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Sommario

Questa tesi presenta uno studio completo sulla termomeccanica dei mezzi continui mobili,
con particolare attenzione all’interazione tra effetti meccanici, termici ed elettromagnetici.
A partire dai principi generali della meccanica dei continui, vengono derivate le leggi di
bilancio integrali e locali per massa, quantita di momento (lineare e angolare), ed energia.
Le equazioni di bilancio vengono estese al caso di corpi immersi in campi elettromagnetici,
in una formulazione in cui i campi elettromagnetici partecipano alla dinamica del continuo
al pari della materia. La parte finale & dedicata ai vincoli imposti dalla termodinamica, in
particolare attraverso il bilancio dell’entropia e la formulazione locale della disuguaglianza
di Clausius-Duhem. Nell’ultimo capitolo si espone il metodo di Coleman e Noll, con il
quale si ricavano condizioni di ammissibilita per leggi costitutive compatibili con la seconda

legge della termodinamica.






Abstract

This thesis presents a comprehensive study on the thermomechanics of moving continuous
media, with particular attention to the interaction between mechanical, thermal, and
electromagnetic effects. Starting from the general principles of continuum mechanics,
we derive the integral and local balance laws for mass, linear and angular momentum,
and energy. These balance equations are extended to the case of bodies immersed in
electromagnetic fields, adopting a formulation in which electromagnetic fields contribute to
the dynamics of the continuum on equal footing with matter. The final part is dedicated
to the constraints imposed by thermodynamics, in particular through the entropy balance
and the local formulation of the Clausius-Duhem inequality. The last chapter introduces
the Coleman-Noll method, which provides admissibility conditions for constitutive laws

compatible with the second law of thermodynamics.
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1 ‘ Introduction

The study of continuous media from a mechanical and thermodynamical point of view, and
subjected to electromagnetic fields is a cornerstone of modern physics and engineering. From
the behavior of charged fluids in plasmas to the thermomechanical response of materials in
electromagnetic devices, understanding how energy and momentum are exchanged between
matter and fields is of fundamental importance. This thesis aims to contribute to this
understanding by developing a coherent and general formulation of the balance laws that
govern the evolution of continua combining mechanical, thermal, and electromagnetic

effects.

We begin by recalling the kinematics of deforming continua, as a starting point for the study
of continuum thermomechanics. Basic kinematic and geometric notions are introduced
to describe deformable bodies: control volumes, material surfaces, and moving domains,
along with the mathematical tools needed to track how physical quantities evolve through
these domains and across discontinuities. The emphasis is on building a consistent and
flexible mathematical language suitable for the formulation of general balance laws and

junction conditions in continua undergoing motion and deformation.

With this framework in place, we proceed to derive the integral and local forms of the
mechanical balance laws: conservation of mass, linear momentum, angular momentum,
and mechanical and thermal energy. The derivations are carried out in full generality, and
particular attention is paid to jump conditions across discontinuity surfaces. The principles
of thermodynamics are then introduced, with emphasis on the second law, which imposes
constraints on the admissible forms of energy exchange and dissipation. The local form of
the entropy balance equation is derived, and the second law is ultimately restated in the
form of the Clausius-Duhem inequality. This inequality plays a key role in the formulation

of consistent constitutive theories.

The theoretical framework is then extended to include electromagnetic phenomena. Firtsly
Maxwell’s equations are presented in a form suitable for deforming media, and the conser-
vation of electric charge is discussed. The interaction between media and electromagnetic
fields is described through the notions of magnetization and polarization. Electromagnetic
sources are analyzed, leading to effective expressions for charge and current densities in
media, derived from polarization and magnetization fields. The electromagnetic force is

introduced via the Lorentz law, providing expressions for electromagnetic momentum and
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the associated stress tensor. Similarly, the electromagnetic power exchange is analyzed to
obtain consistent expressions for the field energy and energy conduction. This leads to a
comprehensive framework in which electromagnetic fields are not treated as merely external

agents, but as elements of the continuum’s dynamics on the same footing as matter.

In the final chapter, the theoretical picture is completed with a discussion of constitutive
modeling. The Coleman-Noll procedure is introduced as a systematic method to derive
thermodynamically admissible constraints on the constitutive relations. In this way, the
universal balance laws are complemented with material-specific equations that describe
how different substances behave under the same external conditions. Classical examples are
analyzed, including the perfect fluid and the linear viscous fluid, to illustrate the method

and its physical implications.

The structure of the thesis reflects a progressive development: from geometrical and
physical foundations, through the derivation of governing equations, with particular focus
on electromagnetic interactions, toward the formulation of thermodynamically consistent
material models. The appendices contain extended calculations and technical derivations

that support the main results presented in the core chapters.

Finally, it is worth noting that the electrodynamics of continua remains an open and actively
developing branch of theoretical physics. While classical electromagnetism in vacuum is a
mature theory, its extension to deformable media introduces significant conceptual and
practical challenges. A striking example is the lack of a universally accepted expression
for the electromagnetic stress tensor in matter: various formulations, including those
by Maxwell, Minkowski, and Abraham, are based on different physical assumptions and
can yield different predictions in dynamical situations. These ambiguities highlight the
importance of a careful and consistent treatment rooted in continuum mechanics and
thermodynamics, particularly when modeling the behavior of complex materials and

evolving domains.

Keywords: Kinematics of continua; Thermomechanics of continua; Balance laws; Elec-
trodynamics of continua; Clausius-Duhem inequality; Constitutive models; Coleman-Noll

procedure.



2 ‘ Kinematics of deformable do-

mains

In most of the applications of continuum mechanics, we have to deal with quantities defined
on time dependent domains, such as moving and deforming volumes and surfaces. In this
chapter we will introduce the foundamental definitions and relations that will become
useful in the following chapters; we will compute the material derivative of a field defined
on a moving and deforming volume, surface or curve, and we will see how to deal with
discontinuities in the fields defined on these domains. After that, we will introduce the
distributional approach to the kinematics of deformable bodies, which will allow us to treat
discontinuities in a more rigorous way, generating a framework that can be applied to the

study of the electrodynamics of continua.

2.1 Definitions

In order to describe the kinematics of volumes, surfaces and curves, we need to introduce

some definitions, which will be used throughout this dissertation.

Definition 1 (Moving and deforming domains). A deforming volume V(t) is a time-
dependent reqular region of R® whose points x(t) evolve according to a velocity field v(t).
Similarly, a deforming surface A(t) (resp. curve L(t)) is a time-dependent oriented
surface (resp. curve) whose points follow v(t). We assume V(t), A(t), and L(t) are

piecewise C*-regular, with possible discontinuities across interfaces D(t).

Definition 2 (Integral over a deforming volume). Let p(t) be a time dependent scalar
density field defined on a moving and deforming volume V(t). The volume integral of
p(t) over V(t) is defined as:

By V(0) = [ axplt)

This represents the total amount of the quantity p contained within the deforming region

V(t).

Definition 3 (Flux integral over a deforming surface). Let a(t) be a time dependent vector

density field, and let A(t) be a moving and deforming surface, each of whose material points

3
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follows the velocity field v(t). The flux integral of a(t) across A(t) is defined as:

D) (A(t)) = d’x - a(t),
A(t)
where d%x is the oriented surface element of A(t), pointing in the direction of m, the
outward unit normal to the surface. This represent a measure of how much of the field
"nierces"” through the surface, weighted by how aligned the field is with the normal vector.

It’s maximal when the field is fully aligned with n, and zero when it’s tangent to the surface.

Definition 4 (Circulation over a deforming line). Let b(t) be a time-dependent vector
density field and L(t) a moving and deforming line, each of its material points following
the velocity field v(t). We define the circulation of b(t) along the curve L(t) as:

Loy (L£(2)) = d'x - b(1),
L(t)
where d'x is the oriented line element along L(t), pointing in the direction of the unit
tangent vector T. This represents a measure of how much our vector density field is aligned
with the tangent vector T at each point of the curve, a kind of tangential accumulation

along the direction of the line.

Additional details regarding the adopted conventions and notation are provided in Ap-

pendix A.

2.2 Moving and Deforming Domains

Moving and deforming volumes

In this section we will introduce the material derivative of a field defined on a moving and

deforming volume, and we will see how to compute it using the Gauss’ theorem.

Theorem 2.1 (Material derivative over a deforming volume). Let p(t) be a time dependent
scalar density and V(t) a moving and deforming volume, each of its material points following
the velocity field v(t). Then, the material derivative of the volume integral %Ap(t)(V(t)) is

given by: 1
SR (V) = Ay (V(1), (2.2.1)

where:
PAY _ 2P0 G (it ol (222)

Proof. We want to compute the time derivative of the scalar integral over a deforming

volume. Using a Taylor expansion for small §t, we write:

d A,y (V(1)t + O(6t%),

ApersnyV(E+6t)) = Ay V() + T
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which leads to:

d Ip(t)
— A, nV(t 5t:/ a3 —5t+/ d3x p(t) + O(6t?).
T pty(V(t)) - X5, P56 V10) xp(t) (6t%)

The first term represents the change in the integrand (i.e., the local time derivative),
while the second term accounts for the geometrical change of the control volume. We now
estimate the volume swept by the boundary during time dt. Let v(t) be the velocity of the
material points and ny the outward normal. Then the volume change over a small time is

approximately:

/ d3x p(t) ~ d*x v(t) - ny 0t p(t).
V(t+6t)—V(t) V()

Using the Gauss’ theorem, we convert the surface integral to a volume integral:

/ Pxp(t)v(t) - np st = [ dPxV - (p(t) v(£))5t.
aV(t) V(t)

Putting all terms together:

gt = [ ax (%20 4+ 0y v(0)) ) 5t + 032

Dividing by dt and taking the limit as dt — 0 gives the desired result:

d

220 (V(1) = Bostt (1) vty V(1) = Bpgen V(1))

Application Material derivative of the volume element.

The material derivative of the volume element d3x is a very useful result in continuum
mechanics, as it allows us to compute the time evolution of the volume element in a
moving and deforming domain. Let us consider the situation in which the density is

p(t) =1 costant in time. In this case, we have:

A(V(t) = b d3x = vol(V(1)),

Dp() V().

/ BPxV - v(t dt/ d3x

Now just by choosing V(t) as an elemental volume d3x, we obtain the useful result:

jt (d3%) = V - v(t)d*x. (2.2.3)
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Moving and deforming surfaces

We will now introduce the material derivative of a field defined on a moving and deforming

surface, and we will see how to compute it using the Gauss’ theorem.

Theorem 2.2 (Material derivative over a deforming surface). Let a(t) be a time dependent
vector density field, and let A(t) be a moving and deforming surface, each of whose material
points follows the velocity field v(t). Then, the material derivative of the flux integral
%(I)a(t) (A(t)) is given by:

7q)a(t) (A(t)) = P pa(r) (A(t))v (224)

where:

D = or TV at)vlt) +V x(a(t) x v(t)). (2.2.5)

Proof. To compute the material derivative %Cba(t) (A(t)), we use a Taylor expansion for
small dt: 4
(I)a(t-l-ét) (-A(t + 5t)) = q)a(t) (A(t)) + 7(I)a(t) (A(t))ét + O(6t2)7

dt

which leads to:
L (A())5t = [ @ D awt + / Px - a(t) + 0512,
dt 2® At) ot A(t+5t)—A(t)

The first term captures the local time variation of the field a(t), while the second accounts
for the change in surface area due to deformation and motion. To analyze the second term,
we consider a volume V(t + dt, t) swept by the motion of the surface A(t) over the interval

[t,t + o0t]. The contribution of this change can be split into:

j{ d*x - a(t) — j{ d?x - a(t) + O(5t?),
AV(t+6t,1) 10)

where Q(t) = 0V(t+dt, t) — A(t+ 6t) + .A(t) represents the boundary of V(¢ + dt, t) enclosed
between A(t) and A(t 4 t). Applying the Gauss’ theorem to the first term gives:

f d2x -a(t) = / BxV - a(t) ~ / dx - (V- a(t))v(t) 6t + O(62).
aV(t+6t,t) V(t+5t.t) A(t)

For the second term, we deal with the surface Q(¢), which arises from the lateral motion of
the boundary 0.A(t). Using the Stokes theorem we have:

_ ji(t) d%x - a(t) ~ — ng(t) dix - (a(t) % V(t)) + O(5t2)
— / d2x -V x (a(t) X v(t)) 5t + O(5t2)
A(t)

Putting all contributions together:

d
— &, (A1) 6t = d?x - [
T 1) (A1) m X

da(t)

< (V-a(t) v(t) + V x (a(t) x v(t))| 6t + O(5t?).
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Dividing by dt and taking the limit as 6t — 0, we obtain the desired result:

S by (A1) = @ pace (A(1)):

Application Material derivative of the surface element.

The material derivative of the surface element d?x is a very useful result in continuum
mechanics, as it allows us to compute the time evolution of the surface element in a
moving and deforming domain. Let us consider the situation in which the density is

a(t) = c costant in time. In this case, we have:

= ’x .c=c- 2x
P (D) = [, Y R
Da(t)
Dt
Pown (A1) = [, UV v)e (e v

Dt

=V x(cxv(t) =(V-v(t)c—(c-V)v(t),

:—c-/ d*x x V x v(t).
A(t)

Now just by choosing A(t) an elemental surface, we obtain the useful identity:

d
&(dgx) = —(d*x x V) x v(t). (2.2.6)

Moving and deforming lines

In this section we will introduce the material derivative of a field defined on a moving and

deforming line, and we will see how to compute it using Stokes theorem.

Theorem 2.3 (Material derivative over a deforming line). Let b(t) be a time dependent

vector density field and L(t) a moving and deforming line, each of its points following the

velocity field v(t). Then the material derivative of the line integral %Fb(t)(ﬁ(t)) is given by:
d

afb(t) (L(t)) = FD]g(tt) (L(t)), (2.2.7)

where, again:
Db(t)  Ob(t)
Tt = W + (V . b(t))’l}(t) +V x (b(t) X ’U(t)).
Proof. In order to compute the time derivative %Fb(t)(ﬁ(t)) of the line integral, we expand

its difference quotient in Taylor series:

i (£(E + 66) = Do (£(0) + 5Ty (L)t + O(31),
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which leads to:

() bt = / d'x 5t+/ d'x - b(t) + O(5¢2).
dt L(t+6t)—

Let us now focus on the second term, which accounts for the deformation of the line:

/ d'x - b(t) :f dlx-b(t)—/ d'x - b(t) + O(6t?),
L(t46t)—L(t) DA(t+6t,t) w(t)

where A(t + dt, t) is the infinitesimal surface swept by the deforming line £(¢) over the
time step 6t, and w(t) = 0A(t + 6t) — L(t + dt) + L(¢) is the curve which represents the
boundary of A(t + 6t, t) enclosed between L£(t) and L(t + 0t). For the first term, we apply

Stokes’ theorem:

]{ d'x - b(t) _/ dx - (V x b(t))
DA(t+5t, 1) A(t+6t, 1)

~ / d'x x (v(t)8t) - (V x b(t)) + O(6t2).

