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Abstract

La maggior parte delle simulazioni atomistiche tratta i nuclei come particelle classiche
che seguono le equazioni di Hamilton e rispettano la statistica di Boltzmann, poiché é
impraticabile risolvere ’equazione di Schrodinger nucleare anche in approssimazione di
Born—Oppenheimer. Questa semplificazione fallisce pero nei sistemi contenenti idrogeno,
anche a temperatura ambiente, dove i nuclei leggeri manifestano zero-point motion, tun-

neling e altri effetti quantistici.

In questa tesi adottiamo il formalismo path-integral in tempo immaginario, che mappa
esattamente i nuclei quantistici su ring-polymer classici, consentendo di includere rig-
orosamente gli effetti quantistici nucleari (NQEs) in simulazioni di fasi condensate. Dopo
aver introdotto le basi teoriche e la discretizzazione dell’integrale di cammino, esamini-
amo le strategie numeriche per campionare lo spazio delle fasi esteso. Deriviamo e con-
frontiamo termostati stocastici (Langevin e Generalized Langevin Equation) e determin-
istici (Nosé-Hoover e catene di Nosé-Hoover), illustrando ergodicita, relazioni fluctua-

tion—dissipation ed efficienza nel campionamento canonico (NVT).

Per un’applicazione pratica, eseguiamo simulazioni PIMD NVT di para-idrogeno a tem-
perature criogeniche con il driver i-PI. Calcoliamo le radial-distribution functions (RDF),
mediate sulle bead, su un intervallo di temperature e confrontiamo diversi protocolli di ter-
mostatizzazione, con dati pubblicati per valutare I'impatto degli NQEs sulle correlazioni

strutturali.

Infine, con un focus su applicazioni di stoccaggio di idrogeno, studiamo la RDF di idrogeno
dissolto in un cristallo hep di magnesio a 300 K. Dalla mean-square displacement (MSD)
dell’idrogeno ricaviamo una stima dell’ordine di grandezza del coefficiente di diffusione,

confrontandola con i valori in letteratura.
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Abstract

The vast majority of atomistic simulations treat nuclei as classical point particles evolving
under Hamilton’s equations and obeying Boltzmann statistics, since solving the nuclear
Schrodinger equation, even within the Born-Oppenheimer approximation, is impractical.
While often acceptable, this simplification fails dramatically for hydrogen-containing sys-
tems, even at room temperature, because light nuclei exhibit zero-point motion, tunneling,
and other quantum effects. In this thesis, we show how the imaginary-time path-integral
formalism maps quantum nuclei onto classical ring-polymer beads, enabling rigorous in-

clusion of nuclear quantum effects (NQEs) in complex condensed-phase simulations.

After introducing the theoretical foundations and discretization of the path-integral repre-
sentation, we review numerical strategies for sampling the resulting extended phase space.
We derive and compare stochastic thermostats (Langevin and Generalized Langevin Equa-
tion) and deterministic schemes (Nosé-Hoover and Nosé-Hoover chains), highlighting
their ergodicity, fluctuation—dissipation relations, and efficiency in canonical (NVT) sam-

pling.

To demonstrate a practical application, we perform NVT path-integral molecular dy-
namics of para-hydrogen at cryogenic temperatures using the universal i-PI engine. By
computing bead-averaged radial distribution functions (RDF) across a range of temper-
atures and employing various thermostat protocols, we benchmark our results against

published data to assess the impact of NQEs on structural correlations.

Finally, addressing a technologically relevant case, hydrogen storage, we study the RDF
of hydrogen dissolved in an hcp magnesium crystal at 300 K. From the short-time mean-
square displacement (MSD) of hydrogen atoms, we estimate their diffusion coefficient’s

order of magnitude and compare it with literature values.
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]_ ‘ Path integral molecular

dynamics

1.1. Introduction

To introduce the Path-Integral Molecular Dynamics (PIMD) formalism, we begin with the
simplest nontrivial example: a single particle of coordinate ¢; evolving under the influence
of a potential V(q;). Here, ¢; may be regarded either as a scalar (for one-dimensional
motion) or as a vector in R3. Once the PIMD description of this one-particle system is
established, the method can be extended in a straightforward manner to N distinguishable

particles interacting via an arbitrary potential V (g1, o, ..., qn)-

The Hamiltonian that describes this simple system is given by:

H=2 v (1)

where p is the momentum of the particle.

It is well established that the path-integral formulation of quantum mechanics enables
one to express every physical observable as an exponential average of the appropriate
action functional over all paths connecting two points in phase space, analogous to how
the principle of stationary action determines the classical trajectory by minimizing the

action over a trial path [7, 10].

Moreover, it allows us to express the partition function of this system as:

Z =Tre Pl (1.2)

where ﬁ = k‘BLT

We will show in the following paragraphs that the path-integral formulation allows us to
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rewrite the above expression exactly as:
Z - 7{ Dlg(r)]e~ K" [hmaer+var]ar (1.3)

where the symbol ¢ D[g(7)] is a functional integral over all the possible closed paths in

configuration space, weighed with the exponential of an action-like integral over the path.

In the final part of this chapter, we will show how this form can be computed approxi-
mately and how this formalism is useful for incorporating nuclear quantum effects (NQE)

in molecular dynamics.

1.2. Immaginary path integrals

As stated previously, the partition function can be written in the form:

Z - /dq1 (] e () (1.4)

By definition, the Hamiltonian has the following form H=V+T. Unfortunately, we
cannot split the exponential operator e PH as the product eV e=BT gince the operators
V and T do not commute!. However, there is the possibility of splitting the operator

approximately relying on the so called "Trotter Splitting" [27, 29]:

e~PH — (e‘ﬁH/P>P R <e_5pv/26_ﬂpfe_5PV/2>P +0 (5123) (1.5)
which becomes exact in the limit P — 0o, and where we have defined the quantity fp = %

As shown in Appendix A.1, by substituting the Trotter splitting approximation into the
formula and introducing P —1 closure relations of the type [ dg;|g;) (¢;], by redistributing
the P terms of the Trotter splitting to the closure relations, we can obtain the following

expression:

7=~ Up= / dg, ... dgp [<Q1| e—BPV(th)/26—ﬂPT6—@PV(tI2)/2 lg) ... o)
1.6

*BPV(QP)/2€*5PT6*5PV(Q1)/2

... {qple lq1)] -

The potential-energy operator acting on its own eigenvectors simply produces the corre-

sponding eigenvalue, so those terms reduce to a constant factor and may be pulled outside

'Tf two operators do not commute with each other, then every function of those operators will also
fail to commute
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the brackets.

Consequently, we need only evaluate the remaining terms shown below:

(@il e T |q;) = /dp (@l e TIp) (p | ¢5) =

1 2 i
1 dpe_ﬁpp /2m gip(ai—a;)/h _ (1 7)
2mh |
— Lh zgme‘éﬁme?(qi‘qj)Q
2T P

where we have used (p | ¢) = e /" //27h and where we have introduced the variable
wp = 1 / 5 ph.

By plugging this result into the previous one we get:

P/2
m P 1 2 2
To= | ——— dar ... d *BPZi=1[V(qi)+§mwp(qui+1)] 1.8
d (2ﬂh25P> / Q... dgpe (1.8)

where cyclic boundary conditions are implied in the sum, ¢ + P = 1.

Let us therefore set aside the overall prefactor—which, notably, is independent of the
configuration—and focus solely on the exponent. One immediately observes that this

exponent closely resembles that of a discretized Feynman path integral, except that the

7

usual factor AT

appearing in front of the summation is replaced by £, .

1

By making the substitutions § = P 1 and 7 =1it, which imply wp = 1

Tit1 =T
recover exactly the discretised form of the single-particle path integral in imaginary time

7. Now, in the limit A7 — 0 (so that A7 becomes 7) and replacing the sum by an

integral, one obtains:

Bh
%/0 dr {V(q(T)) + %mQ(T)Q (1.9)

Notice that making the interval in imaginary time smaller and smaller implies adding
more and more complete relations into the expression of the partition function, so that
the differential dg;dgs... becomes a D[q(7)] and the integral becomes a closed integral over

all possible closed paths in configuration space.?

Let us now focus on the discretized partition function. It looks like a classical partition

function of a cyclic polymer composed of P atoms, each of which is subject to the potential

Zthey are closed path because of the recurrence law P +1i =i
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V and the harmonic interaction with its two neighbors. Remember that V is the only
real potential that the real particle feels. The other harmonic potential that the ring
polymer beads feels is fictitious. This isomorphism between the partition function of a
single particle in a general potential V and a necklace of beads connected by springs is

called Ring Polymer representation.

It is possible to consider the discretised partition function, as a discretised version of a
Feymann path integral in imaginary time of a bead which is influenced not only by the
real potential but by the interaction with itself in the past imaginary time instant and

the future imaginary time instant.

1.3. Expected values and averages

Now that we have defined an isomorphism between the quantum partition function of a
single particle and the classical partition function of a ring of beads connected by springs,

we can leverage this analogy to compute the averages of observables.

~

Let us consider a generic observable A(q) function solely of the position of the real particle.
Now we wish to compute the average of this quantity by exploiting the isomorphism with

the ring polymer. As we know from the theory, we can compute the quantum average
value of an observable by (A) = Tr ‘fle‘ﬁH’ / TrePH.

We can now leverage again the Trotter splitting to expand the numerator:

Tr

Ae*ﬁﬁ‘ = / dgy {(qi) Ae™? |q) = / dar (qu] AePT+0) |gy) (1.10)

. . . . \P
- /dq1 <q1|A<e_6PV/2 e_BPTe_ﬂPVﬂ) 1) - (1.11)

Now, if we define
A = e*ﬁpvﬂ G*BPT e*/D’P‘A//2 ’

then, the previous expression can be written as

<A>=/dq1 (@ AAA--Alg) .

Next, by inserting P — 1 closure relations within the product of the A operators, one

obtains:
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G = [ ol An ([ e o) tal) & ( [ e oo tad) -5 ([ dan bae) Garl) )

This can be written in compact terms as

~

() = [ dardas - dap (] A8]as) (o] S+ arl A
Supposing that the operator A acts diagonally in the coordinate basis, i.e.

A(q) lg) = A(q) lq)

by using the Hermitian property (which gives the “free” bra action), one finds the matrix

element

(1] AD|gz) = Alqr) e 7PV @2 (qy] 7T [gy) eV ()2,

Thus, the full expression for the average becomes

<A> = /dql dgy -+ dgp A(q)) e PrViar) o=BrVie) ... ,~BrViepr)

x (g1 € PP ga) (gol € """ |gs) - -+ {ap| €T |qu) - (1.12)

We have already seen how to compute the elements (g;| e=BPT lg;) in the previous para-
graph, hence, by substituting them here we get the final expression for the expected value
of A:

~

f dgp ... dqpe_ﬂP Z£1[V(Qi)-&-%mw?P(qi_qiﬂ)z]A(ql)
= f dCh R dqpe_»BP Zf:l[V(qi)+%mw%(qi_qi+1)2]

(A)p (1.13)

In the formula above, we observe that the operator A is evaluated only at ¢;. One might
argue that there is nothing intrinsically special about the coordinate ¢; compared to the
other coordinates ¢; introduced in the splitting. One can further recast the expression into
a form that is manifestly symmetric in all of the ¢;. The full derivation of this symmetric

representation is provided in Appendix A.2.
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_ f dg ... quefﬂP Zip;l[V(Qi)+%mw%(Qi*Qi+1)2]}l) Zil A (ql)

A
< >P fd(h o que_BP 25;1[V(Qi)“r%mw%(%_%-&-l)ﬂ

(1.14)

This average can be computed easily by sampling the ring polymer configurations con-
sistently with the ring polymer energy Zf; [V (@) + 3mwp (¢; — qu)Q] at the inverse
temperature 3p, with Monte Carlo or molecular dynamics 2, and accumulating statistics

for each replica.

Next, we address the computation of averages of functions of momentum, rather than
position alone. This task is somewhat more involved. As an illustrative example, we con-
sider the total energy of the system and derive an appropriate estimator for it; from this,
the kinetic-energy estimator will emerge directly. To begin, we recall the thermodynamic

relation that links the total energy to the partition function:

1 dlog(Z)
E)=—-—=07/0 = ————= 1.15
(B) = ~502/08 = =2 (115)
By substituting the partition function derived above and carrying out the (lengthy but
straightforward) algebraic manipulations, one finally obtains the desired estimator for the

total energy. The full derivation is omitted here for brevity.

P 11 1 &
da | — — = - 2 (g — qiug)? | e PPH@ /d — V(g)|e PrH@
Jal55 - gmebta qm]e a|pXvial|e
E — 1= _ + 1= _
< > Tr e*ﬁH Tr eiﬁH

where H = Zf:l [V (@) + smwp (¢; — Qi+1)2}

One immediately recognizes that the second term is precisely the expectation value of
the potential, (V), and hence the first term must be the expectation value of the kinetic

energy, (T'). Consequently, the average total energy can be written in the compact form

f dgp ... dqpefﬁp Zil[V(q¢)+%mw%(qrqi+1)z] ETD (Qh o QP)

E

(1.16)

3as we will see later
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" (7 = Jdqi ... dgpe™’" Zf—l[w"”fmwi(qi‘”“)Q]TTD (q1,...qp) w17
[dg; ... dgpe " S [Vt amedai-a)’]
where:
TD P 1g , 1
E (qiy--qp) = 28 P ; Smwp (¢ — Giv1)” + P ZZ;V (¢:) (1.18)
and .,
T (q1,...qp) = % - %Zlém%% (i _Qi+1)2 (1.19)

We now highlight an intriguing contrast between the structural forms of the estimators

for the potential energy and for the kinetic energy.

By examining the formula for the potential energy estimator, we notice that no coupling
between the various ¢; and ¢; appears, because the estimator involves only a sum of
independent contributions of V(g;). In other words, each bead in the ring contributes
individually and independently. This is why we say that the potential energy estimator

is "local".

By contrast, in the kinetic energy estimator a cross term involving adjacent beads appears,
namely (¢;—qi11)?. Therefore, the kinetic energy expression cannot be simply decomposed
into a sum of independent contributions from the individual ¢;. Moreover, this coupling

affects the efficiency of the estimator, since its variance grows as

P
@ )

whereas for the potential energy estimator the variance grows only as v/P.

To illustrate the difference, note that the potential-energy estimator comprises a sum of
P terms (each being an independent sample of V(g;) drawn according to the Boltzmann
distribution). When P is large, the sum of these independent random variables approaches

a Gaussian distribution by virtue of the central limit theorem, and the variance scales as

VP.

Regarding the kinetic energy estimator, however, the situation is more involved. Intu-
itively, because the expression involves squared cross terms, a small change in one g;
influences not just one term but two of the terms in the summation (namely, ¢;_1 — ¢;

and ¢; — g;+1, both squared). This additional coupling among the beads leads to a higher
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variance that scales linearly with P.

However, in order to get an efficient estimator for the kinetic energy, it is usually reason-
able to exploit the virial theorem [18], and by integrating by parts the previous expression

one obtains:

P

1 1 oV 1
TCV(QI,--'QP):ﬁ ﬁZ(%_Q)aq} q > a (1.20)

i=1 i=1

As we can see here, no cross-correlation between the variables ¢; occurs.
Morevoer, it is worth to highlight that the estimations of these quantities are completely

indipendent of the ring polymer momenta.

1.4. Sampling of the equilibrium distribution

As we have seen in the previous paragraph, the partition functions and the estimators of
some observables can be computed by MC simulations. Although this approach efficiently
samples phase space, it typically cannot incorporate inter-atomic forces without incurring
significant overhead in the evaluation of potential energies, particularly when one wishes

to avoid developing custom-tailored Monte Carlo moves for the specific system. [7].

A simple way to overcome this limitation is to integrate Hamilton’s equations of motion,
thereby generating trajectories that sample the Boltzmann distribution. We will discuss

this approach in detail in the following section.

Recalling the partition function as given in Eq.(1.8), we observe a prefactor that can be

absorbed by introducing integrals over fictitious momenta p;. In particular, by inserting

/oo dp; eXp(_ B p2>
oo 27h 2m' /)’

the original prefactor is exactly reproduced, and the configurational integral is promoted

for each bead ¢

to a full phase-space integral over {¢;,p;}.

The rewritten partition function now looks as:

2
7

1 —Bp S V(@) + -+ Emw? (gi—qit1)?
Ip=——— dp;... d dg;... d "
P (2nh)F / D1 pP/ Uil gpe

(1.21)

It is important to notice that the p; are not related to the physical real momenta of the

real particle. However, they can be seen as the momenta of the beads in the ring polymer
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representation. These quantities are just additional sampling tools [25, 26].

Hence, we can define the system’s Hamiltonian as follows:

P 9 P

|

Hp=Hy+Vp=Y_ [Zm + §mw123 (; — qm)?] +) Via) (1.22)
=1

i=1
and then. we can integrate the Hamilton’s equations for the individual beads of the ring:

. aHP D . 3HP
pes == ; = — 1.23
6= = P 94, (1.23)

The key idea is to exploit the (assumed) ergodicity of the system to compute equilibrium
averages. For an ergodic system, the ensemble average can be replaced by a long-time
average taken along a single dynamical trajectory. In practice, instead of sampling many

configurations from the Boltzmann distribution via Monte-Carlo, one can
1. choose a suitable initial point in phase space;

2. integrate the equations of motion, recording positions and momenta along the tra-

jectory;
3. compute the time average of the observable of interest.

This procedure works only if the dynamics is ergodic, i.e. if, given infinite time, the trajec-
tory visits every region of phase space and spends in each a fraction of time proportional
to its Boltzmann weight. Proving ergodicity, however, is highly non-trivial and depends
on the specific Hamiltonian; there is no general theorem that guarantees ergodicity for an

arbitrary Hamiltonian system?.

