity expansion around vrel ' 0 no longer provides reliable results. Consequently, the
approximation used so far for the χχ→ e−e+ cross section should be revised.
Following the procedure outlined in App. C, we instead rely on the thermally-averaged cross
sections given in Eq. (4.13) to simultaneously fit the 511 keV gamma-ray line from the Galactic
Center and reproduce the observed dark matter relic abundance. However, in contrast to
previous analyses that made use of data from Ref. [54], we cannot apply the standard approach
based on a Taylor expansion of the cross section in powers of vrel, which yields

σv ' as + bpv
2
rel +O(v4

rel). (4.14)

In particular, as written in Eq. (4.13), the thermally-averaged DM annihilation cross section
in the resonance regime is given by

〈σv〉fo = cfo
xfo
2 , (4.15)

where cfo ≡
y2
Dg

2
e

2πM2
DM

(
1− m2

e

M2
DM

)3/2
is a constant term independent of vrel.

Following the computations of the DM relic abundance in Sec. 2.3.1, but using 〈σv〉 = cfo
x
2 ,

we find that

ΩDMh2 ' s0h2

ρc

[ 45
8π2gρ(Tfo)

]1/2 xfo

Mp
cfo
2 xfoln

(
x∞
x∞

) , (4.16)

where x∞ ≡ MDM
1 eV , as introduced in Ref. [54].

Exploiting the expression for the DM abundance in Eq. (2.16) for an s-wave dominated process
(bp = 0) and requiring to obtain the observed DM abundance, which means that ΩDMh2 '
0.12[27], we obtain the data presented in the left panel of Fig. 2.5. The same can be done for
a p-wave dominated process (as = 0), obtaining the data presented in the right panel of Fig.
2.5.
Analogously, also in the resonance regime we can impose ΩDMh2 ' 0.12, where the expression
for ΩDMh2 is taken from Eq. (4.16). Therefore, in first approximation we can write that

as ' 3 bp
xfo
' cfo

2 xfo ln
(
x∞
xfo

)
. (4.17)

The results obtained for cfo are illustrated in Fig. 4.3.
Defining the thermally-averaged cross section as 〈σv〉 = cfo

xfo
2 and, recalling that the FO

temperature is defined according to Eq. (2.19), we can finally impose to match the observed
DM relic abundance in the resonance regime by writing that

y2
Dg

2
e

2πM2
DM

(
1− m2

e

M2
DM

)3/2
≡ cfo. (4.18)

Furthermore, we can impose to fit the 511 keV gamma-ray signal from the GC by writing that

y2
Dg

2
e

2πM2
DM

(
1− m2

e

M2
DM

)3/2 (1.1 · 10−3)2

64ε2 ≡ 〈σv〉511, (4.19)
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Figure 4.3: Behaviour of the cfo term, defined as in Eq. (4.17), in terms of the DM mass MDM.
In blue we plot cfo = 2as

xfo
1

ln
(
x∞
xfo

) , while in purple we plot cfo = 6bp
x2

fo

1
ln
(
x∞
xfo

) . The two curves are in

good agreement across the entire range of MDM values considered, and their difference provides
a rough estimate of the uncertainty of our approximate method to derive the freeze-out cross
section in the small-ε regime. The as and bp terms, used to define cfo, are taken from Fig.
2.5[54].

where, again, 〈σv〉511 is found by requiring that the positron injection rate within a sphere of
radius r . 4 kpc around the GC satisfies Eq. (3.17) for a specific DM density profile. The
results obtained from this procedure are displayed in Fig. 4.4. Note that the different v2

rel
dependence of the cross section, between freeze-out and the GC, implies that imposing the two
requirements to reproduce the 511 keV signal and the DM abundance does not fix any longer
the DM mass, as it did in the non-resonant regime.
Note that the region of parameter space shown in Fig. 4.4 is not constrained by either NA64
or direct detection experiments. This is because, in the DM mass range considered here,
NA64 and experiments such as SENSEI, DAMIC-M, and XENON1T constrain regions where
ge & 10−5[102] and σe ' 10−38 − 10−39 cm2[97], respectively, both of which lie outside the
parameter space explored in this work.

In the 5.3 · 10−5 . ε . 0.0064 regime just analyzed, we cannot use Eq. (4.9) for the
DM self-interacting cross section, since, as already said, the expansion around vrel ' 0 gives no
more reliable results. We should instead write it as

σχχ→χχ = Bf(vrel)
(s−m2

S)2 +m2
SΓ2

S

, (4.20)

where s is the usual Mandelstam variable and ΓS is the decay width of the scalar S, defined
as in Eq. (4.6). Moreover, B is a constant independent of vrel, while, on the contrary, f(vrel)
is a function of the relative velocity.

To be clear, the DM self-interacting cross section receives contribution from the s-,t- and
u-channels but only the s-channel is affected by the resonant DM behaviour discussed so far.
Near the resonanc, as it occurs in the small-ε regime, the s-channel contribution dominates due



4. p-WAVE ANNIHILATION MODEL 49

Figure 4.4: The phenomelogy of the model is completely determined by the DM mass MDM and
the coupling to electrons ge once we require to fit both the the observed DM relic abundance,
as done in Eq. (4.18), and the 511 keV line, as done in Eq. (4.19). The cyan area represents
constraints coming from the requirement that the DM self-interacting cross section satisfies
σsel
MDM

. 1 cm2

g , while the gray area delimits the region of the parameter space where the dark
coupling yD is no longer perturbative. Moreover, the orange lines are contours of constant
σχe±→χe± ≡ σe, the gray lines are contours of constant dark coupling yD and the purple lines
are contours of constant ε, defined by mS

2MDM
= 1+ε. We assume that DM follows a Gondolo-Silk

density profile based on an NFW halo configuration with inner slope of γ = 1.1 (left panel)
and γ = 1.14 (right panel). We also assume that the positron injection rate within a sphere of
radius r . 4 kpc around the GC is ' 2.5 · 1042s−1.

to the enhancement of the propagator denominator, which goes as ∝ 1
(s−m2

S)2+m2
SΓ2

S
→ ∞ as

s → m2
S . As a result, to a good approximation, we can ignore contributions from the t- and

u-channels to the DM self-interacting cross section in the small-ε regime.

Now, following the same procedure discussed in App. C for the χχ → e−e+ cross section,
we find that in the resonance regime the DM self-interacting cross section can be rewritten as

σχχ→χχ '
y4
D

128πM2
DM

. (4.21)

Constraints from DM self-interactions in Fig. 4.4 are therefore obtained by requiring that

σχχ→χχ '
y4
D

128πM2
DM

. 1cm2

gr . (4.22)

4.2.3 Targets for direct detection experiments

So far, we have identified the parameter space of the DM p-wave model introduced in Sec. 4.1.2
that explains the 511 keV line, the DM abundance and all the limits on it. We now use this
knowledge to derive a benchmark target, motivated by p-wave explanations of the 511 keV line,
for direct detection experiments looking for DM-electron scatterings. As these experiments are
making fast progress, we think that it is a useful exercise to charachterise to what extent they
could allow to address a well-defined physics question: Does the 511 keV line originate from
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models where DM produces e−e+ via p-wave annihilations?
We therefore proceed as follows: for each DM density profile defined as in Eq. (3.5), we
obtain a distinct best-fit value of 〈σv〉511. Consequently, for each DM density profile, we can
construct a corresponding parameter space that incorporates both theoretical and experimental
constraints, including:

• recast of exclusion limits from NA64[102];

• constraints from DM self-interactions;

• non-perturbativity requirement on the dark coupling yD;

• compatibility with the 511 keV line in the GC and correct reproduction of the observed
DM relic abundance.

From each resulting parameter space, we extract values of the scattering cross section σχe±→χe± =
(yDge)2

π

µ2
eDM
m4
S

that are compatible with all experimental constraints, both in the 5.3 · 10−5 . ε .

0.0064 and in the ε ≥ 0.27 regions. These results are then combined into a single plot, showing
existing direct detection limits and future sensitivities on σe ≡ σχe±→χe± as a function of the
DM mass MDM. In the same plot we display, as a blue shaded area, the cross sections that
can be achieved by the p-wave model studied so far, compatibly with limits from supernovae,
NA64 and continuum photons at energies higher than 511 keV. The results of this procedure
are displayed in Fig. 4.5.
In particular, the purple region indicates model-dependent limits arising from our use of the
∗MIN and the Gondolo-Silk density profiles, both based on an NFW halo configuration with
inner slopes in the range 1 ≤ γ ≤ 1.2. We do not consider less steep profiles, as we aim at
explaining the presence of a dark matter spike around the supermassive black hole at the GC,
and would otherwise result in sub-MeV DM masses, which is not the aim of this work, when
imposing Eq. (4.11), with the coefficient bχχ→e−e+ that is fixed by the requirement of matching
the observed DM abundance. Steeper profiles are also excluded, as they lead to excessively
large annihilation signals, making such configurations, in principle both highly testable and
and consequently subject to stringent observational constraints.
Exploiting different DM density profiles can shift the boundaries of σχe±→χe± upward or down-
ward. In this sense, the purple region represents model limitations due to the dependence on
the assumed DM density profile.

In conclusion, the p-wave annihilation model offers a compelling framework for explain-
ing both the observed dark matter relic abundance and the 511 keV gamma-ray line from the
GC, while remaining consistent with current experimental constraints. By imposing the re-
quirements of thermal freeze-out and compatibility with the positron injection rate inferred
from the 511 keV signal, we have identified the viable parameter space for this scenario across
different DM density profiles. Note that the model predicts DM-electron elastic scattering
cross sections that are within the reach of upcoming direct detection experiments such as
SENSEI[95] and DAMIC-M[187]. Future experiments like Obscura[188] may also offer com-
plementary sensitivity, while JUNO[189] could provide indirect constraints through neutrino
observatory techniques.
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Figure 4.5: MDM − σe parameter spaces. The blue region delimits the area where the p-
wave annihilation model introduced in Sec. 4.1.2 successfully reproduces both the observed
dark matter relic abundance and the 511 keV gamma-ray line from the GC. The upper and
lower boundary of the blue region are obtained by extracting the corresponding values of
cross section σe from the constrained DM parameter spaces and combining the results for the
5.3 ·10−5 . ε . 0.0064 and ε ≥ 0.27 regimes. The gray band excludes MDM . 20 MeV, because
these masses lead to an overproduction of photons from the GC, while the pink band represents
constraints from SN 1987A[109]. Additionally, the purple region represents model-dependent
limits. The orange area in the right panel delimits the region of the parameter space which may
succesfully fit both the observed DM relic abundance and the 511 keV line, but this requires
to study the regime where 0.0064 . ε < 0.27 for a better analysis. Moreover, we present
in green direct detection constraints[97], along with projected sensitivities for JUNO (dashed
purple)[189], SENSEI (dashed cyan)[95], DAMIC-M (dashed red)[187] and Obscura (dashed
black)[188]. The positron injection rate within a sphere of radius r . 4 kpc is ' 2.5 · 1042 s−1

for the left panel and ' 1043 s−1 for the right panel.

These preliminary results suggest that future generations of low-threshold direct detection
experiments will be able to probe the entire viable parameter space of the p-wave model ana-
lyzed so far. This makes them a powerful tool not only for testing light dark matter scenarios
but also for potentially uncovering the long-sought connection between dark matter and the
511 keV line.



5

Coannihilation model

We have already said in Chapter 4 that, in order to avoid an overproduction of low-energy
positrons, we can study models in which DM annihilation into e−e+ pairs are late-time sup-
pressed. One way to do that, as already analized, is through models in which DM relic abun-
dance is set by p-wave annihilations, where the resulting cross section is velocity-dependent.

Another class of DM models that one can think, in order to realize that kind of setup,
are inelastic DM models (iDM). In this framework, the DM relic abundance is determined by
coannihilations between a DM particle and a slightly heavier partner. These processes are
efficient in the early universe, when thermal energies are sufficient to maintain the heavier
dark matter species in thermal equilibrium. However, as the Universe expands and cools, the
number density of the heavier state becomes exponentially suppressed by the Boltzmann factor
e−∆m/T , where ∆m is the mass splitting between the two states. As a result, the efficiency of
coannihilation processes diminishes rapidly at late times.
As a result, positron production today is drastically reduced, remaining consistent with cos-
mological observations.

5.1 Coannihilation dark matter model for the 511 keV line
In this section, we present a coannihilation dark matter model capable of simultaneously ex-
plaining the measured DM relic density and the 511 keV gamma-ray emission observed from
the GC, ensuring consistency with experimental and observational constraints.

5.1.1 Model overview

Let us realize a consistent inelastic DM model, by adding to the SM a dark gauge group U(1)′,
whose dark gauge boson is indicated as Vµ, two-component fermions ξ and η of charges 1 and
−1 respectively and a scalar φ with charge 2 which spontaneously breaks the symmetry.
The most general low-energy Lagrangian that preserves charge conjugation, which means η ↔ ξ,
φ↔ φ∗ and Vµ ↔ −Vµ, reads as

L = V (|φ|)+ ε

2VµνF
µν+(igDχ†

2σ̄µχ1V
µ+h.c.)− m̄2 (χ2

1+χ2
2)− yφ2 (φ+φ∗)(χ2

2−χ2
1)+h.c., (5.1)

52
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where χ1 = i(η−ξ)√
2 and χ2 = η+ξ√

2 are the Majorana mass eigenstates, Fµν is the electromagnetic
field strength tensor and Vµν is the dark gauge boson field strength.
Furthermore, we can write φ in polar coordinates as φ = |φ|ei

θ
vφ , where θ is a Goldstone

boson and |φ| = ϕ+vφ√
2 . In the unitary gauge the Goldstone boson disappears and we remain

with φ = φ∗ = ϕ+vφ√
2 , where both ϕ and vφ are real and in particular this latter is the VEV of φ.

Let us now instead consider the potential V (|φ|) = λφ

(
|φ|2 − v2

φ

2

)2
. We can now expand it

considering that |φ|2 = ϕ2+2ϕvφ+v2
φ

2 and thus we get that

V (|φ|) = λφ

(
ϕ2

2 + ϕvφ

)2
= λφ

ϕ4

4 + λφvφϕ
3 + λφv

2
φϕ

2 = λφ
ϕ4

4 + 6λφvφ︸ ︷︷ ︸
λϕ3

ϕ3

6 + λφv
2
φϕ

2. (5.2)

Therefore, we can find the masses for all particles appearing in the Lagrangian in Eq. (5.1)
through symmetry breaking mediated by φ, as we derive in App. B.4. In particular, the
physical vector and fermion masses are given by

mV = 2gDvφ, m1,2 = m̄∓ δ

2 , m2
ϕ = 2λφv2

φ, (5.3)

where δ = 2
√

2yφvφ � m1,2 is the U(1)′ breaking Majorana masses. From Eq. (5.3), it is
straightforward that m2 = m1 + δ. In particular, it is technical natural to require that δ � m̄
since in the δ → 0 limit we restore the U(1)′ symmetry, analogous to the SM lepton num-
ber[191]17.

In the following subsection we present the general strategy to explain the 511 keV gamma-ray
signal from the GC, while reproducing the observed DM relic abundance.

5.1.2 Relic abundance and 511 keV line

In this subsection we aims at building the theoretical framework necessary to explain the 511
keV gamma-ray signal that we observe from the GC, while consistently reproducing the DM
relic abundance. Specifically, as already mentioned in the previous chapters, the observed
511 keV signal in the GC, attributed to e−e+ annihilation into photons via para-positronium
formation, is strongly peaked and corresponds to a flux of ' 10−3 photons cm−2 s−1.

In Sec. 5.3 we will start discussing the phenomenology of the iDM model introduced in
Sec. 5.1, updating the results obtained by Ref. [171] and, therefore, exploiting the best-fit
value of the self-conjugate DM annihilation into e−e+ cross section, provided in Ref. [167] for
an NFW DM density profile:

〈σv〉511 ' 5 · 10−31
(
MDM
3 MeV

)cm3

s . (5.4)

17A physical quantity is said to be technically natural if setting it to zero increases the symmetry of the theory.
In this case, any quantum corrections to the quantity must be proportional to its original value, ensuring that
if the parameter is small, it remains small under renormalization.
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However, as discussed in Sec. 3.2.1, the supermassive black hole at the center of the Galaxy
may accrete the DM density, which thus form a spike. In that specific case the DM density
profile is parametrized as in Eq. (3.5). Requiring that the positron injection rate within a
sphere of radius r . 4 kpc around the GC is ' 2.5 · 1042 s−1[11], we can find for each dif-
ferent benchmark of the DM density profile discussed in Sec. 3.2.1 the best-fit values of the
thermally-averaged self-conjugate DM annihilation cross section, needed to reproduce the 511
keV line. The results obtained from this procedure are displayed in Fig. 3.4 and they can be
used to extend the discussion in Ref. [171].

As already discussed in Sec. 4.2.1, we restrict the dark matter parameter space to DM
masses in the range 1 MeV .MDM . 20 MeV. This is motivated by the need to avoid overpro-
duction of gamma-ray photons and to remain consistent with observational constraints, such
as those from COMPTEL. Consequently, in the following we focus only on the cross sections
that are dominant within this mass range.

We start reporting the cross section relative to the coannihilation process χ1χ2 → SM SM,
which, in the non-relativistic limit and including all kinematically accessible channels, is[192,
193]

〈σv〉ann '
16παeαDε2m2

1
(4m2

1 −m2
V )2 , (5.5)

where αe is the fine-structure constant and αD ≡
g2
D

4π . In particular, for 1 MeV . MDM .
20 MeV, which is the mass range that we consider in the iDM model in Sec. 5.1.1 to explain
the 511 keV line, the only kinematically accessible channel is χ2χ1 → e−e+, whose cross section
in the limit that δ � m1,2 'MDM is

σvχ1χ2→e+e− = 4αeε2g2
D

M2
DM +m2

e/2
(m2

V − 4M2
DM)2

√
1− m2

e

M2
DM

, (5.6)

where we have used Eq. (B.61).
This cross section is, indeed, consistent with Eq. (5.5) in the limit that MDM � me.

Moreover, if mϕ < MDM and ϕ decays to e−e+, then another process is kinematically
allowed, which is the χiχi annihilation into ϕϕ, whose cross section, in the limit that yφvφ

λ3
ϕ
� 1,

is

σvχi−χi→ϕϕ = v2
rel
y2
φλ

2
ϕ3

64π
1

(4m2
i −m2

ϕ)2

√√√√1−
m2
φ

m2
i

, (5.7)

where we have used Eq. (B.72).
Ref. [171] specifies that ϕ’s decay into e−e+ is guaranteed by an operator |φ|2(eLe†

R+h.c.)
Λφe , with

Λφe ∼ 109 − 1010vφ.

If mV > m1 + m2, then χiχi → V V is kinematically forbidden and thus the DM relic
abundance is reproduced by imposing that

σvχ1χ2→e+e− + 3σvχiχi→ϕϕ/vrel2

xfo
= 〈σv〉fo, (5.8)
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where we are summing the s-wave and p-wave contributions and this allows to fix the kinetic
mixing parameter ε, which appears in the Lagrangian in Eq. (5.1). Moreover, xfo ≡ MDM

Tfo
,

where Tfo is the freeze-out temperature and 〈σv〉fo is the value of the thermally-averaged DM
annihilation cross section, needed to reproduce the DM relic abundance.

We can, instead, explain the 511 keV signal from the GC by imposing that

σvχiχi→ϕϕ = 1
2〈σv〉511

v2
rel

〈v2
rel〉bulge

, (5.9)

where we recall that 〈v2
rel〉

1/2
bulge ' 1.1 · 10−3. Here, as said, 〈σv〉511 denotes the best-fit value

of the thermally-averaged DM annihilation cross section, needed to reproduce the 511 keV line
from the GC. In Sec. 5.3 we will discuss the phenomenological implications of adopting differ-
ent benchmarks values for 〈σv〉511.
The factor 1

2 in Eq. (5.9) is due to the fact that χi−χi annihilation emits two ϕ particles and
each of them then decays into an e−e+ pair, so that for each χiχi → ϕϕ scattering process, we
actually produce two electron-positron pairs.