For the second term, representing the correction from the mismatch of endpoints, an
additional contribution that arises when the endpoints of the line move in time (if the

curve is open), we have:

Ly iy — O (vit) _ S ,
_/w(t)dx b(t) /aaod (v(t) - b(t)) bt S i (vi-b) 6t £ O3,

endpoints

where 7; is the oriented tangent vector at the endpoint and, as shown, it captures the
contribution from the endpoints’ motion. Under smoothness assumptions, this contribution
can be rewritten as a line integral along L£(t):
[ a'x -b() / d'x -V (b(t) x v(t)) &t.
w(t)
Remark. If the line L(t) is open and its endpoints move with the flow, their contribution

to the material derivative can be approximated as a bulk line integral:
—/ d'x - b(t) / d'x -V (b(t) x v(t)) 6t.
w(t)

This reduces the boundary correction to a term compatible with the form of the material

derivative, under reqularity of b(t) and v(t).

Putting everything together:

%Fb ))ot = / d'x [ ) +(V x b(t)) x v(t) + V (b(t) x v(t))| 6t + O(6t?),

Dividing by dt and taking the limit as 6t — 0, we obtain the desired result:

d

3 b0 (£() = Towen (£(2)-
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Application Material derivative of the line element.

The material derivative of the line element d'x is a very useful result in continuum
mechanics, as it allows us to compute the time evolution of the line element in a moving
and deforming domain. Let us consider the situation in which the density is b(t) = ¢

costant in time. In this case, we have:

T (£(1)) = d&-c:o/id&,
L(t) £(t)

Db(t) B
D = Vic-v(t) =Vav()-c,

t
Dpue) (L(1)) = /L(t) d'x - [V& (v(t)-¢)] =c- /z:(t) d'x - Vv(t).

Dt

Now just by choosing A(t) an elemental surface, we obtain the useful identity:

d
a#&xy:m&.vw@y (2:2.8)

2.3 Distributional Calculus across Interfaces

In this section we will introduce the distributional approach to the kinematics of volumes,
surfaces and curves, which will allow us to treat discontinuities in a more rigorous way,
generating a framework that can be applied to the study of the electrodynamics of continua.
Let V be a moving and deforming volume in space, w the velocity field defined on its

boundary 9V with ny' its outward normal unit vector.?

Definition 5. Given the test function ¢, the characteristic function xy of V is defined as:

]@3x(¢xv)::jgd3x¢. (2.3.1)

MW@Z{l ifxeV

0 ifzgV

The characteristic function xy is a generalized function with support on the volume V, and

it is used to restrict integrals to the region of interest.

Definition 6. For our purposes, it is sufficient to adopt an operational viewpoint on the
Dirac delta function supported on a surface. We define the surface delta distribution dgy(x)

as a generalized function with support on the boundary OV of a volume V, such that:

oo ifxedV
) = : dBx (pdgy) = ¢ d%z¢. 2.3.2
av(z) {0 Fod oy / (¢ 0av) j{w ¢ (2.3.2)

That is, dgy(x) vanishes away from the boundary, is formally infinite on it, and acts as a

distribution that "picks out” the value of test functions ¢ on 0V when integrated over the

'In this section we will use the explicit unit vectors normal to the surface, letting d>x = dA be just an

elemental surface.
2In order to lighten up the notation, let us omit the explicit time dependencies in this section.
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whole space. It satisfies the usual properties of delta distributions under integration and is

instrumental in expressing surface densities embedded in a volume formulation.

It is now natural to expose the relations between the characteristic function yy and the
Dirac delta distribution gy in order to obtain two useful lemmas that will be employed in

the description of fields defined on moving and deforming volumes, surfaces and curves.

Lemma 2.4. Given the characteristic function xy of a reqular volume V and the associated

surface delta distribution dgy, the following identity holds:

Vxy = —ndgy. (2.3.3)

Proof. Let ¢ € C°(R?) be a smooth test function with compact support (??). Consider

the integral over all space:

/d3 (6 Vxy) = /d x (xv Vo),

where we integrated by parts and used the fact that ¢ vanishes at infinity. Since xy is the

characteristic function of the volume, the integral reduces to:

—/d3xv¢:—7§ d%xn ¢,
\% oV

where we applied the Gauss’ theorem. On the other hand, using the definition of the

surface delta distribution:

/d3x (pndgy) = ?gv d’xn ¢.

Therefore:
/d5 (6 Vxy) = /dx¢n5av)

and since this holds for all test functions ¢, we conclude that:

Vxy = —ndgy,
in the sense of distributions. O

Lemma 2.5. Given the characteristic function xy of a reqular volume V and the associated

surface delta distribution dgy, the following identity holds:

0
&XV =n-wdyy, (2.3.4)

where w is the velocity of the moving boundary 0V .

Proof. Let ¢ € C2°(R3) be a time independent test function. Then:

/dgx (¢ gt”) dt /dg (@xv).
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The right-hand side represents the time derivative of an integral over a moving domain.
The variation of the volume integral over time is equivalent to the flux of the scalar field
through the boundary 9V, which moves with velocity w; therefore, only the components of
the velocity field normal to the boundary contribute to the flux and must be taken into

account:
3 2
» / dxp=§ dxn-w)o.

Now recall the definition of the surface delta functlon:

Ji'x (6o w)oa) = §dx(n-w)o.

Jax (6 50) = Jafx (6nwin).

Since this equality holds for all test functions ¢, we conclude that:

Therefore:

=n-wj
atXV Vs

in the sense of distributions. O

Let us consider now Euclidean tridimensional space E?, we assume to partition it into a

set of non-overlapping open regular regions V; such that:

VinV; =0 ifi#j,
We will use the previuosly defined quantities with pedex ¢ in order to denote the partition
V; to which they refer to: 0V; the boundary of V;, n; the outward normal unit vector to
0V;, w; the velocity field defined on 9V;. We now define D the two dimensional subregion

union of all such boundaries,

D=|]JoV;

which, expressed as it is, may involve repeated surfaces where two neighboring regions share
a common boundary; in order to remove this redundancy, we assume D to be partitioned
into a collection of non-overlapping open regions D, such that:

DoNDy=10 ifa#b,

D = Ua ﬁa
Accordingly, we can define n, = n|, and w, = w|,, .* We now introduce the indices it

to identify the two regions sharing D, as a common boundary:
8VZ; N 61}25 =D,
n, = —n;+ =1n;-

Wa = W.+ = W.—.
tq 2

3Defined only on the interior Ua D., not on the edges £ = Ua OD,.
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The notation i} and i, allows us to refer consistently to the two regions adjacent to an
interface D,, and the corresponding orientation of normal vectors is chosen such that n,
always points from i to i, . This convention simplifies the expression of fluxes and jumps

across boundaries.

In order to calculate averages and various statistical moments of microscopic fields, let

® be a test function assumed to be smooth on each closure V; for every i, and defined

piecewise as ®|,, = ®;. We allow for discontinuities of the test function ® across region

Vi
boundaries; in this case, the field remains smooth inside each V;, but may have finite jumps

on interfaces D,. On each interfacial region D,, we define the jump of ® as:
A<I>|Da = [®]p, = Py — P #0.
Now any ® can be associated to a distribution as:

=" Dixy,. (2.3.5)

Now we can introduce the following lemmas, which will be useful in the description of

fields defined on moving and deforming volumes, surfaces and curves.

Lemma 2.6 (Distributional gradient of a piecewise field). For every scalar distribution P,
the following relation holds:
Vb = Vo + [®] nip. (2.3.6)

Proof. The scalar distribution d is written as the sum:
o= By,
i
We apply the gradient operator using the product rule for distributions:
Ve =V @ixy, =Y (Ve + 2iVy,) .-
i i
The first term, ), V®; xy,, simply corresponds to the piecewise gradient field, which we

denote as V®. The second term accounts for the distributional effects caused by the

discontinuity of ® across the internal boundaries. Using lemma 2.4, we substitute:

Vxy, = —n; dpy,,
so that:
> @ Vxy, =— Y ®in; ooy,
G i

Now, observe that the sum over the dV; can be reorganized as a sum over the interface
elements D,. Since each internal surface D, is shared by exactly two regions V.+ and V, -,

and recalling that n.+ = —n, and n,- = n,, we have:
a a

_ Z(I)Z n; (53];1. = Z (Qli_ — (I)Z;> n, 6Da = Z [[(b]]Da 1’1|Da 5Da.
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The result is then:
Vd = VO + [®] ndp,

where dp = ) ,6p, is the singular surface distribution supported on all the internal

boundaries. O

Lemma 2.7 (Distributional time derivative of a piecewise field). For every scalar distribu-

tion @, the following relation holds:

9. 9P

Proof. Let us consider the time derivative of the distribution = > i ®ixy,, where the

regions V; evolve in time, and ®; is a smooth function in each V;. Using the Leibniz rule,

8A_ 0 ‘ . 8(1)1' '8)(%.
até—atzi:q)zxvi_z< ot XVi+q)z ot )

i

we write:

The first term corresponds to the time derivative of the field within each region: %—q;. The

second term arises due to the motion of the regions V; in time. From lemma 2.5 we know:

oxvy,
ot

=1n; - w; 58\77;7

which gives:

Xy,
Z (I>i gtvz = Z (I)i n;  -w; 53];1..
7 i

Now, we reorganize this sum as before, converting it into a sum over the interfaces D,
which lie between two adjacent regions Viat. Recalling the jump notation and interface

conventions:

Z (I)i n; -w; (53]}2. = — Z [[(I)]]Da n|Da . W’Da 5Da'

Therefore, we conclude:

o. 0o o
a@ =20 _%:H(P]]Da n, - w,p, = T [®] n-wip,
which proves the lemma. ]

Let now v be the matter velocity field and ¢ a field, both following a first order differential

equation of the form:
0

FE(—; V:v)p=o0.
(555 ¥ V)6
Assuming both v and ¢ smooth except across discontinuities surfaces D, then we should
replace them with the corresponding distributions:

0 . s

E(; Vi V)¢ = 6y + 650p.

ot

We have to pay attention to distribution products, usually ill-defined, while we study

distributional fist order differential equation such this.
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Application Junction conditions for a scalar field.

Suppose f is a smooth scalar field satisfying the equation:

of B
a—i—v-(vf)—a.

which in the distributional framework becomes:
of

E+v-(v7):&v+asap.

Note: we are allowed to identify ¥ f = \7}” in this case due to smoothness and locality of

f and v.*

Applying lemma 2.6 and 2.7, we compute:

of —~. _Of
S PV (v =2 V(v e ([vf] = wf]) dp.

Thus, identifying volume and surface contributions, we obtain:

—

o)
{a{Jrv.(vf):gU, on V — D; (2.3.8)

n-[(v—-w)f]=o0s, onD—-L.
Remark. The interfacial velocity w is well-defined relative to the indices i,

making the jump uniquely interpretable across each D, and letting us take w inside

the jump brackets.

Application Junction conditions for a vector field.

Let now a be a vector field satisfying the equations:

V-a=aq,
aa‘:—i—Vx(axv)—l—(V-a)V:,B.

In the distributional extension, we formally write:
V.-a=d, + asp,
Ooa . A R
£V x (&% ¥) + (V-2)¢ = B, + B.op.

However, the product (V - a)v is generally ill-defined in the theory of distributions. To

circumvent this, we define a modified source term:
r_
B =8 —av,

so that the second equation becomes:

%jLVx(axv):ﬂ’.

4This equivalence does not generally hold for nonlinear products of distributions, but here we benefit

from f being regular across D.
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Now, the distributional form reads:
V-a=da, + a0p,
da = a/ ar
E%—Vx(axv)zﬁv—kﬁsép.
Again using lemma 2.6 and 2.7, we compute:
04 e
8—?+Vx(axv):a—?+Vx (axv)+ (nx[axv]—n-wl[a])dp.
Hence, the jump conditions across the interface become:
V-a=a«a, onV-—D;
! (2.3.9)
n-fa] =as;, onD-L,
%8 | U x(axv)+(V-a)y=4+ V-D
— v ca)v = ayv, onV —D;
ot v (2.3.10)
nxax(v—w)]=p8,+asw, onD— L.

These interface conditions illustrate how discontinuities in fluxes and fields across

evolving boundaries encode surface sources, intrinsic to the dynamics of piecewise-
smooth systems.
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3 ‘ Thermomechanics of Continua

In this chapter, we introduce the fundamental principles that govern the thermomechanical
behavior of deformable continua. Building upon the kinematic framework established in
the previous chapter, we now focus on the physical laws that constrain the evolution of
material systems—laws that express the conservation of mass, momentum, energy, and the

irreversible production of entropy.

These principles are formulated in both local and global forms, depending on whether we
consider infinitesimal material elements or extended control volumes. The derivation of
balance equations is rooted in continuum mechanics and thermodynamics, where physical
quantities are modeled as smooth fields over space and time, and interactions are mediated

through forces, fluxes, and internal sources.

We begin by reviewing the general structure of conservation laws, followed by detailed
discussions of the mechanical balance equations. These include the balances of mass, linear
and angular momentum, and internal energy. Next, we introduce the basic principles
of thermodynamics, Gibbs’ principle and the first and second laws, and we conclude by
deriving the entropy balance and the Clausius-Duhem inequality, a key tool for assessing

thermodynamic consistency of constitutive models.

This chapter provides the theoretical foundation for the modeling of complex materials
and physical processes, such as fluid flow, elasticity, heat conduction, and more generally,

systems where mechanical and thermal effects are coupled.

3.1 Conservation Laws

In the thermomechanical study of continua, conservation laws serve as fundamental princi-
ples expressing the invariance of physical quantities, such as mass, momentum, or energy,
when integrated over moving and deforming domains. These laws are formulated as balance
relations, connecting the rate of change of a quantity inside a domain with the flux of that
quantity across its boundary. We classify conservation laws based on the geometric nature

of the domain involved:

e Conservation laws of the first kind concern scalar densities integrated over

17
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control volumes.

o Conservation laws of the second kind concern vector densities integrated over

control surfaces.

These two classes correspond to divergence and curl structures in the field equations, and
are naturally derived using the Gauss’ divergence theorem, and Stokes’ theorem. We now

present the general formulations.

Conservation law of the first kind

Let £(t) be a time-dependent scalar density field, and let a(t) be a vector flux density field,

both defined over a material volume V(¢) which evolves with a velocity field v(¢).

Definition 1 (Volume-type conservation law). A conservation law of the first kind is

expressed as:

d

g2 V(@) + a0 (0V(1)) = 0,
stating that the rate of change of a scalar quantity & within the deforming volume V(t) is
balanced by the flux of a(t) through the boundary. In many physical contexts, a source or
sink term may be present, accounting for the local production or destruction of the quantity

&. Denoting by o(t) the scalar source density, the balance law generalizes to:

d

3 2ey (V) + Loy (0V(1) = B (V(2))-

Using the expression for the material derivative of volume integrals (see eq. (2.2.1)) and

applying the divergence theorem, we obtain:

A%@Jrv.a(t)—a(t) V(1)) =0.
Since V(t) is arbitrary, this yields the local form of the continuity equation with source:

D¢(?) _
TR +V-a(t) =o(t). (3.1.1)

Finally, by recalling the explicit expression for the material derivative of a scalar density
field (see eq. (2.2.2)), we obtain the full differential form of the balance law:

%D L9 al) +€t)vit) = o(t), (3.1.2)

Conservation law of the second kind

Now let a(t) and b(t) be time-dependent vector density fields defined over a material
surface A(t), which moves and deforms with the velocity field v(t).
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Definition 2 (Surface-type conservation law). A conservation law of the second kind is

expressed as:
d

dt

stating that the rate of change of a surface quantity is balanced by the circulation of a flux

Par) (A1) + Tuy (QA(?)) =0,

density b(t) along the boundary. If a surface source density s(t) is present, the balance

equation generalizes to:

d
gz Bat) (A) + Ty (DA()) = (s (A(2))-

Using the material derivative of surface integrals (see eq. (2.2.4)) and applying Stokes’
theorem, the expression becomes:

@ pag) (A(t)) = 0.