However, because stationarity is a necessary condition for ergodicity, we can at least
demonstrate that our system satisfies stationarity [6]. A system is said to be stationary if,
at every instant of time, the probability—density function of the phase-space coordinates®

remains the same; in other words, it does not change with time.

This property can be verified for the present case expliting the Hamilton’s equations
shown before. Infact, since this system is Hamiltonian, it evolves following trajectories

on equi-energy surface.

4To the best of my knowledge.
®That is, the joint PDF for all positions and momenta (or any other complete set of state variables)
describing the microstate of the system.
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Therefore we can write that Hp (py, q;) = Hp (Po, qo), hence:

e~ PrHp(pr,ar) — ,—BpHp(Po.qo) (124)

Moreover, since Hamiltonian systems preserve the phase space element volume d”p;d”q; =

d¥pod? qp, one can easily compute the partition function of the system as follows:

1 1
7 ~ (27Th)P/de/que—ﬁPHP(P,Q) — (27Th)P /deO/quoe—ﬁpHP(PmQO) (1‘25)

Then we can conclude that the entire probability density function of the system is constant

in time and therefore is stationary:

1
_ —BpHp(Po,q0)

, = ———5=¢€ 1.26
p(pO QO) (2’/TFL)PZ ( )
This fact, equipped with ergodicity, implies that static equilibrium properties such as
the potential and kinetic energies can be obtained by time averaging along ring polymer
trajectories whose initial conditions are sampled from the Boltzmann distribution, that

we have seen in this paragraph before.

We will discuss later in this thesis the chance of coupling the system to an ergodic ther-
mostat, when system alone fails to explore its full phase space. By doing so we extend
the dynamics to include the thermostat degrees of freedom in order to enforce canonical

sampling at the target temperature.

1.5. (Generalisation to multiple interacting particles

In the previous paragraphs, we have shown how one can implement an isomorphism
between a single real particle, subject to a potential, and its representation with the
ring polymer. One can imagine to extend this isomorphism for more than one individual

particle but for N interacting particles in the following way.

Let us consider a set of N distinguishable particles described by the Hamiltonian:

N 2

b;

H = E o + Vg, .., qn) (1.27)
i=1

where V' (q1,...,qn) is the interacting potential among particles.
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We can then manipulate the quantum partition function Z = tr [e‘ﬁH } similarly to how
we did in the previous paragraph for the single real particle, to obtain the resulting

expression:

dfqe*ﬁan(p,Q) (1.28)

where f = Nn, and n indicates the number of beads that represents the ring polymer

representation for each one of the N real particles.

Here we have defined:

Hy(p,q) = H)(p,q) + V.(q) (1.29)
where )
0 o [pzm] Lo 1o G-n)?
H,(p.q) ZZ Tom. T 5mi, |:qz' — 4 ] (1.30)
=1 j=1 ¢
and

Vi@ =)V (fﬁ”, . ,qj(é)) (1.31)

with w, = 1/8,h and ¢* = ¢™.

Be careful to distinguish between the two kinds of indices used here. The parenthesised
superscript (-)¥) labels the j-th bead in the ring-polymer representation, whereas the
subscript (+); labels the i-th real particle. Consequently, beads interact only with the
other beads belonging to the same particle; there are no direct bead—bead interactions

between different particles.

Following the same procedure used earlier to compute observable averages, we can now
write a correspondingly generalised expression for these averages [6]. For the potential

energy estimator:

1

where

Valq) = ZV (.. .a9) (1.33)

As we can see, the summation over all the beads appears, as it appeared in the expression
for an individual particle. The only difference is that, now the exponential depends on
the position of the beads of the rings, associated to all the N real particles, and not only

of the beads representing the individual real particle.
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In the case of the kinetic energy estimation we get:

1
<T> ~ W/dfp/dfqe_ﬁnH"(p’q)’ﬁl(q) (1_34)
where
N 10>, oV (q?) qJ(é)) 1
_ () _ =~ Y _— ()
Tn(q) = _ﬁ o > <qi - Ch‘) 500 and g; = — > (1.35)
=1 j=1 q; j=1

As we can see, if N =1 we completely recover the case of the individual real particle.

1.6. Ring polymer evolution integration scheme

Having outlined how to compute theoretical averages of observables via the ring-polymer
representation in the path-integral formalism, and having introduced time averaging to
sample the Boltzmann distribution, we are now led to the following question: how can the
real-time evolution of the ring-polymer system be computed? Which numerical integration

scheme is best suited to solve the ring-polymer Hamilton’s equations of motion?

Again, we will first examine the case of a single particle in detail, and then extend our

treatment to cover multiple interacting particles.

Before going into the details we are going to recall some results form the theory of
Hamiltonian systems. Consider a Hamiltonian system with phase—space coordinates
q = (q1,...,q¢) and p = (p1,...,pr). For an arbitrary phase-space function A(q,p)

the Hamilton’s equations imply

0AOH 0AOH
— (A, 1.
= A H} = Z (3% dpi  Opi Iy, ) ’ (1.36)

where {-, -} is the Poisson bracket and H(q, p) is the Hamiltonian.

We can now introduce the Liouville operator L so that®

f
dA oOH 0 oOH 0O
o4 =) _ . 1.
ar ’ (api 90 g apz-) (1.37)

6Many authors define L = { - , H}, in which case A = LA. Here we adopt the convention A = —LA
to match the standard sign in Trotter splittings used in molecular dynamics.
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Equation (1.37) is a linear first-order ODE with the exact solution as shown here:

A(t) = e A(0), (1.38)

where e~ is the phase-space evolution operator.

A numerical integration can be performed by applying the propagator over many small

time steps At,

At +nAt) = (e )" A(0).

As we will see in the rest of the dissertation, the Liouvillian can be decomposed into two
parts,
L= Lo+ Ly,

where Lg, arising from the part of the Hamiltonian regarding the kinetic energy and
spring potentials of the beads Hy(q,p), and Ly from the real physical potential V(q)
acting on the beads. Because Ly and Ly generally do not commute, the exact single—step
propagator cannot be written as a single exponential of a sum of commuting operators.

Instead, we approximate it with the second—order Strang (or symmetric Trotter) splitting”

[30]:

o LAE (Lot Lv)At e—%AtLV N e_%A”“V + O, (1.39)

Given this brief review of the properties of the Liouvillian operator we can now move
on, and apply this theory to our purposes. The key idea is to use the notions of the
Liouvillian to find the evolution in time of the trajectories of the ring polymer beads. The
approximation that we have introduced in order to compute the numerical solution is a
powerful integrating scheme known as "Velocity Varlet Method". We can now use this

integration scheme to integrate the Hamilton’s equations.

"Properties of the Strang splitting:
e Second-order accuracy: the local error per step is O(At?), giving global O(At?) accuracy.

e Time reversibility: the sequence of sub-steps is symmetric; reversing the order and changing
At — —At exactly inverts a single step.

e Symplecticity: each sub-propagator e~*Lo or e~*LV is itself an exact solution of a Hamiltonian
flow and therefore preserves phase-space volume and the symplectic structure. Their composition
remains symplectic, making the scheme well suited for long-time molecular dynamics.
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Let’s first make some remarks to arrange the setting of our probelm to match the expres-

sion on the theory.

As a matter of fact, ¢; and p; are functions themselves defined on the phase space, and

therefore the theory introduced for generic a function A(g;, p;) applies.

__OH

Sp - _Lpz'

We can indeed write that: ¢; = 5+~ = —Lg; and p; =

In the case of the ring polymer representation we have written the Hamitonian as:

P

1
HP:H0+VP:Z{2]ZL+2me( — Gis1) }JFZV ) (1.40)

=1

therefore, if we recall the definition of the Liouvillian, we have:

P
O(Ho+Vp) 0 O(Hy+Vp) 0 )
L= - 1.41
;( opi  Og; dq;  Op; (141)
" (0H, O 0H, 0 " fove 8 Ve O
0 0 P P
= - + . 1.42
;( Opi 0¢; g 3pi) ;( Op; 0q; Oy 0pi) (1-42)
Lo Ly

Then, one would be tempted to write the integration scheme applied to the variables g;

and p; as follows: )
1
Gi(t + dt) = e 28V o=t Lo =3 AL ()
1 1
pi(t + dt) = e 28t Ly oAt Lo e_iAtLVpl-(t)

Let’s take a look at how the single parts of this integration scheme act on ¢;(¢) and p;(t).
It is easy to show that:

Lypi=F, = LZp;=0 andhence L{p;=0 (k>3).

Using the series definition of the exponential operator,
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—~ kK
0 ( At\k
e T lvp, = Z % L{p; =pi — % Fi.

k=0

So the application of the potential term leaves unchanged the positions and acts only on

the momenta.

Unfortunately, the “free” Liouvillian Lg is not as tame as the potential term Ly . Because

Hy contains the spring interaction %mw%(qi — ¢i41)?, the action of Ly on a single bead

mixes that bead with its neighbours:

S

)

Logi = m’ L(Q)Qz' = _W%@% = Qi-1 — Qz’+1), quz' =

Higher powers of Ly never vanish, so the exponential

2 (—At)k
e—AtLO — Z ( k‘ ) Lloc
k=0 ’

1
. —SAtLL
cannot be truncated after a few terms as we did for e 22V,

More important, each
update produced by e~ depends not just on bead i but also on beads i — 1 and i + 1;
an error made on one bead therefore migrates to its neighbours and can grow rapidly

around the ring.

However, there is a trick we can play here: one can integrate the Ly step analytically in

normal-mode space®.

Because Ly merely applies the physical-potential “kick,” the non-trivial part of the Trotter

step is the action of Ly. Hence, we focus on the free ring—polymer Hamiltonian

n

Ho(p,q) = Z[f—ﬁn + 755 (g — (Zj+1)2]

Jj=1

which is a multi-dimensional harmonic oscillator.

8the discrete Fourier transform diagonalises the spring matrix, each mode is propagated as an inde-
pendent harmonic oscillator, and the result is transformed back to bead coordinates. This avoids both the
infinite Taylor series and the uncontrolled error propagation that would arise from a naive, bead-by-bead
update.
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Transforming the bead coordinates to normal modes (as performed in the Appendix A.3),

n n
(jkzzcjk% ﬁk:ZCjkpjy
j=1 j=1

diagonalises the Hamiltonian and yields

3
H

Holp.a) = 3| 2 + 2 7).
0

B
Il

so each normal mode k behaves as an independent one—dimensional harmonic oscillator.

Now we can integrate the Hamilton’s equations for the normal mode variables, and update

their value after an interval of time At:

By writing the Hamiltons equations:

0H, Di . 0H, 9 -
I e (1.43)

G -

These equations can be rewritten in the matricial form as:

5 0 —muw? 5
d [P i Di
1= e (1.44)
t\ g — 0 qi
m

This system is in the form X = AX:

%(q) B A(q) A= ( i s ) (1.45)

and the formal solution can be written as:

x(t + At) = eMPix(t), M = i (420" (1.46)

2
) 0 —mw? —w? 0 )
e S I (R (1.47)

A= AN = (—w?) A, A' = 2% =W, et (1.48)

Since

and
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we can determine the shape of the exponential®:

g ABH 5 (A

= 1.49
‘ 2 @2n) = (20t 1)! (1.49)
> (—w?AtQ)n > (—w-zAt?)n

= ——— ] + |AAtY ——~2 (1.50)

e > e

in(w; At
= I cos(w;At) + Asm((:—') . (1.51)
then we can write:
JAAE _ czisn((:m)) mw; sin(w; At) (1.52)
o cos(w; At)

therefore, the update of a At is:

pi(t+At)\ [ cos(wiAt) —muw;sin(w;At) pi(t)
(C]i(t+At)) B ( sinfei ) cos(w; At) ) ((j,(t)) (1.53)

mw;

Once the normal-mode variables have been updated, one transforms them back to bead

coordinates and then applies the final step of the Trotter—Strang integration scheme.

Therefore, the full algorithm would look like the following:

i < Pi —
p p 2 g
Dj Zpicij qj < Z%Cz'j
(]?) . cosw;At  — 7'nwj sinw; At <]?J> (1.54)
qj [1/mw;] sinw; At cos wj At qj
pi Y Ciubi @+ Y Cyi
J J
p D 2 g

1.7. (Generalisation of the integration scheme

For the general case of N real interacting particles, for which each particle is associated

to a ring of beads, we can generalise the integration scheme as we will present now. The

9the even powers reduce to scalars times I; the odd powers reduce to scalars times A
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splitting of the integrator is the same as introduced before:
€7AtL ~ e*(At/Q)LVe*AtLoef(At/Q)LV (155)
where L = Ly + Ly is the Liouvillian associated with H,(p,q) and Ly and Ly are those

associated with H(p, q) and V,,(q).

As far as the first and last integrating steps are concerned, we can work in the bead
coordinates representation, for the application of the intermediate step which involves H?

we still convert to normal mode representation in the following generalised way:
~(k j
) = sz(»])C’jk and qZ Zq (1.56)
j=1

where the matrix for the change of basis is the same as seen before. Proceeding with the

same approach as before, we derive the normal mode Hamitlonian:

N n-1 [ (k)} 1 )
H’(p,q) ZZ + miwi Hk)] (1.57)

i=1 k=0

where wy, = 2w, sin(km/n). The whole algorithm then becomes [6]:

oV ( o (J‘))
W, @ At Gy
pi — pi 2 7) )
aql
<_ Zp ]k7 qz <_ Z 4; Jk7
155"“) cos wi At —mywy, Sin wi AL l(k)
q; [1/m;wg] sin wi At cos wi At ql-

n—1 n—1
j ~(k j ~(k
p <>, > ol
k=0 k=0

)
O 0 _ Atav(q“'“’qN)
8q-

(2




19

2 Simulative Thermostats

In the previous chapter we showed that, provided the dynamics is ergodic, propagating
a ring—polymer with its native (microcanonical) Hamiltonian yields time-averaged esti-
mators that converge to the quantum Boltzmann distribution of the underlying physical
system. In practical applications, however, ergodicity is not guaranteed: low tempera-
tures, rugged potential-energy landscapes, and strongly coupled internal modes can trap

the dynamics and lead to slow or biased sampling [16].

Most molecular-dynamics studies aim to compute expectation values at a fixed tempera-
ture, i.e. in the canonical (NVT') ensemble. Achieving this with ring-polymer molecular
dynamics (RPMD) requires augmenting the bare Hamiltonian evolution, so that the ex-
tended system can exchange energy with an ideal heat bath of prescribed temperature.
This is accomplished by introducing the so called "thermostats": auxiliary variables or
stochastic forces that modify the equations of motion while leaving the canonical distri-

bution invariant.

Besides restoring thermodynamic consistency, an appropriate thermostat accelerates the
exploration of phase space, reduces long-time correlations, and thus improves the statisti-
cal efficiency of computed averages. Thermostats are commonly grouped into two broad

classes:

e Deterministic schemes, such as the Nosé—Hoover chain family, which employ time-

reversible auxiliary degrees of freedom to mediate energy exchange [19, 24].

e Stochastic schemes, such as Langevin and Andersen thermostats, which introduce
random forces and friction terms that mimic instantaneous collisions with a heat
bath.

In the subsequent chapters, we will undertake an in-depth examination of three pop-
ular thermostatting schemes: the standard Langevin thermostat, its extension via the

Generalized Langevin Equation (GLE), and the deterministic Nosé-Hoover thermostat.
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3 ‘ Langevin Thermostat

The Langevin thermostat is a stochastic thermostat that modifies Hamilton’s equations
by introducing both a dissipative force and a random noise term in order to mimic the
effect of a thermal bath, typically composed of many lighter particles [3]. To integrate
the resulting modified equations of motion, in such a way that the correct canonical
distribution is sampled, one generally applies an extended version of the Trotter splitting

scheme, as we shall see in the next paragraphs.

3.1. Introduction to Langevin Equation

As usual, we consider the simplified case of a single particle. Let us consider a particle
of mass m subject to a potential U(q). The canonical distribution at temperature 7" is

described by the probability density

_ p2
P(p,q)dpdq < e P2m e PV dpdg,

The Langevin dynamics modify Hamilton’s equations as follows:

d(t) = F(a(t) de = p(t)dt -+ [ aw ()

t
dqt) = "D g,
m
where f(q) = —%—lq] is the deterministic force arising from the potential, v is a friction

coefficient representing the strength of the coupling with the heat bath, and dW (¢) denotes
an infinitesimal increment of a Wiener process, that is, a Gaussian random variable with

zero mean and variance dt.

The second equation, which describes the evolution of the position, remains unchanged
from the classical Hamiltonian case, while the first equation, governing the momentum,
includes three contributions: the deterministic force due to the potential, a dissipative

term proportional to —yp(t) which models friction, and a stochastic term involving the
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Wiener noise dW(t) with amplitude MTV, which represents the thermal fluctuations

induced by the environment.

The noise is characterized by the correlation relation
(dW () dW (t")) = o(t — t') dt,

which encodes the Fluctuation—Dissipation Theorem (FDT). This fundamental principle
guarantees that, when the random and dissipative contributions are properly balanced,
the system evolves towards thermal equilibrium and correctly samples the canonical dis-

tribution.

The Fluctuation—Dissipation Theorem expresses the deep physical insight that micro-
scopic fluctuations (arising from thermal noise) are inherently linked to macroscopic dis-
sipative behavior (such as friction), and in this context, the specific form of the stochastic
term ensures that this balance is maintained. In what follows, we will make use of re-
sults from stochastic theory to demonstrate explicitly that the Langevin dynamics indeed

sample the canonical distribution.

It is a classical result in stochastic theory that the coupled stochastic differential equations
governing a particle’s motion can be transformed into a single partial-differential equa-
tion for the phase-space probability density P(q,p,t). Equivalently, one may derive the
Fokker—Planck equation for P(q, p,t), which gives the probability of finding the particle
with position in [g, ¢ + dg] and momentum in [p, p + dp)].

We will invoke the general theorem that establishes the equivalence between a system of

stochastic differential equations and its Fokker-Planck representation.’

