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Sommario

Nel presente lavoro si determina il campo elettromagnetico generato da una generica dis-

tribuzione di carica e corrente, utilizzando le equazioni di Maxwell nel gauge di Lorenz.

Questo semplifica il problema a equazioni d’onda non omogenee che sono risolte con

soluzioni ritardate. Mediante l’espansione in multipoli si ottengono le espressioni dei

campi elettrico e magnetico, distinguendo tra regime di campo vicino e lontano, e si

analizza la potenza irradiata. I risultati vengono applicati al caso di una carica pun-

tiforme in moto generico, poi circolare periodico. Infine, si ricavano le forze e i momenti

torcenti su una distribuzione di carica e corrente puntiforme immersa in un campo elet-

tromagnetico esterno, con applicazioni alla polarizzazione elettrica, alla precessione di

Larmor e all’esperimento di Stern-Gerlach in ottica classica.



Abstract

In this work, the electromagnetic field generated by a distribution of charge and current is

determined, using Maxwell’s equations in the Lorenz gauge. This simplifies the problem

to inhomogeneous wave equations, which are solved through retarded solutions. By

employing a multipole expansion, expressions for the electric and magnetic fields are

derived, distinguishing between the near and far field regimes, and the radiated power

is analyzed. The results are then applied to the case of a point charge moving along

a general trajectory and a periodic circular trajectory. Finally, the forces and torques

exerted on a point charge and current distribution in an external electromagnetic field

are derived, with applications to electric polarization, Larmor precession, and a classical

interpretation of the Stern-Gerlach experiment.
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Introduction

During the 19th century, the scientific study of electric and magnetic phenomena truly

began to take shape. Although certain electrostatic and magnetic effects—such as the

attractive property of rubbed amber (from which electricity takes its name) or the per-

sistent force between samples of magnetite—had been known since Ancient Greek times

(7th century BCE), it was in the 19th century that a systematic and quantitative ap-

proach to these phenomena emerged.

Pioneering figures such as Coulomb, who formulated the law of electrostatic at-

traction between charges; Biot and Savart, who conducted early quantitative studies

in magnetism; and Ampère, who investigated current-induced magnetic effects, made

significant strides in understanding these forces. Ørsted and Faraday experimentally

demonstrated that a magnetic field—and thus a force—arises around a current-carrying

wire, revealing for the first time a fundamental connection between electricity and mag-

netism. Ampère later confirmed this link by observing interactions between parallel

current-carrying wires.

In the latter half of the century, James Clerk Maxwell unified the results of these ex-

periments into a single theoretical framework through the formulation of four equations.

Together with Lorentz and Joule laws, these equations describe all known electric and

magnetic phenomena, linking electric and magnetic fields and explaining their interac-

tions with electric charges. This marked the birth of the concept of the electromagnetic

field, a unified entity encompassing electric and magnetic components. Einstein later

reinforced this perspective by showing, through his theory of special relativity, that

electricity and magnetism are manifestations of the same physical reality, observed dif-

ferently in different reference frames. Today, the electromagnetic field is considered a

fundamental entity that permeates all space, intrinsically coupled to the presence and

motion of electric charges.
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This work presents a framework for computing the solution of Maxwell’s equations

for the electromagnetic field generated by an arbitrary distribution of charge and current.

The analysis employs the multipole expansion formalism as an approximation technique

to obtain analytically tractable expressions. The results so obtained are then applied to

various configurations and used to explain relevant electromagnetic phenomena.

The study begins by expressing Maxwell’s equations in a more convenient form by

casting the electric and magnetic fields in terms of their potentials and exploiting their

gauge symmetry. In particular, by adopting the Lorenz gauge, the equations reduce

to inhomogeneous wave equations, whose solutions are presented. For the purpose of

describing the electromagnetic potentials, only the retarded solution is considered. To

simplify its computation the multipole expansion is employed, in virtue of which the

expressions become controlled by key coefficients, called multipoles, with clear physi-

cal interpretations. The approximation adopts simplified forms within distinct physical

regimes, notably the near-field and far-field regimes, which are carefully discussed along

with the radiation regime being a particular case of the second one.

After deriving the expressions for the electric and magnetic fields in both regimes,

the analysis focuses on evaluating the radiated power within the radiation regime. The

general result is applied first to an accelerated point charge moving along an arbitrary

trajectory, and subsequently to the specific case of a charge in periodic circular motion,

drawing an analogy with Rutherford’s atomic model.

Finally, the interaction between a pointlike charge and current distribution and an

external electromagnetic field is analyzed. General expressions for the resulting forces

and torques acting on the distribution are derived. These results are then applied to

explain relevant electromagnetic phenomena, such as electric polarization and Larmor

precession, by modeling molecules and atoms as electric and magnetic dipoles, respec-

tively. Additionally, a partial classical interpretation of the Stern–Gerlach experiment is

proposed, in which atoms possessing a magnetic dipole moment traverse an inhomoge-

neous magnetic field, resulting in a deflection of their trajectories.
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Chapter 1

Electromagnetism equations

1.1 Foundations of electromagnetism

Classical electromagnetism is the theory that describes electric and magnetic phenomena

in nature, based on the Maxwell equations:

∇·E = 4πρ, (Electric Gauss law) (1.1a)

∇·B = 0, (Magnetic Gauss law) (1.1b)

∇×E = −1

c

∂B

∂t
, (Faraday - Neumann - Lenz law) (1.1c)

∇×B =
4π

c
J +

1

c

∂E

∂t
. (Ampère - Maxwell law) (1.1d)

The electric field E = E(x, t) and magnetic induction field B = B(x, t) are generated

by electric charges ρ = ρ(x, t) and electric currents J = J(x, t) and bound to each other

according to (1.1). From Gauss and Ampère - Maxwell laws one can derive the continuity

equation

∇·J +
∂ρ

∂t
= 0 (1.2)

in which is enclosed the conservation of the electric charge. From Magnetic Gauss and

Faraday - Neumann - Lenz laws one can deduce that a scalar field Φ = Φ(x, t) and a

vector field A = A(x, t) may be defined to derive the electric and magnetic induction
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fields

E = −∇Φ− 1

c

∂A

∂t
(1.3a)

B = ∇×A (1.3b)

As it will be stressed, the choice of the potentials Φ and A is not unique, and this has

important consequences.

The potential formulation of electromagnetism is often more convinient, and it leads

to a more managable form of the inhomogeneous Maxwell equations (1.1a),(1.1c) which

were not exploited to formulate (1.3) and so are indipendent. Those combined give

∇2Φ +
1

c

∂

∂t
∇·A = −4πρ (1.4a)

∇2A− 1

c2
∂2A

∂t2
−∇

[
1

c

∂Φ

∂t
+∇·A

]
= −4π

c
J (1.4b)

Finding a solution of these equations is equivalent to solve for E and B in Maxwell

equations.

1.2 Gauge invariance and Lorenz gauge

The theory of electromagnetism benefits from an important symmetry, gauge invariance.

Under a simultaneous trasformation G of Φ and A, depending on an arbitrary scalar

field χ = χ(x, t),

Φ
G−−→ Φ′ = Φ+

1

c

∂χ

∂t
(1.5a)

A
G−−→ A′ = A−∇χ (1.5b)

the resulting fields E′ = −∇Φ′− ∂A′

∂t
and B′ = ∇×A′ coincide with E and B for every

choice of χ. The fields Φ and A chosen to determine E and B define a gauge choice.

It is possible to formulate a constraint Γ[Φ,A] = 0 in which Γ is a scalar field that

may depend on finitely many derivatives of Φ and A. The constraint is called a gauge

fixing condition. In general not all the Γ[Φ,A] are acceptable to define a gauge fixing
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condition. Indeed one must satisfy the condition that for every pair Φ, A there exist

corresponding Φ′, A′ after a gauge trasformation (1.5) satisfying Γ[Φ′,A′] = 0. Those

which satisfy this condition are said to be admissible.

A noteworthy gauge fixing condition is the Lorenz gauge:

1

c

∂Φ

∂t
+∇·A = 0 (1.6)

which is an admissible gauge fixing condition. There is a residual gauge invariance

respecting the Lorenz gauge that corresponds to all the gauge trasformations such that

the scalar field χ satisfies the D’Alembert equation

∇2χ− 1

c2
∂2χ

∂t2
= 0 (1.7)

Proof : Let Φ′, A′ be the potentials satisfying the Lorenz gauge after a gauge transfor-

mation (1.5). Thus

1

c

∂Φ′

∂t
+∇·A′ =

1

c

∂

∂t

(
Φ +

1

c

∂χ

∂t

)
+∇·(A−∇χ)

= −
(
∇2χ− 1

c2
∂2χ

∂t2

)
+

1

c

∂Φ

∂t
+∇·A = 0

is satisfied for every choice of χ provided

∇2χ− 1

c2
∂2χ

∂t2
=

1

c

∂Φ

∂t
+∇·A (1.8)

holds. It can be shown that the former equation always has solutions using the Green’s

function method, thereby making the Lorenz gauge admissible. If it is required for any

pair Φ,A to meet the Lorenz gauge (1.6) too, from (1.8) follows that (1.7) must be

satisfied in order to perform an additional gauge transformation.
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The Lorenz gauge (1.6) is useful in this case because using it in (1.4) yields

∇2Φ− 1

c2
∂2Φ

∂t2
= −4πρ, (1.9a)

∇2A− 1

c2
∂2A

∂t2
= −4π

c
J , (1.9b)

a more symmetric casting of the equations of the electromagnetic field potentials.
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Chapter 2

Wave equation and multipole

expansion

2.1 The scalar and vector wave equation

Let ψ = ψ(x, t) be a scalar field, the inhomogeneous scalar wave equation is

∇2ψ − 1

c2
∂2ψ

∂t2
= −4πf, (2.1)

where f = f(x, t) is the scalar source. If the source is absent f is identically zero (2.1)

becomes the homogeneous scalar wave equation, also referred to as D’Alambert equation

∇2ψ − 1

c2
∂2ψ

∂t2
= 0. (2.2)

The inhomogeneous scalar wave equation admits the standard scalar advanced and

retarded solutions:

ψ±
f (x, t) =

∫
d3x′ 1

|x− x′|
f
(
x′, t± |x− x′|

c

)
(2.3)

In the course of the discussion only the retarded solution will be taken into account

because of its physical relevance in studying retarded potentials of the electromagnetic

field. The principle of causality states that every event can be influenced only by past

events; therefore, the retarded solution that depends on the source evaluated at a future
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event must be discarded. The time shift in the evaluation of the source, due to the

finiteness of the speed of light, leads to the field being computed after a time interval of

|x− x′|/c, which corresponds to the time it takes for light to travel from the source to

the observation point.

