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Abstract

The development of novel PET imaging systems plays a key role in advancing in-beam

range verification techniques for particle therapy. Within the ERC-funded SIRMIO

project at LMU (www.lmu.de/sirmio), a compact, high-resolution PET scanner has

been developed to accurately monitor dose delivery in preclinical proton irradiation

studies. This thesis contributes to optimizing this technology by modeling and charac-

terizing the depth-of-interaction (DOI) detector response of a single detection module,

utilizing both experimental data and Geant4-based Monte Carlo simulations.

Experimental measurements were performed using a micro Derenzo phantom (Medi-

Lumine, Canada) filled with 18F-FDG, supplemented by acquisitions with a 22Na source.

A dedicated analysis pipeline, combining ROOT frameworks and custom Python scripts,

was developed to extract precise spatial and spectral response parameters for each detec-

tor pixel. Parameters analyzed include pixel positions, spatial spread, and per-channel

energy distributions.

The generated pixel-wise database provides detailed insights into the detector’s re-

sponse, significantly advancing the understanding of spectral and spatial features at the

pixel level. Although this pixel-wise model has not yet been implemented for event-level

filtering, it represents a critical step toward advanced classification methods aimed at

selectively retaining true 511 keV single-interaction events. Ultimately, this founda-

tional modeling work is expected to improve the overall spatial resolution, localization

accuracy, and imaging performance of the SIRMIO PET scanner.
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Chapter 1

Introduction

Cancer is a group of diseases characterized by uncontrolled cell growth, with the po-

tential to invade surrounding tissues or metastasize to distant organs. It remains a

leading cause of mortality worldwide, placing immense pressure on global health sys-

tems. In 2022, the European Union reported 2.74 million new cancer cases, leading to

approximately 1.3 million cancer-related deaths [1]

The incidence and mortality rates of cancer in Europe are projected to rise signifi-

cantly by 2040, primarily due to an aging population. Estimates suggest a 19% increase

in cancer diagnoses and a 27% rise in mortality compared to 2022, highlighting the dis-

proportionate impact of demographic changes and emphasizing the need for effective

intervention strategies [1].

The treatment of cancer involves several strategies, including chemotherapy, surgery,

radiotherapy, and immunotherapy. Radiotherapy, especially ion beam therapy, has

become notable for its accuracy in targeting tumors while reducing harm to nearby

healthy tissues. Progress in this area continues to influence current oncology practices,

tackling the difficulties presented by the rising incidence of cancer.

This chapter provides an overview of radiation therapy, including a comparative

analysis of photon and ion beam therapy, emphasizing their respective advantages and

challenges. Building on these considerations, it explores range verification techniques,

which form the basis for the motivation and objectives of this thesis. Additionally, the

chapter introduces the SIRMIO project, to which this thesis contributes, outlining its

role within this research framework. The chapter concludes by presenting the thesis

structure and objectives.

1.1 Radiotherapy and Ion Beam Therapy

The fundamental idea of Radiotherapy and Ion beam therapy lies in the controlled

deposition of energy within tumor cells to eliminate them or halt their replication.

1



Chapter 1. Introduction

Ideally, energy should be deposited only in the tumor region, minimizing exposure to

healthy tissue (Figure 1.1). For deep-seated tumors, this can be achieved using different

types of radiation, the most common are electromagnetic radiation (X-rays or γ-rays)

and charged particles (such as protons or carbon ions). Each type of radiation interacts

with matter through different physical interactions, explained in detail in Chapter 2,

leasing to a different energy deposited shape as shown in Figure (1.1)

Radiation-induced damage to cancer cells occurs via two primary mechanisms: di-

rect DNA ionization and indirect damage through reactive oxygen species. The cellular

response to radiation depends on biological factors (e.g., repair mechanisms) and ra-

diation parameters (e.g., type, energy, dose rate). While some cells successfully repair

damage and continue functioning, others undergo apoptosis or mitotic catastrophe if

the damage is irreparable.

Figure 1.1: Simplified depth dose distributions of photons and heavier charged particles

compared with the ideal dose distribution [2]

1.1.1 Radiotherapy

Radiotherapy originated in the late 19th century following Wilhelm Röntgen’s discovery

of X-rays in 1895 and Henri Becquerel and Marie Curie’s research on radioactivity.

The first reported cancer treatment using X-rays occurred in 1899 [3]. Subsequent

advancements, such as the introduction of linear accelerators (LINACs) in the 1950s,

enabled deeper tissue penetration while reducing collateral exposure [4].

Despite technological advancements, photon therapy’s dose deposition profile re-

mains a fundamental limitation. As shown in Figure 1.1, photon beams deposit energy

both before and beyond the tumor, increasing the risk of damage to healthy tissues and

secondary malignancies. To address these limitations, modern radiotherapy techniques

optimize dose distribution and tumor targeting through advanced imaging and beam

2



Chapter 1. Introduction

modulation methods:

• Intensity-Modulated Radiation Therapy (IMRT): Modulates photon beam inten-

sity across multiple angles to conform to tumor geometry [5].

• Volumetric Modulated Arc Therapy (VMAT): Delivers radiation in a continuous

arc, reducing treatment time while maintaining precision [6].

• Stereotactic Body Radiotherapy (SBRT): High-dose, image-guided therapy en-

abling precise targeting of small tumors [7].

While these methods enhance precision and optimize dose distribution, the inherent

limitations of photon therapy have led the scientific community to explore alternative

modalities, such as ion beam therapy, which offers distinct physical and biological ad-

vantages for treating deep-seated and radioresistant tumors.

1.1.2 Ion Beam Therapy

Ion beam therapy utilizes charged particles such as protons and carbon ions, which

interact with matter differently from photons, allowing for superior dose localization.

As illustrated in Figure 1.1, ion beams deposit most of their energy at a well-defined

depth, known as the Bragg peak, with a rapid dose falloff beyond this point. This

characteristic significantly reduces damage to surrounding healthy tissues [8].

This feature has profound clinical implications, enabling greater tumor control while

reducing normal tissue toxicity. Ion therapy is particularly effective for treating radiore-

sistant tumors [9]. Additionally, heavier ions such as carbon interact with biological

tissue in a way that leads to enhanced biological effectiveness, resulting in more lethal

DNA damage to tumor cells compared to conventional photon therapy.

Due to the well-defined depth-dose distribution of ion beams and their complete ab-

sorption within the target medium (unlike photons), precise localization of the Bragg

peak is crucial. Even slight deviations on the millimeter scale can result in significant

dose misplacement, potentially reducing tumor coverage or increasing exposure to sur-

rounding healthy tissues. Consequently, range uncertainties remain a major challenge

in ion beam therapy, arising from various factors:

• Hounsfield Unit (HU) to Relative Stopping Power (RSP) Conversion: Treatment

planning in ion therapy relies on X-ray CT imaging, which provides tissue infor-

mation in terms of Hounsfield Units (HU). However, converting HU to Relative

Stopping Power (RSP) is nontrivial, as it depends on tissue composition, density,

and imaging artifacts. Errors in this conversion introduce range uncertainties of

3



Chapter 1. Introduction

3–5%, which can translate typically to millimeter-scale deviations in dose deposi-

tion, particularly in heterogeneous tissues such as lung or bone [10].

• Patient Positioning and Anatomical Variations: The precise localization of the

Bragg peak is further complicated by patient-specific anatomical changes. Vari-

ations in organ filling, respiration, cardiac motion, and even weight loss over the

course of treatment can lead to shifts in the beam range [11].

• Statistical Effects and Nuclear Interactions: While ions primarily lose energy

through electromagnetic interactions, nuclear reactions and multiple Coulomb

scattering introduce additional complexities. Multiple Coulomb scattering broad-

ens the beam, reducing spatial precision, while nuclear interactions generate sec-

ondary particles, which can deposit dose beyond the intended treatment region.

These effects are particularly pronounced in heavier ions such as carbon, where

nuclear fragmentation can lead to increased dose uncertainties and unwanted bi-

ological effects in surrounding tissues [12].

To enhance treatment precision, in vivo range verification techniques such as PET

imaging, prompt gamma detection, and MRI images are actively being developed.

These methods leverage treatment plan simulations, quasi-real time imaging, and post

treatment validation to ensure accurate dose delivery [13].

1.2 Range Verification using PET

Among the various in vivo techniques developed for range verification in particle ther-

apy, Positron Emission Tomography (PET) has gained significant attention due to

its capacity to indirectly assess the beam range by imaging the distribution of positron-

emitting radionuclides generated during irradiation. Unlike other methods, PET does

not require additional radiation exposure and allows for post-treatment imaging, mak-

ing it clinically attractive.

When therapeutic ion beams such as protons or carbon ions interact with atomic

nuclei in tissue, they induce nuclear fragmentation reactions that produce unstable iso-

topes. Among these, 15O, 11C, and 13N are the primary contributors to the PET signal.

These nuclides undergo β+ decay, emitting positrons that subsequently annihilate with

electrons, producing two 511 keV photons emitted approximately 180 degrees apart.

The detection of these coincident photons by PET scanners allows for three-dimensional

reconstruction of the annihilation sites, indirectly reflecting the spatial distribution of

the activated nuclei [11].

A fundamental challenge in PET-based range verification is that the spatial distri-

bution of the activity does not directly coincide with the physical dose distribution.

4
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1H irradiation 12C irradiation 16O irradiation

Figure 1.2: Measured positron emission activity (solid line) and physical dose distribu-

tion (dashed line) in PMMA for different projectiles. The spatial mismatch between

activity and dose depends on ion species and their fragmentation behavior [14].

This is due to both the physical processes of radionuclide production and physiological

processes such as biological washout, in which metabolic activity and blood perfusion

cause the redistribution of positron-emitting isotopes away from their production sites.

These effects influence the accuracy of the measured PET signal in relation to the actual

dose administered to the target.

The correlation between PET signal and physical dose depends significantly on the

projectile type. For instance, protons only produce positron emitters through target

fragmentation, resulting in an activity distribution that is poorly correlated spatially

with the Bragg peak. In contrast, heavier ions such as 12C or 16O produce positron

emitters from both target and projectile fragmentation, leading to better correlated

activity profiles with respect to the Bragg peak position, as illustrated in Figure 1.2.

This discrepancy complicates the direct translation of PET signals into dose maps,

necessitating the integration of predictive models such as Monte Carlo simulations. By

leveraging these models and simulations, PET-based verification provides a non-invasive

means to assess ion beam range and verify dose delivery accuracy [13].

Figure 1.3: From left to right: Planned Dose, Monte Carlo predicted dose, Monte Carlo

predicted PET activity distribution, measured PET activity distribution [15].

Figure 1.3 illustrates a typical PET-based range verification workflow. By comparing

5
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the measured PET activity distribution with Monte Carlo predictions based on the

treatment plan, deviations in beam range or unexpected anatomical changes can be

detected.

PET Imaging Modalities for Ion Beam Therapy

PET-based range verification can be performed using different imaging strategies:

• In-beam PET: Imaging is carried out during irradiation, enabling quasi-real-

time monitoring of beam range and minimizing the impact of biological washout.

Despite its advantages, this modality presents significant technical challenges

due to interference from prompt gamma radiation and the need for specialized,

radiation-hardened detector systems [13].

• In-room PET: Imaging is performed immediately after irradiation, allowing

acquisition of activity distributions before prolonged physiological redistribution

occurs. This approach requires the installation of dedicated PET scanners in the

treatment room [11].

• Offline PET: Imaging is typically initiated within minutes after irradiation, us-

ing standard PET/CT scanners located outside the treatment room. While this

approach is widely accessible, it is more susceptible to biological washout and pa-

tient repositioning, potentially compromising the accuracy of the reconstructed

activity distributions [13].

Despite the clinical feasibility and non-invasive nature of PET-based range verifica-

tion, its accuracy remains limited by physiological and physical factors such as biological

washout, tissue heterogeneity, and the complexity of nuclear fragmentation pathways.

Continued development of predictive models, improved detector technology, and opti-

mized acquisition protocols are essential to enhance the reliability and clinical adoption

of this method in particle therapy.

1.3 SIRMIO Project

Building upon the discussion of ion beam therapy and its associated challenges, it

becomes evident that improving range verification techniques is essential to maximiz-

ing its clinical efficacy. Addressing these limitations in preclinical studies is a critical

step towards refining treatment strategies and enhancing therapeutic precision. The

SIRMIO project (Small Animal Proton Irradiator for Research in Molecular Image-

guided Radiation-Oncology) at LMU was established with this goal in mind. As stated

6



Chapter 1. Introduction

Figure 1.4: Outline of the work-packages (WPs) of the SIRMIO project: (1) beam-

line degrading and focusing the incoming clinical proton beam, (2) pre-treatment ion

transmission imaging (WP2-a), (3) ionoacoustics/US (WP2-b), and (4) PET systems

for in-vivo treatment verification (WP2-c), (5) system integration for treatment adap-

tation relying on pre-treatment proton CT images [16].

in [16], ”SIRMIO aims at realizing and demonstrating an innovative portable prototype

system for precision image-guided small animal proton irradiation, suitable for installa-

tion at existing clinical treatment facilities.” The project integrates precise dose delivery

with advanced anatomical image guidance and in vivo treatment verification, leveraging

proton computed tomography (pCT) and ultrasound imaging for anatomical mapping,

and ionoacoustics and positron emission tomography (PET) for range verification.

The project is structured into five interconnected work-packages, illustrated in Fig-

ure 1.4, each addressing key aspects of the system development. The main focus of this

thesis is the PET scanner component, emphasizing its current state of the art and the

challenges it seeks to overcome within the SIRMIO framework.

The project consists of five interdependent work-packages, detailed below:

• Beamline: This work package focuses on adapting and fine-tuning a clinical

proton beamline for small animal irradiation. It ensures precise control of beam

energy degradation, focusing, and monitoring to meet the spatial accuracy re-

quirements for preclinical studies.

• Mouse Holder: A specialized positioning system that guarantees reproducible

placement and immobilization of the subject during irradiation.

• Pre-Treatment Imaging: This includes proton radiography and computed to-

mography (pCT) imaging to acquire anatomical and tissue composition informa-

7



Chapter 1. Introduction

tion before irradiation. These modalities improve range accuracy by providing

essential input for treatment planning.

• Treatment Planning: Based on pre-treatment imaging, this package is respon-

sible for optimizing dose delivery, ensuring accurate treatment plans that account

for tissue heterogeneities and anatomical variations.

• In-Vivo Range Verification: This package integrates PET and ionoacoustic

imaging to monitor beam range in quasi-real time. By detecting positron-emitting

isotopes generated within irradiated tissues, PET provides a non-invasive means

of assessing ion beam range.

Among these, the PET scanner is the primary focus of this thesis and will be

explored in detail in Chapters 3 and 4, covering its design, data acquisition methods,

and performance evaluation.

1.4 Objective and Structure of the Thesis

This thesis focuses on the modeling and characterization of the detector response of an

in-beam PET scanner developed within the SIRMIO project. The main objective is to

analyze the detector behavior at the pixel level, using both experimental and simulation

data, to support improvements in image quality and reconstruction accuracy.

The structure of the thesis is as follows:

• Chapter 2: Theoretical Background

Provides an overview of fundamental physical principles relevant to photon de-

tection and PET imaging.

• Chapter 3: SIRMIO PET Scanner Overview

Introduces the PET scanner and its role in the SIRMIO project.

• Chapter 4: Materials and Methods

Describes the experimental setup and basic simulation tools used.

• Chapter 5: Data Processing

Outlines the main data analysis and pixel modeling strategies.

• Chapter 6: Data Analysis, Results and Discussion

Presents the results of the detector characterization and evaluates the model’s

performance.

• Chapter 7: Conclusions

Summarizes the findings and discusses future perspectives.

8



Chapter 2

Theoretical Background

This chapter explores the fundamental physical principles that govern photon interac-

tions with matter, with a particular emphasis on γ-ray detection mechanisms. Given

the focus of this research on modeling the PET detector response, the discussion will

not cover the interaction of charged particles with matter. While such interactions are

relevant to PET-based range verification, they fall beyond the direct scope of this study.

Readers seeking a more comprehensive treatment of such topics could refer to [17].

2.1 Photon Interaction with Matter

The interaction of photons with matter is a fundamental process in medical imaging

and radiation physics. In particular, X-rays and γ-rays play a crucial role in nuclear

reactions and diagnostic imaging techniques. In the context of this research, the focus

lies on γ-ray production and its interaction with matter, as these phenomena are central

to PET-based imaging. γ-radiation is defined as high-energy electromagnetic radiation

emitted from nuclear processes, in contrast to X-rays, which originate from atomic

transitions. These emissions predominantly arise from nuclear de-excitation events or

positron-electron annihilation, with energies typically ranging from 100 keV to several

tens of MeV [15].

Photon Attenuation Description

The propagation of photons through matter is governed by probabilistic interactions.

Unlike charged particles, which lose energy continuously along their path via multiple

small interactions, photons undergo discrete stochastic events that result in abrupt

changes in their energy and direction. These interactions lead to attenuation of the

photon beam as it traverses a medium, following an exponential decay law:

9



Chapter 2. Theoretical Background

N(x) = N0e
−µ(Eγ ,Z)x, (2.1)

where N(x) is the number of photons remaining after traveling a distance x, N0 is

the initial number of photons, and µ(Eγ, Z) is the linear attenuation coefficient, which

depends on the photon energy Eγ and the atomic number Z of the material.

The linear attenuation coefficient µ quantifies the probability of interaction per unit

path length and is influenced by:

• The microscopic cross-section σ, which characterizes the probability of photon

interaction per target nucleus.

• The nuclear density, expressed as n = ρNA

A
, where ρ is the mass density of the

material, NA is Avogadro’s number, and A is the atomic mass number.

These lead to the relationship:

µ = σρ
NA

A
, (2.2)

where σ is the total microscopic cross-section for photon interactions. In the energy

range relevant to medical imaging and therapy (typically 10 keV to several MeV), the

dominant photon interaction processes are:

σ = σphotoelectric + σCompton + σpair. (2.3)

Here:

• σphotoelectric corresponds to the photoelectric effect, dominant at low photon ener-

gies and in high-Z materials.

• σCompton describes incoherent scattering with atomic electrons, which predomi-

nates at intermediate energies.

• σpair accounts for pair production, relevant at energies above 1.022 MeV in the

field of a nucleus.

For completeness, other interaction mechanisms such as Rayleigh (coherent)

scattering and photonuclear reactions also contribute to photon attenuation. Rayleigh

scattering involves elastic interactions with bound electrons and is significant mainly

at low photon energies and small-angle scattering, but its contribution to energy depo-

sition is negligible. Photonuclear interactions, in which the photon is absorbed by the

nucleus causing nuclear excitation or particle emission, occur at higher energies (typi-

cally above 10 MeV) and are thus not relevant within the standard PET and diagnostic

imaging energy range.

10



Chapter 2. Theoretical Background

To account for variations in material density and facilitate comparisons across dif-

ferent substances, the attenuation coefficient is often normalized to yield the mass

attenuation coefficient:

µmass =
µ

ρ
, (2.4)

which expresses attenuation per unit mass and allows a more universal description

of photon interaction behavior in matter.

2.1.1 Photon Interaction Mechanisms

Photons interact with matter through different mechanisms depending primarily on

their energy and the atomic number (Z) of the absorbing material. The three principal

interaction mechanisms within the energy range relevant to radiation physics and med-

ical applications are the photoelectric effect, Compton scattering, and pair production.

Photoelectric Effect

The photoelectric effect is a fundamental photon interaction mechanism that dominates

at low photon energies, particularly in materials with a high atomic number (Z). In

this process, an incident photon is completely absorbed by an atom, transferring all

its energy to an electron, which is subsequently ejected from the atom, leading to

ionization, as illustrated in Figure 2.1).

The photoelectric effect occurs when the energy of the incident photon exceeds the

binding energy of the electron in one of the atomic shells. This interaction occurs

predominantly for inner shell electrons (e.g., K and L shells), as their higher binding

energies increase the likelihood of photon absorption. The probability of absorption is

further enhanced for high-Z materials due to their higher electron density and stronger

electromagnetic interaction [17] with incident photons, as shown in Figure 2.7. A char-

acteristic of this process is the sharp increase in absorption probability when the photon

energy exceeds the binding energy of an atomic shell, for K-shell interaction known as

the K-edge effect, as illustrated in Figure 2.8.