!This theorem allows us to recast an arbitrary set of SDEs into the corresponding Fokker-Planck
equation. For clarity, a detailed proof in the special case of a single SDE is provided in Appendix B.1.
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Theorem

Let us consider a system of stochastic differential equations (SDEs) of the form
dXt = H'(Xta t) dt + U(Xt, t) th7

where X; € RY is the vector of stochastic variables of interest (for example, the position
and momentum of a particle), u(X;, t) € RY is the drift vector describing the deterministic
part of the dynamics, o (X;,t) € RV*M is the diffusion matrix which couples the system

to noise, and W, € RM is a standard M-dimensional Wiener process.

Then, the probability density p(x,t) associated with the random variable X, satisfies the
Fokker—Planck equation

8

(x,t)p )]+ ZZ (9%828% D;;(x,t) p(x,1)],

=1 j5=1

||Mz

where g = (1, ..., un) is the drift vector and D(x,t) is the diffusion tensor defined by

D;j(x,t) = Zazkxtajkxt)
that is, D = %O'O'T.

One can easily recognize that the form of the system of our interest is matching the shape
of the one shown in the theorem. Therefore one can build the Fokker-Plank equation for

the case of our study.

It is just a matter of algebra to show that the system of our interest is equivalent to the

following Fokker-Plank formulation:

OP(p,q;t) - .

where (3.1)
- o p o 0 m 0?

L=tz + g (57 Fap)

Since the Langevin equation of motions are equivalent to this Fokker-Plank picture, we
can easily show that the dynamics samples the canonical distribution by showing that the
stationary solution to the Fokker-Plank equation is indeed the Boltzmann distribution.

We look for the stationary solutions since once the equilibrium condition is reached, it is
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no more left. Moreover, if the stationary solution is unique, then every time dependent
solution of the Fokker-Plank eqation tends to the stationary one in the limit t— > oo,

which is compatible with the idea of thermalization.

To demonstrate that the Fokker—Planck equation admits the canonical Boltzmann distri-
bution as its stationary solution, we employ a direct method: we insert the equilibrium
density into the Fokker—Planck operator and verify that the resulting time derivative

vanishes identically.

As shown before, the Canonical distribution has the form:

_ 1 p2
P(p, q)dpdp = 56’6 2m e PV dpdp (3.2)

Let us write the Liouvillian operator as a summation of individual Liouvillian operators,

as follows:

- 9 7 3} 7 ) 02
Now by simple algebra we can compute the action of each of these operators on the

Canonical distribution:

Therefore, since the contributions given by the actions of ij and [:q are equal and opposite,

they cancel out and yield to:

LP =0

This proves that the canonical distribution is exactly the stationary solution for the

Fokker-Plank equation?.

20ne can easily see this by plugging this result into the Fokker-Plank equation
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3.2. Langevin integration scheme

Let us now examine the canonical distribution in greater detail. If our simulation be-
gins from a non-equilibrium (non-thermalized) configuration, the phase-space distribution
P(q,p,0) will not initially be canonical. Hence, we must investigate how this arbitrary

initial density evolves under the Fokker—Planck equation

E - £FPP

to approach the equilibrium distribution as t — oc.

The evolution of the phase-space probability density ? is given by:
P(p.git + At) = e 2 P(p, g; 1), LP=o,

so that the canonical density is invariant,

e P =P P(p,qit+At) = Pp,q:t).

Writing the Liouvillian as the sum of two contributions,

~ p ~ m
L:qu‘FLW, qu:f(q)ap*Fan, va—v(p(‘?erE@;) s

and applying a symmetric Trotter factorization one obtains:

oAt o 5 Aty 5
which leaves the equilibrium measure unchanged because each factor separately satisfies
e3P = PandeAmpP = P. The resulting trajectory is only approximate, with local

error of order O(At3)4, but the long—time sampling of the canonical ensemble is exact [3].

At - .
2ty —AtL

Although the factor e 2 *” can be evaluated analytically, the factor e s has no closed—

form expression for a generic potential U(q) (as shown in the Appendix B.2) and must be

3formal solution to the general Fokker-Plank equation
4error in the trajectory not on the sampling introduced by the spliting
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split further®. Splitting I:m into

e AL~ o

In this case, however, the splitting of L,, does not yield exact sampling of the canonical

distribution, but only an approximation.®

With this Trotter—Strang splitting of the propagator in hand, it is natural to examine
its effect on the phase-space coordinates. As demonstrated in Appendix B.2, each sub-
propagator admits a closed-form update that acts exclusively on either the positions or

the momenta.

Therefore, it is now easy to explicit the integrating scheme here.

We recall from the appendix, that the first step” of integration is:

Pr=pe T 4 \/%(1 —e %)y, n~ N D).

which we can rewrite as:
p* = cip(t) + caR(t)

At
where ¢; = ¢ and ¢ =, /5 (1 — ¢3)

SWhen an operator that defines an evolution equation has no closed-form propagator, one seeks a
splitting into a product of sub—operators that do admit closed forms. Each sub-move can then be
performed exactly; the approximation error is confined to the non-commutativity of the factors and is
therefore smaller than the error incurred by integrating the original operator with a purely numerical
scheme. This is because if we integrate numerically a one step scheme with Euler or Runge-Kutta we
introduce errors of first or second order. Instead if we proceed with the Trotter splitting as seen here the
error is in third order in time

6 As we have seen, the canonical distribution is invariant under the exact propagators generated by L,
and Lyq, but not under the Trotter-Strang decomposition

exp(—%f/p) exp(—At Lq) eXp(—%IAﬂJ )

which only approximates exp(—At f/pq) and therefore fails to preserve the canonical distribution exactly.
"Friction-noise kick
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Then we apply the second step of the integration 8, acting again on the momentum

P = Fa0)

Now we apply the third step of integration, which acts on ¢ and advances the position of

a time step At:

kk

: At:q(t)er—*AtJrM
m m

q(t+ At) = q(t) + -

where, in the last equality, we have already substituted the expression for p**.

We now apply the forth step ?, which acts on the momenta but with the new calculated

positions:

R +f(q<t+m))% U0 +f(2q(t+At)))

At

where, again, we have performed the necessary substitutions.

Now let us apply the last step °, which is again:

p(t+ At) = c1p™" + o Ro(t + At)

We thus recover the same integration scheme reported by Ceriotti et al.,[3|, which we

reproduce below:

ot + A0 = g(1) + P g 4 100) ATtQ
m m (3.3)
(- + &0 = p (1) LD Ll 8

p(t+ At) = cip (£ + At) + c2Ro(t + Ab)

and where the first ind last sub-steps represent the thermostat action, i.e. the exact
t

Ly

propagation with e~ 2 We denote by p(tT) the momentum immediately after this

thermostat step, and by p(t~) the momentum immediately before it.

8deterministic kick
9second deterministic Kick
10Friction-noise kick
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There are two important concepts to highlight here: the first one is that c¢; is tightly
related to the v factor: the higher the friction the lower ¢, is, and therefore the more the
update in p are influenced by the stochasticity. Instead, the relation that links ¢y and ¢;
guarantees the correctness of the sampling [3], since if p is distributed as a guassian (as
it should be at equilibrium), then its update through I:y is still a gaussian, as proved in
the Appendix B.3.

3.3. PIMD Langevin Thermostat

We now turn to the implementation of a Langevin thermostat for the ring—polymer Hamil-
tonian. The stochastic dynamics can be applied either (i) directly to the beads in Carte-
sian space or (ii) after transforming the polymer into its normal-mode coordinates. We
adopt the latter approach: working in normal modes yields a thermostatting algorithm
that is only a slight modification of the Path-Integral Molecular-Dynamics scheme already
presented in Eq. (1.58).

In the ring-polymer representation, the Hamiltonian is more elaborate, because it includes
both the external potential and the harmonic couplings between neighbouring beads,

namely:

H,(p,q) = H)(p,q) + Va(q),
N n [p(j)}2 1

i + m w (q(J) qi(j_l))2 ,

i=1 j=1

n

ZV ,...,qN)

Now we can proceed to find the Hamilton’s equations for each bead

o _ 0H, pY

Qi - apgj) - m; )
. OH ‘ GV( () (J’))
(]) _ o 2 (.7) (] 1) (]+1) _ ql ""7qN
S 4 = a4 -0 ,
with q(n+ ) — qz(l)

To thermostat the ring polymer, we augment the momentum equations of motion by

adding a friction term and its corresponding stochastic (Gaussian) force. For every i, j
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we choose a friction coefficient v)!* and write the It stochastic differential system as:

)

dg? =L qp,
my;

, , A (3.4)

dp(y) _ [ miw (zq(a) ql(J 1) q(J+1)) . 8qu(q§]), o 7q%)> _ %pgj)}dt

where {dWZ-(j )} are independent Wiener increments satisfying <dm(j )(t) dWi(,j ) (t)) = ;0,5 dt.

Using the standard definition of a Liouvillian, together with the ring-polymer Hamiltonian
derived earlier, we can now write explicit expressions for (i) the Liouvillian of the free
ring-polymer (kinetic + spring) part and (ii) the Liouvillian that corresponds to the

external-potential part.

n

N
, . : B
)= ZZ[m 5~ men(a? =™ =) .
j=1 """
N

=1
1

- ) G0y 9
[ o) =5
7=1 6p£])

LV - {an } Z

1=

Given the Langevin equations in (3.4), the corresponding Fokker—Planck equation can be

constructed. For the full ring-polymer phase-space density P({q, p},t) it reads:

7

[ (= miw?(2¢” = ¢/ = ¢y = 0.V = 7ip!) P]

7 (2

=2

’Lljlaq’b|:

B ppppu

=1 j= 1apz

N n

+Z my 7@

i=1 j=1 )

UFollowing Ceriotti et al.,[6], we assign a bead—dependent friction coefficient, i.e. each normal mode

of the same ring polymer is coupled to its own friction constant rather than using a single value for all
beads.
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Equivalently, we can write 0, P = —L P, where the total Liouvillian is

n

() 2
; p 0 200 () _ G-0_ Gty 0 OV 0 Gw_ 0  mi 0
L= [ ———mw;(2¢;" —q; ' —q") —=——— —+7; (pl- ~+— . )]
2.2l dq;” oy 0a op)” o B o)

=1 j=1

Where one can recognize the expression for Ly and Ly in the first part, and we can define

the friction (thermostat) part alone'? as

0 m; 82
o ) (3.6)

B ow!y

N n
L= ()

i=1 j=1 api

We then can write:
L=1Lo+Ly+1L,

where the definitions of Lo, Ly and [AJ,Y are the same as previously shown in (3.5) and
(3.6)1

As we did in the previous paragraph we can now use the Trotter splitting and find:

oA o= (At/2)Ly —(At/2)Ly ,—AtLo ,—(At/2)Ly ,—(At/2) L, (3.7)

We have already derived the action of these individual propagators in the Path-Integral
Molecular Dynamics chapter, when integrating the ring-polymer equations of motion.'4.
The present integration scheme differs slightly from that of the previous chapter, Eq. (1.55),
because of the extra factors e(/2Lv We can nevertheless adapt the earlier algorithm
shown in (1.58) simply by inserting two additional steps—one at the beginning and one

at the end—to apply these thermostat operators.

1235 one would expect from the dissertation shown in the previous paragraph for the simplified case

13In the case of IAW, the operator has the same functional form, but it is written separately for each
bead of every interacting particle.

141t is worth emphasising that the operator exp(—At Lg) has a closed-form propagator. The Liouvillian
Lo stems from the “free” ring-polymer Hamiltonian H?, which contains only the kinetic term and the
harmonic spring coupling between adjacent beads. After transforming the polymer to normal-mode
coordinates, HY decomposes into a sum of independent one-dimensional harmonic oscillators. As shown
in Appendix B.2 (with the Exponential-Series argument and Quadrature argument), each oscillator can
be propagated analytically; therefore the full operator exp(—At io) can be applied exactly.
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n

~(k ]
P =P O,

Jj=1

m;
P AP+ 6—657“)65'“), (3.8)

<_ Z C]kpz

Where «SZ-(k) is a normally distributed random variable with 0 mean and unit variance and
which assumes different values for every degree of freedom, each normal mode of the ring
polymer, and different at each application of the iterative step. And where the coefficients

(lk) and cgk) are:

At/2)L.

This extra step is precisely the realisation of the propagator e discussed in B.2.

Herein lies the chief advantage of working in the normal-mode representation when cou-
pling the ring polymer to a Langevin thermostat. Because each mode k behaves as an
independent harmonic oscillator, we can estimate an optimal friction coefficient v*) by

analysing the free ring polymer in normal-mode space. °.

If we rewrite the previously derived equations of motion in normal-mode coordinates and

omit the external potential V', we obtain:

5
dq<k)
d ) _ 2 ) (k)=(k) 2miy ™ x) .
priZi —mwig; — P + 6—&- (t)

where fz(k) (t) represents an uncorrelated, normally distributed random force with unit
variance and zero mean <§i(k)> =0 and <§ (0 )g(k (t )> d(t). We will then define the

optimum value of the friction coefficient as the one that minimises the autocorrelation

I5Naturally, in actual simulations one must thermalise the entire ring-polymer Hamiltonian—including
the physical potential V—rather than the free ring polymer alone. Even so, the analysis of the free
polymer offers valuable guidance for choosing the set of friction coefficients v(¥).
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time of the harmonic oscillator Hamiltonian given by the formula:

1 [e’e]
e m/ ((H(0) = (H))(H () = (H)))dt (3.10)

The autocorrelation time 7y quantifies how rapidly the system evolves and forgets its
initial state. A small 7y means that the energy of the free ring polymer departs from
its initial value in a very short time, allowing the trajectory to sample different energy
shells quickly. Once the energy fluctuations become so fast that their average correlation
vanishes, the integrand in the correlation integral is effectively zero thereafter. Hence, a
small autocorrelation time is synonymous with rapid exploration of phase space according

to the canonical distribution.

We can now answer the earlier question: why focus on the free ring polymer? Because in
this simplified setting one can derive an explicit formula for the energy autocorrelation
time 7x(7y) and then perform an analytical optimisation. The result provides a simple

guideline for choosing the optimal friction coefficients v*).

Since the normal mode individual Hamiltonian for each bead is:

[~(k>]2 '
7 2
H = W + §mlw,€ [Q’Ek)} (3.11)

by calculating the quantities involved in the definition of 75 we get the following form

[13]:
(k)

Ly
=—+ — 3.12
Then the minimum of this function is in the correspondence of the value:
B = 20, (3.13)

Note that this expression is valid only if £ > 0, and it is not valid for the centroid mode
k = 0. This is due to the fact that if we recall the expression for the wy = 2w, sin(k7/n).
In this case if £ = 0 then w;, = 0 and this is probelmatic, since inserting the optimal value

for v*) into the expression for 7y, we would get a zero in the denominator.

Therefore, it is necessary to redefine the expression for the optimal value of v(©). Then
we define 70 = % where 7y is a time constant for the centroid mode. Substituting this

into the expression for computing the autocorrelation time of energy, we can again find
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the value that ensures the minimisation.

In the following chapters, we will extend the standard Langevin thermostat to a more
versatile framework via the Generalized Langevin Equation (GLE). We will examine the
properties of its memory kernel that allow a flexible modeling of system—bath interactions.
Before introducing the GLE itself, however, we first present the microscopic model of a
heat bath, and show how, by eliminating its degrees of freedom, naturally yields the GLE
form, highlighting its suitability for thermostat design.
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4: ‘ Modeling the action of a Heat
Bath on a system

Before delving into the Generalized Langevin Equation (GLE) thermostat, it is instruc-
tive to understand why the GLE provides a natural description of system—bath coupling.
To this end, we consider the paradigmatic model of a thermal reservoir: an infinite set
of harmonic oscillators bilinearly coupled to our system degrees of freedom. By formally
integrating out the bath coordinates, one arrives at the GLE for the system variables,
complete with a memory kernel and a fluctuating force that together satisfy the fluctua-
tion—dissipation theorem. This construction demonstrates how the GLE emerges directly
from a microscopic heat-bath model and why it is particularly well suited for thermostat

design.

4.1. A heat bath model

How can one model the heat bath and its action on the system analytically? One possible
way, as shown in [31], is the following. Let us consider, for simplicity, a one-dimensional
system consisting of a single particle of mass m, whose position is  and whose momentum
is p. This particle is subject to an external potential U(z). The total system, comprising
the particle and the heat bath, is described by the following Hamiltonian [17]:

PE o mew? c 2
a oWa (p o 41
2my, N 2 (x Maw? a:) (4.1)

where we have modeled the heat bath as a collection of harmonic oscillators with masses

H—i—FU(x)jLZ

2M

me and frequencies w,. The variables x, and p, are the fictitious positions and momenta
of these oscillators and, from now on we will refer to them as the degrees of freedom of
the heat bath.

The ¢, are coupling constants that determine how strongly each oscillator (i.e., each

frequency) interacts with the system.
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Conceptually, one can visualize this fictitious system as the primary particle connected

via springs (with elastic constants m,w?) to multiple additional fictitious particles.
In what follows, we will show how this Hamiltonian yields the "Generalized Langevin

Equation" by integrating out the equations of motion for the bath’s degrees of freedom.