Similarly to what it is done for scalar fields, for a vector field ψ = ψ(x, t) it is defined

the inhomogeneous vector wave equation by the substitution ψ 7→ ψ, f 7→ f in (2.1).

f = f(x, t) is the vector source and (2.3) holds for each component of ψ and f . Solving

(2.1) and its vector version provides the solution of (1.9) as they are of the same form.

2.2 Multipole expansion

It is clear that finding a solution of the form (2.3) may be a very difficult task for a

generic source f . In this case it comes in helpful the multipole expansion of the retarded

solution which gives an approximated evaluation of the latter. As will be seen, the

multipole expansion provides a very convenient framework to work in, as it allows all the

x-dependent terms to be taken outside the integrals appearing in the solution (2.3), so

that the computation is reduced to standard time depending coefficients, the multipole

moments, in which the dependence of the solution on the source f is encoded.

For the multipole expansion to be valid it is necessary that the following requirements

are fulfilled. There is a lenght scale d such that

f(x′, t) ≈ 0, |x′| ≫ d (2.4a)

and that

|f(x′, t)| ≫
∣∣∣∣dc ∂f∂t (x′, t)

∣∣∣∣ ≫ ∣∣∣∣(dc)2∂2f

∂t2
(x′, t)

∣∣∣∣ ≫ ..., |x′| ≲ d (2.4b)

at every time instant t, besides

|x| ≫ d. (2.5)

Conditions (2.4) means that there exists a region of the space of linear size of d in

which the source is confined. Outside of this region the source-if not entirely absent-is still

negligible. Furthermore the magnitude of the source inside the region is much bigger than

the variation that undergoes the source in the time taken for light to travel the region,
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and this happens at every order of derivation. Mathematically speaking (2.4b) implies

that the Taylor expansion of f (chosen to be as smooth as required) around t′ = t + d
c

in the limit of t′ → t

f(x′, t′) ≈
N∑

n=0

1

n!

(d
c

)n∂nf

∂tn
(x′, t) (2.6)

rapidly converges and is approximately equal to its first term f(x′, t). The last condition

(2.5) states that in order to carry the analysis the observation point where the wave is

computed must be far from the source. When the (2.4), (2.5) conditions are met the

wave retarded solution (2.3) admits the multipole expansion

ψf (x, t) ≈
1

|x|

[
f (0)(t−) +

f (1)(t−)·x̂
|x|

+
ḟ

(1)
(t−)·x̂
c

+
f̈ ′(2)(t−)

3c2

+
f (2)(t−)··x̂x̂

|x|2
+
ḟ

(2)
(t−)··x̂x̂
c|x|

+
f̈

(2)
(t−)··x̂x̂
3c2

]
t−=t− |x|

c

(2.7)

in which

f (0)(t) =

∫
d3x′ f(x′, t), (2.8a)

f (1)(t) =

∫
d3x′ f(x′, t)x′, (2.8b)

f ′(2)(t) =

∫
d3x′ f(x′, t)

|x′|2

2
, (2.8c)

f (2)(t) =

∫
d3x′ f(x′, t)

3x′x′ − x′21

2
, (2.8d)

are the multipole moments. As one can see, the solution now depends on the position

x in a simple form: a sum of powers of the reciprocal of |x|. It is the contribution of the

multipole moments that shapes the wave, based on the statistical-like moments of the

source scalar field f . Indeed, the moments in equation (2.8) are analogous to statistical

moments in their mathematical structure—except that, in electromagnetism, the source

f can be negative and vector-valued, and therefore does not represent a probability

distribution. See fig.2.1 for a pictorial representation of the problem.

9



Proof : The Fourier coefficients of the solution of the scalar wave equation (2.3) are

ψfω(x) =

∫
d3x′ e

ikω |x−x′|

|x− x′|
fω(x

′) (2.9)

where fω is the Fourier transform of frequency ω of the source field f and kω = ω
c
the

wave vector. The kernel integral in the equation may be expanded around |x|, with step

x′:

eikω |x−x′|

|x− x′|
=
eikω |x|

|x|

{
1 + (1− ikω|x|)x̂·

x′

|x|
− 1

6
(kω|x|)2

( |x′|
|x|

)2

+

(1− ikω|x| −
1

3
(kω|x|)2)x̂x̂··

3x′x′ − x′21

2|x|2
+O

( |x′|3

|x|3
)} (2.10)

This expansion is the key for the multipole formula and the proof resides in it. To show

it, let F (r) be a smooth function in r ≥ 0. Using Taylor’s expansion

F (|x− x′|) = F (|x|)− x′ ·∇F (|x|) + 1

2
x′x′ ··∇∇F (|x|) +O

( |x′|3

|x|3
)

(2.11)

Now if

F (r) =
eikωr

r
,

substituting it in the previous formula gives (2.10).

From now on the terms in the third order or higher of the expansion will be neglected.

Figure 2.1: A graphic representation of the problem, the grey shade
represents a generic charge and current distribution volume, in the
text x ≡ r, x′ ≡ r′, |x− x′| ≡ r, d3x′ ≡ dτ ′. The observation point
is denoted by P . ([2], p.152)
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The approximation is valid in the case

|x| ≫ |x′| (2.12a)

|kωx′| ≪ 1 (2.12b)

These two conditions are sufficient to grant the validity of the latest approximation.

Let d be a lenght scale such that

fω(x
′) ≈ 0, |x′| ≫ d (2.13a)

and

|kωd| ≪ 1 (2.13b)

for every frequency ω. This last condition has a precise physical meaning. Defining the

wavelenght with λ, as k ∼ 1/λ by (2.13b) follows that d ≪ λ, which will be stressed

ahead. Furthermore suppose that

|x| ≫ d (2.14)

So the integration in (2.9) is restricted to the values such that |x′| ≲ d by the first

condition which together with the second one are sufficient to grant (2.12).

It can be shown that (2.13) are equal to (2.4). The equivalence of the first hypothesis

is obvious since the relation between f and its coefficients fω in the Fourier transform

formula. To prove that (2.13b) is the same as requiring (2.4b), an euristic argument based

on equivalence of orders of magnitude will be used. Fix x′, suppose that f(x′, t) ̸≈ 0

for some t in the neighborhood of t̄ of breadth ∆t and fω(x
′) ̸≈ 0 for some ω in the

neighborhood of ω̄ of breadth ∆ω. It is known from Fourier theory that

∆ω∆t ∼ 2π (2.15)
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and from an analysis based on this result follows∣∣∣∣(dc)n∂nf

∂tn
(x′, t)

∣∣∣∣ = ∣∣∣∣(dc)n ∂n

∂tn

∫ +∞

−∞

dω

2π
e−iωtfω(x

′)

∣∣∣∣
=

∣∣∣∣ ∫ +∞

−∞

dω

2π
e−iωt

(−iωd
c

)n

fω(x
′)

∣∣∣∣
∼ ∆ω

2π

( ω̄d
c

)n

|fω̄(x′)|

=
∆ω

2π
(kω̄d)

n

∣∣∣∣ ∫ +∞

−∞
dt eiω̄tf(x′, t)

∣∣∣∣
∼ ∆ω∆t

2π
(kω̄d)

n|f(x′, t̄)|

∼ (kωd)
n|f(x′, t)|

and the equivalence of (2.4b) and (2.13b).

The last thing to do is to reconstruct the solution in its multipole expansion. Using

the integral kernel expansion (2.10) and taking out the integrals all the terms which do

not depend on the measure

ψfω(x) =
eikω |x|

|x|

{
f (0)
ω + (1− ikω|x|)x̂·

f (1)
ω

|x|
− 1

3
(kω|x|)2

f
′(2)
ω

|x|2

+ (1− ikω|x| −
1

3
(kω|x|)2)x̂x̂··

f (2)
ω

|x|2

} (2.16)

where

f (0)
ω =

∫
d3x′ fω(x

′), (2.17a)

f (1)
ω =

∫
d3x′ fω(x

′)x′, (2.17b)

f ′(2)
ω =

∫
d3x′ fω(x

′)
|x′|2

2
, (2.17c)

f (2)
ω =

∫
d3x′ fω(x

′)
3x′x′ − x′21

2
, (2.17d)

are the frequency representation multipole moments of the source f . Using the Fourier

transform to get back to the time representation of the solution of the wave function and
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(2.16)

ψf (x, t) =

∫ +∞

−∞

dω

2π
e−iωtψfω(x) (2.18)

one notices that (2.17) are the fourier coefficients of (2.8) and by performing a transform

so that −iω 7→ d
dt

from (2.18) one gets (2.7).