Following the ejection of a core electron, the atom remains in an excited ionized state

and undergoes electronic rearrangement to restore equilibrium. This process results in

the emission of secondary radiation in one of two forms:

• Characteristic X-ray Emission: The vacancy left in the inner shell is filled by

an electron from a higher energy shell. The excess energy from this transition

is emitted as a characteristic X-ray, with energy corresponding to the difference

between the two electron shells.

11
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Figure 2.1: Illustration of the photoelectric effect, where the incident photon is fully

absorbed and an electron is ejected [15].

• Auger Electron Emission: Instead of emitting an X-ray, the transition energy

can be transferred to another bound electron, which is subsequently ejected from

the atom as an Auger electron. This process can initiate a cascade of further

Auger emissions, leaving the atom in a multiply ionized state.

The kinetic energy of the emitted photoelectron is given by:

Ee = Eγ − Eb (2.5)

where Eb is the binding energy of the electron. The probability of photoelectric

absorption follows an approximate empirical relationship:

σph ∝ (Z)n

(Eγ)m
(2.6)

where n ≈ 4 − 5 and m ≈ 3.5. This dependency highlights the strong preference

for photoelectric absorption in high-Z materials, making it a crucial process in photon

detection. A key advantage of the photoelectric effect is the precise localization of

energy deposition, as the emitted photoelectron remains near the photon interaction

point. This contrasts with other process like Compton scattering, where the scattered

photon may travel further before depositing energy. This characteristic enhances spatial

resolution in photon detectors, making the photoelectric effect particularly valuable for

imaging applications.

Compton Scattering

Compton scattering is a fundamental photon interaction mechanism in the MeV en-

ergy range, making it especially relevant in medical photon detector. As illustrated in
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Figure 2.2, this process occurs when an incident photon undergoes an inelastic collision

with an atomic electron, transferring part of its energy to the electron, which is ejected

from the atom. The photon is scattered at an angle (θ) with reduced energy, while the

remaining energy is carried by the scattered electron.

Figure 2.2: Schematic representation of Compton scattering [15].

The extent of energy transfer depends on the scattering angle, influencing the pho-

ton’s trajectory and the kinetic energy of the ejected electron. The energy of the

scattered photon E ′
γ is given by the Compton formula:

E ′
γ =

Eγ

1 + Eγ

mec2
(1− cos θ)

(2.7)

where Eγ is the initial photon energy, me is the mass of the electron and θ is the

scattering angle. From Eq. (2.7), the kinetic energy of the recoiling electron, derived

from energy conservation, is:

Ee = Eγ − E ′
γ = Eγ

(
Eγ

mec2

)
(1− cos θ)

1 +
(

Eγ

mec2

)
(1− cos θ)

(2.8)

In this formulation, the electron binding energy is neglected, as it is small compared

to the photon and electron kinetic energies.

The electron kinetic energy varies from 0 (when θ = 0) to a maximum at θ = π

(backscatter). However, the maximum kinetic energy never equals the incident photon

energy, meaning complete photon absorption does not occur [18]. This characteristic

results in the distinctive shape of the electron energy spectrum, terminating at what is

known as the Compton edge, corresponding to the maximum energy transferable to the

electron, as reported in Figure 2.3.

The Klein-Nishina formula describes how the probability of photon scattering varies

with angle and photon energy. As shown in Figure 2.4, forward scattering becomes
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Figure 2.3: Energy distribution of recoil electrons showing the characteristic Compton

Edge [14].

increasingly probable with higher photon energies [17].

The differential cross-section for Compton scattering is given by:

dσ

dΩφ

=
r2e
2

[
1

(1 + γ(1− cos θ))2

](
1 + cos2 θ +

γ2(1− cos θ)2

1 + γ(1− cos θ)

)
, (2.9)

where re is the classical electron radius and γ = Eγ/mec
2. Integrating this formula

over dΩ yields the total probability per electron for a Compton scattering event.

The Compton cross-section varies strongly with photon energy, particularly in the

100 keV to several MeV range. While conventional PET primarily involves 511 keV

photons from positron annihilation, in-beam PET systems must also account for high-

energy background from prompt gamma radiation, which can reach several MeV and

significantly influence Compton scattering contributions.

The total Compton cross-section σc consists of two components: the Compton scat-

tered σs and the Compton absorption σa cross-sections. The Compton scattered cross-

section represents the fraction of total energy contained in the scattered photon, whereas

the absorption cross-section corresponds to the average energy transferred to the recoil

electron, which is absorbed by the material as the electron is stopped within it [14].

The absorbed cross-section can be determined from the Klein-Nishina formula as:
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Figure 2.4: Polar plot of the number of photons (incident from the left) Compton

scattered into a unit solid angle at the scattering angle θ. The curves correspond to

different initial photon energies [17].

σa =

∫
Ω

dσ

dΩ
dΩφ =

∫
Ω

dσ

dΩ

Eγ − E ′
γ

Eγ

dΩφ. (2.10)

The shape of the cross-section as a function of the energy of the incident photon

is illustrated in Figure 2.5. Compton scattering dominates at photon energies of the

order of Eγ ∼ MeV.

Figure 2.5: Total Compton effect cross-section given by the sum of the Compton scat-

tered σs and Compton absorbed σa cross-sections [18] [14].

Following its initial interaction, the scattered photon often undergoes subsequent

Compton scattering interactions with nearby atoms, continuing this process until it ei-

ther loses all its energy or undergoes photoelectric absorption. This sequential scatter-

ing significantly affects photon transport in matter, influencing the design of radiation

detectors and shielding materials.
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Unlike the photoelectric effect, where energy deposition is localized, Compton scat-

tering results in a distributed energy transfer, as the scattered photon may travel further

before depositing additional energy. This characteristic influences spatial resolution in

photon detectors, often necessitating corrections in imaging applications.

Pair Production

Pair production is the third principal interaction mechanism between gamma rays and

matter. As illustrated in Figure 2.6, this process occurs in the intense Coulomb field of

an atomic nucleus and becomes energetically possible when the incident photon energy

exceeds the threshold of twice the electron rest mass energy:

Eγ > 2mec
2 = 1.022 MeV. (2.11)

Above this threshold, a pair production process could happen in which the photon

is completely absorbed and converted into an electron-positron pair, satisfying both en-

ergy and momentum conservation. However, the probability of this process occurring

is relatively low until the incident γ-ray energy reaches several MeV, as shown in Fig-

ure 2.7. The excess energy beyond 1.022 MeV is distributed as kinetic energy between

the produced particles [17]:

Ee− + Ee+ = Eγ − 2mec
2. (2.12)

Since a free photon cannot simultaneously satisfy both energy and momentum con-

servation, the presence of a nucleus is required to absorb the recoil momentum. This

process is more probable in high-Z materials due to their stronger electromagnetic

fields, which facilitate momentum conservation [17].

In addition to pair production in the field of a nucleus, the process can also oc-

cur—though with much lower probability—in the Coulomb field of an atomic electron.

This variant, known as triplet production, results in the photon being converted into

an electron-positron pair, while the recoil is absorbed by the interacting electron it-

self. Because three particles are present in the final state, the threshold energy for this

process is higher:

Eγ > 4mec
2 = 2.044MeV. (2.13)

Triplet production is less probable due to the smaller mass and lower binding of the

electron compared to the nucleus, but becomes non-negligible at high photon energies.

The positron produced in the pair production process is not a stable particle. After

losing its kinetic energy in the absorbing medium, it undergoes annihilation with a

nearby electron. This results in the emission of two back-to-back annihilation photons,

each carrying an energy of 0.511 MeV:
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Figure 2.6: Pair production mechanism: a high-energy photon creates an electron-

positron pair in the presence of a nucleus [15].

e+ + e− → 2γ (0.511 MeV each). (2.14)

Due to the short thermalization time of the positron, the annihilation radiation is

emitted nearly simultaneously with the original pair production interaction, making

this a rapid two-step process.

The probability of pair production increases with both photon energy and the atomic

number Z of the absorbing material. At photon energies just above 1.022 MeV, the

process is relatively rare compared to Compton scattering and the photoelectric effect.

However, as photon energy increases, pair production becomes increasingly dominant,

surpassing the other interaction mechanisms at approximately 6 MeV [15]. The ap-

proximate dependence of the pair production cross-section is given by:

σpair ∝ Z2 ln(Eγ). (2.15)

This energy dependency indicates that pair production is particularly significant in

high-energy radiation interactions, influencing detector design, shielding materials, and

applications such as high-energy radiotherapy.

2.1.2 Total cross-section and Interaction Dominance

The relative importance of photoelectric absorption, Compton scattering, and pair pro-

duction varies significantly depending on the energy of the incident photon and the

atomic number (Z) of the absorbing material. As illustrated in Figure 2.7, different

interaction mechanisms dominate across distinct energy ranges, defining three principal

regions of photon interaction.
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At low photon energies, photoelectric absorption dominates, especially in high-Z

materials, as its probability scales strongly with atomic number. As energy increases,

its likelihood decreases, giving way to Compton scattering, which prevails in the MeV

range, where photons undergo inelastic collisions with atomic electrons, transferring

partial energy. At high photon energies (Eγ > 1.022MeV ), pair production becomes

significant, occurring in the Coulomb field of the nucleus and increasing rapidly with

photon energy, particularly in high-Z materials due to stronger nuclear fields. These

transitions between interaction mechanisms are clearly indicated in Figure 2.7.

Figure 2.7: Relative importance among photoelectric absorption, Compton scattering,

and pair production as a function of the absorber atomic number and photon energy

[17].

Since photon interactions with matter are probabilistic, the total cross-section for

photon attenuation in a given material is the sum of contributions from all three pro-

cesses. The total mass attenuation coefficient, µ/ρ, is given by:

µ

ρ
=

NA

A

∑
i

σi, (2.16)

where NA is the Avogadro number, A is the atomic mass, and σi represents the

individual cross-sections of each interaction process.

The variation of the total mass attenuation coefficient as a function of photon energy

is shown in Figure 2.8. The plot highlights the characteristic K-edges where photoelec-

tric absorption increases sharply, as well as the energy-dependent transitions between

dominant interaction mechanisms.

In summary, photon interactions are governed by a combination of energy-dependent

mechanisms, understanding these processes is crucial for applications in radiation de-

tection, medical imaging, and medical treatment.
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Figure 2.8: Total mass attenuation coefficient in lead as a function of the energy of the

incoming photon [19].

2.2 γ-ray Detection Systems

γ-ray detection is fundamental in medical imaging and nuclear physics, particularly

in applications such as Positron Emission Tomography (PET). Since gamma rays are

uncharged and interact indirectly with matter, their detection relies on the generation of

secondary ionizing particles, primarily electrons. This necessitates the use of specialized

detectors capable of converting γ-ray energy into measurable signals.

An effective γ-ray detection system must fulfill two primary functions:

1. Ensuring sufficient interaction probability between incoming photons and the de-

tector medium to generate detectable secondary signals (electrons)

2. efficiently capturing and processing these electrons for subsequent collection and

signal analysis

The performance of a γ-ray detector is evaluated based on several key parameters,

including resolution, accuracy, sensitivity, and efficiency.
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2.2.1 Key Characteristics of γ-ray Detectors

Resolution

Resolution refers to a detector’s ability to differentiate between similar measurement

values. In γ-ray detection, resolution is categorized into three main types:

• Energy Resolution: Determines the detector’s capability to distinguish gamma

rays of different energies. It is often quantified using the Full Width at Half

Maximum (FWHM) of a detected energy peak. A lower FWHM indicates superior

resolution, which is essential for spectroscopic applications.

• Spatial Resolution: Defines the minimum distance at which two separate γ-ray

interactions can be distinguished. This parameter is critical for imaging applica-

tions such as PET, where precise localization of radiation sources is required.

• Time Resolution: Represents the ability to differentiate events occurring within

short time intervals. In coincidence detection methods, such as those used in

PET imaging, superior time resolution enables more precise reconstruction of

γ-ray emission points.

Accuracy

The accuracy of a γ-ray detector describes how closely the measured values match

the actual physical parameters of the radiation being observed. Unlike resolution,

which pertains to distinguishing similar values, accuracy ensures that the recorded

data reliably reflect the true characteristics of the radiation source. Detector calibra-

tion, electronic noise reduction, and signal processing techniques significantly influence

measurement accuracy.

Sensitivity

Sensitivity defines the detector’s ability to register γ-ray interactions across a given

energy spectrum. Several factors contribute to sensitivity:

• The composition and thickness of the detector material, which determine the

probability of photon interaction.

• The efficiency of signal conversion processes, such as light emission in scintillators

or charge generation in semiconductor detectors.

• Background noise suppression techniques, which enhance the signal-to-noise ratio

and improve detection capability.
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High sensitivity is particularly advantageous in low-dose imaging applications, where

maximizing photon detection while minimizing radiation exposure is crucial.

Efficiency

Efficiency in γ-ray detection refers to the fraction of incident photons that successfully

interact with the detector and contribute to measurable signals. It is typically divided

into:

• Intrinsic Efficiency: The probability that an incoming gamma photon will undergo

an interaction within the detector medium, generating a measurable response.

• Geometric Efficiency: The proportion of emitted gamma rays that reach the de-

tector, influenced by the detector’s size, shape, and positioning relative to the

radiation source.

The total efficiency of a γ-ray detector can be expressed as [18]:

ϵtot = ϵintr × ϵgeom. (2.17)

Moreover, the energy deposition pattern can be used to classify detected events. While

some photons are fully absorbed (resulting in a distinct photopeak), others undergo

scattering and deposit only partial energy. A crucial metric in many applications is the

photopeak efficiency, defined as the fraction of events in which the full γ-ray energy is

absorbed.

As illustrated in Figure 2.9, the energy spectrum of photons interacting within a

detector reveals a distinct photopeak on the right side of the distribution. The area

under this peak represents the photopeak efficiency, which accounts for events where

the full γ-ray energy is absorbed. In contrast, the total efficiency encompasses all de-

tected events, including those where photons undergo partial energy deposition due to

scattering.

In this thesis, we primarily focus on γ-ray detection systems that couple scintillators

with photodetectors. The scintillator transforms γ-ray energy into light, which the

photodetector subsequently converts into an electrical signal. Two commonly used

photodetector technologies are:

• Photomultiplier Tubes (PMTs) – These devices use a series of dynodes to

amplify weak light signals, offering high sensitivity and fast response times. PMTs

are introduced in this work to illustrate the fundamental principles of photon-

to-electrical signal conversion, providing a basis for comparison with alternative

technologies.
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Figure 2.9: Full-energy peak for event discrimination [17]

• Silicon Photomultipliers (SiPMs) – Compact, semiconductor-based alterna-

tives to PMTs that provide enhanced efficiency, robustness, and higher spatial

resolution. Their smaller size makes them particularly suitable for applications

with limited space, as in this thesis.

The selection of a suitable photodetector depends on application-specific require-

ments such as spatial resolution, timing accuracy, and operational constraints. In

this work, PMTs are introduced to illustrate the fundamental principles of photon-

to-electrical signal conversion, providing a basis for understanding SiPMs. SiPMs are

ultimately chosen for this project due to their compact design, which is crucial given

the spatial limitations of our setup, as well as their superior efficiency and resolution.

2.2.2 Scintillators Detectors

Scintillators are materials that emit light upon interaction with ionizing radiation, mak-

ing them essential for radiation detection across various fields, including medical imag-

ing, particle physics, and security screening. Their functionality is based on the ab-

sorption of high-energy radiation, followed by de-excitation processes that result in the

emission of visible or ultraviolet photons. These photons are subsequently detected

using photomultiplier tubes (PMTs) or silicon photomultipliers (SiPMs), which convert

the optical signal into an electrical pulse for further analysis [18].

Properties of Scintillators

An ideal scintillator should exhibit several key properties to ensure optimal perfor-

mance:

• Light Yield: The number of scintillation photons emitted per unit of deposited

energy. A high light yield enhances energy resolution [15].

• Energy Linearity: The light output should be directly proportional to the energy

deposited by ionizing radiation.
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• Transparency: Optical transparency at the emission wavelength is crucial for

efficient photon collection.

• Decay Time: Short decay times enable rapid response and high count-rate capa-

bility.

• Mechanical and Chemical Stability: Scintillators must be durable and chemically

stable under operational conditions [18].

Scintillators can be broadly classified based on their composition:

• Organic Scintillators: These rely on molecular transitions to emit light upon

excitation. They exist in solid, liquid, or vapor forms and are known for their fast

response times (1–2 ns). Plastic scintillators, a subcategory, are widely used due

to their mechanical robustness and ease of fabrication.

• Inorganic Scintillators: These function through electronic transitions within a

crystalline lattice. Compared to organic scintillators, they have a higher density

and atomic number, providing greater stopping power and higher light yield.

However, they exhibit longer decay times (hundreds of nanoseconds) but offer

superior energy resolution, making them ideal for γ-ray spectroscopy.

An example of Inorganic scintillator is Lutetium-Yttrium Oxyorthosilicate (LYSO:Ce)

it is the scintillator used in the PET scanner discussed in this thesis. LYSO is favored

for its high density ( 7.1 g/cm³), fast decay time ( 40 ns), and excellent radiation hard-

ness, making it ideal for detecting gamma rays in medical imaging applications [18].

Its superior timing resolution and light yield contribute to enhanced spatial and energy

resolution in PET systems, ensuring precise detection of annihilation photons. A more

detailed discussion of its implementation in the PET scanner used in this research is

provided in Chapter 4.

2.2.3 Photomultiplier Tubes Detector

Photomultiplier tubes (PMTs) are critical components in radiation detection systems,

particularly in applications requiring high sensitivity to low-light levels. They convert

scintillation photons into electrical signals through the photoelectric effect, followed by

electron amplification via a cascade process.

A PMT functions by converting incident photons into photoelectrons at a photo-

sensitive cathode, known as the photocathode. These photoelectrons are subsequently

multiplied through a series of dynodes, leading to a substantial electrical signal [17].
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A schematic representation of a typical PMT structure is shown in Figure 2.10,

illustrating the sequential electron multiplication process. The essential components of

a PMT include:

• Input Window: Allows incident photons to reach the photocathode.

• Photocathode: Converts photons into electrons via the photoelectric effect.

• Focusing Electrodes: Direct the emitted electrons toward the dynodes.

• Electron Multiplier (Dynodes): A series of electrodes at progressively higher volt-

ages that amplify the electron signal through secondary emission.

• Anode: Collects the amplified electrons and converts them into an output current

for further processing.

Figure 2.10: Illustration of the internal structure of a photomultiplier tube, adapted

from [17].

The performance of PMTs is primarily characterized by two fundamental parame-

ters: quantum efficiency and gain.

Quantum efficiency (η) represents the probability of photoelectron emission per

incident photon and is defined as:

η(ν) = (1−R) · Pν ·
1

1 + 1/kL
· Ps (2.18)

where:

• R is the reflection coefficient of the photocathode,

• Pν represents the probability of photon absorption,

• kL accounts for the escape length and absorption coefficient of excited electrons,

• Ps is the probability of electron emission.
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Higher quantum efficiency improves detector sensitivity, particularly in applications

such as PET imaging and scintillation detection in ion beam therapy [15].

The amplification factor, or gain, of a PMT is achieved through secondary electron

emission at each dynode stage. If each dynode amplifies the electron count by a factor

δ, and there are n dynodes, the total gain (G) is expressed as:

G = δn (2.19)

Typical PMTs achieve gains ranging from 105 to 107, depending on the applied

voltage and the number of dynodes [17].

From the gain and the number of dynodes, the initial number of emitted photo-

electrons can be determined. Given the quantum efficiency, the number of scintillation

photons can be estimated, which directly correlates with the energy deposited in the

scintillator. Let ni
e be the initial number of photoelectrons; then, the number of elec-

trons outgoing from the last dynode will be ni
e×δm, where m is the number of dynodes.

These electrons are collected by an anode and transmitted to an external circuit for

readout.