We will see later that in iDM models, such as the one just presented, the heavier DM com-
ponent χ2 can play a significant role in direct detection experiments through down-scattering
processes, such as χ2N → χ1N, where χ2 scatters off nuclei N, or χ2e

± → χ1e
±, where χ2

scatters off electrons or positrons e±. These processes can produce detectable nuclear or elec-
tron recoils, respectively, offering promising signals in direct detection experiments such as
CRESST in the first case and XENON1T in the second case, depending on the nature of the
DM interaction.
To that end, in the next section we present a general overview of elastic scattering, up-scattering
and down-scattering processes. Specifically, in the iDM model, introduced in Sec. 5.1 and which
will be discussed more in detail later, we deal with sufficiently large mass splittings δ, which
kinematically forbid up-scattering processes. For this reason, we focus on down-scattering sig-
nals in direct detection experiments like XENON1T and CRESST, highlighting their relevance
for MeV-scale dark matter models.

5.1.3 Elastic scattering, up-scattering and down-scattering

Light inelastic dark matter models predict a wide array of observable signals in direct detection
experiments. These scenarios allow for a rough categorization of the DM parameter space into
three main regimes:

• Elastic scattering;

• Up-scattering;

• Down-scattering.

In the following sections, we will analize each regime more in detail, focusing mainly on down-
scattering limits, as they would be essential for the phenomenology of the coannihilation model
under consideration.
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Elastic scattering

If the mass splitting δ is large enough, the heavier state χ2 has decayed by the present era,
via the decay channels that we will discuss in Sec. 5.2.1. In this case χ1 up-scattering into
χ2 is not kinematically accessible. This is because the energy required to overcome the mass
splitting δ ≡ m2 −m1 , exceeds the available kinetic energy of χ1. Specifically, up-scattering
can occur only if 1

2m1v
2 & δ and for large values of δ, such processes become kinematically

forbidden.

In this scenario, the only detectable signals arise from elastic scattering of the lighter DM
component χ1 off nucleons or electrons, which can occur only at loop level. However, in the
iDM model introduced in Sec. 5.1.1, we consider a mass splitting δ that is small enough that
χ2 has not yet decayed by today.

Up-scattering

In regions where the mass splitting δ is small compared to the kinetic energy of χ1, the heavier
state χ2 can be regenerated via up-scattering processes such as χ1e

± → χ2e
± or χ1N→ χ2N.

As mentioned by Ref. [194], the precise kinematic boundary for up-scattering depends on the
DM escape velocity, which is taken to be 553 km s−118. At higher DM masses, this kinematic
boundary also depends on the mass of the target nucleus, with higher-mass target nuclei al-
lowing up-scattering for larger values of δ.

In Fig. 5.1, we present in orange the region of the DM parameter space where up-scattering
is possible off lead, which is heavier than any nucleus used in direct detection. All up-scattering
exclusions from terrestrial experiments should be contained in this region, even though the ac-
tual exclusions from experiments are less stringent, because the expected up-scattering cross
sections may exceed the experimental sensitivities.
For a more precise analysis, in Sec. 5.2.3 we will discuss how χ1χ1 → χ2χ2 up-scattering pro-
cesses become kinematically accessible when the local dark matter temperature TDM satisfies
TDM & δ, typically occurring in dense or heated environments like the GC. This class of pro-
cesses allows for the regeneration of χ2 long after freeze-out and kinetic decoupling, potentially
leading to observable signatures through subsequent down-scattering processes.

However, due to the large expected cross sections, most of the parameter space, where
up-scattering processes are kinematically allowed, is strongly excluded by null results from di-
rect detection experiments. These constraints are especially stringent for larger dark matter
masses and smaller splittings, where elastic scattering experiments are most sensitive, as shown
in Fig. 5.1.

Down-scattering

A unique and promising direct detection signal arises from the tree-level down-scattering of the
sub-dominant heavier dark matter state χ2 into the lighter state χ1. Unlike traditional elastic
scattering scenarios, this process results in a recoil signal that is nearly mono-energetic. This

18The escape velocity vesc = 553 km s−1 represents the maximum speed that DM can have in the Galactic halo,
while remaining gravitationally bound to the Milky Way.
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leads to a sharp peak in the recoil energy spectrum, offering a distinct experimental signature.
Even when the abundance of χ2 is highly suppressed, the kinetic energy released during the
scattering enhances the detectability of this process, making it a powerful probe for iDM models.

Following Refs. [194–196], we can write that when the DM kinetic energy dispersion is
much smaller than δ, namely in the limit that v0 �

√
δ

µχ2N
, the expected rate for the down-

scattering processes of χ2 off nuclei can be approximated as

RN ' εdetf
det
χ2

ρχ
m2

NA
AN

σχ2Nv. (5.10)

Here, we have that v0 = 220 km s−1 is the DM velocity dispersion, equal to the Sun’s circular
rotation velocity and µχ2N = m2mN

m2+mN
is the χ2-nucleus reduced mass. Moreover,

• εdet accounts for the efficiency of the detector and it thus ranges from 0 to 1.

• fdet
χ2 = εEarthfχ2 accounts for the suppressed abundance of χ2 relative to the total DM

density at the detector, where εEarth accounts for the Earth shadowing suppression19 and
fχ2 = Y2

YTOT
is the fractional abundance of χ2.

• ρχ
m2

is the DM number density, where ρχ ∼ 0.4 GeV cm−3 is the DM mass density at the
Sun’s position and m2 is the χ2’s mass.

• NA ∼ 6.022 · 1023 mol−1 is the Avogadro’s number and AN is the atomic mass of the
target nucleus, measured in g/mol. Therefore, NA

AN
measures the number of atoms per

grams.

• σχ2Nv =
√

2 16παeαDε2µ
3/2
χ2Nδ

1/2Z2
N

m4
V

|F(ER)|2 is the cross section for DM-nucleus scattering,

where αD = g2
D

4π and gD is the dark coupling, while ZN is the atomic number of the
nucleus N and |F(ER)|2 is the nuclear form factor. The form factor is O(1) as long as the
transferred momentum q =

√
2µχNδ is small compared to the size of the nucleus, which

is true in most of the DM parameter space.

The expected rate for χ2 down-scattering off electrons is instead defined as

Re ' εdetf
det
χ2

ρχ
m2

NA
AN

Zexcσχ2ev, (5.11)

where

• Zexc is the number of electrons associated with each atom that can be excited by this
transition.

• σχ2ev =
√

2 16πααDε2µ
3/2
χ2eδ

1/2

m4
V

is the χ2-e down-scattering cross section.

19εEarth accounts for the suppression of the signal in direct detection experiments due to Earth shadowing, which
means that if χ2 − N interactions are stronger εEarth will be smaller. Indeed, χ2 DM particles may scatter off
nuclei in the Earth before reaching detectors, converting into the lighter state χ1 and therefore reducing the
detectable down-scattering flux.
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Figure 5.1: The orange area delimits the region where up-scattering processes are kinematically
accessible. For larger values of MDM the kinematic boundary also depends on the target
nucleus, with higher-mass target nuclei allowing up-scattering for larger values of δ. Here it
is shown the kinematic boundary for up-scattering off lead to show the largest possible region
in which up-scattering processes are kinematically allowed. The portion named only down-
scattering delimits, instead, the area where down-scattering are the only tree-level processes
that can occur. Within this region, contours of the relative abundance of the excited state
at the recombination temperature T rec, obtained for the benchmarks values mV = 3(m1 + δ

2)
and αD = 0.5, are also displayed, defined as f2 = Y2

YTOT
, where Y represents the relic yield.

Eventually, the green area represents the region of the parameter space where χ2 decays have
strongly depleted the heavier DM component and only loop-level elastic scatterings of χ1 off
nuclei and electrons are possible.
Reprinted from "Cosmology and Signals of Light Pseudo-Dirac Dark Matter", by
Mariana Carrillo González and Natalia Toro[194].

Up-scattering and down-scattering limits can significantly constrain iDM models, but they
are only applicable if these processes remain active at late cosmological times, that is, if the
heavier dark matter component χ2 has not yet been completely depleted. To that end, in the
next section we discuss the various depletion mechanisms that χ2 can undergo, outlining its
cosmological history.

5.2 χ2’s cosmological history
In this section, we want to investigate the cosmological history of the heavier DM component
χ2 within the framework of the coannihilation model. In the following, we will explore how
χ2, which is nearly-degenerate in mass with the lighter DM state χ1, evolves throughout the
thermal history of the Universe. Starting from the freeze-out of coannihilation processes that
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fix the relic abundance, we analyze the subsequent depletion mechanisms acting on χ2, such as
primarily down-scattering processes, up until the point of kinetic decoupling from the Standard
Model particles.

However, in certain dense regions of the Milky Way, such as the Galactic Center, DM can
be heated to higher temperatures through virialization, which is a process where particles gain
kinetic energy as they settle into a gravitationally bound system. We will see that when the
local dark matter temperature TDM becomes comparable to the mass splitting δ between the
two DM states χ2 and χ1, the up-scattering processes χ1χ1 → χ2χ2 reenter equilibrium. This
allows the heavier state χ2 to be regenerated long after freeze-out, increasing its population in
these high-density regions.

The goal of this section is to understand how these dynamics affect the final abundance
and distribution of DM in the Universe.

5.2.1 χ2’s lifetime

In this subsection we will discuss possible decay channels for the havier DM component χ2
into Standard Model particles, based on the Lagrangian in Eq. (5.1), which correctly describes
the physics induced by the new gauge group, U(1)′, at energy scales much smaller than the
electroweak one. A UV complete Lagrangian extending Eq. (5.1) is given by (see for example
Refs. [193, 197])

L ⊃ −1
4BµνB

µν − 1
4VµνV

µν + ε

2 cos θW
VµνB

µν + 1
2m

2
ZZµZ

µ + 1
2m

2
V VµV

µ, (5.12)

where θW is the Weinberg angle and the Z boson is defined as in the SM. Furthermore, it is
important to notice that mZ and mV are the masses in the un unmixed basis and thus corre-
spond to the physical masses only in the limit that ε→ 0.

Authors of Ref. [193] mention that mV may arise from an extended U(1)′ Higgs sector
or the Stueckelberg mechanism for instance. In our coannihilation model in Sec. 5.1.1 the
mass of the dark photon arise from the U(1)′ symmetry breaking induced by the scalar φ, as
it is shown in App. B.4. On the other hand, mZ denotes the mass of the Z boson as defined
in the SM, as a consequence of the standard Higgs mechanism and thus before any kinetic or
mass mixing effects.

In Eq. (5.12) ε denotes the kinetic mixing parameter between the dark gauge boson field
strength Vµν and the hypercharge field strength Bµν . We should notice, however, that in the
Lagrangian in Eq. (5.1) we have a kinetic mixing between the dark photon field strength
Vµν and the electromagnetic field strength Fµν , written as ε

2VµνF
µν , which is consistent with

ε
2 cos θW VµνB

µν in the limit that mZ � mV , which is the case in the coannihilation model dis-
cussed in Sec. 5.1.1.

Following the computations shown in App. B of Ref. [193], we can finally make the following



5. COANNIHILATION MODEL 60

redefinition: VZ
A

 =

(η/ε) cosα cot θW (η/ε) sinα cot θW 0
−(sinα+ η cosα) cosα− η sinα 0
η cosα cot θW η sinα cot θW 1


︸ ︷︷ ︸

C

VZ
A

 , (5.13)

where we have defined
η ≡ ε tan θW

(1− ε2/ cos2 θW )1/2

δ ≡ mV /mZ

(1− ε2/ cos2 θW )1/2

. (5.14)

Furthermore, the angle α, used to diagonalize the V − Z mass matrix, is defined as

tanα = 1
2η [1− η2 − δ2 − sign(1− δ2)

√
(1− η2 − δ2)2 + 4η2]. (5.15)

Applying this transformation matrix C to the interacting Lagrangian in the ε→ 0 limit

Lint = igDVµχ̄2γ
µχ1 +

∑
f

[
g

cos θW
Zµf̄γ

µ(gfV − g
f
Aγ

5)f + eQfAµf̄γ
µf

]
, (5.16)

where20

gfV = 1
2T

3
f −Qf sin2 θW gfA

1
2T

3
f (5.17)

we obtain

Lint →(CV V Vµ + CV ZZµ)igDχ̄2γ
µχ1 +

∑
f

[
Vµf̄γ

µ
(

g

cos θW
gfV CZV + eQfCAV

− g

cos θW
gfACZV γ

5
)
f + Zµf̄γ

µ
(

g

cos θW
gfV CZZ + eQfCAZ

− g

cos θW
gfACZZγ

5
)
f

] , (5.18)

where CXY with XY ∈ A,Z, V are the elements of the matrix C defined in Eq. (5.13). Here
igDχ̄2γ

µχ1 is the dark current JµDM as defined in the coannihilation Lagrangian in Eq. (5.1).

The interacting lagrangian in Eq. (5.18) induces new decay modes for χ2, such as the
processes depicted in Fig. 5.2.

We can now thus compute the decay width of χ2 into χ1 and two neutrinos, where the
tree-level contribution from V −Z mixing dominates over the loop level one from V −γ mixing,
obtaining that

Γχ2→χ1ν̄ν =' 4ε2αeαDδ9

945πm4
Vm

4
Z cos4 θW

, (5.19)

where αe is the electromagnetic fine structure constant, while αD = g4
D

4π , with gD which is the
dark coupling[198, 199]. As mentioned by Ref. [199], we can notice that Γχ2→χ1ν̄ν scales with

20T 3
f is the third component of the weak isospin and Qf denotes the electric charge of the fermion f under

consideration.
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Figure 5.2: χ2 decay modes induced by the Z-V mixing and γ-V mixings, in the basis before
diagonalization.

the ninth power of the energy released δ9, even though usually we have a δ5 scaling in weak
decays. This can be understood as follows: in the basis before diagonalization, the V − Z
mixing is kinetic and it then implies in the amplitude a factor proportional to the transferred
momentum, q2, which is saturated by δ2.

As it is depicted in Fig. 5.2, another available χ2 decay channel is χ2 → χ1γγγ, whose
decay width is[198]

Γχ2→χ1γγγ '
17α3

eα
2
Dε

2δ13

273653π3m8
em

4
V

. (5.20)

If the mass splitting satisfies δ > 2me, then we also have another possible χ2 decay channel,
which is the one depicted in Fig. 5.3.

However, in the coannihilation model introduced in Sec. 5.1.1 we always work in the regime
where δ < mV ,me and, therefore, χ2 → χ1V and χ2 → χ1e

−e+ are kinematically forbidden
decay channels. Hence, we can infer that

1
Γχ2
' 1

Γχ2→χ2ν̄ν + Γχ2→χ1γγγ
� τuniverse, (5.21)

where τuniverse denotes the age of the Universe. Therefore, these decay channels are generally
sub-dominant when compared to the down-scattering processes, which will be analyzed later,
especially in the portion of the DM parameter space that we will consider.
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Figure 5.3: χ2 → χ1e
−e+ decay channel.

In outlining the cosmological history of χ2, we can thus ignore these subdominant decay chan-
nels and consider only the effects of down-scattering processes in determining the late-time
depletion of χ2[199].

5.2.2 Late-time depletion mechanisms

In the late-time evolution of dark matter models with nearly-degenerate DM states, such as
coannihilation scenarios, depletion mechanisms, like down-scattering processes of the heavier
DM component χ2 into the lighter one χ1, play a crucial role in determining the abundance
of χ2. After kinetic decoupling from Standard Model particles, χ2 continues to be depleted
primarily through efficient down-scattering processes like χ2χ2 → χ1χ1. These interactions
gradually reduce the χ2’s population, influencing its fractional abundance at late cosmological
times.

In this section we follow the analysis of Ref. [191] to study more in detail these late-
time depletion mechanisms and consequently depict the cosmic history of inelastic DM (iDM)
as shown in Fig. 5.4.

DM-SM kinetic decoupling

After DM-SM chemical decoupling, χ2e
± → χ1e

± remains in kinetic equilibrium until a tem-
perature Tkd. We should notice, however, that we have other similar processes of the form
χ2SM→ χ1SM, which are though subdominant because the thermal densities of SM particles
are exponentially suppressed compared to the electrons’ one21.
These processes do not change the total number of DM particles as, after FO, NDM ≈ const,
but they guarantee that for T & Tkd the DM and SM sector share the same temperature, which
means that TDM = TSM ≈ g

−1/3
s a−1, where a is the scale factor.

In the limit that mV � s� δ and m1 � me, T , the differential cross section for χ2e
± → χ1e

±

21For a non-relativistic particle species X with mass mX , the non-relativistic number density, according to Eq.
(A.13), is given by nX ∝ e−mX/T , which means that the number density is exponentially suppressed for heavier
particles. Since electrons are the lightest SM charged particles that remain unconfined after the QCD phase
transition, their thermal number density is significantly larger than that of other SM particles such as hadrons
and quarks.
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Figure 5.4: Cosmic history of iDM. DM relic abundance is fixed by the coannihilation process
χ2χ1 → SM SM, which freezes-out at a temperature Tfo � δ. After FO, the total number of
DM particles, denoted as NDM, remains roughly constant because the coannihilation processes
are no more efficient due to the expansion of the universe. Written differently, we have that
NDM ≡ N1 + N2 ≈ const, however χ2 continues to be depleted through χ2SM → χ1SM pro-
cesses until DM-SM kinetic decoupling occurs at a temperature Tkd. For T < Tkd the heavier
state χ2 continues to be depleted more rapidly through χ2χ2 → χ1χ1 downscattering processes
until DM-DM decoupling occurs at a DM temperature TDM = T dec

χ . As a result, the primordial
fraction of χ2 is exponentially suppressed at the time of recombination and CMB limits on DM
annihilation are easily evaded. At much later times, in local regions of the Milky Way where
the effective Galactic temperature of DM satisfies Tmw & T dec

χ , the virialization of DM in the
Milky Way increases its velocity, such that χ1χ1 → χ2χ2 up-scattering partially restores the
χ2 abundance.
Reprinted from "Reviving MeV-GeV Indirect Detection with Inelastic Dark
Matter", by Asher Berlin, Gordan Krnjaic and Elena Pinetti, University of
Chicago[191].

is given by[191]
dσχe
dt
' παeαDε

2

2m4
Vm

2
1p

2
e

[2(s−m2
1 −m2

e)2 + 2st+ t2], (5.22)

where s and t are the usual Mandelstam variables and pe is the electron momentum. The rate
for mantaining kinetic equilibrium is then given by[200, 201]

Γkd ' −
1

3m1T

∫
d3pe
(2π)3 fe(1− fe)ve

∫ 0

−4p2
e

dt t
dσχe
dt

, (5.23)

where fe = 1
eEe/T+1 is the phase-space distribution of electrons with energy Ee and ve is the

electron velocity.
It is possible to compute the interaction rate in Eq. (5.23) both in the relatistic and non-
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relativistic limit, finding that

Γkd '
8αeαDε2T 2

3m4
Vm1

×


31
63π

5T 4 T � me

16
π
m4
ee

−me/T T � me

. (5.24)

In the approximation of instantaneous FO, we can find the kinetic decoupling temperature by
imposing that

Γkd(Tkd) = H(Tkd), (5.25)

where H(Tkd) is the Hubble parameter at T = Tkd, defined as H(Tkd) =
√

8π3

90 gρ(Tkd) T
2
kd

Mpl
, with

Mpl ' 1.22 · 1019 GeV.
After kinetic decoupling the temperature of the DM sector, denoted as TDM, starts to deviate
from that of the SM sector, indicated instead as TSM; in particular TSM ∝ g

−1/3
s a−1, while

TDM ∝ 1
a2 . Indeed, the momentum of freely propagating particles redshifts as p(t) = p0

a(t) ∝
1
a ,

hence, the temperature of a decoupled non-relativistic particle redshifts as T ∝ E = p2

2m ∝
1
a2 .

DM-DM decoupling

After DM-SM kinetic decoupling, the down-scattering process χ2χ2 → χ1χ1, which is unsup-
pressed by the small coupling ε, remains in thermal equilibrium for a longer period compared
to the processes already discussed, which are χ2χ1 → e−e+ and χ2e

± → χ1e
±.

