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Abstract

The large-scale structure (LSS) of the Universe offers a powerful probe of fundamental
cosmological information on structure formation, dark matter and dark energy content.
Clustering statistics, in particular the 2-point auto-correlation function (2PCF) and the
2-point cross-correlation function, are among the most widely used tools in this field. The
observed number density of tracers of the matter field is affected by several perturbative
effects, which induce distortions in the redshift. While the dominant contribution arises
from cosmological expansion, further corrections, such as peculiar velocities, must be
included to avert misinterpretations. Recent studies point towards modelling first-order
relativistic effects, including gravitational potential terms, relativistic Doppler and
transverse Doppler shifts, gravitational lensing, the integrated Sachs–Wolfe (ISW) effect,
as well as light-cone, wide-angle, and evolution terms. These corrections can induce a
dipole signal in the cross-correlation between differently biased populations, a signal
that is otherwise absent in the auto-correlation. This thesis aims to validate state-of-the
art models of the various contributions to the large-scale dipole signal in the cross-
correlation function over separations between 20 and 140 h−1Mpc. Disentangling all the
different contributions in real survey is non-trivial, requiring both high-precision redshift
measurements and very large data sets. This work relies on numerical simulations.
We used, in particular, the full-sky light-cone realisation of the RayGalGroupSims
numerical simulation suite, which spans a redshift range of [0, 0.5] and covers a volume
of 8.34 (h−1Gpc)3. Adopting a fiducial Λ-cold dark matter (ΛCDM) model based on
general relativity (GR), we find that dipole is largely dominated by the relativistic
Doppler term over all the scales considered. After modelling different contributions,
the resulting reduced chi-squared values falled within the range [0.3, 2.9] for all tested
configurations, but for potential terms. We finally perform Markov Chain Monte Carlo
(MCMC) fits for two cross-correlation cases involving the two most massive populations,
constraining the linear growth rate f and bias parameters, and compare the results with
those from the auto-correlation. Agreement with model predictions is discussed in light
of the obtained constraints.
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Sommario

La struttura a grande scala (LSS) dell’Universo fornisce informazioni cosmologiche
di fondamentale importanza riguardanti la formazione delle strutture cosmiche e il
contenuto di materia ed energia oscure. La statistica di clustering rappresenta uno
strumento largamente utilizzato in questo campo: ne sono un esempio le funzioni di
auto-correlazione di cross-correlazione a due punti. Il numero dei traccianti del campo di
materia (come le galassie e gli aloni di materia oscura) che osserviamo è influenzato da
diversi effetti perturbativi, che inducono distorsioni nei redshift. Sebbene il contributo
dominante al redshift derivi dall’espansione cosmologica, sono presenti ulteriori effetti
distorsivi, come quelli causati dalle velocità peculiari degli oggetti. Studi recenti si
sono inoltre focalizzati sugli effetti relativistici al primo ordine, inclusi i termini del
potenziale gravitazionale, l’effetto Doppler relativistico, il lensing gravitazionale, l’effetto
Sachs–Wolfe integrato (ISW), nonché le distorsioni dovute al cono luce, gli effetti evolutivi
e quelli che derivano dal rilassare l’ipotesi di osservatore distante. Tali perturbazioni
possono indurre un segnale di dipolo nella cross-correlazione tra popolazioni con bias
differenti, un segnale altrimenti assente nell’auto-correlazione. Questa tesi si propone
di validare i più recenti modelli per descrivere i diversi contributi al segnale di dipolo
su larga scala, fra 20 e 140 h−1Mpc, nella funzione di cross-correlazione. Isolare tutti
i contributi coinvolti in survey di galassie reali non è banale e richiede sia misure di
redshift ad alta precisione, sia data set molto estesi. Questo lavoro si è basato sull’analisi
di simulazioni numeriche. Abbiamo utilizzato, in particolare, la versione full-sky del set
di simulazioni numeriche RayGalGroupSims, che copre un intervallo di redshift [0, 0,5]
e un volume di 8.34 (h−1Gpc)3. Adottando un modello ΛCDM (costante cosmologica
e materia oscura fredda), basato su relatività generale (GR), abbiamo riscontrato che
il dipolo è largamente dominato dal termine Doppler relativistico su tutte le scale
considerate. Dopo aver modellato i differenti termini, i valori ridotti di χ2 ottenuti
rientrano nell’intervallo [0.3, 2.9] per tutte le configurazioni testate. Infine, abbiamo
effettuato fit basati su catene di Markov Monte Carlo (MCMC), per due casi di cross-
correlazione tra le due popolazioni più massicce, con l’obiettivo di vincolare il tasso
di crescita lineare f e i bias delle due popolazioni, confrontando i risultati con quelli
ottenuti dall’auto-correlazione. L’accordo con le predizioni dei modelli è stato discusso
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alla luce dei risultati ottenuti.



