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Abstract

Multiphase electric machines constitute a category of electric motors notable for high
torque density, reliable operation, and robust performance under fault conditions, making
them strong candidates for automotive propulsion. This thesis, conducted during a research
period at the Power Electronics and Machine Centre of the University of Nottingham
(UK), focuses on stability analysis and control strategies for multiphase electric machines.

Initially, an overview of the three-phase machines is presented, including the derivation
of all fundamental equations and the associated reference frame transformations. This is
followed by an analysis of the mathematical models and control schemes used for speed,
torque, and current regulation. From this, the fundamental equations for dual-three-phase
machines are derived, along with a description of their topologies and the methodology
used for machine characterization.

A comprehensive inductance analysis is conducted for both Interior Permanent Magnet
(IPM) and Surface Permanent Magnet (SPM) multiphase machines, accounting for linear
and nonlinear B −H material characteristics. Based on the derived values, classical,
modified, and autotuned PI controllers are investigated, along with a comparison of various
feedforward compensation techniques. The current control strategy is developed using
the modular approach and the vector space decomposition (VSD). Furthermore, instead
of relying on inductance values for flux estimation, a control strategy based on a flux
observer is proposed and evaluated.

All control loops are implemented on the derived machine models to evaluate their effect
on system stability and dynamic performance. For current control, which is modeled as a
multiple-input multiple-output (MIMO) system, a state-space representation is developed
and analyzed through eigenvalue analysis.

To validate the theoretical models and control algorithms, detailed studies are carried out
in Matlab and Simulink. The simulation results are analyzed to compare the dynamic
response and robustness of the various control strategies under a range of operating
conditions, including different load torques and speed profiles.
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Sommario

Le macchine elettriche multifase costituiscono una categoria di motori elettrici noti per
l’elevata densità di coppia, il funzionamento affidabile e le prestazioni robuste in condizioni
di guasto, rendendole forti candidate per la propulsione automobilistica. Questa tesi,
svolta durante un periodo di ricerca presso il Power Electronics and Machine Centre
dell’Università di Nottingham (Regno Unito), si focalizza sull’analisi della stabilità e sulle
strategie di controllo per macchine elettriche multifase.

Inizialmente, viene presentata una panoramica delle macchine trifase, inclusa la derivazione
di tutte le equazioni fondamentali e le trasformazioni del sistema di riferimento associate.
Segue un’analisi dei modelli matematici e degli schemi di controllo utilizzati per la
regolazione della velocità, della coppia e della corrente. Da ciò, vengono derivate le
equazioni fondamentali per le macchine doppio trifase, insieme a una descrizione delle loro
topologie e della metodologia utilizzata per la caratterizzazione della macchina.

Viene condotta un’analisi completa dell’induttanza sia per macchine multifase a magneti
permanenti interni (IPM) sia per macchine a magneti permanenti superficiali (SPM),
tenendo conto delle caratteristiche lineari e non lineari del materiale B−H. Sulla base dei
valori ottenuti, vengono studiati controllori PI classici, modificati e autotunati, insieme a
un confronto tra varie tecniche di compensazione in avanti. La strategia di controllo della
corrente è sviluppata utilizzando l’approccio modulare e la decomposizione dello spazio
vettoriale (VSD). Inoltre, anziché basarsi sui valori di induttanza per la stima del flusso,
viene proposto e valutato un approccio di controllo che impiega un osservatore di flusso.

Tutti i loop di controllo sono implementati sui modelli derivati della macchina per valutarne
l’impatto sulla stabilità del sistema e sulle prestazioni dinamiche. Nel caso del controllo di
corrente, modellato come un sistema a ingressi e uscite multiple (MIMO), viene sviluppata
una rappresentazione nello spazio degli stati e analizzata mediante analisi degli autovalori.

Per validare i modelli teorici e gli algoritmi di controllo, vengono condotte simulazioni
dettagliate in Matlab e Simulink. I risultati delle simulazioni sono analizzati per confrontare
la risposta dinamica e la robustezza delle varie strategie di controllo sotto una gamma di
condizioni operative, inclusi diversi carichi di coppia e profili di velocità.
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Chapter 1

Fundamentals of electric motors,
power electronics, and controls

The architecture of a general electric powertrain, encompassing the electric motor, power
electronic converter, and control system, forms the central theme of this introductory
chapter. To effectively navigate the complexities inherent in multiphase electrical machines,
this study adopts a progressive approach, initially establishing a robust understanding of
the three-phase system.

1.1 Overview of three-phase drives

This chapter begins with the examination of conventional three-phase machine equations,
establishing the mathematical framework necessary to develop equivalent multiphase
machine models. Although three-phase machines are dominating the market due to their
operational simplicity and mature control methodologies, they present several limitations.
The fundamental constraints of three-phase architectures manifest primarily in their limited
DOF that is possible to control. In the context of electric drives, the term DOF refers to
the number of independent electrical variables that can be actively controlled to influence
the electromagnetic behavior of the machine. This section provides a formal analysis of
the degrees of freedom for both conventional three-phase and dual three-phase machines.

Three-phase machine

A three-phase machine includes three stator windings fed by a currents ia, ib, and ic.
Under balanced operating conditions, and assuming no neutral connection, these currents
are constrained by Kirchhoff’s current law, leading to the following condition:

ia + ib + ic = 0 (1.1)
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This constraint implies that only two of the three phase currents are linearly independent.
As a result, the number of electrical degrees of freedom is: DOFelectrical = 3 − 1 = 2
These two electrical degrees of freedom are typically exploited to independently control the
torque-producing and the flux-producing components of the stator current. Although the
physical implementation of such control is typically carried out in a transformed coordinate
system, the existence of only two independent electrical variables remains fundamental.
Mechanically, the machine has one degree of freedom associated with the rotation of the
rotor: DOFmechanical = 1
Consequently, the total number of degrees of freedom is given by:

DOFtotal = DOFelectrical + DOFmechanical = 2 + 1 = 3 (1.2)

One of the fundamental limitations of three-phase architectures is their inherently low
DOF, which restricts fault tolerance and can lead to significant performance degradation or
even complete system failure. This vulnerability poses a critical challenge in applications
where continuous and reliable operation is essential. Additionally, three-phase systems
typically exhibit higher torque ripple compared to multiphase alternatives, resulting in
increased mechanical vibrations that can compromise operational smoothness and user
comfort. From a power distribution standpoint, confining the electrical load to only three
phases necessitates higher current in each winding, thereby increasing Joule losses and
exacerbating thermal management issues.

Dual three-phase machine

A dual-three-phase machine consists of two independent three-phase winding sets, com-
monly referred to as sector A and sector B. Each has its stator currents: ia1, ib1, ic1 for
sector A, and ia2, ib2, ic2 for sector B.
Assuming again that each sector operates under balanced conditions with no neutral
connection, the following constraints apply:

ia1 + ib1 + ic1 = 0
ia2 + ib2 + ic2 = 0

(1.3)

This results in two linear constraints among the six total phase currents. Therefore, the
number of independent electrical variables is: DOFelectrical = 6 − 2 = 4
The rotor remains mechanically constrained to a single degree of freedom, representing its
angular position: DOFmechanical = 1
Hence, the total number of degrees of freedom in a dual three-phase machine is:

DOFtotal = DOFelectrical + DOFmechanical = 4 + 1 = 5 (1.4)
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The inherent redundancy of multiphase configurations provides robust fault tolerance,
enabling continued operation despite partial winding failures, a capability of particular
importance in aerospace propulsion and automotive traction systems where operational
reliability directly impacts safety. The distributed nature of power transfer across multiple
phases simultaneously reduces the current density in individual windings. Additionally,
the increase in phase number inherently produces smoother torque, effectively addressing
vibration and acoustic noise issues prevalent in conventional three-phase machines.

1.1.1 Machine equation

The following section outlines the derivation of the fundamental machine equations, which
form the basis for developing the corresponding models for a dual-three-phase motor.
This approach enables the representation of phase voltages by synthesizing two fundamental
physical principles that govern all electrical machines. The first is Ohm’s law, which
accounts for the resistive voltage drop across the machine windings. The second is the
Faraday-Neumann-Lenz law, which describes the induced voltage components resulting
from time-varying magnetic flux. By considering the three phase as three independent
circuit, it is possible to express the phase voltage as following:


va = Rs · ia + dφa

dt

vb = Rs · ib + dφb

dt

vc = Rs · ic + dφc

dt

(1.5)

Equation (1.5) can be rewritten in matrix format:

va

vb

vc

 = Rs ·


ia

ib

ic

+ d

dt


φa

φb

φc

 (1.6)

The formula (1.6) can be rewritten in the stationary αβ reference frame using the Clarke
transformation, which converts all terms from the three-phase abc reference frame into
two orthogonal components. This transformation is essential for simplifying both analysis
and current control.

Clarke and Park transformation

Consider a general three-phase quantity u, composed of components ua, ub, and uc, each
separated by a phase shift of 120◦. The figure 1.1 illustrates the three main reference
frames:

• abc reference frame (three-phase system);
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• Stationary αβ frame (Clarke transformation);

• Rotating dq frame (Park transformation).

Figure 1.1: Reference frames

Clarke transformation

The Clarke transformation projects the three-phase system into two orthogonal axes:

• α-axis, aligned with phase a;

• β-axis, orthogonal to α, forming a 2D orthogonal basis.

Assuming a balanced system, the three phase vectors are separated by 120◦ in space and
can be geometrically represented in the two-dimensional αβ plane as follows:



ā = cos(0◦) î + sin(0◦) ĵ = 1 · î

b̄ = cos(120◦) î + sin(120◦) ĵ = −1
2 · î +

√
3

2 · ĵ

c̄ = cos(−120◦) î + sin(−120◦) ĵ = −1
2 · î −

√
3

2 · ĵ

(1.7)

Considering a generic vector ū in abc:

ū = ua · ā + ub · b̄ + uc · c̄ (1.8)

Substituting (1.7) into (1.8):

ū = ua · (1 · î) + ub · (−1
2 · î +

√
3

2 · ĵ) + uc · (−1
2 · î −

√
3

2 · ĵ) (1.9)
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By separating the αβ components, the following expressions can be obtained:
uα = ua − 1

2ub − 1
2uc

uβ =
√

3
2 (ub − uc)

(1.10)

Assuming a balanced three-phase system, the sum of the phase components is zero. This
allows one phase to be expressed in terms of the others, as follows:

ua + ub + uc = 0 ⇒ uc = −ua − ub (1.11)

To preserve the vector results between the original three-phase system and its orthogonal
projection, the following relationship must be satisfied:

∥uabc∥ = ∥uαβ∥ ⇒ u2
a + u2

b + u2
c = u2

α + u2
β (1.12)

The first term of (1.12), in accordance with (1.11), is:

u2
a +u2

b +u2
c = u2

a +u2
b +(−ua −ub)2 = u2

a +u2
b +u2

a +2uaub +u2
b = 2u2

a +2u2
b +2uaub (1.13)

The second term of (1.12), in accordance with (1.10), is:

u2
α + u2

β =
(

ua − 1
2ub − 1

2uc

)2
+
(√

3
2 (ub − uc)

)2

=
(

ua − 1
2ub − 1

2uc

)2
+ 3

4(ub − uc)2

=
(

u2
a − uaub − uauc + 1

4u2
b + 1

2ubuc + 1
4u2

c

)
+ 3

4(u2
b − 2ubuc + u2

c)

= u2
a − uaub − uauc + 1

4u2
b + 1

2ubuc + 1
4u2

c + 3
4u2

b − 3
2ubuc + 3

4u2
c

= u2
a − uaub − uauc + u2

b − ubuc + u2
c

(1.14)

Substitute (1.11) into the expression (1.14):

u2
α + u2

β = u2
a − uaub − ua(−ua − ub) + u2

b − ub(−ua − ub) + (−ua − ub)2

= u2
a − uaib + u2

a + uaub + u2
b + uaub + u2

b + u2
a + 2uavb + u2

b

= 3u2
a + 3u2

b + 3uaub

(1.15)

Finally, equation (1.12) can be validated by combining equations (1.13) and (1.15):

(u2
α + u2

β) = 2
3(u2

a + u2
b + u2

c) (1.16)

In conclusion, combining the equations (1.10) and (1.16) is possible to obtain:
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uα

uβ

 = 2
3

1 −1
2 −1

2

0
√

3
2 −

√
3

2



ua

ub

uc

 (1.17)

In most cases, this equation is derived by incorporating the common-mode terms x0

mathematically defined as: x0 = 1
3(xa + xb + xc)

Summarizing these equations together is possible to obtain the following:
uα

uβ

u0

 = 2
3


1 −1

2 −1
2

0
√

3
2 −

√
3

2
1
2

1
2

1
2


︸ ︷︷ ︸

Tabc→αβ


ua

ub

uc

 (1.18)

Considering equation (1.6) and multiplying each term for the transformation matrix
Tabc→αβ is it possible to define the following new terms:


vα

vβ

v0

 = Tabc→αβ


va

vb

vc

 ,


iα

iβ

i0

 = Tabc→αβ


ia

ib

ic

 ,


φα

φβ

v0

 = Tabc→αβ


φa

φb

φc

 (1.19)

The previous equation can be reformulated using the following notation, which represents
the machine equation in the αβ reference frame:


vα

vβ

v0

 = Rs


iα

iβ

i0

+


φα

φβ

v0

 (1.20)

Park transformation

Considering the vector:
ūαβ = uα + juβ (1.21)

Now consider a new reference frame, denoted as the d-q frame, which is rotated by an
angle θ with respect to the stationary α-β frame. The transformation of coordinates from
the α-β frame to the d-q frame can be mathematically described by:

ūdq = ūαβ · e−jθ (1.22)

Substituting (1.21) inside (1.22):

ūdq = uα · cos(θ) + uβ · sin(θ) + j(−uα · sin(θ) + uβ · cos(θ)) (1.23)

To distinguish between the two reference frames, the transformation can be expressed in
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matrix form as follows:
ud

uq

 =
 cos(θe) sin(θe)
− sin(θe) cos(θe)


︸ ︷︷ ︸

Tαβ→ dq

uα

uβ

 (1.24)

In general, the equation (1.20) can be transformed into the dq reference frame by multiplying
both sides of the equation by the Park transformation matrix Tαβ→ dq:

Tαβ→ dq ·

vα

vβ

 = Tαβ→ dq · Rs ·

iα

iβ

+ Tαβ→ dq · d

dt

φα

φβ

 (1.25)

In accordance with the general equation (1.24) it is possible to obtain:
vd

vq

 = Rs

id

iq

+ Tαβ→ dq · d

dt

φα

φβ

 (1.26)

The previous equation is not fully developed, as the flux terms are more complex to handle
due to their dependence on the electrical angle. To completely transform the equation in
the dq reference frame, it is necessary to rewrite the fluxes as follows:

φα

φβ

 = (Tαβ→ dq)−1

φd

φq

 (1.27)

Where the inverse of the Park matrix transformation is the following:

(Tαβ→ dq)−1 =
cos(θe) − sin(θe)

sin(θe) cos(θe)

 (1.28)

Applying the derivative:

d

dt
(Tαβ→ dq)−1 = ωe

− sin(θe) − cos(θe)
cos(θe) − sin(θe)

 (1.29)

Rewrite equation (1.26) with the previous substitution:
vd

vq

 = Rs ·

id

iq

+ d

dt

φd

φq

+ Tαβ→ dq · d

dt
(Tαβ→ dq)−1 ·

φd

φq

 (1.30)

Where is it possible to rewrite:

Tαβ→ dq · d

dt
(Tαβ→ dq)−1 =

 cos(θ) sin(θ)
− sin(θ) cos(θ)

 · ω ·

cos(θ) − sin(θ)
sin(θ) cos(θ)

 (1.31)

Remembering the identity sin2(θ) + cos2(θ) = 1 and simplifying terms with opposite signs,
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it is possible to obtain:

Tαβ→ dq · d

dt
(Tαβ→ dq)−1 =

0 −ω

ω 0

 (1.32)

Finally, the resulting equation, in accordance with [6], is:
vd

vq

 = Rs ·

id

iq

+ d

dt

φd

φq

+
0 −ω

ω 0

 ·

φd

φq

 (1.33)

1.1.2 Current control

A proportional-integral controller is a widely used control strategy in automatic control
systems. Its aim is to minimize the error between a desired reference signal and the actual
output of a system by adjusting the control input. The PI controller achieves this by
combining two types of control actions:

• Proportional term (P): generates a control signal that is directly proportional
to the current error. This term plays a significant role during transient phases,
particularly when the error changes rapidly;

• Integral term (I): produces a control action based on the cumulative sum of past
errors over time. This term becomes especially important in steady-state conditions,
as even small errors persisting over a long duration can accumulate.

Mathematically, the control signal u(t) generated by the PI controller is expressed as:

u(t) = Kp · e(t) + Ki

∫ t

0
e(τ) · dτ (1.34)

where e(t) = yref (t) − y(t).
Taking the Laplace transform of the time-domain PI controller, and assuming zero initial
conditions, the control signal U(s) in the frequency domain becomes:

U(s) = Kp · E(s) + Ki

s
· E(s) =

(
Kp + Ki

s

)
· E(s) (1.35)

Where the terms that describe the transfer function of the classic PI become:

GP I(s) = U(s)
E(s) = Kp + Ki

s
(1.36)
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Figure 1.2: Classic PI scheme [1]

PI controller does not operate effectively when dealing directly with sinusoidal variables,
due to the continuously oscillating nature of the error signals. This limitation is one of the
key motivations behind the introduction of the dq transformation. By transforming the
three-phase quantities into a rotating reference frame aligned with the rotor, the sinusoidal
signals become steady-state values.
In this synchronous reference frame, two independent PI controllers can be employed, one
for each axis (d and q), enabling effective decoupling of flux and torque control. This
technique, which decomposes the stator current vector into two orthogonal components, id

and iq, is known as field oriented control.
From the machine equations presented in (1.33), the Laplace domain representation can
be derived:

Vd(s) = Rs Id + sLdId − ωLqIq

Vq(s) = Rs Iq + sLqIq + ωLdId + ωφpm

(1.37)

To obtain the plant’s transfer function, it is necessary to rearrange the terms:
Vd(s) + ωLqIq = Rs Id + sLdId

Vq(s) − ωLdId = Rs Iq + sLqIq + ωφpm

(1.38)

Where it is possible to define:
Ud = Vd(s) + ωLqIq

Uq = Vq(s) − ωLdId − ωφpm

(1.39)

According to equation (1.35), and considering the error defined as E = I∗ − I, the control
output U can be expressed as follows:


Ud = Kp,d · (I∗

d − Id) + Ki,d

s
· (I∗

d − Id)

Uq = Kp,q · (I∗
q − Iq) + Ki,q

s
· (I∗

q − Iq)
(1.40)
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In conclusion, the transfer function of the plant can be expressed as follows:


Gplant,d = Ud

Id

= 1
sLd + Rs

Gplant,q = Uq

Iq

= 1
sLq + Rs

(1.41)

Having thoroughly analyzed the transfer functions of both the PI controller and the plant,
I will now proceed to examine the closed-loop transfer function of the overall system.
This comprehensive representation is fundamental for the setting of the proportional and
integral gain.