The thermally averaged-rate relative to the χ2χ2 → χ1χ1 scattering is[191]

Γχ '
8πα2

Dm
3/2
1

m4
V

n1e
−δ/Tχmax

(
δ

2 ,
Tχ
π

)1/2
, (5.26)

where n1 is the χ1 number density and Tχ ≡ TDM is the DM sector’s temperature. It is possible
to estimate the DM temperature T dec

χ at which χ1−χ2 chemical decoupling occurs, by imposing
that

Γχ(T dec
χ ) = H(T̄ ), (5.27)

where T̄ is instead the SM temperature when χ1 − χ2 chemical decoupling occurs. As we
have already said, indeed, after kinetic decoupling the DM and the SM sectors share no more
the same temperature, because TSM ∝ g

−1/3
s a−1, while TDM ∝ 1

a2 , so the DM temperature
decreases faster than that of the SM. We can thus write that

g1/3
s (T̄ )adec

χ T̄ = g1/3
s (Tkd)akdTkd =⇒ T̄ =

[
gs(Tkd)
gs(T̄ )

]1/3 akd
adec
χ

Tkd, (5.28)

where adec
χ corresponds to the scale factor when χ1 − χ2 chemical decoupling occurs.

Meanwhile, we can also write that

Tkd(akd)2 = T dec
χ (adec

χ )2 =⇒ akd
adec
χ

=

√
T dec
χ

Tkd
, (5.29)

where akd refers to the scale factor when the DM-SM kinetic decoupling occurs. Using Eqs.
5.28 and 5.29, the final relation between T̄ and T dec

χ is

T̄ =
[
gs(Tkd)
gs(T̄ )

]1/3
√
T dec
χ

Tkd
Tkd =

[
gs(Tkd)
gs(T̄ )

]1/3√
T dec
χ Tkd. (5.30)
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Computation of the χ2’s fractional abundance

After DM-SM chemical decoupling, which occurs at a temperature Tfo, the number of DM
particles remains roughly constant, so we can write that

nDM(adec
χ )(adec

χ )3 = nDM(aeq)(aeq)3 =⇒ nDM(adec
χ ) = nDM(aeq)

(
aeq
adec
χ

)3

, (5.31)

where aeq denotes the scale factor at matter-radiation equality, which happens at a temperature
T = Teq ' 0.8 eV.
Recalling Eqs. A.12 and A.14, we can write that at matter-radiation equality

ρm = mnm = ρr = π2

30gρT
4, (5.32)

where ρm takes into account both baryonic and DM contributions. From observations of CMB
anisotropies we know that ΩDM,0 ' 5ΩB,0, where ΩDM,0 and ΩB,0 indicate respectively the
DM and baryonic abundance observed today. Using the definition ΩX = ρX

ρc
for a generic

component X, then we can write that

ρDM
ρc
' 5ρB

ρc
=⇒ ρDM ' 5ρB =⇒ ρm = ρDM + ρB = 6

5ρDM. (5.33)

To be more precise, in the limit that DM does not interact significantly with baryons and it is
cosmologically stable, which are well-motivated assumptions, we can write that

ΩDM
ΩB

= ρDM
ρB

= ρDM,0(1 + z)3

ρB,0(1 + z)3 = ΩDM,0
ΩB,0

' 5, (5.34)

where z denotes the redshift.
At matter-radiation equality, Eq. (5.32) can thus be rewritten as

6
5MDMnDM(aeq) = π2

30gρ(Teq)T 4
eq =⇒ nDM(aeq) = π2

30
5
6gρ(Teq)

T 4
eq

MDM
, (5.35)

where gρ(Teq) ' 3.36, according to App. A.2.2.
Furthermore, recalling that TSM ∝ g

−1/3
s a−1, we can write that

Teqaeqgs(Teq)1/3 = T̄ adec
χ gs(T̄ )1/3 =⇒

(
aeq
adec
χ

)3

= gs(T̄ )
gs(Teq)

(
T̄

Teq

)3
. (5.36)

Using Eqs. 5.35 and 5.36, we can rewrite Eq. (5.31) as

nDM(adec
χ ) = π2

30
5
6gρ(Teq)

T 4
eq

MDM

gs(T̄ )
gs(Teq)

(
T̄

Teq

)3
. (5.37)

Recalling that m2 = m1 + δ, we have that the χ2 number density, denoted as n2, is Boltzmann
suppressed compared to n1, which means that n2 = n1e

−δ/TDM . Therefore, exploiting Eqs.
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Figure 5.5: Contours of fractional χ2 abundance, denoted as f2, set by χ1 − χ2 chemical de-
coupling in the early universe and for the particular choice of parameters mV = 3m1, αD = 0.5
and ε such that the FO abundance χ1,2 agrees with the observed DM density[202]. The gray
shaded region corresponds to CMB limits as imposed by Eq. (5.43). We have reproduced this
plot both in the relativistic (Tkd � me) and in the non-relativistic (Tkd � me) regime, using
the corresponding scattering rates given in Eq. (5.24).
Reprinted from "Reviving MeV-GeV Indirect Detection with Inelastic Dark
Matter", by Asher Berlin, Gordan Krnjaic and Elena Pinetti, University of
Chicago.[191]

5.30, 5.37 and using that nDM(adec
χ ) ≡ n1(adec

χ ) +n2(adec
χ ) = n1

(
1 + e−δ/Tdec

χ
)
, we can write the

χ1 number density at χ1 − χ2 chemical decoupling as

n1
(
adec
χ

)
= π2

30
5
6gρ(Teq) Teq

MDM

gs(Tkd)
gs(Teq) (T dec

χ Tkd)3/2 1
1 + e−δ/Tdec

χ
. (5.38)

At this point, we can estimate the DM temperature T dec
χ at which χ1−χ2 chemical decou-

pling occurs using Eqs. 5.27 and 5.38. Consequently, we can estimate the primordial abundance
of χ2 as

f2 = n2
n1 + n2

' e−δ/Tdec
χ

1 + e−δ/Tdec
χ
. (5.39)

In particular, in Fig. 5.5 there are plotted contours of the χ2’s primordial abundance in the
m1 − δ parameter space for the particular choice of parameters mV = 3m1, αD = 0.5 and ε
such that the FO abundance of χ1,2 agrees with the observed DM density[191, 202].
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CMB limits

A big portion of the m1 − δ parameter space in Fig. 5.5 is constrained by CMB limits[27].
Indeed, the CMB places strong constraints on the thermally-averaged dark matter annihilation
cross section 〈σv〉 through its sensitivity to energy injection in the early universe. Dark matter
annihilation deposits energy into the intergalactic medium during and after recombination,
altering the ionization history and leaving imprints on the CMB anisotropies. The Planck 2018
data constrain the effective parameter pann = feff

〈σv〉
mχ

, where feff
22 is the fraction of the energy

released by the annihilation process that is transferred to the intergalactic medium (IGM)
around the redshifts to which the CMB anisotropy data are most sensitive, namely z ' 600
and mχ is the dark matter mass. Assuming s-wave annihilation, Planck finds

pann < 3.2 · 10−28cm3s−1GeV−1, (5.40)

which translates into upper bounds on 〈σv〉 that depend on the annihilation channel and DM
mass. To interpret correctly CMB limits in Ref. [27], we require that the reaction rates23

relative to χ2χ1 → e−e+ and χχ→ e−e+ are equivalent and, therefore,

n1n2〈σv〉χ2χ1→e+e+ =
n2
χ

2 〈σv〉χχ→e−e+ , (5.41)

where the factor of 2 on the right-hand side of Eq. (5.41) accounts for the fact that CMB limits
in Ref. [27] assumed annihilation of self-conjugate DM particles, whereas χ1−χ2 coannihilation
involve distinct species. Renaming nχ ≡ nDM, we can write that

〈σv〉χχ→e−e+ = 2 n1
n1 + n2︸ ︷︷ ︸

f1

n2
n1 + n2︸ ︷︷ ︸

f2

(
n1 + n2
nDM

)2

︸ ︷︷ ︸
f2
χ

〈σv〉χ1χ2→e−e+ , (5.42)

where fχ represents the fractional abundance of DM that χ1 and χ2 jointly constitute, which
in our case is fχ = 1, because we are assuming that all the DM observed in the Universe is
accounted for by χ1 and χ2.
We can thus reinterpret the CMB limits in Ref. [27] relative to the e−e+ annihilation channel
as

〈σv〉χχ→e−e+ = 2f1f2f
2
χ〈σv〉χ1χ2→e−e+ . 2 · 10−26cm3s−1

(
m1

30 GeV

)
. (5.43)

Eq.(5.43) is violated in the excluded gray area of Fig. 5.5.

In this section we have analyzed late-time depletion mechanisms that gradually reduce
the population of the heavier DM component χ2. However, at late cosmological times, it may
happen that in overdense regions of the Universe, such as those where galactic structures form,
the virialization of DM increases its velocity, such that the χ1χ1 → χ2χ2 up-scattering pro-
cesses reenter equilibrium. In local regions of the Milky Way where this particular phenomenon

22The efficiency factor feff depends on several key aspects of the dark matter annihilation process and how the
annihilation products interact with the thermal plasma. Specifically, each annihilation channel produces a
different spectrum of secondary particles, leading to different energy deposition histories.

23The reaction rate quantifies the number of reactions occurring per unit volme and time. It is therefore measured
in units of cm−3s−1.
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occurs, the χ2 population is efficiently regenerated. It is important to understand these mech-
anisms, because once χ2 is regenerated, it can undergo even more down-scattering processes
which, as we will discuss more in detail in Sec. 5.3, play a crucial role, as they offer a potential
strategy to test iDM models.

5.2.3 Late-time evolution and regeneration of χ2

After χ1 − χ2 chemical decoupling, the average fractional abundance f2 remains fixed, as the
DM temperature continues to decrease as TDM ∝ 1

a2 , due to the expansion of the Universe.
However, within overdense regions, such as those where galaxies form, DM can be heated to
much higher temperatures through virialization. When this local temperature satisfies TDM & δ
, the up-scattering process χ1χ1 → χ2χ2 becomes active and generates a new population of
excited states long after the initial freeze-out.

As described in the toy model of Ref. [191], we assume that DM follows a Maxwell-
Boltzmann distribution, with an effective temperature Tmw, which is defined as

Tmw(r) = GMenc(r)
3r m1, (5.44)

where Menc(r) is the total mass enclosed within a radius r and it is defined as24

Menc(r) = MB(r) +MDM(r) = 4π
∫ r

0
(ρB(r′) + ρ1(r′))r′2dr′. (5.45)

In defining the total enclosed mass in Eq. (5.45), authors of Ref. [191] used the best-fit,
spherically symmetric Hernquist profile model advocated in Refs. [203, 204]

ρB(r) = ρB0r
4
0

r(r + r3
0) , (5.46)

where ρB0 = 26 GeVcm−3 and r0 = 2.7 kpc. The initial χ1 mass density, instead, is modeled
as the usual NFW profile

ρ1(r) = ρs
(r/rs)(1 + r/rs)2 , (5.47)

where rs = 20 kpc is the scale radius and ρs is fixed by the requirement that the DM mass
density at the Sun position is

ρ1(r = r� ' 8.5 kpc) ' 0.4 GeVcm−3. (5.48)

Following Ref. [191], we can model the time-evolution of the χ2 population through the Boltz-
mann equation, which, neglecting gradient and gravitational terms25, becomes

∂n2
∂t

= n2
1〈σv〉1→2 − n2

2〈σv〉2→1, (5.49)

24Ref. [191] assumes that the gravitational potential is dominated by χ1 and baryons, as at early times in most
of the halo f2 � 1.

25Neglecting gradient and gravitational terms in the time-evolution of χ2 population significantly simplifies the
problem, because the full spatial and velocity distribution would be too complicate to model and would require
N-body simulations for a better analysis.
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where

〈σv〉1→2 = e−2δ/Tmw〈σv〉2→1 = e−2δ/Tmw 8πα2
Dm

3/2
1

m4
V

max
(
δ

2 ,
Tmw
π

)1/2
. (5.50)

From the Boltzmann equation 5.49, once n2 evolves to n2 ' e−δ/Tmwn1, it approaches a constant
value and χ1 − χ2 chemical equilibrium is restored.
Indicating the number of upscatters per χ1 particle after a time t as Nscatt = n1〈σv〉1→2t, we
can approximate the solution of Eq. (5.49) as

n2 ' n1min
(
Nscatt, e

−δ/Tmw
)

(5.51)

and therefore the χ1−χ2 chemical equilibrium is restored when Nscatt ∼ e−δ/Tmw , which occurs
on a timescale

tCE ∼
e−δ/Tmw
n1〈σv〉1→2

= e−δ/Tmw
n1e−2δ/Tmw〈σv〉2→1

= eδ/Tmw
n1〈σv〉2→1

. (5.52)

Hence, requiring that tCE < tmw ' 13.5 Gyr, where tmw denotes the age of the Universe, it
is possible to plot the radial regions of the Milky Way, where χ1 − χ2 chemical equilibrium is
restored, as shown in Fig. 5.6.

Figure 5.6: Radial regions of the Milky Way where the χ1χ1 → χ2χ2 up-scattering processes
reenter equilibrium over the age of the Galaxy, which is tmw ' 13.5 Gyr, in the m1 − r param-
eter space, for the particular choice of parameters mV = 3m1 and αD = 0.5. It is also assumed
to have an initial NFW profile for χ1.
Reprinted from "Reviving MeV-GeV Indirect Detection with Inelastic Dark
Matter", by Asher Berlin, Gordan Krnjaic and Elena Pinetti, University of
Chicago[191].

In the following sections we will see that in the iDM model introduced in Sec. 5.1 we deal with
values of mass splittings δ � 10 eV, for which the χ1χ1 → χ2χ2 up-scattering processes do not
reenter equilibrium and, consequently, χ2’s population is not efficiently regenerated.



5. COANNIHILATION MODEL 70

In the following, we apply the framework developed so far to study the phenomenology of
the iDM model introduced in Sec. 5.1 and derive the corresponding experimental constraints.

5.3 Phenomenology of the coannihilation model for the 511 keV
line

In this section we proceed to analyze the phenomenological implications of the iDM model
introduced in Sec. 5.1 and confront it with experimental and observational constraints. Fur-
thermore, we want to identify the regions of the parameter space which consistently reproduce
the observed DM relic abundance and, in the meantime, explain the 511 keV gamma-ray line
from the Galactic Center.

We start with a simple analysis, updating the results obtained in Ref. [171]. For that
reason, we can exploit the best-fit value of the thermally-averaged DM annihilation cross sec-
tion, provided in Ref. [167], which is written in Eq. (5.4).
Moreover, we manage to reproduce the observed DM relic abundance and to explain the 511
keV gamma-ray signal from the GC, by imposing respectively Eqs. (5.8) and (5.9). Specifically,
authors of Ref. [171] claim that, for simplicity, they use the s-wave values at MDM = 3 MeV,
σv

(s)
FO ' 8 · 10−26cm3/s and xfo ' 15, because their dependence on MDM is very mild[54].

Eqs. (5.8) and (5.9) leave 4 free parameters, two of which are fixed by Ref. [171] to be
mϕ = 2 MeV and mV = 15 MeV.

Following this procedure, authors of Ref. [171] derive the results illustrated in Fig. 5.7,
where they also report in orange the contour lines of constant down-scattering cross section
σχ2e±→χ1e± , which, from Ref. [171], in the limit that δ → 0, is given by

σχ2e±→χ1e± = 4αeg2
Dε

2µ
2
eDM
m4
V

. (5.53)

As for the p-wave model in Sec. 5.1.1, it is possible to keep these small values of MDM in
agreement with CMB and BBN constraints, by adding a coupling to neutrinos gνVµν̄γµν, with
gν ∼ 10−2eε. The origin of gν is explained in Ref. [171]. This coupling induces the χ2 decay
into neutrinos, which results to be[171]

Γχ2→χ1ν̄ν ' g2
νg

2
D

δ5

40π3m4
V

, (5.54)

if we ignore the other decay channels of χ2 into SM particles, discussed in Sec. 5.2.1. Indeed
Ref. [171] did not consider them and thus we remain consistent with this procedure if we want
to only update their results with recent experimental constraints. In the following, we will
move away from this approach. It is possible to see from Fig. 5.7 that for mV = 15 MeV and
for δ & 1 keV, we obtain that τ2 = 1

Γχ2→χ1ν̄ν
< 109 years, in such a way that all χ2’s left after

freeze-out have decayed by today.

In this section, we have followed the analysis of Ref. [171], updating the experimental
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Figure 5.7: After fixing mV = 15 MeV and mϕ = 2 MeV, the phenomelogy of the model
is completely determined by MDM and the mass splitting δ, once we require to fit both the
observed DM relic abundance in Eq. (5.8)and the 511 keV line in Eq. (5.9). In the plot
there are several constraints: the gray area delimits the region of the parameter space where
the dark coupling gD is no longer perturbative, the green area represents NA64 dark photon
limits[102] and in the orange region we present bounds from solar up-scattering, derived by
Ref. [171], and based on indicative limits from XENON1T data[205]. The gray band, instead,
corresponds to the region of the plot where it is not possible to explain the 511 keV signal in
the GC, while matching the observed DM relic abundance. Moreover, orange lines are contours
of constant σχ2e±→χ1e± , while the gray lines are contours of constant dark coupling gD. The
dashed gray line roughly delimits the region where χ2 decays into neutrinos are not enough
to deplete the primordial χ2 population and further constraints could arise. This happens
only if we follow the procedure of Ref. [171], which does not consider all the additional χ2
decay channels discussed in Sec. 5.2.1 and, therefore, add the neutrino coupling gνVµν̄γµν as
potential solution to remain consistent with CMB and BBN limits. In the following we will
not consider anymore this additional coupling and we will move away from this approach. In
this plot, NA64 constraints are updated with respect to the ones derived in Ref. [171].

limits from NA64 in light of recent improvements. We now proceed to extend the work pre-
sented in Ref. [171], by using the results obtained in Sec. 3.2.3 as best-fit values of the
thermally-averaged DM annihilation cross section. Moreover, in extending the work of Ref.
[171], we do not consider anymore the additional coupling to neutrinos, that is gνVµν̄γµν, as
in most cases we work with MDM & O(10 MeV). Therefore, for those values of DM masses, we
do not need an extra-injection of neutrinos in the early universe to be consistent with CMB
and BBN limits. Moreover, as we have discussed extensively so far, from now on we consider
χ2 down-scattering processes into χ1 as the main late-time depletion mechanisms that reduce
efficiently χ2’s population.
Indeed, Ref. [171] did not consider the possibility of having these down-scattering processes
that may deplete χ2 and therefore, they added an additional coupling to neutrinos gνVµν̄γµν,
as possible solution for this problem.
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Exploring new alternatives for the coannihilation model

To extend the work presented in Ref. [171], we adopt two distinct DM density profiles, which
are the ∗MIN and the Gondolo-Silk configurations, both of which are based on a generalized
NFW halo density profile with an inner slope γ in the range 1 ≤ γ ≤ 1.2. We do not consider
steeper density profiles, because these would lead to very large annihilation signals, which make
such profiles strongly testable and consequently also highly constrained.
These DM density profiles are also used in Sec. 3.2.2 to derive the expected positron injection
rate from DM annihilations into e−e+ pairs, as shown in Figs. 3.2 and 3.3, which is directly
related to the observed 511 keV gamma-ray line from the GC.

In the following subsections, we will exploit the machinery developed in Secs. 3.2.3 and
5.2 to extend the treatment presented in Ref. [171].

5.3.1 Experimental and cosmological constraints for the coannihilation model

In this section we want to give a general overview of the experimental and cosmological limits
that may constrain the coannihilation model introduced in Sec. 5.1.1. Specifically, we divide
the discussion into three paragraphs:

• In the first one we discuss of cosmological and astrophysical constraints.

• In the second paragraph we briefly discuss of non-perturbativity.

• In the third paragraph we present how we can apply terrestrial limits, some of which
already discussed in Sec. 5.1.3, to our specific coannihilation model.

Cosmological and astrophysical constraints

We examine cosmological and astrophysical limits relevant to the coannihilation model intro-
duced in Sec. 5.1.1. Key constraints include those derived from the supernova SN 1987A and
from CMB observations.

• CMB bounds: As already mentioned in Sec. 5.2.2, the CMB places strong constraints
on the thermally-averaged DM annihilation cross section 〈σv〉 through its sensitivity to
energy injection in the early universe. According to Planck 2018 data and, following the
discussion delined in Sec. 5.2.2, we can constrain the e−e+ DM annihilation channel to
satisfy Eq. (5.43).