Introduction

The LSS of the Universe is a central focus of contemporary cosmology. The spatial
distribution of haloes, galaxies, clusters, and cosmic voids is not random but encodes
the imprint of the initial conditions under which cosmic structures formed, namely
the primordial scalar fluctuations (i.e. gravitational potential fluctuations in linear
theory) that seeded cosmic structure. Analysing this structure offers a powerful tool for
probing the nature of dark matter and dark energy, and for testing GR on cosmological
scales. A detailed relativistic framework for understanding the LSS and its observational
signatures is presented by Tsagas et al. (2008).

A key statistical feature of LSS is the clustering of cosmic structures, reflecting their
tendency to aggregate on characteristic scales. This phenomenon is typically quantified
through the 2PCF, which measures the excess probability, compared to a random
distribution, of finding a pair of objects at a given separation. The clustering signal
arises from the interplay between the initial density fluctuations and the subsequent
gravitational evolution of matter. As such, the 2PCF encodes valuable information
about both the composition and the geometry of the Universe, as well as the laws
governing structure formation. For example, clustering properties, particularly the
angular 2PCF, have been recently used in analysis of galaxies in the Sloan Digital Sky
Survey (SDSS), treated as tracers of the dark matter field, to investigate the evolution
of cosmic structure (Franco et al., 2025).

A succession of major observational campaigns has progressively enhanced our
understanding of the cosmic web. The Planck mission provided precise measurements
of the cosmic microwave background (CMB), delivering tight constraints on key ΛCDM
(Λ-Cold Dark Matter) parameters such as the matter density parameter Ωm, the Hubble
constant H0, and the scalar spectral index ns (Aghanim et al., 2020). These parameter
constraints serve as a benchmark for LSS analyses at lower redshifts.

Among spectroscopic galaxy surveys, WiggleZ Dark Energy Survey was one of the
earliest to probe the baryon acoustic oscillation (BAO) signal and redshift-space di-
stortions (RSD) at intermediate redshifts (z ∼ 0.2–1), providing key evidence for the
accelerating expansion of the Universe (Blake et al., 2011). The SDSS – Baryon Oscilla-
tion Spectroscopic Survey (BOSS) later improved on these constraints by measuring
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BAO and RSD more precisely in the range z ∼ 0.3–0.7, enabling accurate reconstructions
of the expansion history and the growth rate of cosmic structures (Beutler et al., 2014;
Alam et al., 2017b). Building on this, eBOSS (extended BOSS) extended spectroscopic
observations to higher redshifts (z ∼ 0.6–2.1), using a combination of emission-line
galaxies, luminous red galaxies, and quasars (Bautista et al., 2020). Its final cosmologi-
cal analysis placed stringent constraints on both the distance-redshift relation and the
growth of structure, enabling joint tests of cosmic expansion and gravitational dynamics.

In parallel, the VIMOS Public Extragalactic Redshift Survey targeted galaxies in
the redshift range z ∼ 0.5–1.2, providing high-fidelity measurements of galaxy clustering
and RSD over a wide cosmic volume (Mohammad et al., 2018). This helped bridge the
observational gap between BOSS and high-redshift probes like eBOSS.

Complementary photometric surveys, such as the Dark Energy Survey (DES), have
further contributed by measuring galaxy clustering and weak gravitational lensing over
large sky areas (Abbott et al., 2022). These data have yielded independent constraints on
cosmological parameters, revealing mild but persistent tensions with Planck’s CMB-based
predictions, particularly regarding the amplitude of matter clustering on intermediate
scales.

Looking ahead, the Euclid mission, led by the European Space Agency (ESA), aims
to map over 15000 deg2 of the sky and to obtain spectroscopic redshifts for tens of
millions of galaxies up to z ∼ 2 (Amendola et al., 2018). By combining galaxy clustering
and weak lensing, Euclid is expected to achieve percent-level precision on both the
expansion rate and the growth of structures, thereby providing a stringent testbed for
GR and alternative theories.