Combining the equations (1.38), (1.40), (1.41) with the standard closed-loop transfer
function formula Gt(s) = G(s)

1+G(s)H(s) and considering the block diagram shown in figure 1.3,
the closed-loop transfer function can be expressed as:



Gcl,d(s) =
sKp,d+Ki,d

Ld

s2 + Kp,d+Rs
Ld

s+Ki,d

Ld

Gcl,q(s) =
sKp,q+Ki,q

Lq

s2 + Kp,q+Rs
Lq

s+Ki,q

Lq

(1.42)

Figure 1.3: Closed loop transfer function

Given that the sole distinction in equation (1.42) lies in the reference frame, the system
dynamics can be expressed in a generalized form. This unified representation captures the
underlying symmetry of the equations while maintaining their fundamental structure:

Gcl(s) =
sKp+Ki

L

s2 + Kp+Rs
L

s+Ki

L

(1.43)

To determine the proportional and integral gains, the corresponding transfer function must
be compared with the standard form of a second-order system:
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G(s) = ω2
c

s2 + 2ωcs + ω2
c

(1.44)

The transfer function in equation (1.43) exhibits a mismatch with respect to the standard
transfer function (1.44), as evidenced by ωc. To address this inconsistency, a reformulation
of the control structure, referred to as the modified PI controller [1], is proposed in the
following:

Figure 1.4: Modified PI scheme [1]

The proposed modification consists in removing the contribution of the reference signal
from the proportional term. This alteration affects the transfer function that describes
the closed-loop system. Based on equation (1.40), the outputs of the PI controller are now
given by:


Ud(s) = −Kp,dId + Ki,d

s
(I∗

d − Id)

Uq(s) = −Kp,qIq + Ki,q

s
(I∗

q − Iq)
(1.45)

By combining equations (1.38), (1.41), (1.45) with the standard closed-loop transfer
function formula Gt(s) = G(s)

1+G(s)H(s) , it is possible to obtain:

Gcl(s) =
Ki

L

s2 +
(

Kp+R
L

)
s + Ki

L

(1.46)

At this point, looking at the (1.44), it is possible to proceed by comparison and obtain
proportional and integral gain:

Kp = 2ξωcL − Rs

Ki = ω2
c L

(1.47)

Starting from the closed-loop transfer function with the modified PI controller given in
equation (1.46), the poles of the system can be analyzed by examining the roots of the
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denominator, which correspond to the values of s that make the denominator zero.
To facilitate this analysis, the following second-order differential equation is introduced.
It involves an unknown function y(x), along with its first derivative y′(x) and second
derivative y′′(x):

a(x)y′′ + b(x)y′ + c(x)y = g(x) (1.48)

where a(x), b(x), c(x), and g(x) are known functions defined on an interval I ⊂ R, with
a(x) ̸= 0 for all x ∈ I. The equation is called homogeneous if g(x) = 0, and nonhomogeneous
otherwise.
To simplify the analysis, is possible to consider a nominal operating point where the
machine poles are studied, typically corresponding to rated conditions. In this case,
the equation becomes simpler because the coefficients a, b, and c are constant, being
independent of L and Rs.
The equation (1.48) thus reduces to a homogeneous equation with constant coefficients:

ay′′ + by′ + cy = 0 (1.49)

To solve this, is possible to considers the associated characteristic equation:

as2 + bs + c = 0 (1.50)

To determine the roots of the characteristic equation, the quadratic formula is applied:
s1,2 = −b±

√
b2−4ac

2a
where the nature of the solution depends on the discriminant ∆ = b2−4ac.

The roots s1 and s2 characterize the dynamic response of the system.
In this case, applying the formulas above requires analyzing the denominator of equa-
tion (1.46) and defining the natural frequency by ωn =

√
Ki

L
, along with the damping ratio

given by ξ = Kp+Rs

2
√

LKi
:

s2 + Kp + Rs

L
s + Ki

L
= s2 + 2ξωns + ω2

n = 0 (1.51)

Solving for s, is possible to obtain:

s1,2 = −ξωn ± ωn

√
ξ2 − 1, (1.52)

where the term under the square root corresponds to the discriminant ∆ = ±ωn

√
ξ2 − 1
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Now it is possible to study separately these three possible cases:

• Overdamped system (ξ > 1, ∆ > 0):

– Poles: two distinct real roots at:

s1,2 = −ξωn ± ωn

√
ξ2 − 1 (1.53)

Writing the generic equation:

y(x) = C1e
s1x + C2e

s2x (1.54)

– Response: each pole defines an exponential decay term with time constant:
τ1 = 1/|s1|: dominates the long-term slow decay;
τ2 = 1/|s2|: governs the initial fast transient.

• Critically damped system (ξ = 1, ∆ = 0):

– Poles: repeated real root with multiplicity 2 at s1,2 = −ωn

Writing the generic equation:

y(x) = (C1 + C2x)esx (1.55)

– Response: oscillatory with fix amplitude

• Underdamped system (0 < ξ < 1, ∆ < 0):

– Poles: complex conjugate σ = α ± β at:

s1,2 = −ξωn ± jωn

√
1 − ξ2 (1.56)

Writing the generic equation:

y(x) = eαx (C1 cos(βx) + C2 sin(βx)) (1.57)

– Response: oscillatory decay

For reference, the three damping cases discussed earlier are illustrated in the following
figures [7]:

(a) Overdamped (b), (c) Underdamped (d) Critically damped
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Figure 1.5: Pole position and time response

However, there may be cases where, due to the selected damping factor, control bandwidth,
and system parameters, the Kp gain calculation results negative:

2ξωcL − Rs < 0 ⇒ ωc <
Rs

2ξL
(1.58)

In such cases, it is preferable to set Kp = 0 and re-derive Ki by imposing the desired pole
location starting from the equation (1.51):

s1,2 =
−Rs

L
±
√

R2
s

L2 − 4Ki

L

2 (1.59)

Starting from this relationship, it is possible to impose the position at the dominant pole
of the closed-loop system. In a transfer function, the dominant pole is the one closest to
the imaginary axis. This pole is selected to be real, negative, and equal in magnitude
to the desired control bandwidth. It can be shown that the second pole is also real and
negative, but located further from the imaginary axis.

−ωc =
−Rs +

√
R2

s − 4LKi

2L
(1.60)

The solution for Ki is:
Ki = ωcRs − ω2

c L (1.61)

In conclusion, the procedure for tuning the gains of PI controllers, assuming the damping
factor ξ is one, can be summarised as follows:
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if ωc <
Rs

L
⇒

Kp = 0

Ki = ωcRs − ω2
c L

if ωc ≥ Rs

L
⇒

Kp = 2ξωcL − Rs

Ki = ω2
c L

(1.62)

Finally, also the schematic of the current control of a three-phase motor in the d-q reference
frame is obtained:

Figure 1.6: Current control

In practical applications, the PI controller does not operate in a truly continuous-time
domain. Instead, its behavior is inherently discrete due to the computational requirements
and the need for processing time between successive control actions. As a result, while the
PI controller is often theoretically modeled as a continuous-time system for simplicity and
analytical convenience, its real-world implementation necessitates the inclusion of a delay
term to account for the sampling and computation intervals. This delay effectively bridges
the gap between the idealized continuous model and the discrete nature of actual control
systems.

1.1.3 Speed control

Accurate speed control of a three-phase motor is a fundamental aspect of electric drive
systems. This section provides a mathematical foundation for IPM and SPM motor speed
control, highlighting its significance and presenting essential dynamic equations.
The electromagnetic torque Te generated by an IPM motor is expressed as:

Te = 3
2P [φpmiq + (Ld − Lq)idiq] , (1.63)

For an SPM motor, since Ld = Lq, the reluctance torque contribution is negligible.
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The mechanical dynamics of the motor are governed by the following equation [6]:

Te − TL = J
dωm

dt
+ Bωm, (1.64)

Rewriting in Laplace domain:

Te − TL = (Js + B)ωm, (1.65)

From the previous equation is possible to obtain the mechanical transfer function:

Gmec = ωm

Te − TL

= 1
Js + B

(1.66)

A cascaded control structure is typically employed to regulate correctly the speed of the
motor:

1. Speed control (outer loop): computes T ∗
e based on the speed error;

2. Current Control (inner loop): regulates id and iq to realize the desired torque.

Figure 1.7: Speed and current control

The speed error eω is defined as:

eω = ω∗
m − ωm, (1.67)

A modified PI controller is used to generate the torque reference:

T ∗
e = −Kp · ωm + Ki

∫
eω dt (1.68)

Since the current control loop typically operates at a bandwidth approximately ten times
higher than that of the speed control loop, it responds significantly faster to changes in
the control signal. As a result, the inner current loop can be assumed to track its reference
values almost instantaneously relative to the dynamics of the outer speed loop.
This separation of time scales justifies the common control design assumption that the
torque, producing current component, and hence the torque reference T ∗

e is accurately and
promptly achieved. Therefore, for the purpose of speed controller design, the dynamics
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of the current loop can be neglected, allowing the torque reference T ∗
e to be treated as

directly applied to the mechanical system.

Figure 1.8: Simplify speed control

The closed-loop speed control system can be analyzed using the same approach applied in
the current control analysis, but with the equations (1.66) and (1.68). In this context, the
load torque TL is neglected due to the lack of precise information about the external load.
Moreover, the PI controller is designed to minimize the speed error over time, effectively
compensating for unmodeled disturbances such as TL.
The transfer function of the speed loop (neglecting load torque) is:

Gt = ωm(s)
ω∗

m(s) =
Ki

J

s2 + B+Kp

J
s + Ki

J

(1.69)

In conclusion, the procedure for tuning the gains of PI controllers in accordance with the
procedure used in current loop control can be summarized as follows:



if ωc <
B

J
⇒

Kp = 0

Ki = ωcB − ω2
c J

if ωc ≥ B

J
⇒

Kp = 2ξωcJ − B

Ki = ω2
c J

(1.70)

The Simulink model incorporates both control strategies: the modified PI controller
(Figures 1.7 and 1.8) and the classical PI controller. The classical PI controller, which is
also used in the subsequent simulation, is chosen to simplify the tuning process and to
provide an alternative approach to the modified structure employed for current control.

To enhance efficiency, the Maximum Torque per Ampere (MTPA) strategy is applied.
This method determines the d-axis and q-axis current references that minimize the stator
current magnitude for a given torque requirement. The complete control architecture,
including the inverter stage, is depicted in the following figure:
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Figure 1.9: Speed and current control without feedforward compensation

1.1.4 Torque Control

Torque control constitutes a critical component in electric systems, enabling precise
regulation of a motor’s torque output to track a desired reference . This capability is
particularly vital in electric vehicles, where the driver requests to the gas pedal a defined
torque. The fundamental objective of this control, based on MTPA, is to maximize the
torque output for a given magnitude of stator current.
In practical applications, particularly within Simulink environments, MTPA strategies are
commonly implemented using look-up tables. This method offers significant advantages in
terms of computational efficiency by eliminating the need to solve nonlinear equations in
real time.
The implementation process begins with an offline computation, where finite element
simulations are carried out using FEMM. This phase involves evaluating the motor’s
electromagnetic behavior for various combinations of direct and quadrature axis currents,
id and iq. For simplification, it is assumed that the same current is applied to both sectors
of the machine, leading to the following discrete current sets:

id = id1 = id2 = [−213.75, −142.50, −71.25, −35.625, 0, 14.25]A

iq = iq1 = iq2 = [−14.25, 0, 35.625, 71.25, 142.50, 213.75]A

Each (id, iq) pair is simulated to determine the corresponding electromagnetic torque with
the formulas presented in chapter 2. For each current magnitude, the configuration yielding
the maximum torque is identified and stored. This data is then organized into a structured
form to create a two-dimensional lookup table, which maps optimal current references to
torque values and serves as the basis for real-time control implementation.
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Finally, in figure 1.10 are represented the torque and current control of a three-phase
motor:

Figure 1.10: Torque and current control without feedforward compensation

The MTPA strategy minimizes the stator current magnitude for a given torque output,
thereby reducing Joule losses. However, MTPA does not take into account iron losses,
which increase with electrical frequency, or mechanical losses, which rise with rotor speed.
Consequently, optimizing the overall drive efficiency requires a more comprehensive ap-
proach.

Efficiency maps provide a powerful tool in this context, as they account not only for
copper losses but also for iron and mechanical losses. By considering these additional
factors, efficiency maps enable more optimization strategies aimed at reducing total energy
consumption and improving overall system performance.
These strategies are particularly effective in IPM machines, due to their inherent magnetic
saliency (Ld ̸= Lq). This characteristic enables flexible control over id and iq components,
allowing the exploitation of both magnetic and torque contributions for enhanced efficiency.
In contrast, SPM machines typically exhibit Ld ≈ Lq, lacking significant saliency. As
a result, they generate little or no reluctance torque and offer a limited possibility for
efficiency optimization.
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1.2 Overview of multi-three-phase system

The concept of multiphase motor drives can be traced back to 1969, when a five-phase
induction motor fed by a voltage source inverter was first proposed [8]. Although initial
progress in this domain remained modest throughout the 1970s and 1980s, the 1990s
marked a turning point, with a noticeable increase in research activities. This growing
interest culminated in widespread global attention during the early 2000s.
The resurgence of interest in multiphase drives has been largely fueled by emerging
demands in three technologically intensive application areas: marine propulsion, traction
systems for electric and hybrid electric vehicles, and electric aircraft architectures [9].
These sectors present stringent requirements in terms of reliability, efficiency, and fault
tolerance, attributes that multiphase machines are inherently better equipped to meet
when compared to traditional three-phase solutions [10]. The intrinsic advantages of
multiphase systems include enhanced fault handling capabilities, reduced current stress
per phase, improved torque quality, and increased power density.
Despite substantial progress in the development of electrical machines and associated drive
systems, the adoption of multiphase architectures in real electrified transportation remains
relatively limited [9]. This slow integration is primarily due to several technical and
economic barriers. Multiphase systems often necessitate more complex inverter topologies,
a higher number of power electronic components, and sophisticated control strategies with
increased computational requirements. Additionally, the lack of standardized industrial
solutions and increased overall system cost further hinders their commercial deployment.
Nevertheless, recent years have witnessed a marked resurgence in research activities, with
particular emphasis on multi-three-phase machines.

1.2.1 Machine structure

This thesis analyzes two different multi-phase machines SPM and IPM, to understand the
differences in both their control strategies and design aspects.
Starting with the SPM motor, it is a synchronous machine that achieves high power density
and efficiency through the strategic integration of permanent magnets on the rotor surface.
The fundamental operating principle relies on the electromagnetic interaction between
the stator’s rotating magnetic field and the rotor-mounted permanent magnets. When
alternating current energizes the winding of the stator, the resulting rotating magnetic field
interacts with the permanent magnets, generating continuous torque through alternating
attraction and repulsion of magnetic poles. Electronic commutation precisely controls this
interaction, maintaining synchronous operation.
Key advantages of SPM motors include their efficiency, stemming from the absence of rotor
copper losses and reduced iron losses. The synchronous operation enables precise speed
control across the entire operating range, while the compact design with high-strength
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magnets delivers high torque density.
However, SPM motor design presents several engineering challenges. The use of rare-earth
permanent magnets introduces material cost volatility and supply chain dependencies.
Thermal management becomes critical as high temperatures can lead to partial demagne-
tization of the permanent magnets. Additionally, the motor exhibits cogging torque, a
periodic torque ripple caused by magnetic attraction between rotor magnets and stator
teeth.

Figure 1.11: Section of a SPM motor [2]

The structure of the dual three-phase IPM motor differs from SPM configurations, offering
substantial advantages in torque production. To understand its unique role, it is first
necessary to explore its architecture and operating principles. An IPM motor is charac-
terized by the placement of permanent magnets within the rotor’s iron core, rather than
on the rotor surface. This embedded positioning enables the motor to benefit from what
is known as magnetic saliency, a difference in magnetic reluctance along different rotor
axes. Saliency provides an additional torque component, called reluctance torque, which
complements the torque generated by the permanent magnets. This stands in contrast to
the SPM motor, where the magnets are surface-mounted and the rotor typically exhibits no
significant saliency, resulting in a torque contribution purely from the magnet interaction
with the stator’s magnetic field.
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Figure 1.12: Section of an IPM motor [2]

Introducing a dual-three-phase configuration entails a stator with two independent three-
phase winding sets. Typically, each winding set is connected to a dedicated power inverter,
allowing for independent control. This arrangement introduces both increased design
flexibility and fault tolerance. If one inverter or phase set fails, the motor may continue to
operate using the remaining healthy set.
Multiphase machines can generally be categorized into two main configurations according
to the winding layout:

Figure 1.13: Possible winding configuration

The figure illustrates two distinct winding configurations: on the left, the multiple single-
phase windings, and on the right, the multiple independent three-phase windings.The
first configuration, which typically features symmetric phase distributions, involves several
single-phase windings that are spatially separated and connected in a manner that ensures
balanced operation. The second configuration is composed of multiple, independent sets
of three-phase windings.
The choice between these configurations depends largely on the specific application re-
quirements, such as desired fault tolerance, power density, and overall system complexity.
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This thesis focuses on the second configuration.

Within the domain of multi-three-phase machine winding arrangements, two principal
topologies are discernible: asymmetrical and symmetrical. Although both configurations
have unique characteristics, research often focuses on the asymmetrical design: a network
of star-connected three-phase stator windings, each spatially displaced and featuring
electrically isolated neutral points.
The following image shows the motor under study, featuring an asymmetric winding
configuration with a 30° phase shift:

Figure 1.14: Phase shift of 30°

In Fig. 1.14 ABC is used to indicate the first segment and XYZ the second one

1.2.2 Power electronics

To enable active control, multi-three-phase machines require a dedicated drive system. In
traditional electric drive architectures, a standard three-phase motor is typically powered
by a two-level or three-level voltage source inverter. The more easy two-level inverter
employs a bridge configuration with six switching devices arranged in three legs, controlled
through duty cycle modulation techniques. When adapting this setup for multi-three-
phase machines, each independent three-phase winding set is usually driven by its own
conventional three-phase inverter.
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Figure 1.15: Asymmetrical dual-three-phase drive system [3]

When considering the adoption of a two-level inverter feeding a dual-three-phase motor
topology rather than a conventional three-phase motor of identical power rating, several
benefits become evident. First, the distribution of current among six phases instead of
three reduces the RMS current per phase for the same total output power. This reduction
in phase current leads to lower conduction losses in both the motor windings and the
inverter devices, which can translate into higher overall efficiency.
Another significant benefit arises from the improved smoother electromagnetic torque
production. In a dual-three-phase arrangement, the phase sets are spatially shifted, and
by driving them appropriately through a two-level inverter, the aggregate phase voltage
waveform seen by the airgap can exhibit lower harmonic content compared to a three-phase
system at equal switching frequency.
Fault tolerance is also enhanced in a six-phase implementation. In the event of an open-
circuit or short-circuit fault in one phase winding or its corresponding power switch leg,
it is often possible to continue operating with reduced but acceptable performance by
suitably reconfiguring the drive signals among the remaining healthy phases. This inherent
redundancy is not available in a standard three-phase machine.
From a modulation perspective, implementing carrier-based PWM on a six-phase machine
using a two-level converter allows for the exploitation of a significantly larger vector space
expanding from 23 = 8 vectors in a three-phase system to 26 = 64 in a dual three-phase
configuration. This increased number of available switching states enhances the system’s
DOF, enabling operation closer to the DC bus voltage limit. As a result, a slightly higher
maximum amplitude of the fundamental voltage can be achieved.

1.2.3 PWM generation

1. Ideal case

In the ideal case of PWM generation, the modulation signal is continuously compared
to a triangular carrier signal. The resulting PWM waveform transitions precisely at the
points where the modulation and carrier signals intersect. When the carrier signal has a
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higher value than the modulation signal, the PWM output is low; conversely, when the
modulation signal exceeds the carrier, the PWM output is high.

Parameter Value
Sampling frequency ∞

Sampling Continuous

Figure 1.16: Ideal PWM generation

This method provides the highest fidelity, but is not realizable in practical digital systems
due to the need for infinite sampling resolution.
Another important parameter for the generation of the PWM is the modulation index,
denoted as m, and defined as:

mi = vmod,pk

vc,pk
(1.71)

The modulation index determines the characteristics of the output waveform and can be
categorized as follows:

• Linear region (0 ≤ m ≤ 1): in this range, the AC output voltage varies linearly
with the modulation index. The resulting harmonic components are well-defined,
which makes filtering straightforward;

• Overmodulation region (m > 1): when the modulation index exceeds unity,
harmonics emerge in the AC output voltage. This results in spectral components at
lower frequencies, complicating the filter design and potentially degrading waveform
quality.

2. Single sampling

In this approach, the modulation signal is sampled only once per carrier cycle, typically
at either the peak or the valley of the triangular waveform. The sampled value is held
constant for the duration of the switching period, resulting in a PWM output based on
discrete modulation levels.
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Parameter Value
Sampling frequency: fsample = fsw

Sampling Discrete

Figure 1.17: Single sampling

3. Double sampling

Double sampling enhances single sampling by capturing the modulation signal twice during
each carrier period, typically at both the peak and the valley of the triangular waveform.
This allows for better tracking of the modulation signal and results in improved accuracy
of the PWM waveform.