• SN 1987A: Following Ref. [142], we can revisit the limits obtained from observations
of SN 1987A, which were originally derived under the assumptions mV = 3MDM and
αD = 0.5. In particular, we are interested in the upper boundary of the SN 1987A
constraints, which from Eq. 2.14 of Ref. [142], is obtained by requiring that

ε
√
αD

m2
V

' Cπ2 =⇒ εlimit ' C
π

2
m2
V√
αD

, (5.55)

where C is a constant. To recast these upper limits in terms of ε, we can write that

ε′limit ' C
π

2
m′2
V√
α′
D

= εlimit
m′2
V

m2
V

√
αD
α′
D

, (5.56)
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where α′
D 6= αD = 0.5 and m′

V 6= mV = 3MDM in general. However, the whole DM
parameter space considered in Fig. 5.9 satisfy that ε > εlimit and thus it remains uncon-
strained by these limits.

• Indirect detection constraints: We do not consider indirect detection bounds to constrain
our coannihilation model, because gamma-ray telescopes and cosmic-ray detectors have
limited sensitivities to light DM; additionally constraints from CMB and direct dection
are stronger for this class of models.

Non-perturbativity of the dark coupling

As discussed for the p-wave model, the computation of the cross sections in Eqs. (5.6), (5.7)
and (5.53) is based on Feynman rules within perturbative quantum field theory. To ensure the
validity of these calculations, the coupling constants must be small enough for the perturbative
expansion to converge. To that end, to remain safely within the perturbative regime, we impose
that the dark coupling satisfies gD . 3. All the other couplings involved in the coannihilation
model introduced in Sec. 5.1.1 easily satisfy that perturbative condition.

Terrestrial constraints

In this paragraph we briefly discuss of constraints from NA64. Thereafter, we follow Ref. [194]
and, based on what we have already presented in Sec. 5.1.3, we study how DM down-scattering
and up-scattering processes can constrain the coannihilation model introduced in Sec. 5.1.1.

• NA64 constraints: As already mentioned for the p-wave model, the NA64 experiment at
CERN SPS, derived some of the most stringent constraints on invisibly decaying dark
photons in the MeV-GeV mass range. Specifically, Ref. [102] presents an upper bound
on the kinetic mixing parameter ε < εlimit(mV ), as a function of the dark photon mass
mV . These limits can thus be applied to our coannihilation model.

• Up-scattering constraints: First of all, in the coannihilation model under consideration we
deal with values of the mass splittings δ & O(100 eV). Therefore, from Fig. 5.1 and follow-
ing the discussion presented in Sec. 5.1.3, we can see that for 1 MeV .MDM . 20 MeV,
which is the DM mass range under consideration (see Ref. [11]), we are never affected by
up-scattering constraints. However, the kinematic boundary for up-scattering in Fig. 5.1
is derived in a very general way by stating that up-scattering can occur only if 1

2mχ1v
2 & δ

in such a way that for large values of δ these processes become kinematically forbidden.

For a better analysis we can follow the procedure discussed in Sec. 5.2.3 and taken
from Ref. [191]. Therefore, we plot in Fig. 5.8 the radial regions of the Milky Way where
χ1χ1 → χ2χ2 up-scattering processes reenter equilibirium over the age of the Galaxy for
different benchmark values of mV and mϕ. We note that these up-scattering processes
are kinematically allowed only for small values of δ, which lie below the range considered
in our analysis.

• Down-scattering constraints: For what concerns down-scattering constraints, following
Ref. [194] and the discussion presented in Sec. 5.1.3, we place we place constraints on all
regions of the DM parameter space where the expected rate for χ2 down-scattering off
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Figure 5.8: Radial regions of the Milky Way where the χ1χ1 → χ2χ2 up-scattering processes
reenter equilibrium over the age of the Galaxy, which is tmw ' 13.5 Gyr, in the MDM − r
parameters space, for mV = 35 MeV, mϕ = 6 MeV in the left panel and for mV = 3MDM,
mϕ = 0.8MDM in the right panel. These results are obtained assuming a positron injection
rate within a sphere of radius r . 4 kpc around the GC of ' 2.5 · 1042 s−1.

electrons, Re, and off nuclei, RN, exceeds the experimental upper limit set by Xenon1T
and CRESST respectively. The down-scattering limits obtained in Ref. [194], however,
are valid for αD = 0.5 and mV = 3(mχ1 + δ

2) and, therefore, if we want to apply them to
the coannihilation model introduced in Sec. 5.1.1, a recasting is necessary.

Since to fit the 511 keV line we focus only on DM masses in the range 1 MeV .
MDM . 20 MeV, we recast only the electron down-scattering constraints, as this channel
yields a stronger signal due to the higher recoil energy in this mass range.
Indeed, the characteristic recoil energies are given by ER = µχ2e

me
δ for electrons and ER =

µχ2N
mN

δ for nuclei. Hence, we can notice that for the same values of MDM ∼ O(10 MeV)
and δ ∼ O(1 keV) the recoil energy from scattering off electrons is larger than that from
nuclei. In particular, the latter falls below the detection threshold of leading experiments
like XENONnT, PandaX and LUX-ZEPLIN.

Looking at the signal rate in Eq. (5.11), we notice that the only model-dependent
terms are fdet

χ2 and σχ2ev. In particular, we recall that fdet
χ2 = εEarthfχ2 , where au-

thors of Ref. [194] claim that εEarth is always greater than 0.5 and approximately 1 for
MDM & 1 GeV, so we can assume it to remain approximately constant while we change
the values of αD and mV , while fχ2 is the fractional abundance of the heavier DM state,
which can be taken from Fig. 5.1 or computing it directly as fχ2 = Y2

YTOT
as done in Ref.

[194]. Furthermore, we can write that σχ2ev ∝ ε2αD
m4
V

.

We can thus rewrite the signal rate Re in first approximation as Re ' f(MDM, δ)fχ2
ε2αD
m4
V

,
where f(MDM, δ) is a generic model-independent function of MDM and δ.
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Since we place limits on all regions of the DM parameter space where Re > Rlimit,
with Rlimit which is the upper experimental bound set by Xenon1T, we can recast the
down-scattering constraints in Ref. [194] by writing that

R′
e = Re

f ′
χ2

fχ2

ε′2α′
D

ε2αD

m4
V

m′4
V

, (5.57)

where the prime denotes the parameters used for the phenomenology of the coannihila-
tion model discussed in Sec. 5.1.1, which are in general different from those chosen by
Ref. [194]. In this way, we obtain an approximate recast of down-scattering limits that
we can apply to our case, however, a better analysis is needed if we want to find them
precisely.

Requiring to match the observed DM relic abundance and explain the 511 keV line, by
imposing respectively Eqs. (5.8) and (5.9), we can plot in Fig. 5.9 the MDM − δ param-
eter space for different benchmark values of mV and mϕ with all possible experimental
constraints for the coannihilation model discussed so far.
From Fig. 5.9 we can observe that down-scattering bounds become less stringent both
at small and large values of δ. For smaller δ, this is because the corresponding recoil
energy falls below the sensitivity threshold of Xenon1T. For larger δ, instead, the recoil
energies exceed the upper end of the experiment’s search window, placing them outside
the detectable range.
Moreover, to compute the fractional abundance of χ2 we have followed the procedure
discussed in Sec. 5.2.2. In our specific case we can use the non-relativistic interaction
rate in Eq. (5.24) to compute the DM-SM kinetic decoupling because all regions of the
considered parameter space lie in the non-relativistic regime, where Tkd � me.

5.3.2 Targets for direct detection experiments

So far, we have identified the regions of the parameter space where the coannihilation model
introduced in Sec. 5.1 succesfully explain the 511 keV line, while matching the observed DM
relic abundance and in the meantime remaining compatible with experimental and observa-
tional limits, expecially those from down-scattering processes of the heavier DM component
χ2 into the lighter one χ1. We now use this information to derive a benchmark target for
direct detection experiments. This serves as a valuable tool to evaluate the extent to which the
coannihilation model analyzed in this chapter can account for the 511 keV emission from the
Galactic Center.

For each DM density profile under consideration, we can construct the corresponding DM
parameter space in the MDM − δ plane, as shown in Fig. 5.9, under the benchmark assump-
tions mV = 3MDM and mϕ = 0.8MDM, as for these values the DM parameter space seems
to be less excluded by down-scattering limits. Each parameter space includes theoretical and
experimental constraints such as:

• CMB bounds[27];

• exclusion limits from NA64[102];
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Figure 5.9: MDM − δ parameter space for different benchmark values of mV and mϕ. The
511 keV signal is explained by imposing Eq. (5.9), while the observed dark matter abundance
is matched via Eq. (5.8). We present constraints from CMB in blue, NA64 in green, down-
scattering in magenta and non-perturbativity of the dark coupling gD in gray. The dark gray
band instead represents the region of the parameter space where it is not possible to explain
the 511 keV signal in the GC, while matching the observed DM relic abundance. We also have
contour lines of constant ε in blue, dark coupling gD in gray, down-scattering cross section
σχ2e±→χ1e± in orange and χ2’s fractional abundance f2 in darker magenta. These results are
obtained assuming a positron injection rate within a sphere of radius r . 4 kpc around the GC
of ' 2.5 · 1042 s−1.
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• constraints from down-scattering cross-sections[194];

• non-perturbativity requirements on the dark coupling gD;

• compatibility with the 511 keV line in the GC and correct reproduction of the observed
DM relic abundance.

From each drawn DM parameter space we can extract the values of the scattering cross-section
σχ2e±→χ1e± = 4αeg2

Dε
2 µ2

eDM
m4
V

, that are consistent with all experimental bounds. These values
are then combined into a single exclusion plot showing the upper limits on σe ≡ σχ2e±→χ1e± as
a function of the DM mass MDM. The same can be done for the DM scattering cross section
off protons, which in the limit that δ → 0, can be written as

σχ2p→χ1p = 4αeg2
Dε

2µ
2
pDM
m4
V

, (5.58)

where µpDM = mpMDM
mp+MDM

is the DM-proton reduced mass. The results are shown in Fig. 5.10.
The parameter space in Fig. 5.10 constitutes a benchmark testable only with direct detection
insensitive to our small mass splittings, like cosmic rays up-scattering[206, 207] and DM pro-
duced in the atmosphere[208]. We note that σp ≡ σχ2p→χ1p reaches larger values in the DM
paramater space, compared to σe. This is expected since in the limit that δ → 0

σp = σe

(
µpDM
µeDM

)2
, (5.59)

where, for 1 MeV .MDM . 20 MeV, we can write that

µpDM 'MDM � µeDM ' me. (5.60)

Moreover, in the top panels of Fig. 5.10 the pink band excludes MDM < 1.875 MeV. This lower
bound arises from kinematic considerations in the coannihilation model. Indeed, positrons are
produced via the processes χ2χ1 → e−e+ and χ2χ1 → ϕϕ, followed by ϕ → e−e+. For this
latter decay to be allowed, we require mϕ > 2me, but choosing mϕ & 3me ensures a prompt
decay, which translates into a minimum DM mass MDM & 1.875 MeV.
In the bottom panels of Fig. 5.10, instead, the pink band excludes MDM < 1.875 MeV and
MDM & 12.1 MeV, where the lower bound in MDM has the same origin as for the top panels,
while the upper boundary is fixed by Eq. (5.8), using the steepest DM density profile which
we have considered in realizing those plots, which is the Gondolo-Silk configuration based on
a generalized NFW density profile with an inner slope γ = 1.2.
In principle, choosing a steeper DM density profile, it is possible to push MDM to values bigger
than ' 12.1 MeV, however, this may result in stronger annihilation signals, which are thus
more constrained.

In conclusion, we have shown that the coannihilation model discussed in Sec. 5.1 rep-
resents a viable dark matter scenario capable of explaining the 511 keV line from the Galactic
Center, while simultaneously reproducing the observed dark matter relic abundance and re-
maining consistent with current observational and experimental constraints. We also discussed
how down-scattering processes of the heavier dark matter component χ2 into the lighter one
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Figure 5.10: MDM−σe and MDM−σp parameter spaces for the benchmark choices mV = 3MDM
and mϕ = 0.8MDM. The blue region delimits the area where the coannihilation model discussed
in Sec. 5.1.1 successfully reproduces both the observed dark matter relic abundance and the
511 keV gamma-ray line from the GC. The upper boundary of this blue region is obtained by
extracting σe and σp values from the constrained MDM − δ parameter spaces plotted in Fig.
5.9 for each different benchmark of DM density profile. The presented coannihilation model
succesfully explains the 511 keV line while matching the observed DM abundance for values
of cross sections down to σe, σp ' 10−48 cm2. The gray band excludes MDM & 20 MeV, since
these masses lead to an overproduction of high-energy positrons. As shown in Ref. [11], this
results in a broader spatial distribution of the diffuse gamma-ray emission than what is observed
by experiments such as COMPTEL, leading to tension with observational data. Additionally,
the pink band shows model-dependent limits. These results are obtained assuming a positron
injection rate within a sphere of radius r . 4 kpc around the GC of ' 2.5 · 1042 s−1 in the top
panels and ' 1043 s−1 in the panels below.
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χ1, can serve as a potential strategy to test this class of models.
In the near future, the increased sensitivity of low-threshold direct detection experiments, such
as XENON1T and CRESST, will provide further opportunities to probe the parameter space
of the coannihilation model examined in this work.
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Conclusions

The 511 keV gamma-ray line from the Galactic Center has posed one of the most persistent
puzzles in astrophysics for decades[6]. This line arises from the annihilation of electrons and
positrons into photons via para-positronium formation, where the positrons are produced by
an as-yet unidentified source. The intensity and morphology of this emission continue to elude
conventional astrophysical explanations, motivating the exploration of exotic mechanisms, in-
cluding those involving dark matter.

In Chapter 2 we went through the astrophysical evidence for dark matter, followed by a
review of its properties and an in-depth study of the theoretical foundation required to com-
pute relic abundances via the Boltzmann equation.
Moreover, we discussed the experimental constraints on dark matter, including those from
collider searches, direct and indirect detection experiments, as well as cosmological and astro-
physical observations.

In Chapter 3 we focused on analyzing the 511 keV line signal and its spatial morphol-
ogy. We showed that while positrons from decays of radioactive isotopes like 26Al can account
for part of the emission in the Galactic disk, they fail to explain consistently the intense signal
observed in the Galactic bulge[3, 162]. This opens the door to dark matter explanations of
the 511 keV line[11, 171]. The morphology of the signal favours DM annihilations over DM
decays, and that limits on the injection energy of the positrons give an upper limit on the dark
matter mass that could possibly explain the 511 keV line. Furthermore, using both standard
and generalized NFW profiles with dark matter spikes around the supermassive black hole at
the Galactic Center, we determined the positron injection rate required to explain the 511 keV
signal, and consequently derived the best-fit values of the thermally-averaged DM annihilation
cross section[11].

In Chapter 4, we investigated a p-wave annihilation dark matter model as a potential
explanation for the 511 keV gamma-ray line from the Galactic Center. The model features a
velocity-suppressed annihilation cross section, consistently explaining the 511 keV line, while
matching the observed DM relic abundance.
We showed that for suitable choices of model parameters, such as the dark matter mass, me-
diator mass, and couplings, the model can simultaneously fit the 511 keV signal and satisfy
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current cosmological, astrophysical, and experimental constraints. These include bounds from
supernova cooling, dark matter self-interactions, direct detection experiments like SENSEI and
DAMIC-M, and collider searches such as NA64. One of the main new results presented here is
an in-depth analysis of resonant enhancements in the dark matter annihilation cross section.
Based on this scenario, we organized the discussion into distinct regimes (resonant and non-
resonant regimes) according to the proximity to the resonance condition.
Overall, the p-wave model represents a testable scenario, and upcoming low-threshold direct
detection measurements may offer critical tests of its validity.

In Chapters 5, we explored a coannihilation dark matter model capable of simultaneously
accounting for the observed dark matter relic abundance and the 511 keV gamma-ray line from
the Galactic Center. This model involves two nearly degenerate dark sector states, where the
heavier component is depleted at late times by down-scattering processes, naturally suppressing
positron production today and satisfying stringent cosmological bounds.
We outlined the cosmological history of the heavier dark matter component χ2 over the age of
the Galaxy, computing its fractional abundance relative to the total dark matter density. In
scenarios where χ2 is not fully depleted by the present day, down-scattering processes, such as
χ2N → χ1N and χ2e

± → χ1e
±, can give rise to detectable signals in direct detection exper-

iments, offering promising experimental prospects. In contrast, up-scattering processes were
found to be kinematically forbidden across the parameter space considered, due to insufficient
kinetic energy to overcome the mass splitting δ.
The analysis showed that the coannihilation model that we have considered is consistent with
current experimental, cosmological and astrophysical limits, including those from the Cos-
mic Microwave Background (CMB), SN 1987A, and direct detection experiments such as
XENON1T and CRESST. Overall, the coannihilation model remains a viable and testable
explanation for the 511 keV line, with future low-threshold direct detection experiments ex-
pected to play a key role in probing its parameter space.

In both Chapters 4 and 5, we extended the previous work presented in Ref. [171] by incor-
porating updated constraints and applying new best-fit values of the dark matter annihilation
cross section, derived in Chapter 3. Most of the results presented in Chapters 4 and 5 are
original and I derived them for this thesis work.

A key feature of both scenarios analyzed in Chapters 4 and 5 is that they predict rates
of dark matter annihilations that depend on time. In this way, both models can explain the
dark matter relic abundance via thermal freeze-out and, at the same time, the 511 keV line,
which requires smaller cross sections than the freeze-out one. In addition, in both scenarios
the dark matter annihilation rates are suppressed at late cosmological times, which guarantees
that the energy injected into the intergalactic medium remains below the thresholds probed by
the CMB observations[27], thus satisfying current cosmological bounds.

While the two models present some similiraties, they also significantly differ in both their
theoretical structure and in the experimental signatures they offer. The p-wave annihilation
model, discussed in Chapter 4, features elastic scattering between dark matter and Standard
Model particles, allowing it to be probed via standard direct detection experiments, especially
as detector thresholds improve. In addition, we showed that observations of the Bullet Cluster
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can constrain the dark matter self-interacting cross sections, playing a significant role in the
phenomenological analysis of the p-wave model under consideration.

In contrast, the coannihilation model, discussed in Chapter 5, predicts inelastic interac-
tions between the two nearly-degenerate dark matter components. As a result, these processes
offer signals generally not testable by standard direct detection experiments, which are instead
designed to probe elastic scattering interactions. However, this model gives rise to down-
scattering processes, where the heavier dark matter state χ2 scatters off electrons or nuclei in
a detector, transitioning to the lighter state χ1 and depositing a measurable amount of energy.
These processes fall within the sensitivity range of current and upcoming low-threshold direct
detection experiments, thus representing a promising way to test the coannihilation model un-
der consideration.

Furthermore, for sufficiently small mass splitting between the two dark matter compo-
nents, in overdense regions of the Universe, such as the Milky Way, a virialization process can
occur. During this phenomenon, the up-scattering process χ1χ1 → χ2χ2 can reenter thermal
equilibrium over the age of the Galaxy, effectively repopulating the χ2 component. This regen-
eration mechanism allows to enhance down-scattering signals in direct detection experiments.
This phenomenon, however, does not affect the p-wave annihilation model, where such late-
time population dynamics are absent.

In summary, while both models are viable explanations for the 511 keV line, they present
some differences both in the theoretical predictions and the experimental signature they offer.
As a result, the combined data from direct detection, astrophysical observations, and cosmo-
logical measurements will be essential to discriminate between them in the near future.

Some aspects that can be further investigated in the near future include:

• Improved modeling of galactic dark matter spikes: the positron injection rate in both p-
wave and coannihilation scenarios is highly sensitive to the assumed dark matter density
profile near the Galactic Center, particularly the structure of the spike induced by the
supermassive black hole (See Figs. 4.5 and 5.10). A more refined treatment of dynamical
processes, such as baryonic feedback, stellar scattering, and gravitational heating, would
allow for more accurate predictions and better understanding of model viability.

• Future experiments and observations: the next generation of gamma-ray telescopes, such
as e-ASTROGAM[130] and AMEGO[131] could offer new data on the morphology of
the 511 keV line and potentially reveal other spectral features indicative of dark mat-
ter annihilation in the MeV range. Furthermore, upcoming low-threshold direct detec-
tion experiments[97, 189, 209] and CMB spectral distortion measurements[137] may offer
complementary tests on the parameter space of light dark matter models.

• Incorporation of more precise astrophysical modeling: a key limitation in interpreting
the 511 keV signal is the uncertainty in positron propagation. Future work incorporat-
ing realistic transport models of positrons in the interstellar medium, potentially using
GALPROP or PIC simulations, would reduce modeling uncertainties[6, 210].
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• New models exploration: new scenarios may be investigated in the future, such as slightly-
asymmetric dark matter, whose annihilation is naturally suppressed at late times due to
the particle-antiparticle asymmetry. Exploring its potential connection to the 511 keV
gamma-ray line from the Galactic Center could offer new insights into both the signal’s
origin and the dark matter nature.