PMTs play a crucial role in medical imaging and radiation therapy monitoring. In

PET scanners, they are coupled with scintillation crystals such as LYSO or LaBr3(Ce)

to detect 511 keV annihilation photons with high temporal resolution. In ion beam ther-

apy, PMTs are used in Compton camera systems to detect prompt gamma emissions,

enabling real-time range verification [15].

Despite their advantages, PMTs have limitations, including sensitivity to magnetic

fields, relatively large size, and mechanical fragility. Recent advancements in solid-

state alternatives, such as silicon photomultipliers (SiPMs), offer potential solutions

while maintaining similar detection capabilities [17].

2.2.4 Semiconducting detectors

Semiconductors are materials with electrical conductivity between conductors and in-

sulators. Their electronic properties are defined by the presence of a bandgap, which

separates the valence band (where electrons remain bound to atoms) from the conduc-

tion band (where free electrons contribute to electrical current).

Semiconductor detectors play a pivotal role in radiation detection due to their high

energy resolution, compactness, and efficiency. They function by converting incident

radiation into electrical signals through electron-hole pair generation in semiconductor

materials, predominantly silicon (Si) and germanium (Ge). Compared to traditional

photomultiplier tubes (PMTs), semiconductor detectors offer superior quantum effi-

ciency, better scalability, and improved signal-to-noise ratios [18].
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Semiconductors are classified into intrinsic and extrinsic types. Intrinsic semicon-

ductors, such as high-purity silicon, have a natural equilibrium between electrons and

holes but exhibit high electrical resistance, limiting charge collection efficiency. To en-

hance conductivity, semiconductors are doped with external elements to form extrinsic

semiconductors.

Doping is achieved through::

• N-type doping: Incorporating group V elements (e.g., phosphorus, arsenic) intro-

duces extra electrons, enhancing conductivity.

• P-type doping: Using group III elements (e.g., boron, aluminum) increases hole

concentration, forming a positively charged material.

The junction of p-type and n-type materials results in a PN junction, the fundamental

structure of most semiconductor detectors [15].

The PN Junction and Depletion Region

At the interface of p-type and n-type materials, electrons from the n-region diffuse

into the p-region, while holes move in the opposite direction. This diffusion depletes

the adjacent region of mobile charge carriers, forming a depletion layer that consists

of immobile ionized dopant atoms. Figure 2.11 shows the resulting built-in electric

field across this region prevents further diffusion and creates a potential barrier that

influences charge carrier motion [18].

Applying an external reverse bias voltage increases the depletion width, further

reducing capacitance and enhancing charge collection efficiency. This concept is central

to PIN photodiodes, where an intrinsic (undoped) layer is introduced between the p-

and n-regions to optimize carrier transport and improve bandwidth [20].

Semiconductor detectors operate based on the photoelectric effect and the generation

of electron-hole pairs when ionizing radiation interacts with the material. The process

unfolds as follows:

1. Energy deposition: Incident radiation (e.g., a photon or charged particle) interacts

with the semiconductor, transferring energy to bound electrons.

2. Electron excitation: The imparted energy promotes electrons from the valence

band to the conduction band, generating electron-hole pairs.

3. Charge separation: The built-in electric field in the depletion region accelerates

the free electrons toward the n-region and holes toward the p-region, preventing

recombination.
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Figure 2.11: Equilibrium condition of a PN junction, depicting charge separation and

electric field formation [18, 20].

4. Signal formation: The movement of charge carriers induces a current, which is

subsequently amplified and processed for analysis.

Avalanche Photodiodes (APDs)

Avalanche Photodiodes (APDs) are highly sensitive semiconductor devices that operate

under a strong reverse-bias voltage, creating an intense electric field within their deple-

tion region. When an incident photon generates an electron-hole pair, the carriers are

accelerated by the electric field, acquiring sufficient kinetic energy to undergo impact

ionization.his process leads to an avalanche multiplication effect, amplifying the initial

signal and thereby increasing the detector’s sensitivity[20], as illustrated in Figure 2.12.

A key performance characteristic of APDs is their internal gain, which refers to the
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Figure 2.12: Structure of an avalanche photodiode, illustrating impact ionization and

charge multiplication [20].

amplification factor of the generated charge carriers. However, this gain is not constant

but depends on several factors, including the applied bias voltage, the incident light

wavelength, and temperature variations. Additionally, the random nature of carrier

collisions in the multiplication process introduces statistical fluctuations, leading to an

excess noise factor that degrades the signal-to-noise ratio [17].

The gain-voltage response of an APD exhibits distinct operational regimes. At mod-

erate bias voltages, the device operates in linear mode, where the gain increases steadily

with voltage [20], as shown in Figure 2.13. However, as the bias voltage approaches the

breakdown threshold, the device transitions into Geiger mode. In this regime, a sin-

gle incident photon can trigger a self-sustaining avalanche, making Geiger-mode APDs

particularly suited for single-photon detection. This property underlies the working

principle of Silicon Photomultipliers (SiPMs), which consist of arrays of micro-APDs

operating in Geiger mode.

Despite their high sensitivity, Geiger-mode APDs face a fundamental limitation:

once an avalanche is triggered, the carrier density surges to levels that sustain a contin-

uous current flow, rendering the device incapable of resolving discrete photon events. To

address this issue, an external quenching circuit is employed. This circuit momentarily

reduces the bias voltage below the breakdown threshold, suppressing the avalanche and

restoring the APD to its initial state. However, during the quenching and recovery

period, the APD remains inactive, leading to a dead time in detection. This limitation

must be considered in applications requiring high photon count rates.

Silicon Photomultipliers (SiPMs)

Silicon Photomultipliers (SiPMs) were introduced to overcome the inherent limitations

of Geiger-mode APDs—namely, dead time and lack of proportionality in output signal.

SiPMs consist of an array of microcells, each functioning as an independent G-APD
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Figure 2.13: Plot of gain dependence on voltage [20].

with integrated quenching, allowing for high-resolution, high-efficiency photon counting

in compact geometries-These microcells serve as independent photon counters: when

a photon interacts with a microcell, it initiates an avalanche multiplication process,

producing a fast, high-gain electrical pulse. As shown in Figure 2.14, all microcells are

connected in parallel, enabling a collective output [15].

A key advantage of SiPMs is their ability to sum the signals from the individual

microcells, creating a linear relationship between the output pulse amplitude and the

number of detected photons. Although each microcell generates a fixed pulse regardless

of the number of photons it absorbs, the total SiPM response reflects the number

of simultaneously triggered microcells. Careful optimization of microcell dimensions

is crucial to reduce the probability of multiple photon interactions within the same

cell, preserving the SiPM’s single-photon counting capability and ensuring excellent

performance even in high-flux environments.

When coupled with scintillators, SiPMs can be used to reconstruct the energy of

incident radiation. Scintillators convert the energy of incoming photons into a pro-

portional number of visible photons, the yield of which depends on the scintillation

material. By analyzing the number of activated microcells in an SiPM, the energy of

the detected event can be inferred, making SiPMs particularly suitable for applications

requiring precise energy resolution, such as positron emission tomography (PET) and

time-of-flight PET (TOF-PET).

SiPMs offer several advantages over traditional photodetectors, including:

• High photon detection efficiency (PDE), enhancing sensitivity.

• Excellent timing resolution, crucial for fast photon counting applications.
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Figure 2.14: illustration of the SiPM circuit, consisting of a matrix of GAPD pixels

connected in parallel [20].

• Immunity to magnetic fields, making them ideal for PET and TOF-PET applica-

tions [20].

These properties, combined with their compact size and robustness, have established

SiPMs as a leading technology in modern photodetection systems, for this reason was

selected for SIRMIO PET detector, as presented better in Chapter 4.

2.3 Radioactive Decay and Activity

Radioactive decay is a fundamental process wherein unstable atomic nuclei transition

to more stable states by emitting energy in the form of particles or electromagnetic ra-

diation. The number of undecayed nuclei, N(t), at a given time t follows an exponential

decay law:

N(t) = N0e
−λt (2.20)

where N0 is the initial number of nuclei, and λ is the decay constant, representing

the probability per unit time that a nucleus undergoes decay. The half-life, t1/2, the

time required for half of a given sample to decay, is given by:

t1/2 =
ln(2)

λ
(2.21)

A key parameter in radioactive decay is activity (A), defined as the number of

disintegration per unit time, is expressed as:

A = λN (2.22)

The SI unit of activity is the Becquerel (Bq), defined as one nuclear disintegration

per second. A more traditional unit, the Curie (Ci), is still commonly used in medical
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and industrial applications, where

1Ci = 3.7× 1010 Bq (2.23)

2.4 β+ Decay

Beta-plus decay (β+-decay) is a type of radioactive decay in which a proton inside the

nucleus is converted into a neutron, emitting a positron (e+) and a neutrino (νe):

p → n+ e+ + νe (2.24)

This process occurs in proton-rich nuclei when the mass-energy difference between

the parent and daughter nucleus is greater than 1.022 MeV, the combined rest energy

of an electron and a positron. Unlike beta-minus decay, which results in an electron

emission, beta-plus decay decreases the atomic number by one while conserving the

total nucleon count [17].

The energy released in β+-decay is shared between the emitted positron and the

neutrino, leading to a continuous energy spectrum. The maximum positron energy

varies depending on the isotope, ranging from hundreds of keV to several MeV. Because

neutrinos escape detection due to their weak interaction with matter, only the positron

energy can be measured experimentally [17].

Once emitted, positrons lose kinetic energy via interactions with surrounding elec-

trons, ultimately leading to annihilation. This process produces two gamma photons:

e+ + e− → 2γ (2.25)

Each annihilation photon has an energy of 511 keV and is emitted nearly 180°
apart, a property that is fundamental to positron emission tomography (PET) imaging

[17]. PET scanners detect these coincident gamma rays, enabling precise localization

of positron-emitting tracers, such as 18F (fluorine-18) and 11C (carbon-11), which are

widely used in metabolic imaging and oncological diagnostics. The detection and re-

construction of these annihilation photons provide critical three-dimensional insights

into biochemical processes in the body [15].
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Chapter 3

SIRMIO PET work-package

The SIRMIO project (Small Animal Proton Irradiator for Research in Molecular

Image-guided Radiation-Oncology), introduced in Section 1.3, is a multidisciplinary

initiative aimed at developing a compact and versatile platform for precision proton

irradiation in small animal models [16]. By combining advanced irradiation and imag-

ing technologies, SIRMIO seeks to bridge the gap between preclinical radiobiological

studies and clinical practice, enabling translational research under highly controlled

conditions.

At the core of SIRMIO’s design philosophy is the integration of high-resolution

imaging modalities to support accurate, image-guided treatment delivery. Among these,

Positron Emission Tomography (PET) plays a central role, as it is designed to

meet the stringent requirements for in-beam treatment verification in small animal

proton therapy. These include the ability to provide high spatial resolution, sensitivity

to low levels of activity, and compatibility with real-time or quasi-real-time acquisition

during irradiation [13, 18].

This chapter is dedicated to the PET work package of SIRMIO. It begins with a

review of the fundamental principles of PET imaging and its role in ion beam range

monitoring. Subsequently, it explores the specific challenges of implementing PET

in an in-beam, small-animal context, focusing on technical limitations such as spatial

resolution, detector design, and inter-crystal scattering. The chapter concludes by

outlining the objectives of this thesis, which aims to develop and validate pixel-level

characterization methods for PET detectors, thereby contributing to more accurate and

robust range verification in proton therapy.

3.1 PET working principle

Positron Emission Tomography (PET) is a non-invasive imaging modality that enables

visualization of metabolic and molecular processes by detecting the annihilation photons
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resulting from positron-emitting radionuclides. These radionuclides, such as Fluorine-

18, can either be injected into the subject as part of a radiotracer (as in conventional

clinical PET imaging) or can originate from secondary radiation induced by external

beams, such as protons or photons, as described in Chapter 2.

The fundamental physical process underlying PET imaging is the detection of two

511 keV photons emitted in nearly opposite directions (180° apart) following the annihi-
lation of a positron with an electron. If these two photons are detected simultaneously

(i.e., in coincidence) by opposing detectors, the annihilation event is assumed to have

occurred somewhere along the line connecting the detectors. This line is known as the

Line of Response (LOR). The spatial localization of the event is limited to the LOR,

without precise knowledge of the position along it [18].

Figure 3.1 illustrates the schematic representation of β+ decay, which is detected

by the PET detector ring, forming a LOR.

Figure 3.1: (a) Schematic of the positron annihilation process: a positron emitted from

a radioactive nucleus annihilates with an electron, producing two 511 keV photons

emitted nearly 180° apart. (b) Principle of PET detection: the annihilation photons

are detected in coincidence by detectors arranged in a ring, defining a line of response

(LOR) used for image reconstruction. [21].

PET scanners therefore consist of multiple detector elements arranged in rings to

maximize the number of available LORs. This configuration allows simultaneous acqui-

sition of many coincidence events across different angles and planes. The sensitivity and

spatial resolution of PET strongly depend on the number of LORs within the scanner’s

Field of View (FOV), since more LORs lead to better sampling and lower statistical

uncertainty in the reconstructed image [22].

To further improve axial sampling and sensitivity, multiple detector rings are often

used, and coincidences can be detected not only within the same ring (direct coinci-

dences) but also across rings (cross coincidences). The scanner configuration (e.g., the

number of rings and the maximum ring difference allowed in coincidence detection)

directly influences whether the acquisition is performed in 2D or 3D mode. In 2D PET,
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axial septa are used to restrict coincidences to within single planes, limiting scatter

and random events, whereas in 3D PET, these septa are removed, allowing for more

coincidence detections and hence higher sensitivity, at the cost of increased scatter and

more complex image reconstruction algorithms [22].

3.1.1 Image reconstruction

The raw data stream from the detectors includes all coincidence events, including

true coincidences (from the same annihilation), random coincidences (from unrelated

events), and scattered coincidences (where photons are deflected before detection).

These events are time-stamped and mapped to detector pairs, producing massive datasets

requiring systematic organization. The data are first sorted into sinograms, two-

dimensional matrices where each pixel corresponds to a specific LOR defined by its

angular orientation and displacement from the scanner center [23].

Before reconstruction, the raw sinogram data undergoes several critical preprocess-

ing steps:

• Normalization correction accounts for variations in individual detector sensitivity

and geometry.

• Attenuation correction compensates for the absorption or scattering of photons

within the body, often using a transmission scan or CT data.

• Scatter correction removes scattered coincidences that falsely contribute to the

image signal.

• Random coincidence correction subtracts the contribution from accidental (non-

true) coincidences, often estimated using delayed coincidence window techniques.

• Dead-time and pile-up corrections adjust for detector performance limitations at

high count rates [18].

Once corrections are applied, the sinograms are ready for image reconstruction.

Early PET scanners employed analytical methods like filtered back projection (FBP),

where each projection is mathematically back-projected across the image space, and a

filter is applied to counteract the inherent blurring of the method. While fast, FBP

is sensitive to noise and assumes idealized conditions, limiting its accuracy in complex

scenarios.

Modern PET reconstruction relies on iterative algorithms, particularly Maximum

Likelihood Expectation Maximization (ML-EM) and its accelerated form, Ordered Sub-

sets Expectation Maximization (OSEM). These methods start with an initial estimate

35



Chapter 3. SIRMIO PET work-package

of the radio-tracer distribution and iteratively refine it by comparing the measured

sinograms with forward projections of the current estimate, using a system matrix that

models the physical and geometric characteristics of the scanner. Each iteration updates

the image estimate to maximize the likelihood of observing the measured data. Regu-

larization techniques (such as smoothing constraints) and optimized stopping criteria

are applied to prevent noise amplification and improve image stability [23].

Figure 3.2 shows the workflow of iterative image reconstruction, where the estimated

tracer distribution is repeatedly updated by comparing simulated and measured data.

Figure 3.3 illustrates how image quality improves with each iteration, though excessive

iterations may introduce noise without proper regularization [18, 24].

Figure 3.2: Iterative image reconstruction flow chart [24]

Figure 3.3: An example of iterative reconstruction. From left to right, the iteration

number is increased, so that the noise [18, 24]

3.1.2 Problems and Limitations

Despite its high sensitivity and functional imaging capability, PET is subject to several

physical and technological limitations that constrain spatial resolution and quantitative

accuracy:

• Detector size: The resolution is primarily limited by the width of the scintilla-

tion crystals. The full width at half maximum (FWHM) blurring is approximately

d/2, where d is the detector width. Reducing crystal size improves resolution but

increases manufacturing complexity and the number of readout channels, raising

cost and reducing detector efficiency due to the proportionally larger reflector

volume [22].
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• Positron range: Positron before annihilation travel for some millimiter depend-

ing on the positron energy and the materieale causing blurring [22].

• Acollinearity: Due to the residual momentum of positronium, annihilation pho-

tons deviate slightly from 180◦, introducing additional blur. The effect increases

with the diameter of the detector ring [22].

• Decoding errors: In systems using multiplexed readout electronics, some pho-

tons may be incorrectly assigned to adjacent crystals, lowering spatial precision

[22].

• Penetration effects: High-energy photons may travel through several layers

of the detector before interacting, particularly at oblique incidence angles. This

effect, known as depth-of-interaction uncertainty, causes radial elongation of the

image [22].

• Sampling error: Incomplete angular coverage or non-uniform detector geometry

can result in poor image sampling, especially near the center of the field-of-view.

This limits accurate quantification and introduces aliasing [22].

• Statistical noise: PET relies on stochastic decay events; low activity or short

acquisition times yield noisy images. Iterative algorithms may amplify this noise

unless carefully constrained [22].

Overall, while many of these limitations are rooted in fundamental physics (e.g.,

positron range, acollinearity), others can be reduced through improved hardware de-

sign, sophisticated reconstruction algorithms, and advanced correction methods. How-

ever, each improvement often comes with trade-offs in cost, complexity, or practicality,

making careful optimization essential for clinical and preclinical PET systems.

3.1.3 Introduction to Inter-crystal Scattering (ICS)

After discussing the numerous challenges affecting the performance of PET imaging

systems, one advanced strategy to overcome spatial resolution limitations is the use

of multi-layer, pixelated detectors with depth-of-interaction (DOI) capability. This

is a core design feature of the SIRMIO PET scanner. Broadly, the layered detector

architecture improves the resolution and overall performance of the detector system by

providing better event localization, making it essential for achieving the sub-millimeter

resolution demanded in SIRMIO project.

However, even with DOI capability, an important physical challenge remains: the

phenomenon of inter-crystal scattering (ICS). When a 511 keV annihilation photon en-

ters the scintillator, it may undergo two main types of interactions. In the ideal case,
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the photon is fully absorbed via the photoelectric effect, creating a single point of scin-

tillation light that can be accurately localized. In practice, however, a large fraction of

events undergo Compton scattering, where the photon deposits part of its energy in one

crystal and is deflected into neighboring crystals before being absorbed. Studies report

that, particularly in high-density, high-Z scintillators like LYSO, approximately 68% of

interactions are Compton scatterings. These scattered photons can cross crystal bound-

aries, producing light in multiple detector elements and causing spatial misplacement

of the event in the detector [25].

This leads to image blurring, reduced contrast recovery, and ultimately a degrada-

tion of spatial resolution. Recent research has quantified the impact of ICS on image

contrast, showing reductions of up to 20% in hot-rod phantom studies [25].

Figure 3.4 shows how different photon interactions affect event localization. While

photoelectric absorption enables accurate positioning, Compton scattering—especially

across crystals—can mislead the event assignment and degrade spatial resolution [26].

Figure 3.4: Illustration of interaction mechanisms affecting event localization in PET

detectors. (Left) In the photoelectric effect, full energy absorption leads to correct

crystal assignment. (Center) In Compton scattering (inter-crystal scatter, ICS), lat-

eral shifts cause the Anger calculation to misattribute the event to the wrong crystal.

(Right) In complex scatter cases, the Anger calculation cannot confidently assign the

event to a specific crystal, leading to uncertainty [26].

To mitigate the impact of ICS, PET systems currently employ a combination of

hardware and software strategies. Energy discrimination - applying a narrow energy

window around the 511 keV photopeak - helps to reject events where the scattered pho-

ton escapes detection or deposits insufficient energy. Geometric filtering further limits

accepted events to those consistent with physically plausible coincidence geometries.