Parameter Value
Sampling frequency: fsample = 2 · fsw

Sampling Discrete

Figure 1.18: Double sampling

In the Simulink simulation, it is possible to select either the ideal case or the double
sampling configuration in order to evaluate the differences between the ideal and practical
implementations.

26



Chapter 2

Dual-three-phase machines

2.1 Machine equations

Building upon the three-phase machine equations derived in section 1.33, the same
mathematical structure can be extended to a dual-three-phase machine. For conciseness,
the full derivation is not repeated here, as the previous analysis applies analogously to
both segments of the machine. Thus, the resulting equations remain consistent, leading to
the final expression:


vda

vqa

vdb

vqb


︸ ︷︷ ︸

v̄

= Rs · I4︸ ︷︷ ︸
R


ida

iqa

idb

iqb


︸ ︷︷ ︸

ī

+ d

dt


φda

φqa

φdb

φqb


︸ ︷︷ ︸

dφ̄
dt

+ω


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


︸ ︷︷ ︸

T


φda

φqa

φdb

φqb


︸ ︷︷ ︸

φ̄

(2.1)

Where the fluxes are defined as follows:
φda

φqa

φdb

φqb


︸ ︷︷ ︸

φ̄

=


Lda Ldaqa Ldadb

Ldaqb

Lqada Lqa Lqadb
Lqaqb

Ldbda Ldbqa Ldb
Ldbqb

Lqbda Lqbqa Lqbdb
Lqb


︸ ︷︷ ︸

Ldq


ida

iqa

idb

iqb


︸ ︷︷ ︸

ī

+


φpm,a

0
φpm,b

0


︸ ︷︷ ︸

φ̄pm

(2.2)

Making the derivative calculation:

dφ̄(i, θ, Tmag)
dt

= dφ̄

d̄i
· d̄i

dt
+ dφ̄

dθ
· dθ

dt
+ dφ̄

dTmag
· dTmag

dt
(2.3)
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Where is possible to rewrite some terms as follows:

dφ̄

d̄i
= d(Ldq · ī + φ̄pm)

di
= d(Ldq)

d̄i
ī + Ldq

dθ

dt
= ω

(2.4)

From the equation (2.3), it can be observed that the time derivative of the flux is dependent
on both the rotor angular position and the magnet temperature. The rotor angular position
affects the flux distribution due to the saliency of the rotor structure, leading to variations
in the direct and quadrature inductances. Additionally, the temperature of the permanent
magnets significantly impacts their remanent flux density, thereby altering the overall
flux linkage. As the magnet temperature increases, the remanence decreases, leading to a
reduction in the electromotive force and a modification in the machine’s electromagnetic
torque production, as possible to notice in figure 2.1.

Figure 2.1: BH curve of the permanent magnet as a function of temperature [4]

This temperature dependence introduces additional complexity in the dynamic modeling
and control of the machine, particularly in the estimation of temperature-dependent
parameters. As the temperature increases, the B–H characteristic of the magnetic material
leads to a reduction in the size of the magnetic hysteresis loop.

In this thesis, the system is assumed to operate under steady-state conditions, implying
that the temperature remains constant over time. To further simplify the analysis, the
magnetic flux is also assumed to be time invariant. This simplification is more challenging
in IPM machines, whereas it is less significant in SPM machines. This is achieved by
considering the mean values over a full electrical cycle of 360◦.
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Rewriting equation (2.1) in a more compact form:

v̄ = R ī + dφ̄

dt
+ ω Tφ̄ (2.5)

Combining equation (2.4) with equations (2.5):

v̄ = R · ī + dφ̄

d̄i

d̄i

dt
+ dφ̄

dθ
ω + ω Tφ̄ (2.6)

Neglecting the temperature contribution and substituting the fluxes equation (2.4):

v̄ = R · ī +
(

d

d̄i
Ldqd̄i + Ldq

)
d̄i

dt
+ dφ̄

dθ
ω + ω T

(
Ldq ī + φ̄pm

)
(2.7)

Where is it possible to define the differential inductances dLdq as:

dφ̄

d̄i
= dLdq = d

d̄i
Ldqd̄i + Ldq (2.8)

The final equation results:

v̄ = R · ī + dLdq
d̄i

dt
+

d(Ldq̄i + φ̄pm)
dθ

ω + ω T
(
Ldq ī + φ̄pm

)
(2.9)

In the modeling of a dual-three-phase machine, the dependence of both Ldq(θ) and φ̄pm(θ)
on the rotor position θ introduces significant complexity in the design of the control
system. To solve this problem, these quantities are averaged over θ, making it reasonable
to approximate them by their mean values. The real graphical visualization of all the
inductances as a function of the angular position is given in the simulation chapter, and
in particular in figure 5.23.
Finally, it is possible to rewrite the formula (2.9):

v̄ = R · ī + dLdq
d̄i

dt
+ ω T

(
Ldq ī + φ̄pm

)
(2.10)

As can be seen in the simplified equation (2.10), the voltage is a function of Ldq and dLdq,
then in the following is described the process for obtaining these values.
The development of the FEMM model required careful consideration of magnetic nonlin-
earities, making the principle of superposition inapplicable for this analysis. This nonlinear
behavior significantly influences the machine’s characteristics, particularly under saturated
operating conditions. The software enables to capture of these interactions by directly
solving the field equations while accounting for the material’s nonlinear permeability,
allowing for accurate prediction of flux density distributions and local saturation effects
throughout the magnetic circuit.
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Flux determination
The subsequent objective is to derive an expression for magnetic flux between two current-
carrying surfaces, utilizing the magnetic vector potential formulation.
The magnetic vector potential Ā is defined in accordance with article [11]:

Ā(r̄) = µ0

4π

∫ J̄(r̄′)
|r̄ − r̄′|

dV ′ (2.11)

In the case of surface currents distributed over a surface S, is replaced the volume current
density with the surface current density K̄ [11]:

Ā(r̄) = µ0

4π

∫
S

K̄(r̄′)
|r̄ − r̄′|

dS ′ (2.12)

Now consider two surfaces, S1 and S2, with surface current densities K̄1 and K̄2. The
magnetic vector potential at a point r̄1 ∈ S1 due to currents on S2 is:

Ā(r̄1) = µ0

4π

∫
S2

K̄2(r̄2)
|r̄1 − r̄2|

dS2 (2.13)

The magnetic energy stored in the system can be represented either as a volume integral
over the current density or, equivalently, as a surface integral over the surface current
density, as discussed in [12]:

φ = 1
2

∫
J̄ · Ā dV or φ = 1

2

∫
S

K̄ · Ā dS (2.14)

The linked flux resulting from the interaction between the two current distributions is:

φ =
∫

S1
K̄1(r̄1) · Ā(r̄1) dS1 (2.15)

Substituting the expression (2.13) into (2.15):

φ = µ0

4π

∫
S1

∫
S2

K̄1(r̄1) · K̄2(r̄2)
|r̄1 − r̄2|

dS2 dS1 (2.16)

Assuming both currents are oriented along the z-axis, i.e., K̄1 = K1ẑ and K̄2 = K2ẑ, the
dot product simplifies:

K̄1 · K̄2 = K1K2 (2.17)

So the linked flux becomes:

φ =
∫

S1
K1(r̄1)Az(r̄1) dS1 = µ0

4π|r̄1 − r̄2|

∫
S1

∫
S2

K1(r̄1)K2(r̄2) dS2dS1 (2.18)
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Where is it possible to define the constant terms, before the double integral, as:

LA = µ0

4π

1
|r̄1 − r̄2|

(2.19)

In a post-processing step, it is possible to obtain two other important quantities that are
later used for machine control and modeling:

• Apparent inductances:

Ldq =


Lda Mdaqa Mdadb Mdaqb

Mqada Lqa Mqadb Mqaqb

Mdbda Mdbqa Ldb Mdbqb

Mqbda Mqbqa Mqbdb Lqb

 (2.20)

Each element of the inductance matrix Ldq can be expressed using a general formula:

Ldiqj = φi(p̄1) − φi(p̄2)
īj

(2.21)

Where:
p̄ =

[
ida, iqa, idb, iqb, θe

]
(2.22)

Each current component may take either zero or its value, depending on the induc-
tances considered.

• Incremental inductances:

dLdq =


dLda dMdaqa dMdadb dMdaqb

dMqada dLqa dMqadb dMqaqb

dMdbda dMdbqa dLdb
dMdbqb

dMqbda dMqbqa dMqbdb
dLqb

 (2.23)

Where each value is obtained with the following formulas:

dLdq =



dφdA

didA

dφdA

diqA

dφdA

didB

dφdA

diqB

dφqA

didA

dφqA

diqA

dφqA

didB

dφqA

diqB

dφdB

didA

dφdB

diqA

dφdB
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dφdB

diqB

dφqB

didA

dφqB

diqA

dφqB

didB

dφqB

diqB

 (2.24)
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Torque and force computation
The Maxwell stress tensor approach calculates torque and radial forces, leveraging FEMM’s
integrated force calculation capabilities. Consider the Maxwell stress tensor in magneto-
statics, defined as:

σij = 1
µ0

(
BiBj − 1

2δijB̄
2
)

, (2.25)

where B̄ = (Bx, By, Bz) is the magnetic flux density
The traction force per unit area on a surface with outward unit normal vector n̄ =
(nx, ny, nz) is:

fi = σij · nj = 1
µ0

(
Bi(B̄ · n̄) − 1

2B2ni

)
(2.26)

The electromagnetic torque τz about the z-axis exerted on a body enclosed by surface S is:

τz =
∮

S
(r̄ × (σ · n̄))z dS (2.27)

where r̄ = (x, y, z) is the position vector.
Expanding the z-component of the cross product yields:

τz =
∮

S
(xfy − yfx) dS (2.28)

Considering a cylindrical surface C of radius Rrc centered on the z-axis, the outward
normal vector is radial:

nx = cos(θ), ny = sin(θ), x = Rrc · nx, y = Rrc · ny (2.29)

Considering the xfy − yfx inside (2.28):

xfy − yfx = 1
µ0

[
xBy(B̄ · n̄) − 1

2xB2ny − yBx(B̄ · n̄) + 1
2yB̄2nx

]

= Rrc

µ0

[
BrBt + B̄2

2 (nynx − nxny)
]

= Rrc

µ0
BrBt

(2.30)

where Br = B̄ · n̄ = Bxnx + Byny is the radial component and Bt = Bynx − Bxny is the
tangential component of the magnetic flux density at the surface. The terms proportional
to B̄2 cancel due to the antisymmetric factor.
Therefore, the torque reduces to:

τz =
∮

C
(xfy − yfx)dS = Rrc

µ0

∮
C

BrBt dS. (2.31)

Expressing the integrand in cartesian components, the torque integrand becomes:

Tz =
∮

C
Rrc (BxByny − ByBxnx) dS (2.32)

32



2.1.1 Comparison IPM and SPM

The existing body of literature in the field of permanent magnet synchronous machines
reveals a significant disparity in research focus. A substantial portion of the published
works predominantly addresses the design methodologies and control strategies applicable
to SPM machines. This emphasis is likely attributed to the relative simplicity in their
magnetic circuit analysis and control implementation, coupled with their well-established
industrial adoption.

Torque comparison
The embedded placement of permanent magnets within the rotor core of IPM machines
results in a saliency effect characterized Ld ̸= Lq. This magnetic anisotropy provides an
additional torque component, known as reluctance torque, which can significantly enhance
the overall torque capability and power density of the machine. From a torque production
perspective, the advantage of the IPM design becomes particularly clear. For a single
three-phase IPM motor, the electromagnetic torque is expressed (1.63) where the term
(Ld − Lq)idiq, accounts for the reluctance torque. In a SPM motor this terms is zero, since
Ld = Lq.
However, in the dual three-phase IPM motor, is important to consider that there are
two independent three-phase systems contributing to the total electromagnetic torque.
Assuming both stator winding sets are symmetrically loaded and identical in electrical
characteristics, the total torque can be modeled as the sum of the torques produced by
each subsystem:

Ttotal = T1 + T2 = 3p ((Ld − Lq)idiq + φpmiq) (2.33)

This clearly shows that, all else being equal, the dual three-phase configuration offers twice
the torque-producing capability of a single three-phase IPM machine—assuming. The
dual winding system allows not only for higher peak torque but also improved continuous
operation by spreading thermal and electrical stress across a larger area.

Voltage and current limit
It is important to note that the voltage and current limitations are not identical for the
two motors. Each motor operates within its own set of electrical constraints, which define
the permissible ranges for voltage and current during operation. These limitations directly
affect the performance envelope of each machine. Figure 2.2 illustrates the electrical
characteristics of both synchronous machines, highlighting their respective current and
voltage boundaries.
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Figure 2.2: Current locus diagram [2]

In this context, the maximum voltage and current that the inverter can supply to the
three-phase motor are given by the following expressions. A similar analysis can be
extended to the dual three-phase configuration.

imax =
√

i2
d + i2

q (2.34)

Vmax, SPM = ωm

√
φ2

pm + (Lsiq)2 (2.35)

Vmax, IPM = ωm

√
(Ldid + φpm)2 + (Lqiq)2 (2.36)

During operation, the motor reaches its peak torque output at the point where current and
voltage constraints intersect in the id-iq plane, as described by the current locus. For SPM,
this in theory occurs under an id = 0 control strategy, utilizing purely magnet torque.
In contrast, IPM exploit a negative id current to generate additional reluctance torque,
thereby increasing the total torque output.
As the machine accelerates into higher-speed regions beyond the MTPA operating point,
voltage constraints become dominant. This necessitates operation in the field-weakening
region, where a further negative id current is applied to counteract the increasing EMF,
thereby allowing sustained operation beyond the base speed.

2.2 Control strategies

Following the comprehensive analysis of current, speed, and torque control in a conventional
three-phase machine, where all fundamental control equations were derived, this chapter
extends the discussion to a dual-three-phase machine system. Compared to the three-
phase machine, the mathematical model of a dual three-phase machine exhibits increased

34



complexity, particularly in the formulation of the machine equations.
As is possible to see in (2.1), the equation employs separate dq reference frames, with
one frame aligned to the first three-phase sector and another to the second sector. This
decoupled control approach enables independent regulation of each winding set.
The control architecture is composed of four PI controllers, organized as follows:

• Two controllers for sector a, regulating the da and qa axes

• Two controllers for sector b, regulating the db and qb axes

2.2.1 Modular approach

For control tuning purposes, it is essential to express the simplified machine equations
in their expanded form. Starting from the compact representation given in (2.10), the
following expression can be derived:
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︸ ︷︷ ︸

Feedforward compensation

(2.37)

At this stage, the apparent and incremental inductance matrices are assumed to be constant.
To enforce this assumption, the currents id and iq in both operational sectors are fixed
to their previously determined rated values, and an average over the electrical angle θ is
computed.
Writing only the terms that are necessary for the tuning of the PI:



vda = Rsida + dLda
dida

dt
+ dMdaqa

diqa

dt
+ dMdab

didb

dt
+ dMdaqb

diqb

dt

vqa = Rsiqa + dMqada
dida

dt
+ dLqa

diqa

dt
+ dMqab

didb

dt
+ dMqaqb

diqb

dt

vdb = Rsidb + dMdbda
dida

dt
+ dMdbqa

diqa

dt
+ dLdb

didb

dt
+ dMdbqb

diqb

dt

vqb = Rsiqb + dMqbda
dida

dt
+ dMqbqa

diqa

dt
+ dMqbdb

didb

dt
+ dLqb

diqb

dt

(2.38)

Since it is necessary to obtain a mathematical formulation comparable to that studied for
the three-phase motor in section 1.41, developing the machine’s equations in a form that
allows certain terms to be neglected is useful.
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The first approach is to simplify the mutual terms directly form (2.38):


vda = Rsida + dLda
dida

dt

vqa = Rsiqa + dLqa
diqa

dt

vdb = Rsidb + dLdb
didb

dt

vqb = Rsiqb + dLqb
diqb

dt

(2.39)

The second approach, since the motor is modeled in Simulink with a voltage source as the
input and current as the output, the governing equations can be expressed compactly as:

d̄i = dLdq
−1
(
v̄ − Rī

)
(2.40)

Where for simplicity dLdq is expressed in the following way:

dLdq
−1 = αdq =


αda αdaqa αdadb αdaqb

αqada αqa αqadb αqaqb

αdbda αdbqa αdb αdbqb

αqbda αqbqa αqbdb αqb

 (2.41)

Due to the properties of matrix inversion, all mutual inductance terms are inherently
coupled in this operation:

dLdq
−1 = adj(dLdq)

det(dLdq) (2.42)

where adj(dLdq) denotes the adjugate and det(dLdq)) represents the determinant.

Certain off-diagonal entries of the inverse matrix in (2.42) can be safely neglected only
after the full inversion has been carried out, since their relatively small magnitudes only
become evident at that stage. For each system under study, this assumption must be
verified; under this hypothesis, the machine model reduces to a form analogous to (2.39),
and the machine equation simplifies to:



vda = Rida + 1
αda

dida

dt

vqa = Riqa + 1
αqa

diqa

dt

vdb = Ridb
+ 1

αdb

didb

dt

vqb = Riqb
+ 1

αqb

diqb

dt

(2.43)

The PI tuning is performed the same way as the three-phase motor seen in equation
(1.1.2), but with two reference axes, instead of one. In the following is reported only the
gain formulas used for tuning the modified PI with the second method:
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da axis: 

if ωc < Rs · αda ⇒

Kp = 0

Ki = ωcRs − ω2
c

αda

if ωc ≥ Rs · αda ⇒

Kp = 2ξωc

αda
− Rs

Ki = ω2
c

αda

(2.44)

qa axis: 

if ωc < Rs · αqa ⇒

Kp = 0

Ki = ωcRs − ω2
c

αqa

if ωc ≥ Rs · αqa ⇒

Kp = 2ξωc

αqa
− Rs

Ki = ω2
c

αqa

(2.45)

db axis: 

if ωc < Rs · αdb ⇒

Kp = 0

Ki = ωcRs − ω2
c

αdb

if ωc ≥ Rs · αdb ⇒

Kp = 2ξωc

αdb
− Rs

Ki = ω2
c

αdb

(2.46)

qb axis: 

if ωc < Rs · αqb ⇒

Kp = 0

Ki = ωcRs − ω2
c

αqb

if ωc ≥ Rs · αqb ⇒


Kp = 2ξωc

αqb
− Rs

Ki = ω2
c

αqb

(2.47)

For the alternative approach presented in (2.39), the same formulas remain applicable
by replacing the parameter α with the corresponding inductance values L defined in the
following. More specifically, considering equation (2.41) and neglecting the off-diagonal
terms, it is possible to obtain the following:

αdq,simp =


α1 0 0 0
0 α2 0 0
0 0 α3 0
0 0 0 α4

 . (2.48)

Consequently, the inductance matrix is obtained by inverting αdq,simp, which, being diagonal,
leads to the following expression:
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Ldq,simp =



1
αda

0 0 0
0 1

αqa
0 0

0 0 1
αdb

0
0 0 0 1

αqb

 (2.49)

A comparative analysis of the resulting proportional and integral gains across the previously
discussed two methods is presented in figure 5.27.

After computing the PI controller is now considered the feedforward contributions that
must be added to the PI controller output, organized by axis:



− Mqadaida − Lqaiqa − Mqadbidb − Mqaqbiqb

+ Ldaida + Mdaqaiqa + Mdadbidb + Mdaqbiqb + φpm,1

− Mqbdaida − Mqbqaiqa − Mqbdbidb
− Lqbiqb

+ Mdbdaida + Mdbqaiqa + Ldbidb
+ Mdbqbiqb

+ φpm,2

(2.50)

2.2.2 Vector space decomposition

Harmonic decomposition

In dual-three-phase machines, the stator is equipped with two independent three-phase
windings, displaced by a fixed electrical angle and connected in a star configuration. The
six-phase system is thus amenable to harmonic decomposition via the VSD method, which
isolates the contributions of different harmonic orders into orthogonal subspaces.
The core idea is that any periodic quantity in a 6-phase system can be expressed as a sum
of harmonic components of different orders:

i(t) =
∞∑

h=1

(
Ihejhωt + Ihe−jhωt

)
(2.51)

Each harmonic order h contributes to a distinct vector subspace in the VSD framework.
However, not all harmonics lead to independent or physically significant components due
to symmetry, phase redundancy, and the connection topology of the stator windings.