A remark should be made regarding the use of the conditions that enabled the ap-

proximation. Because of (2.4a) the integration was restricted only in a well delimited

region of the space. This request with (2.5) made possible the expansion (2.10), the

fundamental computation at the root of the multipole expansion. Recall that retarded

solutions are considered in (2.3). The Fourier formulation was crucial to displace the

dipendence of the time variable on x′, namely the integration variable, and (2.4b) to

remove it from all the other factors containing |x− x′|.
The results obtained for the scalar field can be generalized to the vector wave field

solution.
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Chapter 3

Multipole expansion for the

electromagnetic field

3.1 Electromagnetic formulation

In the last chapter an approximation of the solution of (2.1) was found. Recalling that

the latter is of the same form of (1.9), the results are valid for Φ, A with the respective

sources ρ, J . In the electromagnetic formulation the multipole expansion conditions

(2.4) are expressed in the following form.

There exists a lenght scale d (which is the scale of the region of localization of the

charges and currents) such that

ρ(x, t) ≈ 0, J(x, t) ≈ 0, |x| ≫ d (3.1a)

|ρ(x, t)| ≫
∣∣∣∣dc ∂ρ∂t (x, t)

∣∣∣∣ ≫ ∣∣∣∣(dc)2∂2ρ

∂t2
(x, t)

∣∣∣∣ ≫ ..., (3.1b)

|J(x, t)| ≫
∣∣∣∣dc ∂J∂t (x, t)

∣∣∣∣ ≫ ∣∣∣∣(dc)2∂2J

∂t2
(x, t)

∣∣∣∣ ≫ ..., |x| ≲ d (3.1c)

at every time t.

The multipole expansion allows to cast the fields Φ,A in terms of the multipole

moments found in (2.8). However the constraint given by the continuity equation (1.2)

puts the sources of the electromagnetic field in a relationship such that the only multipole

14



moments needed to express the expansion of the potentials are

q(t) =

∫
d3x ρ(x, t), (3.2a)

p(t) =

∫
d3x ρ(x, t)x, (3.2b)

Q(t) =

∫
d3x ρ(x, t)

3xx− x21

2
, (3.2c)

m(t) =

∫
d3x

1

2c
x×j(x, t). (3.2d)

q(t) is the electric charge, it is a scalar that can be shown to be indipendent from the

time t. p(t) and m(t) are both vectors called respectively electric dipole moment and

magnetic dipole moment. Q(t) is the electric quadrupole moment and it is a traceless

symmetric dyad.

The multipole expansion is given provided the observation point x in which the

potentials are computed is such that

|x| ≫ d (3.3)

as required in (2.5).

Then the retarded gauge potentials Φ,A in the Lorenz gauge admit the expansion

Φ(x, t) =

[
q

|x|
+
p(t−)·x̂
|x|2

+
ṗ(t−)·x̂
c|x|

(3.4a)

+
Q(t−)··x̂x̂

|x|3
+
Q̇(t−)··x̂x̂

c|x|2
+
Q̈(t−)··x̂x̂

3c2|x|

]
t−=t− |x|

c

A(x, t) =

[
ṗ(t−)

c|x|
+
Q̇(t−)·x̂
3c|x|2

+
Q̈(t−)·x̂
3c2|x|

(3.4b)

+
m(t−)×x̂

|x|2
+
ṁ(t−)×x̂

c|x|

]
t−=t− |x|

c

up to a gauge transformation (1.5) that preserves the Lorenz gauge (1.6).

Proof : Because of the Lorenz gauge the potentials Φ, A satisfy inhomogeneous wave

equations with ρ and J as sources (1.9) and the conditions for a multipole expansion are
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met in (3.1), so the fields can be expressed as

Φ(x, t) =
1

|x|

[
ρ(0)(t−) +

ρ(1)(t−)·x̂
|x|

+
ρ̇(1)(t−)·x̂

c
+
ρ̈′(2)(t−)

3c2
(3.5a)

+
ρ(2)(t−)··x̂x̂

|x|2
+
ρ̇(2)(t−)··x̂x̂

c|x|
+
ρ̈(2)(t−)··x̂x̂

3c2

]
t−=t− |x|

c

A(x, t) =
1

c|x|

[
J (0)(t−) +

J (1)(t−)·x̂
|x|

+
J̇

(1)
(t−)·x̂
c

]
t−=t− |x|

c

(3.5b)

where

ρ(0)(t) =

∫
d3x′ ρ(x′, t), (3.6a)

ρ(1)(t) =

∫
d3x′ ρ(x′, t)x′, (3.6b)

ρ′(2)(t) =

∫
d3x′ ρ(x′, t)

|x′|2

2
, (3.6c)

ρ(2)(t) =

∫
d3x′ ρ(x′, t)

3x′x′ − x′21

2
, (3.6d)

J (0)(t) =

∫
d3x′ J(x′, t), (3.6e)

J (1)(t) =

∫
d3x′ J(x′, t)x′, (3.6f)

The terms in ρ were already introduced in (2.8) under the label of f , whereas J (0) and

J (1) are, respectively, a vector and a dyadic function. One may notice that the terms in

A were truncated at first order, rather than at second order as in the case of Φ. The

reason for this choice is that, as will be seen, in many cases the first-order terms of

the magnetic vector potential are of comparable relevance to—or even less significant

than—the second-order terms of the electric potential.

Some of the multipole moments in (3.2) are directly identifiable with

ρ(0)(t) = q(t) (3.7a)

ρ(1)(t) = p(t) (3.7b)

ρ(2)(t) = Q(t) (3.7c)
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Now it can be seen that q(t) is time indipendent, indeed

q̇(t) =

∫
d3x

∂ρ

∂t
(x, t) = −

∫
d3x∇·J(x, t) = −

∮
d2x·J(x, t) = 0 (3.8)

where the continuity equation (1.2) and Gauss’s theorem are applied. Notice that the

term representing the surface flux over the boundary of the volume is, from here on,

always zero whenever the integral involves the source ρ or a component of J . This is

because the charge and current distributions are confined to a finite region of space, and

as the surface of integration is taken to infinity (the volume integral being performed

over the entire Euclidean space), the sources vanish identically.

Using again the continuity equation,

J (0)(t) =

∫
d3xJ(x, t)

= −
∫
d3x∇·J(x, t)x

=

∫
d3x

∂ρ

∂t
(x, t)x

=
d

dt

∫
d3x ρ(x, t)x

= ṗ(t),

(3.9)

where in the second step an integration by parts was performed. This same approach is

used in many of the computations below.

Consider now J (1). It can be decomposed in the standard way for a matrix

J (1) = J (1)ts + J (1)as +
1

3
J (1)t1 (3.10)

in which

J (1)t = tr(J (1)), (3.11a)

J (1)ts =
J (1) + J (1)T

2
− tr(J (1)), (3.11b)

J (1)as =
J (1) − J (1)T

2
. (3.11c)

17



All three terms are expressible in virtue of a multipole moment always thanks to (1.2)

J (1)t(t) =

∫
d3xJ(x, t)·x

= −
∫
d3x∇·J(x, t)x

2

2

=

∫
d3x

∂ρ

∂t
(x, t)

x2

2

=
d

dt

∫
d3x ρ(x, t)

x2

2

= ρ̇(2)′(t)

(3.12a)

J (1)ts(t) =

∫
d3x

[J(x, t)x+ J(x, t)x

2
− 1

3
J(x, t)·x1

]
= −1

3

∫
d3x∇·J(x, t)3xx− x21

2

=
1

3

∫
d3x

∂ρ

∂t
(x, t)

3xx− x21

2

=
1

3

d

dt

∫
d3x ρ(x, t)

3xx− x21

2

=
1

3
Q̇(t)

(3.12b)

and introducing the Hodge star operator ∗v ·w = −v × w, and the wedge product

v ∧ w = vw −wv,

J (1)as(t) =

∫
d3x

(J(x, t)x− J(x, t)x
2

)
= −

∫
d3x

(x∧J(x, t)
2

)
= −c

∫
d3x

1

2c
∗ (x×J(x, t))

= −c ∗
∫
d3x

1

2c
x× J(x, t)

= −c ∗m(t).

(3.12c)

Using (3.7),(3.9), (3.10) and (3.12) into (3.6) one readily gets (3.4), less than terms in

ρ̈′(2)(t). Those latter are gauge artifacts which can be removed with an appropriate choice
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of χ (cfr. (1.5))

χ(x, t) =
ρ̇′(2)(t− |x|

c
)

3c|x|
(3.13)

Performing a gauge transformation with this scalar function yields to potentials that

satisfy the Lorenz gauge (1.6) as χ is an outgoing sferical wave solving D’Alembert

equation.