Although further work is needed to refine the models analyzed in Chapters 4 and 5, our results
lend support to the hypothesis that the persistent 511 keV gamma-ray signal observed from
the Galactic Center could be linked to dark matter annihilation into e−e+ pairs, potentially
offering valuable insight into the fundamental properties of dark matter particles. To conclude,
a key point of this thesis, is that for both the p-wave annihilation model discussed in Chapter
4 and the coannihilation model discussed in Chapter 5, we identified new experimental and
observational tests of the dark matter explanation of the 511 keV gamma-ray line from the
Galactic Center.
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Appendix A

Early universe cosmology

In this appendix we provide a brief introduction to early universe cosmology, with a particular
focus on the thermal history of the universe.
In its earliest moments the universe was hot and dense and particles were in thermal equilibrium,
constantly interacting and exchanging energy within the thermal plasma. As the universe
expanded and cooled, these interactions gradually became less efficient, eventually leading to
the decoupling of various particle species. This transition is essential in order to understand the
relic abundance of particles such as dark matter. Moreover, departures from equilibrium were
essential for shaping the universe as we know it today, playing a central role in the formation
of the cosmic microwave background and the synthesis of the first light elements during Big
Bang nucleosynthesis.

A.1 The Friedmann equations
The cosmological principle stands as a foundational assumption in modern cosmology, asserting
that the universe is homogeneous and isotropic on sufficiently large scales. This principle is not
derived from first principles, but rather is a simplifying hypothesis grounded in observational
evidence.
The universe can be classified into three different categories:

• flat if it has zero curvature, meaning that k = 0;

• closed if it has positive curvature, meaning that k = 1;

• open if it has negative curvature, meaning that k = −1.

The cosmological metric used to describe the universe is the FLRW metric:

ds2 = dt2 − a(t)2
[

dr2

1− kr2 + r2(dθ2 + sin2 θdφ2)
]
, (A.1)

where a(t) is the scale factor, which measures how much the universe has expanded or con-
tracted since a given reference time.
By solving the Einstein equations, Gµν + Λgµν = 8πGTµν , by using the FLRW metric in Eq.
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Figure A.1: From top to bottom we have a closed universe, corresponding to a density parameter
Ω > 1, a hyperbolic universe, corresponding to Ω < 1 and a flat universe, corresponding to
Ω = 1. The density parameter of the universe is defined as Ω = ρ

ρc
, where ρ is the actual energy

density of the universe, including contributions from all components, like matter, radiation and
vacuum energy, while ρc is the critical density.
Reprinted from WMAP Science Team work, 2024, NASA. Retrivied from https:
//wmap.gsfc.nasa.gov/universe/uni_shape.html.

(A.1), we obtain the two Friedmann equations:
(
ȧ
a

)2 + k
a2 = 8πG

3 ρ

ä
a = −4πG

3 (ρ+ 3p)
(A.2)

Let us now consider a flat universe, which implies that k = 0; in this case the first Friedmann
equation reduces to

(
ȧ
a

)2 = 8πG
3 ρ. We can now divide the analysis into three different cases:

• for a flat and matter-dominated universe we have that

ρdust = ρm,0
a3 =⇒ ȧ2

a2 = 8πG
3a3 ρm,0 =⇒

√
ada =

√
8πGρm,0

3 dt =⇒ a(t) ∝ t2/3, (A.3)

where H0 = ȧ
a

∣∣∣∣
t=t0

is the Hubble constant today, ρdust is the energy density of dust, which

is pressurless matter and ρm,0 is the matter energy density today.

• For a flat and radiation-dominated universe we have that

ρrad = ρr,0
a4 =⇒ ȧ2

a2 = 8πG
3a4 ρr,0 =⇒ ada =

√
8πGρr,0

3 dt =⇒ a(t) ∝ t1/2, (A.4)

where ρr,0 is the the radiation energy density today.

https://wmap.gsfc.nasa.gov/universe/uni_shape.html
https://wmap.gsfc.nasa.gov/universe/uni_shape.html
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• For a flat and empty universe, dominated by a positive vacuum energy, we have that

ρΛ = Λ
8πG =⇒ ȧ2

a2 = Λ
3 =⇒ da

a
=

√
Λ
3 dt =⇒ a(t) = e

√
Λ
3 t, (A.5)

where Λ is the cosmological constant. In particular, we can notice that ρΛ remains
constant as the universe expands.

A.2 Equilibrium thermodynamics
A system of particles is said to be in kinetic equilibrium if the particles exchange energy and
momentum efficiently. In this state of maximum entropy, the distribution functions, depend-
ing on the particle’s quantum statistics, take the form of the Fermi-Dirac or Bose-Einstein
distributions:

f(p) = 1
e
E−µ
T ± 1

, (A.6)

where E =
√
p2 +m2 and µ is the chemical potential[211].

The + sign in Eq. (A.6) refers to fermions, while the − sign refers to bosons. In the non-
relativistic limit, where T � m, both the Fermi-Dirac and the Bose-Einstein distributions in
Eq. (A.6) reduce to the Maxwell-Boltzmann distribution. Indeed

1
e
E−µ
T ± 1

' e−E−µ
T . (A.7)

We can define the number density, the energy density and the pressure of a particle species
respectively as

n = g

(2π)3

∫
d3pf(p), (A.8)

ρ = g

(2π)3

∫
d3pf(p)E(p), (A.9)

P = g

(2π)3

∫
d3pf(p) |~p|

2

3E , (A.10)

where g is the number of internal degrees of freedom for the particle of interest. In particular:

• for a massless vector boson g = 2, which are the two transversal polarizations;

• for a massive vector boson g = 3, which are the two transversal polarizations in addition
to the longitudinal one;

• for a Dirac fermion g = 4;

• for a Majorana fermion g = 2;

• for a real scalar g = 1;

• for a complex scalar g = 2.
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We can solve the integrals in Eqs. A.8, A.9 and A.10 both in the relativistic limit, where
T � m and in the non-relativistic one, where T � m, and what we find is that

• for T � m the number density is given by
nB = ξ(3)

π2 gT 3 for bosons

nF = 3
4nB for fermions

, (A.11)

where ξ(3) is the Riemann zeta function, evaluated as ξ(n)
∣∣
n=3.

The energy density, instead, is given by
ρB = π2

30gT
4 for bosons

ρF = 7
8ρB for fermions

. (A.12)

Eventually, the pressure is given by P = ρ
3 .

• For T � m we have said that both the Fermi-Dirac and the Bose-Einstein distribution
in Eq. (A.6) reduce to the Maxwell-Boltzmann distribution in Eq. (A.7), so the number
density, energy density and pressure coincide for bosons and fermions. In particular:

n = g

(
mT

2π

)3/2
e−m−µ

T , (A.13)

ρ = mn, (A.14)
P = mT � mn = ρ. (A.15)

A.2.1 Thermal equilibrium

In the early universe temperatures were extremely high and particles interacted frequently,
maintaining thermal equilibrium. The evolution of the universe’s thermal state is governed by
a competition between two key quantities:

• the interaction rate Γ, which quantifies how often particles interact with each other and
it scales like Γ = n〈σv〉, where n is the number density of the particle species of interest,
while 〈σv〉 is the thermally averaged cross section;

• the Hubble parameter H, which describes the expansion rate of the universe. During
the radiation-dominated era it is defined as H =

√
8πGρr

3 , where G is the Newtonian
gravitational constant, while ρr is the radiation energy density, as written in Eq. (A.12).
Therefore, we can write that in the radiation-dominated era

H =

√
8πG

3
π2gρ
30 T 2 ' 1.67g1/2

ρ

T 2

Mpl
, (A.16)

where gρ counts the relativistic energy degrees of freedom and it is defined like

gρ(T ) =
∑
B

gB

(
TB
Tγ

)4
+ 7

8
∑
F

gF

(
TF
Tγ

)4
. (A.17)
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Here gB and gF quantify respectively the bosonic and fermionic internal degrees of free-
dom.

A particle species remains in thermal equilibrium as long as its interaction rate satisfies that
Γ � H, which implies that the corresponding interaction timescale, tc ≡ 1

Γ , is much smaller
than the Hubble time, tH ≡ 1

H . When Γ ∼ H, instead, the interaction rate becomes comparable
to the expansion rate and the particle species effectively starts decoupling from the the thermal
bath.

A.2.2 Conservation of entropy

To describe the evolution of the universe, it is helpful to track a conserved quantity. In cosmol-
ogy, entropy provides more valuable insights than energy and, according to the second law of
thermodynamics, the total entropy of the universe either increases or remains constant. More-
over, it can be demonstrated that entropy is conserved when the system is in equilibrium.
Now consider the second law of thermodynamics for a system in equilibrium, meaning that
µ = 0:

TdS = dU + PdV = ρdV + V dρ+ PdV =⇒ V dρ+ ρdV = TdS − PdV, (A.18)

where we have used that U = ρV . Moreover, we can write that S = sV , where s is the entropy
density, therefore

V dρ+ ρdV = T (V ds+ sdV )− PdV =⇒ dV (Ts− P − ρ)− V dρ+ TV ds = 0

=⇒ dV

V
(Ts− P − ρ)︸ ︷︷ ︸

A

+ (Tds− dρ)︸ ︷︷ ︸
B

= 0. (A.19)

We recall that the volume V is an extensive quantity, while the entropy density s and the
energy density ρ are intensive quantities. What is the difference?

• An extensive quantity depends on the size and amount of a substance and, therefore, it
is additive;

• an intensive quantity does not depend on the size of the substance that we are considering.

This implies that terms A and B are not related with each other and they vanish independently,
which means that

s = ρ+ P

T
. (A.20)

By using Eqs. A.12, A.13, A.14 and A.15, we recall that the energy density and pressure of
dust go respectively as ρm = mn ∝ (mT )3/2e−m

T and Pm = nT � ρm, while the energy density
and pressure of a relativistic particle species go as ρr ∝ T 4 and Pr = ρr

3 .

We can thus rewrite Eq. (A.20) as s = (ρm+ρr)+(Pm+Pr)
T , which is dominated by radiation

and, therefore, s ' ρr+Pr
T = 4

3
ρr
T .

We can express everything in terms of the photon temperature Tγ and, recalling the expression
for ρB in Eq. (A.12), we find that

s = 4
3
π2

30gsT
3
γ = 2π2

45 gsT
3
γ , (A.21)
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where gs takes into account the relativistic entropy degrees of freedom and it is defined as

gs(T ) =
∑
B

gB

(
TB
Tγ

)3
+ 7

8
∑
F

gF

(
TF
Tγ

)3
, (A.22)

This implies that from entropy conservation sa3 ∝ gsT
3
γ a

3 = const =⇒ Tγ ∝ g
−1/3
s a−1.

Therefore, the entropy stored in the relativistic degrees of freedom is transferred to the rest
of the plasma, increasing the temperature Tγ . Indeed, as the universe expands the energies of
the particles are redshifted, so some relativistic particles become non-relativistic and thus gs
decreases.
We show in Fig. A.2 the behaviour of gs(T ) with temperature.

Figure A.2: Evolution of gs(T ) with temperature in the Standard Model.
Reprinted from "Precise WIMP Dark Matter Abundance and Standard Model
Thermodynamics", by Ken’ichi Saikawa and Satoshi Shirai[54]

.

We notice from Eqs. A.17 and A.22 that if a particle species is in thermal equilibrium, then

TB = TF = Tγ =⇒
(
TB
Tγ

)3
=
(
TB
Tγ

)4
,

(
TF
Tγ

)3
=
(
TF
Tγ

)4
.

The situation changes instead for neutrinos, because they decoupled when relativistic, so they
are still counted in the relativistic degrees of freedom in Eqs. A.17 and A.22, but with a
temperature TF 6= Tγ , since they are not anymore in thermal equilibrium after decoupling
occurs.
At T . 0.5 MeV electrons and positrons are no longer relativistic, so we remain with only
photons and neutrinos as relativistic species. Therefore, we can write that

• gρ(T . 0.5 MeV) = 2 + 7
8 · 3 · 2

(
Tν
Tγ

)4
.

• gs(T . 0.5 MeV) = 2︸︷︷︸
photons

+ 7
8 · 3 · 2

(
Tν
Tγ

)3

︸ ︷︷ ︸
neutrinos

.
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As we have already said, shortly after neutrino decoupling, temperature drops to around
0.5 MeV, when e− and e+ annihilate. Their energy and entropy densities are transferred
to the photon bath but not to the decoupled neutrinos. Therefore, the photons are heated
relative to neutrinos. To quantify this effect, we calculate the change in the effective number
of degrees of freedom associated to entropy.
Since entropy is conserved before and after e−e+ annihilation, then

(gsa3T 3
γ )before = (gsa3T 3

γ )after. (A.23)

We can thus write that

(aTγ)before = (aTγ)after

(
gs,after
gs,before

)1/3
. (A.24)

Before e−e+ annihilation, in the thermal bath we have electrons, positrons and photons, so
gs,before = 2 + 7

8 · 4 = 11
2 . After e−e+ annihilation, instead, in the thermal bath we have only

photons, so gs,after = 2.
We can thus rewrite Eq. (A.25) as

(aTγ)before = (aTγ)after

( 4
11

)1/3
. (A.25)

Eq. (A.24) shows us that aTγ increases after e−e+ annihilation, while aTν remains the same26,
since neutrinos have already decoupled. This implies that the photon bath is heated with
respect to neutrinos, meaning that

Tν =
( 4

11

)1/3
Tγ . (A.26)

This is also shown diagramatically in Fig. A.3.
We can now compute

• gρ(T . 0.5 MeV) = 2 + 7
8 · 3 · 2 ·

(
4
11

)4/3
= 3.36.

• gs(T . 0.5 MeV) = 2 + 7
8 · 3 · 2 ·

4
11 = 3.91.

Eventually, by using the results of Refs. [54, 92], we can define

g
1/2
∗ (T ) = gs(T )

g
1/2
ρ (T )

(
1 + 1

3
d ln(gs(T ))
d ln(T )

)
. (A.27)

We show in Fig. A.4 the behaviour of g1/2
∗ (T ) with temperature.

prova

26Actually, in the instantaneous freeze-out approximation, after neutrino decoupling, occuring at a temperature
T ' 1 MeV, neutrino temperature Tν starts diverging from the temperature of the photon bath, as we can also
see from Fig. A.3. However, neutrinos do not really freeze-out instantaneously at T ' 1 MeV; therefore the
photon bath is effectively heaten with respect to neutrinos after e−e+ annihilation.
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Figure A.3: Heating of the photon bath with respect to netrinos after e−e+ annihilation.
Reprinted from "Cosmology", by Daniel Baumann, Insititute of Theoretical
Physics, University of Amsterdam[211]

.

Figure A.4: Evolution of g1/2
∗ (T ) with temperature in the Standard Model.

Reprinted from "Precise WIMP Dark Matter Abundance and Standard Model
Thermodynamics", by Ken’ichi Saikawa and Satoshi Shirai[54]

.

A.3 The Boltzmann equation
As already seen in App. A.2.1, a particle species is coupled to the SM plasma if Γ & H, while it
is decoupled from it when Γ . H, where we recall that Γ = n〈σv〉 is the interaction rate of the
particle we are considering and H is the Hubble parameter. Although this reasoning is usually
very accurate in determining the freeze-out temperature of the particle, a more precise way to



APPENDIX A. EARLY UNIVERSE COSMOLOGY 93

proceed is to track microscopically the particle’s phase space distribution function f(pµ, xµ),
through the Boltzmann equation[212]

L̂[f ] = Ĉ[f ], (A.28)

where Ĉ is the collision operator and L̂ is the Liouville operator, defined as

L̂ = pα
∂

∂xα
− Γαβγpβpγ

∂

∂pα
. (A.29)

We notice that the gravitational effects are taken into account inside the affine connection Γαβγ ,
in particular in the FLRW spacetime the phase space density is spatially homogeneous and
isotropic, meaning that f = f(|~p|, t) ≡ f(E, t).
Therefore, we can compute the Liouville operator in Eq. (A.29) for the FLRW metric in Eq.
(A.1), finding that

L̂[f(E, t)] = E
∂f

∂t
− ȧ

a
|~p|2 ∂f

∂E
, (A.30)

where ȧ
a takes into account the expansion of the universe.

Using now Eq. (A.8), we can write the time dependent number density as

n(t) = g

(2π)3

∫
d3p f(E, t) (A.31)

and, integrating by parts, we can rewrite the Boltzmann equation as

ṅ+ 3 ȧ
a
n = g

(2π)3

∫
Ĉ[f ]d

3p

E
, (A.32)

where the dot operator indicates a total derivate with respect to time and therefore ṅ ≡ dn
dt .

Let us now consider a generic scattering process ψ1 +ψ2 + · · · → ψa+ψb+ · · · . The right-hand
side of Eq. (A.32) can thus be written as

gψ
(2π)3

∫
Ĉ[f ]d

3pψ
Eψ

=−
∫
dΠ1dΠ2 · · · dΠadΠb · · · (2π)4δ(4)(p1 + p2 + · · · − pa − pb − · · · )

× [|M |2ψ1+ψ2+···→ψa+ψb+···f1f2 · · · (1± fa)(1± fb) · · · −
− |M |2ψa+ψb+···→ψ1+ψ2+···fafb · · · (1± f1)(1± f2) · · · ],

(A.33)

where fi is the phase space density of ψi and in (1±fi) we choose the plus sign if we are dealing
with bosons, whereas the minus sign applies to fermions. Moreover, dΠi is defined as

dΠi ≡
gi

(2π)3
d3pi
2Ei

, (A.34)

where gi takes into account the internal degrees of freedom of the ith particle that we are
considering.
We can also notice that δ(4)(p1 + p2 + · · · − pa − pb − · · · ) imposes energy and momentum
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conservation.
Moreover, assuming T or equivalently CP conservation, we can write that

|M |2ψ1+ψ2+···→ψa+ψb+··· = |M |2ψa+ψb+···→ψ1+ψ2+··· ≡ |M |2, (A.35)

where |M |2 is averaged over the initial spins and summed over the final ones.
This assumption is almost always valid apart from some specific cases, such as when we deal
with baryon asimmetry, where CP-symmetry violation is one of the three Sakharov conditions,
which need to be satisfied in order to generate dynamically a matter-antimatter asymmetry in
the universe.
In the limit that particles follow a Maxwell-Boltzmann statistics, then we can write that

1± fα = 1± e−Eα−µα
T ≈ 1, (A.36)

where Eα ≈ mα � T , since we are in the non-relativistic limit and mα is the mass of the αth

particle we are considering.
Exploiting those approximations, we can rewrite the Boltzmann equation A.32 as

ṅ1 + 3Hn1 =−
∫
dΠ1dΠ2 · · · dΠadΠb · · · (2π)4|M |2δ(4)(p1 + p2 + · · · − pa − pb − · · · )

× [f1f2 · · · − fafb · · · ],
(A.37)

where H ≡ ȧ
a .

We notice that if we do not have collisions between particles and thus Ĉ = 0, then ṅ1 +3Hn1 =
0 =⇒ n1 ∝ a−3. Indeed

ṅ1
n1

= −3H ≡ −3 ȧ
a

=⇒
∫
dn1
n1

= −3
∫
da

a
=⇒ ln(n1) ∝ −3ln(a) =⇒ n1 ∝ a−3. (A.38)

This shows that, in absence of collisions, the number of particles N1 = n1a
3 = const.