Harmonics in a six-phase machine can be classified as follows:

• Fundamental harmonic (h = 1): this is the main torque-producing component
that is represented with the VSD method in the space 1 ;

• Triplen harmonics (h = 3, 6, 9, . . . ): these are zero-sequence harmonics. In a
well-balanced star-connected system without a shared neutral, the triple harmonics
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generated by the two sets of windings are in phase and oppose each other, resulting
in mutual cancellation;

• Even-order harmonics (h = 2, 4, 6, 8, . . . ): even harmonics are eliminated by
design due to the physical symmetry of the machine. The spatial distribution of
the windings and the construction of the magnetic field inherently reject even-order
harmonics, which would otherwise result in asymmetric magnetic forces and acoustic
noise;

• Non-triplen odd harmonics (h = 5, 7, 11, . . . ): these harmonics are not zero-
sequence and can physically exist in the machine. They are not inherently canceled
by symmetry or winding configuration. In particular, the 5th harmonic often appears
in practice due to PWM switching and nonlinearities in the machine or drive. It can
have adverse effects such as torque ripple, additional losses, and acoustic noise, and
is therefore considered in space 5.

Mathematically, for a 6-phase system, the resulting harmonics appear only at orders:

h ∈ {1, 5, 7, 11, 13, . . . }

The most significant ones, which are indeed considered in the VSD method, are:

• Space 1 (h = 1): this space contains the fundamental harmonic component and
plays a central role in torque generation. It is controlled within a rotating reference
frame at angular velocity ω, with the d1 axis aligned with the first harmonic of the
magnetic flux induced by the permanent magnets;

• Space 5 (h = 5): this space corresponds to the lowest-order non-triplen, non-
zero-sequence harmonic, which can negatively impact system performance. It is
represented in a rotating reference frame mechanically locked to the rotor but rotating
in the opposite direction to the main reference frame, i.e., ω5 = −ω.

Control system

VSD provides a systematic framework to manage harmonics complexity by reorganizing
the machine’s dynamic model into independent orthogonal components. In the case of a
dual three-phase motor, the system inherently operates in a six-dimensional space due
to the presence of six independent stator currents in abc frame and four in dq. VSD
subdivides the total dq space into orthogonal subspaces. The main subspace involves the d1

and q1 components that are directly responsible for producing electromagnetic torque and
controlling the magnetic flux. This first subspace is obtained from these general formulas,
where x is a generic quantity [13]:

39




xd1 = xda + xdb

2
xq1 = xqa + xqb

2

(2.52)

The secondary subspace, involving the d5 and q5 components, does not directly contribute
to fundamental torque production. Instead, it represents degrees of freedom that can be
leveraged for auxiliary objectives, such as minimizing current harmonics, balancing thermal
loads among phases, permitting power sharing, or enabling fault-tolerant operation.
This second subspace is obtained from these general formulas [13]:


xd5 = x∗

da − x∗
db

2
xq5 =

x∗
qa − x∗

qb

2

(2.53)

The symbol ∗ in this case doesn’t represent a reference value, but the complex conjugate.

A third set of components, the zero-sequence subspace, theoretically appears when there
is a common-mode voltage. In most isolated star-connected systems, such as the one
considered in this study, zero-sequence currents are zero since the system is balanced.
The transformation from the original dq quantities to the decomposed subspaces is math-
ematically represented by a single transformation matrix Tvsd, specifically designed to
project the dq vector onto the two orthogonal subspaces:

Tvsd = 1
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 −1 0 1

 (2.54)

Starting from the equation developed previously in (2.10), it is possible to multiply each
term by the transformation matrix Tvsd:

Tvsdv̄ = Tvsd

(
Rī + dLdq

d̄i

dt
+ ω T

(
Ldq ī + φ̄pm

))
(2.55)

Developing all the calculations and knowing that Tvsd
−1 · Tvsd = 1 it is possible to obtain:

Tvsd v̄ = Tvsd R ī + Tvsd dLdq
d̄i

dt
+ ωTvsd T Ldq T−1

vsd(Tvsd ī) + ωTvsd T φ̄pm (2.56)

To obtain all the terms in VSD contribution, it is necessary to note that these terms are
equivalent: Tvsd · R = R · Tvsd

Tvsd · T = T · Tvsd
(2.57)
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In conclusion the equation(2.55) becomes:

Tvsd v̄ = R Tvsd ī + Tvsd dLdq T−1
vsd

(
Tvsd

d̄i

dt

)
+ ωT Tvsd Ldq T−1

vsd(Tvsd ī) + ωT Tvsd φ̄pm

(2.58)
Considering the following substitution:



v̄vsd = Tvsd · v̄

īvsd = Tvsd · ī

d̄ivsd

dt
= Tvsd · d̄i

dt

φ̄vsd = Tvsd · φ̄

dφ̄vsd

dθ
= Tvsd · dφ̄

dθ

φ̄pm,vsd = Tvsd · ¯φpm

Ldq,vsd = Tvsd · Ldq · Tvsd
−1

dLdqvsd = Tvsd · dLdq · Tvsd
−1

(2.59)

Finally is possible to write the machine equation in VSD terms:

v̄vsd = Rīvsd + dLdqvsd

d̄ivsd

dt
+ ωT(Ldqvsd īvsd + φ̄pm,vsd) (2.60)

The primary advantage of the VSD approach lies in its ability to simplify the original
system of equations by theoretically diagonalizing the inductance matrix through linear
algebra techniques. This diagonalization is essential for formulating effective control
strategies, as it allows for independent control of each axis.
Since the control system relies on the incremental inductance, the following analysis focuses
on these matrices to provide insight into proper control tuning:

dLdq,vsd =


dLd1 dMd1q1 dMd1d2 dMd1q2

dMq1d1 dLq1 dMq1d2 dMq1q2

dMd2d1 dMd2q1 dLd2 dMd2q2

dMq2d1 dMq2q1 dMq2d2 dLq2

 (2.61)

The component elements are obtained as follows:

1
2


dLda + dLdb + dMdadb + dMdbda dMdaqa + dMdaqb + dMdbqa + dMdbqb

dMqada + dMqadb + dMqbda + dMqbdb dLqa + dLqb + dMqaqb + dMqbqa

dLda − dLdb + dMdadb − dMdbda dMdaqa + dMdaqb − dMdbqa − dMdbqb

dMqada + dMqadb − dMqbda − dMqbdb dLqa − dLqb + dMqaqb − dMqbqa

 (2.62)
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dLda − dLdb − dMdadb + dMdbda dMdaqa − dMdaqb + dMdbqa − dMdbqb

dMqada − dMqadb + dMqbda − dMqbdb dLqa − dLqb − dMqaqb + dMqbqa

dLda + dLdb − dMdadb − dMdbda dMdaqa − dMdaqb − dMdbqa + dMdbqb

dMqada − dMqadb − dMqbda + dMqbdb dLqa + dLqb − dMqaqb − dMqbqa



To calculate the Kp and Ki gain, it is possible to use the same formulas presented
in the modular approach, where the inductances are the ones presented in equations (2.61)
and (2.62). Another important thing to develop is the feedforward compensation that
is possible to obtain by developing the terms ω · T · (Ldqvsd īvsd + φ̄pm,vsd) present in the
equation (2.60). The results are the following:

EMFd1 = − ω
(

iqa

(
Lqa

2 + Lqb

2 − Mqaqb

2 − Mqbqa

2

)
+ iqb

(
Lqa

2 − Lqb

2 + Mqaqb

2 − Mqbqa

2

)
+ ida

(
Mqada

2 + Mqadb

2 − Mqbda

2 − Mqbdb

2

)
+ idb

(
Mqada

2 − Mqadb

2 − Mqbda

2 + Mqbdb

2

))
(2.63)

EMFq1 =ω
(

φpma

2 + φpmb

2 + ida

(
Lda

2 + Ldb

2 + Mdadb

2 + Mbdad

2

)
+ idb

(
Lda

2 − Ldb

2 − Mdadb

2 + Mbdad

2

)
+ iqa

(
Mdaqa

2 − Mdaqb

2 + Mdbqa

2 − Mdbqb

2

)
+ iqb

(
Mdaqa

2 + Mdaqb

2 + Mdbqa

2 + Mdbqb

2

))
(2.64)

EMFd2 = − ω
(

iqa

(
Lqa

2 − Lqb

2 − Mqaqb

2 + Mqbqa

2

)
+ iqb

(
Lqa

2 + Lqb

2 + Mqaqb

2 + Mqbqa

2

)
+ ida

(
Mqada

2 + Mqadb

2 + Mqbda

2 + Mqbdb

2

)
+ idb

(
Mqada

2 − Mqadb

2 + Mqbda

2 − Mqbdb

2

))
(2.65)
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EMFq2 =ω
(

φpma

2 − φpmb

2 + ida

(
Lda

2 − Ldb

2 + Mdadb

2 − Mbdad

2

)
+ idb

(
Lda

2 + Ldb

2 − Mdadb

2 − Mbdad

2

)
+ iqa

(
Mdaqa

2 − Mdaqb

2 − Mdbqa

2 + Mdbqb

2

)
+ iqb

(
Mdaqa

2 + Mdaqb

2 − Mdbqa

2 − Mdbqb

2

))
(2.66)

The final scheme that describes the system with the controller developed in VSD is the
following:

Figure 2.3: VSD control scheme

2.2.3 Novel matrix transformation

In this subsection, an alternative control strategy for a dual-three-phase machine is briefly
analyzed. The focus is on highlighting the main differences introduced by adopting a
VSD approach. Although the two methods are structurally similar in their Simulink
implementations, they differ in the transformation matrix.
According to the formulation presented in [14], and considering that the motor under study
is a dual-three-phase systems (n = 2), is possible obtain u from the following expression:
1 ≤ u ≤ n − 1. The transformation matrix component is given by:

Yu = (n − u) · Xu where Xu = xu · I2x2 (2.67)

Where the scalar xu is defined as:

xu =
√

n

(n − u)2 + (n − u) = 1 (2.68)
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Building upon the results derived from the previous formulas, is now considered the general
form of the Novel matrix transformation:

Tdms = 1
n

·



I2×2 I2×2 I2×2 I2×2 · · · I2×2

Y1 −X1 −X1 −X1 · · · −X1

02×2 Y2 −X2 −X2 · · · −X2

02×2 02×2 Y3 −X3 · · · −X3

02×2 02×2 02×2
. . . . . . ...

... ... ... . . . . . . −Xn−2

02×2 02×2 02×2 · · · Yn−1 Xn−1


(2.69)

Finally is possible to obtain the matrix for a dual three-phase motor:

Tdms = 1
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 (2.70)

This approach is well suited to control of a machine in which unequal power/torque
sharing is desirable (as the case may be in future electric vehicles with multiple electric
energy sources or microgrids with interconnection through a wind generator), as well as
to the control of machines with a nonstandard stator winding structure, which is neither
symmetrical nor asymmetrical [14].

2.2.4 Real-time PI controller autotuning

The implemented autotuning algorithm enables real-time tuning of PI controllers without
requiring prior knowledge of machine parameters. This adaptive capability is especially
advantageous in systems where the plant dynamics are subject to change or exhibit
nonlinear behavior, such as real SPM and IPM motors. The magnetic saturation of the
motor depends on the operating point; therefore, the plant’s transfer function can vary
significantly. Consequently, a tuning strategy that adapts to the system’s operating point
is required. To facilitate automatic tuning, the proposed autotuning block introduces
frequency harmonic perturbations into the control loop. These frequency harmonic signals
enable the identification of the closed-loop transfer function at the current operating point.
The injection frequencies are centered around the target crossover pulsation ωc, and are
defined relative to it as follows:

{
1
10ωc,

1
3ωc, ωc, 3ωc, 10ωc

}
.

A significant advantage of the proposed autotuning method is its independence from ma-
chine parameters, such inductances. This characteristic makes the method straightforward
deployment across various motor types without requiring reconfiguration or parameter
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retuning. Moreover, the approach ensures consistent control performance over a broad
range of operating conditions while significantly reducing the complexity and effort as-
sociated with manual tuning procedures. This is particularly beneficial in applications
characterized by nonlinear or time-varying dynamics.

2.2.5 Direct flux vector control

In this subsection, a different control method for the machine is analyzed, one that is not
based on current, unlike all the previously discussed methods, but rather on the flux.

The most general form of the equation for a dual-three-phase machine is given in (2.5).
The current can be expressed as a function of the flux:

φ̄ = Ldq ī + φ̄pm ⇒ ī = Ldq
−1(φ̄ − φ̄pm) (2.71)

where Ldq
−1 is the inverse of the apparent inductance matrix obtained in nominal condition.

Hereinafter the inverse of the apparent matrix will be defined as:

Ldq
−1 = βdq =


βd1 βd1q1 βd1d2 βd1q2

βq1d1 βq1 βq1d2 βq1q2

βd2d1 βd2q1 βd2 βd2q2

βq2d1 βq2q1 βq2d2 βq2

 (2.72)

The derivative of the flux with respect to the time will be defined as:

˙̄φ = dφ̄

dt
(2.73)

Substituting equation (2.71) in equation (2.5) is possible to obtain:

v̄ = R
(
L−1

dq (φ̄ − φ̄pm)
)

+ ˙̄φ + ωTφ̄ (2.74)

Equation (2.74) can now be expressed in terms of the derivative:

˙̄φ = v̄ − R
(
L−1

dq (φ̄ − φ̄pm)
)

− ωTφ̄ (2.75)

Collecting φ̄:
˙̄φ = −

(
RL−1

dq + ωT
)

φ̄ + v̄ + RL−1
dq ¯φpm (2.76)

The state equations are introduced here in their general form and will be formally derived
in the next chapter: 

˙̄x = Ax̄ + Bū + C

ȳ = Dx̄ + Eū + F
(2.77)
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where B = 1 and F = 0.
It is possible to express the state equations of the system under study as follows:


˙̄φ = −

(
RL−1

dq + ωS
)

φ̄ + v̄ + RL−1
dq φ̄pm

ī = L−1
dq φ̄ − L−1

dq φ̄pm

(2.78)

Within the scope of this control strategy, it is possible to establish a relationship between
torque and fluxes:

Tr = f(φ̄) (2.79)

Such relationship can be exploited in the control architecture shown in figure 2.4.

Figure 2.4: Direct flux control

The architecture is similar to that proposed by Pellegrino [15], as illustrated in figure 3.

Going into more detail compared to figure 2.4, here is analyzed the observer using the
state-space equation defined in (2.77) and expanded in (2.78):

Figure 2.5: Luenberger state space observer
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To guarantee the system’s asymptotic stability, an error signal is formed by comparing the
estimated current with the actual current, which is then used in a feedback loop.

Within the framework of a Kalman filter, the Luenberger gain K adapts dynamically based
on the system’s noise characteristics. Proper tuning of K ensures asymptotic stability and
convergence of the observer’s estimates to the real system states in steady state. When
optimized, the observer can react faster than the physical system, making it particularly
effective for feedback control applications.

Due to its rapid response and asymptotic accuracy, the Luenberger observer’s dynamics
can be considered negligible in the PI controller tuning process. Specifically, its transfer
function can be approximated by a diagonal matrix of ones. From control theory, this
implies that if the observer is correctly designed, the observer path (highlighted in blue in
(2.4)) can be treated equivalently to an actual measurement and thus omitted from the PI
tuning equations.

Expanding equation (2.76) it results:

˙̄φ = −RL−1
dq φ̄ − ωTφ̄ + v̄ + RL−1

dq φ̄pm (2.80)

It is now possible to solve the equations for each axis:

φ̇da = vda + φqa(ω − βdaqaRs) + βdaRsφpm,a + βdadbRsφpm,b

− βdaRsφda − βdadbRsφdb − βdaqbRsφqb

(2.81)

φ̇qa = vqa − φda(ω + βqadaRs) + βqadaRsφpm,a + βqadbRsφpm,b

− βqaRsφqa − βqadbRsφdb − βqaqbRsφqb

(2.82)

φ̇db = vdb + φqb(ω − βdbqbRs) + βdbRsφpm,b + βdbdaRsφpm,a

− βdbRsφdb − βdbdaRsφda − βdbqaRsφqa

(2.83)

φ̇qb = vqb − φdb(ω + βqbdbRs) + βqbdaRsφpm,a + βqbdbRsφpm,b

− βqbRsφqb − βqbdaRsφda − βqbqaRsφqa

(2.84)
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Now it is possible to obtain the values of the vector ū for the tuning of the PI:


uda = φ̇da + RsL
−1
da φda

uqa = φ̇qa + RsL
−1
qa φqa

udb = φ̇db + RsL
−1
db φdb

uqb = φ̇qb + RsL
−1
qb φqb

(2.85)

All the other terms neglected will be compensated via feedforward after the PI.

Equation for PI tuning
The transfer function for a generic axis of the observer can be written as:

φ

u
= φ

φ̇ + RsL
−1
dq φ

(2.86)

which in the Laplace domain, since φ̇ = sφ, it results:

G(s) = 1
s + RsL

−1
dq

(2.87)

The PI equation in Laplace domain is:

U(s) =
(

Kp + Ki

s

)
(φ∗ − φ̂) (2.88)

2.3 Efficiency and power factor analysis

In electric drive systems, particularly those used in electric vehicles, maximizing motor
efficiency across the entire operating range is essential for extending driving range and
maintaining effective thermal management.

Efficiency map

An efficiency map provides a visual representation of how effectively a system operates
under varying conditions, typically depicted through contour lines or color gradients. The
map’s axes represent two fundamental operational parameters: motor speed and torque. In
this study, the nominal operating conditions are defined as the maximum allowable values
for both speed and torque. As such, the first step involves determining these nominal
values, which then serve as the boundaries for constructing the efficiency map.
To assess the motor’s performance, the system is simulated over a defined grid of speed
and torque values:

ωm ∈ [ωmin, ωmax], Tm ∈ [Tmin, Tmax]
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For this work, the limits are specified as follows:

ωmin = 0 rpm, ωmax = 4500 rpm, Tmin = 0 Nm, Tmax = 75 Nm

At each defined operating point, the model is simulated, and relevant electrical and
mechanical quantities are recorded. Motor losses are then computed using a combination
of simulation results and model-based assumptions:

• Copper losses:

Pcu1 = 3Rs(i2
da + i2

qa), Pcu2 = 3Rs(i2
db + i2

qb)
Pcu = Pcu1 + Pcu2

(2.89)

• Iron losses:
Piron = kiron · ω2

m (2.90)

• Mechanical losses:
Pmech_loss = kmech · ω2

m (2.91)

The estimated values of the total losses can be obtained by summing equations (2.89),
(2.90), and (2.91):

Ploss = Pcu + Piron + Pmech_loss (2.92)

Finally, the efficiency is:

η = Pmech

Pin
= Pmech

Pmech + Ploss
(2.93)

Where:
The mechanical output power is calculated as:

Pmech = ωm · Tem (2.94)

The electrical input power is:

Pin = Pmech + Ploss (2.95)

The simulation process iterates over speed and torque points, computing:

η(i, j) = efficiency at torque index i and speed index j

This results in a 2D efficiency map in the speed-torque domain. It reveals high efficiency
regions, and helps identify operating zones to avoid due to poor energy conversion or
thermal stress.
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Power factor

To determine the power factor of a motor, it is first necessary to calculate the active and
reactive power:

P = 3
2 (vdaida + vqaiqa + vdbidb + vqbiqb) (2.96)

Q = 3
2 (vqaida − vdaiqa + vqbidb − vdbiqb) (2.97)

The apparent power is:

S =
√

P 2 + Q2 (2.98)

From these, the power factor is computed as:

cos Φ =
∣∣∣∣PS
∣∣∣∣ (2.99)
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Chapter 3

System stability

3.1 SISO and MIMO systems

In the field of control systems and communications, Single Input Single Output (SISO) and
Multiple Input Multiple Output (MIMO) represent two fundamental system architectures.
Their distinction lies in the number of input and output signals that the system processes.