However, both strategies come with a tradeoff: by filtering out ICS events, a signif-
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icant portion of total detected events (sometimes over 25%) is discarded [26]. These

strategies are indeed used in our PET detector of the SIRMIO project to manage scat-

tered events. While they help improve data quality, they also reduce system sensitivity,

increase acquisition times, and limit the statistical power available for reconstruction.

Despite these efforts, it is increasingly recognized that energy and geometric filtering

alone are insufficient to fully correct for ICS effects. This leads to the motivation for

more sophisticated approaches: by better understanding the underlying physics and the

detector response, we can develop methods to compensate for ICS rather than simply

reject it. For example, advanced modeling and correction algorithms could recover the

true interaction position even for scattered events, improving spatial resolution without

sacrificing sensitivity.

3.2 Thesis Scope and Objectives

The aim of this thesis is to perform a detailed characterization of the SIRMIO PET

detector response to 511 keV photons, with a specific focus on understanding and

mitigating the effects of inter-crystal scattering (ICS). ICS represents a major source

of spatial uncertainty and image degradation in PET systems, particularly under the

demanding conditions of small-animal study.

This work combines Monte Carlo simulations, experimental measurements, and

data-driven analysis to investigate the frequency, spatial signatures, and energy char-

acteristics of 511 keV events. A key objective is to develop methods to distinguish

ICS-induced signals from direct interactions, thereby enabling the suppression or cor-

rection of their impact on reconstructed images.

By advancing the modeling of the detector response at the pixel level and integrating

this knowledge into event filtering strategies, the project aims to improve image quality,

enhance spatial accuracy, and support the implementation of reliable PET-based range

verification in proton therapy.
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Chapter 4

Materials and Methods

This chapter details the experimental setup, instrumentation, and materials utilized for

the modeling and characterization of the SIRMIO PET scanner. Building upon the

foundational principles and limitations of PET imaging discussed in the previous chap-

ter, the focus here is on the technical implementation of the system. Specifically, we

describe the detector geometry, component layout, readout electronics, and radioactive

sources employed in experimental measurements. In addition, we present the Monte

Carlo simulation framework developed to model photon interactions within the detec-

tor system, which serves as a complementary tool to interpret experimental data and

evaluate detector performance under controlled conditions.

4.1 SIRMIO PET Scanner

Design Objectives and Constraints

These requirements reflect the core goals of the PET in SIRMIO project: enabling

precise treatment verification and biological imaging guidance during preclinical inves-

tigations.

Geometrical Configuration of the PET Ring

The SIRMIO PET scanner employs a spherical geometry with an inner radius of 72 mm,

selected to maximize solid angle coverage while preserving sufficient clearance for beam-

line components and the integration of animal positioning systems. This configuration

achieves approximately 44% solid angle coverage of the field of view (FOV), thereby

ensuring enhanced angular sampling crucial for attaining high spatial resolution and

detection sensitivity [27].

The geometry of the PET system is illustrated in Figure 4.1, which highlights the

spherical arrangement and the compact integration with the beamline.

41



Chapter 4. Materials and Methods

Figure 4.1: Schematic of the SIRMIO PET scanner geometry. [28]

Modular Detector Architecture

The scanner integrates 56 depth-of-interaction (DOI)-capable detector modules ar-

ranged in a pyramidal-step configuration. This staggered, multi-layer design minimizes

interstitial dead space and facilitates compact, conformal placement of detectors along

the spherical surface, improving geometric efficiency. The architectural flexibility of this

layout enables not only optimized detection performance but also facilitates integration

with auxiliary imaging modalities and a motorized mouse holder, which allows precise

positioning of the animal during irradiation. Each detector module is identical and

independent, allowing individual replacement or maintenance without compromising

overall scanner functionality.

Monte Carlo simulations predict a central sensitivity in the range of 7–12%, with

spatial resolution spanning from 0.4 mm to 1 mm full width at half maximum (FWHM),

depending on the specific location within the FOV [27].

4.2 Detector Components

A detailed schematic of the detector electronics, from SiPM coupling to the digitizer

module, is shown in Figure 4.2.
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Figure 4.2: Schematic representation of the experimental set-up used: a) Scintillator

blocks coupled with SiPMs; b) Charged division circuit for channels number reduction;

c) Amplification board circuit; d) Digitizer module; e) Block diagram of the readout

system. Image Courtesy of Dr. Munetaka Nitta, LMU. [18]

4.2.1 Scintillator

The scintillator material is a central component in determining the overall performance

of a PET system, directly affecting its sensitivity, spatial resolution, and noise character-

istics. For the SIRMIO PET scanner, cerium-doped lutetium-yttrium oxyorthosilicate

(LYSO:Ce) was selected following a detailed simulation-based optimization study [27].

Alternatives such as GAGG were evaluated and compared across key performance met-

rics, including detection efficiency and signal-to-noise ratio in low-activity environments,

which are typical in preclinical in-beam PET applications. LYSO consistently demon-

strated superior sensitivity and lower statistical noise, justifying its selection as the

optimal scintillator [27, 18].

Although LYSO contains a small fraction (about 2.6%) of the naturally radioactive

isotope 176Lu, simulations showed that the intrinsic background activity introduced

by its β-decay and associated γ-ray emissions can be effectively mitigated. Through

the application of optimized energy windows and geometrical filtering strategies for

lines of response (LORs), these background contributions become negligible in the final

image reconstruction. Figure 4.3 illustrates the decay scheme of 176Lu, and Figure 4.4

compares the energy spectra in isolated and embedded detector configurations.

From a physical standpoint, LYSO offers an excellent combination of properties

tailored for PET: high density (7.1 g/cm3), high light yield ( 32,000 photons/MeV),

short decay time ( 40 ns), and strong resistance to radiation damage [18]. These features

enable effective stopping of 511 keV annihilation photons and facilitate high count-rate
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Figure 4.3: (a) Decay scheme of 176Lu and (b) energy spectrum of emitted electrons.

Adapted from [18].

Figure 4.4: Energy spectrum of 176Lu background in (a) an isolated detector and (b)

the integrated PET scanner. Adapted from [18].

operation with minimal signal degradation.

Each detector module integrates a pixelated LYSO crystal block arranged in a

pyramidal-step configuration composed of three staggered layers. The pixel size is

0.9 mm × 0.9 mm × 6.67 mm, with layer-specific matrices of 20 × 23, 23 × 23, and

24 × 24 pixels. The offset between layers corresponds to half a pixel pitch, enabling

depth-of-interaction (DOI) encoding by resolving the axial coordinate of photon interac-

tion. This configuration reduces parallax errors due to the incidence of oblique photons

and enhances spatial resolution [18]. The mechanical layout is depicted in Figure 4.5.

To further optimize light confinement and signal clarity, each pixel is optically iso-

lated by BaSO4 reflectors, and the surface of the scintillator block is wrapped with

Teflon tape, as shown in Figure 4.6. This shielding minimizes external light interfer-

ence and enhances signal-to-noise performance.
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Figure 4.5: Left: Pyramidal-step configuration of a pixelated LYSO detector block.

Right: Integration into the spherical PET scanner. Image adapted from [27].

Figure 4.6: Shell used to embed the detector module, including the taped scintillator

block, MPPC array, and Charge Division Circuit (CDC), into the PET scanner. Image

courtesy of Dr. Munetaka Nitta, LMU [18].
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4.2.2 Photodetector: SiPM Array

In the SIRMIO PET system, efficient conversion of scintillation light into electrical

signals is realized by coupling each pixelated LYSO:Ce scintillator block to a sili-

con photomultiplier (SiPM) array via a 1 mm thick optical light guide (dimensions:

25.8 mm × 25.8 mm × 1 mm). The SiPM used is the Hamamatsu S14161-3050HS-08

model, consisting of an 8 × 8 matrix of 64 individual pixels, each measuring 3 mm × 3 mm

with 0.2 mm gaps between pixels. The compact structure of the SiPM, coupled with its

high fill factor, ensures precise spatial resolution, which is crucial for the small animal

in-beam PET application.

This SiPM model comprises 3531 microcells per pixel, providing a typical gain on the

order of 106 and a photon detection efficiency (PDE) of up to 50% at 450 nm, aligning

well with the LYSO emission peak. Its low operational voltage of approximately 41 V

enhances stability and minimizes noise, making it particularly suitable for the low-

activity environment of in-beam PET scanning[18, 20].

Figure 4.7 illustrates the SiPM array (left) and its integration with the scintillator

block and charge division circuit (right), forming a compact and high-performance

detector module tailored to the SIRMIO scanner.

4.2.3 Readout Electronics: CDC and Amplifier Board

To reduce the number of readout channels while preserving spatial information, a

Charge Division Circuit (CDC) (Figure 4.7) is employed directly behind the MPPC.

The CDC aggregates the 64 individual pixel outputs into four analog signals using

a resistive network. These four signals retain the positional encoding necessary for

subsequent Anger logic-based event reconstruction [18].

The analog signals are routed via flat flexible cables (FFC) to custom-designed am-

plifier boards. These boards serve a dual function: they convert the single-ended analog

signals to differential mode to suppress transmission noise, and they amplify the signals

to match the dynamic range required by the digitization stage. The amplifier board

used in the SIRMIO system, capable of handling four detector modules simultaneously,

is shown in Figure 4.8.

4.2.4 Digitization Module

Signal digitization is carried out using CAEN R5560 modules, which support up to 128

input channels and operate at a sampling rate of 125 MHz. Each module includes field-

programmable gate arrays (FPGAs) that implement real-time digital signal processing

algorithms. For the SIRMIO PET application, a trapezoidal shaping filter is applied
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Figure 4.7: Top: Schematic of the Hamamatsu S14161-3050HS-08 SiPM [29]. Bottom

left: Photograph of the SiPM array [18]. Bottom right: Integrated detector block

including scintillator array, SiPM, and Charge Division Circuit (CDC). Images courtesy

of Dr. Munetaka Nitta, LMU [18].

Figure 4.8: Amplifier board used for differential conversion and analog signal amplifi-

cation. Image courtesy of Dr. Munetaka Nitta, LMU [18].
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Figure 4.9: Trapezoidal shaping filter implemented in the CAEN R5560 digitizer for

real-time energy extraction [18].

to extract the energy, timing, and spatial features of each signal.

This filter converts the exponentially decaying signals into trapezoidal waveforms

whose flat-top amplitude correlates with the deposited energy. The filter parameters—

including peaking time, flat-top duration, and decay constants—are configurable to

optimize performance under different experimental conditions [18].

The digitized signals exhibit a timing resolution of 8 ns, sufficient to support coin-

cidence event reconstruction. Output data are recorded in list-mode, enabling offline

analysis and image reconstruction, presented in 5. The filtering principle is illustrated

in Figure 4.9.

4.3 Interaction Position Reconstruction

4.3.1 Pixel Encoding via Geometric Offsets

To achieve the sub-millimeter spatial resolution required for in-beam small animal PET

imaging, the SIRMIO scanner employs a finely pixelated LYSO:Ce scintillator array ar-

ranged in a three-layer pyramidal-step configuration. As presented above, each succes-

sive layer is laterally shifted by half a pixel pitch, introducing a geometric asymmetry

along the depth (z) axis. This design ensures that interactions occurring at different

depths produce unique light distribution patterns.

Consequently, each gamma interaction can theoretically be localized in three dimen-

sions: the transverse (x, y) coordinates and the depth (z), corresponding to the layer
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in which the interaction occurred. The lateral offset between layers acts as an intrin-

sic geometric encoder, enabling the identification of both the scintillation pixel and its

depth.

When a 511 keV annihilation photon interacts within the LYSO block, it produces

scintillation light that propagates through a 1 mm thick optical light guide to a Multi-

Pixel Photon Counter (MPPC) array. This MPPC consists of 64 individual pixels, and

the resulting signals are processed by a Charge Division Circuit (CDC), which condenses

the 64 channels into four analog outputs (S1 to S4). This compression supports a

compact and cost-efficient readout architecture while preserving spatial sensitivity.

Figure 4.10: Sketch of the four-channel output signal routing from the CDC used for

planar interaction position reconstruction. Courtesy of Dr. Munetaka Nitta, LMU.

4.3.2 Planar Localization using Anger Logic

The planar coordinates of the interaction point are reconstructed using the Anger logic

method:

x =
(S2 + S4)− (S1 + S3)∑4

i=1 Si

, y =
(S1 + S2)− (S3 + S4)∑4

i=1 Si

. (4.1)

These expressions yield a weighted centroid of the light distribution, serving as

an estimate of the transverse interaction position. Figure 4.10 illustrates the signal

routing implemented in the CDC. This layout supports the Anger logic algorithm for

(x,y) position reconstruction, as described by Equation 4.1.

4.3.3 Flood Map Analysis and Layer Separation

The depth of interaction (DOI) is inferred indirectly through the spatial patterns ob-

served in the flood maps. As shown in Figure 4.11, each layer’s lateral displacement
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results in a characteristic shift in the reconstructed (x, y) distribution. Events originat-

ing from different layers cluster into distinguishable patterns in these 2D histograms

(see Figure 4.11), allowing identification of the originating scintillator pixel and its

corresponding layer.

Figure 4.11: Schematic representation of layer shifts in the pyramidal crystal block.

The offset between layers enables DOI discrimination. Image courtesy of Dr. Munetaka

Nitta, LMU.

It should be noted, however, that this reconstruction method assumes ideal condi-

tions. In practice, effects such as optical crosstalk, variations in crystal response, and

inter-crystal scatter introduce deviations from the idealized patterns. Thus, accurate

DOI determination ultimately relies on experimental calibration and correction proce-

dures that account for these perturbations. The performance and limitations of this

approach under realistic experimental conditions are presented and discussed in detail

in Chapter 5.

4.4 Irradiation Sources and Data Acquisition

4.4.1 Micro Derenzo Phantom with FDG

To assess the spatial resolution and imaging capabilities of the SIRMIO PET scanner

in a preclinical setting, a micro Derenzo phantom (MediLumine, Canada [30]) was

employed. This phantom comprises six clusters of capillary rods with diameters of

1.5, 1.2, 1.0, 0.9, 0.8, and 0.7 mm, each arranged with inter-rod spacing equal to its

respective diameter and a height of 10 mm. With an overall external diameter of

27 mm, the phantom is widely used for benchmarking high-resolution performance in
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Figure 4.12: Left: Schematic of the micro Derenzo phantom (Courtesy of Dr. Munetaka

Nitta). Right: Phantom positioned at the center of the PET scanner [31].

small animal PET systems.

Figure 4.12 shows the phantom features capillary rods of varying diameters, enabling

resolution testing across multiple scales.

The phantom was filled with approximately 1.65 MBq of fluorodeoxyglucose (FDG)

and transported from the clinical production site to the Danish Centre for Particle

Therapy at Aarhus University Hospital. During acquisition, it was centrally placed

within the scanner field of view, with the rod axis aligned along the horizontal (X)

direction of the PET geometry.

Data were acquired in list-mode format during November 2023. Continuous acqui-

sition over several hours enabled the collection of high-statistics datasets suitable for

quantitative image quality evaluation.

Fluorodeoxyglucose (18F)

FDG is a radiolabeled glucose analog in which the hydroxyl group is replaced by the

positron-emitting isotope 18F. This radionuclide decays via β+ emission with a half-life

of approximately 109.8 minutes:

18F → 18O+ β+ + νe (4.2)

Following decay, the emitted positron travels a short distance—typically less than

1 mm in soft tissue—before undergoing annihilation with an electron. This interaction

yields two 511 keV photons emitted nearly back-to-back, which constitute the funda-

mental signal detected in PET imaging.

The corresponding energy spectrum features a continuous positron emission profile

(up to 633 keV endpoint energy), overlaid with a distinct 511 keV peak originating
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from the annihilation photons. This peak is critical for spatial resolution and image

reconstruction studies.

4.4.2 22Na Point Sources

Two sealed 22Na point sources with different activity levels were used for calibration,

performance validation, and depth-of-interaction (DOI) characterization.

The high-activity source (1.25 MBq) features a 1 mm active radius encapsulated

in a 25 mm diameter, 3 mm thick epoxy disk. Its high emission rate made it ideal

for image reconstruction tests and DOI evaluation via back-irradiation. This source

facilitated rapid acquisitions with sufficient statistics, particularly in the central field of

view, and enabled accurate characterization of spatial resolution, energy response, and

system sensitivity under representative and stress-test conditions.

In contrast, the low-activity source (49.9 kBq) served as a stable reference for gain

and energy calibration. Its low count rate allowed for extended acquisitions without

inducing pile-up or dead time effects, making it well-suited for assessing the linearity

and baseline performance of individual detector modules. It was routinely employed to

monitor system stability and reproducibility across multiple measurement sessions.

22Na Decay Scheme

The decay of 22Na proceeds predominantly via positron emission (β+, branching ratio:

90.4%) to the first excited state of 22Ne, which subsequently de-excites with the emission

of a 1274.5 keV gamma photon:

22Na →22 Ne∗ + β+ + νe
22Ne∗ →22 Ne + γ (1274.5 keV) (4.3)

The associated decay scheme is illustrated in Figure 4.13, highlighting both annihi-

lation and de-excitation pathways.

The emitted positron eventually annihilates with an electron, producing two back-to-

back 511 keV photons. The resulting energy spectrum therefore (Figure 4.14) includes

both the annihilation peak and the 1274.5 keV gamma peak, which are essential for

energy calibration and validating detector performance.

Data Acquisition Protocol

Calibration measurements with the 22Na sources were conducted on multiple occasions

at the LMU laboratory under controlled environmental conditions. Although the setup

remained consistent, these sessions were performed at different times compared to the
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Figure 4.13: Decay scheme of the 22Na isotope [18].

Figure 4.14: Energy spectrum acquired from a 22Na point source, showing the 511 keV

annihilation peak and the 1274.5 keV gamma peak [18].

FDG-based measurements, potentially under varying operational conditions (e.g., tem-

perature, voltage, detector aging). As such, direct comparison between the two datasets

is not straightforward.

Nevertheless, these calibration datasets were critical for establishing reference per-

formance metrics, verifying energy and gain calibration procedures, and evaluating

system stability over time.

4.5 Monte Carlo Simulation Framework

In order to gain a deeper understanding of photon interactions within the detector and

to establish a comprehensive baseline for analyzing experimental data, Monte Carlo

simulations were carried out using the Geant4 toolkit (version 10.5). These simulations

allow for precise modeling of the interaction processes relevant to 511 keV annihila-

tion photons, including photoelectric absorption, Compton scattering, and Rayleigh
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scattering, all of which are essential for characterizing the performance of the detector.

The simulation geometry replicates the pixelated LYSO detector modules of the

SIRMIO PET scanner, with a focus on detailed modeling of the 3-layer DOI detector

blocks. The source of 511 keV photons was implemented as a uniform planar irradi-

ation field, ensuring uniform exposure across the entire detector surface to capture a

statistically relevant sample of interaction events.

A total of 106 photons were simulated to ensure high statistical significance.

The physics processes considered were those included in the Geant4 physics list

G4EmStandardPhysics option4, which comprehensively accounts for Compton scat-

tering, photoelectric effect, and Rayleigh scattering. The simulation tracked all sec-

ondary processes resulting from the primary photon interactions, providing a detailed

record of energy deposition events and interaction types.

The simulated data structure generated through Monte Carlo simulations provides

a comprehensive dataset for each photon interaction event within the PET detector

system. This dataset encompasses the following attributes:

EventID, pixelL, pixelX, pixelY, energyDep, gammaProcessInfo

The fields are defined as follows:

• EventID: A unique identifier for each simulated event, enabling precise tracking

within the dataset.

• pixelL: The detector layer in which the interaction occurs.

• pixelX, pixelY: The pixel coordinates (X, Y) of the interaction within the layer.

• energyDep: The energy (in MeV) deposited within the pixel.

• gammaProcessInfo: Encodes the photon interaction process, formatted as

[interaction type] [parentID]. Here, interaction type denotes the specific

interaction (e.g., compt for Compton scattering, phot for photoelectric effect),

while parentID identifies the track of the primary or secondary particle that

caused the interaction.