Dt

£V xb(t)—s(t)
Since A(t) is arbitrary, the local surface-type balance equation reads:

Da(t)
Dt

+V x b(t) = s(t). (3.1.3)

Using the expression for the material derivative of a vector density field (see eq. (2.2.5)),
we obtain the full differential form:

Oa(t)
ot

F(V-a®)v(t) + V x (b(t) +a(t) x v(t)) = s(t). (3.1.4)

3.2 Mechanical Balance Equations

Let us now consider a material body B(t) occupying a region V(t) C E3, evolving in
time under the influence of a velocity field v(¢,x). The fundamental laws of continuum
thermomechanics are formulated as balance equations, which describe the temporal evolution
of physical quantities such as mass, linear and angular momentum, and energy, as they are

transported and exchanged across V(t).

These balance laws express basic physical principles in the form of local and integral
conservation statements that must hold for any subregion of the material, regardless of its

motion or deformation.

Definition 3 (Material body in motion). Let B(t) be a material body in motion with:

o V(t) C B(t): arbitrary subvolume.
o D(t): singular surface with normal n(t) and velocity w(t).
o p(x,t): mass density (scalar field).

o v(x,t): velocity field.
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o e(x,t): energy density, including both internal and kinetic enerqy; the internal energy

density is u = e — %p||v|\2.
Definition 4 (External sources and fluxes). We consider the following external and internal

source terms:

o g(t,x): body forces per unit volume (e.g., gravitational or electromagnetic);

o je(t,x): conductive energy flux (heat, chemical, or other mon-mechanical energy

transport);

o 2(t,x): volumetric energy production (e.g., from radiation or chemical reactions).
Additional details regarding the adopted conventions and notation are provided in Ap-
pendix A.

We now state each balance law in its integral and local differential form, using the transport

theorems derived in the previous chapter.

Mass balance

The total mass of a material body remains constant during its motion

and deformation.

Let p(t,x) denote the mass density of a material body occupying a region V(t) C E3,
moving with velocity field v(¢,x). The integral form of the conservation of mass expresses

the invariance of the total mass under motion:

d
— dxp = 0.
dt /V(t) p

This is a particular case of the general balance structure with source term described by
eq. (3.1.2), with the identifications:

E=p, a=0, o=0.

Applying the transport theorem for scalar fields (theorem 2.1), and using the identity for

the material derivative of p (eq. (2.2.2)), we obtain the local differential form of the mass

balance: 5
o

g . =0. 3.2.1

LV () (32.1)
This can also be expressed in material form as:

Dp

—_F V-v=0

Di tpV-v )

which highlights that local changes in density are caused by compressibility effects (non-zero
divergence of the velocity field). Equation (3.2.1) is a first-order conservation law. Discon-
tinuities such as shock waves or material interfaces may arise, necessitating appropriate

jump conditions across singular surfaces.
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Jump condition. Let us consider now a discontinuity surface D(t) as previously defined.

Using lemmas 2.6 and 2.7 (see section 2.3), the mass jump condition reads:

n-[p(v—w)]=0. (3.2.2)

Remark. This condition guarantees that no mass is created or destroyed at the
discontinuity surface: the net mass fluz relative to the surface must be continuous across
it.

Linear momentum balance

The time rate of change of the total linear momentum of a material body

equals the total force acting on it.

Let p(t,x) be the linear momentum density, t(¢,x) the Cauchy stress tensor (additional
information on the stress tensor is provided in Appendix A.), and g(¢,x) the body force
density (e.g., gravity, Lorentz force). Then the integral balance of linear momentum over a

moving control volume V(t) reads:
d 3 2 3
— d’xp = d'x -t + d’°x g.
dt Jve) V(1) V(t)
This balance of linear momentum is a particular case of the generalized conservation law

of the first kind with source term (see definition 1), where the fields are identified as

, o=g.
Applying the transport theorem (eq. (2.2.1)) and Gauss’ divergence theorem, we obtain
the local differential form:

)
8—I;+v.(v®p)=v.t+g. (3.2.3)

Remark. The term v ® p represents the convective transport of momentum by the

flow, while V -t accounts for internal forces transmitted through stress.

Jump condition. Across a singular surface D(t), the corresponding jump condition is:

n-[(v—w)ep-—t]=g™"". (3.2.4)

Mechanical interpretation. In classical mechanics, the linear momentum density is
given by:
p = pv.

Substituting into eq. (3.2.3), we have:

s,
a(pv)%—v-(pv@v)zv‘t—i-g.
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Expanding the left-hand side using product rules and applying the mass conservation

eq. (3.2.1), we obtain the momentum equation in primitive form:

p <‘Z‘t’ +(v- V)v> —V.ttg, (3.2.5)

which expresses Newton’s second law for continua: mass times acceleration equals the sum

of internal and external forces.

Remark. Fquation (3.2.5) is fundamental in fluid and solid mechanics. When t is
expressed in terms of pressure or stress-strain relations, it leads to the Navier—Stokes

or elasticity equations.

Similarly, substituting p = pv into the jump condition (3.2.4), and using the mass

conservation jump condition (3.2.2), we obtain:
n-fp(v—w)®(v-—w)—t]=g"" (3.2.6)

The left-hand side represents the net momentum flux and internal traction jump across
D(t), while g®'P accounts for singular body forces (e.g., surface tractions, delta-distributed

forces).

Angular momentum balance

The time rate of change of the total angular momentum of a material

body equals the sum of all torques and couples acting on it.

Let s(t,x) be the intrinsic angular momentum density (spin), and x X p the orbital angular
momentum density. The torque due to internal stress is given by x x (V - t), while x x g
is the external torque density. Then the integral form of the angular momentum balance

over a deforming volume V(t) reads:

d
— d3x(x><p+s):/ d*x [x x (t -n)] + d3x (x x g).
dt Jy@) aV(t) V(t)

This is a specific instance of a conservation law of the first kind with source (see eq. (3.1.2)),

expressed over a material volume V(t). We identify the total angular momentum density
as the scalar-like field:

E=xXp-+s, a:—xx(tT), o=xXg.

Here, the flux term a arises from the torque transmitted across the boundary by the
internal stress field t, while o represents the external torque density due to body forces.
The antisymmetry of the cross product ensures that a transforms as a vector flux density,
consistent with the general structure of volume-type conservation laws. Applying the
transport theorem and Gauss’s theorem as before, we obtain the local differential form:

0
a(xxp—i—s)—kv‘[v@(xxp—i—s)}:V‘(xxt)—i—xxg.
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Expanding the left-hand side and simplifying with vector calculus identities and the linear

momentum balance (eq. (3.2.3)), we arrive at the intrinsic angular momentum equation:

Js
Z4v. = (a)
T +V. (ves)=x* (2t +p® v) , (3.2.7)

where we recall the definitions:

o t@) .= %(t —t ") is the antisymmetric part of the Cauchy stress tensor;

e x(-) denotes the Hodge dual of a rank-2 antisymmetric tensor in R, mapping it to

an axial vector:

1
*(T); == 2 €iikLjk-

Remark. Fquation (3.2.7) reflects the fact that antisymmetric internal stresses, or

non-symmetric momentum fluzes, act as sources of intrinsic angular momentum (spin).

Jump condition. Consider a singular surface D(t). Neglecting surface contributions

from *(2t(*) + p ® v), we obtain the corresponding junction condition:

n-[(v—w)®s]=0. (3.2.8)

Mechanical interpretation. In purely mechanical systems (e.g., fluids and elastic
solids), intrinsic angular momentum is absent: s = 0. In this case, the total angular

momentum reduces to its orbital part, and eq. (3.2.7) simplifies to:
*(2t) + x(p@ V) = 0.

Here, t(¢) = %(t —1t") denotes the antisymmetric part of the Cauchy stress tensor. The
term x(p ®v), which represents the angular contribution from the linear momentum density
p = pv, is symmetric in the classical theory and does not carry net torque. As a result,

the antisymmetric part of the stress must vanish:
t(@ = 0.
This yields the fundamental symmetry condition:
th =t, (3.2.9)

which characterizes classical Cauchy continua with no internal structure (i.e., no couple
stresses, micro-rotation effects, or distributed torques). This result will be used in chapter 5

in order to derive constitutive relations.

Remark. The symmetry of the stress tensor is not postulated, but derived from the
angular momentum balance in the absence of intrinsic spin. In generalized continua,

this term is non-zero, leading to asymmetric stress.
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Energy balance

The time rate of change of the total energy of a material body,
considered as a closed system, is equal to the net power of external forces

and couples, plus the energy entering or leaving the body per unit time.

Let e denote the total energy density per unit volume and remember the following definitions:

e Jje: the conductive energy flux density;

o z: the volumetric rate of internal energy supply (e.g., due to chemical or nuclear

reactions).

Then the integral form of the energy balance reads:
d
—/ d3xe:]{ d*xn-(t-v—j.) + dx(g-v+2).
dt Jy@) oV(t) V(t)
This is a particular instance of the extended conservation law of the first kind with a source

term, as introduced in eq. (3.1.2). Identifying the total energy density as the conserved

scalar field, we set:
§=e, a=j.—t-v, c=g-v+z.

Here, a includes both the conductive energy outflux j. and the mechanical power input
from the stress field t - v, while the source term ¢ accounts for volumetric energy inputs
such as gravitational work and internal generation. Applying the transport theorem and

the divergence theorem as before, we obtain the local differential form:

0
£+V-(ev):V-(t'v)—V-jc—i—g-v—i-z.
Rewriting in conservative form:
0 0
L v (ev)—v |2V . (vap)| —t: (VOVv)+V jo—2z=0, (3.2.10)

ot ot

where p = pv is the momentum density.

Jump condition. The associated jump condition across a moving interface D(t), with

normal n and velocity w, reads:
n-fe(v—w)+je—t v]=2"+g" w,

where the superscript *"P denotes surface contributions (energy release or absorption at

the interface). If we define the total superficial energy input as:
(Z +g- v)sup .— ,Sup + gsup W,
and apply the linear momentum jump condition (3.2.6), we obtain:

n-[[(e—p wI—t] (v—w)—j] = 25", (3.2.11)
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Mechanical interpretation. For mechanical systems, the energy density splits as:

R
e=u-+—pv
oPV
where u is the internal energy density and % pv? is the kinetic energy. Using the identity:
0 0
V- (,;;—l-v-(v@p)} =v- {(aptv)—i-v-(pv®v)}

_ 90 (1 2 L
—8t(2pv>+v (vav),

we rewrite eq. (3.2.10) in terms of internal energy:

ou

E%—V-(uv)—t:(V®v)+V-jc—z:0. (3.2.12)
Junction condition for internal energy. In this case, the associated jump condition

becomes:
1

n- [H(vaQ —pv-w—i—u) I —t} (v—w) +jcﬂ = 5P,
To further simplify, note that:

2
SPW,

1
— 2 — . —_— - i 2 —
pve—pv W= op(v—w)T - o

2

and if we add the jump condition for mass conservation multiplied by “’72, we obtain the

more symmetric form:
n- [H(;p(v —w)? + u) I- t} (v—w) +jcﬂ = %P, (3.2.13)

Remark. The energy balance encapsulates both mechanical and thermal effects within
a unified framework. The term t - v represents the mechanical power per unit area
transferred across the boundary by internal stresses, while j. models non-mechanical
(e.g., thermal) energy transport. The source term g - v + z highlights that energy may
be injected or removed from the system either mechanically (via body forces doing work)
or chemically/thermally (via internal reactions or heat generation). This decomposition

is crucial in thermomechanical modeling of continua.

3.3 Principles of Thermodynamics

In this section, we introduce the fundamental concepts and governing principles of thermo-
dynamics as applied to continua. We begin by distinguishing the main physical quantities
used to describe a deforming and moving body, and then proceed to formulate the ther-
modynamic laws in the context of continuum mechanics. Finally, we develop balance
equations for specific densities and discuss the entropy balance, laying the groundwork for

further thermomechanical analysis.

When describing a deforming and moving body, it is essential to categorize the physical

quantities involved into two classes:
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« Extensive quantities are those that depend on the size or extent of the system.
They are additive for subsystems and typically scale with volume. Examples of
extensive quantities in continuum mechanics include mass, charge, linear momentum,
angular momentum and total energy. Mathematically, these quantities are often

expressed as volume integrals over intensive fields.

e In contrast, intensive quantities are independent of the system’s size and describe
local properties at a point in space. Key intensive quantities in continuum mechanics
include the mass density p, velocity field v, stress tensor t, temperature 8, and specific
internal energy u*.! These fields provide a pointwise description of the system and

serve as the basis for the formulation of conservation laws and constitutive relations.

This distinction carries over into thermodynamics, where it plays a crucial role in analyzing
physical processes. In particular, thermodynamic processes are often classified as reversible
or irreversible, depending on whether they can proceed without net changes in the system

and its surroundings.

* Reversible processes are those in which the system evolves in such a way that it
remains at all times in states of equilibrium. Furthermore, in such processes, any

intensive quantity & does not depend on position, hence: V& = 0.

e Irreversible processes, on the other hand, occur because the system is in a non-
equilibrium state, which drives it to evolve toward a state of equilibrium. Unlike the
previous case, irreversible processes are characterized by the fact that any intensive

quantity £ depends on position, that is: V& # 0.

Gibbs’ principle

Thanks to the work attributed to the physicist J. W. Gibbs, a theoretical framework exists
that allows us to model irreversible processes as sequences of transformations between

thermodynamic equilibrium states.

Let us consider a continuous body B, subdivided into sufficiently small portions such that
any intensive quantity £(x) can be regarded as approximately constant within each portion.

Even when £(x) varies spatially, this assumption remains valid provided that

l
— 1
L<< )

where [ is the characteristic molecular length scale (e.g., the average distance between
molecules), and L is the characteristic macroscopic length scale over which appreciable
variations of {(x) occur. This scale separation justifies the use of local thermodynamic
equilibrium: each small portion behaves as if it were in equilibrium, despite the system as a

whole being out of equilibrium. This principle is fundamental in continuum thermodynamics,

'We will clarify later the definition of a specific quantity, denoted with £*.
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as it enables us to apply equilibrium thermodynamic relations locally, even to irreversible

processes.

Remark. This approach is analogous to the idea of a "quasi-static”" or "quasi-
equilibrium" process, where the system evolves through a continuous sequence of equilib-
rium states. Although true irreversible processes involve gradients and fluzes that drive
the system toward equilibrium, the small scale of observation permits a local equilibrium

approximation.

Application Local thermodynamic equilibrium.