By applying Hamilton’s equations, we obtain the following equations of motion for the

particle of the system:

i=L
M
. oUu N Ca (4.2)
=—— Co | Ta — x
b Ox ~ maw?
and for the degrees of freedom of the bath:
. Da
To = —
Ma (4.3)
Pa = —mawixa + co

We now assume that the expression of z(¢) is known and proceed to formally integrate the
equations of motion for the bath’s degrees of freedom using Green’s functions, as shown

in Appendix C.1. The result of integration is the following expression for x,(t):

Ta(t) = o (t) cos (wa (t — to)) + 225 sin (w, (t — to))

Mo

4 _Ca ft'; dssin (W, (t — 5)) z(s)

MaWa

(4.4)

By substituting the previous expression into (4.2), we obtain:

(67

+Z Ca /to dswg sin (we (t — 8)) () (4.5)

maw?
DPa (tO)

awa

sin (wq, (t — to))

+ Z Ca {Qa (to) cos (wa (t —t0)) +

By factoring out the the coeffients in the summations of the second and third term, and

by denoting as F'(t) the last one, we get the following expression:
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p= _g_g +3 ijﬂ Ut dsx(s)% cos (wa(t — ) — z(t)| + F(2) (4.6)

By partially integrating once the integral present in square brackets ! we get:

p=F(t) - -y, A {f; dsi(s) cos (wal(t — 8))

(4.7)
+z (to) cos (wq (t — to))]

If we now distribute the summation of the third term inside the squared parenthesis and

denote the friction memory kernel as:

2

'y(t—s):%z S cos (wa(t — 5)) (4.8)

Mmaw?

we almost obtain the General Langevin equation:

Mi + M/tt dsy(t — s)z(s) + g—g = —M~(t —to) x (to) + F(t) (4.9)

Before discussing the difference with the actual expression of the GLE, let us address a
subtle point.

Considering the force F'(t), we immediately notice that it depends on the initial positions
and momenta {z (o), pr(to)} of the bath oscillators at time ¢y. Strictly speaking, if these
initial conditions were precisely known, then F(t) would be deterministic. However, this
term inherits stochastic behavior, since it is practically impossible to determine all these
initial variables with infinite accuracy. Consequently, the deterministic nature of F'(t) is
effectively lost, and it is more appropriate to treat it as a fluctuating force by considering
{zk(to), pr(to)} as random variables following the Boltzmann distribution when the heat

bath is in equilibrium.

Furthermore, we notice that F(¢) is a colored Gaussian fluctuating force that obeys the

Fluctuation-Dissipation Theorem of the second kind (see Appendix C.2).

(F(t))ps =0

(4.10)
(F()F(s))ps = METy(t — s)

!Notice that the z(t) present in the square brackets cancels after the integration by parts since a
positive x(t) arises from evaluating the first term in the integration by parts
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where the averages have been taken with respect to a bath in equilibrium

2 2
o5 = Z Vexp {—5 [Z (2];;‘ + %Qi)l } (4.11)

Let us now discuss how to obtain the final form of the GLE. The expression obtained before
is slightly different from the actual GLE since the additional term —M~y (t — to) z (o)

appears.

However, we can absorb it into the definition of the fluctuating force, by defining

n(t) = =My (t —to) x (to) + F(t)
In this way, one can recover the correct expression of the GLE:

M3z + M/t dsvy(t — s)x(s) + g—(xj =n(t) (4.12)

However, we should now care about the new properties of the stochastic force, since
it should still be a stationary gaussian process with zero mean and that satisfies the

fluctuation dissipation relation of the second kind, in order to be a properly defined GLE.

At a first glance, this could seem a problem, since 7(¢) has no more a stationary autocor-
relation, if we average using the Boltzmann distribution of the unperturbed bath, that
we have used before. However, it recovers this property if conditionally averaged with
the equilibrium distribution of the complete system bath-+system (this is provable in a

similar way to the one we have used in the appendix to show that F(¢) follows the FDT).

P ({Pa> @a} |  (to) = )

2 2 2 (4.13)
R B pa o Mmaws _ C
=77 "exp { B [ o, + 5 <qa — x) ] }

However, one might argue that the expression for the friction memory kernel is not truly
general since it is expressed as a summation of cosine terms. How can this be a generic
form of a memory friction kernel? The key is to recognize that the frequencies wy can

be distributed according to an arbitrary distribution. This allows the complete memory
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kernel to assume any desired form.

To explore this in more detail, let us consider that the friction memory kernel is initially
given as a sum over the degrees of freedom of the bath—each oscillator characterized by
its own mass, frequency, and coupling constant.

Now, by taking the limit as the number of bath degrees of freedom tends to infinity, and
by allowing the coupling constant to depend on the frequency, the summation transforms
into an integral. In this limit, the general form of the friction memory kernel can be

written as

) = [ o) costt)

where

Notice that this expression is precisely the Fourier cosine transform. Therefore, if we
desire a specific functional form for (t), we can obtain the corresponding function g(w)

by taking the inverse cosine transform of the desired ~(¢).
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4.2. Markovian and Non Markovian dynamics

Before turning to the use of the Generalized Langevin Equation as a thermostat, we
pause to examine its intrinsic properties, which will be crucial for our later developments.
We begin with the simplest setting, a single particle evolving under the GLE, and then
indicate how to extend to many-body systems. Note that, in this illustrative section,
the particle has no direct relation to the real physical particle or the ring-polymer beads
introduced previously. Our focus here is purely theoretical: to derive and understand the
GLE formalism. In subsequent sections, we will show how to leverage these results for

thermostatting in path-integral molecular dynamics.

Let us recall the Generalized Langevin Equation (4.12) from the previous paragraph. By
relabeling the coordinate z — ¢ and the stochastic term n — ¢ and v — K 2, the single
second-order stochastic differential equation can be written as the following system of two

first-order equations:

q=p/m

. ov (4.14)
p= = / K= 9p(s)ds+ (1)

We immediately notice that the generalized Langevin dynamics is non-Markovian: the
momentum update at time ¢ depends not only on its current value but also on its entire

past history, weighted by the friction memory kernel K (¢t — s).

Moreover, as discussed in the previous section, if we wish to enforce the sampling of the
Boltzmann distribution at thermal equilibrium, a fluctuation-dissipation relation must
hold. Consequently, the Gaussian noise is no longer uncorrelated in time but instead

reflects the specific form of the friction memory kernel.

Integrating such an equation of motion is impractical because it requires |7]:
e Generating Gaussian random numbers with prescribed temporal correlations,
e Storing the complete past trajectory of p(t)

e Evaluating an integral over the entire history of the system to compute the friction

term.

To overcome these difficulties, we demonstrate that the non-Markovian dynamics can

be transformed into a Markovian one by extending the dynamics through the addition

2These new symbols will be more convenient for the rest of the discussion.
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of extra fictitious momenta. These additional degrees of freedom restore a Markovian

structure to the system.

In order to substantiate this approach, we will work backward by showing that a system
of Markovian differential equations can be recast into a single non-Markovian differential
equation. We first illustrate this process with a simple example and then formalize the

approach in a more general context.

As an example, we will show how non-Markovian behavior can arise is by elimination of
the momentum in the Brownian motion of a harmonic oscillator. The equation of motions

are:

de._p
dt  m
i (4.15)

— 2y — P
i Cm+F(t)

By formally integrating the second equation we get the expression:

p(t) = /t dse ) [—mwiz(s) + F(s)] (4.16)

—0o0

Substituting in the first equation of the system we get:

d t
d—“;” _— / dsK(t — s)z(s) + Fug(t) (4.17)
were we have set
1 t
K(t—s)=wie 8¢9 Fgt) = —/ dse S F(s) (4.18)
m —0o0

The full calculations are available in the Appendix D.1.
A more detailed and generic dissertation has been developed by Zwanzig in [31].

From a strictly Markovian system of two coupled stochastic equations, we can eliminate
the auxiliary variable to obtain a single non-Markovian equation for the primary coordi-
nate. This reduced equation features a convolution with a friction memory kernel and a
fluctuating force whose statistics are time-correlated, reflecting their dependence on the
system’s entire history.

Crucially, the kernel that emerges is not arbitrary but takes the specific exponential

form inherited from the original coupling. The reverse construction, embedding a non-
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Markovian process into a higher-dimensional Markovian system by introducing auxiliary
variables, is likewise possible, but only when the memory kernel is exactly exponential.

This raises an important question: if we are given an arbitrary memory kernel, how can
we still cast the dynamics into a Markovian form? The main idea will be developed in

the following dissertation.

Let us now show that if the kernel is expressed as a combination of exponentials, then one
can introduce a corresponding number of fictitious variables to convert the system into
a Markovian dynamics. Once this is demonstrated, one can further argue that, for any
general kernel, an approximation can be made by representing it as a sum of exponentials.
This exponential expansion then allows us to embed the non-Markovian dynamics into

an extended Markovian framework.

Suppose we have a memory kernel given by a linear combination of exponentials,
N
K(t)= Z cpe M (4.19)
k=1

The non-Markovian evolution equation for a generic variable x(t) is:

:t:—/tK(t—s)x(s)ds—l—F(t) (4.20)
=— /t [Z cre )| w(s)ds + F(t) (4.21)

0 Lk=1
= — Z Ck /t e M =9 p(s) ds + F(t) = — Z ey + F(1). (4.22)

Where we have defined the auxiliary variables

t
yi(t) = / e M=) g(s)ds, k=1,...,N. (2)
0



4| Modeling the action of a Heat Bath on a system 43

Let’s now differentiate y(t) with respect to t:

Uk(t) = %/0 e (=) g (s) ds (4.23)
=z(t) — M\ /t e M=) 1(s) ds (4.24)
= z(t) — Ak yx(t)- (4.25)

where we have used Liebeniz Integral Rule.

Then we can rewrite the initial equation as the following Markovian system:

However, in the previous case, we are not considering that the fluctuating force F'(¢) could
be some colored noise, since we could require that it obeys the fluctuation dissipation
theorem. In this case, when we start from the non Markovian dynamics, F(t) has a

prescribed correlation function of the form:

(F(8)F (#)) = kpTK ([t —t') (4.26)

When we construct the Markovian dynamics, we would like to rewrite it using only un-
correlated noise. To fulfill this purpose, we should introduce some more support variables

to the system.

First of all, let’s start by rewriting the FD relation using the expression of the kernel:

(F()F (t)) = kgTK (|t —t|) = kT i cpe Ml (4.27)

3For completeness, in Appendix D.2 we examine a memory kernel given by a continuous superposition
of exponentials (Laplace transform). Such a kernel cannot be represented by a finite system of Markovian
differential equations, but only by an infinite hierarchy. Therefore, in the main text we restrict ourselves
to kernels admitting a discrete Laplace representation, which can be embedded in a finite-dimensional
Markovian form. One might note that a discrete Laplace expansion only covers functions defined on
the positive real axis; however, this is sufficient here because the memory kernel enters only through the
integral over s € [0, t], so that only non-negative arguments ¢ — s ever appear.
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For each k let’s introduce the variables z; such that they obey the Ornstein—Uhlenbeck

Process defined as:

where

(€ ()85 (1) = dr;0 (t — ') (4.29)

It is a well-known property of the Ornstein—Uhlenbeck process that the autocorrelation

function of z satisfies [12]:

(2 (£)z () = el (4.30)

Now, if one writes F(t) as*:

FP(t) =) opul(t) (4.31)

Since the processes z; are independent we can show that:

N N

(FOF () = o (z(t)z (1) = Y ore " (4.32)

k=1 k=1
where we have to choose o7 = kgT'c; in order for this expression to match Eq. (4.27).
Therefore, the complete extended equations of motions become:

N N

B(t) ==Y aye(t) + > VEksTerz(t)

k=1 k=1
() = —Myr(t) +2(t), k=1,...,N
Gt) = =Aezk(t) + V2M&(t), k=1,...,N

(4.33)

which can be recast to a matricial form. The general form used to implement thermostat-

ting and molecular dynamics will be displayed in the next chapter.

4we are now guessing the shape of F(t)
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We now leverage the theory developed above to demonstrate the principal advantages and

practical implementation of the GLE as a simulation thermostat.

The key benefit of the GLE is its flexibility: by tailoring the form of the memory kernel,
one can precisely control the sampling characteristics of a molecular-dynamics trajectory.
In the following discussion, we will show how different kernel choices affect sampling

efficiency and dynamical properties.

As before, we first illustrate the method on the simplest system, a single particle, and then
indicate how to generalise to many-body systems. Our presentation follows the treatment

of Ceriotti et al. [8], and for clarity we adopt their notation throughout.

The equations of motion are:

qg=p/m

ov

| t (5.1)
p= o0 /_OOK(t— s)p(s)ds + (1)

As explained in the previous chapter, in order to bypass the complexity of dealing with
a non-Markovian formulation directly, we supplement the system with n additional de-
grees of freedom, {s;}, which are linearly coupled to the physical momentum and among

themselves. The resulting SDE can be cast into the compact form®:

p

q
O-Co)- (7O (n%)e ™

Here, & is a vector of n 4+ 1 uncorrelated Gaussian random numbers, with

&i(t) §5(0) = 45 0(¢).

Lwe choose a unitary mass.
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We can notice that if n=0 we recover the standard Ornstein—Uhlenbeck process for the

momentum equation only, present in the simple Langevin Equation dissertation.

We will adopt the following notation to distinguish between matrices acting on the full

state vector x = (q,p, s)T or on parts of it:

q P S

T
q|mgqg Mgy My

T
P

P Mgp | My, M

s|m, |m, | M

5.1. Free-Particle Limit

To build intuition, we first consider the simplest case in which no external forces act on
the particle (i.e. 9V/0q = 0). In this limit, the coordinate ¢ decouples and we focus on

the coupled dynamics of momentum p and auxiliary variables s.

Starting from the GLE in Eq. (5.1), the momentum equation reduces to
t
p(t) = —/ K(t—s)p(s)ds+ ((t). (5.3)

Ceriotti et al. [8] show that, for this free-particle OU embedding, the memory kernel K ()

is related to the drift matrix A, and coupling vector a, by
K(t) =2ayd(t) — a e lihg,. (5.4)

Moreover, since (p, s) evolves as a multivariate Ornstein—Uhlenbeck process, its stationary

covariance C, = ((p,s)”(p,s)) must satisfy the the following relation

A,C,+C,Al =B,B]. (5.5)

To enforce canonical sampling at temperature 7', hence enforce the FDT, it is simply
possible to set C, = kgT'I, which implies the standard noise-kernel relation H(t) =
(¢(t)¢(0)) = kT K(t). * Enforcing FDT, Eq. (5.5) becomes:

A, +A] =B,B/. (5.6)

2Here, H (t) is just the notation to indicate the correlation of the fluctuating force
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Since A, may be chosen as any real matrix with eigenvalues of positive real part®, the
resulting form of K(t) is a superposition of exponentially damped oscillations. This
shows that our finite-dimensional Markovian embedding can realize a broad class of non-

Markovian kernels.

Finally, because the g—s coupling vanishes in this free limit, the conclusions above extend
unchanged once an arbitrary physical potential V' (q) is reintroduced. The full GLE then
reads

q=0p,

) ov !

D=5, K(t —s)p(s)ds + (1),

which is the non-Markovian dynamics we set out to thermostat.

5.2. Harmonic Oscillator toy model

Let us delve deeper into the thermostating properties of the GLE by examining a simple,
but still highly instructive, toy model. Most MD thermostats rely on only a handful
of tunable parameters, often chosen by trial and error [8]. By contrast, a GLE-based
thermostat introduces many more degrees of freedom, and hence many more parameters,
to optimize, as one does when using colored-noise methods to sample nuclear quantum
effects in solids [5]. Finding the optimal parameter set for efficient thermostatting is

therefore substantially more complex.
Before delving into the full parameter-fitting procedure, we consider the paradigmatic
example of a one-dimensional harmonic oscillator,

V(g) = 3*¢".

Despite its simplicity, this model allows us to derive many key properties of GLE ther-
mostatting in closed form—and it also represents the small-oscillation limit of any non-

linear system around equilibrium.

In this setting,the force term becomes linear and the dynamics of @ = (¢,p, s)T is the

OU process defined by the equation:

X = —Agpx+ Byt (5.7)

Since the degrees of freedom s are uncoupled from the variable ¢ the most of the entries

3Positive real parts ensure that the homogeneous dynamics decays as e~ %M,
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of A,, and B, are null.

In matricial form, Eq.(5.2) becomes:

g 0 —1 0 q 00 0\
pl=—| w ap a +]1 0 B, (£> (5.8)
S 0 a, A s 0

As noted by Ceriotti et al. [8], in the harmonic-oscillator case the propagator can be
obtained in closed form.

With the analytical propagator in hand, any ensemble average or time-correlation function
can be computed exactly. Of particular interest are quantities such as (¢*) and (p?),
and their time correlations (¢*(t) ¢>(0)). The latter reveals how rapidly the system loses
memory of its initial state and approaches equilibrium, thereby quantifying the strength
of coupling to the heat bath, and the efficiency with which the thermostat samples the

target frequency spectrum.

As we saw for the standard Langevin equation, one selects the friction coefficient v to
minimise the energy autocorrelation time 75, thereby maximising sampling efficiency at a
specific frequency w *. In the GLE framework, however, we no longer have a single 7, but
rather an entire set of parameters encoded in the matrix A,.> Therefore, the GLE allows
efficient sampling across a whole band of frequencies. Our task is therefore to devise a
prescription for selecting the entries of A, (or, more generally, A,,) so as to optimise

sampling over a desired spectral range.

As we have seen before, we again initially focus on the dependency of the correlation

times, whose definitions are:

= [ V= V) - )

= gy [ (0 = () 0) = ()i

(5.9)

In the harmonic-oscillator case, the availability of an analytical propagator G(t; A,,w)
allows us to derive closed-form expressions the energy autocorrelation time 75 and the

potential autocorrelation time 7y,. Since the propagator depends explicitly on both the

4at the expense of less efficient sampling of others
®When the fluctuation, dissipation theorem is enforced—so that A, and B, satisfy Eq. (5.6), specifying
A, automatically fixes B, and thus the noise properties for all modes at temperature 7T'.
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oscillator frequency w and the GLE drift matrix A,, these correlation times
TH = TH(Ap7w)7 Ty = TV(AP’ UJ)

are themselves functions of A, and w.