It is important to note that a photon may undergo multiple interactions as it tra-

verses the detector, resulting in several entries with the same EventID. Each of these

entries provides detailed information on the interaction location (detector layer and

pixel), the deposited energy, and the interaction type. This sequential recording of

interactions captures the complete history of photon interactions within the detector

matrix.
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This structured dataset underpins subsequent data processing and analysis work-

flows. It facilitates event classification, feature extraction, and image reconstruction,

contributing to the quantitative characterization of the PET system’s spatial resolution

and sensitivity, as detailed in Chapter 6.
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Data processing

Data analysis was conducted using a combination of the ROOT framework [32] and

custom Python scripts [33], leveraging both previously developed code modules and

new implementations to tailor the processing to the specificities of this study. This

dual-language approach combines the flexibility and visualization capabilities of Python

with the speed and reliability of ROOT for high-volume data handling.

Throughout this chapter, the employed procedures, algorithms, and challenges en-

countered during data pre-processing and processing are presented in detail. Emphasis

is placed on the essential steps of data sorting, calibration, filtering, and event identifi-

cation—crucial for extracting reliable information about the detector response at pixel

level.

5.1 FDG Data Pre-Processing

5.1.1 Sorting

The data acquisition system, based on CAEN digitizers, operates in a trigger mode

where the four channels corresponding to a detector pixel are continuously monitored.

An acquisition is triggered when at least one of these channels exceeds a predefined

amplitude threshold. Upon triggering, all four channels of the corresponding group are

simultaneously read out and stored as a single event. Each event includes the amplitude

values for the four channels, detector identifier, and a timestamp with a resolution of 8

ns.

This hardware-level coincidence ensures that each recorded event corresponds di-

rectly to a physical interaction within a detector pixel, without requiring post-

acquisition grouping. The resulting dataset forms the basis for later processing step.
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5.2 Energy and Spatial Calibration

5.2.1 Energy Spectra Analysis

The analysis of the energy spectra constitutes a critical aspect of characterizing the

response and performance of each detector module within the PET scanner. For each

detector, a one-dimensional energy histogram is generated by summing the signals from

the four readout channels associated with a single detection event. This approach ex-

ploits the fact that the energy deposited by the incident photon is directly proportional

to the combined charge collected across these channels.

Notably, each of the 56 detectors in the system is inherently independent, and al-

though designed to be identical, slight variations in the electronic response, such as

differences in gain, noise levels, and optical coupling, can introduce minor discrepancies

among them. Consequently, the energy spectra recorded by different detectors exhibit

significant differences, as can be observed in Figure 5.1. Such differences underscore

the necessity of individual energy calibration for each detector to ensure optimal per-

formance.

The energy spectra reveal not only the photopeak corresponding to the 511 keV

annihilation photons, crucial for PET imaging, but also additional peaks associated

with the specific radionuclide sources employed during calibration and testing. For

instance, measurements involving 22Na sources display both the 511 keV peak and the

1274.5 keV gamma peak, while measurements with FDG-filled phantoms predominantly

show the 511 keV peak alongside a continuous background spectrum. Another salient

feature is the intrinsic background radiation from 176Lu present in the LYSO crystals,

which contributes to a low-energy background in the spectra. The identification and

quantification of these features are essential for distinguishing 511 keV events from

scattered or spurious background signals, a process that will be further detailed in

Section 5.3.

A thorough analysis of the energy spectra also serves as a diagnostic tool for identi-

fying malfunctioning or degraded detectors. For example, a significant shift of the pho-

topeak towards lower energies, indicates potential issues such as reduced light output or

electronic gain degradation. Recognizing such deviations allows for timely maintenance

and ensures the integrity of the PET data acquisition process [18].

Figure 5.1 illustrates the typical energy spectra of detectors 10 and 30. The 511 keV

photopeaks are clearly visible, as is the considerable shift.

58



Chapter 5. Data processing

(a) Energy spectrum of detector 10. (b) Energy spectrum of detector 30.

Figure 5.1: Example energy spectra obtained from two different detectors, illustrating

differences in peak positions and background contributions.

5.2.2 Flood maps Generation

Flood maps are essential diagnostic tools in the calibration of PET detector modules.

They provide a two-dimensional representation of the spatial distribution of detected

events within each detector. These maps are generated by filling two-dimensional his-

tograms with the (x, y) coordinates of each detected event, calculated using the Anger

logic method described in Chapter 4. This process is repeated for each of the 56 inde-

pendent detectors.

Although the overall structure of the flood maps remains consistent across detec-

tors—reflecting the shared crystal geometry—each detector exhibits slight variations in

its flood map due to intrinsic differences in construction and relative positioning with

respect to the source. As illustrated in Figure 5.2 and Figure 5.3, these discrepancies

manifest as subtle differences in pixel definition, shape, and intensity distribution. In

general, well-calibrated detectors exhibit clearly defined pixel boundaries, especially in

the central region, whereas the edges often appear blurred and less distinct. These edge

effects are usually attributed to reduced light collection, poor coupling, or lower event

statistics.

Flood maps play a crucial role in both qualitative and quantitative assessments of

detector performance, forming the foundation for assigning events to specific pixels.

They also provide a valuable diagnostic tool for identifying damaged or malfunctioning

detectors, as areas with reduced or absent event counts can be visually discerned [18].

Such maps enable the approximate localization of damaged scintillator crystals or SiPM

pixels.
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Figure 5.2: Flood map of detector 10.

Figure 5.3: Flood map of detector 30.

5.2.3 Look-up table (LUT) Definition

As previously described, achieving optimal spatial resolution in the final PET images

relies heavily on accurately assigning each detected event to the correct pixel and scin-

tillator layer. This is accomplished by defining specific regions within the flood maps

for each pixel—a process that creates what is known as the Look-up Table (LUT). Each

detector’s LUT encompasses a substantial number of pixels (e.g., 20×23, 23×23, and

24×24 per layer for 56 detectors), requiring careful calibration.

Initially, pixel boundaries were established manually, which was a labor-intensive
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and error-prone process, particularly during later event processing for pixel identifi-

cation. In this study, LUTs were crafted by manually selecting pixel regions on the

flood map for the first scintillator layer using tools like ROOT’s TCutG function [34].

The manually determined 1st Layer was then employed to algorithmically derive the

corresponding regions for the 2nd and 3rd Layers, utilizing the known geometric offsets

between the layers. Some complex and ambiguous LUTs were manually revised as well.

Figure 5.4: On the left, the individual pixel responses for each layer are shown: red

circles represent the 1st Layer, yellow triangles the 2nd Layer, and blue squares the 3rd

Layer. On the right, the highlighted regions corresponding to the responses of the first

(red), second (yellow), and third (blue) layers are displayed. These pixel regions are

obtained by summing all the columns and rows intersecting the activated pixels [18].

While this approach ensures good accuracy, especially in the central regions of the

detector—where the pixel patterns are clear and well-separated—it is more challenging

at the edges. There, pixel boundaries become blurred and overlapping due to optical

cross-talk and reduced event statistics, making manual delineation less reliable. Addi-

tionally, the automated extension of first-layer boundaries to deeper layers can result in

overly broad regions that may encompass events arising from inter-crystal scattering.

Consequently, while this method provides the base foundation for pixel identification, it

is both time-consuming and subject to uncertainties in boundary accuracy, particularly

at the detector periphery. Improvements to this method will be presented in subsequent

sections.

5.3 FDG Data Processing

This section describes the detailed processing pipeline using detector 10 as a primary

reference, chosen for its good spectral properties and well-defined flood map. Never-

theless, the methodologies outlined here are applicable and adaptable to all detectors

within the system. The processing pipeline leverages customized code specifically de-

signed and optimized to account for detector 10’s characteristics.
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The primary objective is to accurately characterize the detector’s response to gen-

uine 511 keV annihilation photons, effectively separating these from scattered and back-

ground events. The analysis presented encompasses a detailed evaluation at individual

pixel levels to achieve a thorough understanding of detector performance.

The comprehensive processing pipeline includes the following key steps:

• Coincidence grouping: Identifying temporally correlated photon pairs within a

coincidence window of 40 ns, improving true event selection and reducing random

coincidences.

• Energy window filtering: Applying a detector-specific energy window centered

around the 511 keV photopeak, typically using a range of ±3σ, to reject scattered

and background events.

• Spatial filtering and pixel assignment: Utilizing Look-up Tables (LUTs) to

assign events to specific detector pixels.

• Pixel position characterization: Computing the centroid (µx, µy) and associ-

ated uncertainties (σx, σy) of each pixel to improve spatial resolution.

• Pixel Spectra characterization: Analyzing the energy spectra for each pixel

and applying Gaussian fits to identify the main peaks associated with the true

511 keV events.

• Final event selection and validation: Using the refined pixel and spectral

information to select valid events and reject those due to noise, background, or

scattering, resulting in a high-quality dataset for image reconstruction.

5.3.1 Coincidence Grouping and Geometric Constraint

To identify true 511 keV annihilation photon pairs resulting from positron-electron

interactions, a coincidence grouping procedure is applied based on temporal correlation.

Events detected in separate detectors within a coincidence time window of 40 ns are

considered to originate from the same annihilation event [18]. This time window is

carefully selected to optimize the balance between sensitivity and specificity, minimizing

the inclusion of accidental coincidences while preserving genuine pairs.

In addition to the temporal criterion, a geometric constraint is imposed based on the

known, fixed configuration of the detector modules. Only coincident events detected by

geometrically symmetric detector pairs—i.e., those lying on opposite sides of the scanner

axis—are retained. To enforce this condition, a list of non-permissible detector pairs

(i.e., those that do not define a valid line of response, or LOR) is compiled and encoded
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in a configuration file. Any coincidence involving one of these disallowed detector

combinations is excluded from further analysis.

The combined application of temporal and geometric filtering significantly enhances

the quality of the dataset. As shown in Figure 5.5, the resulting energy spectra exhibit

a notable reduction in background noise and a more pronounced 511 keV photopeak.

This improvement is critical for reliable event identification and subsequent image re-

construction.

Figure 5.5: spectra of detector 10 after coincidence filtering.

Similarly, the application of coincidence grouping leads to clearer and more defined

flood maps, as shown in Figure 5.6.
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Figure 5.6: Flood map of detector 10 after applying coincidence filtering, illustrating

improved spatial delineation.

5.3.2 Energy Filter

An essential step in the event selection process is the application of a detector-specific

energy window designed to suppress scattered photons and background radiation while

preserving true 511 keV annihilation events. This is accomplished by analyzing the

energy spectrum of each detector, identifying the 511 keV photopeak, and fitting it

with a Gaussian function to extract the centroid (µE) and standard deviation (σE). A

detector-specific asymmetric window of [−3σ,+5σ] is then applied around the peak,

optimizing the trade-off between sensitivity and specificity.

Figure 5.7: Energy spectrum of detector 10 with the applied energy window centered

around the 511 keV photopeak.
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A relatively broad window is required due to spatial non-uniformities in the energy

response across the detector volume. In particular, systematic variations in peak posi-

tion and shape are observed among the three scintillation layers, as shown in Figure 5.8,

which presents energy spectra from the central region of each layer. The first layer ex-

hibits a lower reconstructed energy peak, which is attributed to its greater distance

from the SiPM array and thus higher optical attenuation. Additionally, the presence of

a BaSO4 reflector introduces further light loss, reducing the collected signal. In con-

trast, the second and third layers, being closer to the SiPMs, show higher peak positions

and broader spectral shapes, likely due to more frequent photon scattering and deeper

penetration that lead to increased variance in light collection.

Figure 5.8: Comparison of energy spectra from the central regions of the three scintil-

lator layers in detector 10. Red: 1st Layer, black: 2nd Layer, blue: 3rd Layer.

Further spatial dependence of the energy response emerges when comparing the

central region to the edges of the detector. Figure 5.9 presents energy spectra extracted

from edge pixels across the three scintillation layers. In contrast to the central region

(Figure 5.8), these spectra appear significantly broader and more dispersed, with a

noticeable degradation in peak definition. The 511 keV photopeak becomes increasingly

difficult to identify, especially in the second and third layers, where the distributions

exhibit both lower peak positions and greater spectral confusion. This deterioration in

energy resolution is likely due to partial light loss at the periphery of the scintillator,

where scintillation photons can escape the crystal volume or undergo multiple reflections

before detection, leading to a reduced and more variable signal amplitude.

These findings underline the importance of accounting for intra-detector variations

in energy response and motivate the development of pixel-specific or even channel-

specific calibration strategies.

The effect of the energy filter is further demonstrated by its impact on the recon-
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Figure 5.9: Energy spectra from edge regions of the three scintillator layers in detec-

tor 10. Red: 1st Layer, black: 2nd Layer, blue: 3rd Layer. Compared to Figure 5.8, all

distributions are broader and peaks are shifted to lower energies.

structed flood map. As shown in Figure 5.10, the application of the energy window

results in improved pixel separation and sharper structural delineation, owing to the

suppression of misidentified or spurious events.

Figure 5.10: Flood map of detector 10 after applying the energy filter. Enhanced pixel

delineation and reduced background highlight the effectiveness of energy-based event

selection.
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5.3.3 Pixel Assignation Filter

The subsequent step in the data processing workflow involves assigning each detected

event to a specific pixel within the detector matrix. As previously described, this is

accomplished using Look-Up Tables (LUTs), which define the boundaries of valid pixel

regions within the flood map. Beyond enabling spatial localization, this procedure also

serves as an effective filtering step: events that fall outside the defined LUT boundaries

are excluded from further analysis, as they are presumed to originate from scattered

photons or other background sources.

This filter is particularly relevant given that the LUT typically encompasses about

75% of the total area of the flood map [26]. As a result, a substantial fraction of events,

estimated between 20% and 30%, depending on the data set and detector conditions,

are rejected during this stage. These discarded events, as illustrated in Figure 5.11, are

in regions of the flood map between pixel patter, and are therefore likely to represent

non-primary or misassigned interactions.

Figure 5.11: Flood map of detector 10 showing the regions excluded by the LUT-based

filter. Events falling outside the pixel-defined areas are typically considered scattered

or background interactions.

Although these events are excluded from the main reconstruction pipeline, they have

been retained in a separate dataset for exploratory analysis. Preliminary investigations

have aimed to characterize the energy spectra of these peripheral regions. Proposed

ideas include using the energy profile of these excluded events as an estimate of the

background spectrum permeating the entire dataset, or attempting to reassign such

events to the nearest pixel based on probabilistic models of inter-crystal scattering, as
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discussed in [26]. These strategies, however, remain under consideration and are not

implemented in the current analysis pipeline.

5.3.4 Pixel Spatial Characterization

Following the application of energy and coincidence filters, a refined dataset for detector

10 was obtained. Although the LUT-based method effectively discards approximately

30% of events—primarily arising from inter-crystal scattering (ICS) and background

noise—it presents limitations in pixel localization accuracy. LUT regions are often

overly broad and insufficiently precise to resolve pixel boundaries, particularly when

distortions or asymmetries in the flood map are present.

To overcome these limitations, a statistical method was developed to refine the pixel

identification process. For each LUT-defined pixel region, a two-dimensional histogram

of event positions was constructed. Instead of relying on a 2D Gaussian fit—which

proves inadequate due to the frequently non-Gaussian and asymmetric event distri-

butions—we computed the mean coordinates (x̄, ȳ) and the corresponding standard

deviations (σx, σy) of each pixel distribution. This statistical characterization provides

a more robust, adaptable, and scalable framework suitable for the analysis of all 1565

pixels in a detector module.

Figure 5.12: Pixel identification in the flood map: 1st layer – red dot; 2nd layer – black

square; 3rd layer – yellow triangle. The error bars correspond to the standard deviation

of the distribution.
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Figure 5.13: Flood map of detector 10 with identified pixel centroids: The 1st layer

is marked in red, the 2nd in black, and the 3rd in yellow. Error bars represent the

computed σ in x and y directions.

The output of this procedure was used to construct a comprehensive database con-

taining, for each pixel, the centroid coordinates and spatial spread. An excerpt is

presented below:

Detector Layer Pixel X Pixel Y x̄ σx ȳ σy

10 0 11 10 -0.0027 0.0033 0.0096 0.0015

10 1 11 10 -0.0022 0.0038 -0.0187 0.0026

10 2 11 10 -0.0273 0.0076 -0.0271 0.0027

This database facilitates an improved event filtering strategy based on spatial cri-

teria: only events located within a defined window (e.g., 1σ or 2σ) from the centroid

are retained. Compared to LUT-defined areas, which often span 3σ to 4σ, this method

yields higher spatial precision and better event attribution.

Adjusting the σ threshold allows for control over the trade-off between spatial pre-

cision and data retention. A 1σ filter retains approximately 58% of the events, focusing

on the most centrally distributed interactions, but excludes a considerable portion of

the data. In contrast, a 2σ filter provides a more balanced compromise by including a

broader distribution while still excluding outliers and misassigned events; this setting

typically results in the exclusion of about 30% of events.
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In deeper layers, such as the second and third, broader spatial distributions are

typically observed. Although the pixel identification process remains reliable, these

layers yield larger sigma values due to increased scattering effects, lower light collection

efficiency, and generally reduced event statistics. Nevertheless, the statistical character-

ization method remains effective and continues to improve upon LUT-only approaches,

offering enhanced filtering reliability and better resolution, even in these more challeng-

ing regions.

Importantly, this statistical characterization remains dependent on the accuracy of

the initial LUT-defined regions. If a LUT region is inaccurately drawn, the resulting

centroid and σ values may not fully represent the true pixel structure.

The 2σ spatial filtering criterion was ultimately adopted as the standard for subse-

quent analyses, providing a well-balanced compromise between event purity and statis-

tical robustness. This threshold effectively retains the core events localized within each

pixel’s distribution while excluding peripheral events likely to result from inter-crystal

scattering or poor localization. Although it leads to the exclusion of approximately

30% of the events, the improvement in spatial resolution and reduction of ambiguous

assignments justifies the trade-off, especially for downstream spectral characterization.

Figure 5.14: flood map of detector 10, filtered using a 2σ pixel spatial filter.

5.3.5 Pixel-Level Spectral Characterization

Following the application of spatial filtering and pixel identification procedures, a de-

tailed pixel-wise spectral analysis was conducted for detector 10. This analysis plays

a critical role in understanding the spatial variability in detector response, improving
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energy calibration on a per-pixel basis, and refining event-level filtering by accounting

for individual pixel behavior.

For each identified pixel, the signal distribution from the four readout channels

(ch0, ch1, ch2, ch3) was extracted and analyzed. The following components were pro-

duced:

• Individual energy spectra for each readout channel

• Total energy spectrum (E = ch0 + ch1 + ch2 + ch3)

• Spatial event distributions along the x and y axes within the pixel

This multidimensional approach enables a more granular understanding of detector

performance by capturing both spectral and spatial characteristics at the pixel level.

A visual inspection of the spectra highlighted significant variability across the de-

tector. Central pixels in the first layer typically exhibited symmetric, well-localized

photopeaks with high signal-to-noise ratio, as shown if Figure 5.15. This indicates

the effective rejection of background and inter-crystal scattering (ICS) events through

combined energy and spatial filtering, leaving a dominant contribution from primary

511 keV interactions. In contrast, edge pixels frequently suffered from low event statis-

tics, which led to noisier spectra and unreliable peak identification. This lack of statis-

tics, combined with light loss and boundary effects, often resulted in broadened or

asymmetric photopeaks.

The situation further deteriorated in the second and third layers, as shown in Fig-

ure 5.17, where deeper photon penetration increased the likelihood of Compton scat-

tering and escape events. This leads to broader spectral features, multiple peaks, and

lower energy resolution due to the combination of energy loss, increased photon path

length, and generally reduced light yield.