Under the same assumptions (2.4), which give the multipole expansion of the poten-

tials, the electric and magnetic induction fields are obtained

E(x, t) =

[
qx̂

|x|2
+

3p(t−)·x̂x̂− p(t−)
|x|3

+
3ṗ(t−)·x̂x̂− ṗ(t−)

c|x|2
(3.14a)

+
x̂×(x̂×p̈(t−))

c2|x|
+

5Q(t−)··x̂x̂x̂− 2Q(t−)·x̂
|x|4

+
5Q̇(t−)··x̂x̂x̂− 2Q̇(t−)·x̂

c|x|3
+
x̂×(x̂×Q̈(t−)·x̂)

c2|x|2

+
x̂×(x̂×

...
Q(t−)·x̂)

3c3|x|
+
x̂×ṁ(t−)

c|x|2
+
x̂×m̈(t−)

c2|x|

]
t−=t− |x|

c

B(x, t) =

[
− x̂×ṗ(t−)

c|x|2
− x̂×p̈(t−)

c2|x|
− x̂×Q̇(t−)·x̂

c|x|3
(3.14b)

− x̂×Q̈(t−)·x̂
c2|x|2

− x̂×
...
Q(t−)·x̂
3c3|x|

+
3m(t−)·x̂x̂−m(t−)

|x|3

+
3ṁ(t−)·x̂x̂− ṁ(t−)

c|x|2
+
x̂×(x̂×m̈(t−))

c2|x|

]
t−=t− |x|

c

in the case (3.3) holds.

Proof : The equations are derived after a computation from the standard relations (1.3)

knowing the expressions of the potentials Φ,A from the previous result (3.4).
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3.2 Near and far field regime

In the theory discussed above, only the length scale d—which characterizes the size of the

region where the charge and current are localized, as defined in (3.1a)—was considered.

In addition to (3.1a), equations (3.1b) and (3.1c) also impose a condition on d: namely,

that the relative time variations of ρ and J over the time interval d/c—the time it takes

light to travel across the localized source region—are negligible.

There is another important length scale that fundamentally divides the theory and

enables several further approximations: |x|/c, where x is the observation point.

Quasi static regime

The near field regime is set when the condition

|ρ(x′, t)| ≫
∣∣∣∣ |x|c ∂ρ

∂t
(x′, t)

∣∣∣∣ ≫ ∣∣∣∣( |x|c )2∂2ρ

∂t2
(x′, t)

∣∣∣∣ ≫ ..., (3.15a)

|J(x′, t)| ≫
∣∣∣∣ |x|c ∂J

∂t
(x′, t)

∣∣∣∣ ≫ ∣∣∣∣( |x|c )2∂2J

∂t2
(x′, t)

∣∣∣∣ ≫ ..., |x′| ≲ d (3.15b)

is satisfied at the time t. In the near field regime the multipole expansion of the electric

and magnetic induction fields are

E(x, t) =
qx̂

|x|2
+

3p(t)·x̂x̂− p(t)
|x|3

+
5Q(t)··x̂x̂x̂− 2Q(t)·x̂

|x|4
(3.16a)

B(x, t) =
3m(t)·x̂x̂−m(t)

|x|3
(3.16b)

Proof : Let µ(t) be a moment or the component of the higher order moments in (3.2).

Generally it can be expressed as

µ(t) =

∫
d3xw(x, t)P (x) (3.17)

with w being either ρ or a component of J and P (x) a homogeneous polynomial of k-th

degree. As
dnµ

dtn
(t) =

∫
d3x

∂nw

∂tn
(x, t)P (x) (3.18)
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the order of magnitude of the n-th time derivative is estimated to be∣∣∣∣dnµdtn (t)
∣∣∣∣ ∼ dk+3 max

x

∣∣∣∣∂nw∂tn (x, t)

∣∣∣∣ (3.19)

Using the near field regime conditions (3.15),

|µ(t)| ≫
∣∣∣∣ |x|c dµ

dt
(t)

∣∣∣∣ ≫ ∣∣∣∣( |x|c )2d2µ

dt2
(t)

∣∣∣∣ ≫ ... (3.20)

In this last equation, the time t is arbitrary, so it must also hold at t−. Moreover, the

strong inequalities imply that the higher the time derivative, the smaller its contribution.

Thus, in (3.14), all terms involving time derivatives of order higher than one in each

multipole moment are negligible. Discarding these higher-order terms and applying the

convenient substitution t− 7→ t are therefore justified, leading to (3.16).

Notice that because of the approximation made possible by (3.15), in the equations

(3.16) the fields are computed in t instead of the usual t−. Furthermore all the time

derivatives dropped out the solutions, and for those reasons the near field regime is also

referred to as the quasi static regime.

Radiation regime

The far field regime is set when the condition

|ρ(x′, t)| ≪
∣∣∣∣ |x|c ∂ρ

∂t
(x′, t)

∣∣∣∣ ≪ ∣∣∣∣( |x|c )2∂2ρ

∂t2
(x′, t)

∣∣∣∣ ≪ ..., (3.21a)

|J(x′, t)| ≪
∣∣∣∣ |x|c ∂J

∂t
(x′, t)

∣∣∣∣ ≪ ∣∣∣∣( |x|c )2∂2J

∂t2
(x′, t)

∣∣∣∣ ≪ ..., |x′| ≲ d (3.21b)
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is satisfied at the time t. In the far field regime the multipole expansion of the electric

and magnetic induction fields are

E(x, t) =

[
qx̂

|x|2
+
x̂×(x̂×p̈(t−))

c2|x|
+
x̂×(x̂×

...
Q(t−)·x̂)

3c3|x|
(3.22a)

+
x̂×m̈(t−)

c2|x|

]
t−=t− |x|

c

B(x, t) =

[
− x̂×p̈(t−)

c2|x|
− x̂×

...
Q(t−)·x̂
3c3|x|

+
x̂×(x̂×m̈(t−))

c2|x|

]
t−=t− |x|

c

(3.22b)

Proof : To show this, the reasoning is similar to that used in the proof of (3.16), but now

with (3.21) providing the opposite result

|µ(t)| ≪
∣∣∣∣ |x|c dµ

dt
(t)

∣∣∣∣ ≪ ∣∣∣∣( |x|c )2d2µ

dt2
(t)

∣∣∣∣ ≪ ... (3.23)

which is valid at every time t, so at t− = t− |x|/c. Then all and only the highest terms

in time derivation in (3.14) of each moment survive leading to (3.22).

For large enough |x| the first term, the Coulombic term, in (3.22a) drops out because

it is the only O(1/|x|2). This particular condition in the far field regime leads to the

radiation regime. Indeed as it is known from electromagnetic theory, in the radiation

regime |E| ∼ |B| ∼ 1/|x|. This last one is a general property of the electric and

magnetic induction fields regardless of Maxwell equations (1.1) (with which they are

always compatible too), in addition to

B(x, t) = x̂×E(x, t) (3.24a)

B(x, t)·x̂ = E(x, t)·x̂ = 0 (3.24b)

always in the radiation regime, which characterizes the electric field, magnetic field, and

observation point as forming an orthogonal triad.

The difference between the near and far field regime is that in the first case the source

remains about the same in the time that it takes the light to reach the observation point,
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instead of the second one when it undergoes a appreciable change in magnitude. In

physics the time it takes for a wave to undergo the highest excursion possible is the

period τ . The period of the source is related to the wavelenght λ of the resulting

electromagnetic field according to λ ∼ cτ . So a new lenght scale has been found to

tell whether regime is set. The conditions (3.1) can be recast as λ ≫ d thinking of d

as the distance of the observation point under which the quasi-static regime is always

established. Even if (3.3) is still valid, this does not tell anything about the relationship

between |x| and λ depending on which the regimes are distinguished. Indeed, if |x| ≪ λ

the source does not appreciably change in the time the wave reaches the observation

point, so it is the case of the quasi-static regime. Viceversa |x| ≫ λ is to attribute to

the far field regime.

Follows an analysis based on the order of magnitude of the fields given by each mul-

tipole moment which will be denoted with a subscript related to the moment generating

the field.

Let r = |x|, in quasi-static regime:

Eq ∼
q

r2
∼ q0
r2
, Bq ∼ 0 (3.25a)

Ep ∼
p

r3
∼ q0d

r3
, Bp ∼ 0 (3.25b)

EQ ∼ Q

r4
∼ q0d

2

r4
, BQ ∼ 0 (3.25c)

Em ∼ 0, Bm ∼ m

r3
∼ dqd

cr3τ
∼ q0d

2

λr3
(3.25d)

and using λ≫ r ≫ d, (3.25) make possible the comparison

Em ≪ EQ ∼ Ep
d

r
≪ Ep ∼ Eq

d

r
≪ Eq (3.26a)

BQ ∼ Bp ∼ Bq ∼ 0 ≪ Bm ∼ EQ
r

λ
≪ EQ (3.26b)

As expected the multipoles of the higher order of expansion give a lower contribute

to the magnitude of the electric field in (3.26a). (3.26b) shows that the only moment

generating the magnetic induction field is the magnetic dipole, and in this regime the

resulting magnitude is lower than each one of the terms of the electric field. Now it is

clear why the vector potential expansion (3.5b) was arrested to the first order.
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In the radiation regime:

Eq ∼ Bq ∼ 0 (3.27a)

Ep ∼ Bp ∼
p̈

c2r
∼ p

c2τ 2r
∼ q0d

λ2r
(3.27b)

EQ ∼ BQ ∼
...
Q

c3r
∼ Q

c3τ 3r
∼ q0d

2

λ3r
(3.27c)

Em ∼ Bm ∼ p̈

c2r
∼ p

c2τ 2r
∼ q0d

2

λ3r
(3.27d)

and using r ≫ λ≫ d, (3.27) make possible the comparison

Em ∼ Bm ∼ EQ ∼ BQ ∼ Ep
d

λ
∼ Bp

d

λ
≪ Ep ∼ Bp (3.28)

Once again it is verified that the magnetic dipole contribute is weak and a first order

expansion of the vector potential is not sloppy. The leading contribuite of the electric

charge q in the near field regime is now absent, the higher one due to the electric dipole

p.