Among the various objectives of modern cosmology, testing GR on large scales
has become increasingly crucial. Despite the remarkable success of the theory in local
(Dyson et al., 1920; Pound and Rebka, 1960) and strong-field regimes (Antoniadis
et al., 2013), its validity on cosmological scales remains an open question. At such
scales, new physical effects could come into play, possibly related to dark energy or
to modifications of the metric tensor itself. Moreover, the validity of the equivalence
principle, a foundational tenet of GR, has yet to be confirmed beyond the Solar System.
As shown in Castello et al. (2024), galaxy clustering statistics offer a novel way to test
the equivalence principle via measurable quantities that could reveal additional forces
acting on dark matter. However, the clearest signatures of modified gravity theories
are often found in the perturbative sector. Growth functions, for instance, may diverge
by several percent from those predicted by standard dark energy models, even when
the Hubble expansion history is the same. This implies that joint measurements of the
Hubble and growth functions are essential for constraining the underlying gravitational
physics (Lue et al., 2004). The growth function can be inferred from both weak lensing
and galaxy clustering, particularly via RSD.
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In the classical Newtonian framework, RSD arise from neglecting peculiar velocities
of galaxies, which are superimposed on the Hubble flow velocities. Neglecting these
contributions can lead to systematic biases in the inferred LSS. The pioneering work
by Kaiser (1987), followed by Hamilton (1992), demonstrated how multipole moments
of the 2PCF, notably the quadrupole and hexadecapole, can constrain cosmological
parameters such as the matter density parameter. Since then, RSD have become a
cornerstone of cosmological analyses.

More recently, it has become evident that a fully relativistic treatment of RSD is
necessary (Elkhashab et al., 2025), especially for present and next-generation surveys
such as the Euclid Wide Spectroscopic Survey. This relativistic approach opens new
opportunities to test GR on cosmological scales. Relativistic corrections include terms
such as the Sachs-Wolfe effect, its integrated counterpart, and the Shapiro time delay.
Additional terms stem from the relativistic Doppler effect, gravitational redshift, light-
cone projection, lensing, source evolution, and wide-angle effects. These contributions,
together with their observational signatures in galaxy surveys, have been studied, for
instance, by Yoo (2010).

To accurately model and detect these relativistic contributions, it is essential to move
from the standard auto-correlation function to the cross-correlation function between
distinct galaxy populations. In auto-correlation, only even multipoles appear due to the
symmetry of the system. However, when cross-correlating different populations selected,
for instance, by luminosity or mass, the symmetry is broken, and odd multipoles emerge.
Among these, the dipole is particularly compelling, as it exhibits a marked sensitivity
to relativistic effects. This has led to a growing body of work aimed at modelling and
measuring the dipole (McDonald, 2009; Bonvin and Durrer, 2011; Gaztanaga et al.,
2017; Tansella et al., 2018; Breton et al., 2019), with recent studies investigating its
potential as a probe of fundamental physics and its detectability in surveys such as
DESI (Dark Energy Spectroscopic Instrument), see Bonvin et al. (2023). In preparation
for Euclid, the effect of gravitational redshift on the dipole has recently been studied
using the Flagship simulation, which reproduces realistic galaxy distributions expected
from the mission (Lepori et al., 2025).

Looking ahead, the newly acquired data from Euclid, together with forthcoming
observations, are expected to mark a significant turning point in this field. As shown
by Castorina and di Dio (2022), relativistic effects typically amount to corrections at
the sub-10% level compared to the standard RSD term. For this reason, Euclid, with
its high-precision redshift measurements and extensive sky coverage, will enable, for
the first time, a statistically robust detection of these effects, thereby opening a direct
observational window onto the relativistic regime of cosmic structure formation. The
coming years may thus prove pivotal in either consolidating or challenging GR as a
pillar of our cosmological model and of physics as a whole.
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This is precisely why the present work focuses on measuring and modelling the
dipole as a testbed for GR. The approach involves both the development of numerical
estimators capable of extracting the dipole from halo and galaxy catalogues (which
may be real or simulated), and the implementation of theoretical models describing its
expected behaviour. The structure unfolds as follows.