Let us now consider for simplicity a 2→ 2 scattering process, for which the Boltzmann equation
A.37 can be rewritten as

ṅ1 + 3Hn1 =
∫
dΠ1dΠ2dΠ3dΠ4(2π)4|M |2δ(4)(p1 + p2 − p3 − p4)[f3f4 − f1f2] (A.39)

and let us massage a little bit the terms appearing in the equation. Indeed, assuming that all
the particles involved are in kinetic equilibrium27 with each other, we can write that

f3f4 − f1f2 = e
(µ3+µ4)−(E3+E4)

T − e
(µ1+µ2)−(E1+E2)

T . (A.40)

Since energy is conserved, as imposed by δ(4)(p1 +p2−p3−p4), then we can rewrite Eq. (A.40)
as

f3f4 − f1f2 = e−E1+E2
T

[
e
µ3+µ4
T − e

µ1+µ2
T

]
. (A.41)

We can now define the equilibrium number density as

neq
1 = g1

(2π)3

∫
d3p1 e

−E1
T =⇒ n1 = neq

1 e
µ1
T , (A.42)

27Kinetic equilibrium between particles ensure that they mantain the same temperature T .
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while the thermally-averaged annihilation cross section times velocity is given by

〈σv〉ψ1+ψ2→ψ3+ψ4 = 1
neq

1 n
eq
2

∫
dΠ1 · · · dΠ4e

−E1+E2
T (2π)4δ(4)(p1 + p2 − p3 − p4)|M |2, (A.43)

where v ≡ vrel is the relative velocity between the two incoming particles ψ1 and ψ2. It is now
easy to see that we can rewrite the Maxwell-Boltzmann equation A.39 as

ṅ1 + 3Hn1 = neq
1 n

eq
2 〈σv〉

(
n3n4
neq

3 n
eq
4
− n1n2
neq

1 n
eq
2

)
, (A.44)

where, indeed, ninj
neq
i n

eq
j

= e
µi+µj
T , because of what is written in Eq. (A.42).

We also assume that ψ3 and ψ4 have thermal distributions with zero chemical potential, which
is a good assumption, since ψ3 and ψ4 will usually have additional interactions which are
stronger than the ones with ψ1 and ψ2. Under the assumption that µ3 = µ4 = 0, then Eq.
(A.44) becomes

ṅ1 + 3Hn1 = −〈σv〉
(
n1n2 − neq

1 n
eq
2

)
. (A.45)

An alternative way to rewrite the Boltzmann equation A.45 is to introduce the yield Y1 = n1
s ,

where s is the entropy density, in a such a way that

sẎ1 = s
ṅ1s− n1ṡ

s2 = ṅ1 − n1
ṡ

s
. (A.46)

Using the conservation of entropy, then we have that

d(sa3)
dt

= 0 =⇒ sa3 = const =⇒ s = a−3const =⇒ ṡ

s
= −3ȧa−4const

a−3const = −3H. (A.47)

Therefore, we can rewrite the left-hand side of the Boltzmann equation A.45 as ṅ1+3Hn1 = sẎ1.
Furthermore, since the interaction term will usually depend explicitely upon temperature,
rather than time, it is useful to introduce the variable x ≡ m

T , where m is any convenient mass
scale, usually taken as the mass of the particle of interest.
During the radiation-dominated epoch x and t are related by

t ' 0.3g− 1
2

ρ
Mpl
T 2 ' 0.3g− 1

2
ρ

Mpl
m2 x

2. (A.48)

Indeed, the first Friedmann equation in A.2, for a flat and radiation-dominated universe, can
be rewritten as (

ȧ

a

)2
= 8πG

3 ρr, (A.49)

where ρr is the radiation energy density, defined as in Eq. (A.12).
We can thus solve Eq. (A.49) as(

ȧ

a

)2
= 8πG

3
π2

30gρ(T )T 4 ∝ 8πG
3

π2

30
gρ(T )

g
4/3
s (T )a4

∝ a−4, (A.50)
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where we have used that, from conservation of entropy, the standard model temperature goes
as T ∝ gs(T )−1/3a−1. Developing the calculations of Eq. (A.50), we can find that

ȧa ∝ 1 =⇒ ada ∝ dt =⇒ a ∝
√
t. (A.51)

Having derived this, we can find a relation between time t and the Hubble constant H, indeed
we have that

H ≡ ȧ

a
= 1

2(
√
t)2 = 1

2t . (A.52)

On the other hand, using that in natural units the gravitational constant can be written as
G = 1

M2
pl

, we can find from Eq. (A.49) that

1
2t = H =

√
8π
3 ρr

Mpl
=

√
8π3

90 gρ
T 2

Mpl
' 1.67g1/2

ρ

T 2

Mpl
, (A.53)

where we have used the bosonic relativistic energy density expression in Eq. (A.12). We thus
recover the relation in Eq. (A.48), using that x ≡ m

T .
Considering an annihilation process of the form ψ̄ψ → X̄X, we can rewrite the Boltzmann
equation A.45 as

sẎψ = −〈σv〉[ n2
ψ︸︷︷︸

s2Y 2
ψ

− (neq
ψ )2︸ ︷︷ ︸

s2(Y eq
ψ

)2

] =⇒ Ẏψ = −〈σv〉[Y 2
ψ − (Y eq

ψ )2]s. (A.54)

Next, we can also write that

dYψ
dx

= dYψ
dt

dt

dx
' Ẏψ0.6g−1/2

ρ

Mpl
m2
ψ

x, (A.55)

where we have used Eq. (A.48). Manipulating a little bit the terms and exploting Eq. (A.53),
we find that

Ẏψ = dYψ
dx

1
x

1.67g1/2
ρ

m2
ψ

Mpl︸ ︷︷ ︸
≡H(mψ)

= dYψ
dx

H(mψ)
x

. (A.56)

The Boltzmann equation, written in terms of the temperature, thus becomes

dYψ
dx

= − x〈σv〉
H(mψ) [Y 2

ψ − (Y eq
ψ )2]s. (A.57)

We can now use this Boltzmann equation to compute the freeze-out temperature Tfo and the
relic yield Y∞ of a massive particle, as illustrated schematically in Fig. A.5.
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Figure A.5: Freeze-out scenario of a massive particle. The dashed line is the actual abundance,
while the solid line is the equilibrium abundance. Moreover, 〈σA|v|〉 indicates the thermal
average of the annihilation cross section times velocity.
Reprinted from "The Early Universe", by E. W. Kolb & M. S. Turner, 1990,
Taylor & Francis[212]

.

riga di prova



Appendix B

Cross sections and decay rates
computations

A four-component Dirac spinor field, indicated as ψ(x), can be seen as made up of two mass-
degenerate two-component spinor fields, χα(x) and ηα(x), which possess opposite U(1)-charge
and it is defined as:

ψ(x) ≡

χα(x)
η†α̇(x)

 , (B.1)

where α and α̇ are spinorial indices, used respectively to indicate a left-handed spinor, which
transforms according to the

(1
2 , 0
)

representation, and a right-handed spinor, which transforms
according to the

(
0, 1

2
)

representation[213].
Therefore, it is useful to introduce the chiral spinors but first of all we need to define the chiral
projection operators: 

PL ≡ 1
2(1− γ5) =

(
δ β
α 0
0 0

)

PR ≡ 1
2(1+ γ5) =

0 0
0 δα̇

β̇

 . (B.2)

The left and right-handed Weyl spinors are thus defined as:
ψL(x) ≡ PLψ(x) =

(
χα(x)

0

)

ψR(x) ≡ PRψ(x) =
(

0
η†α̇(x)

) . (B.3)

We can then defined the Dirac conjugate fields ψ̄(x) and the charge conjugate field ψC(x) as:

ψ̄(x) ≡ ψ†(x)γ0 =
(
ηα(x) χ†

α̇(x)
)

ψC(x) ≡ Cψ̄T (x) =

 ηα(x)
χ†α̇(x)

 . (B.4)

98
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A fermion is said to be a Majorana fermion if it satisfies the Majorana condition, namely
ψ(x) = ψC(x), which implies that

ψM (x) =

χα(x)
χ†α̇(x)

 . (B.5)

We can thus make some conversions between the 2-component spinor notation and the 4-
component spinor notation, in particular:

• for a Dirac fermion we can write that ψ̄iψj = ηiχj + χ†iη†
j ;

• for a Majorana fermion we can write that ψ̄iMψMj = ξiξj + ξ†iξ†
j .

B.1 Compute cross sections and decay rates with Mathematica
Mathematica is a widely used computational software in particle physics, providing powerful
tools for symbolic and numerical calculations. In particular, it allows to use packages like
FeynCalc [214, 215], FeynArts [216, 217], and FeynRules[218], which help to calculate cross
sections and decay rates.
These packages can be used to efficiently handle complex calculations, automate the gener-
ation of Feynman rules, and perform loop-level computations, making them indispensable in
high-energy physics research and phenomenology.
FeynArts is an independent package from FeynCalc, but the output generated by the former
can be used by the latter to evaluate the corresponding amplitudes. However, since many of the
functions in FeynArts have the same names as those in FeynCalc, loading both packages in the
same Mathematica session typically results in a large number of warnings. One workaround is
to first generate the amplitudes with FeynArts, save them in a notebook, then restart Mathe-
matica, reopen the notebook, and only then load FeynCalc to evaluate the amplitudes. While
this solution works, there is a quicker way to operate. It is reccomended, indeed, to modify
FeynArts by renaming its functions, preventing any conflicts and allowing both FeynArts and
FeynCalc to be used together in the same session.
FeynRules is another essential package in Mathematica, which allows to define theoretical mod-
els in terms of the interaction Lagrangian, and then automatically derives the corresponding
Feynman rules, including vertices, propagators, and coupling constants. FeynRules supports
both the Standard Model and beyond, making it versatile for a wide range of particle physics
calculations. It integrates with other packages like FeynCalc and FeynArts, enabling a smooth
workflow for generating Feynman diagrams, computing amplitudes, and evaluating cross sec-
tions and decay rates.
Having said that, FeynRules can thus be used to define and create new Beyond-the-Standard-
Model (BSM) theories by specifying a Lagrangian for the new interactions and particles. To
create a BSM model, we can define the fields, the interactions involved, and the coupling con-
stants in the Mathematica environment. Once the model is specified, FeynRules automatically
generates the Feynman rules for the interactions, including vertices and propagators, which can
then be used to compute scattering amplitudes, cross sections, and decay rates. Once we have
finished with FeynRules, we can export these generated Feynman rules to other programs, such
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as FeynCalc or MadGraph, for further analysis and simulation. This makes it a powerful tool
for model-building and phenomenological studies in high-energy physics.

B.1.1 Definition of new BSM models in Mathematica

We can start creating a new model by writing all the information characterizing it, such as the
model’s name and the contact details of the authors. We can also define the particle content
of the new theory and the corresponding Lagragian.
We can consider as simple example the p-wave Lagrangian in Eq. (4.4), in order to understand
how to implement a new model in the Mathematica envinronment. Below we report the defi-
nition of all the model’s parameters:

M$ModelName = "pWave";

M$Information = {
Authors -> {"Michael Mancini"},
Institutions -> {"Unibo"},
Emails -> {"michael.mancini2@studio.unibo.it"},
Date -> "October 29, 2024"

};

M$Parameters = {

yD == {
ParameterType -> External,
ParameterName -> yD,
Description -> "DM Yukawa coupling constant"

},

ge == {
ParameterType -> External,
ParameterName -> ge,
Description -> "electron Yukawa coupling constant"

}
};

M$ClassesDescription = {

F[1] == {
ClassName -> chi,
ParticleName -> "\[Chi]",
PropagatorLabel -> "\[Chi]",
SelfConjugate -> True,
Mass -> m\[Chi]

},
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F[2] == {
ClassName -> e,
ParticleName -> "e",
PropagatorLabel -> "e",
SelfConjugate -> False,
Spin -> 1/2,
Mass -> me

},

S[1] == {
ClassName -> S,
ParticleName -> "S",
PropagatorLabel -> "S",
SelfConjugate -> True,
Spin -> 0,
Mass -> mS

}
};

LP = i*chibar.Ga[mu].DC[chi, mu] + i*ebar.Ga[mu].DC[e, mu]
+ 1/2 del[S, mu] del[S, mu] + 1/2*yD*chibar.chi*S + ge*ebar.e*S
- me*ebar.e - m\[Chi]*chibar.chi - 1/2*mS*S^2;

We can now use this new model, written in a "pWave.fr" file to generate Feynman rules and
compute the cross sections or decay rates of the proccesses of interest.
We now report below how to work with FeynCalc, FeynArts and FeynRules, avoiding shadow-
ing problems, in order to compute the cross section relative to χχ→ e−e+ as a useful example.

Quit[];
FR$Parallel = False;
$FeynRulesPath = SetDirectory["Directory of the FeynRule package"];
<< FeynRules‘;
SetDirectory["Directory of the p-wave model generated with FeynRules"];
LoadModel["pWave.fr"];
WriteFeynArtsOutput[LP, Output -> "pWave"];

$ContextPath = DeleteCases[$ContextPath, "FeynRules‘"];

$LoadAddOns = {"FeynArts"};
<< FeynCalc‘
$FAVerbose = 0;

top2To2 = CreateTopologies[0, 2 -> 2, ExcludeTopologies -> {WFCorrections}];
diags2To2 = InsertFields[top2To2, {F[1], F[1]} -> {F[2], -F[2]},
InsertionLevel -> {Classes}, Model -> FileNameJoin[{"pWave", "pWave"}]];
Paint[diags2To2, ColumnsXRows -> {3, 1}, Numbering -> None, SheetHeader -> None,
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ImageSize -> {768, 256}];
amp = FCFAConvert[CreateFeynAmp[diags2To2], IncomingMomenta -> {p1, p2},
OutgoingMomenta -> {p3, p4}, ChangeDimension -> 4, List -> False, Contract -> True]
// Simplify

amp = DiracSimplify[%]

ampSq = amp ComplexConjugate[amp];
FermionSpinSum[ampSq]/4;
ampSq = DiracSimplify[%]

This code written in Mathematica will first generate the Feynnman diagram relative to the
process we are considering, in this case χχ → e−e+ and then it will compute the amplitude
squared.
In the following we will show computations, which have been in the first instance performed
by hand and then checked exploiting Mathematica and the packages mentioned above.

B.2 Cross sections compuations
In this appendices’ section we will report the computation for some scattering processes, in
particular the ones relative to the p-wave model discussed in App. B.2.1 and the ones relative
to the coannihilation model discusses in App. B.2.2[171].
In doing so, we will use apposite Feynman rules for fermion-number-violating interactions, since
we deal with Majorana fermions, which violate the lepton number[219].

B.2.1 p-wave model

Computation of χe− → χe− cross section

By using the lagrangian in Eq. (4.4), we can compute the cross section for DM-e elastic
scattering; the process to consider is thus χ(p1)e−(p2)→ χ(p3)e−(p4).
First of all, we can depict in Fig. B.1 the Feynman rules to use in order to compute the cross
section.

S

e−

e+

= ige

χ

χ

S = iyD

Figure B.1: Feynman rules for the p-wave model.

We can then draw the Feynman diagram relative to the process we are considering as illustrated
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in Fig. B.2.

χ χ

e− e−

q S

Figure B.2: DM-e elastic scattering

The corresponding scattering amplitude can be written as:

iM = i2yDgeū4u2
i

q2 −m2
S

ū3u1 = −i yDge
q2 −m2

S

ū4u2ū3u1, (B.6)

where ui ≡ u(si, pi), with si and pi which are respectively the spin and the four-momentum of
the i-th particle.
Given two generic spinors ψ1 and ψ2, we can infer that ψ̄1ψ2 is a Lorentz scalar and therefore
we can write that:

(ψ̄1ψ2)∗ = (ψ̄1ψ2)† = (ψ†
1γ

0ψ2)† = ψ†
2 γ

0†︸︷︷︸
γ0

ψ1 = ψ̄2ψ1, (B.7)

where (ψ̄1ψ2)∗ = (ψ̄1ψ2)†, because the transpose of a number coincides with the number itself.
Having said that, we can write that:

−iM∗ = i
yDge

q2 −m2
S

ū2u4ū1u3, (B.8)

from which follows that

|M |2 = (yDge)2

(q2 −m2
S)2 (ū4u2ū2u4)(ū3u1ū1u3). (B.9)

In computing the χe− → χe− cross section, we assume that both the dark matter particle χ
and the electron e− are unpolarized in their initial states. This is a standard and physically
well-justified assumption, since both particles are expected to be non-relativistic and randomly
oriented in the GC environment.
Using the following relation: ∑

s

uiūi = /pi +mi, (B.10)

the unpolarized scattering amplitude reduces to

|M |2unp = 1
4
∑
s

|M |2 = (yDge)2

4(q2 −m2
S)2 Tr[(/p4 +me)(/p2 +me)]Tr[(/p1 +mχ)(/p3 +mχ)]. (B.11)
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Traces are a direct consequence of the use of spinorial indices; for the sake of clarity we will
explicit all the spinorial indices for each spinor, so that we can rewrite ūu in spinorial notation
as ūαuα, being ūu a scalar.
As an example, we can write∑

s2,s4

(ū4αu2αū2βu4β) =
∑
s2,s4

(u4βū4αu2αū2β) = (/p4 +me)βα(/p2 +me)αβ =

= [(/p4 +me)(/p2 +me)]ββ = Tr[(/p4 +me)(/p2 +me)].
(B.12)

We now want to calculate the two traces:

• Tr[(/p4 +me)(/p2 +me)] = p4αp2β Tr[γαγβ]︸ ︷︷ ︸
4gαβ

+m2
e Tr[1]︸ ︷︷ ︸

4

= 4(p2 · p4 +m2
e);

• Tr[(/p1 +mχ)(/p3 +mχ)] = 4(p1 · p3 +m2
χ).

We can thus rewrite the unpolarized scattering amplitude, exploiting what we have obtained,
as:

|M |2unp = 4(yDge)2

(q2 −m2
S)2

(
p2 · p4 +m2

e

)(
p1 · p3 +m2

χ

)
. (B.13)

We can study the scattering in the center of mass frame and, supposing that the particles move
in the y-z plane, the four-momenta can be written as:

p1 =


Eχ
0
0
|~p|

 , p2 =


Ee
0
0
−|~p|

 , p3 =


Eχ
0

|~k| sin θ
|~k| cos θ

 , p4 =


Ee
0

−|~k| sin θ
−|~k| cos θ

 (B.14)

where |~k| ≡ k = p ≡ |~p| because we are dealing with an elastic scattering.
We can now rewrite the unpolarized scattering amplitude in terms of the Mandelstam variable
t as

|M |2unp =
y2
Dg

2
e(t− 4m2

e)(t− 4m2
χ)

(t−m2
S)2 . (B.15)

We recall that the Mandelstam variable t is defined as t ≡ (p1 − p3)2, where

p1 − p3 =


0
0

−p sin θ
p− p cos θ

 . (B.16)

This implies that

(p1 − p3)2 = −p2 sin2 θ− (p− p cos θ)2 = −p2 sin2 θ− p2 − p2 cos2 θ+ 2p2 cos θ = 2p2(cos θ− 1).
(B.17)

For a 2→ 2 scattering process in the center of mass we can write the differential cross section
as

dσ

dΩ

∣∣∣∣
CM

=
|M |2unp

64π2E2
CM

pf
pi︸︷︷︸
1

, (B.18)
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where pf
pi

= 1 again because we are dealing with an elastic scattering, while E2
CM = s, where s

is another Mandelstam variable defined as s ≡ (p1 + p2)2.
The differential cross section thus becomes

dσ

dΩ

∣∣∣∣
CM

=
y2
Dg

2
e(t− 4m2

e)(t− 4m2
χ)

64π2s(t−m2
S)2 . (B.19)

Moreover, we can also write that

s ≡ (p1 + p2)2 = (Eχ + Ee)2 = m2
e +m2

χ + 2p2 + 2
√

(m2
e + p2)(m2

χ + p2). (B.20)

If we then integrate over the solid angle and we expand around p ≈ 0, we get as final result for
the cross section in the center of mass frame

σe = (yDge)2

π

µ2
eDM
m4
S

, (B.21)

where µeDM = memχ
me+mχ is the reduces mass.

Computation of χχ→ e−e+ cross section

We now consider DM particles annihilating into electron and positron through a decaying real
scalar S, namely χ(p1)χ(p2)→ e−(p3)e+(p4).
The Feynman rules to use are the same of Fig. B.1, while the scattering process can be depicted
as in Fig. B.3.

χ

χ

e−

e+

q

S

Figure B.3: DM annihilation process.