Single input single output
A SISO system is characterized by a single input and a single output, representing the
most fundamental structure of a dynamic system. Due to their simplicity, SISO systems
are widely used in introductory control theory to demonstrate essential concepts such as
system stability and dynamic response. Their behavior is typically modeled using transfer
functions, which provide a convenient mathematical framework for analysis. Due to their
simplicity, SISO systems allow for straightforward design and analysis using classical
control techniques such as Bode plots and Nyquist criteria.
Mathematically, a SISO system can be represented as:

y(t) = G(s) · u(t) (3.1)

Despite their simplicity, SISO models are often inadequate for capturing the complexity of
real-world systems, which typically involve interactions among multiple variables. In this
thesis, the only subsystem that can be accurately modeled as a SISO system is the speed
control loop. In an electric motor, this loop consists of a PI controller that compares the
reference speed with the measured speed, producing a reference for the iq and id current
components. These current components directly influence the electromagnetic torque
generated by the motor.

Multiple input multiple output
In contrast, a MIMO system involves multiple inputs and multiple outputs. This configu-
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ration is more representative of complex engineering systems like the current control of a
dual three-phase motor that presents as input 4 voltages and as output 4 currents.
A typical state-space representation for a MIMO system is: ˙̄x(t) = Ax̄(t) + Bū(t)

ȳ(t) = Cx̄(t) + Dū(t)
(3.2)

where x̄(t) ∈ Rn, ū(t) ∈ Rm, and ȳ(t) ∈ Rp, with m, p > 1 for MIMO configurations.

Figure 3.1: SISO and MIMO

3.2 Bode and Nyquist plots

In this section, the behavior of the motor control system is analyzed using frequency-domain
techniques, specifically the Bode plot and the Nyquist plot. These analytical tools
are essential for assessing system stability, bandwidth, and overall control performance,
especially in feedback-controlled systems.
The first step in applying these tools involves determining the forward loop transfer
function, denoted as G(s), and the feedback path transfer function, denoted as H(s).
Using these, the closed-loop transfer function Gt(s) can be expressed as:

Gt(s) = G(s)
1 + G(s)H(s) (3.3)

To analyze the stability of the closed-loop system, it is necessary to examine the poles of
Gt(s), which are obtained by solving for the values of s that satisfy the equation:

1 + G(s)H(s) = 0 (3.4)

The roots of this equation, i.e., the zeros of 1 + G(s)H(s), correspond to the poles of the
closed-loop system and are critical for determining its stability.

Considering the closed-loop state-space representation presented in equation (1.42), and
recognizing that equation (3.3) provides the general formulation for computing the closed-
loop state-space model from the transfer functions G(s) and H(s), as illustrated in
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figure 1.3, the analysis is carried out using Matlab symbolic tools. Given that the forward
path transfer function is defined as

G(s) =
(

Kp + Ki

s

)
· 1

Js + B
(3.5)

which corresponds to the combination of the PI controller and the plant, it follows that
H(s) = 1. This indicates that the feedback path is unity, and thus does not modify the
feedback response.

Bode Diagram

The Bode diagram consists of two plots: the magnitude (in dB) and the phase (in degrees)
of the system’s transfer function as functions of frequency. This representation provides
direct insight into how the system responds to sinusoidal inputs at various frequencies.
Key characteristics that can be extracted from the Bode diagram include:

• Gain crossover frequency: the frequency at which the magnitude crosses 0 dB;

• Phase crossover frequency: the frequency at which the phase crosses −180◦;

• Phase margin: the additional phase lag required to bring the system to the verge
of instability. A phase margin of 60–75◦ is typically desired;

• Gain margin: the increase in gain required to make the system unstable. This is
often expressed in dB and should be at least 3 dB;

• Low-frequency gain: the low-frequency behavior of the Bode magnitude plot,
particularly the gain near 0 Hz, provides critical information about the system’s
steady-state performance;

• Resonance peaks: resonance peaks appear in the Bode magnitude plot as sharp
increases in gain at specific frequencies, often close to the system’s natural frequency.
These peaks are indicative of low damping in the system and can result in oscillatory
or even unstable behavior in response to disturbances or setpoint changes.

Nyquist diagram

The Nyquist diagram represents the frequency response of a system by plotting the
open-loop transfer function G(jω)H(jω) on the complex plane as the frequency ω varies
continuously from −∞ to +∞. This graphical representation provides a comprehensive
characterization of the system’s behavior under sinusoidal excitation. Furthermore, the
Nyquist plot constitutes a fundamental tool for analyzing the stability of closed-loop
feedback systems via the Nyquist stability criterion.
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A key element of this criterion is the encirclement of the critical point −1 + j0 in
the complex plane. Specifically, the closed-loop stability is determined by the number of
clockwise encirclements of the point (−1, 0) combined with the count of open-loop poles
located in the right half of the complex s-plane. This relationship is formally expressed by
the following equation:

Z = N + P (3.6)

Where:

• Z denotes the number of zeros of equation G(s) in the right half-plane, corresponding
to the unstable poles of the closed-loop transfer function;

• N represents the number of clockwise encirclements of the point (−1, 0) by the
Nyquist plot of Li = G(jω)H(jω).

In practice, the net encirclements N can be computed numerically by:

N =
n−1∑
i=1


1 if



(
Re(Li) + 1

)
· (Re(Li+1) + 1

)
< 0

Im(Li) · Im(Li+1) < 0

Im(Li+1) < 0

0 otherwise

(3.7)

Where:

•
(
Re(Li) + 1

)(
Re(Li+1) + 1

)
< 0: detects a crossing of the vertical line Re(s) = −1;

• Im(Li) · Im(Li+1) < 0: indicates a crossing of the real axis;

• Im(Li+1) < 0: ensures that the crossing occurs from the upper half-plane to the
lower half-plane, corresponding to a clockwise encirclement.
The sum counts the number of such clockwise crossings, which approximates the
number of encirclements of the critical point (−1, 0) by the Nyquist plot.

P is the number of open-loop poles of G(s)H(s) that lie in the right half of the complex
plane. The number P of unstable open-loop poles is given by:

P =
∑

poles pi

1{Re(pi)>0}. (3.8)

The Nyquist criterion states that a system is stable if and only if Z=0, meaning that all
poles of the closed-loop transfer function lie in the left half of the complex plane.

54



The formulas analyzed in this chapter apply to a three-phase speed control system. They
can also be used for dual three-phase motors, provided that both sections have identical
characteristics and share a common shaft.

3.3 State space representation

3.3.1 Input-state-output form

In the analysis and control of dynamic systems, the state-space representation offers a
comprehensive framework that describes a system’s behavior through a set of first-order
differential equations. This formulation is centered around three key components:

• Input: denoted by ū(t), refers to the external signals that are applied to the system.
These inputs are typically known functions of time:

ū(t) ∈ Rm

• State: denoted by x̄(t), embodies the internal status of the system at any given
time. It captures all the information necessary to describe the future behavior of the
system when combined with the input:

x̄(t) ∈ Rn

• Output: denoted by ȳ(t), represents the set of measurable quantities derived from
the internal states and inputs of the system. These are the variable measurements
and are often the quantities of interest for control purposes:

ȳ(t) ∈ Rp

Linearization of nonlinear systems

For nonlinear systems, this representation must often be linearized around a specific
operating point to enable control design and analysis using easier methods.

General nonlinear formulation

The nonlinear continuous-time system is typically represented as:
dx̄(t)

dt
= f(x̄(t), ū(t), t)

ȳ(t) = g(x̄(t), ū(t), t)
(3.9)
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To simplify control synthesis, it is often beneficial to linearize the nonlinear system around
an equilibrium point (x̄e, ūe) that in this thesis is the nominal condition of the motor. This
process assumes small deviations δx̄(t) and δū(t) from the equilibrium, where:

x̄(t) = x̄e + δx̄(t), ū(t) = ūe + δū(t) (3.10)

First order linearization via Taylor expansion

The criterion of small deviations refers to perturbations of sufficiently limited magnitude
such that the Taylor series expansion can be truncated after the first-order terms while
maintaining acceptable approximation accuracy:

f(x̄, ū) ≈ f(x̄e, ūe) + ∂f

∂x̄

∣∣∣∣∣
(x̄e,ūe)

δx̄ + ∂f

∂ū

∣∣∣∣∣
(x̄e,ūe)

δū (3.11)

Given that f(x̄e, ūe) = 0 at equilibrium, it is possible to rewrite the first equation of the
(3.9) in the following way:

d

dt
δx̄(t) ≈ A(t)δx̄(t) + B(t)δū(t) (3.12)

where:
A(t) ≡ ∂f

∂x̄

∣∣∣∣∣
(x̄e,ūe)

, B(t) ≡ ∂f

∂ū

∣∣∣∣∣
(x̄e,ūe)

(3.13)

These matrices are known as the Jacobian matrices of the system, evaluated at the
equilibrium point. Specifically:

A(t) =


∂f1
∂x1

· · · ∂f1
∂xn... . . . ...

∂fn

∂x1
· · · ∂fn

∂xn


(x̄e,ūe)

, B(t) =


∂f1
∂u1

· · · ∂f1
∂um... . . . ...

∂fn

∂u1
· · · ∂fn

∂um


(x̄e,ūe)

(3.14)

This linearization is valid in a neighborhood around the equilibrium, under the assumption
that deviations are small enough to neglect higher-order terms.
In the following, other assumptions and approximations are introduced:

1. Linearization around an equilibrium point:
The nonlinear system ẋ = f(x, u) is linearized around a constant operating point
(x̄e, ūe) such that:

A(t) ≡ ∂f

∂x̄

∣∣∣∣∣
(x̄e,ūe)

= const B(t) ≡ ∂f

∂ū

∣∣∣∣∣
(x̄e,ūe)

= const (3.15)

This simplifies the Jacobian matrices to constant values. It is possible to pass from
A(t) and B(t) to A and B respectively.
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2. Simplification of notation:
Once the system is expressed in terms of deviations δx(t), δu(t), and linearized
around a constant point, it is common engineering practice to drop the δ notation
for readability. Variables are thus redefined with respect to the equilibrium, leading
to the compact LTI representation.

The expression (3.12) can be rewritten with the addition of a constant term C:

˙̄x(t) = Ax̄(t) + Bū(t) + C (3.16)

For the second equation presented in (3.9), the calculations are very similar to those
obtained in the first one:

ȳ(t) ≈ D(t)δx̄(t) + E(t)δū(t) (3.17)

with:
D(t) = ∂g

∂x̄

∣∣∣∣∣
(x̄e,ūe)

, E(t) = ∂g

∂ū

∣∣∣∣∣
(x̄e,ūe)

(3.18)

These are the Jacobian matrices of the output function g(x̄, ū, t) evaluated at the operating
point, and describe how small deviations in state and input affect the output.
The final linearized model, derived under the same assumptions as the first formulation,
yields the following representation:

ȳ(t) = C(t)x̄(t) + D(t)ū(t) (3.19)

In compact form, the state space equation that is used in the following are:


˙̄x(t) = Ax̄(t) + Bū(t) + C

ȳ(t) = Dx̄(t) + Eū(t)
(3.20)

3.3.2 Open loop state space equation

After analyzing the general structure of the state-space equations, the formulation is
adapted for the specific case in which the state and the output correspond to the currents,
while the input is the applied voltage. Accordingly, the first equation in (3.20) can be
rewritten as:

˙̄i(t) = Aol̄i(t) + Bolv̄(t) + Col (3.21)

By taking the machine equation presented in (2.10) and rearranging its terms, it is possible
to express it in a form compatible with the state-space representation:

d̄i

dt
= −dLdq

−1 (R + ωTLdq) ī + dLdq
−1v̄ − dLdq

−1ωTφ̄pm (3.22)
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From this expression, considering ω = const, the system matrices can be identified as
follows: 

Aol = −dLdq
−1 (R + ωTLdq)

Bol = dLdq
−1

Col = −dLdq
−1ωTφ̄pm

(3.23)

3.3.3 Closed loop state space

Modified PI without feedforward compensation

To ensure accurate current regulation and reference tracking of the desired current a PI
controller is employed. The voltage reference vector v̄ is determined by the following
control law:

v̄ = Ki · z̄ − Kp · ī (3.24)

Where: 
Kp = diag(Kp,da, Kp,qa, Kp,db, Kp,qb)
Ki = diag(Ki,da, Ki,qa, Ki,db, Ki,qb)

z̄ = 1
s

(̄i∗ − ī) ⇒ ˙̄z = I4 · ī∗ − I4 · ī

(3.25)

Combining the equations (3.22) and (3.24), it is possible to write the closed-loop system:

d̄i

dt
= dLdq

−1Ki · z̄ − dLdq
−1 (Kp + R + ωTLdq) ī − dLdq

−1ωTφ̄pm (3.26)

From this expression, considering ω = const, the system matrices can be identified as
follows:


Acl = Kp + R + ωTLdq

Bcl = dLdq
−1Kiz̄

Ccl = dLdq
−1ωTφ̄pm

(3.27)

The overall closed-loop system can be rewritten as a matrix combining the (3.25) and the
(3.26) for obtain the following expression:

 ˙̄i
˙̄z

 =
Acl Bcl

−I4 0

 ī

z̄

+
Ccl 0

0 I4

1
ī∗

 (3.28)

Modify PI with feedforward compensation

To improve dynamic response, feedforward compensation is added:

v̄ff = ωT(Ldq · ī + φ̄pm) (3.29)
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Thus, the total voltage output becomes combining (3.24) and (3.29):

v̄ = v̄in + v̄ff = +Kiz̄ − Kpī + ωTLdq ī + ωTφ̄pm (3.30)

Beginning with the open-loop state-space representation (3.22) and substituting the voltage
equation given in (3.30), the resulting system becomes:

 ˙̄i
˙̄z

 = Acl,ff

 ī

z̄

+ Bcl,ff

1
ī∗

 (3.31)

Where:

Acl,ff =
−dL−1

dq (Rs + ωTLdq + Kp) dL−1
dqKi

−I4 0

 (3.32)

Bcl,ff =
0 0
0 I4

 (3.33)

Classic PI without feedforward compensation

To simplify the control system tuning process, Simulink provides an automated procedure
for PI controller adjustment. This feature allows the user to specify the desired bandwidth
[rad/s] and phase margin [deg]. Based on these inputs, Simulink internally computes suit-
able values for proportional and integral gains, ensuring a balance between responsiveness
and stability.
The classical PI controller can be represented by the following transfer function:

v̄ = Kp(̄i∗ − ī) + Ki

s
(̄i∗ − ī) (3.34)

To facilitate further analysis, the auxiliary variables are introduced:

z̄ = ī∗ − ī

s
⇒ ˙̄z = ī∗ − ī (3.35)

x̄ = Ki

s
z̄ (3.36)

Using these definitions, equation (3.34) can be equivalently expressed as:

v̄ = x̄ + Kp ˙̄z (3.37)

By combining equations (3.22) and (3.37), the closed-loop system can be expressed as:

d̄i

dt
= dLdq

−1
[
− (R + ωTLdq + Kp) ī + Kpī∗ + Ki

s
z̄ − ωTφ̄pm

]
(3.38)
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Classic PI with feedforward compensation

To improve dynamic response, feedforward compensation is added with the same way
presented in (3.29). Thus, the total voltage output becomes combining (3.34) and (3.29):

v̄ = v̄in + v̄ff = Kp ˙̄z + Kiz̄ + ωTLdq ī + ωTφ̄pm (3.39)

Beginning with the open-loop state-space representation (3.22) and substituting the voltage
equation given in (3.39), the resulting system becomes:

 ˙̄i
˙̄z

 = Acl,ff

 ī

z̄

+ Bcl,ff

1
ī∗

 (3.40)

Where:

Acl,ff =
−dL−1

dq (Rs + ωTLdq + Kp) dL−1
dqKi

−I4 0

 (3.41)

Bcl,ff =
0 dL−1

dqKp

0 I4

 (3.42)

This analysis serves to demonstrate that the matrix Acl,ff obtained in (3.32) and (3.41)
contains exactly the same terms. Consequently, the eigenvalue computation presented in
the next chapter will yield identical results. The only distinction lies in the matrix Bcl,ff .

3.3.4 Eigenvalues

Consider a LTI system described in state-space form, as defined in equation (3.20).
Applying the Laplace transform under the assumption of zero initial conditions yields:

sx̄(s) = Ax̄(s) + Bū(s) + L{C}

ȳ(s) = Dx̄(s) + Eū(s)
(3.43)

Since C is constant with respect to time, its Laplace transform is:

L{C} = C
s

(3.44)

Therefore, the first equation becomes:

(sI − A)x̄(s) = Bū(s) + C
s

(3.45)

Solving for x̄(s):

x̄(s) = (sI − A)−1Bū(s) + (sI − A)−1 C
s

(3.46)
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Substituting into the second equation:

ȳ(s) = Dx̄(s) + Eū(s)

= D(sI − A)−1Bū(s) + Eū(s) + D(sI − A)−1 C
s

(3.47)

Hence, the output consists of two parts:

• Where the transfer function ȳ(s)/ū(s) is:

ȳ(s)
ū(s) = D(sI − A)−1B + E (3.48)

• An additional term caused by the constant input:

Yoffset(s) = D(sI − A)−1 C
s

(3.49)

This offset term does not affect the transfer function, which is defined as the ratio ȳ(s)/ū(s)
and depends solely on the linear input-output relationship under zero input bias. The
constant term contributes to the steady-state behavior but is not part of the system’s
transfer function.
In control theory, the poles of a transfer function are defined as the complex values of s

for which the denominator becomes zero. For a system represented in state-space form,
the poles correspond to the values of s for which the matrix (sI − A) is not invertible.
This occurs when:

det(sI − A) = 0 (3.50)

This equation defines the characteristic polynomial of A, and its roots are precisely the
eigenvalues of A. Thus, the poles of the system coincide with the eigenvalues of the A.

To find the eigenvalues, it is first necessary to compute the characteristic polynomial,
which can be generally expressed as [16]:

p(λ) = a0λ
n + a1λ

n−1 + ...an = 0 (3.51)

Where:
a0 = (−1)n =

n∑
i=1

aii = tr(Acl)

a1 = (−1)n−1
n∑

i=1
aii

...
an = det(Acl)

(3.52)
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For a 8 × 8 matrix Acl (n = 8), the characteristic polynomial can be written as:

p(λ) = λ8 − a1λ
7 + a2λ

6 − a3λ
5 + a4λ

4 − a5λ
3 + a6λ

2 − a7λ + a8 (3.53)

The eigenvalues {λi}8
i=1 are the roots of the characteristic polynomial p(λ), obtained using

Matlab. Each eigenvalue λ is, in general, a complex number and can be interpreted
through its real and imaginary components [17]. These components allow the computation
of the natural frequency as follows:

ωn =
√

Re2(λ) + Im2(λ) (3.54)

And the calculation of the damping ratio [18]:

ζ = − Re(λ)√
Re(λ)2 + ω2

n

(3.55)

The magnitude of the real part of the eigenvalue, normalized by the natural frequency,
indicates the speed of decay (or divergence) of the oscillation [18]. For this reason, greater
attention should be given to the eigenvalues located closer to the imaginary axis, provided
that their real parts remain negative. This condition is necessary to satisfy the system’s
stability criterion:

Re(λi) < 0 for all i = 1, . . . , 8. (3.56)

3.3.5 Mechanical subsystem and torque model

Although this study primarily focuses on the electrical domain, the rotor dynamics must
also be considered. They are governed by Newton’s second law:

J · dω

dt
= Te − TL − B · ω (3.57)

The electromagnetic torque for a dual three-phase machine is given by:

Te = 3
2P (φdaiqa − φqaida + φdbiqb − φqbidb) (3.58)

Combining equations (3.57) and (3.58), it is possible to obtain the derivative of the angular
velocity with respect to the speed:

ω̇ = J−1 ·
(3

2P (φdaiqa − φqaida + φdbiqb − φqbidb) − TL − B · ω
)

(3.59)

It is possible to define the mechanical equation applied in state space:

dω

dt
= A · ω + B · TL + C (3.60)
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Where:


A = −J−1B

B = −J−1

C = 3
2PJ−1 (φdaiqa − φqaida + φdbiqb − φqbidb)

(3.61)

The coupled electromechanical system can, in principle, be integrated with the electrical
subsystem described by the matrix formulation presented in equation (3.28). Such inte-
gration would result in an augmented state-space representation, thereby increasing both
the dimensionality of the system matrix and the overall complexity of the mathematical
model. The inclusion of mechanical dynamics introduces additional differential equations
corresponding to mechanical states.