Notice that only for few appropriate geometric spacial configurations of the charge

both q = q0 = 0. In general if q = 0, it might be that q0 ̸= 0, as for the physical electric

dipole which consists in two equal magnitude point charges separated by a non zero

distance. The argument is valid even for the electric dipole contribute itself in (3.25),

(3.27), indeed there are cases in which the geometry of the charge distribution gives

exactly an electric dipole of order 0. This is why quadrupoles and magnetic dipoles are

taken into account even if they give much lower contribution to the total magnitude.

There are problems in nuclear physics which involve nuclear configurations such that the

quadrupole interaction is non zero and the corresponding values and signs reflect the

nature of the forces bewteen neutrons and protons and the shape of the nucleus itself.

Higher order moments are almost always so small that their incorporation is required

only in high precision computations [5].
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Chapter 4

Radiated power in radiation regime

4.1 Differential and total radiated power

The electromagnetic field carries energy, which flow is associated to Poynting vector of

electromagnetic energy current density

S(x, t) =
c

4π
E(x, t)×B(x, t) (4.1)

The energy δW radiated by the charge and current distribution to the observation point

x through a solid angle δΩ along the direction x̂ in a time interval δt is given by

δW = S(x, t)·x̂|x|2δΩδt (4.2)

Using (4.2) follows the definition of the power radiated to the point x along x̂ per unit

solid angle
dP

dΩ
(x, t) = S(x, t)·x̂|x|2 (4.3)

called differential radiated power.

In the radiation regime the differential radiated power is related to the magnitude of

the electric and magnetic induction fields by

dP

dΩ
(x, t) =

c

4π
(|x|E(x, t))2 =

c

4π
(|x|B(x, t))2 (4.4)

For the conservation of energy to hold it must be that the fields decrease as ∼ 1/|x| at
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long distance from the source, a general property of the electromagnetic field that was

introduced in the last chapter.

Proof : The radiation regime relations (3.24) for E and B exploited in (4.1) yield

S =
c

4π
E×(x̂×E)

=
c

4π

[
x̂(E ·E)−E(x̂·E)

]
=

c

4π
x̂|E|2

(4.5)

in which in the second step is used the useful vector identity

a×(b×c) = b(a·c)− c(a·b). (4.6)

Using the result in (4.3) gives the first equivalence in (4.4). To show the second

equivalence one recalls (3.24) and the computation is straightforward.

Notice that in this proof only the orthogonality of the electric and magnetic induction

field was used. Satisfying the conservation of energy means that (4.4) must not have

explicit dependence on the distance |x|. This is true only if |E| ∼ |B| ∼ 1/|x|.

Then the differential radiation power in terms of multipole moments is given by

dP

dΩ
(x, t) =

1

4πc3

∣∣∣∣− x̂×p̈(t−)− x̂×
...
Q(t−)·x̂
3c

+ x̂×(x̂×m̈(t−))

∣∣∣∣2
t−=t− |x|

c

(4.7)

Proof : The expression follows immediately by (4.4) knowing B in the radiation regime

is determined as in (3.22b).

An integration over the unit sphere solid angle of the differential radiation power

leads to the total radiated power

P (x, t) =

∫
dΩ

dP

dΩ
(x, t) (4.8)

in which formally the sum of dΩ = d2x/|x|2 is a first species surface integral over the
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domain identified by a unit vector applied in the origin sweeping in all the directions, so

that
∫
dΩ = 4π. An explicit computation of the former integral gives

P (|x|, t) = 2

3c3

∣∣∣∣p̈(t−)2 + 1

30c2
...
Q(t−)

2 + m̈(t−)
2

∣∣∣∣
t−=t− |x|

c

(4.9)

Notice that the total radiated power depends spatially only on the distance from the

charge and current distribuition, and that is only caused by the implicit dependence

t = t(|x|). This result is in agreement with the conservation of energy.

Proof : The development of the square (4.7) with the useful identities for generic vectors

a, b, c:

|a×b| = |a|2|b|2 − (a·b)2 (4.10a)

a×b·a×c = |a|2b·c− (a·b)(a·c) (4.10b)

furnishes

dP

dΩ
(x, t) =

1

4πc3

{
p̈(t−)

2 − (p̈(t−)·x̂)2 +
1

9c2

[
(
...
Q(t−)·x̂)2 − (

...
Q(t−)··x̂x̂)2

]
+ m̈(t−)

2 − (m̈(t−)·x̂)2 + 2p̈(t−)×m̈(t−)·x̂

+
2

3c

[
p̈(t−)·

...
Q(t−)·x̂− p̈(t−)·x̂

...
Q(t−)··x̂x̂

]
+

2

3c
m̈(t−)·x̂×

...
Q(t−)·x̂

}
t−=t− |x|

c

(4.11)

Inserting this last equation in (4.8) leads to the calculation of integrals of the form∫
dΩ x̂x̂...x̂·· ... ·v1v2...vn (4.12)

with n up to four. Its general solution is written in terms of the general isotropic tensor

I of n-th order contracted with n vectors v1v2...vn, and a real constant κn,∫
dΩ x̂x̂...x̂ = κnI (4.13)

The general isotropic tensor has the property of remaining unchanged under any proper

27



orthogonal transformation and here is employed to write the solution of the integral

because of the rotation symmetry of dΩ when the integration is performed over all the

unit sphere. It should be symmetric under the exchange of any two indices as one can

deduce from its construction. The isotropic tensor of odd rank can be written only

in terms of the Levi-Civita symbol, but that would give an antisymmetric tensor in

contraddiction with the former remark. This means the tensor is identically 0 for an odd

number of vectors. In even dimension I can be written as a sum of products of kronecker

delta’s, with all possible pairings. In the current formalism Kronecker delta’s translate

as a sum of scalar products as follows∫
dΩ x̂·v1 = 0 (4.14a)∫

dΩ x̂x̂··v1v2 = κ2v1·v2 (4.14b)∫
dΩ x̂x̂x̂···v1v2v3 = 0 (4.14c)∫

dΩ x̂x̂x̂x̂····v1v2v3v4 = κ4[v1·v2v3·v4 +v1·v3v2·v4 +v1·v4v2·v3] (4.14d)

To compute the remaining constants κ2, κ4 put v1 = v2 = ... = vn = e3 the versor of

the third axis in cartesian coordinates. In polar coordinates x̂·e3 = cos θ and the solid

angle integration is ∫
dΩ =

∫ 2π

0

dϕ

∫ π

0

dθ sin θ (4.15)

So (4.14b) becomes

κ2 =

∫
dΩ x̂x̂··e3e3 =

∫ 2π

0

dϕ

∫ π

0

dθ sin θ(cos θ)2

= −2π

∫ −1

+1

du u2 =
4

3
π

(4.16)

upon u = cos θ substitution, so that follows κ2 = 4π/3. Then the computation of (4.14d)
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with the same strategy is

3κ4 =

∫
dΩ x̂x̂x̂x̂····v1v2v3v4 =

∫ 2π

0

dϕ

∫ π

0

dθ sin θ(cos θ)4

= −2π

∫ −1

+1

du u4 =
4

5
π

(4.17)

which gives κ4 = 4π/15.

Then one is able to compute the integrals in the terms of (4.11) of the form of (4.14)

and get (4.9).

4.2 Accelerated charged point particle

In this section results from previous analysis of radiated power will be exploited to

tackle the problem of an accelerating charged particle energy loss. In the first decades

of the XX century physicists tried to find a model to describe the inside structure of

an atom. Eventually, in 1911, Ernest Rutherford came up with the planetary model,

according to which electrons orbit around the proton as planets do around the sun.

However, in classic electromagnetism, accelerated charges radiate power and this leads

to a consistency problem in Rutherford’s model, because that would mean that atoms are

unstable and in less than nanoseconds electrons would fall on protons. The goal of this

section is to show how to obtain the relations, already known at the time of Rutherford

and that led to the rejection of his model, that furnish the differential and total radiated

power of a point charge, called Larmor’s formulae.

Let q0 be the charge of a point particle moving along the trajectory parameterized

by x(t). For this system the electric charge and current distributions associated are

ρ(x, t) = q0δ(x− x(t)) (4.18a)

J(x, t) = q0δ(x− x(t))ẋ(t) (4.18b)

The multipole moments of the charge (from now on it will be used to refer to the
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point particle) then are

q = q0 (4.19a)

p(t) = q0x(t) (4.19b)

Q(t) = q0
3x(t)x(t)− x(t)21

2
(4.19c)

m(t) =
q0
2c
x(t)×ẋ(t) (4.19d)

Proof : The statement follows directly using (4.18) with the properties of the Dirac delta

function in the expressions of the multipole moments of a generic charge and current

distribution (3.2).