The corresponding scattering amplitude can be written as

iM = i2yDgeū3v4
i

q2 −m2
S + imSΓS

v̄2u1 = − iyDge
q2 −m2

S + imSΓS
ū3v4v̄2u1, (B.22)

where ΓS is the width relative to decaying scalar S and i
q2−m2

S+imSΓS
is the full Breit-Wigner

propagator for an unstable particle.
As before, we can compute the unpolarized scattering amplitude averaging over the initial spins
and summing over the final ones, getting as result

|M |2unp = (yDge)2

4(q2 −m2
S)2 +m2

SΓ2
S

Tr[(/p3 +me)(/p4 −me)]︸ ︷︷ ︸
4(p3·p4−m2

e)

Tr[(/p1 +mχ)(/p2 −mχ)]︸ ︷︷ ︸
4(p1·p2−m2

χ)

. (B.23)
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Computing the traces, and checking the results in Mathematica, we get as result

|M |2unp = 4(yDge)2

(q2 −m2
S)2 +m2

SΓ2
S

(p3 · p4 −m2
e)(p1 · p2 −m2

χ). (B.24)

I can rewrite everything in terms of the Mandelstam variable s = (p1 + p2)2 = (p3 + p4)2 as

|M |2unp = (yDge)2

(s−mS)2 +m2
SΓ2

S

(s− 4m2
e)(s− 4m2

χ). (B.25)

We can now proceed to compute the differential cross section, which as befor, is defined in the
center of mass frame as

dσ

dΩ

∣∣∣∣
CM

=
|M |2unp
64π2s

pf
pi
, (B.26)

where in this case pf
pi
6= 1.

We can study the scattering in the center of mass frame and, supposing that particles move in
the y-z plane, the four-momenta can be written as:

p1 =


Eχ
0
0
|~p|

 , p2 =


Eχ
0
0
−|~p|

 , p3 =


Ee
0

|~k| sin θ
|~k| cos θ

 , p4 =


Ee
0

−|~k| sin θ
−|~k| cos θ

 , (B.27)

where, by imposing the on-shell conditions p2
i = m2

i , we get|~p| ≡ p =
√
E2
χ −m2

χ

|~k| ≡ k =
√
E2
e −m2

e

. (B.28)

We can massage a little bit these terms noticing that the total energy in the center of mass
frame is given by ECM = 2Eχ = 2Ee =⇒ E2

χ = E2
e = E2

CM
4 = s

4 . This allows to rewrite the
momenta in Eq. (B.28) as p = 1

2

√
s− 4m2

χ

k = 1
2
√
s− 4m2

e

. (B.29)

The differential cross section thus becomes

dσ

dΩ

∣∣∣∣
CM

= (yDge)2

64π2s

(s− 4m2
e)3/2

√
s− 4m2

χ

(s−mS)2 +m2
SΓ2

S

. (B.30)

Integrating over the solid angle, we can obtain the cross section in the center of mass frame
which is given by

σ
∣∣
CM =

∫
dΩ dσ

dΩ

∣∣∣∣
CM

= (yDge)2

16πs
(s− 4m2

e)3/2
√
s− 4m2

χ

(s−mS)2 +m2
SΓ2

S

. (B.31)

We can now express everything in terms of the relative velocity between the colliding DM
particles. In general, the relative velocity between two particles is defined as

vij =

√
(pi · pj)2 −m2

im
2
j

EiEj
. (B.32)
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In our case, the relative velocity is

vrel =

√
(p1 · p2)2 −m4

χ

E2
χ

, (B.33)

which, exploiting the four-momenta as defined in Eq. (B.27), becomes

vrel =

√
(E2

χ + p2)2 −m4
χ

E2
χ

=

√
m4
χ + 4p4 + 4p2m2

χ −m4
χ

m2
χ + p2 =

2p
√
m2
χ + p2

m2
χ + p2 = 2p√

m2
χ + p2

.

(B.34)
Taylor expanding the relative velocity around p ≈ 0, we get

vrel = 2p
mχ

+O(p2) =⇒ p ' mχvrel
2 . (B.35)

Exploiting this result, we can rewrite the Mandelstam variable s in terms of the relative velocity
as

s = (p1 + p2)2 = E2
CM = 4E2

χ = 4m2
χ + 4p2 ' 4m2

χ +m2
χv

2
rel. (B.36)

Therefore, we can rewrite the cross section in Eq. (B.31) in terms of the relative velocity and
expanding around vrel ≈ 0, we get

σvrel = v2
rel

(yDge)2

8π

m2
χ

(
1− m2

e
m2
χ

)3/2

(mS − 4m2
χ)2 +m2

SΓ2
S

. (B.37)

The decay rate of the scalar particle S , denoted as ΓS , is computed explicitly in Sec. B.3.1

Computation of χχ→ χχ cross section

In this paragraph we consider DM self-interacting processes that may occur in the p-wave
model, namely χ(p1)χ(p2) → χ(p3)χ(p4). We exploit the Feynman rules depicted in Fig. B.1
in order to compute the cross section. We can draw instead the Feynman diagrams relative to
the process we are considering as illustrated in Fig. B.4.

χ

χ

χ

χ

q

S

χ χ

χ χ

k S

χ

χ

χ

χ

r S

Figure B.4: DM self-interacting processes.

The corresponding scattering amplitude can be written as

iM = − iy2
D

q2 −m2
S + imSΓS

v̄2u1ū3v4 −
iy2
D

k2 −m2
S

ū3u1ū4u2 + iy2
D

r2 −m2
S

ū4u1ū3u2, (B.38)
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where the plus sign in the last term is due to the fact that in the u-channel we are exchanging
two fermion lines with respect to the t-channel and imSΓS in the s-channel is added in order
to study the process close to the resonance regime. Moreover we can write that

q = p1 + p2

k = p1 − p3

r = p1 − p4

. (B.39)

We can study the scattering in the center of mass frame and, supposing that the particles move
in the y-z plane, the four-momenta can be written as:

p1 =


Eχ
0
0
|~p|

 , p2 =


Eχ
0
0
−|~p|

 , p3 =


Eχ
0

|~k| sin θ
|~k| cos θ

 , p4 =


Eχ
0

−|~k| sin θ
−|~k| cos θ

 , (B.40)

where p ≡ |~p| =
√
E2
χ −m2

χ = ~k ≡ k.
Therefore, we can write that

• s = (p1 + p2)2 = 4E2
χ = 4m2

χ + 4p2;

• t = (p1 − p3)2 = −p2 sin2 θ − p2 − p2 cos2 θ + 2p2 cos θ = 2p2(cos θ − 1);

• u = (p1 − p4)2 = −p2 sin2 θ − p2 − p2 cos2 θ − 2p2 cos θ = −2p2(cos θ + 1).

We want to work in the non-relativistic limit, therefore, integrating over the solid angle and
then expanding around p ' 0, we get as result

σself =
y4
Dm

2
χ

4πm4
S

. (B.41)

Moreover, we have two identical particles in the final state, so we should divide Eq. (B.41) by
2, obtaining as final result

σself =
y4
Dm

2
χ

8πm4
S

. (B.42)

B.2.2 Coannihilation model

Computation of χ1χ2 → e+e− cross section

Let us now compute the cross section relative to the χ1(p1)χ2(p2)→ e−(p3)e+(p4) coannihila-
tion process, by using the lagrangian in Eq. (5.1)
First of all, we can depict in Fig. B.5 the Feynman rules to use in order to compute the cross
section.
We can then draw the Feynman diagram relative to the process we are considering as illustrated
in Fig. B.6.
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e−

e+

γ V = −iεeγµ

χ1

χ2

V = −gDγµ

Figure B.5: Feynman rules for the coannihilation model.

χ1

χ2

e−

e+

V γ

q

Figure B.6: e−e+ production in the coannihilation model.

The corresponding scattering amplitude can be written as

iM = −εegDū3γ
νv4

1
q2 −m2

V

(
− gµν + qµqν

m2
V

)
v̄2γ

µu1, (B.43)

where qµ = pµ1 + pµ2 .
From the Dirac equation (iγµ∂µ −m)ψ(x) = 0 we get that

(γµpµ︸ ︷︷ ︸
/p

−m)us(p) = 0 if ψ(x) = us(p)e−ip·x

(/p+m)vs(p) = 0 if ψ(x) = vs(p)eip·x
. (B.44)

Equivalently, introducing the Dirac conjugate spinor ψ̄(x) = ψ†(x)γ0, from the Dirac equation
ψ̄(x)(iγµ←−∂ µ +m) = 0 we get that{

ūs(p)(−/p+m) = 0 if ψ̄(x) = ūs(p)eip·x

v̄s(p)(/p+m) = 0 if ψ̄(x) = v̄s(p)e−ip·x . (B.45)

Summarizing, we thus have that{
(/p−m)us(p) = ūs(p)(−/p+m) = 0
(/p+m)vs(p) = v̄s(p)(/p+m) = 0

. (B.46)

We can notice that in the scattering amplitude in Eq. (B.43) we have something similar, indeed:

qµv̄2γ
µu1 = v̄2(/p1 + /p2)u1 = v̄2 /p1u1︸ ︷︷ ︸

mχ1u1

+ v̄2/p2︸︷︷︸
−mχ2 v̄2

u1 = v̄2u1(mχ1 −mχ2) = v̄2u1δ ' 0 (B.47)
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since δ � mχ1 ,mχ2 . Therefore the qµqν term in the scattering amplitude in Eq. (B.43) gives
zero contribution and therefore we remain with

iM = εegD
q2 −m2

V

ū3γ
µv4v̄2γµu1. (B.48)

As usual, we can compute the unpolarized scattering amplitude averaging over the initial spins
and summing over the final ones, getting as result

|M |2unp = ε2e2g2
D

4(q2 −m2
V )2 Tr[(/p4 −me)γν(/p3 +me)γµ]Tr[(/p2 −MDM)γµ(/p1 +MDM)γν ], (B.49)

where we have used that mχ1 ' mχ2 ≡MDM.
Computing the traces with the use of Mathematica, we get

|M |2unp = 8ε2e2g2
D

(q2 −m2
V )2 [m2

e p1 ·p2 +M2
DM p3 ·p4 +p1 ·p4p2 ·p3 +p1 ·p3p2 ·p4 +2m2

eM
2
DM]. (B.50)

We now want to rewrite the unpolarized scattering amplitude in Eq. (B.50) in terms of the
Mandelstam variables, therefore we recall that

• (p1 + p2)2 = (p3 + p4)2 ≡ s

=⇒ s = p2
1 + p2

2︸ ︷︷ ︸
2M2

DM

+2p1 · p2 =⇒

p1 · p2 = s−2M2
DM

2
p3 · p4 = s−2m2

e
2

.

• (p1 − p3)2 = (p2 − p4)2 ≡ t
=⇒ t = p2

1 + p2
3︸ ︷︷ ︸

M2
DM+m2

e

−2p1 · p3 =⇒ p1 · p3 = p2 · p4 = −t+M2
DM+m2

e

2 .

• (p1 − p4)2 = (p2 − p3)2 ≡ u
=⇒ u = p2

1 + p2
4︸ ︷︷ ︸

M2
DM+m2

e

−2p1 · p4 =⇒ p1 · p4 = p2 · p3 = −u+M2
DM+m2

e

2 .

We can rewrite the unpolarized scattering amplitude in Eq. (B.50) as:

|M |2unp = [2m4
e+2M4

DM+2m2
e(2M2

DM+s−t−u)+2M2
DM(s−t−u)+t2+u2] 2ε2e2g2

D

(s−m2
V )2 . (B.51)

We can study the scattering in the center of mass frame and, supposing that the particles move
in the y-z plane, the four-momenta can be written as:

p1 =


EDM

0
0
|~p|

 , p2 =


EDM

0
0
−|~p|

 , p3 =


Ee
0

|~k| sin θ
|~k| cos θ

 , p4 =


Ee
0

−|~k| sin θ
−|~k| cos θ

 , (B.52)

where we have used again that mχ1 ' mχ2 ≡MDM.
Therefore, we can write that

t = (p1 − p3)2 = m2
e +M2

DM − 2EDMEe + 2pk cos θ, (B.53)
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where |~p| ≡ p =
√
E2

DM −M2
DM

|~k| ≡ k =
√
E2
e −m2

e

. (B.54)

Moreover, using that ECM = 2EDM = 2Ee =
√
s, we can write that

t = m2
e +M2

DM −
s

2 + 2

√
s2

16 −
sm2

e

4 − sM2
DM

4 +m2
eM

2
DM cos θ. (B.55)

As for u instead, we can write that

u = (p1 − p4)2 = m2
e +M2

DM − 2EDMEe − 2pk cos θ

= m2
e +M2

DM −
s

2 − 2

√
s2

16 −
sm2

e

4 − sM2
DM

4 +m2
eM

2
DM cos θ.

(B.56)

Therefore, the unpolarized scattering amplitude becomes

|M |2unp = ε2g2
De

2

s−m2
V

[4m2
e(4M2

DM cos2 θ + s sin2 θ) + s(4M2
DM sin2 θ + s cos2 θ + s)]. (B.57)

We now recall that the differential cross section for a 2→ 2 scattering process is calculated as in
Eq. (B.26), where now pf

pi
= k

p . Moreover, we can rewrite k and p in terms of the Mandelstam
variable s as k =

√
E2
e −m2

e =
√

s
4 −m2

e = 1
2
√
s− 4m2

e

p =
√
E2

DM −M2
DM =

√
s
4 −M

2
DM = 1

2

√
s− 4M2

DM

. (B.58)

Using Eqs. B.57 and B.58, we can write the differential cross section as

dσ

dΩ

∣∣∣∣
CM

= ε2e2g2
D

64π2s(s−m2
V )

√
s− 4m2

e√
s− 4MDM

2 ·

· [4m2
e(4M2

DM cos2 θ + s sin2 θ) + s(4M2
DM sin2 θ + s cos2 θ + s)].

(B.59)

Integrating over the solid angle, we get

σ
∣∣
CM =

∫
dσ

dΩ

∣∣∣∣
CM

dΩ = ε2e2g2
D

12πs(s−m2
V )2

√
s− 4m2

e

s− 4M2
DM

(2M2
DM + s)(2m2

e + s). (B.60)

Recalling the expression for the relative velocity in Eq. (B.36), we can rewrite Eq. (B.60) in
term of the vrel and expand everything around vrel ' 0, obtaining as result

σ
∣∣
CM = 4ε2αeg

2
D

M2
DM +m2

e/2
(m2

V − 4M2
DM)2

√
1− m2

e

M2
DM

, (B.61)

where we have introduced the fine structure constant αe = e2

4π .
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Computation of χiχi → ϕϕ cross section

Let us now compute the cross section relative to the χ(p1)χ2(p2)→ ϕ(p3)ϕ(p4) process.
In addition to the Feynman rules illustrated in Fig. B.5, we can depict other Feynman rules
useful for the process in Fig. B.7.

χ1

χ2

ϕ
= −i

√
2yφ

ϕ

ϕ

ϕ
= iλϕ3

Figure B.7: DM-scalar coupling.

We can then draw the Feynman diagram relative to the process we are considering as illustrated
in Fig. B.8.

χi

χi

ϕ

ϕ

q

ϕ

χi ϕ

χi ϕ

χi

χi

ϕ

ϕ

χi

χi

Figure B.8: Inelastic scattering in the coannihilation model.

In the limit that yφvφ
λϕ3
� 1, the last two Feynman diagrams in Fig. B.8 are subdominant with

respect to the first one.
The corresponding scattering amplitude can thus be written as

iM =
√

2yφλϕ3 v̄2u1
i

q2 −m2
ϕ

. (B.62)

We can now find the unpolarized scattering amplitude averaging over the initial spins, finding
that

|M |2unp =
(yφλϕ3)2

2(q2 −m2
ϕ)2 Tr[(/p1 +MDM)(/p2 −MDM)]︸ ︷︷ ︸

4(p1·p2−M2
DM)

= 2
(yφλϕ3)2

(q2 −m2
ϕ)2 (p1 · p2 −M2

DM), (B.63)

where we have used that mχ1 ' mχ2 'MDM.
We can study the scattering in the center of mass frame and, supposing that the particles move
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in the y-z plane, the four-momenta can be written as:

p1 =


EDM

0
0
|~p|

 , p2 =


EDM

0
0
−|~p|

 , p3 =


Eϕ
0

|~k| sin θ
|~k| cos θ

 , p4 =


Eϕ
0

−|~k| sin θ
−|~k| cos θ

 , (B.64)

where we can write that
|~p| ≡ p =

√
E2

DM −M2
DM =

√
s
4 −M

2
DM = 1

2

√
s− 4M2

DM

|~k| ≡ k =
√
E2
ϕ −m2

ϕ =
√

s
4 −m2

ϕ = 1
2

√
s− 4m2

ϕ

. (B.65)

Using the four-momenta in Eq. (B.64), we can write that

p1 · p2 = E2
DM + p2 = M2

DM + 2p2 (B.66)

and thus the unpolarized scattering amplitude becomes

|M |2unp = 4
(yφλϕ3)2

(s−m2
ϕ)2 p

2, (B.67)

where we have used that (p1 + p2)2 = q2 = 4E2
DM ≡ s.

We now use Eq. (B.26) to compute the differential cross section, where pf
pi

= k
p , so that we get

dσ

dΩ

∣∣∣∣
CM

=
(yφλϕ3)2

16π2s(s−m2
ϕ)2kp (B.68)

and integrating over the solid angle, we remain with

σ
∣∣
CM =

(yφλϕ3)2

4πs(s−m2
ϕ)2kp. (B.69)

We can now use Eq. (B.65) to rewrite the cross section in Eq. (B.69) as

σ
∣∣
CM =

(yφλϕ3)2

16πs(s−m2
ϕ)2

√
s− 4M2

DM

√
s− 4m2

ϕ. (B.70)

Now, using Eq. (B.36) and expanding around vrel ' 0, we can write that

σvrel = v2
rel

(yφλϕ3)2

32π(4M2
DM −m2

ϕ)2

√
1−

m2
ϕ

M2
DM

. (B.71)

Moreover, we can notice that in the final state we have two indistinguishable particles ϕ, so we
multiply the cross section times velocity in Eq. (B.71) by 1

2 , obtaining as final result

σvrel = v2
rel

(yφλϕ3)2

64π(4M2
DM −m2

ϕ)2

√
1−

m2
ϕ

M2
DM

. (B.72)
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Computation of χ2χ2 → χ1χ1 cross section

Let us now compute the cross section relative to the χ2(p1)χ2(p2)→ χ1(p3)χ1(p4) process. We
can use the Feyman rules depicted in Fig. B.5 in order to perform computations. We can also
draw the Feynman diagrams relative to the process we are considering, as illustrated in Fig.
B.9.

χ2 χ1

χ2 χ1

q V

χ2

χ1

χ1

χ2

k V

Figure B.9: Feynman diagrams relative to the χ2χ2 → χ1χ1 scattering process.

The corresponding scattering amplitude can thus be written as

iM = ig2
Dū3γ

µu1

(
− gµν + qµqν

m2
V

)
q2 −m2

V

ū4γ
νu2 − ig2

Dū3γ
νu2

(
− gµν + kµkν

m2
V

)
k2 −m2

V

ū4γ
µu1, (B.73)

where the minus sign in the second term is due to the fact that the exchange of two fermionic
lines introduces a minus sign.
Exploting again the Dirac equations as we did in App. B.2.2, we can write that

ū3γ
µu1qµ = ū3/qu1 = ū3(/p1 − /p3)u1 = ū3mχ2u1 − ū3mχ1u1 = ū3 (mχ2 −mχ1)︸ ︷︷ ︸

δ

u1

= δū3u1.

(B.74)

In the same way
ū4γ

µu1kµ = δū4u1. (B.75)

Since δ � mV , we can neglect both the qµqν
m2
V

and the kµkν
m2
V

term in Eq. (B.73), which thus
becomes

iM = − ig2
D

t−m2
V

ū3γ
µu1ū4γµu2︸ ︷︷ ︸

iMt

+ ig2
D

u−m2
V

ū3γ
µu2ū4γµu1︸ ︷︷ ︸

iMu

. (B.76)

Therefore, we can write that

|M |2 = |Mt|2 + |Mu|2 + 2Re(M∗
tMu), (B.77)
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from which follows the unpolarized scattering amplitude, averaging over the initial spins and
summing over the final ones:

|M |2unp = g4
D

4(t−m2
V )2 Tr[(/p3 +mχ1)γµ(/p1 +mχ2)γα]Tr[(/p4 +mχ1)γµ(/p2 +mχ2)γα]

+ g4
D

4(u−m2
V )2 Tr[(/p3 +mχ1)γµ(/p2 +mχ2)γα]Tr[(/p4 +mχ1)γµ(/p1 +mχ2)γα]

− g4
D

2(t−m2
V )(u−m2

V )Tr[(/p1 +mχ2)γµ(/p3 +mχ1)γα(/p2 +mχ2)γµ(/p4 +mχ1)γα]

(B.78)

We can study the scattering in the center of mass frame and, supposing that the particles move
in the y-z plane, the four-momenta can be written as:

p1 =


Eχ2

0
0
|~p|

 , p2 =


Eχ2

0
0
−|~p|

 , p3 =


Eχ1

0
|~k| sin θ
|~k| cos θ

 , p4 =


Eχ1

0
−|~k| sin θ
−|~k| cos θ

 , (B.79)

where we can write that
|~p| ≡ p =

√
E2
χ2 −m2

χ2 =
√

s
4 −m2

χ2 = 1
2

√
s− 4m2

χ2

|~k| ≡ k =
√
E2
χ1 −m2

χ1 =
√

s
4 −m2

χ1 = 1
2

√
s− 4m2

χ1

. (B.80)

Indeed, the center of mass energy is
√
s = ECM = 2Eχ2 = 2Eχ1 .