To illustrate this behavior, Figures 5.15–5.17 compare the spectral and spatial char-

acteristics of a representative central pixel (11,10) across the three detector layers.
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Figure 5.15: Pixel (11,10), 1st Layer: Individual channel spectra and combined energy

spectrum showing well-defined photopeaks and successful Gaussian fits. X-axis: channel

value [a.u.], Y-axis: event counts.
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Figure 5.16: Pixel (11,10), 2nd Layer: the photopeaks are still visible, but slightly

broader and asymmetric. X-axis: channel value [a.u.], Y-axis: event counts.
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Figure 5.17: Pixel (11,10), 3rd Layer: significant broadening and distortion of the energy

spectra are observed, reflecting increased scattering. X-axis: channel value [a.u.], Y-

axis: event counts.
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Gaussian Peak Fitting and Database Construction

To extract quantitative parameters from each pixel’s spectral profile, a semi-automated

fitting routine was developed using ROOT. The software was designed with several

adjustable constraints and optimization parameters to ensure robust feature extraction

under diverse spectral conditions.

The peak fitting and validation workflow involved the following structured steps:

1. Peak Detection: Each of the four channel spectra was scanned using

TSpectrum::Search, targeting peaks within a window centered on the expected

511 keV signal. Constrains for minimum peak height and separation distance

reduce the noise.

2. Gaussian Fitting: Detected peaks were fitted with Gaussian functions, extract-

ing the centroid (µ), width (σ), and amplitude for each channel.

3. Combination Matching: For each pixel, all feasible combinations of one peak

per channel were considered. The total energy (E =
∑

µi) of each combination

was computed and compared to the nominal 511 keV peak. Concurrently, the

spatial event position was calculated based on the relative peak amplitudes and

compared to the pixel’s known spatial centroid.

4. Selection and Storage: Among the valid combinations, the one with the en-

ergy closest to 511 keV and best spatial match was retained. The corresponding

Gaussian parameters were then stored in a dedicated structure.

This algorithm was systematically applied across all pixels and layers. Pixels with

insufficient statistics, overlapping features, or failed fits were flagged for manual review

or excluded from further processing.

Figure 5.18 illustrates the outcome for a well-defined central pixel in the first layer

(11,10). Each plot displays the fitted Gaussian peaks (solid red curves), the selected

peaks (red vertical lines), and the accepted spatial window (green range) used for event

attribution. This approach accounts for minor offsets between fitted centroids and

known flood map positions.
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Figure 5.18: Energy spectra and position distributions for pixel (11,10), 1st Layer. Top:

individual channel spectra (A–D) with Gaussian fits (red) and best-fit positions (black

dashed). Middle: summed spectrum with fit derived from individual channel means.

Bottom: reconstructed X and Y positions with fit results and acceptance windows.

X-axes: channel value or position [a.u.]; Y-axes: event counts.

Layer Pixel µch0 σch0 µch1 σch1 µch2 σch2 µch3 σch3 µE

0 11, 10 6101.96 280.65 6022.74 275.71 6111.32 278.24 6056.11 281.89 24292.1

1 11, 10 6321.45 410.50 6605.27 402.19 6634.73 399.64 6328.31 408.12 25889.8

2 7, 19 6126.7 533.3 4976.76 501.39 7071.84 426.02 9625.83 509.81 27801.1

2 11, 10 6068.67 497.04 6506.03 484.22 6663.73 501.33 6859.69 493.10 26098.1

0 1, 11 3439.28 813.30 3342.31 896.23 3368.18 568.10 3406.90 556.27 23735.1

2 1, 6 2692.49 174.12 3043.64 182.47 3183.18 179.20 2755.89 177.99 19306.4

Table 5.1: Extracted Gaussian peak centroids (µ) and standard deviations (σ) for each

channel and pixel. µE =
∑

i µchi
.

To further assess the variability in spectral quality across the detector, representative

fits are shown for both central and peripheral pixels across all layers. Figures 5.18,5.19,

76



Chapter 5. Data processing

and5.21 illustrate the evolution of the spectra for pixel (11,10), a well-defined central

pixel, from the first to the third layer. In the first layer (Fig.5.18), peaks are sharp

and well-localized. In the second layer (Fig.5.19), the fits remain accurate but exhibit

broader features. By the third layer (Fig. 5.21), the spectral quality deteriorates no-

ticeably, with broader peaks and a mismatch between the selected peak combination

and the expected energy, highlighting the challenges posed by increased scattering and

reduced light collection.

By contrast, Figure 5.20 presents a positive example from the third layer, where pixel

(7, 19) exhibits good spectral resolution and spatial correspondence. This confirms that

accurate fitting can be achieved in the third layer in the presence of multiple peaks and

distortions.

Edge pixels, also, present difficulties. Figure 5.22 shows pixel (1,11) in the first layer,

where large σ values across all channels suggest unresolved overlapping peaks, leading

to excessively broad fits. Similarly, pixel (1,6) in the third layer (Fig. 5.23) shows low

total energy and indistinct peak structures, likely due to limited event statistics and

truncation from energy window cuts.

These examples emphasize the wide variability in spectral fidelity across the detector

and underscore the need for layer- and location-specific calibration strategies.

This comprehensive database represents the spectral and spatial fingerprint of the

detector at the pixel level. Its analysis and consideration will be presented in detail in

Chapter 6.
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Figure 5.19: Fitted energy spectra and position distributions for pixel (11,10), 2nd

Layer. Accurate peak selection and spatial match. X-axes: channel value or position

[a.u.]; Y-axes: event counts.

78



Chapter 5. Data processing

Figure 5.20: Fitted energy spectra and position distributions for pixel (7,19), 3rd Layer.

Good spectral resolution and robust fit.X-axes: channel value or position [a.u.]; Y-axes:

event counts.
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Figure 5.21: Fitted energy spectra and position distributions for pixel (11,10), 3rd

Layer. Ambiguous peaks and incorrect selection despite successful fitting. X-axes:

channel value or position [a.u.]; Y-axes: event counts.
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Figure 5.22: Fitted energy spectra and position distributions for pixel (1,11), 1st Layer

(edge pixel). Broad fits due to overlapping peaks. X-axes: channel value or position

[a.u.]; Y-axes: event counts.
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Figure 5.23: Fitted energy spectra and position distributions for pixel (1,6), 3rd Layer

(edge pixel). Limited statistics and spectral distortion. X-axes: channel value or posi-

tion [a.u.]; Y-axes: event counts.
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5.3.6 Limitations in Spectral Characterization and the Role of

Back-Irradiation

Despite the overall effectiveness of the spectral fitting methodology, several limitations

emerged during the analysis, particularly in regions with suboptimal signal characteris-

tics. Two main problem areas were identified: pixels located at the edges of the detector

matrix and the third scintillator layer.

Edge Pixel Limitations. Edge pixels—defined here as the first and last two rows

and columns of the detector matrix—exhibited notable degradation in spectral quality.

These pixels consistently showed lower energy responses, likely due to light loss at the

detector boundaries and less efficient optical coupling. As a result, the standard energy

window filtering procedure, optimized for central pixels, proved too restrictive for edge

pixels, excluding a significant fraction of valid events and thereby reducing statistical

robustness.

To address this, a dedicated analysis was performed in which the energy window was

temporarily disabled for edge pixels. This allowed for the retention of all recorded events

and led to more complex but complete spectral distributions. Additional optimization

of the peak-finding and fitting algorithms was required to handle the increased spectral

complexity. Despite the added computational cost, this approach resulted in more

reliable spectral characterization of edge pixels and enabled their inclusion in the final

pixel database.

Challenges in the Third Scintillator Layer. Among the three scintillator layers,

the third presented the greatest challenges for spectral characterization. The primary

difficulty stems from the presence of multiple closely spaced and poorly resolved peaks

in the spectral distributions. This makes it particularly difficult to reliably identify

the true photopeak. A typical scenario involves observing two peaks in the individual

channel spectra and multiple peaks in the total energy spectrum.

The current software handles this by first applying a peak identification algorithm,

followed by fitting a single Gaussian to each detected peak. It then searches for a

valid combination of one peak per channel that yields a reconstructed energy close to

511 keV and a spatial position compatible with the expected pixel centroid. However,

in cases with multiple close peaks, this method often identifies several combinations

that satisfy both energy and spatial constraints. As a result, the software frequently

selects an incorrect combination, compromising the accuracy of the extracted spectral

parameters.

An alternative approach tested involved fitting the channel spectra with double

Gaussian functions to separately model overlapping peaks. While this method showed
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some improvement when the peaks were clearly distinct, it frequently failed or produced

unstable results in more ambiguous cases. Due to this inconsistency and high failure

rate, the double Gaussian fitting approach was ultimately not adopted in the final

analysis pipeline.

To explore potential improvements, a back-irradiation setup was tested using a 22Na

source placed behind the detector. This geometry maximized photon flux in the third

layer, improving event statistics and minimizing the influence of upstream scattering.

he resulting flood map (Figure 5.24) displayed improved contrast and pixel separation

in the third layer, with an inverted brightness gradient compared to front irradiation.

Flood maps obtained under back-irradiation conditions (Figure 5.24 and Fig-

ure 5.25) demonstrated significantly improved brightness and pixel delineation in the

3rd Layer.

Figure 5.24: Flood map of detector 10 under 22Na back-irradiation. Compared to front

irradiation Fig. 5.10, enhanced pixel contrast and separation is evident in the third

layer and reduced in the first and second layers.

Figure 5.26 shows the energy spectrum of 22Na back-irradiation on detector 10

without coincidence filtering or energy selection. In contrast to the FDG spectrum

(Figure 5.7), a shift toward lower energies is evident, along with a more prominent low-

energy peak and tail. These features result from the absence of coincidence filtering,

which allows for increased contributions from scattered and background events.

Spectral comparisons between FDG front-irradiation and 22Na back-irradiation data

(Figure 5.27) reveal improved peak sharpness and symmetry in the back-irradiation

case, accompanied by reduced fitting uncertainties.
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Figure 5.25: Zoomed flood map of detector 10 under back-irradiation with a 22Na

source. Compared to front irradiation (see Fig. 5.12), the third scintillator layer appears

brighter than the first and second layers. Black, red, and yellow dots with error bar

indicate pixels assigned to the first, second, and third layers, respectively.

Figure 5.26: Energy spectrum of detector 10 under 22Na back-irradiation. No coinci-

dence or energy filter applied.

However, these improvements come with caveats. The back-irradiation dataset dif-

fers from standard acquisition protocols:
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(a) FDG front-irradiation (b) 22Na back-irradiation

Figure 5.27: Comparison of third-layer energy spectra for pixel (2,9): FDG front-

irradiation vs. 22Na back-irradiation. The latter shows sharper and more symmetric

peaks, indicating improved spectral conditions.

• Coincidence filtering could not be applied, as the geometry did not allow reliable

detection of photon pairs.

• Energy window filtering was excluded due to the shift in energy scale caused by

the different irradiation geometry and increased light yield.

• Consequently, the spectra are more susceptible to background contributions, in-

cluding scatter and intrinsic activity (e.g., from 176Lu in LYSO).

To align the energy scales between FDG and back-irradiation data, a normalization

factor was computed by comparing the 511 keV peak positions in central pixels. This

yielded an average scaling factor of approximately 1.117. Although this correction

improved dataset compatibility, it was based on limited statistics and manual validation.

Its robustness remains uncertain and must be interpreted with caution.

Given these constraints, the benefits of the back-irradiation method are limited.

While it offers a qualitative enhancement in peak visibility for pixels in the third layer,

its practical utility remains uncertain. The extracted parameters were analyzed and

compared, but the actual advantage of this method over standard acquisition could not

be clearly demonstrated. This is discussed further in Chapter 6.
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Data Analysis and Results

This chapter presents a comprehensive characterization of the high-resolution Depth-of-

Interaction (DOI) detector for the Small Animal In-Beam PET Scanner, based on both

experimental and simulated data. It is organized into three sections, each targeting a

specific aspect of detector performance.

The first section (Section 6.1) covers the pixel-wise analysis of experimental data

from FDG measurements. It outlines the processing pipeline for extracting spatial

centroids and energy response parameters, and highlights challenges encountered in

edge pixels and deeper scintillator layers.

The second section (Section 6.2) explores the detector response through Monte Carlo

simulations. It characterizes interaction multiplicity, energy deposition, and spatial

dispersion, providing insight into inter-crystal scattering and photon transport mecha-

nisms.

The third section (Section 6.3) evaluates how the extracted pixel-wise parameters

can be used to reconstruct synthetic detector signals and apply event filtering. The

analysis supports their role in improving localization accuracy and lays the groundwork

for integration into advanced reconstruction strategies.

6.1 Detector Pixel-wise Characterization: Work-

flow, Results, and Limitations

This section presents the results of the pixel-wise characterization of the SIRMIO PET

detector. Building upon the data processing and filtering methodologies introduced in

Chapter 5, the focus is placed on the quantitative evaluation of the spatial and spectral

parameters extracted for each detector pixel. The overarching objective is to generate a

high-fidelity, pixel-specific parameter map capable of accurately describing the detector

response. Such a database is intended to support event classification, filtering, and
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simulation-based modeling for image reconstruction.

Each pixel (j, k) is characterized by its centroid coordinates (x̄, ȳ)j,k and spatial

spreads (σx, σy)j,k, derived from the analysis of the flood map using spatial filters and

statistical analysis of the event distributions. These spatial descriptors provide a com-

pact and statistically meaningful representation of the photon interaction positions

within the detector plane.

The subsequent subsections analyze the spatial and spectral distributions of the

extracted parameters, assess their pixel-to-pixel variability across layers, and quantify

the fraction of pixels for which the characterization procedure either failed or required

correction. Special attention is given to the limitations observed in the third layer,

where statistical limitations and decreased sensitivity posed significant challenges.

6.1.1 Spatial Pixel Characterization Analysis

The spatial characterization of each pixel in the flood map was carried out by extracting

the centroid coordinates (x̄, ȳ) and corresponding spatial spreads (σx, σy) from the event

distributions. This analysis was performed on the FDG dataset and applied to all layers

of detector 10. To investigate the spatial dependence of the detector performance, pixels

were systematically grouped into central and edge regions.

Table 6.1 reports the statistical distribution of the extracted spread parameters.

As anticipated, central pixels exhibited narrower and more consistent spatial spreads,

indicative of higher light collection uniformity and reduced edge-related effects. Con-

versely, edge pixels displayed increased variability and broader distributions, likely due

to boundary reflections, reduced photon statistics, and less favorable light-propagation

conditions.

A systematic anisotropy was consistently observed across layers, with typical values

of σx ≈ 2σy. This asymmetry is attributed to the geometric configuration of the SiPM

array and the anisotropic coupling of scintillation light within the detector module.

To validate the accuracy of the extracted centroids and their associated spread

parameters, the reconstructed pixel positions were overlaid on the original filtered flood

map, as illustrated in Figure 6.1. The close alignment between the computed centroids

and the observed pixel clusters confirms the precision of the spatial characterization

procedure.
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Table 6.1: Spatial resolution statistics (σx, σy) across layers and pixel regions.

Metric Layer Region Mean Std Min Max

σx 0 central 0.00360 0.00017 0.00332 0.00438

edge 0.00422 0.00062 0.00341 0.00574

1 central 0.00389 0.00022 0.00346 0.00473

edge 0.00423 0.00046 0.00337 0.00537

2 central 0.00695 0.00152 0.00440 0.01221

edge 0.00480 0.00190 0.00130 0.00995

σy 0 central 0.00155 0.00006 0.00145 0.00181

edge 0.00183 0.00043 0.00145 0.00422

1 central 0.00241 0.00062 0.00090 0.00507

edge 0.00285 0.00100 0.00098 0.00630

2 central 0.00181 0.00012 0.00161 0.00236

edge 0.00212 0.00079 0.00115 0.00463

Figure 6.1: Flood map of detector 10 with overlaid pixel centroids.
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Flood Map Reconstruction

To verify the accuracy and representativeness of the extracted spatial parameters, a

synthetic flood map was reconstructed using solely the spatial centroids (x̄, ȳ) and

spreads (σx, σy) obtained from the pixel-wise analysis. Each pixel p was modeled as a

two-dimensional Gaussian distribution:

Gp(x, y) =
1

2πσxσy

exp

[
−
(
(x− x̄)2

2σ2
x

+
(y − ȳ)2

2σ2
y

)]
(6.1)

From each pixel distribution, 10,000 synthetic events were randomly sampled, as-

suming a uniform contribution across all pixels. These generated (x, y) coordinates were

accumulated into a two-dimensional histogram to form the reconstructed flood map.

As illustrated in Figure 6.2, the resulting synthetic flood map closely reproduces the

spatial structure observed in the experimental data, highlighting the detector’s regular

pixel arrangement and spatial resolution profile.

Figure 6.2: Synthetic flood map reconstructed using Gaussian-distributed events cen-

tered at each pixel’s spatial centroid.

6.1.2 Spectral Parameter Analysis

To characterize the energy response of each pixel, spectral analysis was performed

independently on the signals from the four readout channels chi, with i ∈ {0, 1, 2, 3}.
This channel-wise approach avoids the limitations of the total energy spectrum, which

is often distorted by pile-up, trigger asymmetries, and inter-crystal scattering (ICS). By

fitting each channel spectrum individually with a Gaussian function, the peak position

µchi
and the corresponding standard deviation σchi

were extracted.
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The total reconstructed energy deposited in each pixel was then defined as the sum

of the channel peak positions:

µE =
3∑

i=0

µchi
(6.2)

with an associated uncertainty given by the sum of the squared individual standard

deviations:

σE =

√√√√ 3∑
i=0

σ2
chi

(6.3)

This model assumes that the channels respond linearly and independently, and that

events are free from significant scattering or electronic noise. Under such conditions,

µE is expected to align with the 511 keV photopeak.

To monitor the reliability of the spectral fitting process, a diagnostic log was gen-

erated for each pixel, reporting the number of identified peaks, the convergence status,

and the number of iterations required. Failures—typically caused by low statistics or

ambiguous peak structures—were flagged accordingly. In the FDG dataset, which was

filtered by an energy window to suppress background, fitting failures were observed in

six pixels: one in the second layer and five in the third layer. These were excluded from

the final database.

The distributions of the extracted standard deviations σchi
and the total energy

resolution σE are shown in Figure 6.3. A clear degradation in energy resolution is

observed from the first to the third layer. This trend reflects the combined effects

of light attenuation and increasing contributions from ICS events in deeper detector

regions, resulting in broader and less reliable spectral peaks.

Elevated sigma values are generally linked to edge pixels and the third layer, sug-

gesting statistical constraints and spatial inconsistencies. High sigma indicates a broad

distribution of 511 keV, meaning reduced energy resolution and energy degradation.

Additionally, variability in sigma values indicates a high degree of spectral dependence,

as well as underlying limitations and issues. This affects the detectability of peaks and

the reliability of spectral parameters at the pixel level.
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(a) σch0 (b) σch1

(c) σch2 (d) σch3

(e) σE

Figure 6.3: Distributions of σ in layers for each readout channel and for energy.
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Energy Map and Pixel-wise Energy Distribution Further analysis focused on

the mean energy per pixel (µE), extracted from the sum of channel peaks. 2D energy

distributions are shown in Figure 6.4, accompanied by row-wise projections in Fig-

ure 6.6. These profiles highlight pixel-to-pixel variations and reveal systematic pattern

across the detector.

(a) 1st Layer (b) 2nd Layer (c) 3rd Layer

Figure 6.4: Pixel energy (µE) maps for each layer showing the pixel-wise µE extracted.

A histogram of pixel energy for all pixels is shown in Figure 6.5, summarizing the

layer-wise energy evolution.

Figure 6.5: Distribution of pixel energy (µE) extracted from pixel-wise Gaussian fits

from FDG.

As expected, we observe an increase in energy response in the second and third

layers, as well as considerable variability under light dependence and pronounced in-

consistencies in the third layer, likely due to increased ICS. In particular, the third layer
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(a) 1st Layer

(b) 2nd Layer

(c) 3rd Layer

Figure 6.6: Row-wise pixel energy (µE) evolution for each layer. The red line separates

pixel rows for visual inspection.

exhibits abrupt pixel-to-pixel variations, with certain rows showing non-monotonic en-

ergy trends and localized deviations from the expected gradient. These variations sug-

gest reduced spectral reliability for some pixels in the third layer. This is likely caused

by a combination of contamination from inter-crystal scattering and limited statistics,

which lead to less accurate peak fitting.
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Performance Evaluation via Position Error and Pixel Quality Metrics

To quantitatively assess the reliability of the spectral characterization process, we eval-

uated the consistency between spatial and spectral reconstructions and implemented

systematic criteria for identifying potentially problematic pixels.