Consider heat conduction in a metal rod with a temperature gradient along its length.
At the macroscopic scale, the temperature varies continuously, indicating that the
system is out of global equilibrium. However, if we zoom into a small enough segment
of the rod, the temperature can be assumed uniform within that segment. Thus, the
local thermodynamic variables (temperature, internal energy, entropy, etc.) satisfy
equilibrium thermodynamic relations, even though heat is flowing and the overall

process is irreversible.

First and second laws of thermodynamics

The first two laws of thermodynamics for a generic transformation state:
d(AU) =0Q + dL, (3.3.1)

where the infinitesimal change of internal energy d(AU) is given by the sum of heat supplied
0@ and work done JL on the system.

5Q < 0d(AS), (3.3.2)

expressing the second law of thermodynamics: the heat exchanged 6@ is bounded above by
the product of the absolute temperature 6 and the infinitesimal entropy change d(AS). It is
important to note that d(AU) and d(AS) are exact differentials of state functions, meaning
they depend only on the initial and final equilibrium states of the system, not on the path
followed during the transformation. On the other hand, §Q and §L are path-dependent

and describe how the transformation is performed.

For reversible transformations, where the process is quasi-static and no entropy is produced

internally, the inequalities become equalities:

§Qr =0d(AS), 0L, =) &d(AXy),

where &; are generalized forces and AX; the corresponding generalized displacements, so

that the work done can be expressed in this generalized form.
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Remark. The reversible case allows us to write the two laws combined into the

thermodynamic equilibrium law:

d(AU) = 0d(AS) + ) &d(AX;). (3.3.3)

This expresses the internal energy change as composed of thermal and mechanical

contributions, reflecting the interplay between entropy and generalized displacements.

In the context of continuum bodies, we consider material volumes that conserve mass,
Am = Am(AV) with
d(Am) =0,

as ensured by the mass balance (eq. (3.2.1)). This conservation allows us to normalize
the extensive thermodynamic quantities by the mass of the considered portion. The next
natural step is to consider the limit where the volume portion AV = vol(AV) tends to
zero,

AV — 0,

thus defining specific quantities (per unit mass) and densities (per unit volume) as

u* = lim & u= lim &
AVS0 Am] AVS0 AV
s*= lim —, s= lim —,

AV—=0 Am AV—=0 AV
= lim AX; r; = lim AXi.
LAV S0 Am AVS0 AV

Remark. Passing to the limit from finite portions to infinitesimal ones is a natural
step in continuum mechanics, enabling the definition of fields of specific internal energy,

entropy, and generalized displacements that vary continuously in space and time.

Substituting the specific densities into the first law (eq. (3.3.1)) and differentiating with

respect to time, we obtain the balance equation for internal energy in specific form:

du* ds* dx?

=) Lt 3.4
dt dt +§Z.:§’ dt”’ (3:34)
which states that the rate of change of specific internal energy is related to the rate of

entropy change (heat effects) and the rate of generalized displacements (mechanical work).

Remark. This equation is fundamental in continuum thermomechanics, as it expresses
energy conservation at every material point, coupling thermal and mechanical variables.
While mechanical balances describe how forces and motions evolve in the continuum, the
internal energy balance governs the thermodynamic state evolution by linking mechan-
ical work and heat exchanges to changes in internal energy. Together, these coupled
balances form the foundation of continuum thermomechanics, enabling a comprehensive

description of deforming bodies subject to thermal and mechanical effects.
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3.4 Thermodynamic Balance Equations

In this section, we aim to derive explicit expressions for the balance equations and time
derivatives of specific densities. We start by defining a scalar quantity F', its density f,
and the corresponding specific quantity f*, considered on an infinitesimal material volume
AY with mass Am.

Time derivative

By definition, the total amount of the quantity F' contained in the portion AV is:
AF = f*Am.

Since the mass of the material portion is preserved over time (%Am =0), the time rate
of change of AF reduces to the rate of change of the specific quantity times the constant
mass: 4 A

T T

This expression embodies the Lagrangian perspective, focusing on a material volume that

Am

moves with the continuum. Alternatively, using the Eulerian (spatial) viewpoint, AF' can
be expressed as a volume integral of the density f:

AF = [ fav.
AY

Applying the transport theorem or the general balance on moving volumes (see eq. (2.2.1)),

the rate of change of this integral can be written as:
d af
—AF = —+V- dVv,
GAF=[ (G evewn)ay,

where v is the velocity field of the continuum. For sufficiently small volumes, the integral
can be approximated by the integrand evaluated at a point x times the volume AV
d af
—AF ~ |— . AV.
GAF~ S+ V(v (x0aV,

Taking the limit AV — 0 and comparing with the Lagrangian expression, we obtain the
fundamental relation linking the material derivative of the specific quantity to the Eulerian

derivatives of its density:

% . p(i,t) (thf+v.(vf)>, (3.4.1)

where p(x,t) is the mass density of the material at point x.
Remark. This equation shows how the rate of change of a quantity observed while

moving with the material (the material derivative) can be expressed in terms of changes

occurring at a fized point in space (local time derivative) plus the effects of transport
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caused by the motion of the material (spatial divergence of the flux). In other words,
it bridges the Lagrangian viewpoint, following particles, and the Eulerian viewpoint,
fized in space. This connection is essential for converting global, integral balance laws
into local differential equations that describe how physical fields evolve pointwise in the

continuum.

Balance equation

The balance of the quantity F'in AV can be expressed by accounting for fluxes and internal
production. Let j denote the flux density of F' and ¢! the volumetric production rate

(source or sink). Then,

d
—AF:—/ iFonds+ [ ofav,
dt BAY AV

where the first term on the right-hand side represents the net outflow of F' through the
boundary 0AYV, and the second term the generation or consumption inside the volume.

Applying the divergence theorem converts the surface integral into a volume integral:
d
—AF:/ V- + o) av.
dt Ay< Itoe )

Approximating again for small AV, and using the relation for the material derivative of
the specific quantity, we arrive at:
d 1
dt”  p(x,t)

(—V-jF—i-aF).

Substituting the expression (3.4.1) for the material derivative, the local balance equation

in differential form for the density f is:

g{Jrv-(vaer):aF. (3.4.2)

This equation reflects the fundamental conservation principle at the differential level: the
local rate of change of f plus the divergence of its total flux (advective vf plus diffusive or

other j©') equals the volumetric source term o

Jump condition. For completeness, the balance laws must also hold across internal
interfaces or surfaces where discontinuities may arise. Denoting by w the velocity of such
an interface, with normal n, and of"S"P the possible source term concentrated on the

surface, the jump condition reads:
n-[|[(v—w)f +i"] =", (3.4.3)

where we have used the usual [-] to denote the jump across it. This condition guarantees
that fluxes and sources are balanced even in the presence of discontinuities or multiphase

structures, ensuring the physical consistency of the continuum description.
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Entropy balance

According to Gibbs, as previously discussed, any infinitesimal portion of a continuum
can be considered to be in thermodynamic equilibrium, since its relaxation time (the
time needed to return to equilibrium after a perturbation) is also infinitesimally small.
This assumption allows us to apply the equilibrium thermodynamic identity in differential
form to any material point in the body. Therefore, we can write the specific form of the

thermodynamic equilibrium law as:

du* —0ds* — > & daf = 0.
i
This expression corresponds to the first law of thermodynamics in differential form, where:

o 0 ds* represents the infinitesimal heat exchange per unit mass (dg*),

o > ;& da} accounts for the reversible work associated with generalized displacements

(e.g., mechanical deformation, chemical reactions, phase changes).

We now use the general balance law for a specific quantity (eq. (3.4.2)) to write the balance

equations for the densities of internal energy w, entropy s, and generalized displacements

i

ou
i . s(u)y _ L(uw)
at+v (vu+j'")—o 0,
0s
z2 ) s(s)y _ 4(5) —
8t+v (vs+j¥)—o 0,
o0x; . .

¢ . Cos(@)y L6 =
5t +V-(vr; +jVV) -0 0.

These equations describe the local balance of the corresponding quantities: time variation is
determined by the net flux crossing the boundary of the region and by the amount produced
or consumed within the region. The terms j) represent spatial transport (diffusion,
conduction), while o) quantify sources or sinks (e.g., chemical reactions, dissipation). We

also write their material time derivatives using eq. (3.4.1), valid for infinitesimal material

volumes:
%u* _ ; BACEFCE
%3* _ ; V50 +00]
% s ; V-0 +60].

These relations link the rate of change of specific quantities following a material particle
to the fluxes and production rates at that location. They provide the basis for writing
evolution laws at a point. Inserting these into the thermodynamic equilibrium identity
gives an expression involving all the fluxes and productions. Rewriting and rearranging,

we obtain:

; SV 40 40 (V5 — o) +;&- (V-39 - U(z‘))] _o,
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v. [j@ _ % <j(u> _ Z&.j@)ﬂ_
[@ <u>_z& ) ()iu ()1 0

This identity reveals a fundamental thermodynamic structure: if the system is to be

and, isolating terms:

consistent with the second law, the entropy production must be non-negative. Thus, we

can identify the entropy flux and production rate as:

O ( () _ Zg i ) (3.4.4)

Vo

s 1 u 7 (s
o) i <J< ) _ 22:&0( )) O - (3.4.5)

Physical interpretation. The entropy flux is directly tied to the energy and work fluxes:
entropy is transported with energy, minus what is carried away as mechanical or chemical
work. The entropy production rate, on the other hand, includes contributions from local
dissipation (like viscosity or chemical reactions) and from irreversible thermal conduction
(heat flowing down a temperature gradient), consistently with Clausius’ formulation of the

second law.

Clausius-Duhem Inequality

The second law of thermodynamics for continua can be expressed through the Clausius-
Duhem inequality, which provides a local constraint on the admissible thermodynamic

processes in terms of entropy production.

We begin by considering a material portion AV of the continuum. The integral form of

the second law reads:

d . n-j® po®)
< av > - j{ ds + /
dt /AV ps any 0 Ay 0

This expression states that the time rate of change of entropy within the material domain

is greater than or equal to the entropy flux through the boundary (driven by the entropy
current j(*)) plus the internal entropy production o(®). By applying the divergence theorem

and rearranging, we can write this in local differential form:

A(ps*) i po®
/Av[ 9 + V- (psv)+ V- 7 7 dvV >0

Since this must hold for any arbitrary portion of the body, the integrand must be non-

negative everywhere, leading to:

d(ps*)
ot

i(5) (s)
—i—V-(ps*v)—i—V-']—— pag

> 0.
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We now expand the material derivative of the specific entropy using the identity:

9(ps*)
ot

* d *
+ V- (psv) = pgs™,

which follows from the mass balance (eq. (3.2.1)). Substituting, we obtain the local form
of the Clausius-Duhem inequality:
d i pol®)

it A >
PtttV g =

(3.4.6)

The second term on the left accounts for entropy transport due to diffusion, while the third
term accounts for internal entropy production. We now simplify the divergence term by

recalling the identity:

i) 1 1
RS v S OB TO N vad
\Y 7 HV j j VQ'
This yields:
do g 50 ™ e gl
-V — —j®.v=>o0. 4.
Ps +9VJ 7 Jj VG_O (3.4.7)

To connect this expression with the mechanical and thermal processes, we recall from the
thermodynamic identity that:

du* d

s* dax*
2 L
dt dt +zi:€ dt

and from the internal energy balance:

%—FV'(UV)—ti(V@V)+V'jc_2:07

where j. is the conductive energy flux, and z is the external power supply. Rearranging
and combining with the balance for x;, one obtains:

d
uwtt: (Vev).

V0ol = S

Substituting into the Clausius-Duhem inequality yields:

d , 1d *] i 1
—8 - —— = .V0+ —t: > 0. 4.
p[dts Gdtu +92 v +0 Veov>0 (3.4.8)

Or, equivalently, by multiplying through by 6 and rearranging:

i(s)
p{du*—eds*} —%-VG—t:V@ng.

Remark. This final expression is the local differential form of the Clausius-Duhem
inequality. It encodes the fundamental requirement that the internal energy not only
varies in accordance with mechanical work and heat transfer, but that the irreversible
contributions to these processes (represented by entropy production, heat conduction, and

viscous dissipation) must combine to produce a non-negative total entropy production.
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4 ‘ Electrodynamics of Continua

Understanding the interaction between electromagnetic fields and matter is fundamental in
bridging electromagnetism and continuum mechanics. While the Lorentz force law provides
a clear framework for point charges, describing electromagnetic effects in macroscopic,
deformable bodies requires a more comprehensive and consistent approach. Phenomena
such as electromagnetic forces on conductors, material stresses, Joule heating, and radiative

energy flux often rely on heuristic assumptions that lack a unified mechanical foundation.

In this chapter, we complete the formulation of the coupled mechanical-electromagnetic
system by incorporating electromagnetic fields directly into the continuum mechanics
framework. Rather than treating electromagnetic contributions merely as additional forces
or power terms, we show how these fields naturally contribute to the momentum, energy,
and stress within the continuum. This enables us to treat the electromagnetic fields as
integral components of the mechanical system, providing a rigorous, physically grounded

basis for the study of electrodynamics in continua.

4.1 Foundations of Maxwell Theory in Continua

To model the interaction between electromagnetic fields and continuous media, we start by
introducing an equivalent form of Maxwell’s equations adapted to moving and deforming
domains. These integral formulations are physically equivalent to the standard ones in
inertial frames, but are more suitable for continuum mechanics, where integrations are

performed over evolving material volumes and surfaces.

Let V(t) and A(t) be a material volume and surface, both deforming and moving with the

velocity field v(¢,x). We adopt the following integral form of Maxwell’s equations:

B d*x =0,

[9)%

1d
Ec-dlx—i——a/B-de:O,
oA carla (4.1.1)

E-dZX—/qd?’x:O,

oV v
B dlxld/(EJr') d’x =0
) Be cdt Je =0,

35
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where:

e« E.=E+ 7 x B is the co-moving electric field,
e B, =B — { x E is the co-moving magnetic field,

e jo.=]j— qv is the conduction current density.

The use of E. and B, accounts for the apparent electromagnetic fields measured in a
material frame moving with velocity v. These co-moving fields naturally arise when

transforming Maxwell’s equations into a non-inertial or deforming reference.

Remark. The convective terms that appear in the co-moving forms highlight the
influence of the material motion on the electromagnetic field. In particular, the velocity
field v couples to the electric and magnetic fields through terms of the form v x B and
v X E. This reflects the physical fact that a moving observer (or moving material point)

perceives different electromagnetic effects than a static one.

)

To obtain the local (differential) form of Maxwell’s equations, we apply Gauss’ and Stokes
theorems, along with the material derivative identity for surface integrals (see eq. (2.2.4)).
This yields:

V-B=0,
VxEc—i—l%]?—Vx <V><B):0,
¢ ¢ (4.1.2)
V-E—q=0,
1 [OE
VxBC—E 8t+jc—|—(V-E)v—V><(v><E)} =0.

Finally, we emphasize that both charge and current densities include contributions from

free and bound charges. In general, we write:

q = qf + @,
J=1Jr+J

Note that this is simply an alternative formulation of the standard Maxwell’s equations.
From this point onward, we adopt Heaviside—Lorentz units, in which the fundamental
constants €g, o, and 47 are absorbed into the definitions of the fields. This leads to cleaner
expressions and ensures that the electric and magnetic fields share the same physical units.