As always, we can compute the differential cross section as defined in Eq. (B.26). Moreover,
we can write that

• t = (p1 − p3)2 = m2
χ1 +m2

χ2 − 2Eχ1Eχ2 + 2pk cos θ

= m2
χ1 +m2

χ2 −
s

2 + 1
2
√

(s− 4m2
χ1)(s− 4m2

χ2) cos θ

• u = (p1 − p4)2 = m2
χ1 +m2

χ2 − 2Eχ1Eχ2 − 2pk cos θ

= m2
χ1 +m2

χ2 −
s

2 −
1
2
√

(s− 4m2
χ1)(s− 4m2

χ2) cos θ

.

In the limit that mχ1 ' mχ2 ' MDM and using that s ' 4M2
DM + M2

DMv
2
rel, if we expand

around vrel ' 0, we get as final result that

σ
∣∣
CM = g4

DM
2
DM

4πm4
V

. (B.81)

Moreover, since in the final state we have two identical particles, we should divide by 2 the
cross section in Eq. (B.81), obtaining

σ
∣∣
CM = g4

DM
2
DM

8πm4
V

. (B.82)

This result coincides at first order with Eq. B1 of Ref. [191] in the limit that m1 ' m2 and
expanding around vrel ' 0.
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B.3 Decay rates computation

B.3.1 Computation of ΓS
In this appendices’ section we compute the decay rate for the scalar S, indicated as ΓS , for the
p-wave model discussed in Sec. 4.1.
Since we assume that mS > mχ > me, then S has two decay channels:

• S → e−e+.

• S → χχ.

Computation of S → e−e+ decay rate

Let’s start by computing S(p1) → e−(p2)e+(p3), whose Feynman diagram is the one depicted
in Fig. B.10.

S

e+

e−

Figure B.10: Feynman diagram relative to ΓS → e−e+

The corresponding scattering amplitude is

iM = igeū2v3. (B.83)

Summing over the final spin states we can find the unpolarized scattering amplitude:

|M |2unp =
∑
s

|M |2 = g2
eTr[(/p2 +me)(/p3 −me)] = 4g2

e(p2 · p3 −m2
e). (B.84)

In the center of mass reference frame the decaying particle is at rest and, assuming that the
particles are moving in the y − z plane, we can write the corresponding four-momenta as

p1 =


mS

0
0
0

 , p2 =


Ee
0

|~k| sin θ
|~k| cos θ

 , p3 =


Ee
0

−|~k| sin θ
−|~k| cos θ

 , (B.85)

where k ≡ |~k| =
√
E2
e −m2

e.
Moreover, we can write that

p2
1 = m2

S = (p2 + p3)2 = 2m2
e + 2p2 · p3 =⇒ p2 · p3 = m2

S

2 −m
2
e, (B.86)
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from which follows the unpolarized scattering amplitude

|M |2unp = 4g2
e

(
m2
S

2 − 2m2
e

)
= 2g2

em
2
S

(
1− 4m2

e

m2
S

)
. (B.87)

The differential decay rate is defined as

dΓ =
|M |2unp
2mS

dΠ2, (B.88)

where
dΠ2 = dΩ

16π2
|~pf |
ECM

, |~pf | ≡ k =
√
E2
e −m2

e. (B.89)

We can now write that

p1 · p2 = mSEe =⇒ Ee = p1 · p2
mS

= (p2 + p3) · p2
mS

= m2
e + p2 · p3
mS

=
/m2
e + m2

S
2 − /m2

e

mS

= mS

2 .

(B.90)

At this point, we can write that

k =

√
m2
S

4 −m
2
e = mS

2

√
1− 4m2

e

m2
S

. (B.91)

Moreover, E2
CM = (p2 + p3)2 = p2

1 = m2
S and thus we can write that

dΓ
dΩ =

|M |2unp
32π2mS

/mS

2 /mS

√
1− 4m2

e

m2
S

= g2
e

32π2 /mS
m
/2
S

(
1− 4m2

e

m2
S

) 3
2

= g2
e

32π2mS

(
1− 4m2

e

m2
S

) 3
2
. (B.92)

Integrating over the solid angle, we get as result

ΓS→e−e+ =
∫
dΓ
dΩdΩ = g2

e

8πmS

(
1− 4m2

e

m2
S

) 3
2
. (B.93)

Computation of S → χχ decay rate

We now compute the decay rate for S(p1) → χ(p2)χ(p3), whose Feynman diagram is the one
depicted in Fig. B.11.
Here the computation is really similar to the one in Sec. B.3.1, so we will go fast through it.
We can write the unpolarized scattering amplitude as

|M |2unp = y2
D(p2 · p3 −m2

χ). (B.94)
We can now compute the differential decay rate as in Eq. (B.88), finding

dΓ
dΩ = y2

D

32π2mS

(
1−

4m2
χ

m2
S

) 3
2
. (B.95)

Integrating over the solid angle and dividing by 2 the result due to the fact that we have two
identical particles in the final state, we find

ΓS→χχ = y2
D

16πmS

(
1−

4m2
χ

m2
S

) 3
2
. (B.96)

We can now find the total decay rate for the new scalar S as ΓS = ΓS→e+e+ + ΓS→χχ, using
Eqs. B.93 and B.96. Consequently the lifetime of S is given by τS = 1

ΓS .
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χ

χ

S

Figure B.11: Feynman diagram relative to ΓS→χχ

B.4 Masses and couplings
In this section we want to derive the masses for all the particles involved in the coannihilation
model discussed in Sec. 5.1.1, whose Lagrangian in the one written in Eq. (5.1).
We recall that we can write φ in polar coordinates as φ = |φ|ei

θ
vφ , where θ is a Goldstone

bosons and |φ| = ϕ+vφ√
2 . In the unitary gauge the Goldstone boson disappears and we remain

with φ = φ∗ = ϕ+vφ√
2 .

In particular, in the unitary gauge we can write:

L ⊃ − yφ√
2

(ϕ+ vφ)(χ2
2 − χ2

1)− m̄

2 (χ2
1 + χ2

2) (B.97)

The mass terms are the ones proportional to the VEV vφ, therefore

L ⊃ − yφ√
2
vφ(χ2

2 − χ2
1)− m̄

2 (χ2
1 + χ2

2) ≡ −mi

2 (χ2
2 + χ2

1). (B.98)

By manipulating a little bit the terms in the Lagrangian we get

L ⊃ χ2
1

2

(
−m̄+ 2yφ√

2
vφ︸ ︷︷ ︸

−m̄+ δ
2

)
+ χ2

2
2

(
−m̄− 2yφ√

2
vφ︸ ︷︷ ︸

−m̄− δ
2

)
≡ −mi

2 (χ2
2 + χ2

1), (B.99)

where δ = 2
√

2yφvφ. Therefore, we obtain m1,2 = m̄∓ δ
2 .

The mass of ϕ comes from the term inside the potential V (|φ|) in Eq. (5.2) proportional to
vφϕ

2, namely

λφv
2
φϕ

2 ≡
m2
ϕ

2 ϕ2 =⇒ m2
ϕ = 2λφv2

φ. (B.100)

Eventually, we can also find the mass of the dark photon V µ, through the Higgs mechanism
mediated by the scalar φ.
The dark kinetic term takes the form:

(Dµφ)∗Dµφ = (∂µ − igDqφVµ)φ∗(∂µ + igDqφV
µ)φ, (B.101)

where gD is the U(1)′ coupling constant and qφ is the charge of the scalar φ = 1√
2(ϕ+ vφ).

Therefore, we get:

(Dµφ)∗Dµφ ⊃
v2
φ

2 g
2
Dq

2
φVµV

µ ≡ m2
V

2 VµV
µ =⇒ mV = gDqφvφ. (B.102)
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Since from Ref. [171] we know that φ has charge qφ = 2, we can write the mass of the dark
photon as mV = 2gDvφ.



Appendix C

Resonant dark matter

The expression resonant dark matter refers to a particular class of models where the DM
annihilation is significantly enhanced due to a resonance condition, which occurs when the
mediator’s mass approaches twice the DM’s mass, namely mmed ' 2MDM. In this limit, we
should write the DM annihilation cross section as proportional to the Breit-Wigner propagator,
namely

σv ∝ 1
(s−m2

med)2 +m2
medΓ2

med
, (C.1)

where Γmed is the mediator’s width and s is the usual Mandelstam variable.

In the following we investigate the resonance regime of the p-wave model discussed in Chap-
ter 4.

C.1 Resonance regime analysis for p-wave models
The p-wave model discussed in Sec. 4.1 gives better results in the limit that mS → 2mχ, since
in the non-resonant regime, where mS � 2mχ, the mS − ge parameter space is significantly
contrained by experiments.
The cross section relative to the χχ → e−e+ annihilation process in Eq. (4.5) is derived by
Taylor expanding the original cross section around vrel ' 0. However, as already mentioned in
Sec. 2.3.2, in the vicinity of a resonance, the usual expansion in powers of vrel fails, since the
annihilation cross section changes sharply with energy and cannot be well approximated by a
low-velocity series[92]. We thus need to find a more precise expression for χχ → e−e+ cross
section, which can be written as

σvχχ→e−e+ = Af(vrel)
(s−mS)2 +m2

SΓ2
S

, (C.2)

where A is a constant, independent of vrel, while f(vrel), on the contrary, is a generic function
of the relative velocity. Recalling Eq. (B.36), we can write that

σvχχ→e−e+ = Af(vrel)
(4m2

χ +m2
χv

2
rel −m2

S)2 +m2
SΓ2

S

. (C.3)
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To parametrize deviations from unity in the ratio mS
2mχ , we can introduce a small quantity ε� 1,

such that mS
2mχ = 1 + ε. In this way, we can rewrite the cross section in Eq. (C.2) as

σv = Af(vrel)

16m4
χ

(
1 + v2

rel
4 −

m2
S

4mχ︸ ︷︷ ︸
(1+ε)2

)2
+ m2

S

4mχ︸ ︷︷ ︸
(1+ε)2

4m2
χΓ2

S

(C.4)

and developing all the computations, we obtain

σv = Af(vrel)
m4
χ(−4ε2 − 8ε+ v2

rel)2 + (1 + ε)24m2
χΓ2

S

, (C.5)

where, from Eq. (B.96), we have that

ΓS = ΓS→χχ + ΓS→e−e+ ' ΓS→χχ '
y2
D

16πmS

(
1−

4m2
χ

m2
S

)3/2
= y2

D

16πmS

[
1− 1

(1 + ε)2

]2
, (C.6)

since yD � ge and therefore S decays quickly into a χ− χ pair.
We can now rewrite (1 + ε)24m2

χΓ2
S as

(1 + ε)24m2
χ

y4
D

256π2m
2
S

[
1− 1

(1 + ε)2

]3
=

y4
D

256π2 16m4
χ(1 + ε)2 m2

S

4m2
χ︸ ︷︷ ︸

(1+ε)2

[
1− 1

(1 + ε)2

]3
=

y4
Dm

4
χ

16π2

[
(1 + ε)4/3 − 1

(1 + ε)2/3

]3
=

y4
Dm

4
χ

16π2

[
ε2 + 2ε

(1 + ε)2/3

]3

(C.7)

Using Eq. (C.7), we can rewrite Eq. (C.5) as

σv = Af(vrel)
m4
χ

1

(−4ε2 − 8ε+ v2
rel)2 + y4

D
16π2

[
ε2+2ε

(1+ε)2/3

]3 (C.8)

and, expanding
[

ε2+2ε
(1+ε)2/3

]3
around ε ' 0, we get

[
ε2 + 2ε

(1 + ε)2/3

]3
= 8ε3 − 4ε4 +O(ε5). (C.9)

Moreover, since ε � 1 and, if we want to ensure perturbativity, yD <
√

4π, we can ignore
higher terms in ε, obtaining

σv ' Af(vrel)
m4
χ

1
(v2

rel − 8ε)2 . (C.10)
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C.1.1 Thermal average computation

Given that the cross section in Eq. (C.10) depends on v2
rel, we evaluate the thermal average

〈v2
rel〉, which is distinct from the square of the average relative velocity, that is 〈vrel〉2, and

correctly accounts for the distribution of velocities in Eq. (C.10).
Specifically, given a generic quantity g(~v1, ~v2), we can define its thermal average as

〈g(~v1, ~v2)〉 = 1
N

∫
d3v1d

3v2g(~v1, ~v2)f(~v1)f(~v2), (C.11)

where f(~vi) =
(

m
2πT

)3/2
e−

m~v2
i

2T with i = 1, 2 are the distribution velocities of the incoming
particles, while N is a normalization constant defined in such a way that

〈1〉 = 1 = 1
N

∫
d3v1d

3v2f(~v1)f(~v2) =⇒ N =
∫
d3v1d

3v2f(~v1)f(~v2). (C.12)

Therefore, we are assuming that the incoming particles follow a Maxwell-Boltzmann distribu-
tion and that m1 = m2 ≡ m, which is our case.
Let us now rewrite everything in terms of the relative velocity, which is defined as in Eq. (B.33),
from which in the non-relativistic limit we obtain that

vrel '
2p
mχ

, (C.13)

where, in the center of mass (COM) frame and in the non-relativistic limit, p ≡ |~p| = m|~v1| =
m|~v2| is the modulus of the incoming particles. In the non-relativistic limit we can thus write
that ~vrel = ~v1 − ~v2. Furthermore, we recall that the COM velocity for a system of N particles
is defined as

~vCM = m1~v1 +m2~v2 + · · ·+mN~vN
m1 +m2 + · · ·+mN

. (C.14)

In our case we have two incoming particles with masses m1 = m2 ≡ m and, therefore, the
COM velocity is defined as ~vCM = ~v1+~v2

2 .
We can thus perform the change of coordinates {~v1, ~v2} → {~vrel, ~vCM}, whose Jacobian is equal
to 1 and this allows to rewrite the thermal average in Eq. (C.11) as

〈g(~vrel, ~vCM)〉 =
∫
d3vreld

3vCMh(~vrel, ~vCM)g(~vrel, ~vCM)∫
d3vreld3vCMh(~vrel, ~vCM) , (C.15)

where, using that 
~v1 = 2~vCM + ~vrel

2
~v2 = 2~vCM − ~vrel

2

, (C.16)

we obtain

h(~vrel, ~vCM) =
(
m

2πT

)3
e

−m
T

(
v2

CM+
v2

rel
4

)
. (C.17)
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It is possibe to notice that, if the function to be thermally-averaged is a function of vrel only,
the integral over d3vCM is a 3D Gaussian integral of the form

∫
dxdydze−α(x2+y2+z2) =

(∫
dxe−αx2

)3
=
(
π

α

)3/2
. (C.18)

Hence, we can write that

∫
d3vreld

3vCM

(
m

2πT

)3
e

−m
T

(
v2

CM+
v2

rel
4

)
=
∫
d3vrel

(
x

2π

)3
e−

xv2
rel
4

(∫
d3vCMe

−xv2
CM

)
︸ ︷︷ ︸(

π
x

)3/2

=
(
x

2π

)3(π
x

)3/2 ∫
d3vrele

−
xv2

rel
4 , 28

(C.19)

where we have defined x ≡ m
T , as usual.

Furthermore, to compute the integral over d3vrel, we can perform a change of spherical coordi-
nates, obtaining ∫

d3vrele
−
xv2

rel
4 = 4π

∫ ∞

0
dvrelv

2
rele

−
xv2

rel
4 . (C.20)

For instance, at FO, using Eqs. C.15, C.19 and C.20, we can write that

〈v2
rel〉 =

∫∞
0 dvrelv

4
rele

−
xfov

2
rel

4∫∞
0 dvrelv2

rele
−
xfov2

rel
4

= 6
xfo

. (C.21)

In first approximation we can thus write that at FO v2
rel ' 〈v2

rel〉 = 6
xfo

.

C.1.2 Relic abundance and 511 keV line in the resonant regime

At this point, we can determine the range of ε for which expanding the cross section in Eq.
(C.8) around vrel ' 0 provides a sufficiently accurate approximation. Specifically, we find that
for ε ≥ 0.27, the relative error introduced by the expansion remains below 33%. Therefore,
within this range, the velocity-averaged cross sections given in Eqs. (4.5) and (4.7) can be
reliably used. While the accuracy of the expansion improves with larger values of ε, we adopt
the conservative threshold of ε ≥ 0.27 for simplicity and clarity. This choice ensures that the
parameter space displayed in Fig. 4.2 remains sufficiently open and interpretable.

For sufficiently small values of ε , the cross section in Eq. (C.10) can be approximated
as

σv ' Af(vrel)
m4
χ

1
v4

rel
. (C.22)

28In general the distribution of velocities depend on temperature and, therefore, on x = m/T . However, we can
treat x as a constant within the integral in Eq. (C.19), since the thermal average is computed instantaneously
at a fixed cosmological time. The result of the integral can then be used in the Boltzmann equation, where x
evolves with the expansion of the universe.
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In particular, we find that for ε . 0.0064, the relative error introduced by this approximation
remains below 33%, justifying its validity.
However, ε cannot be taken too small, as the physical treatment of the problem requires that
the thermally-averaged annihilation cross section responsible for the 511 keV line signal, namely
〈σv〉511, remains much smaller than the freeze-out cross section, that is 〈σv〉fo. In particular,
to ensure consistency with the observed dark matter relic abundance and avoid overproduc-
tion of positrons, we require 〈σv〉511 . 〈σv〉fo, which implies a lower bound of approximately
ε & 5.3 · 10−5, even though we never reach such small values of ε.

In summary, we can state that for ε ≥ 0.27, it is a good approximation to use the cross
sections given in Eqs. (4.5) and (4.7), which are derived by expanding around vrel ' 0. How-
ever, in the range 5.3 · 10−5 . ε . 0.0064, we are too close to the resonance regime, where
the low-velocity expansion breaks down and no longer provides an accurate description of the
annihilation process.
In this region, a more appropriate treatment is required, and the corresponding thermally-
averaged cross sections can be approximated as:

〈σv〉511 '
y2
Dg

2
e

2πm2
χ

(
1− m2

e

m2
χ

)3/2 〈v2
rel〉

64ε2 , 〈v2
rel〉 ' (1.1 · 10−3)2;

〈σv〉fo '
y2
Dg

2
e

2πm2
χ

(
1− m2

e

m2
χ

)3/2〈 1
v2

rel

〉
,

〈 1
v2

rel

〉
= xfo

2 .

(C.23)

These expressions are obtained using the thermal average definition in Eq. (C.15), together
with the Maxwell-Boltzmann velocity distribution in Eq. (C.19) and the change to spherical
coordinates as described in Eq. (C.20). Specifically, one finds:

〈 1
v2

rel

〉
=

∫∞
0 dvrele

−
xfov

2
rel

4∫∞
0 dvrelv2

rele
−
xfov2

rel
4

= xfo
2 . (C.24)

This result highlights the different behavior of the thermal average depending on the velocity
regime and justifies the separation into distinct ε intervals.

In the intermediate ε regime, specifically for 0.0064 . ε < 0.27, neither of the previ-
ously discussed approximations is fully reliable. In this range, the system is too close to the
resonance for the low-velocity expansion around vrel ' 0 to remain valid, yet not sufficiently
resonant to apply the approximation discussed in the 5.3 ·10−5 . ε . 0.0064 regime. Therefore,
in order to obtain precise predictions for the annihilation rate, it becomes necessary to compute
the full thermally-averaged cross sections without relying to the procedure already discussed.
In this thesis we focus on the p-wave phenomelogy within the ranges 5.3 · 10−5 . ε . 0.0064
and ε ≥ 0.27, where the presented theoretical approximations still yield quite accurate results.
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