A central validation step involved comparing the reconstructed pixel positions de-

rived from channel-based Gaussian peak fitting to those obtained from the flood map

analysis (x̄, ȳ)experimental. Using the peak positions (µch0 , µch1 , µch2 , µch3) extracted for

each channel, the reconstructed pixel position (x, y)ch was estimated via the Anger

logic:

xch =
µch0 + µch1 − µch2 − µch3

µch0 + µch1 + µch2 + µch3

, ych =
µch0 − µch1 − µch2 + µch3

µch0 + µch1 + µch2 + µch3

(6.4)

The relative errors between the channel-based and flood map-derived positions are

then defined as:

PosErrX =

∣∣∣∣xch − xexperimental

xexperimental

∣∣∣∣ · 100, PosErrY =

∣∣∣∣ych − yexperimental

yexperimental

∣∣∣∣ · 100 (6.5)

The distributions of these position errors are shown in Figure 6.7. While the major-

ity of pixels demonstrate good agreement (typically within 5%), a notable tail exceeding

10% appears, particularly among peripheral pixels and in the third detector layer. These

deviations likely stem from spectral misidentification or limited photon statistics.

Figure 6.7: Distributions of relative position errors along X (left) and Y (right) for

central pixels. Values above 10% are flagged for review.

To improve the reliability of the pixel parameter database, we defined a set of

criteria to flag pixels exhibiting anomalous behavior, using both absolute thresholds

and statistical outlier detection.

A pixel was flagged to be review if it satisfied at least one of the following conditions:

• Threshold-based conditions:
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– Energy centroid µE outside nominal range: µE < 10,000 or µE > 40,000

– Position error exceeding tolerance: PosErrX > 10% or PosErrY > 10%

• Statistical outliers (based on 3σ criterion within each detector layer and region

category):

– Channel width deviations: σch0 to σch3

– Energy resolution σE

– Relative position errors PosErrX , PosErrY

Pixels meeting any of these criteria were flagged for exclusion or subject to further

refinement via manual review. A summary of the flagged pixels per detector layer is

provided in Table 6.2. It is important to note that a flagged status does not inherently

imply a definitive failure in pixel characterization but rather indicates the need for closer

scrutiny. The actual number of functionally unusable pixels may be underestimated due

to ambiguity in peak attribution.

Table 6.2: Summary of flagged pixels per detector layer.

Layer Flagged Pixels Total Pixels Percentage

1st 10 460 2.2%

2nd 32 529 6.0%

3rd 80 576 14.2%

Total 122 1565 7.8%

Manual inspection confirmed that the spectral characterization in layers 1st and

2nd was generally reliable, with reported pixels observed near the detector edges. In

contrast, a significantly higher rate of unreliable pixels was found in the third layer,

primarily due to the frequent presence of multiple spectral peaks within single-pixel

spectra. As previously discussed, this effect compromises the ability to unambiguously

assign a unique response to a given pixel, resulting in a much larger proportion of

flagged cases.

Synthetic Flood Map Reconstruction

To further validate the reliability of the extracted spectral descriptors and explore their

potential in modeling the spatial response of the detector, a second synthetic flood map

reconstruction was performed based on channel-level information.
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For each pixel and each channel i, the response Schi
was modeled as a one-

dimensional Gaussian distribution:

Schi
∼ N (µchi

, σchi
) (6.6)

Synthetic events were generated by independently sampling from the distributions

Sch0 , Sch1 , Sch2 , Sch3 . The spatial coordinates of each synthetic event were then computed

using the standard Anger logic formula:

x =
Sch0 + Sch1 − Sch2 − Sch3

Sch0 + Sch1 + Sch2 + Sch3

, y =
Sch0 − Sch1 − Sch2 + Sch3

Sch0 + Sch1 + Sch2 + Sch3

(6.7)

These coordinates were accumulated into a 2D histogram representing the recon-

structed flood map.

Figure 6.8 shows the resulting synthetic flood map generated directly from the raw

channel parameters. The image reveals that the reconstructed spots are considerably

broadened and spatially overlapped, resulting in a poorly resolved structure where indi-

vidual pixels are no longer clearly distinguishable. This blur arises from the substantial

spreads σchi
associated with each channel and the complete neglect of inter-channel

correlations. As a consequence, this reconstruction leads to a strong overestimation of

spatial uncertainty.

Figure 6.8: Synthetic flood map reconstructed using raw channel parameters without

correction.

Deriving a full statistical model that captures the underlying correlation structure

between channels is inherently complex, as it requires knowledge of the joint distribution

of signal across all four channels. These correlations arise from a combination of optical

crosstalk, geometrical asymmetries, and statistical dependencies in light transport. In

this preliminary study, such effects were not incorporated, and channels signal were
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assumed to be independent. While this assumption simplifies the modeling process, it

limits the descriptive accuracy of the resulting spatial response.

To mitigate this limitation and better approximate the observed detector response,

an empirical correction was applied. Specifically, the channel-wise standard deviations

σchi
were scaled by a factor f = 1/15, determined through iterative testing to visually

match the spatial resolution of the experimental flood map. This corresponds to reduced

σchi
values in the range of approximately 20 to 60, depending on the original spread of

each channel. It is important to emphasize that this correction factor is purely indicative

and serves only to illustrate the magnitude of adjustment needed. It does not represent

a comprehensive model of the underlying inter-channel correlations, which likely vary

across pixels and depend on the complex interplay of light transport, detector geometry,

and electronic response. The corresponding reconstruction is shown in Figure 6.9. This

adjusted synthetic flood map demonstrates improved localization and sharper pixel

boundaries, indicating that the empirical narrowing of channel spreads can partially

compensate for the missing inter-channel covariance.

Figure 6.9: Synthetic flood map reconstructed using rescaled channel parameters

(σchi
/15).

Despite this visual improvement, notable discrepancies remain. In particular, the

reconstructed spots appear isotropic, lacking the elongated morphology (σx ≈ 2σy) ob-

served in the experimental data. This discrepancy stems from the symmetric treatment

of channel contributions and the absence of a transformation model that captures the

anisotropic propagation of scintillation light within the detector. These findings em-

phasize the limitations of using uncorrelated Gaussian models and motivate the need

for a more refined statistical framework that explicitly incorporates channel interdepen-

dencies.

In summary, channel-based flood map reconstruction can serve as a useful tool for
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qualitative evaluation of spectral parameters. However, its quantitative accuracy is

currently constrained by the simplifying assumptions of statistical independence and

isotropy.

6.1.3 Comparison with Back Irradiation Using Na22

To address the challenges in spectral characterization, particularly the reduced statis-

tics and increased inter-crystal scattering (ICS) observed in deeper detector layers with

front-irradiation (FDG) data, a complementary dataset was acquired using a 22Na

source in a back-irradiation configuration, as detailed in Chapter 5. This geometry

facilitated more homogeneous illumination of the third detector layer.

The 22Na acquisition generally yielded improved spectral characterization quality.

Notably, the occurrence of multiple spectral peaks was significantly reduced, and pixel

coverage in the third layer improved. The distributions of the reconstructed energy

peaks (µE) and corresponding energy resolutions (σE) were observed to be narrower

and more uniform, as illustrated in Figure 6.10. These distributions can be directly

compared with the FDG-derived results presented in Figures 6.5 and 6.3.

A representative comparison of the energy spectra for pixel (2,9) in the second layer

(as shown in Figure 5.27) further highlights this improvement. The 22Na spectrum

consistently exhibits a cleaner and more distinct photopeak structure compared to the

FDG spectrum, which often suffers from higher background noise and less defined peaks.

(a) µE (b) σE

Figure 6.10: Pixel-wise spectral parameters from 22Na back-irradiation: (a) distribution

of energy peak positions (µE); (b) distribution of energy resolution (σE).

Despite the advantages in spectral quality, the current implementation of 22Na back-

irradiation for routine detector calibration faces several significant practical limitations:

• Fitting Failures: Twelve pixels, primarily located at the detector’s periphery,

99



Chapter 6. Data Analysis and Results

exhibited insufficient statistics, leading to unreliable or failed spectral fitting out-

comes.

• Absence of Coincidence Filtering: The experimental setup precluded reliable co-

incidence filtering, thereby increasing the susceptibility of the collected spectra to

background noise and scattered events.

• Susceptibility to Contamination: Without the ability to apply an energy window

filter (due to potential energy scale shifts from varying light yield and photon in-

cidence angles), spectra were more prone to contamination from Compton scatter

and intrinsic radioactivity, such as 176Lu in LYSO crystals.

• Integration Challenges with FDG Data: Integrating 22Na data into the existing

FDG-based processing pipeline is complex. It necessitates an accurate calibration

factor to align energy scales, but reliably identifying the 511 keV photopeak in

low-statistics FDG data can be ambiguous.

• Scalability: Applying this detailed characterization procedure across all 56 detec-

tor blocks would demand substantial manual intervention and calibration, ren-

dering large-scale implementation impractical.

While the parameters derived from the 22Na method supported the analysis within

this thesis, they were not adopted as the primary replacement for the FDG-derived

values for third layer characterization due to the mentioned limitations. Nevertheless,
22Na back-irradiation demonstrates clear potential as a valuable reference or calibration

dataset, particularly for optimizing spectral parameter extraction in the more challeng-

ing rear layers of the detector. Further study and refinement are essential to overcome

its current limitations before full integration into future processing workflows can be

realized.

6.2 Detector Response Simulation

This section provides a detailed characterization of the simulated response of the detec-

tor to 511 keV annihilation photons, based on the simulation framework presented in

Chapter 4. A total of 106 photons were simulated to investigate interaction multiplicity,

spatial distributions, and energy deposition patterns across the three scintillator layers.

The overarching aim of this analysis is to evaluate the key interaction characteristics

of 511 keV photons within the detector volume. In particular, we focus on the multi-

plicity of interactions, energy deposition behavior, and the spatial correlations between
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interaction points. This evaluation is crucial for understanding the impact of inter-

crystal scattering (ICS) and for informing the development of robust event selection

and correction strategies.

6.2.1 Interaction Multiplicity

We first categorized simulated events according to the number of energy depositions

(i.e., interactions) recorded for each primary photon. Here, an event refers to the full

chain of interactions produced by a single 511 keV photon within the detector. Out of

688,369 unique primary photons that interacted with the detector, a significant portion

resulted in multiple energy depositions.

The distribution of interaction multiplicity is summarized in Figure 6.11 and detailed

in Table 6.3. As observed, single-interaction events are the most frequent category, ac-

counting for 53.46% of all recorded events. However, a substantial 46.54% of events

involve two or more interactions. This high incidence of multiple-hit events is pre-

dominantly due to Compton scattering, which is the dominant interaction mechanism

for 511 keV photons in LYSO. The probability of an event having a higher number

of interactions decreases progressively, with triple-interaction events (11.46%) being

significantly more common than those with four or more interactions (2.82%). The

prevalence of multi-interaction events underscores the necessity of an effective event

reconstruction strategy to accurately determine the total energy deposition and the

initial point of interaction.

Figure 6.11: Distribution of the number of interactions per event for 688,369 simulated

511 keV gamma rays. Percentages indicate the fraction of total events for each multi-

plicity.
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Table 6.3: Detailed distribution of interaction multiplicity.

Interactions per Event Number of Events Percentage

1 367,984 53.46%

2 222,067 32.26%

3 78,880 11.46%

4 or more 19,438 2.82%

Total 688,369 100.00%

6.2.2 Energy Deposition Analysis

The analysis of energy deposition within the detector is fundamental to accurately

interpreting photon interactions. Figure 6.12 presents a stacked histogram depicting

the energy deposition spectra categorized by interaction multiplicity and sequential

interaction order. Different color coding highlights single interactions, as well as the

first, second, and third interactions within multiple-interaction sequences.

Figure 6.12: Stacked energy deposition spectrum, showing distinct contributions from

single interactions and successive interactions in multiple-event sequences.

The key spectral features identified from the simulated detector response include:

• Photopeak at 511 keV: This peak predominantly arises from full energy deposi-

tion through the photoelectric effect, indicative of ideal PET photon interactions.

• Compton Continuum: A broad spectrum observed at lower energies, resulting

from partial energy deposition during Compton scattering, where photons either

escape the detector or undergo subsequent interactions.
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• Characteristic X-ray Peaks (50–60 keV): Produced by photoelectric interac-

tions within the lutetium atoms of the LYSO scintillator, these peaks result from

characteristic X-rays fully absorbed within the detector.

• Escape Peaks (approximately 450–460 keV): These occur due to charac-

teristic X-rays escaping the pixel detector volume, creating characteristic energy

deficits relative to the photopeak.

Single-interaction events are predominantly represented by the photopeak at

511 keV, marking ideal-photon interactions. However, even these spectra include contri-

butions from the Compton continuum, indicating scattered photons exiting the detector

after partial energy deposition.

Multiple-interaction events involve photons interacting at multiple locations within

the detector, typically due to inter-crystal scattering (ICS). ICS occurs when initial

interactions deposit only part of the photon energy, generating scattered photons that

subsequently interact again within the detector. This scattering significantly reduces the

accuracy of reconstructing the initial interaction position, thereby negatively impacting

detector spatial resolution.

Analysis of these spectra demonstrates that energy filtering can serve as a criti-

cal strategy to mitigate the impact of scattered photons. Applying a selective energy

threshold around the 511 keV peak effectively reduces events primarily composed of

scattered photons. Nevertheless, this filtering inherently removes not only a substantial

number of multi-interaction events but also some single interactions and initial inter-

actions of multi-event sequences, thereby precluding the reconstruction of the original

photon interaction position for these events.

In the context of PET imaging, while energy filtering substantially enhances spa-

tial resolution by excluding scattered and partially deposited events, it simultaneously

introduces an inherent limitation: it reduces the total count of reconstructible events,

including certain valid single and initial interaction events, reducing considerable the

detector sensitivity.

6.2.3 Spatial Distribution and Inter-Layer Analysis

The three-layer design of the detector is intended to maximize the capture efficiency

for both primary and scattered photons. The distribution of interactions across these

layers provides insight into the detector’s depth-of-interaction (DOI) capability.
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Interaction Distribution per Layer

The distribution of interaction types within each detector layer provides insights into

how 511 keV photons interact and propagate through the multi-layered detection sys-

tem. Table 6.4 shows the percentage of each interaction type relative to the total

number of events in that specific layer. The event categories include single-hit events

(i.e., a single energy deposition), double-hit events (split into first and second interac-

tion), triple-hit events (further divided into first, second, and third interaction), and a

residual class named Other Events, which includes more complex cases.

Table 6.4: Percentage distribution of interaction types per detector layer. Values are

relative to the total number of interactions recorded in each layer.

Interaction Type 1st Layer [%] 2nd Layer [%] 3rd Layer [%]

Single interaction 33.8 29.1 35.4

Double - 1st interaction 23.6 19.3 14.4

Double - 2nd interaction 16.9 21.3 22.7

Triple - 1st interaction 9.1 7.1 3.7

Triple - 2nd interaction 6.0 8.0 7.1

Triple - 3rd interaction 4.6 7.9 9.3

Other Events 6.0 7.3 7.4

Single-hit events make up roughly one-third of the interactions in each layer, with

the 3rd Layer showing the highest proportion (35.35%). This does not necessarily imply

better photon absorption in deeper layers; rather, it may reflect scenarios where the

photon undergoes Compton scattering and the secondary escapes the detector without

further interaction.

Double-hit events show a decrease in first-interaction probability with increasing

depth: 23.65% in 1st Layer, 19.27% in 2nd Layer, and 14.37% in 3rd Layer. Con-

versely, second interactions increase from 16.96% in 1st Layer to 22.72% in 3rd Layer.

This confirms the tendency of scattered photons to migrate deeper into the detector,

consistent with forward Compton scattering.

Triple-hit events further emphasize this trend. First hits are concentrated in the 1st

Layer (9.14%), while second and third interactions are increasingly likely in the 2nd

and 3rd Layers, culminating at 9.29% for third interactions in 3rd Layer. This spatial

evolution supports a model of multiple energy depositions progressing deeper into the

detector structure.
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Distribution of Interaction Types Across Layers

While the previous section analyzed how interaction types are distributed within each

layer, this section evaluates how each interaction type is distributed across the three

layers. In other words, it examines where in the detector a given event category pre-

dominantly occurs. Table 6.5 reports the percentage distribution of each interaction

category in the three layers, normalized by the total number of interactions of that

type.

Table 6.5: Distribution of interaction types across the three detector layers. Percentages

are calculated with respect to the total number of interactions for each category.

Interaction Type 1st Layer [%] 2nd Layer [%] 3rd Layer [%]

Single interaction 40.2 30.9 29.0

Double - 1st interaction 46.6 33.9 19.5

Double - 2nd interaction 33.4 35.7 30.9

Triple - 1st interaction 50.7 35.0 14.3

Triple - 2nd interaction 33.2 39.6 27.2

Triple - 3rd interaction 25.3 39.2 35.5

The spatial distribution of single-hit events shows that 40% occur in the 1st Layer,

confirming its role as the primary interaction interface. The share decreases in deeper

layers (31% in 2nd Layer and 29% in 3rd Layer), aligning with the attenuation profile

of 511 keV photons.

Double-hit and triple-hit events clearly illustrate the progression of interactions

through the detector. First hits are predominantly recorded in the 1st Layer (47% and

51%, respectively), while second interactions peak in the 2nd Layer. Third interactions

of triple events are most frequent in the 3rd Layer (36%). This layered shift reflects

the typical trajectory of Compton-scattered photons, confirming a sequential energy

deposition pattern.

These statistics emphasize the distinct but complementary roles of each detector

layer: the 1st Layer is crucial for initial photon capture, while the 2nd and 3rd Layers

play increasingly important roles in recording subsequent interactions. This knowledge

is instrumental for reconstructing the full photon path and is particularly relevant for

improving depth-of-interaction (DOI) algorithms, time-of-flight corrections, and spatial

resolution in PET imaging systems.
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Lateral Displacement

The lateral displacement between the first and second interaction points in multiple-

interaction events is a critical parameter that directly impacts the intrinsic spatial

resolution of the detector. In pixelated scintillator arrays, such as the LYSO-based

system considered here, event positioning is typically derived from the location of en-

ergy deposition. However, when photons undergo Compton scattering, the position of

the first interaction—ideally corresponding to the emission point—may be offset from

subsequent interactions, thereby introducing spatial ambiguity.

Figure 6.13 presents the distribution of lateral displacements for second interaction

points relative to the first, measured across both double- and triple-interaction events.

The bin width is 0.9 mm, which corresponds precisely to the pitch of the scintillator

pixels, allowing direct interpretation in terms of pixel units.

The simulation reveals a mean lateral displacement of 2.55 mm with a standard

deviation of 2.54 mm. The majority of events (approximately 52%) are clustered within

1 to 2 pixels from the primary interaction (0.9-1.8 mm), and nearly 68% fall within 3

pixels (0.9–2.7 mm). This concentration near the origin suggests that, in most cases,

the scattered photon interacts within a relatively small neighborhood, preserving the

spatial localization of the original gamma-ray interaction.

Notheless, the histogram exhibits a noticeable tail, with a non-negligible percent-

age of events extending to larger displacements. For instance, about 5.3% of second

interactions occur more than 5 pixels away (greater than 4.5 mm), and a small subset

reaches beyond 10 mm. These long-range scatter events typically result from forward-

directed Compton scattering at shallow angles, which deposits little energy in the initial

interaction and allows the photon to travel further before interacting again.

These insights highlight the necessity of incorporating spatial filtering strategies

or DOI-aware reconstruction methods to mitigate the influence of widely separated

secondary hits. Furthermore, understanding the displacement distribution is essential

for simulating realistic detector performance and for interpreting spatial uncertainty in

experimental data.

6.2.4 Discussion

The Monte Carlo simulation offers a comprehensive characterization of the detector’s

response to 511 keV gamma photons. The results confirm that Compton scattering

is the predominant interaction mechanism in LYSO at this energy, resulting in a high

incidence of multiple-interaction events. This behavior is crucial for understanding the

intrinsic limitations and potential of the detector system.