According to (3.1a) the trajectory of the charge must be confined inside a region

of linear size d around the origin of the reference frame. Again (3.1b),(3.1c) force the

strong inequality d/c≪ τ , which with the usual relation between period and wavelenght

λ ∼ cτ gives

d≪ λ (4.20)

In this case τ is a time scale that characterizes the particle motion. About this more can

be said, as the former strong inequality has an important physical interpretation. Since

it was hypothesized that the motion has the lenght scale of about d and time scale of τ

the particle velocity magnitude must be of order ẋ ∼ d/τ , so from (4.20) follows

ẋ

c
≪ 1, (4.21)

which says that the charge motion can not be relativistic.

In order to proceed with the multipole expansion by (3.3) one has that

|x(t)| ≪ |x| (4.22)

must be satisfied.

The following analysis will be carried in the radiation regime which is recalled to

verify when q ≈ 0 and λ≪ |x| that implies (4.22) as the charge trajectory is confined in
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a region of size d obeying (4.20). Thus the first term to consider in order of magnitude

contribution is the electric dipole moment one since p(t) ̸= 0. In the radiation regime

the electric field and magnetic induction field of the charge are

E(x, t) =
q0
c2
x̂×(x̂×ẍ(t−))

|x|
(4.23a)

B(x, t) =− q0
c2
x̂×ẍ(t−)

|x|
(4.23b)

where t− = t− |x|/c as from now on.

Proof : In the radiation regime the leading term is given by the electric dipole as seen in

(3.28). So the equations of the electric and magnetic induction fields follows straightly

by inserting (4.19) in (3.22a), (3.22b), neglecting the coulombic term and all the others

that do not depend on the electric dipole moment.

The differential and total radiated power of the charge in radiation regime are

dP

dΩ
(x, t) =

q20
4πc3

(x̂×ẍ(t−))2 (4.24a)

P (|x|, t) =2q20
3c3
ẍ(t−)

2 (4.24b)

known as Larmor’s formulae.

Proof : (4.24a) follows by inserting into (4.4) both (4.23a) or (4.23b). To show (4.24b)

one uses (4.19) in (4.9) keeping only the electric dipole term.

4.3 Non relativistic circular accelerator

In this section, carrying on the former analysis in radiation regime, a model of a point

particle moving on a circular periodic trajectory with constant velocity will be provided.

Using this to explain the planetary model theorized by Rutherford one finds that in this

latter, in order to keep the orbit circular, the energy conservation law must be violated
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because of the electron energy loss.

Let the charge q0 be in motion on an orbit of radius r0 with constant angular velocity

ω. In the multipole formalism that means r0 ∼ d and

r0 ≪
c

ω
≪ |x| (4.25)

from the results of the last section and the relationship between the period τ and ω. The

trajectory of the charge is given by

x(t) = r0[e1 cos(ωt) + e2 sin(ωt)] (4.26)

Again, proceeding considering only the electric dipole moment contribuition one has

E(x, t) =
q0ω

2

c2
(x̂×x(t−))×x̂

|x|
(4.27a)

B(x, t) =
q0ω

2

c2
x̂×x(t−)

|x|
(4.27b)

Figure 4.1: Schematic representation of the particle trajectory.

Proof : The particle trajectory (4.26) is such that

ẍ(t) = −ω2x(t) (4.28)

Exploiting this last equation in (4.23a), (4.23b), respectively (4.27a) and (4.27b) are
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shown.

Using Larmor’s formulae, differential and total radiated power of small circular ac-

celerator are

dP

dΩ
(x, t) =

(q0ω
2)2

4πc3
(x̂×x(t−))2 (4.29a)

P (|x|, t) =2(q0ω
2)2

3c3
x(t−)

2 (4.29b)

Proof : As seen the trajectory is (4.26), which inserted in Larmor’s formulae for a general

trajectory (4.24a),(4.24b) immediately gives the wanted result.

Spherical coordinates formulation

The relations derived for the small circular accelerator may be expressed in spherical co-

ordinates to obtain a more manageable form of Larmor’s formulae, due to the trajectory’s

symmetry with respect to the polar axis e3.

The transformation is such that
ê1 = sin θ cosϕ r̂ + cos θ cosϕ θ̂ − sinϕ ϕ̂

ê2 = sin θ sinϕ r̂ + cos θ sinϕ θ̂ + cosϕ ϕ̂

ê3 = cos θ r̂ − sin θ θ̂

(4.30)

with the standard relation

x = r r̂ (4.31)

In terms of spherical coordinates the electric and magnetic induction fields are

E(r, θ, ϕ, t) =
q0ω

2r0
c2r

[
cos(ωt− − ϕ) cos θθ̂ + sin(ωt− − ϕ)ϕ̂

]
(4.32a)

B(r, θ, ϕ, t) =
q0ω

2r0
c2r

[
− sin(ωt− − ϕ)θ̂ + cos(ωt− − ϕ) cos θϕ̂

]
(4.32b)
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(a) Side view (b) Top view

Figure 4.2: Visualization of the differential radiated power by the plot of
the function (4.33a), with t− = 0. The distance of the intersection of the
line of direction specified by the spherical angles θ, ϕ with the surface
of the plot from the origin is proportional to 1/sin θ dP/dθdϕ (r, θ, ϕ, t)

The differential and total radiated power are

1

sin θ

dP

dθdϕ
(r, θ, ϕ, t) = P0

1− sin2 θ cos(ωt− − ϕ)

2
(4.33a)

P (r, t) =
4π

3
P0 (4.33b)

in which t− = t− r/c and it is defined P0 the intrinsic power scale of the small circular

accelerator

P0 =
(q0r0ω

2)2

2πc3
(4.34)

Proof : The relations follow respectively by using the spherical coordinates (4.30) into

(4.27a),(4.27b),(4.29a) and (4.29b).
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Chapter 5

Charge distribution in an external

electromagnetic field

5.1 Pointlike charge and current distributions

In this section a mathematical modelization of a pointlike charge and current distribution

will be provided. The structure of the distribution around the origin 0 may be probed

using a generic test function χl based on the lenght scale l such that∫
d3xχl(x) = 1, (5.1a)

χl(x) ≈ l−3, if |x| ≤ l, (5.1b)

χl(x) → 0, if |x| ≫ l. (5.1c)

The analysis is made through the averaged forms of charge ρ and the current J :

ρ̄(0, t) =

∫
d3x ρ(x, t)χl(x) (5.2a)

J̄(0, t) =

∫
d3xJ(x, t)χl(x) (5.2b)

Now suppose that the charge and current distribution is concentrated in a region of

space of linear size d near 0 and that d ≪ l. Then when the distribution appreciably
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differs from 0, χl(x) ≈ l−3, thus making accurate the Taylor expansion in x around 0,

χl(x) = χl(0) + x·∇χl(0) +
1

2
xx··∇∇χl(0) +O(|x|3), when |x| ≤ d (5.3)

This expansion leads to the approximate equations of the sources for a pointlike

distibuition

ρ̄(0, t) = qχl(0) + p(t)·∇χl(0) +
1

3
Q(t)··∇∇χl(0) +

1

3
Q′(t)∇2χl(0) (5.4a)

J̄(0, t) = ṗ(t)χl(0) +
1

3
Q̇(t)·∇χl(0) +

1

3
Q̇′(t)∇χl(0) + cm(t)×∇χl(0) (5.4b)

in which the multipole moments are defined as in (3.2) and it is defined the scalar electric

quadrupole moment

Q′(t) =

∫
d3x ρ(x, t)

|x|2

2
(5.5)

Proof : Recall the useful notations (3.6) and observe that (5.5) is the same as (3.6c).

Expanding according to (5.3) the expressions of the means (5.2) respecively to the second

and to the first order, one finds

ρ̄(0, t) =

∫
d3x ρ(x, t)

[
χl(0) + x·∇χl(0) +

1

2
xx··∇∇χl(0)

]
= ρ(0)(t)χl(0) + ρ

(1)(t)·∇ χl(0) +
1

3
ρ′(2)(t)∇2χl(0) (5.6a)

+
1

3
ρ(2)(t)··∇∇χl(0)

J̄(0, t) =

∫
d3xJ(x, t)

[
χl(0) + x·∇χl(0)

]
(5.6b)

= J (0)(t)χl(0) + J
(1)(t)·∇χl(0)

From this equations using the relations between the terms labelled by ρ, J and the

multipole moments found in the proof of (3.4), (5.4) are shown.

Knowing that d ≪ l, the charge and current distributions ρ and J can be approxi-
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mated by

ρ(x, t) = qδ(x)− p(t)·∇δ(x) +
1

3
Q(t)··∇∇δ(x) +

1

3
Q′(t)∇2δ(x) (5.7a)

J(x, t) = ṗ(t)δ(x)− 1

3
Q̇(t)·∇δ(x)− 1

3
Q̇′(t)∇δ(x)− cm(t)×∇δ(x) (5.7b)

Proof : Inserting (5.7) into (5.2) yields (5.4) using basic properties of Dirac’s delta func-

tion δ(x) and its first and second order derivatives. This shows that the relations are

valid in order to obtain an expansion of the averages of the sources probed by χl.

From (5.7) one notices that considering only the first term of ρ and J leads to the

case of a point particle (cf. eqs. (4.18)). Thus to portray a pointlike physical system

of charges and currents it is needed an expansion to an higher order that does that no

important interaction is overlooked.