In the absence of any auxiliary variables, one recovers the familiar Langevin-thermostat

expressions for the autocorrelation times:

1 a 1 a
P ry(w) = 5.+ 2—2”2 (5.10)
pp

Let us now introduce an efficiency cost function motivated by the following reasoning:
since sampling a normal mode of frequency w requires at least a time on the order of its

vibrational period [8], we define the sampling efficiency as

(5.11)

This quantity measures how effectively the thermostat couples to a mode of frequency
w. By construction, k(w) € [0, 1], and larger values indicate more efficient coupling. In a
log—log plot, the efficiency curve for the simple Langevin thermostat attains its maximum
value k = 1 exactly at w = v/2 and then decreases linearly away from that peak, as shown

in Figure 5.1

1/tyw

K=

s ST BRI B
107 107 107

T Lol I L
w' 1 10 10° 100 10
w [arb.units]

Figure 5.1: Sampling efficiency x(w) for a GLE-based thermostat (solid line) versus a

standard Langevin thermostat (dashed line), reproduced from Ceriotti et al. [8].

To optimise the GLE parameters, one selects a discrete set of target frequencies {w;}
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spanning the range (Wmin, Wmax). Starting from an initial guess for the drift matrix A,
one computes x(w;) for each w;. One then adjust A, so as to maximise the worst-case
efficiency

min £(w;),
(2

aiming for a flat, near-unity x(w) profile over the desired frequency band.

This approach is particularly valuable when the system’s normal modes are unknown or
impractical to analyse: by tuning the free parameters in A,, one can ensure efficient
and frequency-independent thermostatting across the range (wWmin, Wmax), Which is chosen

based on prior physical insight into the system’s characteristic frequencies.

To conclude this paragraph, in the general case of a non-harmonic potential, where the
forces are no longer linear, no closed-form propagator exists as it does for the harmonic
example. However, by employing a Trotter-Strang splitting of the full propagator into
analytically tractable sub-steps, one can still construct an integration scheme that delivers
efficient sampling across the desired frequency range [8]. This splitting closely mirrors the

Trotter—Strang scheme used to integrate the standard Langevin dynamics.

5.3. GLE for ring polymer representation

The thermostats based on the equivalence between a non-Markovian GLE and a Marko-
vian dynamics in an extended phase space admit a simple matrix representation, as shown
earlier. We can leverage this insight to construct a GLE thermostat for the PIMD for-

malism.

As previously noted, the integration scheme will closely resemble that of the simple
Langevin dynamics. Importantly, because the GLE is invariant under orthonormal trans-
formations [8], there is no need to transform to normal-mode coordinates: we may apply

the thermostat directly in the bead representation.

Consequently, the final integrator is obtained by replacing the steps shown in Eq. (3.8)
with the GLE-extended updates:

P Cip /%02@@. (5.12)

Here £§j ) is a vector of ns + 1 independent Gaussian numbers,

(%) 2
= ()
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()

is a vector containing the momentum of bead j and n, auxilliary momenta s;”’, and
C; = ¢~ A2 (5.13)
and
clc,=1-cClc (5.14)

are the appropriate generalisations of the correspoding scalar relations that we have seen

in the LE application.

Note that v is the friction matrix optimised as described in the previous paragraph, on

top of which we construct C; and Cs.
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6 ‘ Nose Hoover Thermostat

Let us now introduce, in a more general way, an alternative thermostatting scheme. We
focus first on the method originally proposed by Nosée and later reformulated by Hoover.
We will then briefly discuss its ergodicity limitations, introduce the Nosé-Hoover chain

extension, and conclude with its application to the PIMD formalism.

6.1. Nosé Thermostat

The core idea of Nosé¢ was to augment the N-body Lagrangian of the system with an
additional degree of freedom s representing the heat bath. Specifically, one defines the

extended Lagrangian as:

LNose = Z %521‘2 U (I‘N) + %5’2 — %lns (6.1)

Here, s and its conjugate momentum p, are introduced as the fictitious coordinate and
momentum of a single “bath” particle of mass ), representing the additional degrees of
freedom of the heat reservoir. Moreover, L is a tunable parameter that controls the
coupling to the heat bath, and is chosen to ensure correct sampling of the Boltzmann

distribution; we will clarify its role in the following discussion.

As one may notice, the key distinction between this deterministic Nose—Hoover thermostat
and the stochastic methods, that we have discussed earlier, is that Nosé-Hoover relies

exclusively on deterministic equations of motion rather than leveraging random forces.

From the extended Lagrangian defined above, the conjugate momenta follow immediately

as:
_or ).
Pi:af =1y 8T
8£1 (6.2)
ps = — = Q5.

ST08
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And then we can construct the following Hamiltonian:

N 2 2

_ b; N Dy ln_s
HiNose = +U (r )+2Q+L 3 (6.3)

As shown in [11], for an N-particle system the extended Hamiltonian samples the micro-
canonical ensemble of 6NV + 2 degrees of freedom, so that the number of accessible states

at fixed energy is given by:

1
QNose = i /dpS ds dp™ dr™6 (E — Hyose ) (6.4)

If we now introduce the variable p = p;/s, we can rewrite the Hyose as:

2
P Ins
Hose:Hp/yr + 5 +L_ 6.5
where we have defined:
N 12
! _ Pi N
H(p',r) = 2o, +U () (6.6)

by applying the substitution from p to p’ in Eq. (6.4), and by expanding the expression
of the Hnose in the argument of the §, we get:

QNose = _/dps ds dp/NdrN 83 N
(6.7)

N 2 2
pi N ps L
N — 4+ U (r) + +—-Ins—E
[ () + 35+

For a ¢ function, whose argument is itself a function h(s), we can write

0[h(s)] = 0 (s = s0) / [N (s0)],

where h(s) is a function that has a single root at syg. Therefore, by applying this rule to
the Dirac delta in the integral, and making some manipulations!, we get the following

formula:
3N+1

L

1
QNose = Cﬁ dp™ drNexp [—6 H(p,r) (6.8)

By inspecting this result, one sees that setting L = 3N + 1 makes Qnos¢ precisely the

Boltzmann weight for an ensemble of particles with coordinates r and momenta p’. Con-

!we omit for brevity the calculations
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sequently, for any phase-space observable A(r,p’), its ensemble average becomes:

< r _ Jdp™N deVA(p' v) exp [-BH (p',1) (3 N +1)/1]
(AP/5:T))Nose = Jdp™N drNexp [-SH (p',r) (3 N+ 1)/L]

(6.9)

Now, multiplying both numerator and denominator by 1/N!? and setting L = 3N +1, the
denominator becomes the canonical partition function. Hence, the ratio reduces exactly

to the canonical thermal average of A(r,p’).

_ (1N [dp™ deMA (p',r) exp [-SH (p',1)]
(A(P/s,T))Nose = Q(NVT)

= (AP, r))xyp  (6.10)

Assuming the system is ergodic, the previous average in the ensamble must be equal to

the time average:

A= lim = [ dAR)/5(0.1(0) = (/5. ) (611
It is now instructive to consider the role of the variable s in some detail. In the ensamble
average presented before, the phase space is spanned by the coordinates r and the scaled
momenta p’. As the scaled momentum is most directly related to observable properties?,
we refer to p’ as the real momentum, while p is interpreted as a virtual momentum.
We make the same real-virtual distinction for the other variables, always indicating real

variables with a prime to distinguish them from their virtual counterparts.

The real and virtual variables are related by*:

r =71
"=1p/s
P'=p/ (6.12)
s =s
At = At/s

From the last relation, it follows that s acts as a time-scaling factor. This means that

?Depending on the definition of Qnoss, @ normalization constant C' may also appear.

3Because, as shown above, ensemble averages of an observable A can be computed using the primed
momentum variables.

4One might ask why the time variable is scaled in the same way of the momentum. This is easily
showable by considering the extended Lagrangian of Nosé. The kinetic term of the system of N bodies
is contaminated by the presence of the s?. In a normal Lagrangian one would expect only the positions
and mass to appear in the form m(d”)Q. One can account for the appearance of s by considering the

dt
term 5272 as the derivative with respect to a time primed ¢’ such that fl;? = %% = s7; so that % =s.
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during a simulation in which we consider the step of integration 4t constant, the real §t’
fluctuates. This is the case of the sampling of the equation that we have written before,
and that calculates the average of A in time t. Since we have introduced the real time,
we could also ask ourself if it is possible to sample with equally defined steps in real time
dt'. The answer is positive, and we are going to show why. If we rewrite Eq. (6.11) using

primed varibales we get:

!

lim © /0 CAAp () /s () x ()] (6.13)

Now we have that this relation samples (in time) the canonical distribution. Since Eq.
(6.12) is valid, the relation dt’ = dt/s holds, and therefore the relation between the
integration extremes of the time averages in the case of sampling with constant intervals
intort is:

T = /T dt1/s(t) (6.14)

We are going to use this relation soon. We can manipulate the expression (6.13) as:

Jin = [ Al () () x (0)
o (6.15)

= tim T2 [ dedlp(o)/s(0).x0)s(0)

by using (6.14) we get:
_ lime o 2 [7 dtA[p(t) /s(t), x(t)]/s(t)
lim; o 7 fy dt1/s(t) (6.16)
= (A(p/s,x)/s)/(1/s)

where the last equality holds due to ergodicity. To conclude our point, we have to prove

that the last term is equal to the canonical average of A.

In order to do so, let us revisit the partition function of Eq. (6.4). We perform the same
manipulations as before, but now include a factor of 1/s under the integral®. Reapplying

the Dirac delta constraint then yields the transformed partition function:

1 N
QNose = CW /dp/N drN €xp |:_ﬁ3_LH (pla I'):| (617>

5This factor ensures that we obtain the distribution of the scaled variables divided by s, as when
computing averages of the form (A/s).
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A
In other words, the ensemble average of M under the original Nosé distribution
s

(with L = 3N + 1) can be equivalently written as the average of A(p/s,r) under the new
distribution

exp -0 2 H(p' 7).

Jdp'NdrN A(p'r) exp[—BH(P/ )3 N/L] }
(A(p/s,r)/s) { T dp’Mdr™ exp|—BH(p/,r)3( N+1)/L]

(1/s) { J dp'™ dr¥ exp[-B[H(p' )3 N/L] }
T ap™ar expl—A[H(p' 1)3( N+1)/1]

(
_ [dp™ deN A(p/s,r)exp [-8H (p',r) 3 N/L]
[dp™™ drN exp [~ [H (p/,1)] 3 N/L]
= (A(p/s, 1))nvT-

where the last equality is true only if we take L = 3V.

(6.18)

This shows that, if we evolve the extended system using the primed variables, and
record their trajectories (r'(t), p’(f)), then the canonical thermal average of any observ-
able A(r,p) for the original system is recovered as the long-time average of A(r/(t), p'(t))
via Eq. (6.13).

Indeed, we could instead evolve the dynamics in the unprimed variables and compute
thermal averages via Eq. (6.11). However, as we will demonstrate, the approach using the

primed variables is more convenient.

Now we have the following question to answer: how do we find the equations of motion

for the primed variables?

This is a very simple task, since we can start from the equations of motion for the unprimed
variables, which we obtain from the extended Hamiltonian Hyose. These equations take

the form:

6To clarify the previous point: by introducing the factor 1/s into the integrand and recomputing the
partition function, we obtain exactly the distribution followed by the scaled variables (p/s,r). Thus,
instead of averaging A/s with the original Nosé weight, we can average A with this new distribution. The
denominator of the corresponding expression involves (1/s) under the new measure, which by construction
matches the distribution of 1/s, and similarly for all variables scaled by s.
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dri o a,}{Nose

dt N 8pz N pl/ (ml > )
dpz o _6HNose o _au (rN)
dt N ari N aI‘i (6 19)
ds  OHnNose :
o _ ps/Q
s 8ps

dps a/}-[Nose
o T (a2

Now since Eq. (6.12) hold, one knows how to connect the unprimed time derivative to

the primed time derivative and obtain:

dr; dr- o
dp; _ dpi/s _dp; 1 ds
ar S Tar dt sPdi
ou (r'N
= —% (s'p./Q) p;
sdt! sdt s
d(s'p,/Q) _ s dps
dt’ Q dt

- (pr/mi - g) /Q

Where we set L = 3N. One can show that these equations allow for a conserved quantity

which is”:

pl N S/2p/52 In &
ose —l— U +L 6.21
H'x Z )+ 50t (6:21)

However, this is not the Hamiltonian for the primed variables, because if we were to derive
Hamilton’s equations from this expression we would not recover the correct equations of
motion for the primed variables, as obtained above.® Nevertheless, the fact that this
quantity remains conserved throughout the integration provides a valuable check on the

accuracy of the numerical scheme.

Tt is very easy to show this, since we can simply take the time derivative of the allegedly conserved
quantity, and insert the expressions for the time derivtives of the primed variables that we have shown
before. All the terms cross out, hence proving the quote.

8The difference arises because the original Hyoss comes from a Lagrangian formulation, whereas the
expression obtained here does not.
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6.2. Hoover Implementation

As seen, the Nosé equations of motion can be written either in terms of the virtual
variables or in terms of the real (physical) variables. In practical simulations it is in-
convenient to integrate using fluctuating time intervals, so the real-variable formulation
is recommended.?” Hoover has shown that the equations derived by Nosé can be further
simplified. In the equations of motions for the primed varibales, the variables ', p/, and
@ occur only as s'p./Q. To simplify these equations, we can introduce the thermody-
namic friction coefficient £ = §'p,/Q. The equations of motion then become (dropping

the primes and using dots to denote time derivatives)

I, = pi/my
ou (rN
)
{= (ZPQ/mZ - —) /Q
dln S

S/s =

=¢.

However, the last equation is not necessary, since the first three are enough to determine
how the entire system of variables evolves. However, if we solve the fourth as well, we get
the evolution of s, and as said before, one can use the fact that H),,,, is conserved in time

ose

to show the quality of the integration. If one rewrites the H}, .. with the introduction of

the new variable £ one gets:
S+ U (V) + = + L— (6.22)

where L = 3N if we want to sample the thermal canonical disitrbution with the primed

variables.1?

9However, one could argue that there is no a priori reason to insist on constant steps in the scaled
time rather than in the physical time; the choice of which time coordinate to discretize uniformly is not
uniquely determined.

10See pages 152-153 of [11] for additional properties of the Hoover formulation, including the require-
ment that no conserved quantities other than the total energy be admitted, and the discussion of external
forces.
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6.3. Nosé-Hoover chains

The previous implementation of the Nosé-Hoover thermostat is efficient in several cases
but it is not still perfect. As a matter of fact, it fails to sample a canonical distribution
if the system is modeled as a one dimentional harmonic oscillator [20]. In this case, the
method we have shown does not yield to a canonical distribution in phase space, and the
evolution of the trajectory, given an initial condition, remains bounded in a ring region
around the classical Hamiltonian trajectory!'! [11]. One can show that the reason why the
Nosé-Hoover algorithm can’t sample the canonical distribution is linked to the fact that
energy is not the only quantity conserved in this system!2.

In the case of multiple conserved quantities, one can show that by constructing a series

of chained thermostats one can still sample the correct canonical distribution®®. [23].

The equations of motion for a system of N particles coupled with M Nosé-Hoover chains

are given (in real variables, hence L = 3N ) by

N
rB — —
m;
. De,y
pi=F; ——=p;
1
: pz—:k
fr=% k=1,...,M
Qk
p; Pe¢
e, = =~ _ LkgT | — =2
pfl - mi B Qngl
B Pe
Pg, = = — kBT‘| — =,
o _Qkfl Q41 S
-2
. De,, :|
Der, = | =—— — kgT| .
En _QM—I

For these equations of motion the conserved energy is

M 2 M
pe
HNHC = H(r,p) + Z 262: + LkBT§1 + Z k?BTfk
k=1 k=2

the latter can be used to check the quality of the integration.

"ywhich is a circle
12The proof of this statement is in the Appendix of ref. [11]
13The proof of this statement is in the Appendix of ref. [11]
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6.4. Application to Ring Polymer Representation

Let us now implement the Nosé-Hoover chains in our bead-representation problem. We
can apply a different thermostatting chain to each polymer bead. If we rewrite the
Hamiltonian of the ring-polymer representation to include the additional bath degrees of
freedom, as prescribed by the Nosé-Hoover approach, and again derive the Liouvillian (in

a manner similar to before), we obtain its decomposition in the following form:

L= LQ+Lv+LNHC (623)

where Ly and Ly are defined as in the previous chapters, and Lygc is defined as the
remaining part of the Liouvillian, and which includes the contributions from the bath

degrees of freedom.

We can then write the following splitting for the propagator [6]:

e*AtL ~ e*(At/Z)LNHCef(At/Q)LVe*AtLoef(At/Q)LVe*(At/Q)LNHC (624)

We can choose to work in the normal mode representation, as we did in the case of
Langevin equation thermostat. Therefore, we can modify the algorithm of integration of
the Langevin thermostat including the thermostatting Nosé-Hoover chain and get rid of

the stochastic update of the momenta in eq.(63).

(k)

d k) _ k) Tia
Epi =D Q(k) (625>
2
~(k) k
d_w _ [p i } 1 & Ty
—TT. — - - — T ——
dt 2,1 m; 571, 7,1 Q(k),
2
(k) k
d _w _ [%l—l} 1 (k)ﬂ-z(,l?i-l
dt o Q) By, B Q)
(6.26)
2
(k)
d &) _ e
F7EIN Q® 3




62 6| Nose Hoover Thermostat

(k)

Here m;;” and 777;(7’;)

are the momentum and position variables of the Nosé-Hoover chain
attached to the k-th normal mode of the ring polymer for the ¢-th real particle, for
l=1,...,L*"

We can check the quality of the integration over all the steps by verifying that the following

local quantity is conserved (this is given by the Thermostat properties)

2 2
(k) (*) k
7] ]
(

L

H,(k) = E _— 6.27

2m; * 2Q ") * Bn (6.27)
=1

(2

and the global conserved quantity (this is given by the Trotter splitting)

L ®)]? (k)
, T un
H,=H,(p.q)+> > > I (6.28)

We have to specify the values of the thermostat masses Q). Again, as in the previous
cases, one can look for the optimal definition of these coefficients in the simplified case of

the free ring polymer, by minimising the autocorrelation time of the energy.