One of the key outcomes of the study is the demonstration that energy filtering can
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Figure 6.13: Distribution of lateral displacement between the first and second inter-

action points for all multiple-interaction events. Bin size is 0.9 mm, matching the

scintillator pixel pitch.

significantly reduce the contribution of inter-crystal scatter (ICS) events. This forms a

foundational strategy for event selection and reconstruction, offering a theoretical basis

for improving spatial resolution and reducing mispositioned events.

However, it is important to recognize that the simulation represents an idealized

model and does not account for various real-world detector effects. Factors such as

intrinsic radioactivity from lutetium, non-uniform irradiation, photon escape (leakage),

and electronic noise are not included. These phenomena can significantly impact de-

tector performance and complicate the interpretation of experimental data.

Furthermore, the simulation tracks energy depositions on a per-pixel basis, assuming

ideal charge collection and ignoring the complex physical processes that occur within

a real scintillator. In practice, gamma interactions generate visible scintillation light,

which then propagates through the crystal and undergoes various optical and electronic

transformations before being recorded. These additional stages introduce further un-

certainties and resolution losses that must be considered in a complete system model.

Despite these limitations, the simulated dataset provides a valuable reference frame-

work for understanding fundamental interaction mechanisms and guiding reconstruction

strategies. In the subsequent sections, this dataset will be integrated with experimental

data to validate the simulation outputs and to address the detector’s behavior under

realistic conditions.
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6.3 Evaluations of Pixel-wise Channel Parametriza-

tion and Filtering Efficiency Using Simulated

Data

The simulation framework described in Section 6.2 was extended to evaluate the ac-

curacy and effectiveness of the pixel-wise channel parameterization described in Sec-

tion 6.1. The goal of this section is twofold: to validate the fidelity of the extracted

parameters by reconstructing spatial event distributions from simulated interactions,

and to assess the impact of parameter-based filtering strategies in enhancing event

purity.

6.3.1 Synthetic Signal Generation Using Pixel Parameters

Simulated interactions (event ID, pixel of interaction, energy deposited) were processed

using the pixel-wise channel mean and standard deviation values extracted from experi-

mental FDG data. For a given pixel (j, k) in layer ℓ, each channel chi with i ∈ {0, 1, 2, 3}
was sampled from a Gaussian distribution:

chi ∼ N
(
µ
(j,k,ℓ)
chi

, σth

)
· E

0.511 MeV
, (6.8)

where E is the deposited energy in MeV, and 0.511 MeV is the reference energy used

for normalization. The standard deviation σth was fixed at 20, based on the empirical

reduction factor σchi
/15 introduced in Figure 6.9. This scaling produced flood maps

with realistic spatial distributions and represents a pragmatic calibration choice for

incorporating realistic signal fluctuations in simulation. While the use of µchi
alone

would suffice for idealized conditions, the added stochastic component better mimics

experimental noise.

The summed signal, representing total energy deposition, is:

SumCh = ch0 + ch1 + ch2 + ch3. (6.9)

The reconstructed spatial position is obtained using standard Anger logic:

x =
ch0 + ch1 − ch2 − ch3

SumCh
, y =

ch0 − ch1 − ch2 + ch3

SumCh
. (6.10)

Single and Multiple Interaction Events

Simulated events were classified based on the number of energy depositions associated

with a single 511 keV photon:
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• Single Interaction (SI): Events with a single energy deposition, typically cor-

responding to photoelectric absorption or Compton scattering followed by photon

escape.

• Multiple Interaction (MI): Events with two or more energy depositions, gen-

erally resulting from inter-crystal Compton scattering within the detector volume.

In the SI case, spatial reconstruction was performed using Anger logic, as defined in

Eq.6.10. The resulting flood map (Figure6.14) shows a well-defined pixel grid, indicating

high spatial accuracy when the interaction is unambiguous. Over 96% of the events

are reconstructed within their expected pixel region, defined by a window of µx ± 2σx

and µy ± 2σy. The few outliers are attributed to statistical fluctuations during signal

sampling.

Figure 6.14: Reconstructed flood map from synthetic single interaction events. The

pixel grid is sharply defined.

For MI events, channel signals from all interaction points belonging to the same

primary photon were summed before position reconstruction. The position was then

computed using the modified Anger logic (Eq. 6.11). This process effectively emulates

the spatial smearing caused by multiple energy depositions contributing to the same

light signal.
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chMI
i =

N∑
n=1

ch
(n)
i , (6.11)

xMI =
chMI

0 + chMI
1 − chMI

2 − chMI
3∑

i ch
MI
i

, (6.12)

yMI =
chMI

0 − chMI
1 − chMI

2 + chMI
3∑

i ch
MI
i

. (6.13)

The resulting flood map for MI events (Figure 6.15) shows a diffused spatial dis-

tribution of events, without a clear pixel pattern. Only about 27.5% of MI events are

localized within pixels region. The rest are scattered across the flood map due to the

non-local nature of the composite light signal.

Figure 6.15: Flood map reconstructed from multiple interaction events.

When SI and MI events are merged (Figure 6.16), the resulting flood map displays

a distinct pixel arrangement primarily characterized by localized SI events, while MI

events introduce dispersed noise. This simulated map offers an accurate representation

of the experimental flood map produced post-coincidence and energy filtering, as shown

in Figure 6.1.

A more direct comparison is presented in Figure 6.17, where a zoomed region of

the synthetic flood map is compared to the experimental flood map. While absolute

intensities differ, the structural similarity is evident. Notably, approximately 75% of

experimental events fall within defined pixel regions (LUT) after coincidence and energy

filtering, closely matching the 68% value observed in the simulation. This confirms
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Figure 6.16: Sum of floodmaps from single and multiple interaction events. The cen-

tral pixel grid, sharply defined, reflects single interactions, while the surrounding noise

illustrates the degradation due to multiple interaction events.

that the simulation framework calibrated with pixel-wise parameters provides a robust

approximation of the detector’s spatial response under controlled conditions.

Figure 6.17: Zoomed comparison between experimental (left) and synthetic (right) flood

maps. Structural features and localization patterns are consistent.

Further insights are provided by analyzing the layer-wise energy spectra of syn-

thetic events, shown in Figure 6.18. These spectra are presented separately for Single

Interaction (SI) and Multiple Interaction (MI) events.

In the SI case (Figure 6.18a), a photopeak near 511 keV is clearly visible across all

layers, reflecting events where the full gamma energy is deposited in a single location.

A low-energy considerable tail is also observed, arising from interactions where part

of the photon energy escapes the detector. The appearance of multiple sub-peaks and

the broadening of the spectral lines are attributed to variations in channel gain and

calibration among different pixels. Color coding (red, black, blue) highlights differences
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among the first, second, and third detector layers, respectively, with deeper layers

generally showing increased spectral noise and broader peaks due to light attenuation

and increased uncertainties.

The MI spectra (Figure 6.18b) exhibit a broader and more irregular distribution.

While the total deposited energy ideally approaches 511 keV through the sum of mul-

tiple partial depositions, the variance in individual interaction locations and energies

results in significant spectral broadening. Despite the similar global structure to the

SI spectra, MI spectra display heightened noise levels, reduced peak definition, and

layer-dependent inconsistencies.

(a) Single Interaction (SI) layer-wise spectra

(b) Multiple Interaction (MI) layer-wise spectra

Figure 6.18: Energy spectra from synthetic data, color-coded by detector layer (red:

1st layer, black: 2nd layer, blue: 3rd layer).

When compared to the experimental spectra shown in Figure 5.8, the synthetic
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distributions demonstrate good qualitative agreement. However, synthetic data tend

to exhibit slightly higher noise, particularly for the MI case. This is likely due to

both limited simulation statistics and the stringent pixel assignment procedure applied

during synthetic signal generation.

Overall, this study confirms the good accuracy of the synthetic model in reproducing

key features of real PET flood maps and energy spectra. While real-world measure-

ments are further complicated by noise, cross-talk, and calibration drift, the simulation

results provide a reliable foundation for interpreting event topology and optimizing

reconstruction strategies.

6.3.2 Filtering Based on Pixel Spatial and Spectral Parame-

ters

To assess the effectiveness of event-level filtering based on spatial and spectral char-

acteristics, synthetic single-interaction (SI) and multiple-interaction (MI) events were

analyzed using calibrated pixel-wise descriptors from all three detector layers. Although

the third layer exhibits less precise calibration and broader signal distributions, it was

retained in the analysis for consistency, as the simulation framework was parametrized

on all three layers. Filters were applied on reconstructed spatial coordinates, total en-

ergy, and individual channel responses to evaluate how different constraints affected

event retention.

The filtering strategy employed four main criteria:

• Pixel-wise Spatial Filter: Retains events whose reconstructed (x, y) positions

lie within µx ± nxσx and µy ± nyσy of the assigned pixel reference.

• Pixel-wise Energy Filter: Retains events whose total energy signal lies within

µE ± nEσE.

• Channel Filter: Each channel chi must satisfy |chi − µi| < nC · σi/2, with

i = 0, 1, 2, 3.

• Global Energy Window (GEW): A fixed total energy filter in the range

[18850, 36019] ADC units, mimicking the energy selection used in experimental

SIRMIO PET acquisitions of detector 10.

Filtering tolerances nx = ny, nE, and nC were varied to assess their combined

impact. Table 6.6 summarizes the results for various filter combinations, reporting the

following key metrics:

• GEW: Indicates whether the Global Energy Window filter was applied (Yes/No).
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• nx, ny, nE, nC : Numerical tolerances for spatial, energy, and channel filters,

respectively.

• SI : Percentage of single-interaction events retained after filtering.

• MI : Percentage of multiple-interaction events retained after filtering.

• Global Acceptance : Overall percentage of events accepted, calculated as:

Global Acceptance =
NSI

passed + NMI
passed

NSI
total + NMI

total

(6.14)

• SI presence : Fraction of SI events among the total accepted events, calculated

as:

SI presence =
NSI

passed

NSI
passed + NMI

passed

(6.15)

Table 6.6: Acceptance rates of SI and MI events using different filtering configurations.

GEW = Global Energy Window.

GEW nx, ny nE nC SI MI Global Acceptance SI presence

No 2 – – 97% 22% 62% 84%

No 4 – – 99% 27% 65% 80%

No 4 – 2 36% 10% 24% 80%

No 4 – 4 38% 15% 27% 75%

No 4 2 – 37% 12% 25% 77%

No 4 4 – 40% 16% 29% 74%

No 2 2 2 35% 8% 23% 84%

No 4 4 4 38% 14% 27% 75%

Yes – – – 43% 70% 55% 42%

Several observations emerge from this analysis:

1. Spatial filtering alone (nx = 4) proves highly effective, eliminating over 70%

of MI events while retaining approximately 99% of SI events. This confirms its

strong discriminative power in distinguishing between event types. Conceptually,

this filtering step mirrors the process of assigning events to pixels using a Lookup

Table (LUT).

2. Energy filtering (nE = 2, 4) significantly reduces SI retention. For example, SI

acceptance drops from 99% to 40% as nE increases from 0 to 4 (with nC = 0).

This is consistent with simulation results, which show that many single-interaction
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events stem from 511 keV photons but involve partial energy deposition. Indeed,

about 45% of SI events deposit less than 450 keV, so tightening the energy window

helps isolate true full-energy deposition event

3. Channel filtering (nC = 2 or 4) further reduces SI acceptance while effectively

suppressing MI contributions to 10–15%. For instance, with nC = 2, SI retention

drops from 99% to 36%, indicating a strong dependency between strict spectral

constraints and overall sensitivity loss. This approach mimics the energy filtering

process on a per-channel basis, and thus produces qualitatively similar results.

4. Combined filters with tight thresholds (n = 2) yield strong MI suppression

(7–10%) but at the cost of significantly reduced SI efficiency. Relaxed settings

(n = 4) offer a better trade-off.

5. Global Energy Window (GEW) filtering alone suppresses SI events to 43%

while retaining about 70% of MI events. This filter reflects realistic experimen-

tal conditions, targeting the 511 keV photopeak and effectively focusing on the

511 keV events, reducing SI with low energy deposited, ICS and background con-

tributions.

Although the filtering strategies described above may appear overly strict, they

reflect the real conditions required to remove incompletely scattered (ICS) and back-

ground events in order to obtain clean and high-quality PET images.

In practice, fundamental step in experimental data processing is the application

of the Global Energy Window (GEW) filter to isolate events corresponding to full-

energy 511 keV photon interactions. This establishes a realistic dataset that mimics

experimental selection.

To further refine event selection, additional pixel-wise filters (spatial, energy, and

channel-based) can then be applied to the GEW-filtered dataset. The goal is to ex-

amine how each of these criteria influences the acceptance rate of single- and multiple-

interaction events in conditions comparable to real measurements.

Table 6.7 presents the resulting acceptance percentages, all calculated relative to

the dataset pre-filtered by the GEW. This analysis provides insight into how well pixel-

wise filtering strategies perform in realistic scenarios and how filter parameters influence

event classification across detector pixels.

From Table 6.7, several key insights can be drawn regarding the performance of

pixel-wise filtering strategies applied to a dataset pre-filtered with the Global Energy

Window:

• Spatial filtering alone (e.g., nx = 4, nE = 0, nC = 0) is sufficient to retain

all SI events while suppressing MI events by nearly 72%. This reaffirms its role
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Table 6.7: Acceptance rates of SI and MI events using different pixel-wise filter config-

urations on Global Energy Window (GEW) filtered synthetic data. All percentages are

relative to the GEW-filtered dataset.

nx, ny nE nC SI MI Global Acceptance SI presence

2 – – 99% 22% 63% 76%

4 – – 100% 28% 57% 71%

4 – 2 86% 15% 54% 80%

4 – 4 91% 21% 59% 75%

4 2 – 88% 18% 56% 77%

4 4 – 94% 23% 62% 74%

2 2 2 85% 12% 51% 84%

4 4 4 90% 21% 59% 75%

as a strong primary discriminator, even under realistic conditions. Conceptually,

this filtering step mirrors the process of assigning events to pixels using a Lookup

Table (LUT).

• Channel filtering (nC = 2 or 4) applied in addition to spatial filtering further

reduces MI contributions, improving event purity. For instance, at nC = 2, MI

retention drops to 15% with SI acceptance still above 85%.

• Energy filtering (nE = 2, 4) complements spatial filtering by enhancing MI

suppression, with only a minor reduction in SI efficiency. For example, adding

nE = 4 reduces MI acceptance from 28% to 23%, while SI acceptance remains

high (94%).

• Combined filters with relaxed thresholds (e.g., n = 4 for all) yield a balanced

trade-off between SI retention ( 90%) and MI rejection ( 20%), suitable for general-

purpose applications including image reconstruction.

• The strictest filter setting (n = 2 for all) results in the highest SI purity

(83.6%) and the lowest overall acceptance (41.4%). This configuration is ideal

for applications that prioritize data quality over quantity, such as ground truth

extraction or resolution studies.

These results demonstrate that even after energy-based pre-selection, spatial and

spectral filters remain highly effective for refining event classification. By examining

the SI presence metric, we observe a significant improvement: the fraction of SI events

increases from approximately 42% in the GEW-only dataset to 70–80% after applying
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pixel-wise filters. This indicates that the final filtered dataset is substantially enriched

in true single-interaction events.

As previously noted, spatial filtering consistently proves to be the most impact-

ful method for rejecting ICS and MI events, with spectral filters (energy and chan-

nel constraints) offering additional refinement. However, it is important to acknowl-

edge that while MI events are substantially suppressed, they are not completely re-

moved—approximately 20–25% of MI events persist in the final dataset. This residual

presence likely consists of events involving small-angle scatterings or closely spaced

interaction points, which result in spatial and spectral signatures that closely mimic

those of SI events. Nevertheless, these remaining MI events are less likely to affect pixel

assignment accuracy and thus have limited impact on overall image quality.

In summary, pixel-wise filtering based on spatial and spectral parameters greatly

enhances event selection in in-beam PET systems. Spatial filters serve as a robust foun-

dation, while energy and channel filters fine-tune the selection process. For datasets al-

ready constrained by a GEW, combining spatial filtering with moderate spectral thresh-

olds provides an optimal compromise between event purity and retention. Stricter filters

are well-suited for high-statistics analyses requiring maximum precision, whereas more

relaxed criteria are advantageous for applications such as image reconstruction where

higher event throughput is beneficial.
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Conclusion and Outlook

This thesis presented the modeling and pixel-wise characterization of a high-resolution

depth-of-interaction PET detector developed within the SIRMIO project. The main

objective was to extract spatial and spectral parameters for each detector pixel from

both experimental and simulated data, with the aim of improving detector knowledge,

supporting simulation-based validation, event filtering strategies, and enabling more

accurate image reconstruction in small animal in-beam PET applications.

A dedicated Monte Carlo simulation framework was performed, offering initial in-

sights into photon interaction mechanisms, energy deposition, and interaction multi-

plicity within the detector’s layered scintillator architecture. This simulation capability

proved useful for interpreting experimental observations and understanding expected

physical behavior.

An investigative pixel-wise study then followed, utilizing both FDG-filled Derenzo

phantom and back-irradiation experimental datasets. This characterization focused on

a single detector module (detector 10), where each pixel across its layers underwent

an initial spatial and spectral analysis. Spatial parameters, specifically centroids and

standard deviations, provided pixel localization in the flood map. Spectral character-

ization involved Gaussian fitting of individual channel energy distributions, offering a

preliminary account for inter-pixel variability and systematic non-uniformities; however,

significant limitations were identified, particularly at detector edges and in the deepest

layer, indicating areas requiring substantial further attention and refinement. A custom

software package was developed to manage this intricate characterization process and

automate parameter extraction.

The extracted parameters were compiled into a preliminary pixel-wise detector

database. While this custom software facilitated the automation of this extraction and

initial management of data volumes, preliminary testing indicated that further develop-

ment is crucial to ensure broad scalability and robustness, particularly for application

across the entire system. Validation of the constructed parameter database through
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synthetic event generation demonstrated its potential. By sampling channel values

from Gaussian distributions derived from the pixel-wise parameters, reconstructed flood

maps showed a qualitative reproduction of the detector’s spatial characteristics. Fur-

thermore, the application of pixel-wise filtering criteria to these synthetic datasets pro-

vided initial evidence that the extracted parameters could contribute to discriminating

between well-localized and ambiguous events, suggesting a potential for improving the

signal-to-noise ratio in input for downstream image reconstruction pipelines.

Outlook

The results presented in this thesis lay a strong foundation for future research and de-

velopment aimed at fully realizing the capabilities of the SIRMIO PET system. A key

next step will be the extension of the pixel-level characterization pipeline to cover the

complete detector array, advancing well beyond the single detector module studied in

this work. This expansion will require significant progress in automation and calibra-

tion, enabling scalable parameter extraction and continuous, system-wide monitoring

of detector performance.

The preliminary pixel-wise database developed in this study shows promising po-

tential to enhance image reconstruction algorithms. It may serve as a valuable source

of prior information for regularization techniques or pixel-specific correction factors.

However, further efforts are needed to rigorously assess its impact on reconstruction ac-

curacy. Future work should focus on integrating more comprehensive light propagation

models into simulation-based reconstruction frameworks, which is crucial for captur-

ing the complexities of scintillation signal generation and transport. A key objective

will be to quantify the improvements in spatial resolution and image quality achievable

through these enhanced modeling techniques.

In parallel, the database and filtering tools developed here offer a starting point

for a more refined treatment of inter-crystal scattered (ICS) events. While such events

are typically discarded to preserve image fidelity, the flexibility of the filtering criteria

allows for a tunable balance between sensitivity and specificity. Future studies should

investigate advanced approaches to not merely to suppress ICS signals, but to reinter-

pret and recover useful information from them. This could lead to measurable gains in

detection sensitivity, provided that resolution is not adversely affected.

In summary, the methodologies and insights gained from this work contribute to a

growing understanding of pixel-wise detector behavior in high-resolution PET systems.

These developments represent an important step toward improving in-beam PET imag-

ing performance, with the overarching goal of achieving higher precision and reliability

in both preclinical and future clinical applications in radiation oncology.
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