Nevertheless, for the scope of this study, the mechanical subsystem has been deliber-
ately excluded from the numerical simulations. This modeling simplification is based on
two primary considerations. First, the mechanical dynamics typically evolve on a much
slower time scale compared to the fast transients observed in the electrical components of
the system. Second, the mechanical part is generally stable and does not exhibit behaviors
that critically influence the transient or steady-state performance of the electrical system.
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Chapter 4

Model parameters of the machine

In this chapter, the main characteristics of the dual-three-phase machine under study are
analyzed. The first part describes all the geometric dimensions of the machine, followed
by an analysis of the inductances as functions of the current for each machine.

4.1 Case study parameters

Description Symbol Numerical Value Unit of Measure

Number of pole pairs P 4 –
Number of slots Ns 48 –
Nominal voltage VDC 400 V
Nominal current inom 71.25 Apk

Stator resistance R 1.3 Ω
Motor inertia J 0.005 kg·m2

Internal stator diameter D 0.138 m
External stator diameter Dext 0.203 m
Internal rotor diameter Dint 0.04 m
Slot area Sslot 1.58 × 10−4 m2

Sector shift α 30 rad/s
Active length L 0.108 m
Rotor and stator material M250-35A – –
Magnet material N28UH – –

Table 4.1: Dual-three-phase parameters valid for both SPM and IPM [5]

These parameters, which include both electromagnetic and geometric specifications, define
the fundamental characteristics of the motor’s architecture and performance. The dimen-
sional parameters, in particular, are geometrically referenced to the machine cross-section
shown in figure 4.1:
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Figure 4.1: Motor dimensions

The parameters listed in table 4.1 constitute the fundamental design specifications of the
machine, while a more extensive set of parameters was implemented within the FEMM
environment for detailed electromagnetic analysis. FEMM is an industry-standard finite
element analysis tool specifically developed for solving 2D simulations under steady-state
conditions through the numerical solution of Maxwell’s equations. In this thesis, particular
attention was devoted to properly modeling the nonlinear B-H characteristics of the
M250-35A electrical steel used in both the stator and rotor cores.

Figure 4.2: M250-35A BH curve for stator and rotor lamination [9]

The development of the FEMM model required careful consideration of magnetic non-
linearities, making the principle of superposition inapplicable for this analysis. This
nonlinear behavior significantly influences the machine’s performance characteristics, par-
ticularly under saturated operating conditions. The software enables to capture these
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interactions by directly solving the field equations while accounting for the material’s
nonlinear permeability, allowing for accurate prediction of flux density distributions and
local saturation.

Nominal current

In this thesis, no distinction is made between sectors 1 and 2 regarding the current reference;
thus, the same target values are applied, i.e., ida = idb and iqa = iqb. A Matlab script was
developed to compute the intersection between the MTPA trajectory and the current circle.
This intersection yields the exact values of the direct and quadrature current components
under rated conditions. The resulting values correspond to the nominal operating point:
id,rat = −42.32 A and iq,rat = 57.32 A.

Nominal speed

The dynamic equations of a three-phase motor in the dq reference frame are given in (1.33).
Since in a dual-three-phase motor, the rotor is only one, it is easier to consider only one
sector. Under steady-state conditions, the time derivatives of the fluxes can be neglected:

dφd

dt
≈ 0,

dφq

dt
≈ 0 (4.1)

The (1.33) is now possible to write as:
vd = Rs · id − ωφq

vq = Rs · iq + ωφd

(4.2)

Solving for ω :

ω = vd − Rsid

φq

= vq − Rsiq

φd

(4.3)

However, when the individual components vd and vq are unknown, but the magnitude
of the voltage vector Vphase is known, is necessary to find an expression for ω in terms of
Vphase and known parameters.
The magnitude of the voltage vector is given by:

Vlim = VDC√
3

· 0.9

Vphase =
√

v2
d + v2

q ≤ Vlim

(4.4)

Vlim accounts for the inverter’s modulation capability, as expressed in formula (1.71),
typically 90% of the linear region of a sinusoidal PWM inverter.
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Substituting vd and vq:

V 2
phase = (Rsid − ωφq)2 + (Rsiq + ωφd)2 (4.5)

Expanding the squares:

V 2
phase = (Rsid)2 − 2Rsidωφq + ω2φ2

q + (Rsiq)2 + 2Rsiqωφd + ω2φ2
d (4.6)

Group terms by powers of ω:

V 2
phase = R2

s(i2
d + i2

q) + ω2(φ2
q + φ2

d) + 2ωRs(iqφd − idφq) (4.7)

Rearrange as a quadratic equation in ω:

ω2(φ2
q + φ2

d) + 2ωRs(iqφd − idφq) + R2
s(i2

d + i2
q) − V 2

phase = 0 (4.8)

Define coefficients:
a = φ2

q + φ2
d

b = 2Rs(iqφd − idφq)
c = R2

s(i2
d + i2

q) − V 2
phase

(4.9)

The solutions for ω are given by the quadratic formula, explicitly:

ω =
−2Rs(iqφd − idφq) ±

√
[2Rs(iqφd − idφq)]2 − 4(φ2

q + φ2
d)
[
R2

s(i2
d + i2

q) − V 2
phase

]
2(φ2

q + φ2
d)

(4.10)

The physically meaningful solution is the positive root. Subsequently, the electrical angular
speed must be converted into mechanical speed, resulting in a nominal operating condition
of approximately 4464.7 rpm.

Nominal torque

Considering the torque expression derived for three-phase motors in equation (1.63), and
noting that a dual three-phase motor effectively doubles the contribution, the resulting
torque is exactly twice 72.31 Nm.

67



4.2 Inductance matrix of IPM motors and PI
parameters

To understand the simplifications that can be applied in motor control, it is first necessary
to analyze all inductance values present in equation (2.10). For this purpose, 3D plots are
generated as a function of the currents id and iq.
The first type of inductance examined in this thesis is the differential inductance matrix,
which plays a critical role in the PI gain calculation, as presented in chapter 2. The
corresponding formulas are valid under the assumption that the off-diagonal elements
are negligible compared to the diagonal ones. Based on this assumption, several matrix
manipulation techniques are applied. Ultimately, the apparent inductances are introduced
for application in feedforward compensation.

Incremental inductances
The following presents the differential inductances obtained directly from the post-
processing of the FEMM analysis, without applying any method aimed at diagonalizing
the matrix.

Figure 4.3: IPM - incremental inductances

The figure clearly shows that mutual inductance terms cannot be neglected, as the
magnitudes of the self and mutual inductances are comparable. As a result, any model
simplification that disregards mutual inductance contributions will lead to significant
inaccuracies. This implies that it is not possible to simplify the model into the form
presented in (2.43), which is typically employed to ease the calculation of the PI gains.
Another important observation is that the inductance values corresponding to the same
axis Ldidj or Lqiqj are significantly higher than those observed between different axes Ldiqj
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or Lqidj. Inductances measured along the same axis represent the direct magnetic coupling
between coils aligned and excited in the same magnetic direction. In such configurations,
the magnetic flux generated by one winding is effectively channeled and linked with the
corresponding winding on the same axis due to favorable magnetic alignment. This results
in stronger mutual coupling and, consequently, higher inductance values. On the other
hand, inductances between different axes exhibit significantly weaker coupling. This is due
to the orthogonal spatial separation of these axes by 90 electrical degrees, which causes
their associated magnetic flux paths to intersect minimally. As a result, the mutual flux
linkage between windings on different axes is greatly reduced, leading to much smaller
inductance values in the cross-axis.

Figure 4.4: DQ axis for a dual-three-phase motor

Based on the inductance values presented in figure 4.14, and taking into account the
nominal operating conditions of the machine, the relevant inductance parameters have
been accurately determined. These values serve as the foundation for the subsequent
tuning of the PI controller gains.
To evaluate and compare the effectiveness of two different tuning approaches, both
methods were applied sequentially. The first method is based on the analytical formulation
given by equation (2.39), while the second utilizes the alternative expression provided in
equation (2.43).
Following the application of these methods, the corresponding proportional and integral
gains were computed for each approach. The results are compiled and presented in the table
below, enabling a clear comparison of the two proposed tuning strategies and highlighting
their respective differences.
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Parameters From dLdq From dL−1
dq

dLd,a [mH] 0.352 0.216
dLq,a [mH] 0.437 0.255
dLd,b [mH] 0.352 0.216
dLq,b [mH] 0.437 0.255

Kp,da 1.65 0.96
Kp,qa 2.07 1.16
Kp,db 1.65 0.96
Kp,qb 2.07 1.16

Ki,da 2227.29 1368.98
Ki,qa 2763.19 1610.92
Ki,qa 2225.62 1367.33
Ki,qb 2761.11 1611.66

Table 4.2: IPM - proportional and integral gains

Significant differences can be observed in both Kp and Ki values obtained through the two
methods. A detailed simulation and performance analysis of each approach is presented in
chapter 5, in order to determine which method yields superior control performance.

To have a better understanding of the inverse inductance matrix and to analyze the
variation of the self-inductances terms, the inverse of the incremental inductance matrix is
also plotted:

Figure 4.5: IPM - inverse incremental inductances
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It is now the turn of the VSD method to analyze the differences. As discussed in the
previous chapter, the machine equations within the VSD framework retain the same
general form as presented in equation (2.60). The main difference lies in the structure of
the inductance matrices:

Figure 4.6: IPM - incremental inductances in VSD

In figure 4.6, it can be seen that the matrix is more diagonal compared to cases presented
in figure 4.14 and 4.5, where the matrix element in plane 1 was significantly larger than
that in plane 5. Consequently, the approximation used with the VSD method is more
accurate.
A similar comparison to that proposed in the modular approach is also carried out using
the VSD method:

Parameters From dLvsd From dL−1
vsd

dLd,1 [mH] 0.563 0.514
dLq,1 [mH] 0.710 0.649
dLd,5 [mH] 0.141 0.137
dLq,5 [mH] 0.164 0.158
Kp,d1 2.71 2.46
Kp,q1 3.45 3.14
Kp,d5 0.59 0.56
Kp,q5 0.70 0.67
Ki,d1 3556.94 3250.61
Ki,q1 4487.48 4101.05
Ki,d5 895.97 866.41
Ki,q5 1036.83 1002.60

Table 4.3: IPM - proportional and integral gains in VSD
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In this table, it can be observed that the proportional and integral gains calculated using
the two different methodologies are closer to each other compared to the case seen in the
modular approach. This is because the inductance matrix is more diagonal, and therefore,
the contribution of its inverse is less significant.

Apparent inductances
Apparent inductance plays a key role in implementing a feedforward compensation scheme.
Ideally, all inductance terms should be taken into account to achieve the most accurate
results. However, including this level of detail greatly increases the complexity of the
control algorithm. It requires substantial memory to store detailed lookup tables and places
heavy real-time computational demands. In practice, it is more efficient to include only
those mutual inductance terms whose magnitudes are comparable to the self-inductances.
If no mutual inductance terms meet this criterion, it is preferable to consider only the
self-inductances.

Figure 4.7: IPM - apparent inductance

As can be observed in the inductance maps, the mutual inductances, particularly those
along the same axis, exhibit magnitudes comparable to the self-inductances. Therefore,
for more effective feedforward compensation, it is essential to include at least the terms
MQBQA and MQAQB.
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Considering the application of the VSD approach to the feedforward scheme as well, the
following differences can be observed:

Figure 4.8: IPM - apparent inductances in VSD

In this case, the self-inductances are dominant compared to the mutual inductances,
particularly LD1 and LQ1. Therefore, the feedforward implementation using the VSD
approach can be effectively carried out using only these two self-inductances, resulting in
a fast system with minimal memory requirements.

Novel matrix transformation

As shown in (2.70), the only difference respect VSD lies in the sign change of the last
row. Consequently, the variations in the inductance matrix are absent and minimal in
the terms MD5Q5 and MQ5D5. The graphs presented in the previous subsection are not
reported again, as the results closely resemble those obtained using the VSD approach.

4.3 Inductance matrix of SPM motors with a linear
B-H curve

In this section, an analysis of the inductances of an SPM machine is presented. The
machine is considered under the assumption of a linear magnetic behavior, which provides
a simplified foundation for the investigation of inductance characteristics.
The use of a linear B-H curve is motivated by several important considerations. First,
it allows for a clear and intuitive understanding of the inductance behavior without the
complexities introduced by nonlinear saturation. This simplification is especially valuable
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in early-stage analysis, where the focus is on capturing the essential behavior of the ma-
chine. Second, in many practical scenarios, especially at low load conditions, the magnetic
materials within an SPM machine operate in the linear region. Thirst, the computational
time to simulate the FEA of the motor is reduced.

Apparent and incremental inductances
When linear magnetic behavior is assumed, the difference between apparent and incre-
mental inductance becomes negligible. Both types of inductance exhibit nearly identical
trends due to the linear dependence of the magnetic flux on the current.

Figure 4.9: SPM linear BH curve - incremental inductances

Figure 4.10: SPM linear BH curve - apparent inductances
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Since the modeling of the linear system is presented only as a preliminary study, the
following section is dedicated to the analysis of the nonlinear mapping. The inductance
matrix shown here is used solely to highlight the differences between linear and nonlinear
material mappings.

4.4 Inductance matrix of SPM motors with a non-
linear B-H curve and PI parameters

After analyzing the motor assuming a linear magnetic material model, the study now
progresses to incorporate a nonlinear B-H curve. This nonlinear characterization is partic-
ularly important when considering high current densities, as it allows for a more accurate
understanding of magnetic saturation effects within the laminated materials.

Incremental inductances

Figure 4.11: SPM non linear BH curve - incremental inductances

The figure shows that the mutual-inductance terms are smaller than the self-inductance
terms. Furthermore, the difference between self and mutual inductances in the IPM motor
is less pronounced compared to the larger disparity observed in the SPM motor. Another
important observation is that the inductance values corresponding to the same axis, such
as Ldidj

or Lqiqj
, are considerably higher than those between different axes, such as Ldiqj

or Lqidj
, a behavior also observed in the IPM motor.

Considering the nominal operating conditions of the machine, the inductances are obtained.
By applying the two methods for calculating the PI gains, first using (2.39), and then
(2.43), it is possible to summarize the parameters in the following table:
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Parameters From dLdq From dL−1
dq

dLd,a [mH] 0.356 0.228
dLq,a [mH] 0.353 0.187
dLd,b [mH] 0.356 0.228
dLq,b [mH] 0.353 0.187
Kp,da 1.67 1.03
Kp,qa 1.65 0.82
Kp,db 1.67 1.02
Kp,qb 1.65 0.82
Ki,da 2251.84 1445.81
Ki,qa 2231.65 1182.46
Ki,db 2249.85 1444.19
Ki,qb 2232.59 1183.11

Table 4.4: SPM non linear BH curve - proportional and integral gains

Significant differences can be observed in both Kp and Ki values obtained through the two
methods. A detailed simulation and performance analysis of each approach is presented in
chapter 5, in order to determine which method yields superior control performance.

To have a better understanding of the inverse inductance matrix and to analyze the
variation of the self-inductance terms, the inverse of the incremental inductance matrix is
also plotted. This allows for a better comparison between different approaches presented
in table 4.4.

Figure 4.12: SPM non linear BH curve - inverse incremental inductances

It is now the turn of the VSD method to analyze the differences. As discussed in the
previous chapter, the machine equations within the VSD framework retain the same

76



general form as presented in equation (2.60). The main difference lies in the structure of
the inductance matrices:

Figure 4.13: SPM non linear BH curve - incremental inductances in VSD

In the last figure, it can be seen that the matrix is more diagonal compared to the previous
case, where the matrix element in plane 1 was significantly larger than that in plane 5.
Consequently, the approximation used with the VSD method is also more accurate than
the behavior presented in IPM motor.
A similar comparison to that proposed in the modular approach is also carried out using
the VSD method:

Parameters "From" dLvsd "From" dL−1
vsd

dLd,1 [mH] 0.563 0.554
dLq,1 [mH] 0.595 0.585
dLd,5 [mH] 0.153 0.143
dLq,5 [mH] 0.122 0.113
Kp,d1 2.69 2.66
Kp,q1 2.84 2.81
Kp,d5 0.63 0.60
Kp,q5 0.48 0.44
Ki,d1 3537.30 3501.20
Ki,q1 3726.80 3683.00
Ki,d5 947.48 910.36
Ki,q5 757.99 704.52

Table 4.5: SPM non linear BH curve - proportional and integral gains in VSD

In this table, it can be observed that the proportional and integral gains calculated using
the two different methodologies are closer to each other compared to the case seen in the
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modular approach. This is because the inductance matrix is more diagonal, and therefore,
the contribution of its inverse is less significant.

Apparent inductances
Apparent inductance plays a key role in implementing a feedforward compensation scheme.
Ideally, all inductance terms should be taken into account to achieve the most accurate
results. However, including this level of detail greatly increases the complexity of the
control algorithm, so in practice, it is more efficient to include only those mutual inductance
terms whose magnitudes are comparable to the self-inductances.

Figure 4.14: SPM non linear BH curve - apparent inductances

As can be observed in the inductance maps, the mutual inductances, particularly those
along the same axis, exhibit magnitudes comparable to the self-inductances. Therefore,
for more effective feedforward compensation, it is essential to include at least the terms
MQBQA,MQAQB,MDADB and MDBDA.
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Considering the application of the VSD approach to the feedforward scheme as well, the
following differences can be observed:

Figure 4.15: SPM non linear BH curve - apparent inductances in VSD

In this case, the self-inductances are dominant compared to the mutual inductances,
particularly LD1 and LQ1. Therefore, the feedforward implementation using the VSD
approach can be effectively carried out using only these two self-inductances, resulting in
a fast system with minimal memory requirements.
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Chapter 5

Simulink model

Throughout this thesis, the work is developed progressively in stages. It begins with the
most comprehensive model, the IPM motor, where all relevant aspects described in the
previous chapters are considered. The next stage involves a SPM motor, allowing for a
comparison and better understanding of the differences. The simulation scheme for all
the motor models remains the same, with the only variation being the mapping output
obtained from FEMM.

Figure 5.1: Comparison of flux density saturation in SPM and IPM

Both motors use the same materials and geometry, except for the stator yoke. In the
SPM motor, the stator yoke is larger because the material tends to saturate more easily
compared to the IPM design. Another difference lies in the magnet position: by definition,
the magnet is placed on the surface in the SPM motor, while it is embedded in the IPM
motor. The magnet thickness and area are maintained the same in both configurations to
allow for a consistent and meaningful comparison between the two motors.
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5.1 General scheme

The reference current used in the current control loop comes from two possible sources:
the nominal current or the output of the speed controller (figure 5.2). The speed controller
operates by comparing the measured speed with the reference speed to determine the
required torque. Alternatively, the torque demand can be directly defined within a selected
torque interval. In all the scenarios, the resulting torque is fed into a LUT that implements
the MTPA strategy.

Figure 5.2: Selection of the reference current

A closer examination of the speed control subsystem reveals a block diagram that represents
the equation discussed in chapter 1.1.3:

Figure 5.3: Speed control scheme

The output of the speed control is a torque request, which is converted into reference
current, supposing that the two sectors have exactly the same characteristics:
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Figure 5.4: LUTs with torque request as input and current under MTPA as output

With the reference current now established for all sectors, a Matlab function is introduced
to inject a current disturbance into the d-axis current. This function allows for the selective
application of the disturbance, either in a single sector or across both sectors. The purpose
of this disturbance is to evaluate the system’s response to such variations.