By doing so we obtain [22]:
QW =1/ (6.29)

However, regarding the centroid mode, we get the very same issue that was presented
in the Langevin optimisation for the friction coefficient v(?. In fact, as before, we get
wo = 0, and therefore a non defined Q. To solve the problem, we act as we did in the
case of (%), by defining a separate thermostat time constant 7, for the centroid mode and
replacing wy with 1/27. By doing so we then get the following general definition of the

fictitious masses [6]:
) _ 472/B,, k=0

(6.30)
1/Bpwi, k>0

14] index which refers to the l-th heat bath of the chain. L is the total number of heat baths. In the
previous paragraph, it was noted as M.
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7 ‘ Global vs Local Thermostats

In previous chapters, we introduced the main techniques to implement a thermostat en-
abling the sampling of the canonical (NVT) ensemble. Despite the variety of approaches,
ranging from stochastic to deterministic thermostats, we have focused on the so-called
local thermostatting procedures. By this term, we mean that each degree of freedom (or
polymer bead) is separately and individually coupled to its own thermostat. This allows
rapid and efficient thermalization of the system, leading to optimal sampling of local

observables such as the potential energy or total energy.

However, certain physical properties arising from collective motions are not well sampled
using local thermostats such as dynamical properties or quantities computed using time
correlations. This limitation arises because the modifications introduced to the physical
Hamiltonian, necessary to model the heat bath and thermostat coupling, are sufficiently
intrusive to disrupt the intrinsic dynamics governing the system’s internal interactions!.
In technical terms, local thermostats can suppress the natural diffusion of phase-space

trajectories along slow collective modes.

We very biefly mention how can implement the so called "Global" version of the ther-
mostatting algorithms which couple with the system in a more gentle way, avoiding the

disruption of the Hamiltonian diffusion.

7.1. Global Langevin

It has been shown by Bussi and Parrinello et al [4], that one can construct a globalized
version of the Langevin thermostat by acting on the total kinetic energy of N degrees of

freedom, rather than coupling each degree of freedom independently.

In the context of ring-polymer molecular dynamics, this globalized thermostat could in
principle be applied to every bead labeled by the index k. However, it is has been shown
that it is far more convenient to apply it only to the centroid mode (k = 0), while retaining

the stronger, local thermostatting on the higher internal modes, which are less ergodic.

LGiven by the physical Hamiltonian and not by the extended one
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In practice, this modification, affecting only the centroid mode, requires a single change
to the update of the centroid momenta in the Langevin integration step of Eq (3.8). One

replaces the usual update by the following velocity-rescaling algorithm [6]*:

P ap?, (7.1)
where ( >
(1= ) ([ + L, 167 _
2 2 1 (0) C(l C)
a® = c + 35K + 2§ YW (7.2)

and the sign of « is chosen according to

sign[a] = sign[ o4 \/%]. (7.3)

Here,

7.2. Global NH

Similarly to the Langevin case, one can construct a globalized version of the Nosé-Hoover
thermostat that acts only on the ring-polymer centroid (k = 0). The resulting equations

of motion for the centroid mode become [6]:

d 0 _ 0™
apz - 7 W’
~(0)72
£W<o>:<z[i ] SEAN 0
dt ' i=1 my Bn ! Q(0)7
(0) 72 (0)
i (0) _ <[7Tl_1} _ i) (V) T4 (7 5)
dt ! QU 5,/ Tt QO
0 2
4.0 (Vi)ﬂ _i)
dt " QU B,/
0
d o_m
dt QO

2just for the centroid mode
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The modified conserved quantity for this single-chain thermostat is

N ~( 2 L
DI TN

i=1

(0) N (0

Z n” . (7.6)

Notice that the N separate Nosé-Hoover chains of the local thermostat are replaced by a
single chain that couples to the total kinetic energy of the centroid via the second equation
of the block (7.5)3. Concretely, in that equation one sets K = 0 and then averages over
all physical particles (3.7 ), whereas in the local NH algorithm (see block (6.26) ), fixing
k = 0 still updates each centroid momentum pZ 1nd1v1dually Here, by contrast, the

centroid modes of all N physical particles are thermostatted collectively.

3Instead of having a different chain for each centroid mode of each real particle, we use the same chain
for each of the centroid mode of each real particle, as the elimination of the lower index ¢ in the degrees of
freedom of the bath suggests. Moreover, we notice that the second step is computed exploiting the total
kinetic energy of the centroids of each real particle, whereas before, the very same step was dependent
solely on the kinetic energy of each specific centroid (see Eq. (6.26))
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8 i-PI: Client—Server Design and
Usage

i-PI is a Python 3-based path-integral engine designed for performing PIMD simulations.
It was developed to be highly scalable, readily accessible, and easy to interface with
external codes. Internally, i-PI employs a client—server architecture: the i-PI process
functions as the server, managing the propagation of the nuclear degrees of freedom,
while one or more external programs act as clients, responsible for calculating the potential

energy, forces, and the virial contribution to the pressure.

i-PI maintains a list of active client processes and, at each integration step, transmits
only the essential information, such as the simulation box dimensions h and the nuclear
coordinates x. Each client is assumed to know the atomic species and any electronic-
structure parameters from its own input. Once a client completes its calculation, it
immediately returns the ionic forces f and the electronic energy U to the i-PI server.
i-PI supports client programs that compute empirical, semi-empirical, or machine-learned

potentials.

Lightweight Communication

To maximize compatibility, i-PI uses TCP/IP or UNIX sockets.

Only the minimal data required for integration is exchanged:
Server — Client: bead coordinates and, if running constant-pressure, cell parameters.

Client — Server: forces on each bead, potential energy, and optionally the virial.
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Workflow

l
l
l
!
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XML Input Format

Simulation settings are organized in a hierarchical XML file. Each tag name corresponds
to a class or variable; nested tags define object contents; attributes provide metadata such
as units or algorithmic modes.

For example:

<simulation>
<initialize nbeads=’16’>
<file mode=’ase’ units=’angstrom’> mg_h_supercell_rescaled.pimd </file>
<velocities mode=’thermal’ units=’kelvin’>300</velocities>

</initialize>

<ensemble>
<temperature units=’kelvin’>300</temperature>

</ensemble>

<dynamics mode=’nvt’>
<thermostat mode=’pile_1’>
<tau units=’femtosecond’> 25 </tau>
</thermostat>
<timestep units=’femtosecond’> 0.5 </timestep>

</dynamics>

</simulation>

Flexible Output Control

Under the ‘<output>* section of the XML, the user can declare multiple output streams,

each managed independently:

Properties file: Records system-level quantities (total energy, temperature, pressure) in

columns with headers and units. An example is shown in Fig. 9.1

Trajectory files: Dumps bead or atomic coordinates in formats readable by visualiza-

tion software.

Checkpoint files: Save the full integrator state (positions, momenta, thermostat vari-

ables) at user-chosen intervals, enabling restarts from any saved point.
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column 1 --> step
column 2 --> conserved{kelvin} : The value of the conserved energy quantity per bead.
column 3 --> temperature{kelvin} : The current temperature, as obtained from the MD kinetic energy.
4
5

The current simulation time step.

column --> potential{kelvin} : The physical system potential energy.
column --> kinetic_cv{kelvin} : The centroid-virial quantum kinetic energy of the physical system.
column 6 --> volume{angstrom3} : The volume of the cell box.

©.00000000e+80
5.e0e600e0e+00
1.00600000e+01
1.50600000e+01
2.60600000e+01
2.506000000e+01
3.60600000e+01

-6.94242176e+65
-6.94236923e+65
-6.94229486e+65
-6.94233593e+65
-6.94242730e+65
-6.94229131e+65
-6.94233110e+65

3.91553827e+02
2.96813099%e+02
2.95012587e+02
2.97274334e+02
3.82705566e+02
3.03381463e+02
3.08593564e+02

-2.59611010e+86
-2.59585937e+86
-2.59593786e+86
-2.59625309e+86
-2.59647302e+86
-2.5961203%e+86
-2.59646210e+86

6.45144806e+04
6.56712934e+04
6.48459854e+04
6.468922668e+04
6.37873516e+04
6.42827327e+04
6.40812648e+04

4.84136956e+83
4.84136956e+83
4.84136956e+83
4.84136956e+83
4.84136956e+83
4.84136956e+83
4.84136956e+83

Figure 8.1: Example of a property file illustrating its overall layout and structure.
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9 ‘ Simulation of a Para-Hydrogen
system

The hydrogen molecule can exist in two distinct nuclear-spin isomers: ortho-hydrogen
and para-hydrogen. Para-hydrogen consists of the two protons in a singlet state, whereas
ortho-hydrogen has them in a triplet state. The abundance of para and ortho isomers in

an Hy gas mixture is temperature-dependent according to Boltzmann statistics:

J(J+1) h?
Zpara = Z (2‘] + 1) exp[—%],

J=024,... (9.1)
2 |
Zono =3 (27 +1) exp|—AT2E].
J=1,35,...

At standard temperature the equilibrium ratio is 3:1 (ortho:para), but below 20 K the
para fraction rises to about 99.8 % [9].

Para-hydrogen has a low mass (m & 2u), making nuclear quantum effects significant at

cryogenic temperatures (< 30 K).

9.1. Set-up

We simulate a supercell containing 172 pH, molecules at a density p = 0.019 A~3 with

periodic boundary conditions.

The aim of this study is to compute the radial distribution function of Hy molecules at
low temperature, compare the results obtained with different thermostats, and different
choice of number of beads (16, 32, 64) and examine the arrangements of H atoms as the

temperature decreases.

The simulations were carried out at temperatures of 1 K, 5 K, 25 K, 50 K, and 300 K
using the following thermostats: PILE-L, PILE-G, and GLE, where “PILE” denotes
Path—Integral Langevin Equation thermostats and the flags “I.” and “G” indicate local

or global coupling, respectively. Unfortunately, i-PI does not include Nosé-Hoover chains
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Figure 9.1: Snapshot of the initial configuration of the para-hydrogen molecules

out of the box; implementing them externally is beyond the scope of this tutorial.

The coefficient matrix A used in this work to implement GLE was taken from the optimal-
sampling GLE parameters tabulated in 1ibrary/optimal/kh_4-4.a, and shifted to span

a frequency range from wyin = 0.4 cm™! t0 Wyayx = 4000 cm ™.

We performed NVT ensemble dynamics with a time step of 1 fs and a thermostat char-

acteristic time of 25, over a total of 10000 steps.

9.2. The Silvera—Goldman intermolecular potential

For our simulations of para-hydrogen we use the Silvera—Goldman intermolecular poten-

tial. A concise overview of this potential is given below.

The Silvera-Goldman intermolecular potential is built in two steps. First, an isolated

Hy—H, pair is described by

op(r) = Qe lor=0r)  _ (% +%+ %)fc(r) ;

short-rangerepulsion

-~
long-range, Van-der Waals damped
where the switching function

exp|—(1.28 7, /r — 1)2], r < 1.287,,,
felr) = [ ]

1, r > 1.287r,,
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damps the dispersion terms at very short range so that the total potential remains finite;
rm is the position of the potential minimum. The parameters are obtained from gaseous

hydrogen data as shown in ref |28].

Because ¢,(r) contains only two-body physics, it is the appropriate form for low-density

gas or dilute liquid simulations, where many-body effects are negligible.

In a dense liquid or crystal, however, triple-dipole (Axilrod—Teller-Muto) interactions
become appreciable. Silvera and Goldman include the isotropic average of this three-

body term in an effective way, adding a single pair contribution proportional to Cy/r:

ou(r) = (1) + 2 fulr).

It is important to highlight that this correction is unimportant in the gas phase but
provides the leading many-body contribution needed to reproduce lattice energies and

the equation of state of the molecular solid.

9.3. Radial Distribution Function

In an ideal monoatomic gas of uniform density p, the probability p(r) dr of finding another

particle in a spherical shell of radius r» and thickness dr around a reference particle is
p(r) dr = 4mr? pdr,
since 4712 dr is the shell’s volume and p is constant (particles do not interact). Here the

r?2~dependence is purely geometric.

When interactions are present, the local density around each particle is no longer uniform.
To isolate the effects of interparticle forces from this trivial geometric factor, we define

the radial distribution function
1) = s (000~ =)
42 p N \4— T
i#j
where N is the total number of particles and (---) denotes an ensemble (time) average.
In this formulation:
e For an ideal gas, g(r) =1 for all r.

e Interactions produce g(r) = 0 at short distances (hard-core repulsion).

e Shell-like ordering appears as peaks in g(r) at characteristic interparticle spacings.
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e At long distances, g(r) — 1 as spatial correlations vanish.

Practical Computation of ¢g(r)

We extracted g(r) from time snapshots , discarding an initial equilibration period. For

each saved bead configuration:

1. Build a histogram of all pairwise distances up to a chosen .y, using np,s equally

spaced bins.

2. Normalize each bin by its spherical shell volume 4772 dr and by the factor p N, so
that an ideal gas yields g(r) = 1.

3. Average the normalized histogram over all time frames to obtain g(r) for each bead.

4. Finally, average these bead-wise ¢(r) curves over all P replicas to produce the bead-

averaged radial distribution function.

9.4. Results

Panels 9.2a, 9.2b, and 9.2c in Fig. 9.2 confirm the following trend: at lower temperatures
the RDF peaks become higher and narrower, reflecting the fact that the Hy molecules
arrange themselves in a locked, solidified lattice and only vibrate about their equilibrium

positions with smaller and smaller vibrations®.

As the temperature increases above the freezing point (approximately 16 K) | the peaks
rapidly broaden and decrease in height, and g(r) converges toward 1 beyond about 4 A in-
dicating that correlations at larger separations become negligible. The position of the first
peak remains essentially bounded in the range [3.375, 3.675] A over the entire temperature

range, as summarized in Table 9.1.

This result is in agreement with Lindenau et al. [21], who studied the system at 7' = 16 K
and a density of p = 0.021A73, reporting the first RDF peak at r ~ 3.7 A.

As shown in panel 9.2d, at 300K the radial distribution function rapidly converges to
unity and exhibits only a single, broad peak in the same region as at lower temperatures,
as expected for gaseous Hy. Furthermore, there are no significant differences between the
results obtained with 16, 32, or 64 beads.

One final clarification: at very low temperatures, our results would, in principle, require

corrections to account for the symmetry-exchange properties of indistinguishable parti-

by inspection of the first peak’s width
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cles; effects that arise from their true quantum behavior. However, incorporating such

quantum-exchange corrections lies beyond the scope of the present study.

Radial Disitribution Function H-H

Dataset

35 — 1K_pile-g (N=172, p=0.019)
SK_pile-g (N=172, p=0.019)

—— 25K pile-g (N=172, p=0.019)

—— 50K _pile-g (N=172, p=0.019)

<20
kS
15
Lo w
o8 J
0.0
o 2 4 6 8 10
r(A)

(a) Bead—averaged g(r) at the chosen temper-
atures using the PILE-G thermostat.

Radial Disitribution Function H-H

Dataset
35 —— 1K_gle (N=172, p=0.019)
5K_gle (N=172, p=0.019)

30 —— 25K _gle (N=172, p=0.019)
B —— 50K_gle (N=172, p=0.019)
25

- 2.0

=)
15
1.0 L

0 2 4 6 8 10
r(d)

(¢) Bead—averaged g(r) at the chosen temper-
atures using the GLE thermostat.

Radial Disitribution Function H-H

Dataset
— 1K pile-l (N=172, p=0.019)
25 SK_pile-l (N=172, p=0.019)
—— 25K pile-l (N=172, p=0.019)
—— 50K_pile-l (N=172, p=0.019)
2.0
15
El
0.0
4 2 4 6 8 10

r(A)

(b) Bead—averaged g(r) at the chosen temper-
atures using the PILE-L thermostat.

Radial Disitribution Function H-H

12 /\
10

A

Dataset
—— 300K _pile-l (N=172, p=0.019)
300K_pile-|_32beads (N=172, p=0.019)
—— 300K _pile-l_64beads (N=172, p=0.019)
0.0 —— 300K_gle (N=172, p=0.019)

0 2 4 6 8 10
r(&)

(d) Comparison of bead—averaged ¢(r) at 300 K
for PILE-L, and GLE and number of beads.

Figure 9.2: Radial distribution functions of liquid para-hydrogen obtained under different
thermostat schemes and temperatures. Panels (a)—(c) show the RDFs at 1K, 5K, 25K
and 50 K using PILE-G, PILE-L, and GLE respectively, while panel (d) compares the
bead-averaged RDFs at 300 K for PILE-L obtained with number of beads 16, 32, 64.
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Table 9.1: Abscissa (A) and ordinate of the first RDF as extracted from 9.2

Thermostat 1K 5K 25 K 50K

PILE-L 3.425 - 2788 3.675-1.731 3.675-1.676 3.525 - 1.601
PILE-G 3.375-3.779 3.625-1.893 3.625-1.665 3.475-1.613
GLE 3.375-3.727 3.675-1.810 3.625-1.684 3.575-1.616

Table 9.2: Abscissa (A) and ordinate of the second RDF as extracted from 9.2

Thermostat 1K H K 25 K 50K

PILE-L 6.575-1.249 6.825-1.170 6.975-1.119 6.725 - 1.072
PILE-G 6.425 - 1.489 7.075-1.203 6.975- 1.107 6.725 - 1.067
GLE 6.325 - 1.460 6.925 - 1.183 6.875-1.110 6.625 - 1.072

Table 9.3: Abscissa (A) and ordinate of the third RDF as extracted from 9.2

Thermostat 1K HK 256 K 50K

PILE-L 9.525 - 1.062 9.875-1.051 9.825-1.030 9.725 - 1.016
PILE-G 9.075 - 1.166 9.725 - 1.053 9.925 - 1.028 9.592 - 1.010
GLE 9.175 - 1.150 9.925 - 1.058 9.925 - 1.027 9.825 - 1.018
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]_O | Hydrogen diffusion in
Magnesium

The diffusion of hydrogen in magnesium is of great interest for practical hydrogen-storage
devices aimed at green-energy applications. Magnesium offers a high gravimetric capacity

(7%), but its use is hindered by sluggish hydrogen-sorption kinetics [1, 15].