See Appendix A for details and explicit unit conversions.

Charge conservation principle

Charge conservation can be derived directly from the last two Maxwell equations in their

integral form (4.1.1)3 4. Taking the time derivative of the Gauss law for the electric field,
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we obtain:

d d
_ d3x:7 E‘d2X:C Bc'dlx_j{ .c‘d2x
dt/vq dt Jay L% BVJ

:cf (VxBC)-d2x—j§ je-d*x
oV )%

Z—j{ (G —qv) - d*,
oV

which leads to the integral form of the charge conservation principle:

d/ qd3x —f—% (G—qv)-d*x=0. (4.1.3)
dt Jy av

This equation states that any change in the total charge within a material volume V must

be balanced by a net flux of conduction current j. = j — qv across its boundary.

Example .

Consider a charged fluid with Eulerian charge density ¢(t,x) moving with velocity field
v(t,x). If there are no free charges flowing relative to the material (ideal dielectric),
then the total current is purely convective and given by j = ¢v. In this case, the

conduction current vanishes: j. =j—qv =0.

On the other hand, in an ohmic conductor at rest (v = 0) with an imposed electric
field E, the current density is j = oE, and since the body is at rest, j. = j. Thus, j.

describes the actual flow of charges with respect to the material medium.

Using Gauss’ theorem and the transport identity for material volumes (eq. (2.2.1)), we

obtain the corresponding local form:

0 .

Remark. Charge conservation is often misunderstood. While global charge conser-
vation asserts that the total charge in the universe is constant, the local form (4.1.4)
is a stromger statement: charge cannot spontaneously disappear from one region and
reappear in another without passing through the space in between. This locality condition

1s fundamental to the formulation of both field and matter dynamics.

Magnetization and polarization

Many materials respond to electromagnetic fields by setting up internal distributions of
bound charge and current. These arise due to the rearrangement of microscopic charges, and
are described macroscopically by two vector fields: the polarization P and the magnetization
M. These fields summarize the net effect of bound dipoles within a material. Rather than
prescribing specific constitutive relations for P and M, we treat them as independent,
piecewise-smooth vector fields subject only to the general constraints imposed by the
integral Maxwell equations. In particular, we define them through their ability to represent

the bound charge and current densities.
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Let V(t) and A(t) be a moving material volume and surface. We express P and M via the

following integral identities (which will be justified in the following sections):

/qbd3x—|—7{ P-d2x:0,
% oV

d (4.1.5)
/jbc-dZX——/P~d2x—% M, -d'x =0,
A dt Ja oA

where:

e @ is the bound charge density,
e jpe is the co-moving bound current density,

Joe =Jb +v(V - P),
e M., is the co-moving magnetization,

M, = M — % % P.

We can notice how P is giving a surface contribution to the charge conservation, while M

taking into account internal magnetization currents.

Applying Gauss’ and Stokes’ theorems, and using the transport identity for surface integrals,
we obtain the local form:
Q@ + V-P= 07

oP (4.1.6)
—cVXxM,—v(V-P)+Vx(vxP)=0.

Jbe — En
These equations represent the bound sources (gp, jp) in terms of the material’s polariza-
tion and magnetization. The first equation corresponds to the dipolar model of electric
polarization, while the second includes both electric and magnetic dipole effects under

motion.

We can now use these relations to rewrite Maxwell’s equations (4.1.1)3 4 in terms of the
free charges and currents. By substituting the total charge ¢ = g5 + ¢, and total current
j =1Jr +Jjb, we obtain:

7( (E+P)-d2x—/qfd3X:0,
[9)% %

1(d (4.1.7)
7( (B. — M,) -dlx—{/(E+P) ~d2x+/ jfc.d2x} =0.
0A c ldt Ja A
We then define the electric displacement field and the co-moving magnetic field:
D=E+P,
4.1.8
H.=B.-M,=B-M- > xD=H-" xD. (4.18)
c c
Substituting into the local forms of Maxwell’s equations yields:
V-D—gq; =0,
oD (4.1.9)

V x H, +jfe+(V-D)v—-V x (vxD)| =0.

Cclot
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Remark. The fields D and H. appear naturally when describing media with internal
structure (such as dielectrics or ferromagnets). These fields allow us to treat P and M

as sources, without needing to resolve their microscopic origin.

Bound charges in polarized media

When a dielectric material is subjected to an external electric field E, its microscopic
charges shift slightly, forming electric dipoles. On a macroscopic scale, this behavior is
captured by the polarization field P(x), which describes the electric dipole moment per

unit volume.

These dipoles do not generate free charges, but their spatial variation leads to effective (or

“bound”) charges. In a continuous medium, we distinguish two types of bound charges:

e Volume bound charge density: ¢, = -V - P.

This arises in regions where P is non-uniform, representing a net imbalance of dipoles

across infinitesimal volumes.

+ Surface bound charge density: ¢;"* =P - n.

This appears at interfaces where the polarization vector changes discontinuously,

such as the boundary between a dielectric and vacuum.

Surface charge derivation. Let a volume V straddle the interface between a dielectric
and its exterior (e.g., vacuum), and shrink to a pillbox aligned with the surface. Applying

Gauss’s theorem:

Qb: ZuP:—% P-dzx.
%)%

Only the two flat faces of the pillbox contribute significantly, so:
QP ~—(Py n—P_-n)A,

where A = area(dV). Assuming P = 0 outside (e.g., in vacuum), we obtain:

sup

QP =—(-P-n)A=(P-m4 = ¢¥="t_—P.n

Remark. The surface bound charge arises because dipoles within the dielectric cannot
continue beyond the surface; thus, the termination of dipoles appears as surface charge.
The formula tells us that the net surface charge density equals the normal component of

the dipole density.
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Bound currents from magnetization

When a material is placed in a magnetic field, its atomic-scale magnetic dipoles (due to
electron spin and orbital motion) tend to align with the field, creating a magnetization
field M(x), defined as the magnetic dipole moment per unit volume. From a microscopic
point of view, magnetic dipoles arise from circulating microscopic currents, which form tiny
loops. When the loops are uniformly distributed in space, their net contribution cancels

out in the bulk, except at the boundary.

Volume bound current density. A magnetic dipole with moment m is modeled as a
current loop: m = 2% Jd3xx x j(r). If such dipoles are densely packed, the magnetization
is: .
M= lim — m.
AV—0 AV Z
The equivalent current density associated with this distribution is:

jb:CVXM.

This current does not correspond to actual motion of free charges but arises from the net

circulation of microscopic currents within the material.

Surface bound current density. At the boundary of a magnetized body, the loops
inside the material are incomplete: while adjacent loops in the bulk cancel each other’s
lateral current contributions, the last layer has no neighbor to cancel with. This results in
a net surface current:

JP = ¢M x n,

where n is the outward unit normal to the surface. A simple way to show the derivation of
this expression is through the us of the vector potential of a magnetic dipole m located at
Xg, which is:
Alx) = 1m x (x —xp)

¢ |x—x0?
For a continuous distribution with density M(x), we integrate:

A(x) = 1/ M) x (x — x) av’.

%

|x — x/|3

By applying vector identities and integration by parts, this is equivalent to the vector

potential generated by:
b =cV xM, (in the volume) and  j;"® =cM xn (on the surface).
Remark. These bound currents are purely internal: they do mot transport net

electric charge, but their magnetic effects are real and measurable. For this reason, the

magnetization contributes to Mazwell’s equations through the auziliary field:

H.=B.— M..



4.1. FOUNDATIONS OF MAXWELL THEORY IN CONTINUA 41

Junction conditions

Fields generally exhibit discontinuities at the interfaces D separating different materials.
We can derive the junction conditions by integrating Maxwell’s equations (4.1.1) over a
small volume V enclosing the interface. However, a more general and rigorous approach
relies on the results of section 2.3, which provide the following substitutions at the interface

D:
V®onV = n-[®?] on D,
aacfonv — —n-w [®] onD,

ocon)Y = " on D,

where n is the unit normal vector to D and w is the velocity of the interface. The first
relation implies that the normal component of the gradient of a scalar field ® may have a
jump n - [®] at the interface, the second relates the time derivative of ® to the motion
of the interface, and the third states that a volumetric density ¢ induces a corresponding

surface density o%"P on D.

Using these substitutions, we compute the junction conditions for Maxwell’s equations
(4.1.2):

n-[B] =0,
- 1 -
n-||E.—-(v—w)xB|l =0,
L c - (4.1.10)
n - [E] = ¢°"P,
[ 1 1] 1 s su su
n x BC—FE(V—W) x E :E{(JC—{—(]V) P— ¢*"Pw}.
Here:
e ¢°"P is the surface charge density on D;
o (je+ qv)™P is the surface current density measured in the lab frame on D;
« the conditions hold on D\ L, i.e., away from edges or singularities.
Applying the same procedure to the charge conservation eq. (4.1.4) yields:
n-[g(v—w)+j] =0, (4.1.11)

which enforces continuity of the normal charge flux across the interface.

Similarly, the relations linking polarization P and magnetization M to bound charges and

currents produce the junction conditions:
n-[P]=—q,",
1
n x HMC — —(v—w) X PH = jpr,
c

where ¢;"" and j;.” are the surface bound charge and current densities.
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Finally, Maxwell’s equations can be cast in terms of free sources only as:

V'DZQﬂ
1 /8D L.
VXHC_C(at—|—V><(v><D)>:c(ch+QfV),

accompanied by the corresponding junction conditions:
. 1
n-[D]=4;", nx HHC + —(v—w) x DH =37
c

These interface conditions are essential for correctly solving Maxwell’s equations in piecewise

heterogeneous media and ensure the correct matching of fields across material boundaries.

4.2 Electromagnetic Sources and Mechanical Coupling

In this section we examine how electric and magnetic dipole fields contribute to the total
charge and current densities within deforming continua. These distributions act as sources
of electromagnetic force, which we derive both in integral and local form. The resulting
force density is then expressed in terms of the electromagnetic momentum and stress

tensors, setting the stage for energetic considerations such as electromagnetic power.

For clarity and focus, this section includes the main steps of the derivation, while the
more lengthy or technical intermediate calculations are deferred to Appendix B, where the

complete development is presented in full detail.

Charges and currents

For a material volume V we know that the polarization and magnetization fields are

confined inside it, so we can write:

PV = XVP7
Moy = xyM,

where xy is the characteristic function of the domain V. Starting from this, the bound

charge density inside V can be expressed as
qy = =V - Py.

Applying the product rule for the divergence of the product of a scalar function and a

vector field, we obtain
gy =—V - (xwP)=—=(Vxy) - P—xp(V-P).

Since Vyy is a distribution supported on the boundary 0V and can be identified with the

normal vector n multiplied by the surface delta dgy, we rewrite this as

gy =n-Pdgy —xyV -P.
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This shows that the bound charge density splits into a surface term, localized on the

boundary 9V, and a volumetric term inside V. More explicitly, we write:

1
gy =—-V-P, onV,
b (4.2.1)
gy =n-P, ondV.
The volumetric bound charge density corresponds physically to the divergence of the
polarization inside the material, indicating volume density of dipoles, while the surface

term represents a discontinuity or accumulation of dipoles at the interface.

Next, we consider the bound current density. The expression we use is more general,
including convective terms due to the velocity field v of the material, as well as the time

derivative contributions and magnetization currents:
. 0
Jbey = EPV —V X (vxPy)+ (V-Py)v+e(V x Myy).

Substituting Py = xyP and M.y = xyM,, and applying the product and vector calculus
rules carefully, we get:
. 0 oP
Joev = %PJerE = Vxy x (v xP) = xyV x (v xP)
+(Vxy -P+xyV-P)v+c(Vxy x Mc+ xpV x M,).

Because %XV = —v - Vxy = —(v-n)dgy (this comes from the fact that the domain V
moves with velocity v), we can rewrite terms involving V) as surface distributions on

0V. Grouping the terms, this leads to

ey =0 {(n-v)P4+nx (vxP)—(n-P)v—cnx M.}
opP
—|—Xv{at—Vx (VXP)+(VP)V+CVXMC}
From this decomposition, we identify the volume and surface contributions to the bound

current density as:

oP
j;}’g{):a—Vx(v><P)+(V-P)v+cV><MC7 onV, (4.2.9)
+SUp

Jpey = —en X M, on 9V.

Physically, the volume current contains contributions from the local time change of
polarization, the convection and deformation of dipoles due to the velocity field v, as well
as magnetization currents inside V. The surface current emerges from discontinuities of

magnetization at the boundary, expressed by the tangential component n x M.

Free charge density and free current density, which are not bound to the material mi-
crostructure, can instead be treated as pure source terms in Maxwell’s equations and do

not require such splitting.
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Remark. The decomposition into volumetric and surface terms reflects the physical
intuition that dipoles and magnetic moments may be distributed continuously in the
bulk or accumulate sharply at interfaces, leading to distinct contributions to the charge
and current densities. The presence of the material velocity v introduces convective

effects, which are crucial in moving media.

Electromagnetic Force

We consider a material volume V immersed in an electromagnetic field, and aim to derive
an expression for the total force Fy, acting on it. This force can be decomposed into a
volumetric contribution, arising from charges and currents distributed inside the volume,
and a surface contribution, arising from surface charges and currents localized on the

boundary OV:
Fy = Fy' + F)P,

1
1 3 1 svol
F‘{}O = /Vd X <qVO EC =+ E-]‘C/O X B) y (423)
1
FoP — ]( (QS“PEC + 5P B) -d%x.
%)% &

Here, the subscript ¢ denotes quantities measured in the co-mowving frame of the matter,
where the medium is instantaneously at rest. The goal is to express all these co-moving
frame quantities in terms of the lab frame fields E, B and material properties such as the
polarization P, magnetization M, free charge density ¢y, free current density jr, and the

matter velocity v.

Starting with the volumetric force, using the relations between the co-moving charges or

current and lab quantities, we write:

F‘{,Ol:/d?’x[(qf—V~P)(E+ZXB)
v

1 P
+C<jf—QfV+at+(V-P)v+cV><M> XB}.

By expanding and rearranging terms, many velocity-dependent contributions cancel or
simplify, yielding the more compact expression:

1 oP

To better understand the structure of the terms, note that the charge density splits into
free charge ¢y and bound charge —V - P. The latter can be rewritten by using the vector
calculus identity:

—(V-PE=-V-(PRE)+ (VRE)-P,

where P ® E is the tensor product. Physically, this represents how the spatial variation of
polarization induces forces that can be expressed as divergence of stress-like tensors plus

gradients acting on the electric field.
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Further, applying Maxwell’s equation V x E = —%%—]?, we can rewrite the P term involving

the curl of E, leading to:
1 0B
—(V'P)E:—V-(P®E)+EP X E—F(V@E)‘P.

Similarly, the term involving (V x M) x B can be transformed using vector identities:
(VxM)xB=V-(BaM-M-B)I)+(VaB) M,

where I is the identity tensor. This term accounts for forces due to magnetization currents
interacting with the magnetic field, again splitting naturally into divergence of a stress

tensor plus gradient terms.