Figure 5.5: Current noise

After identifying the source of the reference current, the next step is to analyze the key
subsystem that encompasses current control, machine model, and motor outputs. This
last subsystem provides access to important values such as electromagnetic torque, flux
components, and stator currents, represented in both the dq and abc reference frames.
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Figure 5.6: Overall system

Referring to figure 5.6, the analysis begins with the current control loop. Based on the
equations developed in chapter 2.2.1, the control algorithm is implemented in the simula-
tion environment, employing two different methods for extracting the diagonal elements
used in the computation of the control gains.

The differential inductance matrix, which for each term represents a five-dimensional
tensor (ida, iqa, idb, iqb, θ), is implemented in Simulink using LUTs. Since the angular
position dependency can be neglected, a Matlab script is used to average each term of
the differential inductance tensor over the fifth dimension. As a result, the LUTs accept
the target current for each sector and a generic angular position as input, which is nec-
essary to fulfill the fifth input dimension but remains constant due to the averaging process.

All differential inductances are processed within a Matlab function that calculates the
inductances, which are then used to determine the proportional and integral gains. This
function includes two separate path: one that directly extracts the diagonal elements of
the matrix dLdq, and another that first computes the inverse of dLdq and then extracts
the diagonal elements from the resulting matrix. In this second method, the reciprocal of
each diagonal term is taken to calculate the PI gains.

Figure 5.7: Simulink scheme for obtain dLdq and αdq
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This Simulink presented runs before the main model, as the parameters Kp and Ki must
be initialized prior to the start of the simulation. This setup is essential because this thesis
also analyzes the control behavior under different tuning conditions, which vary depending
on the motor current.

The next step, referring to the figure 5.8, consists of analyzing the current control loop,
which represents the inner layer of the hierarchical control architecture. In the initial
stage of this work, a modified PI controller is designed. This controller also incorporates
a feedforward compensation mechanism that accounts for all mutual inductance terms.
This feature can be optionally enabled or disabled to evaluate its impact on the system’s
performance.

Figure 5.8: Current control for ida axis

The tuning of the PI controller is carried out based on the desired control bandwidth,
which is defined as follows:

ωc = 2πfsw

Df

(5.1)

where fsw = 10000 Hz denotes the switching frequency of the power converter.
A key reason for dividing by Df rather than using only the numerator value lies in the
separation of dynamic responses between the controller and the system. By selecting a
control frequency significantly lower than the fundamental frequency of the system, the
controller is designed to operate on a much slower time scale. This ensures that the PI
controller does not attempt to react to fast dynamics. As a result, the risk of interacting
with high-frequency components or creating undesired oscillations is minimized. This
conservative tuning approach contributes to system stability and improves robustness
against measurement noise and unmodeled high-frequency dynamics, also because the
phase margin depends on this parameter.

In the following, the system is tested under minimum operating conditions using the
modified PI controller with the IPM machine. The results obtained by using Df = 50 as
the denominator in equation (5.1) are presented below:
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Figure 5.9: Division factor of 50

An increase in ωc, which corresponds to a decrease in the denominator constant, results
in a faster system response. However, if the selected value is too small, the proportional
and integral gains become excessively large, potentially causing numerical instability and
simulation failure.
The following test is performed with Df = 25:

Figure 5.10: Division factor of 25
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A comparison of figures 5.9 and 5.10 clearly shows that the second configuration delivers a
faster dynamic response for both current and torque. Furthermore, it significantly reduces
oscillations, making this second dominant factor the preferred choice.

The scheme shown in figure 5.8 is also implemented using a Matlab function, and the
results are compared to verify the correctness of the system neglecting in this first part
the feedforward compensation. This validation is particularly important because the same
control strategy is used in the open-loop implementation of the state-space model and for
VSD control.

Figure 5.11: Current control using Matlab function

By using the control scheme implemented in figure 5.11, adapting the system to employ
a VSD method becomes straightforward. This requires only updating the Kp and Ki

parameters and introducing three Matlab functions to perform the transformations Tvsd

between the dq and VSD reference frames.
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Figure 5.12: Current control using VSD

In the modeling and simulation of motor control systems, two distinct approaches can be
adopted depending on the level of fidelity and the simulation objectives:

• Ideal voltage injection:
This approach directly applies the reference voltages obtained from the control
algorithm to the motor model, bypassing the physical modeling of the inverter
and the PWM generation. However, this method does not account for switching
effects, voltage ripple, or hardware-induced delays, and therefore may lead to overly
optimistic results when compared to physical implementation;

• Realistic switching model:
In this configuration, the inverter is modeled using switching devices controlled by a
PWM signal generated from the reference voltages.

Since the primary objective of this thesis is to analyze the control strategy, the PWM
generator and inverter are not modeled. As a result, the voltage outputs from the control
blocks (5.8) and (5.12) are applied directly to the motor model. Within this setup, it
is possible to choose between using a continuous or discrete PI controller for current
regulation:

Figure 5.13: Continuous or discrete control
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The motor is modeled according to equation (2.37), where the derivative of the cur-
rent is explicitly isolated and then integrated. This approach is preferred over directly
isolating the current itself because numerical integration is more stable and reliable
than differentiation. As can be observed from the machine equations, current terms
appear both as derivatives and algebraic variables. Therefore, the first step is to ob-
tain the current derivatives, then integrate them, and use the resulting current val-
ues as inputs for the subsequent simulation step. In the initial iteration, the cur-
rent is assumed to be zero; however, this does not pose an issue since the resistance
Rsislowandthecurrentincreasesgraduallywhenthemotorstartsfromrest.

Forsimplicityandimprovedaccuracy, sincethebehaviorofthefluxwithrespecttotheangularpositioniswellknown, thefluxisusedtoestimatethemodelinsteadofrelyingoninductancevalues :

Figure 5.14: Machine equation

The current output from this block is fed into the motor output (figure 5.6), which
internally computes all parameters derived from FEMM analysis and post-processing
calculations. To evaluate the torque, two approaches are employed based on the following:

• Mathematical formula:

Te = 3
2P [(φd1iq1 − φq1id1) + (φd2iq2 − φq2id2)] (5.2)

Where the fluxes come directly from the FEMM output. These data are inserted
inside LUT, as can be seen in the following:
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Figure 5.15: Flux from LUT

• The other method that is used is to extract the torque directly from the FEMM:

Figure 5.16: Torque from LUT

The first method exhibits reduced torque oscillations compared to those obtained from
FEMM simulations, as it limits electromagnetic irregularities by producing a smoother
current waveform through the motor controller. Therefore, it is more appropriate to
consider the torque derived from post-processing the data obtained from FEMM.

To determine the position and velocity of the motor, the torque equation is employed,
given that the moment of inertia is known. The motor’s position is then obtained by
integrating the velocity over time.
This scheme also allows for the application of an external load, which can be either constant
or time-varying (e.g., an impulse) to test the velocity control. Furthermore, it can simulate
a fixed rotational speed, similar to conditions found in a bench test.

Figure 5.17: Speed and position of the rotor
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5.2 State space

To understand the stability of a MIMO system, it is necessary to use a state-space
representation. In the simulations presented in this chapter, the motor speed is set to 100
rpm in order to reduce the frequency of the current ripple. This choice facilitates a clearer
analysis of the system’s response, particularly in terms of control speed and overshoot.

5.2.1 Open loop

In this subsection, the current control system and the plant, as previously introduced,
are described in an open-loop state-space configuration, as presented in section 3.3.2.
Particular emphasis is placed on highlighting the differences between the previously
discussed method and the current approach. This configuration serves as the foundational
setup for implementing various feedforward compensation strategies and testing different
PI controller configurations.

Figure 5.18: Motor model with feedforward compensation (only self-inductances)
and modified PI

The classical PI controller is tuned using the same bandwidth of 2513 rad/s as that used
for the modified PI, with a phase margin set to 75°.
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The open-loop state-space model of the motor, presented in figure 5.18, is implemented
using a Matlab function that encodes the equations described in (3.3.2):

Figure 5.19: State space present in figure 5.18

The model presented in figure 5.18 serves as the primary framework. After generating
a copy of this model, different feedforward compensation strategies are simulated: (1)
no feedforward compensation, (2) compensation using only self-inductances selected at
nominal current, (3) compensation with self-inductances selected with the motor current,
and (4) feedforward incorporating both self and mutual inductances at nominal current.
Subsequently, this comparison is extended to evaluate different current control strategies:
the conventional PI controller, the modified PI controller, and the autotuning PI controller.

Real time PI controller auto tuning

The auto-tuning process used in Simulink consists of the following steps:

1. Initial setup: the PI controller is initialized with fixed gain values, which are stored
in memory;

2. Tuning activation: when the signal entering the start/stop port is 1, the autotuning
algorithm initiates the tuning procedure;

3. System excitation: the block injects small-amplitude sinusoidal signals into the
plant, exciting the system dynamics across the chosen frequency range;

4. System identification: the plant’s output response is analyzed to estimate a
simplified model of the system;
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5. PI parameter computation: based on the identified plant model and prede-
fined control objectives (e.g., desired bandwidth and phase margin), the autotuner
computes proportional and integral gains;

6. Controller update: the newly computed gains are saved in memory and are then
applied to the PI controller.

The Simulink scheme that allows for auto-tuning of the PI is illustrated in the following:

Figure 5.20: PI autotuner scheme

After analyzing how the autotuner scheme operates, the following image provides a visual
representation of its main parameters and workflow. The process begins with the injection
of a disturbance signal, which is triggered when the input to the start/stop control is set
to 1. This action initiates the autotuning sequence, during which harmonic signals are
injected into the system to evaluate its dynamic response.
Once the excitation phase is complete, indicated by the transition of the start/stop signal
from 1 to 0, the autotuner processes the system’s response to compute appropriate values
for the proportional (Kp) and integral (Ki) gains. These calculated parameters are then
automatically updated and stored in memory, allowing the controller to adapt to the
system’s characteristics without manual tuning.
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Figure 5.21: Main parameters used in PI autotuner for the da axis

5.2.2 Closed loop

The closed-loop state-space model described in subsection 3.3.3 is implemented here using
a Simulink schematic:

Figure 5.22: State-space closed-loop scheme
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5.3 Simulation of IPM motor

The following figure illustrates the incremental inductances as a function of the angular
position, obtained directly from the magnetic fluxes. From a control perspective, the
oscillations in the inductance values are not taken into account, particularly during the
tuning of the PI gains.

Figure 5.23: IPM - incremental inductance variation with respect to the angle

5.3.1 Comparative analysis

In the following, the torque behavior is evaluated by computing the two methods presented
in section 5.1. The test imposes the nominal speed and a load torque of 50 Nm, which is
applied at t = 0.25 s, once the system reaches steady-state operation at no load.
The results show that the velocity controller, and consequently the inner current control
loop, function effectively. The system quickly reaches the reference speed before t = 0.25 s,
demonstrating fast dynamic response without overshoot. Upon the application of the load,
a transient response is observed, and the system settles back to steady-state conditions
within approximately 0.20 s.
A comparison of the torque obtained using the LUT and the analytical formula (5.2) shows
good agreement with the reference values. The primary difference lies in the oscillatory
behavior: when using the analytical formula, the PI controller tends to attenuate the
current variation, resulting in reduced oscillations in the torque output.
Torque ripple arises from several factors related to both electromagnetic and mechanical
aspects of motor design. One major contributor is cogging torque, which results from the
interaction between the permanent magnets on the rotor and the stator slots, causing
periodic torque variations even in the absence of current. Additionally, the intrinsic
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saliency of IPM motors introduces a component of reluctance torque, which varies with
rotor position and further contributes to the total torque ripple.

Figure 5.24: IPM - torque comparison at different speeds

PI control

This section presents a comparison between the classic PI controller, a modified PI, and an
autotuning PI. The analysis focuses on the transient response observed at system startup
for both the d and q axes. For the sake of brevity, only sector a is analyzed, as sector b

exhibits similar behavior.

In the following tests, a speed of 100 RPM is used instead of the nominal value, as
it provides a clearer response with fewer oscillations. This is justified by the fact that
the values of Kp and Ki depend solely on the current and not on the speed, since the
inductances are modeled as functions of current. The torque request remains unchanged,
while the motor speed is simply reduced.
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Figure 5.25: IPM - comparison of classic PI, modified PI, and autotuning PI in q axis

Figure 5.26: IPM - comparison of classic PI, modified PI, and autotuning PI in d axis

The figures show that the modified PI controller performs best, exhibiting minimal os-
cillation, a short settling time, and a very small overshoot. In contrast, the classic PI
controller reaches the desired current with noticeable transient behavior, characterized by
a high overshoot and prolonged oscillations. The autotuning PI controller demonstrates
an initial response speed similar to the classic PI, but with a significantly higher overshoot
and the longest oscillation duration before reaching steady state.

In the following, the current differences between the control based on equation (2.39) and
the one presented in equation (2.43) are illustrated:
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Figure 5.27: IPM - comparison modified PI with different Kp and Ki

As presented in the current response graph, the PI controller gains tuned using the matrix
dLdq result in significantly improved dynamic performance compared to those obtained
using its inverse, dL−1

dq . Specifically, the use of dLdq leads to a faster transient response
and a noticeable reduction in overshoot along both the direct and quadrature axes.
For this reason, the next simulation is performed with the first tuning method.

Feedforward compensation

Another important aspect in motor control is feedforward compensation, which plays
a significant role primarily during transients, as it helps reduce both delay time and
overshoot. In the following analysis, different cases are compared: (i) absence of feedforward
compensation, (ii) compensation using fixed self-inductance values calculated at nominal
conditions, (iii) compensation with self-inductance varying as a function of current, and
(iv) compensation using both self and mutual inductances fixed at nominal conditions.
The analysis is carried out at nominal speed, since feedforward compensation becomes
significant only at high speeds.
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Figure 5.28: IPM - comparison feedforward compensation in d axis

Figure 5.29: IPM - comparison feedforward compensation in q axis

A longer time scale is chosen compared to the previous plots to emphasize that, after a
certain period, the self-inductances (at nominal current) in all cases converge and align
with the behavior observed in the previously described configuration. This confirms that
the feedforward action is effective only during the transient phase; once the transient has
passed, the PI controller, acting on the measured error, governs and corrects the behavior.

When no feedforward is applied, or when feedforward uses only the self-inductances
evaluated at nominal current, the transient response exhibits a less favorable behavior, in
particular, larger deviations appear on both axes during the initial response. By contrast,
comparing results obtained with inductances fixed at nominal current versus inductances
updated according to the actual current drawn by the machine reveals only minor dif-
ferences, especially in the initial phase; this is expected since the system is being tested
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under nominal operating conditions. Finally, considering both self-inductances and mutual
inductances fixed at the nominal current yields results very similar to the fixed current
case with only self-inductances. However, the first configuration has the advantage of a
simpler implementation.

In chapter 4, it is noted that it may be advantageous to include only the self-inductances
together with the dominant mutual terms. No further tests are conducted for this configu-
ration, as the difference between using all inductances and using only the self-inductances
with the largest mutual couplings is negligible, making additional validation unnecessary.

Machine equation and state space with modular approach

For the comparative analysis, three modeling approaches are considered:

1. Machine equations developed in Simulink as presented in figure 5.6;

2. Separate open-loop state-space representations are used to analyze the motor model
and the controller;

3. A closed-loop state-space formulation that integrates the controller into the system
dynamics as presented in figure 5.22.

In all cases, a modified PI controller without feedforward compensation is employed, and
the inductance values vary as functions of the phase current. It is possible to notice that
all three methods used are equivalent.

Figure 5.30: IPM - current comparison between machine equation and state space
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SISO and MIMO

Starting from the simplified equations in (2.39) and (2.43), both can be reformulated in
the form of the three-phase motor equations as shown in (1.41). For a dual three-phase
motor, the equations must be rewritten by doubling the number of transfer functions to
account for the additional phases.

Figure 5.31: Transfer function scheme for da axis

This test aims to evaluate the impact of using a MIMO system, which accounts for
mutual interactions between different axes, compared to a SISO approach that models
each axis with an independent transfer function. All tests are conducted using a modified
PI controller with feedforward compensation based on self-inductances at nominal current.

Figure 5.32: IPM - current comparison between SISO and MIMO

As anticipated in the theoretical analysis, the speed control system of a dual-three-phase
machine can be modeled as a SISO system. In contrast, the current control requires a
MIMO approach to accurately capture the system dynamics. As shown in the two figures,
the characteristics resulting from the SISO and MIMO models differ significantly.
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Machine equation and state space with VSD

The same test described in the subsection "Machine equation and state space with modular
approach" is performed here using the VSD method, instead of the modular approach.

Figure 5.33: IPM - current comparison between machine model and state space

In this case as well, all three methods analyzed showed perfect agreement, as expected.

Current response with modular approach and VSD

After analyzing the modular approach and the VSD and performing various system
comparisons to verify the correctness of the model, the differences between the two control
strategies are presented below:

Figure 5.34: IPM - current comparison between modular approach and VSD

Both controls reach steady state in approximately the same amount of time. The main
differences lie in the rise time, which is shorter for the modular approach, and the overshoot,
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which is lower for the VSD. Therefore, each control strategy exhibits different performance
characteristics, and the choice between them should be based on the specific requirements
of the application.

Continuous and discrete PI

Up to this point, a continuous PI controller has been considered, representing a theoretical
approach. In this simulation, the focus is on how the motor current and torque are affected
when passing from a continuous to a discrete PI controller. The test is carried out at
nominal speed, where the differences between the two methods are most pronounced.

Figure 5.35: IPM - current comparison between continuous and discrete PI

Figure 5.36: IPM - torque comparison between continuous and discrete PI
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Significant differences are observed in both axes, with more pronounced discrepancies in
the d-axis. The torque contribution varies notably during transients, while steady-state
discrepancies occur only during rapid changes.

5.3.2 System response to current variation

To evaluate the system’s robustness to electrical disturbances, particularly relevant in
automotive and aerospace applications, an oscillatory noise is injected into the id current
reference in Simulink. This choice allows testing the system’s behavior under flux-related
disturbances without affecting the torque generation too much, which is primarily con-
trolled by the iq component. The test is conducted at nominal speed to simulate standard
operating conditions of the motor.

As a first step, the noise is injected only into the current component ida:

Figure 5.37: IPM - noise injection in ida

The torque variation is negligible, even when the current request is reduced to half of its
nominal value along the ida axis. Additionally, the transient response during current noise
injection, both in current and torque, is rapid.
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As a second step, the noise is injected into both the current component ida and idb:

Figure 5.38: IPM - noise injection in ida and idb

Despite requiring only half the current in both the d-axis components, the torque maintains
a reasonable level of production.

5.3.3 Proportional and integral gains as functions of the current

Modular approach

The following test is conducted by applying twice the nominal torque, using step increments
of 5 Nm up to 100 Nm, and then 10 Nm increments thereafter. Doubling the nominal
torque allows for a more extended and detailed graph of the system response.

Figure 5.39: IPM - proportional gain
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Figure 5.40: IPM - integral gain

Referring to equations (2.44) and (2.45), as well as their counterparts in the other sector,
the proportional and integral gains vary as a function of the differential inductances, which
in turn depend on the current.

VSD

To understand the differences between the two control strategies, it is also important to
visualize also in this case the variation of the Kp and Ki parameters as functions of the
current. For a valid comparison, the same torque demand and identical test conditions are
used, with only the current control strategy being varied.

Figure 5.41: IPM - proportional gain VSD
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Figure 5.42: IPM - integral gain VSD

The control gains obtained using the VSD approach are smoother compared to those from
the modular method. In particular, spikes that appear in the modular approach are absent
with VSD, for both Kp and Ki. This behavior is also reflected in the eigenvalue analysis
discussed in chapter 5.

5.3.4 Efficiency map

The following efficiency map is obtained using formulas that estimate Joule, iron, and
mechanical losses, considering all operating conditions below the nominal values for both
torque and speed. As shown, efficiency is lower at low speeds or low torques due to losses
being significant relative to the generated power.