Now, we aim to calculate the relevant RDFs gyg g (7), 9vgn(7), gun(r) to reveal the
structural properties of the system, and then extract an order of magnitude estimate of
hydrogen’s self-diffusion coefficient for a system at 7' = 300 K, and at a hydrogen-to-
magnesium ratio of 8 : 128 (MgHg og25)-

10.1. Setup and procedure

In this work a 4 x 4 x 4 supercell was utilized, comprising 128 Mg atoms in the hcp crystal

symmetry, with 8 H atoms randomly distributed in the lattice, as shown in Fig. 10.1.

Figure 10.1: Initial configuration showing the hcp magnesium lattice (orange) with eight

hydrogen atoms (red) randomly distributed.

During the thermalization phase, an NpT ensemble with fixed cell shape was employed,
using a Langevin thermostat and an isobaric barostat with characteristic time 7 = 250 fs.

The average lattice volume was determined over a 10 ps period at fixed temperatures of

300K.
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This average volume was then used in subsequent NV'T" simulation. After 15ps of NVT
dynamics, three configurations whose instantaneous energies were close to the mean NV'T'

were extracted. To minimize correlations, each snapshot was chosen at least 3ps apart.
From each of these, a separate 10ps NV E trajectory was run.

Due to limitations in time and computational resources, the NPT, NVT, and NVE sim-

ulations were performed using 4, 10, and 2 beads, respectively.

For the force calculations, a pre-trained, fine-tuned machine-learning potential specifically

parameterized for Mg—H interactions was employed: MACE _FT [2].

10.2. Diffusion calculation

For each NV E trajectory, the centroid was considered. The mean square displacement

(MSD) of each centroid of Hydrogen was calculated as a time average:

1 T—t

MSD(t) = T [r(t+ A) —r(A))2dA (10.1)

where r is the position of the centroid.

We discarded the initial snapshots, those farthest from equilibrium, before computing
each ~ 10 ps MSD curve.

The MSD was first averaged over all eight hydrogen atoms, and the diffusion coefficient

D was then obtained by fitting the linear regime of the MSD to the Einstein relation:
MSD(t) =6Dt

Prior to fitting, the initial sub-diffusive regime, characterized by MSD(t) o v/t, was

discarded.

The NVE trajectory spanned approximately 10 ps, but the MSD is statistically reliable
only at short times, where independent displacements are more numerous. Consequently,
we limited our analysis to ¢t < 1.0 ps. After discarding the initial sub-diffusive regime, the

linear fit to extract D was performed over the interval

t €10.5, 1.0] ps.

The final value of D at 300K is obtained by computing the average over the three in-

dependent NV E runs, and its uncertainty was estimated as the standard error of the
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mean.

SD
\/ga

where SD is the sample standard deviation of the three D values.

SEM =

10.3. Results

10.3.1. RDF
RDF Mg-H RDF H-H
— Mg-H — H-H
E E
< <
2 2
0 1 2 3 2 5 6 7 8 0 1 2 3 2 5 6 7 8
r(A) r(A)
(a) Magnesium—Hydrogen RDF (b) Hydrogen—Hydrogen RDF

Figure 10.2: Radial distribution functions involving hydrogen: (a) Mg-H and (b) H-H.

RDF Mg-H

— Mg-Mg

RDF (A.U.)

r (&)

Figure 10.3: Magnesium-Magnesium RDF

The Mg-H and H-H RDFs shown in Fig. 10.2 are in good agreement with the data
reported in [2|. In particular, Fig. 10.2a displays a pronounced first peak at r = 24,
followed by a deep minimum near 3 A. The zero-intensity region for r < 2 A is correctly
reproduced. Secondary features, most notably around 4-4.5 A, also appear, although they

are somewhat broader and shifted to larger r compared to the reference data.
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For the H-H RDF (Fig. 10.2b), a sharp peak between 2 and 3A is again observed, with
zero probability for r < 2 A, in perfect agreement with [2]. The decay after the main peak

and the shoulder extending to about 4.5 A are present, as is a smaller tertiary peak near

5A.

The Mg-Mg RDF (Fig. 10.3) exhibits the expected first-neighbor peak between 3 and
4 A, close to the known nearest-neighbor distance of 3.20 A in hep magnesium. However,
this first peak is noticeably broader than in Ref. [2|. Two further minor peaks are visible,

but their positions are slightly shifted relative to the literature data.

These discrepancies likely arise from the relatively short equilibration period and overall
simulation time compared to the referenced study. Nonetheless, our simulations capture

the principal structural features of hydrogen in magnesium.

10.3.2. Diffusion coefficient

MSD fit to find D
3.0

+10 envelope
(MSD)
fitin 0.5=t<1.0 ps

254 D=0.118+0.001

0.0 0.‘5 1.‘0 1.‘5 2.‘0 2.‘5 30
Time (ps)

Figure 10.4: Mean-square displacement of hydrogen atoms as a function of time, with the

linear fit over the chosen time window used to extract the diffusion coeflicient D.

In Fig. 10.4 we show one of the three NVE MSD curves, highlighting both the sub-
diffusive regime at ¢t < 0.5ps and the linear fitting window used to extract D. The

diffusion coefficients obtained from the three independent NVE runs are

Dy = (1.269 £ 0.022) x 1077 m*/s,
Dy = (1.180 4 0.014) x 107 m*/s,
D5 = (1.297 £ 0.014) x 107 m*/s.

Averaging these results yields
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D = (1.2540.04) x 107" m*/s.

This result confirms that D lies on the order of 1072m? /s, in agreement with the values
reported in [2| using the non-fine-tuned MACE MP potential. Although we employed
the fine-tuned MACE _FT model, our estimate remains at 1072 m?/s, rather than the
107" m? /s reported for MACE FT in the same work. We attribute this discrepancy to
our very short equilibration runs and limited statistics; nonetheless, our values closely
match the generic MACE MP benchmark.
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]_ ]_ | Conclusions and future

developments

Conclusion

This thesis has established the theoretical foundations of PIMD, providing a detailed
comparison of stochastic and deterministic thermostat schemes and of local versus global

coupling algorithms.

We validated these methods on para-hydrogen at cryogenic temperatures by computing
bead-averaged radial distribution functions that closely reproduced literature results, and
demonstrated that structural correlations remain robust down to 25K with negligible

dependence on the number of beads at 300K.

We then applied our PIMD+MACE _FT workflow to hydrogen dissolved in an hcp mag-
nesium crystal at 300K. Using the fine-tuned MACE_FT potential for all interatomic
interactions, we computed the H-H, Mg—H, and Mg-Mg RDFs, each reproducing the key
peaks and minima reported in experimental and first-principles studies.

Finally, from short NVE trajectories we extracted a diffusion coefficient D ~ 1072 m?/s,,
in agreement with the generic MACE MP benchmark but two orders of magnitude larger
than the MACE _FT value reported in [2].

This discrepancy highlights the critical importance of sufficiently long equilibration and

extensive sampling for reliable dynamical properties.

Future work should pursue the following directions:

1. Para-hydrogen at cryogenic temperatures: incorporate nuclear-exchange effects into

PIMD formalism to capture true quantum statistics below 25 K.

2. H in Mg at 300 K: extend equilibration and production runs, increase the number
of beads, and improve sampling statistics to fully converge both the RDFs and the

diffusion coefficient.
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A. | Path integral molecular
dynamics Appendix

A.1. Approximating the partition function with Trot-
ter Splitting

We start with the definition of the partition function:
Z=Tr [e—ﬁff] = /dql (@le " ). (A1)

Next, we introduce the Trotter splitting. In this approach we write:

R . _\P
7 =~ /dq1 {(q1] (e‘ﬁpv/2 e PrT e_BPV/Q) lq1), (A.2)

where the factor Sp is defined as 3/P.

By explicitly writing some of the factors and inserting the resolution of the identity, we

obtain:

7 /dq1 (@l (e—ﬁpwz o BeT e—ﬁp\?/2) (/ das ,q2><q2|)

% (e—BPV/Q e—ﬁPT e—BPV/2) . (/ qu |QP><QP|) <€—Bp\7/2 e—BpT e—BpV/2) |q1>

- /dQ1 dgs - -- dgp <Q1| (e—BPV/2 e—ﬂPT e—/i'PV/Q) |q2>

X oo X <qP| <€—BPV/2 e—BPT e—ﬁPV/2) |q1> (A?))
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Now, let us compute the action of the operator e=PPV/2 on the eigenstate position |g):
e PV g) = Z V”|q> (A.4)

n=0

Since we have that

V(g)lg) = V(q)la),

follows that
V*g) =V(g)"lq)-

Thus, we can write:

e—ﬁpf//2|q> _ 6_5PV((1)/2|Q>7 (A.5)

A

which shows that the operator acts as a scalar multiplication. Moreover, since V' is

Hermitian, the same result holds for the bra:

(qle PPV/% = e PrV@/2g| (A.6)
Therefore, the matrix element becomes:

<qi|e—ﬂp‘7/2 o BPT o= pV/2|q ) =e BpV(q:)/2 (gile” pT|q Ve BrV(a;)/2 (A.7)

Thus, the overall integral in the partition function expression becomes

/dq1 dgo -+ dgp PPV /21 || gy ¢=BrV@)/2 L (=BrV(ar)/2 (g | =BrT | g1y o=BrV(@)/2,
Since we have shown that

<qi|e—6pf//2 = e PPV@)/2(g1  and e—BPV/2|qj> “BeV@)/2|0.y,
each of the matrix elements can be written as
“BeVI2 o=BPT o=BrV /2|0y = =PV (@)/2 (g1 BPT | ) o= PPV (/2

(gile

Thus, by factoring out all these potential factors from each term, the partition function
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becomes:

P
Z:/dQIdQQ -+ dgp exp [—BPZV a)
i=1

P
[T@le ™ lgi), (A.8)
=1

where the periodic boundary condition ¢py; = ¢ is understood.

Following the theoretical procedure, one then analyzes the kinetic energy matrix elements
and, in the continuum limit P — oo, obtains the path-integral formulation of the partition

function.

A.2. Symmetrization of expectation value

Let’s start the demonstration of the symmetrization by recalling the expression for the

expected value of a generic operator A:

(A) =Tr

fle*[m‘ / Tr e B (A.9)

Let us now consider the following important property of the Trace of an operator. Given

two whichever operators X and Y the following relation holds:
Tr(XY) = Tr(Y X) (A.10)
Then for a set of N generic operators X1, Xo, oo, X, we get:

Tr <X1X2Xn> =Tr (XQXTLX1> =...="Tr <X X1 Xn 1) (All)

Therefore when we consider the averaging of A using the Trotter splitting
. N\ P
Tr {A (e_BPH> ] (A.12)

we can swap the order of A with whichever of the P terms e=PrH and still get the same

value for the average.

Therefore we can write in total generality that:

(A) = Ty [(6_4{)’“ A (e—df[)P_k]
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for k ranging from 0 to P.

Let’s now consider the summation of the P identical terms:
r k-1 N\ P—(k—1) . \P
S () A (e < pm A (o)
k=1

If we now divide by P both sides, and divide as well by Tr e=BH , we get:

(i)' () A ()T

1
) = Tr [e_ﬁﬁ} P ; Tr [e—ﬁﬁ]

the numerator of the last term can be expanded by inserting the P-1 closure relations, as

we did in the chapter, yielding to the form:

Num = / dqidgs - - - dgp A (qr) e PrVia) ,=BpViaz) ... ,~BpPVier)
(A.13)

x {qu| e |g2) (e €77 |gs) -+ {ap e PP |an) -

then we can bring the summation over k inside the integral with the coefficient and obtain

the final form?!.

A.3. Diagonalising free ring polymer Hamiltonian

Let us consider one physical degree of freedom sampled with P beads, so that @) =
(q1,...,qp)" and P-periodic boundary conditions imply gp;; = ¢q;. The free (spring)

part of the ring—polymer Hamiltonian reads

2
mwp
2

2
mwp

2 <
J

Q' AQ,

(%‘ - qj+1)2 =
1

P

Lafter having expressed the matricial elements as we have discussed in the relative chapter
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with the circulant matrix

2 -1 0 0 -1
-1 2 -1 0
A - 0 -1 2
-1 0
0 -1 2 -1
-1 0 0 -1 2

PxP

Because A is circulant and symmetric, it is diagonalised by the real discrete Fourier /

cosine—sine matrix C"

CTAC = D =diag(Ao, ..., Ap_1),

where the eigenvalues are

Ak = 2[1 = cos(2rk/P)] = 4sin*(zk/P),  k=0,...,P—1

A convenient real orthogonal choice for C'is (rows indexed by i = 0,..., P — 1; columns
by k):
(L k=0,
9 | cos(2mik/P), 1<k < P/2,
= \/;< Y k = P/2 (P even)
Vol )
| sin(2mik/P), P/2 <k <P.

Define the normal-mode (diagonal) variables

Q= (G, dr1), Q=CTQ < Q=CQ.

Substituting in the spring energy gives

mwp T mMwp ~T m 9 9
—Q AQ = Q DQ:—E [wp)\k}qk
2 2 2 70

With A, = 4sin?(7k/P) we define

k
wk:2isin<%>, k=0,....,P—1.
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Hence, the spring (potential) energy is a sum of independent one-dimensional harmonic

oscillators:

!

2
mwp m -
i ;(Qj — 1)’ = 5} 0 wi Gi -

>
Il
T

Together with the kinetic term Y, p3/(2m) = 3, pi/(2m), the full free ring-polymer

Hamiltonian becomes

demonstrating that each normal mode £ is an uncoupled harmonic oscillator with fre-

quency wy.
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B ‘ Langevin Thermostat
Appendix

B.1. Ito’s lemma and Fokker-Plank picture

First of all, let us cite the statement of Ito’s lemma. Let f be a twice differentiable

function of the process = and the time t. Where the process z is given by:

dz = Az, t)dt + Bz, t)dW, (B.1)

Then the differential of the function f is given by:

af

2 2
pOf | Bt 7 )2

0
df = f + Alz, )833 2 a2

dt + B(x, aw, (B.2)

We are not going to give a proof of this since it is widely documented on textbooks as
[32], but for the sake of the record, it can be derived heuristically (as outlined in [14]) by
applying Taylor expansion to the function f.

We are now going to show how the stochastic equation that defines the process x will lead

to the corresponding Fokker-Plank equation.

Given the equation

dr = A(z, t)dt + B(x,t)dW, (B.3)
and the function f(z,t), by applying Ito’s Lemma we get:

0 B?(z,t) 0?
+ Al )af+ (2 )8;;

of
ox

of
ot

dt + B(z,t) 2L aw, (B.4)

df =

Although improperly, this can be written in the form of differential equation to get a
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better visualisation:

df [90f of  B*(x,t)0*f of dW,
i~ {8t A T T | TP@ g (B5)
Let’s now take the expectation value of the differential equation to get:
d _Jdf\ _ /of af B?*(z,t) 0*f
E(ﬂ— <E> —<§>+<A(x,t)£>+<—2 Eye) (B.6)
——

=0

where we have set (dW;) = 0. If we write the expectation values explicitly using the pdf

we get:

B*(x,t) O*f
0x?

/Rdxf(x)atp(x,t) :/RdxA(x,t)%p(x,t)Jr/Rdx 5 p(x,t) (B.7)

By partially integrating this equation and using p(z,t), d,p(z,t),0*p(x,t) — 0 with z —

+o0 we get:

/R de f(2)up(x, t) = /R def () {—Gz(A(a;,t)p(x,t))—i— %ag (BX(x,)p(z.8)|  (B.8)

Since f(x) is arbitrary we can write:

Op(. ) = —0u (A, pla, 1)) + %aﬁ (B(z, t)p(x. 1) (B.9)

which is the Fokker-Plank equation.

B.2. Closed and non-closed form solution

At »
Closed form of e” 2 integrator

At -
First of all let us show that the propagator e 2 ©* can be integrated analytically'. This

factor appears in the formal solution to the following Fokker-Plank equation:

orP .
— =1L,P
ot
lwhich means that the differential equations that involve this propagator in their formal solutions can
be solved analytically
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where P is the probability density we have introduced in the chapter of the relevant

theory?.

By knowing that

A m
L,y = —7<p6p+§8§) .

The corresponding forward Fokker—Planck contribution for the momentum density P(p, t)?

s o
1S
oP 0 m 0*P
R

so the associated It6 stochastic differential equation is

Ap(t) = =7 p(t) d + [T aw (), (A

with W(t) a standard Wiener process. Equation (A) is called as Ornstein-Uhlenbeck

equation.

To solve (A) over a finite step At we now introduce the integrating factor e and set
M(t) = ¢"*p(t)®. Then by writing its differential we get:

dM(t) = e dp(t) +ve 'p(t) dt
From these two previous relations we can now isolate p(t) and dp(t):
p(t) = M(t)e™

dp(t) = dM(t)e™" + yp(t)

2Throughout the theory chapter the symbol P(p, q,t) denoted the full phase-space probability density,
a function of both the position ¢ and the momentum p. In the present discussion we suppress the explicit
g-dependence and write P(p,t) for the momentum marginal alone. This simplification is legitimate
because the operator under consideration, IAW, acts exclusively on the momentum coordinate; it contains
no derivatives with respect to q. Consequently the Fokker—Planck equation separates,

%P(p, ¢,t) = LyP(p,q,;t) = P(p,q,t) = plqt) P(p,t),
where p(g, t) evolves independently through the remaining part of the Liouvillian, while the factor P(p,t)
obeys the one-dimensional momentum equation derived on the preceding page. The position factor p(q,t)
can therefore retain any shape without affecting the solution for the momentum distribution.