Putting everything together, the volumetric force becomes:
1 10

Fvolz/d3 E+-jfxB+-—

v v x{qf +c‘]f +cat

+¢ d*x-[-PRE+BaM- (M-B)].
%)%

(P><B)+(V®E)-P+(V®B)-M]

Next, we consider the surface force F?}lp , which depends on the surface polarization and
magnetization charges and currents. After rewriting the terms and applying vector identities
and Maxwell’s equations, the surface force can be expressed as:
v
FP = ¢ d’x- [P®E—B®M+H(M-B)]+/ *xV x — @ (P x B).
)% % c
Notice how the surface term’s boundary integral cancels part of the boundary term from

the volumetric force, leading to simplifications in the total force expression.

Substituting back into the total force Fy from eq. (4.2.3), we obtain the integral form of

the electromagnetic force acting on the volume V:

1
FV:/d‘?X{q]vE—&—ijB+(V®E)-P+(V®B)-M
v ¢ (4.2.4)

4% (;(PXB)+V-(V®(PXB))):|.

From this, we identify the local electromagnetic force density
1
fEM:quJrEjf xB+(VRE)-P+(VeB)-M

= <i(PxB)+V-(v®(PxB))).

Remark.

e The first two terms represent the classical Lorentz force acting on free charges and

currents.

e The terms involving gradients of E and B describe forces on the dipole moments
P and M due to inhomogeneities in the fields, i.e., dielectrophoretic and magne-

tophoretic forces.
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e The last terms involving time derivatives and spatial flures of P x B represent
the momentum exchange between the electromagnetic field and the polarization-

magnetization structure moving with velocity v.

o The splitting into volume and surface contributions clarifies that forces on matter
can be understood both as local volumetric forces and as stresses acting on the
boundary, consistent with the notion of Mazwell’s stress tensor in continuous

media.

After having developed the time derivatives and combined all terms, using D = E + P, we

obtain:

fEM:_% {;(ExB)jLV-(V@(EXB))}

1
+V-[B®H+D®E—2(E2+BQ—2M-B)]I} (4.2.5)

—i—%V-[v@(DxB)]

The electromagnetic force density reveals fundamental insights about momentum exchange
between fields and matter. At its core, this formulation describes how the electromagnetic

field both carries momentum and exerts stresses on material systems:

1
pP™M="ExB (4.2.6)
C

1 1
tEM:B®H+D®E—§(E2+B2—2M.B)H+—v®(D><B) (4.2.7)
C

Electromagnetic momentum density: p™M = %E x B

It represents the kinetic momentum stored in the field configuration. This quantity appears
alongside its temporal derivative and convective terms, showing how field momentum
changes propagate through the system. Physically, these terms account for radiation
pressure effects and momentum transfer when the field configuration evolves in time or

when matter moves through non-uniform fields.

Electromagnetic stress tensor: t"™M =B®H+D®E — J(E* + B2 - 2M - B)I +
1v® (D xB)

It contains richer physics through its four distinct contributions:

e The B® H and D ® E terms represent anisotropic stresses caused by magnetic and
electric polarization. These describe how field lines effectively "pull" on the medium,

with the tensor structure encoding directional effects.

e The —%(E2 + B?)I term provides isotropic pressure from the field energy density,

modified by the M - B term to account for magnetization work.
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+ The velocity-dependent term ¥ ® (D x B) emerges from the interplay between material

motion and field momentum, ensuring proper Galilean invariance.

The balance law formulation elegantly separates these effects:
/ d3x jEM / Bx PEM | d2x (EM
v

showing how the total force equals the rate of field momentum change plus stress contri-
butions through the boundary. This decomposition makes manifest how electromagnetic
forces arise from both local momentum exchange and surface stresses - a physical picture

that remains valid even for moving media and nonlinear materials.

Power

We aim to compute the electromagnetic power spent on a deforming volume of matter
V(t) in presence of an electromagnetic field. The total power is the sum of volumetric and

surface contributions, both written in the co-moving frame:

Wy = Wi+ WP,
Vi v 1 sV
Wy = /V (JCOI-ECJrv- ( “Be + _ji B)> d’x, (4.2.8)

1
WP = ?g ' <j§up Ec+v- <qS“PEC +oJet X B)) Ldx,

The fields are initially expressed in the co-moving frame, where E, = E + %v x B, and the
charge/current densities include polarization and magnetization effects. We first simplify

the volumetric part by grouping terms and substituting known constitutive relations:
W\{jol — / {( \Czol + qvolv) E. J\c/ol (V % B>:| dSX
% c
/(' + 8P+ V xM)-Ed?
= _ C . X.
Vv 1 ot

Applying vector identities, such as V- (M x E) = E-(VxM)—-M-(V x E), and Faraday’s
law V x E = —%B/C, we obtain:

vol 3 L2
WY /{ -E + T -E—-M- t}dx—i—céw(MxE) d*x

Now the surface contribution. Using expressions for surface currents due to magnetization

and polarization:
wir = | [ B g (Um)] i
oV
:—cj{ (M x E)- x+/V v(P - E) d’x.
oV
Adding both contributions, surface terms cancel and we get:

_ [ I ;
Wv—/V[Jf E-M. 8tB+8tP E+V-(v(P E))}dx. (4.2.9)
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M

Remark. The power density wP™ includes several physical processes:

o The j; - E term represents the familiar Joule heating from free currents
. %P - E accounts for the work done in polarizing the medium

. —M'%B describes the energy required to maintain magnetization against changing
fields

o V- (v(P-E)) captures how moving polarization affects energy transport

By expanding the time derivatives we can reach the final form of the local power density,
which reveals how energy is exchanged between the electromagnetic field and material

media:

EM _ 8U,EM
ot

+V- (quM)] -V (cE xH-vu™ +P- E)) , (4.2.10)

This equation contains several physical contributions worth examining in detail, but the

key components are:

1
uPM = 5(E2 + B?), (4.2.11)

M= CExH - v(u™ +P-E). (4.2.12)

Electromagnetic energy density: u"™ = %(E2 + B?)

It represents the familiar vacuum field energy, but now appears in a more general context
where the medium may be moving and polarizable. The term du®™ /0t accounts for the
EM)

temporal variation of this field energy, while V - (vu describes how the energy density

is transported by the motion of the medium.

Power current density: j" =cE x H - v(u*™ + P -E)

It contains two distinct mechanisms of energy transport. The Poynting vector cE x H
represents the standard electromagnetic energy flow, while the velocity-dependent terms
EM)

account for the convective transport of both the field energy (u and the interaction

energy between the polarization and the electric field (P - E).

The complete energy balance in integral form makes the conservation principle explicit:

/ wiM @3x = —d/ uPM d3x —f JEML @2k, (4.2.13)
% de Jy av

This formulation provides a complete picture of electromagnetic energy conversion in
moving, polarizable media, generalizing the standard Poynting theorem to include material

motion and polarization effects.
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4.3 Balance Equations in Electromagnetic Continua

In this section we will conclude the formulation for the mechanical system composed by
the continuum body and the electromagnetic fields; usually fields are taken into account in
form of contribution to the expressions of the force and power for a continuum, but we will
show how, rearranging terms from the previously derived equations for the electromagnetic
force and power, we can recognize direct contribution to the momentum, energy and stress
tensor for example. We can thus make use of a mechanical system where the fields are

themselves part of the subject under examination.

For clarity and focus, this section includes the main steps of the derivation, while the
more lengthy or technical intermediate calculations are deferred to Appendix C, where the

complete development is presented in full detail.

Mass balance

The total mass of a material body remains constant during its motion

and deformation.

Let p(t,x) denote the mass density of a material body occupying a region V(t) C E3,

moving with velocity field v(¢,x). The integral form of the mass balance is:

d
— dBxp=0.
dt /wt) g

This represents the conservation of total mass in a deforming material volume, and holds
independently of the presence of electromagnetic fields. Using the transport theorem and

the chain rule for the material derivative, we recover the standard local form:

Ip

— . =0 4.3.1

LV =0, (4.3.1)
or, equivalently, in material form:

Dp

— -v=0.

Dt +pV-v

Jump condition. In the presence of moving discontinuities, the associated junction

condition across a regular surface D(t) is:
n-[p(v—w)]=0, (4.3.2)

where n is the unit normal to D and w its normal velocity. This ensures continuity of the

mass flux across the interface.

Remark. This is the same condition as in the field-free case, since electromagnetic

fields do not contribute directly to mass transport in classical theory.
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Linear momentum balance

The total linear momentum of a continuum body and the surrounding
electromagnetic field is conserved under the action of internal stresses

and external forces.

Let p(t,x) denote the momentum density of a deformable continuum occupying a region
V(t) € E3, with mechanical body force f and Cauchy stress tensor t. In the presence of
electromagnetic fields, the total linear momentum of the system includes also the field

momentum p™™, and the corresponding Maxwell stress t*M.

The integral form of the balance of linear momentum reads:

d/ d3xp=?§ d?x -t + d®x (f + £EM).
dt Jy) aV(t) V(t)

Here f*M is the electromagnetic force density, given locally in terms of the divergence of

the Maxwell stress and the time derivative of the field momentum:

apEM
FEM — o ~ V- (vep™)+v.tEM
Substituting this into the integral balance yields the total momentum conservation law:
d
7/ Bx (p + p™) = 7{ dx- (™M) 1 [ &t (4.3.3)
dt Jy) V() V(t)

This equation shows that the mechanical and electromagnetic momenta evolve together un-
der the combined effect of internal stresses and applied mechanical forces. Electromagnetic

forces act as internal exchange terms between field and matter.

Applying the transport theorem to the integrand in eq. (4.3.3), we obtain the local
differential form of the momentum balance:

0

5@ +p™) V- (v @+p™)) = V- (t+t™) =f. (4.3.4)
The structure mirrors the purely mechanical case, with additional electromagnetic contri-
butions to momentum and stress. This form emphasizes the coupling between the material

and electromagnetic subsystems.

Jump condition. Across a surface of discontinuity D(t) with velocity field w, the

corresponding momentum flux balance reads:
n-[[(v-w) @ @+p™) - (t+ )] = £, (4.3.5)

where n is the unit normal to the interface and f3"P is a possible surface force density.
This junction condition ensures conservation of linear momentum across singularities in

the material or field distribution.

Remark. This structure reduces to the classical Cauchy momentum balance in the

tEM

absence of electromagnetic fields. The presence of pP™ and reflects how fields carry

momentum and exchange it dynamically with the material medium.
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Angular momentum balance

The total angular momentum of a continuum body and its
electromagnetic field is conserved under the action of internal stresses

and external torques.

For an electromagnetic continuum, the balance of angular momentum takes the integral

form:
d/d3x(x><p+s):j§ x><(d2x-t)+/d3x [x x (£ + £
de Jy )% %

Here, we identify the mechanical momentum density p, the mechanical spin density s, the
mechanical stress tensor t, the mechanical force density £, and the electromagnetic force
density f¥™. Using the expression for f*M (eq. (4.2.5)) and recalling the definitions of the
electromagnetic momentum and stress fields p™ and t"M, we compute:
EM 9 EM EM
x x f :_§<XXP )=V -(va(xxp™M))
— V- (™M x x) — 24 (£@WFM) 1y« pEM,

Integrating over V and applying the transport theorem for time derivatives of integrals

over moving volumes (eq. (2.2.1)), we obtain:

d
/ d3x (x x fEM) = ——/ d*x (x x p*™™)
v dt Jy

v d xox (dPx-tPM) —/ dx [2% (605M) — v x p].
[5)% v

Substituting this into the original angular momentum balance, we obtain:

((ft/ydBX(XX (P‘f'PEM)—i-S):jgvxx <d2x-(t+tEM))

+/d3x(x><f)—/d3x [2*(t(a)EM)—V><pEM].
v 1%

We are thus led to conjecture the existence of an electromagnetic contribution to the spin
density, s®™, such that:

d/ dPxstM = / d3x [2*(t("“)EM) -V X pEM} .
dt Jy %

This yields the final angular momentum balance:

d 3 EM EM) _
dt/vdx(xx(erp )+s+s )_}[

X x (d2x - (6 + t5M)) +/ dx (x x ).
oy %

(4.3.6)
This reaffirms the identification of p*™ as the electromagnetic momentum density and t*M

as the electromagnetic stress tensor.
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1

Spin and torque density. In the purely mechanical case’, we have:

%—FV-(V@s)—C:O,

c=2+t% —vxp,

where ¢ is the mechanical spin torque density, and if p = pv then ¢ = 2 t(*). The
identification of s®M is not arbitrary, but follows from an explicit decomposition of the

fEM “into divergence and time derivative terms. This reveals

electromagnetic force density,
an intrinsic electromagnetic torque density ¢, which must be balanced locally by a spin

term to preserve the angular momentum budget of the system.

Considering the total (mechanical plus electromagnetic) balance, the local form of eq. (4.3.6)

reads:

gs sEM (v (s +s"M) — (c+ M) =
8 Ts )+ V- (ve(s+s™) —(e+c™) =0, (437)

c+cfM =24 (t —i—tEM)(a) —vx(p +pEM).
From this, one recovers:

8SEM

ot
cPM =94 (t(a)EM) — v x p™,

+V'(V®SEM)—CEM:0,

M encodes the non-symmetric

To further clarify its physical meaning, we recall that t(®F
part of the Maxwell stress tensor. When corrected for the orbital term v x p™™ | it gives a
net torque density per unit volume associated with the field-matter interaction. Assuming
the form of ¢®M from physical arguments and dimensional analysis, and using the identity

v x pEM = (v A pEM) = 2 & (v @ pEM), we write:
EM = 04 (tBM _ v g pEM)(a)‘

Recalling the expressions for the electromagnetic momentum and stress tensor (equations

(4.2.6) and (4.2.7)), and using D = E + P and B = H+ M, we find:

t"™M _vep™ =B@B+E®E - %(E2+B2—2M-B)H—B®M+P®E+%@(P x B).
The first three terms are symmetric; hence, the antisymmetric part is:
2(t™M — v @ pEM)(@) :M/\B+P/\E+%/\(P « B).
Thus,
M =M, x B+P xE,.

This gives a physically transparent interpretation: the electromagnetic spin torque arises
from the interaction of the magnetization and polarization with the magnetic and electric

fields in the comoving frame.

!Using the balance of linear momentum as needed to simplify the equations.
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Jump condition. In order to understand the behavior of the quantities at discontinuities,
the jump condition for angular momentum across a moving discontinuity surface D with

normal n and velocity w is:

n-[[(v-w) @ (s+ ™) = (c+ M), (4.3.8)

Remark. The inclusion of s"™ and ¢®M is not a formal artifact, but a physical
necessity arising from the intrinsic angular momentum carried by the electromagnetic
field in matter. These quantities restore the symmetry of the total stress tensor when
averaged over a region and ensure local and global conservation of angular momentum.
This is especially relevant in polarizable and magnetizable media, where hidden torques
arise due to dipolar interactions with fields and motion. Their correct accounting plays
a central role in electromechanical coupling phenomena such as the Einstein—de Haas
and Barnett effects.

Energy balance

The total energy of a continuum body, including mechanical, thermal,
and electromagnetic contributions, is conserved through the interplay of

internal power, heat transfer, and external sources.