5.2 Forces and torques acting on a pointlike distri-

bution

Now it will be tackled the problem of a charge and current distribution immersed in an

external electromagnetic field. Suppose that the sources that generate the external field

are far enough that their presence does not interfer directly on the charge and current

distribution considered here. Then assume that the distribution is localized in a region

of linear size d way smaller than the order of magnitude of the external field wavelenght

λe. Now taking l = λe, one recovers the assumption

d≪ λe ∼ l (5.8)

that made possible the expansions of ρ, J (5.7) in the framework of last section. Again,

the identification of the scale l with λe is not random, but it is made for the physical

meaning of the latter as the space region in which a wave undergoes a full excursion

(similarly to what was done to distinguish the near from the far field regimes). So the

strong inequality (5.8) assures that the external field is approximable as constant in the
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region where the charge and current distribution is localized.

The force exerted by the external electromagnetic field Ee, Be, according to Lorentz’s

law is given by

F (t) =

∫
d3x

(
ρEe +

1

c
J×Be

)
(5.9)

Under the previous assumptions, the force exerted on the pointlike distribution is

F (t) = qEe(0, t) + p(t)·∇Ee(0, t) +
1

c
ṗ(t)×Be(0, t)

+
1

3
Q(t)··∇∇Ee(0, t) +

1

3c
Q̇(t)·×∇Be(0, t) +

1

3c2
d

dt

[
Q′(t)

∂Ee

∂t
(0, t)

]
+m(t)·∇Be(0, t) +

1

c
m(t)×∂Ee

∂t
(0, t)

(5.10)

where it was introduced the notation K·×∇H ≡ (K·∇)×H for generic dyads K,H .

Proof : Inserting (5.7) in (5.10) one gets

F (t) =

∫
d3x

[(
qδ(x)− p(t)·∇δ(x) +

1

3
Q(t)··∇∇δ(x)

+
1

3
Q′(t)∇2δ(x)

)
Ee(x, t) +

1

c

(
ṗ(t)δ(x)− 1

3
Q̇(t)·∇δ(x)

− 1

3
Q̇′(t)∇δ(x)− cm(t)×∇δ(x)

)
×Be(x, t)

]
= qEe(0, t) + p(t)·∇Ee(0, t) +

1

3
Q(t)··∇∇Ee(0, t)

+
1

3
Q′(t)∇2Ee(0, t) +

1

c

(
ṗ(t)×Be(0, t) +

1

3
Q̇(t)·×∇Be(0, t)

+
1

3
Q̇′(t)∇×Be(0, t) + (cm(t)×∇)×Be(0, t)

)

(5.11)

by the basic properties of δ(x),∇δ(x) and ∇2δ(x). Maxwell equations (1.1) when the

source is absent can be manipulated to get D’Alembert equation

∇2Ee −
1

c2
∂2Ee

∂t2
= 0 (5.12)

and

∇×Be =
1

c

∂Ee

∂t
(5.13)
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which are valid in x = 0 since the sources of the external field are supposed to be far

away from 0. Moreover,

(m(t)×∇)×Be(x, t) = ∇Be(x, t)·m(t)−m(t)∇·Be(x, t)

= ∇Be(x, t)·m(t)

= ∇Be(x, t)·m(t)−m(t)·∇Be (x, t) +m(t)·∇Be (x, t)

=m(t)×(∇×Be(x, t)) +m(t)·∇Be (x, t)

=m(t)×1

c

∂Ee

∂t
(0, t) +m(t)·∇Be (0, t)

(5.14)

Substituting these into (5.11) shows (5.10).

From Lorentz’s law follows the definition of the moment of the forces

τ (t) =

∫
d3x x×

(
ρEe +

1

c
J×Be

)
(5.15)

The computation of the moment of the forces exerted on the distribution yields

τ (t) = p(t)×Ee(0, t) +
2

3
Q(t)·×∇Ee(0, t)−

2

3c
Q′(t)

∂Be

∂t

+
1

3c
Q̇(t)·Be(0, t) +

1

3c
Q̇′(t)Be(0, t) +m(t)×Be(0, t)

(5.16)

Proof : Inserting (5.7) in (5.15) one gets

τ (t) =

∫
d3x x×

[(
qδ(x)− p(t)·∇δ(x) +

1

3
Q(t)··∇∇δ(x)

+
1

3
Q′(t)∇2δ(x)

)
Ee(x, t) +

1

c

(
ṗ(t)δ(x)− 1

3
Q̇(t)·∇δ(x)

− 1

3
Q̇′(t)∇δ(x)− cm(t)×∇δ(x)

)
×Be(x, t)

] (5.17)

Using the property of Dirac’s delta function∫
d3x f(x)δ(x) = f(0) (5.18)
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in the terms in which δ(x) is not differentiated gives∫
d3x x×qδ(x)Ee = 0,

∫
d3x x×1

c

(
ṗ(t)δ(x)×Be

)
= 0 (5.19)

Let v, F (x) be respectively a constant vector and a vector field, than the useful

identity obtained by an integration by parts holds∫
d3x (v·∇)δ(x)x×F (x) = −v×F (0) (5.20)

so that ∫
d3x x×

[
p(t)·∇δ(x)Ee

]
= −p(t)×Ee(0, t) (5.21)

Let A, F (x) be respectively a constant symmetric dyad and a vector field, than the

useful identity obtained by a double integration by parts holds∫
d3x (A··∇∇)δ(x)x×F (x) = 2A·×∇F (0) (5.22)

and taking A = 1 ∫
d3x∇2δ(x)x×F (x) = 2∇×F (0) (5.23)

which give ∫
d3x x×

[
1

3
Q(t)··∇∇δ(x)Ee

]
=

2

3
Q(t)·×∇Ee(0, t) (5.24a)∫

d3x x×
[
1

3
Q′(t)∇2δ(x)Ee

]
=

2

3
Q′(t)∇×Ee(0, t) (5.24b)

Let A, F (x) be respectively a constant symmetric traceless dyad and a vector field,

than the useful identity obtained by an integration by parts and the availment of (4.6)

holds ∫
d3x x×

[
(A·∇)δ(x)×F (x)

]
= −A·F (0) (5.25)

and taking A = 1 ∫
d3x x×

[
∇δ(x)×F (x)

]
= −F (0) (5.26)
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which give ∫
d3x x×

[
− 1

3c
Q̇(t)·∇ δ(x)×Be

]
=

1

3c
Q̇(t) ·Be (0, t) (5.27a)∫

d3x x×
[
− 1

3c
Q̇′(t)∇δ(x)×Be

]
=

1

3c
Q̇′(t)Be(0, t) (5.27b)

And lastly, let v, F (x) be respectively a constant vector and a solenoidal vector field.

The useful identity obtained by (4.6) and an integration by parts holds∫
d3x x×

[
(v×∇)δ(x)×F (x)

]
= −v×F (0) (5.28)

giving ∫
d3x x×

[(
− cm(t)×∇δ(x)

)
×Be

]
= cm(t)×Be(0, t) (5.29)

Faraday Neumann Lenz law (1.1c) and all the calculation done inserted in (5.17) yield

(5.16).

Electric polarization

In matter atoms and molecules often behave as electric dipoles when immersed in an

external homogeneous electromagnetic field. Since the leading multipole if non absent

is the electric dipole, neglecting the lower order terms the moment of the forces (5.16)

reduces to

τ = p×Ee (5.30)

which is exerted until it vanishes, that is when p ∥ Ee.

The condition of stable equilibrium is established when p,Ee are aligned.

Proof : From the definition, the potential energy U of a force F is

F = −∇U (5.31)

In this case, consider (5.10) only in its electric dipole-electric field coupling terms. Since
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the electric dipole p does not depend on the position, the force expression reduces to

F = p·∇Ee

= −∇(−p·Ee)
(5.32)

by which one concludes that

U = −p·Ee (5.33)

For geometrical considerations, a stable equilibrium, corresponding to a minimum of the

potential energy U , occurs when the dipole moment p is aligned with the electric field

Ee at any given time t.

A neutral charge distribution containing an electric dipole generates an electric field

(cf. eqs.(3.16)) that is

E(x) =
3p·x̂x̂− p

|x|3
(5.34)

Choosing p ∥ e3 and observing the field along the polar axis x ∥ e3,

E ∥ e3 (5.35)

Carrying the analysis for a physical dipole (well representing atoms and molecules),

that is composed of two separate point charges of the same magnitude but different

sign, one finds that in the space between those latter along e3 the field is opposite to

Figure 5.1: Comparison between a ”pure” dipole (left), generated by a point-
like charge distribution, and a physical dipole (right), generated by two
charged point particles of different sign. The electric field lines between the
charges is oriented in the opposite verse with respect to the rest of the z
axis. ([2], p.159)
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E (see fig.5.1). Thus the electric field Ei generated where there is the neutral charge

distribution immersed in external electromagnetic field is anti-aligned with respect to

Ee. Knowing that the electric field satisfies the superposition principle, one concludes

that the resulting electric field

Etot = Ee +Ei = |Ee|e3 − |Ei|e3 (5.36)

is lower than the original external field Ee. So the types of materials that behave as

explained, called dielectrics, have the property to screen the external electromagnetic

field, and this phenomenon is known as electric polarization.

Larmor precession

Now consider a charge and current distribution which only relevant multipole contribu-

tion is given by magnetic dipole. By (5.16) the moment of the forces on the distribution

is

τ =m×Be (5.37)

Suppose that the charge and current distribution belongs to a body of mass M =∫
d3x ρM(x, t). From classical mechanics

τ =
dL

dt
(5.38)

where L is the angular momentum of the body, given by

L(t) =

∫
d3xx×ρM(x, t)v(x, t) (5.39)

expressed in terms of the density of mass ρM and the velocity vector field v.