3here is where we rename the distribution and use P to refer to the moment distribution only

4We know this is the corresponding equation by just comparing the shapes of the Fokker-Plank equa-
tion presented here and the one in the theoreme shown in the theory on duality of the stochastic equations
and Fokker-Plank picture correspondance.

5this is the standard procedure to integrate Ito stochastic equations of this type
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By substituting them into the equation (A)® we get an equation in terms of the new

variable M:

2
dM = % AW (L),

Integrating from t to t + At gives

M(t+ At) — M(t) = UMTV /HAtev(s) AW (s)

by re-substituting the definition of M in terms of p and making some simplifications we

2 t+At
¥ prar—pr = \/ —ZW / D A (s).
t

Defining u = s — t and solving for p;, a¢ yields

2 At
Prear =pre "+ \/ —TZ’Y eVAt/ e’ dW (u).
0

The stochastic integral

get:

At
7 = / e’ dW (u)
0

is Gaussian with mean 0 and variance’

e2'yAt -1

At
Var[Z] = / ¥ du =
0 2y
By applying the reparametrization trick®, we can write Z = /Var[Z]| n with n ~ N(0, 1).
Now, if we substitute this into the formula for the integration step of p;1a; above, we get,

after some simplifications, the explicit one—step map

m
Perar = pre 18+ \/E(l - e_hAt) , n~N(,1).

This affine-Gaussian transformation is the exact action of the propagator e~y on the

momentum. The position ¢ is unaffected because L., contains no derivatives with respect

Safter having substituted the first relation into the second to clear form the dependency of dp on p

“The whole integral is a gaussian since W is a Weiner process, which means that its increments
(infinitesimal) are normally and independently distributed with 0 mean. Since the integral is a summation,
summation of gaussian variables is a gaussian variable and in this case the resulting gaussian has still 0
mean

8in this case there is no mean therefore the reparametrization trick is just made of the std term
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to gq.

If the operator is integrating over half time step %, then the same formula applies but

with time step halved.

t1

Non-closed form of e 2!» integrator

The operator

7 P

qu:f<Q)ap+E8Q7 flg) =——
generates the deterministic Hamiltonian flow associated with the one—-dimensional Hamil-
tonian H(q,p) = % + U(q). In fact, if we look at its form, it is exactly the definition
of the Liouvillian with the Hamiltonian written here before. In fact, if we apply this

operator to ¢ and p we exactly get the Hamilton’s equations:

Thus the propagator exp(—At L,,) moves a point (g,p) to (Q(At), P(At)) obtained from

the solution of

Q)==—=>,  Pt)=mQ(t), Q(0)=gq, P(0)=p.

A closed form for the propagator would require explicit formulas for Q(At) and P(At)
that hold for an arbitrary potential U(q). Of course not for all the potentials an analytical
solution exists, as we know from Analytical Mechanics course, but it is useful to remind

how this can be shown in two different ways of reasoning:

Exponential-series argument For any analytic GG the series
—AtL o - (_At)n rn
[§ Pa(y = Z T quG
n=0

terminates after finitely many terms only if IA);;G = 0 for some n. Repeated application

of [A,pq gives
f"(@p

yoe
m2

5 p 5 fq
quq = quq = Q

£3q—
m ’ pq

The sequence closes, and the series truncates, only when f(q) is linear, that is, when U(q)
is at most quadratic. For any nonlinear force the series is infinite and cannot be summed

to an elementary expression.

Quadrature argument
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Energy conservation H(Q(t), P(t)) = H(q,p) = E implies

t: /Q(t) d¢
o J2(E-UE)

For generic U the integral on the right is an elliptic or higher transcendental function;

for example, with the quartic potential U(q) = %k:q4 it becomes an incomplete elliptic

integral. Such integrals cannot be written with elementary functions, so no universal
closed-form map (q,p) — (Q(At), P(At)) exists.

Because the exact flow generated by ﬁpq lacks a universal analytic expression, the ex-
ponential exp(—At f/pq) can be written in closed form only for the special cases of free
1

motion (U = const) and the harmonic oscillator (U = quz). For a general potential, it

must be approximated numerically, for instance with the velocity—Verlet splitting
exp(—%fjp) exp(—At ﬁq) exp(—%f}p).

Closed form of e %!« integrator

In this case, we proceed exactly in the same way we have done for the study case of L,.

Since the definition of L, is simply:

this is going to act on the position space only. Again, by looking at the Fokker-Plank
equation which this is linked to, we can find the corresponding differential equation for
the position (which in this case will not be affected by any noise or friction term) which
simply is®:
D
q —
m

which integrated for a time interval At gives:

p
Qirar = ¢ + —At
m

Yas we would expect it is just the first of the two Hamilton’s equations
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At -
Closed form of e 2 7 integrator

Proceeding as shown before, since ip =f (q)a%, it acts only on the momentum space, and

yields to the equation for the momentum:
p=f(q)

_oU _ _oH

which, again, is the second equation of Hamilton, since f(q) = %0 = o where, with

H refers to the non-modified Hamiltonian.

Then the integrated step looks like:

Praar = e+ f(q) At

B.3. Friction step preserves the gaussian nature of p

At -
Although we have already seen that the term e~ 2 “ preserves the Boltzmann distribution,
it is useful to show that with the definition of ¢y, that naturally arises from the application

of the propagator, preserves the gaussian distribution of the momenta.

What we aim to show is that, if p,q is distributed as a gaussian with 0 mean and 0 = mkgT
(as expected if the system is in thermal equilibrium) then p,.,, is still distributed in the

same way.

In order to do that, we write the expression of p,,., in terms of p,4 as we have seen in the

theory:

Prew = C1Pold + C2R

where R is a random variable following the normal distribution N (0, 1). Then, p,e, is a

sum of gaussian variables and therefore it is as well normally distirbuted.

If we take the expected value of p,., we get, from linearity of the expectation value

operator:

E(pnew) = c1E(pag) + 2E(R) =0
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and if we compute the variance we get:

Var(ppew) = C%Var(pold) + char(R) = C%% + c% = cf% + %(1 — C%) = %

where we have used the definition of c,.

Then as we wanted, ., is distributed as pq.
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C ‘ Modeling a Heat Bath
Appendix

C.1. Green’s Functions

As said in relative chapter, assuming z(t) is known, let us find the expression of ¢, which

satisfies the following system:

MaGa = Pas
(3)
pa = _mawi Go + Cax(t)a
we can combine the two equation to get a single differential equation for ¢, as follows.

Since po, = Mafa, the second equation becomes

Mo o = _mawiQa + Cozx(t)- (Cl>
Dividing through by my:

Go(t) + W2 qa(t) = ——x(t). (C.2)

«

Hence, we have the standard inhomogeneous harmonic-oscillator equation:
Ga(t) + wada(t) = () z(t). (C.3)
Let us first solve the homogeneous equation by ignoring the forcing term p— x(t):

G (1) + wy gl (t) = 0. (C4)

(67

The general solution is by writing:

gM(t) = A cos(wat) + B sin(wat), (C.5)
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for constants A and B. However, we require initial conditions specified at t = t;. A

convenient way to incorporate those initial data is:

aM(t) = qalto) cos[wa (t —tg)] + qaufto) sinfw, (t —to)]. (C.6)

Pa(to)

"

Since ,(to) = , we can write

Pa(to)

Mo Wa

g (t) = galto) coslwa (t —to)] + sin [wa (£ — to)]. (C.7)

We now look for a particular solution of the full non-homogeneous equation:
Ga(t) + Wi galt) = —=a(t). (C.8)

A standard way to solve this is by using the Green’s function for the operator j—; + w?.

Concretely:

e The Green’s function G(t — s) satisfies

(L +e2] Git—s) = d(t—s), (9)

with G(t —s) =0 for t < s.

e For the harmonic oscillator, one finds

Glt—s) = 0t — )2 o (t = 9)] , (C.10)

Wa

where 6(-) is the Heaviside step function.
Thus the particular solution is

WP (t) = /_ s Gt - 5) [ x(s)). (C.11)

[e.9]

If we assume the system is unforced before ty, we typically take s from ¢y to t. Then

Wa Ma

q&p)(t) = /tt ds sin [wa (t— S)] Lo x(s). (C.12)
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We can pull out constants:

Ca

P (t) = / ds sin|w, (t — 5)] x(s). (C.13)

Mo Wo Jit,

The general solution of the inhomogeneous equation is

6a(t) = a(t) + o (). (C.14)

Then, substituiting the two pieces:

¢ (t) = galto) coswa (t —to)] + f:(ig) sin [wq (t — t9)] (C.15)
P (t) = mzawa/t ds sin|w, (t — 5)] z(s). (C.16)
Hence,
4a(t) = qalto) cos[wa (t —to)] + f:cfiji sinfw, (t —to)] + mzawa/t ds sin[w, (t — s)] z(s).

(4)

C.2. F is a colored gaussian fluctuating force

We now want to prove the gaussian nature of the stochastic force F'(¢). Let’s assume that

at tg, the bath is in equilibrium and therefore is distributed according to

pB = % exp[—ﬁ Z(ﬁ%a + %mawi qiﬂ (C.17)

Since the bath Hamiltonian is quadratic! in all the {p,, ¢}, the distribution factorizes
into a product of exponentials for each «. In other words, each pair (qa(to), pa(to)) is

distributed independently with respect to all the other pairs and with a Gaussian form.

Concretely, for each «,

2
paldes Pa) o exp[—B(F + Tmawia?)]. (C.18)

'We are referring to the bath Hamiltonian without the coupling with the system
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This is precisely the form of a 2D Gaussian distribution in the variables (qa, pa). By

standard properties of the canonical ensemble for a harmonic oscillator:

e The mean of each coordinate and momentum is zero:

<qa(t0)>p3 - 07 <pa(t0)>p3 = O (C].9>
[ ] The variances are:
kgT
(@2 (t0))ps = #wg’ (P2 (t0)) oy = MakpT. (C.20)

e The cross-correlation between g, and p, is zero:
<qa(t0)pa(t0)>p3 = 0. (021)

e For o # [, the random variables (qa, pa) and (Q5, pﬁ) are independent.

Hence each a-oscillator’s initial condition (ga (%), pa(to)) is a zero-mean Gaussian in 2D

phase space, independent of the other 5 # a.

We now notice that F(t) is linear combination of gaussian variables in the form:

F(t) = Y [Aal®) aalte) + Balt) palto)] (C.22)

07

where
Au(t) = cos(wa (t—to)), Balt) = ! sin (wa (t — to)). (C.23)

Mo Wa

Because each ¢, (o) and p,(to) is Gaussian and F'(t) is a finite linear combination of these
Gaussian random variables, F'(t) itself must be a Gaussian random variable, since a linear

combination of normally distributed variables is still distributed as a Gaussian.

Moreover, since F(t) is given by a summation of random variables, when the number
of degrees of freedom of the bath tends to infinity, even if the initial conditions are not
distributed according to the Boltzmann distribution, provided they are still all equally
distributed with finite variance, then by the Central Limit Theorem, F(t) is distributed

as a Gaussian.

We now want to prove that F(t) respects the Fluctuation Dissipation theorem of the
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second kind (shown in the same section) when the system is in thermal equilibrium. We
start by proving that the mean of F'(¢) is vanishing, and then we proceed to calculate its

autocorrelation function, and show how it is linked to the friction memory kernel.

From the definition,
F(t) = 3 [Aa® aalte) + Balt) palto)]. (C.24)
Taking the ensemble average under pg, we have

(1) = D[ Aat) (@alto))os + Balt) (Palto))s)- (C.25)

«

But as noted above, (q.(t0)),; = 0 and (pa(t0)),, = 0. Hence, each term in the sum

vanishes, giving

(F(1)py = 0. (C.26)

We now compute the Correlation Function (F(t) F'(s)),,:

(FOF)pm = ([ (Aalt) g+ Ba®) pa) | [ D (Asls) a5 + Bsls)ps) |) . (C.27)

o 8 PB

where we abbreviate ¢, (ty) — ¢o and p,(tg) — p. for clarity. Expanding the product:

(F() F)ps = 3((Aalt) ga+ Balt)pe) (As(9) a5 + Bo(s)ps) ) -~ (C.28)

a8 PB

Distributing the terms of the products:

— Z [Aa(t) Aﬂ(s) <Qa q§>pB + Aa(t) Bﬁ(s) <th pﬁ>PB
£ (C.29)

+ Ba(t) Ap(s) (Pa 48)ps + Ba(t) Bs(s) (Pa Ps)os |-

Because {qa, po} if @ # 5, we have

<qa q5>pB = 0, <pap5>p3 = 0, <Qapﬁ>p3 = 0. (CBO)
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Hence, only terms with o« = [ survive. Thus, the sum over S collapses to § = a. We then
get:
(F(t) F(s)py = Z [Aa(t) Aa(s) <q§>ps + Ba(t) Ba(s) <pi>ps]' (C.31)

where we have considered (gq pa),; = 0, since ¢ and p are independent with resect to

one another (even if they are about the same particle), and their single mean is null.

Also by recalling:

kT

m wz’ <Pz>p3 = Mgy kBTa <q@pa>p3 = 0. (032)

<qg>p3 =

and substituting the known variances, one gets:

= > [Aa(t) Auls) nff; + Ba(t) Bals) (ma ksT) |. (C.33)
Furthermore, by recalling
Au(t) = cos(wa(t — 1), Balt) = mj% sin(wa (f — t0)), (C.34)
we have
Au(t) Aa(s) = cos(wa(t — tg)) cos(wa(s —to)), (C.35)
Bu(t) Bu(s) ma — malw2 sin (wa ¢ — t0)) sin(wa(s — t0)). (C.36)

Putting it all together:

(F(t) F(s))py = ks T

2 [cos(wa(t — t9)) cos(wa(s — o))

(C.37)
+ sin(wa (t — to)) sin(wa(s — to))} :

Using the trigonometric identity cosz cosy + sinx siny = cos(z — y), we get

1
p— cos(wq(t — ).

(C.38)

(F() P())p = bpTS" —— cos(wa [(t = to) — (s — t0)]) = ksTY

Mo W2

We see that (F'(t) F'(s)),, depends only on the time difference ¢t — s (which is typical for
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stationary processes). If we now recall the expression of the friction memory kernel:

y(t—s) = Z male cos(wq (t — 5)), (C.39)

and if we call M some effective mass (or simply keep it as a factor, depending on conven-

tions for the generalized Langevin equation), then we can write

(F(0) F())py = MEpT(t—5). (C.40)
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D ‘ Markovian and non

Markovian dyanmics

Appendix

D.1. Markovian example calculations

Let’s consider the equations of motion of the system exposed in the theory.

v _ p
(‘;t m (D.1)
D~ mugz — ep 4 FO),
dt
For completeness, we consider the following boundary condition p(—o0) = 0.
Let’s consider the second equation:
dp _ 2
LD = —madalt) ~ €p) + F0) (D.2)
we rearrange it to the standard form
dp B 9
o + Ep(t) = —muwyx(t) + F(t). (D.3)
Define the right-hand side as
d(t) = —muwga(t) + F(t). (D.4)
Hence the ODE becomes p
14
— + Ep(t) = B(t). (D.5)



112 D| Markovian and non Markovian dyanmics Appendix

We now consider the function e*. Multiply the entire ODE by e$*!:

egt(ji—]; + Eefip(t) = S D(1). (D.6)

Notice that the left-hand side is precisely the time derivative of e p(t). Hence, our

equation becomes

% [eﬁt p(t)] — 8t (I)(t). (D'7)

Integrate both sides with respect to t from —oo up to t:

[ p(t)] — lim [e*“p(u)] :/ ds [e** D(s)]. (D.8)

U—+—00 oo

We are told p(—oc) = 0 and for £ > 0, e** — 0 as u — —o0>.
Hence the left-hand side becomes simply €% p(¢). Thus we get
t
ep(t) = / ds [658 @(s)} . (D.9)

Then by rearranging:
t
p(t) = e / ds 5 B(s). (D.10)

—00

Recall ®(s) = —mw? z(s) + F(s). Thus

t
p(t) = e / ds €5 [—mwg z(s) + F(s)} (D.11)
It is often more convenient to factor out e=¢* as e $(=*). In other words,

p(t) = /t ds e €79 [—mw%x(s) + F(s)} (D.12)

—00

From the first equation we also have

dr _ p(t)
== (D.13)

lintegrating factor method
2Note that requiring that p vanishes at —oo is not necessary, since the exponential term would cancel
anyway given ¢ is positive (friction coefficient)
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Hence, by substituting the expression of p(t):

d 1 [
d_f;’ _ E/ ds e—E(=9) [_mng(s) i F(S)]. (D.14)

by splitting the integrals:
t

v _ —w? /t ds e ¢ z(s) + 1 ds e=$=%) F(s). (D.15)
dt 0 m

—00 —0o0

If we define a memory kernel and an effective noise term as:

1 t
Kt—s) = wiet9  Fgt) = —/ ds e ¢(1=9) F(s).
m

—00

then

le_f _ _/_mds K(t—s)z(s) + Falt),

which is a generalized Langevin-type equation with memory.

D.2. Continuous Superposition of Exponentials

In the case where the kernel is represented by a continuous superposition,
K(t) = /da cla) e AN, (D.16)

one can define a family of auxiliary variables

¢
y(a, t) ::/ e N =9 2(5) ds, (D.17)
0

so that the memory integral becomes

/0 K(t—s)x(s)ds = /da cla) y(a,t). (D.18)

Differentiation as before yields

%y(a,t} = -MNa)y(a,t) +z(t), y(a,0)=0. (D.19)

Thus the original non-Markovian equation can be recast as an extended Markovian system

in the infinite-dimensional state space spanned by z(t) and y(a, t).
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