For an electromagnetic continuum, the balance of total energy expresses the rate of change

of mechanical and internal energy stored in a deformable volume V), and reads:

d/ d*x [1p2+u] :?{ d2x~t-v+/ d*x (f—l—fEM)'v—j{ j§~d2x+/ d3x (z+25M),
dt Jv 2p oV v Y v

(4.3.9)
where p is the mass density, p is the linear momentum density, « is the internal energy
density, and t is the Cauchy stress tensor. The body force f includes mechanical interactions,
while f®M accounts for electromagnetic forces. The term j? represents the conductive heat
flux, and the terms z and 2" are the volumetric rates of mechanical and electromagnetic
heat production, respectively. The right-hand side thus balances the work of surface and
body forces and the net heat exchange, both mechanical and electromagnetic.

We now recognize that the electromagnetic contribution to energy production can be

EM _ ¢EM EM

compactly written in terms of the electromagnetic power density w V+z

By incorporating this contribution into the total energy content while recalling the balance

EM

expression for w*™ in eq. (4.2.13), the energy balance takes the following integral form:

d 1

&/d?’x [2p2—|—u—|—uEM}: d2x-(t+tEM)-v—|—/d3xf-v
1% P [22% 1%

—j{ GE + '?’EM)~d2x+/ d3x 2,

oV Vv

where we have introduced the electromagnetic stress tensor t*™ and the electromagnetic

sHEM _ :EM EM
c - .]c +t‘

(4.3.10)

contribution to the conductive heat current -v. This expression captures
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both the mechanical and electromagnetic transport of energy and is essential to describe

media where fields interact with matter.
To obtain the local form of the balance, we apply the transport theorem and the divergence
theorem to the integrals, obtaining a partial differential equation valid pointwise:

J 1 2 EM) |: (1 2 EM
(= V-l lv|—
t( +utu + P t+u+u )

(4.3.11)
—(t+tEM)-v+j§+j§vEM} =f - v+z

This equation expresses the pointwise conservation of energy, where the time derivative of
the total energy density and the divergence of the energy flux are balanced by mechanical

work and internal heat production.

Internal energy balance. To isolate the evolution of internal energy within a deformable
continuum interacting with electromagnetic fields, we may subtract the mechanical kinetic
contribution from the full energy balance. Proceeding as in section 3.2, and invoking the
local form of the linear momentum balance to eliminate time derivatives of momentum

density, we arrive at the following local equation:

%+V-(vu—l—j?):t:V®v+z+zEM- (4.3.12)

This expression describes the mechanical interpretation of internal energy evolution. The
left-hand side represents the local rate of change of internal energy u and its transport due
to both advection (through the material velocity field v) and heat conduction (through the
flux ji1). On the right-hand side, we identify three distinct sources of internal energy growth.
The first term, t: V ® v, accounts for the power input due to mechanical deformation, i.e.,
the rate at which the stress field does work on the material through velocity gradients.
The scalar field z encapsulates volumetric heat production of mechanical origin (e.g.,
due to viscous dissipation), while the electromagnetic contribution 2 quantifies the
conversion of electromagnetic energy into internal thermal energy, including effects such
as Joule heating and field-matter interaction mechanisms mediated by polarization and

magnetization dynamics.

Overall, this equation highlights how internal energy increases not only because of thermal
conduction and mechanical deformation, but also due to irreversible electromagnetic

processes, which act as a distributed source of thermalization in the medium.

Electromagnetic heat production rate. A key term in this expression is the elec-

tromagnetic heat production rate M = wPM _ fEM

-v. This quantity captures the
part of electromagnetic power not converted into mechanical work, i.e., the rate at which
electromagnetic fields irreversibly transfer energy to the medium in the form of heat.

M

To compute zPM explicitly, we recall the expressions for electromagnetic force density

and power density, which account for interactions with free charges and currents, as well



4.3. BALANCE EQUATIONS IN ELECTROMAGNETIC CONTINUA 55

as polarization P and magnetization M. After algebraic manipulations and the use of
co-moving fields (e.g. E. = E + v x B/c), we arrive at the final expression:
EM . op
2o = ch—i-E—FVX(PXV)+(V‘P)V+CVXMC -E.
4V (Bex M)+ (PRE.~B®M, + M, -Bl): V®v,

(4.3.13)

where jy. is the free conduction current density, and the subscript ¢ denotes co-moving field
components. The first line represents bulk energy conversion from fields to matter, involving
polarization and magnetization dynamics. The second line includes both a divergence term,
which can act as a flux of field energy, and a field-velocity coupling term, which accounts

for work done by stress-like field structures in a deforming medium.

Electromagnetic heat conduction current density. The heat conduction current
density also receives an electromagnetic contribution, derived from the power flux vector

and the electromagnetic stress tensor. Its final form is compactly written as:
JIEM — B, x H,, (4.3.14)

which generalizes the Poynting vector to moving media. It represents the transport of field

energy per unit time across surfaces, as observed in the material frame.

Jump condition. Finally, to account for possible jumps in energy flux across internal
interfaces, we consider a discontinuity surface D moving with velocity w. The jump
condition associated with the local balance eq. (4.3.11) is:

1 . .
n- H<2Pp2 +u+ uEM> (v —w) — (t +tFM)y 4 I 4 jILEM

] = (F-v+2)™P. (4.3.15)

This condition ensures that energy fluxes and production across the interface are consistently

accounted for, including electromagnetic contributions to both stress and heat conduction.

Remark. The electromagnetic terms in the balance of energy reflect the complex

EM

interplay between fields and matter. The heat production rate z™" includes both dissi-

pative and reversible contributions and can be seen as a generalization of Joule heating

to polarizable and magnetizable continua. The conduction current density j&FM,

on
the other hand, captures the transport of electromagnetic energy due to both fields and
motion, and its expression recovers the standard Poynting vector in the appropriate

limst.
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So far, we have derived balance laws for five fundamental quantities: mass, linear momentum,

angular momentum, energy, and entropy:"

dp
a‘f‘V(pV)—O,
d
—p-—-V-t—£f=0
wP -V :

tT =t, (5.0.1)

d
el Lis) 508 >
dts—i—v j o'? > 0.

These equations are universal and independent of the specific object under study. They
provide 3 constraints for the stress tensor t (from the angular momentum balance) and
5 differential equations to determine 5 of the remaining unknown parameters. However,
the total number of unknowns is 16: p, x (or v), t, u, jiI, 0, and s (assuming the external

actions f and z are known).

Definition 1 (Constitutive Relations). Additional equations that specify how particular
materials respond to mechanical and thermal stimuli, required to complete the underde-
termined system of balance laws. They establish the dependence of stress t, heat flux j2,

internal energy u, and entropy s on the state variables.

Since these equations are insufficient to fully determine the parameters describing the body,
additional equations called constitutive relations are required. These relations depend
solely on the material characteristics. In this chapter, we will provide examples of such
equations for elastic and viscous fluids. We then present the Coleman-Noll procedure
to complete our treatment of continuum thermomechanics. Having previously analyzed
the mechanical balance equations incorporating electromagnetic contributions (where we

treated the electromagnetic fields as integral components of our mechanical system) we

We now focus on the mathematical formulation of our governing equations, where electromagnetic
contributions to momentum, energy, and other quantities are being considered. However, for clarity of
presentation, we are implicitly incorporating these electromagnetic effects within our existing framework of

purely mechanical quantities.

o7
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will employ this general methodological framework to derive additional thermodynamic

constraints and systematically develop constitutive relations for our system.

5.1 Perfect Fluids

The simplest example of a fluid in classical hydrodynamic theory is the perfect fluid. A
"fluid" here refers to any liquid or gas whose mechanical properties obey the following

constitutive relation:

t=—wl, (5.1.1)

where w = w(x,t) represents the pressure field, defined at every point in the continuum
body. This equation defines a perfect fluid, also known as an Fuler fluid. In this type
of fluid, only hydrostatic stresses are present, meaning any effects due to friction can be
neglected. Although purely ideal, this model yields satisfactory results under standard
laboratory conditions (temperature 300 K and pressure 1 Pa). The simplest case of pressure
depending linearly on density is:

w = cp,

which defines the special case of perfect gases, provided the proportionality constant depends
on the absolute temperature:
w = R'0p.

Here, R’ is a material parameter. Rewriting the classical ideal gas law from thermodynamics
as:
wAV = AnR0,

where AV and An represent the volume and number of moles of a small portion of the

fluid, and R is the universal gas constant, we can solve for the pressure field:

An An Am
w = 0=

AV Am AV

From this, we see that the parameter R’ is given by:

RO = kpRo.

R = kR,
where the parameter:
J— An
- Am’

represents the number of moles per unit mass of the portion and is a fixed value specific to
each fluid.

Using the constitutive relation (5.1.1) and the balance laws of mass (5.0.1); and linear

momentum (5.0.1)y, we obtain the system of equations that fully define a perfect fluid:

1
a=——Vw+f, (5.1.2)
p
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! Y - = 0. 1.

The first relation is called the Euler equation. Together, these equations form a system of 4
partial differential equations that completely define the fields p(x,t) and v(x,t), provided
the pressure field w and the vector f are known. For the special case of an incompressible

fluid, the situation simplifies because the mass density p no longer depends on position or

time:
1
a=——Vw+f, (5.1.4)
p
V-v=0. (5.1.5)

5.2 Linear Viscous Fluids

As mentioned earlier, the perfect fluid model is not realistic because it omits internal friction
or dissipation, a phenomenon present in all materials to varying degrees. This important
characteristic is accounted for in the linear viscous fluid model, whose constitutive relation

is:

t = —wl +t@, (5.2.1)

where t(@ is the dissipative stress tensor and represents all stresses due to viscosity. For
example, consider a liquid flowing through a pipe: analyzing the velocities of individual
elements, we observe that they flow slower near the walls and faster at the center. This
relative velocity difference causes friction, which in turn leads to energy dissipation. Thus,
we can infer that t(4 depends on the relative motion between fluid elements, i.e., on terms

like V®v.

The simplest case is the linear one:
td =B.(Vav), (5.2.2)

where B is a generic 4th-order tensor. Explicitly, the components (omitting summation

over repeated indices) are:

!
@ _ p O
T’z‘j = Bzgklﬁ'

It is worth noting that t(¥) can also depend on higher-order spatial derivatives, but we
limit ourselves to the case of low viscosity, where this approximation suffices to describe

most fluids accurately.

To ensure our model describes isotropic fluids, the tensor B must be rotationally invariant.

It can be shown that this requirement is satisfied if B takes the form:

Bijkl = )\5ij5kl + M(5z 5jl + 5il5jk)a
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where A and p are arbitrary coefficients. Using this expression, the dissipative stress tensor

becomes: .
@ v
o =

where we have introduced the strain rate tensor D:

0ij + 20D,

D= % Vev+(vev)T]. (5.2.3)

This tensor represents the symmetric part of V ® v. The tensor B is symmetric under
exchange of indices ¢ and j, as well as k and [, and is also block-symmetric. Thanks to

these properties, t(?) is symmetric under exchange of i and j. In compact form:
t{@ = \(V - v)I + 2uD. (5.2.4)
Thus, eq. (5.2.1) becomes:
t=—wl+ AV -v)[+2uD, (5.2.5)

which is the constitutive relation for linear viscous fluids, also called Newtonian fluids,
where A\ and u are parameters related to the continuum medium. Requiring that the

pressure field equals the mean normal stress:

1
w = —gtr(t),

and substituting this into the constitutive relation (5.2.1), we obtain:
tr(t@) = 0.
Taking the trace of eq. (5.2.4) and using:
tr(D) =V v,
we arrive at:
(BA+2u)V-v=0.

For incompressible fluids, V - v # 0, leading to the Stokes relation:

2
Y=A+gzu=0 (5.2.6)

where y is called the bulk viscosity.

Substituting the constitutive relation (5.2.1) into the local momentum balance, along with

the mass continuity equation, we obtain the governing equations for linear viscous fluids:

1 A
Vo v Vv = —tvm vy A gy ) 4,
ot p p p (5.2.7)

dp B
E—FV-(/}V)—O.



5.3. COLEMAN-NOLL METHOD 61

These are the Navier-Stokes equations, a system of four partial differential equations that
determine the fields p(x,t) and v(x,t). These equations are still widely studied today and
are used to model ocean currents, atmospheric flows, and more. Although we will not
discuss it further, it is important to note that these equations can also model turbulent

flows, where particle motion becomes chaotic rather than orderly as in laminar regimes.

For incompressible fluids, the constitutive relation simplifies to:
t =—wl+ 2uD, (5.2.8)

and the governing equations become:

ov 1 JT—
8t+(v V)v pr—l—pV v +1,

V-v=0.

Despite their similarity to elastic fluids, the term V2v and the nonlinearity in (v - V)v

make finding general solutions much more challenging.

5.3 Coleman-Noll Method

Unlike the other balance laws, the Clausius-Duhem inequality has not yet been used to
determine some of the unknown quantities associated with a continuum medium. To do
so, we employ the Coleman-Noll method, which assumes no constraints on the initial time
t = 0 or the initial values of the quantities. Additionally, it requires that the constitutive

relations of a given medium satisfy the inequality (3.4.6) for every thermodynamic process.
Starting from the Clausius-Duhem inequality (3.4.6), we subtract the local internal energy
balance (3.2.12) divided by the absolute temperature 6, as we have previously done in
section 3.4, obtaining:

ds 1du 1.5 1
RIS J— R V/ + —t: \/ v) > 0.
p(dt 0 dt) 92Jc o Qt (Vev)=0

or equivalently:

du ds ja
_ _ _fHh— e S : > 0.
p(dt edt)+ © V04t (VEv) >0

Now we have to introduce a specific free energy in order to derive restrictions on our

variables.

Definition 2 (Specific free energy). The fundamental thermodynamic potential for consti-
tutive theory:
p=u—0s (5.3.1)

This Legendre transform from internal energy to free energy shifts focus from entropy to

temperature as independent variable.
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Introducing the specific Helmholtz free energy:
f=u—0s, (5.3.2)

we transform our last from of the C-D inequality into:

df do i
L 4+s—) - .VO+t: (Vav)>0. 3.
p(t 8t> 7 O0+t: (Vav)>0 (5.3.3)

By definition, the free energy f may depend on p, 6, x (or v), and their spatial and
temporal derivatives. For simplicity, we assume dependence only on the first two quantities,
ie., f = f(p,0). Using the chain rule to compute the total time derivative of f and the

constitutive relation for perfect fluids (5.1.1), we obtain:

ofd af do do ji
_ (fp+ Fdo >_Jc

9) YJ - .V — v > 0. 3.4
dpdt " ogat Sar) o V@YVl (5.3.4)

Using the local mass balance (3.2.1), we express the divergence of velocity as:

1dp
=——— 5.3.5
V=oan (5.3.5)
which allows us to rewrite eq. (5.3.4) as:
of do of w\dp i
—p (2L Z p(HE-Z)VE e g 5.3.6
”(89”) dt p(ap p2) T (53.6)

According to the Coleman-Noll theory, the initial time ¢ = 0 and the initial values of the
time derivatives of # and p can be chosen arbitrarily. To preserve the inequality (5.3.6),

the coefficients of these derivatives must vanish, yielding:

These are the well-known thermodynamic relations connecting entropy and pressure to the

derivatives of the Helmholtz free energy. The inequality then reduces to:

jH
—? -V > 0. (5.3.7)
If we impose Fourier’s law:
il = —kve, (5.3.8)

where k is the thermal conductivity, we immediately obtain:

k
GV0- Vo =0, (5.3.9)

which implies:
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This shows that the thermal conductivity k is always non-negative. Fourier’s law represents
a constitutive relation for j?: eq. (5.3.8) describes j? as a vector with the same direction
as the temperature gradient but opposite in sign. In other words, ji! points from hotter to

colder regions, in perfect agreement with energy conservation.