If the density of mass is a function that is proportional to the charge distribution for

some constant which will be denoted as κ,

ρM = κρ (5.40)
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than the relation between the angular momentum and the magnetic dipole of the body

m =
1

2κc
L (5.41)

leads to the differential equation

dm

dt
(t) =

1

2κc
m(t)×Be(0, t) (5.42)

Proof : From the definition (3.2)

m(t) =

∫
d3x

1

2c
x×J(x, t)

=

∫
d3x

1

2c
x×ρ(x, t)v(x, t)

=

∫
d3x

1

2κc
x×ρM(x, t)v(x, t)

=
1

2κc
L(t)

(5.43)

Substituting this relation into (5.38), and coupling it with (5.37) through the τ depen-

dence one finds (5.42).

(5.42) describes the time evolution of the magnetic dipole of a charge and current

distribution immersed in an external electromagnetic field under the assumptions stressed

at the start of this section. To solve it will be assumed that

Be(0, t) = B0e3, B0 = ω(−2κc) (5.44)

that is the choice of a frame reference and Be is time indipendent. It was defined ω,

called Larmor frequency. It can also be defined

ω = − 1

2κc
Be (5.45)

the vector Larmor frequency. Now (5.42) can be solved decoupling all the vectors in

their components parallel and orthogonal with respect to e3. For a generic vector a the
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decomposition reads

a = a∥e3 + a⊥, (5.46)

which components are

a∥ = a·e3, a⊥ = a− a·e3e3 = e3×(a×e3). (5.47)

Thus (5.42) for m decoupled in its components is

dm∥

dt
= 0 (5.48a)

dm⊥

dt
= −m⊥×ωe3 (5.48b)

Proof : First, from its definition the vector Larmor frequency can be decomposed only

in its parallel component,

ω = − 1

2κc
Be = ωe3 (5.49)

Than, the parallel component of (5.42) if found by performing a scalar product with e3

as from construction
dm∥

dt
=
dm

dt
·e3 = (m×ω)·e3 = 0 (5.50)

Instead, the orthogonal component is given by

dm⊥

dt
= e3×

[dm
dt

×e3
]
= e3×

[
− (m×ω)×e3

]
= ωe3×(m−me3·e3) = ωe3×m⊥

(5.51)

Given the initial conditions,

m∥(0) = m∥0, m⊥(0) =m⊥0 (5.52)

by direct substitution one verifies that

m∥(t) = m∥0 (5.53a)

m⊥(t) = cos(ωt)m⊥0 + sin(ωt)e3×m⊥0 (5.53b)
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Figure 5.2: Larmor precession of the components of µ ≡ m around
the normal n (in the text e3). [17]

is solution of (5.48). See the figure 5.2 for a pictorial representation.

Thus it was found that the component of the magnetic dipole parallel to the direction

of the external magnetic induction field stays constant, conversely the orthogonal spins

around the axis of the same direction with period τ = 2π/ω. This phenomenon goes

under the name of Larmor precession.

5.3 Classical theory of the Stern and Gerlach exper-

iment

The Stern-Gerlach experiment, first performed in 1922 by Otto Stern and Walther Ger-

lach, is an important experiment which led to the hypothesis of the existence of an

intrinsic angular momentum (spin) of electrons and its quantization.

From a classical point of view electrons have angular momentum due to the revolution

around the nucleus, and that generates a magnetic dipole according to (5.41) identifying

κ =
m

(−e)
, (5.54)

that is the ratio of proportionality between mass ρM and charge ρ densities of a body

made of particles of mass m and charge −e. It was observed that magnetic dipoles

interact with external magnetic induction fields. To determine whether this interaction

accurately describes atomic behavior, one can generate an external magnetic field and
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observe how atoms respond upon passing through it. This is precisely the principle

underlying the Stern–Gerlach experiment. In this experiment, a collimated beam of un-

bound atoms is let pass through a region with a non-uniform magnetic fieldB, generated

by a specially shaped magnet. The positions at which the atoms subsequently arrive on

a detection screen are then recorded and analyzed. The magnet is designed by exploiting

geometric symmetries so that, in the region traversed by the atomic beam, the magnetic

field is primarily directed along the upward vertical axis and exhibits a spatial gradient

along this same direction. A reference frame is fixed such that the axis e3 identifies it.

Thus the magnetic field is approximately given by

B(x) = B(z)e3 (5.55)

The charges passing throught the field are subject to a force (cf. eq.(5.10))

F =m ·∇B (5.56)

and a torque

τ =m×B (5.57)

Figure 5.3: A schematic representation of the experimental setup of
Stern-Gerlach experiment. The magnetic field generated by the magnet
interacts with the magnetic dipole of atoms deflecting the trajectory.
[17]
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According to classical mechanics the linear momentum of a massive body obeys

dp

dt
= F (5.58)

which in this case yields the differential equation

dp

dt
=m ·∇B (5.59)

that if solved gives the trajectory of the charge. The moment of the forces was seen to

be following
dm

dt
= − e

2mc
m×B (5.60)

that in the last section was solved to give the Larmor precession of m around B (cf.

eq.(5.53)). Now it should be taken into account the position dependence of the external

magnetic field. The coupling of this last equation with (5.59) makes finding the solution

harder. Because of the non uniformity of the magnetic field the vector Larmor frequency

(5.45) is not constant anymore. However, if the relative variation of the Larmor frequency

caused by the deflection of the atom’s trajectory according to (5.59) in the istantaneous

period of precession is small, the frequency position dependence can be neglected and

ω taken to be constant. The solution of (5.60) with the former hypothesis is provided

by (5.53). Using the same convention of vector decomposition around the polar axis e3

employed in the last section (5.46), one finds

p∥(t) = p0∥ +m0∥

∫ t

0

dt′
dB(z′)

dz
(5.61a)

p⊥(t) = p0⊥ (5.61b)

where are given the initial conditions

p∥(0) = p0∥, p⊥(0) = p0⊥ (5.62)

Proof : The approximation of constant Larmor frequency is essential to grant the same

result that in the previous chapter led to Larmor precession. However, notice that the
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result

m∥(t) = m0∥ (5.63)

which is exploited later in this proof, remains valid regardless of the approximation of

constant Larmor frequency (see proof of (5.48)).

Now (5.59) should be decomposed in its orthogonal and parallel components. Using

the equation for the force exerted (5.56) according to the semplification of the magnetic

field (5.55),
dp∥
dt

=
dp

dt
·e3 =m·∇B ·e3 = m0∥

dB(z)

dz
(5.64)

in which dB/dz is computed in the position of the charge along the z axis. The orthog-

onal component is instead given by

dp⊥
dt

= e3×
(dp
dt

×e3
)
= e3×

(
m·∇B×e3

)
= e3×

(
m·∇B(z)e3×e3

)
= 0

(5.65)

Now it is trivial to perform an integration over time in the equations obtained with initial

conditions (5.62) to get (5.61).

This means that the atoms of the beam are deflected only in the direction e3, while

the orthogonal component of initial momentum remains unchanged. The deflection is

expected to be small for high magnitudes of p0⊥. Indeed one verifies that an another time

integration of the orthogonal component in (5.61) and the knowledge of the distance of

the screen from the starting point of the trajectory yield the flight time, which is smaller

for higher values of the initial momentum. The longer the flight time, the greater the

deflection, as the charge remains under the influence of the magnet for a longer duration

(an observation that is corroborated by the integral in (5.61)).

Inspecting the parallel component one notices that the position on the screen reached

by each atom varies based on the value of m0∥. Indeed every atom is prepared so that

p0∥ is small (ideally zero), the contribute given by the integral over the gradient of

the magnetic field is almost the same for all atoms as they undergo near paths with

approximately the same value of p⊥. The relevant contribute is given by the continuous

value of m0∥ (proportional to the angular momentum parallel component according to
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(5.41)) which can also be negative so that the deflection happens in both verses.

Notice that the analysis was carried only for the magnetic dipole of the electrons. An

important remark needs to be done on why the contribution of the angular momentum

given by an eventual nucleus rotation was not taken in consideration. For a proton κ is

the opposite of (5.54) due to the charge, with m being the mass of the proton ∼ 1TeV

that is around three orders of magnitude bigger than the mass of the electron ∼ 1MeV .

So inspecting (5.41) it is found that the magnitude of the moment of magnetic dipole of

an electron is more than 103 times greater than the one of the proton, making this latter

negligible.

In conclusion from the former quantitative analysis it is expected that on the screen

a continuous stripe of atoms approximately centered in the atoms initial position on

the vertical axis and displaced along it is observed. This reveals partially true. In

reality atoms reach only the ends of the stripe, but not the middle positions. In light of

quantum mechanics theory this is explained with the quantization of the total angular

momentum, also determined by the spin and not only the orbital angular momentum

as hypothesized. Indeed it is observed that even when the orbital angular momentum

should be zero the deflection is present, but a further treatment is outside of this scope.

Even if the classical approach to this problem does not provide a full explanation of the

observations, it is fundamental to understand what happens physically predicting in the

right way the presence and direction of the deflection due to the interaction between

moving atoms which possess a magnetic dipole and the external magnetic field.
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