Figure 5.43: IPM - efficiency map
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5.3.5 Bode diagram

In accordance with the open-loop transfer function derived in equation 3.5, figure 5.44
presents the Bode magnitude and phase plots of the speed control and the mechanical
plant.

Figure 5.44: IPM - Bode diagram

The figure presents two transfer functions: the open-loop transfer function (blue curve)
and the closed-loop transfer function (red curve). These are compared against the ref-
erence values introduced in the theoretical framework to evaluate the stability of the system.

From the analysis of the open-loop transfer function, a phase margin of approximately
107◦ is observed. This exceeds the commonly recommended threshold of 75◦, indicating
that the system is stable with a considerable safety margin. Additionally, the magnitude
margin satisfies the recommended criterion of exceeding 3 dB, further confirming system
stability.

A vertical green dashed line is drawn at approximately ωb = 25.13 rad/s, denoting
the closed-loop bandwidth. This corresponds to the frequency at which the magnitude of
the closed-loop response falls by 3 dB.

5.3.6 Nyquist plot

Another approach to assess the system’s stability is presented here, based on the Nyquist
stability criterion introduced in section 3.2.
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Figure 5.45: IPM - Nyquist diagram

The Nyquist diagram shown allows for a detailed analysis of the closed-loop stability of
the system by applying the Nyquist stability criterion. Below are the key observations:

• Shape of the Nyquist curve (blue line): the Nyquist plot of the open-loop
transfer function does not encircle the critical point −1 + j0. In fact, the entire plot
lies to the right of this point and does not intersect it. Since the critical point is not
encircled by the Nyquist plot, it follows that:

N = 0.

• Open-loop poles (red markers): all poles of the open-loop transfer function are
located in the left half of the complex plane (i.e., they have negative real parts), so:

P = 0

• Conclusion Nyquist criterion: by applying the following equation, where Z

represents the number of unstable closed-loop poles, is obtained:

Z = N + P = 0 + 0 = 0

Therefore, the closed-loop system is also stable according to this method.
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5.3.7 Pole position

The eigenvalues of the matrix Acl, introduced in chapter 3.3.3, are analyzed in this section
considering nominal working conditions. Since Acl is an 8 × 8 matrix, the system has
eight poles. The eigenvalues are arranged in symmetric pairs with respect to the real axis,
resulting in four poles with positive imaginary parts and four with negative imaginary
parts.

Fix Kp and Ki

Control systems are typically implemented using fixed values of Kp and Ki, which remain
constant across all operating conditions. In this first part of the eigenvalues analysis, this
conventional approach is analyzed.

Modular approach

As a first step, the variation of the pole positions with respect to speed is analyzed, keeping
both the motor model and the controller parameters unchanged.

Figure 5.46: IPM - eigenvalues at 1000 rpm with fixed Kp and Ki

In this first graph, the torque test is performed at intervals of 10 Nm up to the nominal
torque, in order to highlight the symmetry of the eigenvalues and confirm that the system
has eight poles. In the following analysis, the test is extended to include overload conditions,
reaching up to twice the nominal torque. The most critical area is highlighted with a red
box, and a zoomed-in view of this region is shown near the image.
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Figure 5.47: IPM - eigenvalues at nominal speed with fixed Kp and Ki

Compared to the case tested at 1000 rpm, the eigenvalues in this scenario exhibit a
generally higher imaginary range and are less clustered. Nevertheless, in both cases, all
eigenvalues lie in the left half of the complex plane, confirming that the system remains
stable under all tested conditions.

Additionally, the eigenvalues are symmetrically distributed with respect to the real axis,
which is characteristic of an underdamped system. This behavior is consistent with typical
three-phase motor dynamics and is particularly evident in figure 1.5.

The zoomed view at nominal speed reveals that the eigenvalues at zero torque present the
lower damping compared to other operating conditions. Consequently, the start-up phase
represents the worst-case scenario, even more critical than when the system operates at
twice the nominal torque.
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VSD

Now let’s analyze the second control strategy developed, performing the same test used
for the modular approach, to determine the characteristics of this system:

Figure 5.48: IPM - eigenvalues at nominal speed with fixed Kp and Ki VSD

In this case as well, all eigenvalues lie in the left half of the complex plane, confirming that
the system remains stable under all tested conditions. Compared to the modular approach
shown in figure 5.47, the poles near the imaginary axis are more tightly clustered and
exhibit lower and more consistent natural frequencies across all torque levels.
Another notable difference is that, whereas the modular approach revealed a distinct pole
at zero torque with unique damping and frequency characteristics, the eigenvalues in this
case are more uniformly distributed. At low torque demand, the system operates at lower
frequencies; however, as the torque increases, both the frequency and the damping of the
system response increase accordingly.

Variable Kp and Ki in function of the reference torque

Since the Kp and Ki gains are typically tuned and fixed based on nominal operating
conditions, this section highlights the impact of using different gain values that are
specifically calculated for each torque demand. This comparison illustrates how autotuning
tuning can influence system performance under varying load conditions.
The tests presented in this subsection are identical to those performed in the previous one,
using the same operating conditions and torque references. This consistency ensures a fair
and meaningful comparison between the different control strategies.
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Modular approach

Figure 5.49: IPM - eigenvalues at nominal speed with variable Kp and Ki

In this analysis, the eigenvalues exhibit a more structured distribution, forming a curve
along which each pole, corresponding to a specific torque level, appears sequentially.
This behavior contrasts with the case of fixed Kp and Ki, shown in figure 5.47, where the
zero-torque condition produced a distinct pole isolated from the others. In the current
case, that same condition results in a pole that is closely grouped with the others and
represents the most favorable configuration, characterized by high pulsation and strong
damping. Conversely, the least favorable condition corresponds to the highest torque level,
where the system exhibits reduced damping and lower natural frequencies.

VSD

In the following analysis, the theoretical best-case scenario is presented. This scenario
combines the advantages of implementing variable proportional and integral gains with
the VSD method. By allowing the controller gains to adapt dynamically based on
operating conditions, the system can achieve improved performance in terms of stability,
responsiveness, and robustness. The integration of gain variability with the VSD approach
is expected to exploit the full potential of both techniques.
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Figure 5.50: IPM - eigenvalues at nominal speed with variable Kp and Ki VSD

Similarly to the modular approach, the pole positions are well-ordered; however, in this
case, the poles are more closely clustered for the same torque requests, both in terms of
oscillation frequency and damping. This indicates that the system exhibits more consistent
behavior even when the torque demand varies.
As expected, this configuration demonstrates the best overall performance compared to all
the previously analyzed cases.

5.4 Simulation of SPM motor with non-linear
BH curve

An IPM motor typically exhibits greater torque ripple compared to SPM motor. According
to the torque equation (2.33), the torque is a function of the flux linkages, which depend
on the rotor position. In an SPM motor, the magnetic flux produced by the permanent
magnets is relatively constant and aligned with the d-axis of the rotating reference frame.
As a result, the q-axis flux component is ideally zero. This flux distribution remains nearly
constant with respect to the rotor position in the dq reference frame.

In contrast, an IPM motor exhibits magnetic saliency due to its embedded magnet structure.
The rotor geometry introduces a variation in magnetic reluctance along the d- and q-axes,
which leads to a flux linkage that varies with the rotor position.
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Figure 5.51: Comparison torque produced by IPM and SPM (non-linear BH curve)

The IPM motor was analyzed in greater detail to highlight its specific characteristics. Since
the SPM motor shares several similarities with the IPM motor, many features remain
comparable. Therefore, only the most significant studies are presented and discussed in
the following.

5.4.1 Comparative analysis

PI control

Figure 5.52: SPM - comparison of classic PI, modify PI, and autotuning PI in q axis

For the SPM motor as well, the best performing controller is the modified PI, followed by
the classic PI, with the autotuning PI yielding the least favorable results. This ranking
holds true for both the time required to reach steady state and the overshoot.
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Current response with modular approach and VSD

Figure 5.53: SPM - comparison modular approach and VSD

Both control strategies reach steady state in approximately the same amount of time. The
main difference lies in the overshoot, which is lower for the VSD control, particularly along
the id axis.

Feedforward compensation

Figure 5.54: SPM - comparison feedforward compensation in d axis
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Figure 5.55: SPM - comparison feedforward compensation in q axis

The importance of feedforward compensation is evident in IPM motors, but it becomes
even more apparent in SPM motors. In particular, the performance differences are clearly
visible when comparing the absence of feedforward compensation to a configuration that
includes a feedforward term based solely on self-inductances. Additionally, the mutual
inductance plays a significant role, especially along the d-axis.

5.4.2 Efficiency map

Figure 5.56: SPM - efficiency map
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The efficiency map is similar to that presented for the IPM motor; however, when
considering the efficiency values, the SPM motor exhibits superior performance compared
to the IPM.

5.4.3 Pole position

The same analysis and visualizations performed for the IPM motor are repeated here. The
test conditions remain identical; the only substantial difference lies in the dLdq matrix,
where the self-inductance values are higher than the mutual inductance.

Fix Kp and Ki

Modular approach

Figure 5.57: SPM - eigenvalues at nominal speed with fixed Kp and Ki

The pole locations are more uniformly distributed than those obtained with the IPM based
control. This improvement stems from the fact that the closed-loop system matrix Acl

depends on the differential inductance dLdq. In IPM machines, the mutual inductances
are comparable to the self-inductances, whereas in SPM machines the self-inductances
dominate, leading to better ordered pole placement.
Since the most significant poles are those closest to the origin and the system exhibits
symmetry, a zoomed-in view around the real axis is provided within the red box. It can
be observed that, even in the case of the IPM machine, the operating point at zero torque
deviates the most from the other conditions. However, in this case, it is characterized by
high damping and pulsation response.
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VSD

Figure 5.58: SPM - eigenvalues with nominal speed with fixed Kp and Ki VSD

For the VSD, many poles are located along the real axis, particularly those associated with
high pulsation. This is more evident compared to the modular approach and is especially
pronounced in the case of the IPM motor.

Variable Kp and Ki in function of the reference torque

Modular approach

Figure 5.59: SPM - eigenvalues at nominal speed with variable Kp and Ki
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The variables Kp and Ki enable the placement of poles along a curved axis, allowing the
dominant pole for each reference torque to maintain an approximately constant oscillation
frequency across all considered torque levels.

VSD

Figure 5.60: SPM - eigenvalues at nominal speed with variable Kp and Ki VSD

The most significant observation is that the pole corresponding to zero torque request
is not the most isolated; rather, it is located very close to the pole associated with high
torque requests. This characteristic is also observed in VSD systems with fixed Kp and
Ki; however, in this case, the poles are aligned along a well-defined curve.

In all previously presented cases, it is evident that all eigenvalues are negative, a necessary
condition for system stability, which is the most important parameter.
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Chapter 6

Conclusions

This thesis investigates the modeling and control of dual-three-phase permanent magnet
motors, encompassing both IPM and SPM types. The study incorporates both linear and
nonlinear B–H curves across several control topologies. It begins with the derivation of
the machine and control equations for a conventional three-phase system, which are then
extended to the dual-three-phase configuration. For both cases, obtaining the complete
inductance matrix is essential. In particular, understanding which mutual inductances can
be neglected is fundamental for simplifying the control strategy.

Based on the inductance analysis, a modified PI current controller is proposed. This
controller is initially tuned under nominal current conditions and then evaluated across
multiple gain settings (Kp and Ki). In parallel, both the classical PI controller and an
autotuning PI controller are implemented and compared.

Feedforward compensation is studied through four different strategies: (i) no feedforward
term, (ii) feedforward using self-inductances evaluated at nominal current, (iii) feedforward
using current-dependent self-inductances, and (iv) full feedforward based on the complete
inductance matrix.

The stability of the speed loop is analyzed within a SISO framework, using Bode and
Nyquist diagrams to assess system stability. For the MIMO current loop, a state-space
representation is adopted, and eigenvalue analysis is performed to determine the location
of system poles and verify stability.

Validation is conducted through comprehensive simulations in Matlab and Simulink. Key
results show that the modified PI controller offers the fastest response with minimal
overshoot. Feedforward compensation using self-inductances at nominal current offers a
good balance between simplicity, performance, and implementation cost

Speed loop stability margins remain robust throughout the operating range, and current-
loop stability is preserved for all control strategies up to twice the nominal torque.
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Future Developments

Future work should focus on enhancing the system model by incorporating additional
components and effects that were not considered in this study. In particular, the influence
of the inverter and the battery must be included to capture the true dynamic behavior
of the overall system. Additionally, the motor model currently implemented in Simulink
lacks temperature dependence, which should be addressed in future iterations.

The control strategy developed in this thesis is based on maximum torque per ampere.
However, a more efficient approach would be to implement maximum torque per efficiency
control, which accounts not only for Joule losses but also for iron and inverter losses.

While simulation outcomes are encouraging, further work, particularly experimental
testing on prototypes in a realistic environment, is necessary to confirm the accuracy and
robustness of the proposed methods.

121



Bibliography

[1] L. Carbone, “Stability analysis and advanced control strategies for matrix converter,”
Ph.D. dissertation, Electrical, Electronics and Telecommunication Engineering and
Naval Architecture Department, University of Genova, Genova, Italy, 2024, phD
thesis. [Online]. Available: https://iris.unige.it/handle/11567/1175959

[2] W.-S. Jung, H.-K. Lee, Y.-K. Lee, S.-M. Kim, J.-I. Lee, and J.-Y. Choi, “Analysis
and comparison of permanent magnet synchronous motors according to rotor type
under the same design specifications,” Energies, vol. 16, no. 3, p. 1306, 2023. [Online].
Available: https://doi.org/10.3390/en16031306

[3] Y. Hu, Z. Q. Zhu, and M. Odavic, “Comparison of two-individual current control and
vector space decomposition control for dual three-phase pmsm,” IEEE Transactions
on Industry Applications, vol. 53, no. 5, pp. 4483–4492, 2017.

[4] R. Gozdur, P. Gębara, and K. Chwastek, “A study of temperature-dependent
hysteresis curves for a magnetocaloric composite based on la(fe, mn, si)-h
type alloys,” Energies, vol. 13, no. 6, p. 1491, 2020. [Online]. Available:
https://doi.org/10.3390/en13061491

[5] D. D. Gaetano, “On multi-phase machines and current harmonic injection for
torque capability improvement,” PhD thesis, University of Nottingham, July
2022, available under Creative Commons Attribution license. [Online]. Available:
https://eprints.nottingham.ac.uk/id/eprint/68951/

[6] S. Hassaine, S. Moreau, and F. Bensmaine, “Design and hardware implementation of
pmsm sliding mode control in siso and mimo cases,” in 2014 IEEE 23rd International
Symposium on Industrial Electronics (ISIE), 2014, pp. 762–767.

[7] Y.-J. Shin and L. Bleris, “Linear control theory for gene network modeling,”
PLoS ONE, vol. 5, no. 7, p. e12030, 2010. [Online]. Available: https:
//journals.plos.org/plosone/article?id=10.1371/journal.pone.0012785

[8] P. K. Panda and R. K. Behera, “Five-phase induction motor drive: A comprehensive
review,” Frontiers in Energy Research, vol. 11, no. 1, pp. 1–15, 2023, online. [Online].
Available: https://www.frontiersin.org/articles/10.3389/fenrg.2023.1178169/full

122



[9] R. Bojoi, A. Cavagnino, A. Tenconi, A. Tessarolo, and S. Vaschetto, “Multiphase
electrical machines and drives in the transportation electrification,” in 2015 IEEE 1st
International Forum on Research and Technologies for Society and Industry Leveraging
a better tomorrow (RTSI), 2015, pp. 205–212.

[10] A. K. Pandey and R. K. Behera, “A review of drive techniques for multiphase
machines,” Energy Reports, vol. 6, pp. 1–14, Jan. 2020, online. [Online].
Available: https://www.researchgate.net/publication/326019070_A_Review_of_
Drive_Techniques_for_Multiphase_Machines

[11] D. J. Griffiths, Introduction to Electrodynamics, 4th ed. Cambridge University Press,
2017. [Online]. Available: https://www.hlevkin.com/hlevkin/90MathPhysBioBooks/
Physics/Physics/Electrodynamics/David%20J.%20Griffiths%20-%20Introduction%
20to%20Electrodynamics-Prentice%20Hall%20(1999).pdf

[12] M. N. O. Sadiku, Elements of Electromagnetics, 6th ed. Oxford Univer-
sity Press, 2014. [Online]. Available: https://archive.org/details/matthew-n.-o.
-sadiku-elements-of-electromagnetic-book-fi/page/12/mode/2up?

[13] G. Sala, M. Mengoni, A. Tani, A. Galassini, and M. Degano, “Advantages of communi-
cation in double three-phase surface permanent magnet machines fed by independent
inverters,” in 2019 21st European Conference on Power Electronics and Applications
(EPE ’19 ECCE Europe), 2019, pp. P.1–P.10.

[14] S. Rubino, O. Dordevic, E. Armando, I. R. Bojoi, and E. Levi, “A novel matrix
transformation for decoupled control of modular multiphase pmsm drives,” IEEE
Transactions on Power Electronics, vol. 36, no. 7, pp. 8088–8101, 2021. [Online].
Available: https://ieeexplore.ieee.org/document/9286687

[15] G. Pellegrino, R. I. Bojoi, and P. Guglielmi, “Unified direct-flux vector control for
ac motor drives,” IEEE Transactions on Industry Applications, vol. 47, no. 5, pp.
2093–2102, 2011. [Online]. Available: https://ieeexplore.ieee.org/document/5948379

[16] M. Montelau, “Eigenvalues and eigenvectors (lecture 5–6, computational
mathematics),” in Italian. [Online]. Available: https://www.dm.unibo.it/~montelau/
html/Lezione5-6_MC.pdf

[17] M. M. Peet, “Spacecraft and aircraft dynamics – lecture 11: Longitudinal dynamics,”
Lecture notes, 2009. [Online]. Available: https://control.asu.edu/Classes/MMAE441/
Aircraft/441Lecture11.pdf

[18] Y. Wang, L. Wu, and S. Chen, “Study on the mode and characteristics of ssos
in hybrid ac–dc transmission systems via multitype power supply,” Sustainability,
vol. 15, no. 8, p. 6763, 2023. [Online]. Available: https://doi.org/10.3390/su15086763

123



[19] S. Hassaine, S. Moreau, and F. Bensmaine, “Design and hardware implementation of
pmsm sliding mode control in siso and mimo cases,” in 2014 IEEE 23rd International
Symposium on Industrial Electronics (ISIE), 2014, pp. 762–767. [Online]. Available:
https://ieeexplore.ieee.org/document/6864708

Acknowledgment of AI usage
This thesis has been developed and written with the support of Artificial Intelligence (AI)-based tools,
employed as auxiliary instruments to assist in tasks such as language refinement, coding, and preliminary
drafting. The use of these tools was conducted in accordance with the principles of academic integrity and
transparency defined by the University of Bologna, as outlined on its institutional webpage on Artificial
Intelligence in academic activities (https://www.unibo.it/it/ateneo/chi-siamo/intelligenza-artificiale). All
conceptual development, critical analysis, and final content decisions were made by the author, who
assumes full responsibility for the originality and scientific validity of the work presented.

124





Acknowledgements

I would like to express my sincere gratitude to the Research Group of Electrical Machines
and Drives at the University of Bologna. In particular, I am deeply thankful to my super-
visor, Giacomo Sala, for giving me the invaluable opportunity to conduct my thesis work
at the University of Nottingham and for his continuous guidance and support throughout
every stage of the project.

I would also like to express my heartfelt gratitude to Prof. Michele Degano, Dr. Lorenzo
Carbone, and Dr. Meiqi Wang for warmly welcoming me into the Power Electronics and
Machines Centre (PEMC) research group in Nottingham. I am especially thankful for the
supportive and friendly environment they helped promote, both within and beyond the
research group.

A special thanks goes to all the friends I made during my time abroad, and in particular
to Antonio, Carlo, Davide, Eric, Fabrizio, Gabriele, Gaia, Luca, Margherita, Riccardo,
and Shrey, for their companionship and the unforgettable memories we shared.

126