Remark. The Coleman-Noll procedure guarantees that all derived constitutive relations

automatically satisfy:

e The second law of thermodynamics;
e Material frame indifference;

e Thermodynamic stability conditions.

General Methodology

The four-step procedure provides a systematic approach to developing thermodynamically

consistent constitutive theories for arbitrary material systems:

1. State variable selection identifies the minimal set of independent variables (e.g.,
p,0,V0 for simple fluids; F, 0 for solids) that completely characterize the material’s

state.

2. Constitutive postulates establish the functional dependencies of stress, heat flux,

etc. on these variables, with the generality constrained only by:

e Material symmetry;
e Frame indifference;

e Physical plausibility.

3. Entropy inequality acts as a thermodynamic filter, eliminating non-physical con-

stitutive assumptions through the Coleman-Noll exploitation theorem.

4. Admissible forms emerge as the most general mathematical structures satisfying

both the physical postulates and thermodynamic constraints.

The true power of this methodology manifests in three fundamental aspects. First, its
universality becomes apparent when observing how the same rigorous procedure derives
the Navier-Stokes equations from viscous fluid assumptions, recovers Hooke’s law for elastic
solids, and generates Maxwell’s equations in continuum electrodynamics. Second, the
framework demonstrates remarkable adaptability, as special cases naturally emerge through
constraint reduction like incompressibility conditions, order truncation in linearized theories,
or symmetry considerations for isotropic materials. Third, its extensibility allows seamless

incorporation of higher-grade materials via extended variable sets, coupled physics through
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additional balance laws, and memory effects using internal variables. This comprehensive
approach extends beyond smooth fields, as demonstrated by jump condition analysis that
governs shock wave structure, phase transition fronts, and material interface behavior while

maintaining complete thermodynamic consistency even across discontinuities.
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Appendices

A Notation and Conventions

Heaviside-Lorentz vs SI Units

In this dissertation, we occasionally refer to the Heaviside-Lorentz (HL) unit system,
which belongs to the family of rationalized CGS (centimetre—gram-second) units. The
HL system is often employed in theoretical and high-energy physics due to its manifestly

relativistic symmetry and absence of arbitrary constants such as 4, g, or .

In contrast, the International System of Units (SI) introduces the vacuum permittivity
g0 and permeability po to relate electromagnetic quantities to mechanical units (newtons,
volts, coulombs, etc.). These constants obscure the symmetry of Maxwell’s equations,

especially in covariant formulations.

Maxwell’s equations in vacuum, in Heaviside-Lorentz units:

VEZP,
V-B=0,
10B
E=——
VX c ot’
1 OE
B=-(J+—].
VX c < + Bt)
Maxwell’s equations in vacuum, in SI units:
V-E= ﬁj
€0
V-B =0,
0B
VXE=———
x ot’
OE
V x B = ppd —|—,u0€0§.

Here, ¢ = 1/,/2opo is the speed of light in vacuum, and acts as a natural conversion factor

between the two systems. In the HL system:

67
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e The fields E and B have the same physical dimensions and units;
e The sources p and J are defined to eliminate the factor 47 from Maxwell’s equations;

o The coupling between fields and sources appears with a factor of 1/c in dynamic

terms.
To convert between HL and SI units, one must apply the following scaling factors:

e Charge: 1C ~ 2.998 x 10 HL units of charge,

o Electric field: 1V/m ~ \/%T) HL E-field unit,

e Magnetic field: 1T = ,/ug HL B-field unit.

Note that, unlike in Gaussian CGS, there are no 4x factors in the HL formulation. This
rationalization results in a more symmetric structure of the field equations, particularly
convenient for the formulation of classical field theory and special relativity. In this work,
we prefer the HL system when deriving field-theoretic identities, but all final physical

quantities can be converted back to SI units via the above relations, if needed.

Kinematics of deformable domains

Notation Conventions on velocity field and material derivative.

The velocity field v(t,x) describes the motion of material points in V(t), A(t), or

L(t). For a scalar field ¢(¢,x), the material derivative is defined as:

Do _0¢ , .
Dt ot VoV

For vector fields, the derivative is applied component-wise.

Notation Conventions on oriented measures.
Throughout the following chapters, we adopt the following notational conventions for
integrals over deforming domains:

« d?x: oriented volume element. This is the standard Lebesgue measure in R®.

e d2x :=ndA: oriented surface element, where n is the outward unit normal to the

surface A(t), and dA is the scalar area element.

o dx := 7ds: oriented line element, with 7 the unit tangent vector to the curve C(t)
oriented consistently with n via the right-hand rule for closed curves, and ds the

arclength.
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Thermomechanics of continua

Definition 3 (Cauchy stress tensor). The tensor field t(t,x) describes internal contact
forces per unit area in the current configuration. Physically, t - n gives the traction vector

acting on a surface element with normal n.

Notation Stress decomposition.

In general, the stress tensor t is not symmetric. Its antisymmetric part and its Hodge

dual are deﬂned as:
a 1 a 1 a

where €;; is the Levi-Civita permutation symbol. The dual pseudovector *t(@) appears

naturally in angular momentum balance.

Cauchy’s tetrahedron construction. I[t’s a model which let us consider the force
balance on an infinitesimal tetrahedron with three faces aligned with the coordinate planes
and one oblique face with unit normal n. Denoting by t(n) the traction vector acting on
the inclined face, and by t; = t(e;) the tractions on the coordinate planes, the balance of
forces yields:

t(n) = n1t; + nate + nats,

which implies the existence of a second-order tensor o such that:
t(n) =0 -n.

This tensorial relation shows that the internal force per unit area acting across any surface

depends linearly on the surface’s orientation.

Definition 4 (Jump operator across a moving surface). Let D(t) be a surface across which

a field f is discontinuous. The jump of f is defined as:

[f1=rf"=f,

where fT and f~ denote the limiting values of f on either side of the surface, along the
normal direction. Jump conditions play a fundamental role in determining the compatibility
of conservation laws across discontinuities (we will use assumptions and derivations similar

to those used in the previous chapter for the kinematic jump conditions).

Notation Tensor operations.

 Double contraction: A: B =73, Ai;Bij.
 Tensor product: [v® wl;; = vjwj.

e Material derivative: % = % +v-V.
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B Derivations for Electromagnetic Sources

This appendix provides the complete mathematical derivations omitted in section 4.2 for the
electromagnetic sources in a continuum. We derive the force density, momentum density,
stress tensor, internal energy density and power current density from the electromagnetic

fields and their interactions with matter.

Force Density Derivation

This appendix provides the complete mathematical derivations for the electromagnetic force
expressions, including the volumetric and superficial contributions, the electromagnetic

stress tensor and momentum density, omitted for brevity in section 4.2.

Volumetric force. The full expansion of F}’j’l with intermediate steps:

Fy,ol_/d?’xl(qf—v-P) <E+‘c’ xB)
1%

_l’_

ol

P
<jf—qfv+%t+(V-P)V+CVXM) XB]

1 1
:/d?’x[qu—qfva—i—jfxB—i—qfva—(V-P)E—(V-P)VXB
v c c c c

10P 1
+C(%XB+C(V'P)V><B+(V><M)XB]

1 10P
:/d3x{qu+jf><B—(V~P)E+86t><B+(V><M)><B
Vv c c

The term —(V - P)E is transformed using tensor identities:

—~(V-PE=-V-(P®E)+P - (VQE)
=-V-(PQE)+P-(VAE)+(VQE)-P
=V - (PRE)+P x(VXE)+(V®QE)-P
=-V-(PRE)-Px(VXE)+(VKQE)-P

P 0B

The magnetization term expands as:

(VxM)xB=(B-VM—-(VeaM)- B
—(B-V)M—-V(M-B)+ (VeB) M
= (V-BM+V-BeM- (M-B))+(VeB)-M
— V- BeoM— (M-B)I)+ (Ve B)-M
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Surface force. The complete surface force derivation:

F;upzj,{ d2x[(n-P)E+(n-P)VxB—n.B(M+VxP)+n<M+V><P>~B}
oy c ¢ ¢
=¢ d’x- [P@E-B@MH(M-B)}
2)%

+1 dQX.[P@(VXB)—B(@(VXP)—FH((VXP)'B)}
C Joy

_ d2x~[P®E—B®M+H(M-B)]+/d3xV- {V®(P><B)]
oy v &

where the first passage uses the following derivations:

m-P)vxB—-—n-BvxP)+(vxP- -B)n
n-PxB:-v)—n-Bx*P: -v)+n(P xB)v=
n-Po+B-Be«P+I(PxB)|-v=
mev):I(PxB)=(n-v)(P xB);

n-P)E-—(n-BM+ (M- -B)n =
n- PeE-BeM+I(M-B).

Momentum density and stress tensor. The complete steps for the electromagnetic

force density final form, which let us derive the momentum density and stress tensor:

0 10 10 10
10 1 /0D 0B

:(VXH)XB—%ijB—DX(VXE)
=(B-VVH-VH-B)+ (V-D)E+ (D-V)E

1

Power Density Derivation

This appendix provides the complete mathematical derivations for the electromagnetic
power expressions, including volumetric and superficial contributions, the power density

current and internal electromagnetic energy, omitted for brevity in section 4.2.
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Volumetric power. The full expansion of the volumetric power from the co-moving
frame is given by:

W%Ol _ /vd?)x [(-Zol + qvolv) ‘E, _j\czol . % % B:|

= | @G +¢"V) - (B - ~ x B

%
B
_ 3 (3 il .
_/Vd X(Jf+atP+cVXM) E
T P
:/dx ji B+ S B4 eV (M-E)+(V xE)- M
%
P OB
f— 3 3 . —_— — - — 2 .
_/de{.]f B+ E-M m]“ ) dix- (M xE),

where we have applied the vector identity for V x (M x E) and Faraday’s law:

(VXM)-E=V-MxE)+M-(VxE)
1 s,

Surface power. The full expansion of the surface power from the co-moving frame is
given by:

wir = f [+ ) B g Y ]
v ¢
= § (4 Py) - (Be— Y x B)
oV ¢
- d%x [—ch(M—l—VXP)(H'P)V} -E
v ¢
= *x-v(P-E)—c¢ d’°x-(MxE)
F5)% oV
= ¢ dQX‘(MXE)+/d3XV'(V(P'E))7
oy v

where we have used surface charge and current relations:

¢ =n-P;

PP = —enx (M+ 2 x P).
C

Power balance. Combining the volumetric and surface contributions, we obtain the
total power:

0 0
Wy=[ ljf E+ <P E-M-2B+V-(v(P -E))|d
v /v[,]f +5‘t 9 + V- (v( )| d°x
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To express this in terms of field energy, we manipulate the polarization and magnetization

rerms: oP OB oD OF OB OB
o BEMo = By BB v ey
0 (E*+B% 0D OB
"o 2 o ErH
2 2
:_;(E ;B)+c(V><H)-E—jf~E—cH-(V><E)
. 0 (E? +B?)

where we have used Maxwell’s equations to rewrite the time derivatives:

OD-E=c¢(VxH)-E—j;-E
B,

H-oB=-cH (VxE)

Combining these with the convective term V - (v(P - E)) yields the final energy balance
equation shown in the main text, with the contribution from the internal energy density

and the power current density.

C Derivations for Electromagnetic Balance Equations

This appendix provides the complete derivations of the electromagnetic balance equations,
which were omitted for brevity in section 4.3. We present the angular momentum and
energy balances by explicitly manipulating the relevant terms, and highlighting the key

identities and assumptions used in the simplification process.

Angular Momentum Balance

We begin by taking the moment of the electromagnetic force density with respect to the

origin:
8pEM

ot

We now distribute the cross product and apply the standard vector identities for time

x x ™M = x x |- — V- (vep™)4+ v tEM|

derivatives and divergences of tensor products. First, we recognize:

aPEM . 0 EM 0x EM _ 0 EM
5 —a(xxp )—axp —a(xxp ),

since x is the spatial position vector and does not depend on time. Similarly, we expand

X X

the divergence of a product:
x X V- (vap™) = V. (v (x x p™)) - (Vx) - v x pY,
and use the identity (Vx)-v = v, to get:

v-VxxpEM:vxpEM.
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For the stress tensor term, we use the identity:
xx V-tPM = v (tBM 5 x) — (BT . ¥ x x = V- (tPM x x) — 2 % (¢(@EM)

where *(-) denotes the vector dual of the antisymmetric part of the tensor. Altogether, we
find:

XXfEM:—g

8t(x xp™) — V. (v (x x p™M)) = V. ("M x x) — 2% (t@FM) 4 v x pPM,

M

Intrinsic torque density. We now turn to the intrinsic torque density ¢, and

manipulate it using standard vector identities:
FM_MxB+PxE+ > x (PxB)
c
v v
=MxB+PxE+P x (xB)Bx <><P>
c c
v v
=M+ —-xP)xB+Px(E+ — xB)
c c
=M., xB+P xE,

where we have defined the co-moving magnetic and electric fields M, and E..

Energy Balance

Heat production rate. We now turn to the calculation of the electromagnetic heat
production rate z®M, given by the difference between the work density and the power input

from the electromagnetic force:

EM _  EM _ ¢EM

z V.

We begin by expanding the contributions to w™™ and grouping the resulting terms:

0B oP
EM_. . _— - —_— —_— . . .
2V =jr-E-M 8t+(8t> E+V.-v(P-E)
+(V-V)P-E+(V-V)E~P—qfv~E+jf'%><B
OP v v 0B

F(V-VP- Y xB+(v-V)P- Y xB- Y xP. (v V)B.
C C C

Next, we reorganize these terms into combinations involving the co-moving electric field

E. = E + ¥ x B, and the co-moving magnetization M. = M + ¥ x P. This yields:
EM . op
27 = ‘]ffq]vv+§+V><(va)+(V-P)v+(P-V)V -E.

—(M—i—‘c/XP)-(%]?—FVX(B><v)—(V-v)B+(V-B)v+(B-V)v>.
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Using the free conduction current jr. = j§ — qsv, we finally obtain:

P
V= (jget B4 (Pxv) + (T P)V) B

—Mc'<68]:,+V><(B><V)+(V-B)V>

+(PRE.-B®M.+ (M. B)I): V.

To simplify the magnetization term, we recall the modified Maxwell equation for the

co-moving electric field:

VXEC+E(%§;+VX(BXV)+(V-B)V>—0,

which allows us to express:

MC-<8£+V><(BXV)+(V-B)V):cv-(EcxMC)+cEc.vXMc.

Electromagnetic heat conduction current density. We conclude with the calculation

JILEM _ §EM | ¢EM

of the electromagnetic contribution to the total energy flux j. - v, where

the full expression is:
JIEM — 'E xH+4 (H-v)B + (E-v)D

—((E+P)-E+(B—M)-B+Z><B-D>V

:c(E—i—VxB)x(H—VxD),
C C

where the final expression is obtained through several vector identities and reflects the

covariant form of the Poynting vector in a moving medium.
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