• Chapter 1 outlines the theoretical background necessary to acquire a general
overview of the fundamental concepts which modern cosmology is based on;

• Chapter 2 serves to the theoretical development of cosmic clustering and its
strengths as a cosmological probe, with particular emphasis on the multipole
expansion of the cross-correlation function and the treatment of standard RSD;

• Chapter 3 introduces the relativistic contributions to RSD. The theoretical founda-
tions are presented, together with a discussion of their implications for the dipole
moment of the cross-correlation function;

• Chapter 4 is divided into two main parts. The first part provides an overview of
the RayGalGroupSims simulations, which form the basis for the numerical data
used in this thesis. The second part is dedicated to the CosmoBolognaLib, which
have been extensively used and further extended to meet the specific requirements
of this thesis. This section includes code and data validation, as well as detailed
explanations of the new implementations for data analysis and dipole modelling.
A brief description is also given of the Bayesian statistical analysis and MCMC
methods, used in the post-processing stage;

• Chapter 4 presents the main results along with broader considerations and inter-
pretations;

• Chapter 5 provides the concluding remarks and discusses future prospects and
possible applications of the work.



Chapter 1

Theoretical framework

This chapter provides a brief overview of the theoretical framework of modern cosmology,
largely following Coles and Lucchin (2002) and Dodelson and Shmidt (2021) and focusing
on the principles and concepts most relevant to this thesis. In particular, it aims to
establish the necessary background to understand the cosmological context in which
LSS formation occurs, the statistical description of clustering, and the origin and
interpretation of redshift distortions, in particular for what concerned relativistic effects
on the dipole of the 2PCF. While the presentation is not exhaustive, it includes the
key elements required to follow the discussions in the main body of the thesis. Readers
already familiar with standard cosmology may choose to skip the first two chapters and
proceed directly to chapter 3.

1.1 Cosmological principle and FLRW metric

Observations on cosmological scales, far exceeding those of galaxies and galaxy clusters,
reveal that the Universe is homogeneous and isotropic. Homogeneity refers to invariance
under translation, while isotropy denotes invariance under rotation. Thus, the observer’s
perspective depends neither on the direction in which they look nor on their location. We
elevate these properties to a fundamental principle, known as the cosmological principle,
which is assumed to hold not only within the observed universe but throughout the
Universe as a whole. To proceed, we need to introduce a metric, beginning with the
framework of GR and the 4-dimensional spacetime continuum. It is crucial to highlight
that time is not absolute either in special or in GR as in Newtonian mechanics: it
depends on the relative motion between different reference frames and on the observer’s
location within the curvature of spacetime. The infinitesimal interval between two points
is expressed as:

ds2 = gαβdx
αdxβ, (1.1)

15
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where the indices α, β = 0, 1, 2, 3 correspond to time and spatial coordinates, with the
Einstein summation convention for repeated indices. If we decompose the terms into
time, spatial, and mixed components, we obtain the following:

ds2 = g00dt
2 + 2g0idtdx

i + gijdx
idxj. (1.2)

In order to derive an expression for the 3-dimensional metric, we first consider the
2-dimensional case. The spatial separation between two points in polar coordinates is
given by:

dl2 = dρ2 + ρ2dϕ2, (1.3)

where ρ is the radial coordinate, with 0 ≤ ρ < ∞, and ϕ is the angular coordinate,
with 0 ≤ ϕ < 2π. It is convenient to express the radial coordinate as a function of the
scale factor a(t), so that ρ = a(t) r, where r is a dimensionless coordinate. Substituting
the angular coordinate ϕ with the solid angle element dΩ = dθ2 + sin2 θ dϕ2, we adapt
this approach for the 3-dimensional case, resulting in the spatial distance for the flat
geometry to be:

dl2 = a2(t)(dr2 + r2dΩ2). (1.4)

Applying analogous reasoning to spherical and hyperbolic geometry, we derive the
following general expression:

ds2 = c2dt2 − a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dϕ2

)]
. (1.5)

Thus, spatial geometry is governed by the parameter k, which takes one of the
following values:

• k = −1: Hyperbolic geometry, corresponding to an open universe.

• k = 0: Euclidean geometry, corresponding to a flat universe.

• k = 1: Spherical geometry, corresponding to a closed universe.

The Eq. (1.5) is known as the Friedmann-Lemaître-Robertson-Walker (FLRW) metric.

1.2 Friedmann equations

With the metric formulation in place, we now turn to GR, which is intended to provide
a broad overview of the fundamental concepts underpinning the analysis conducted in
this thesis. The primary aim now is to derive the crucial equations of cosmology, namely
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the Friedmann equations. The cornerstone equation of GR is the Einstein field equation,
expressed as

Rµν −
1

2
Rgµν =

8πG

c4
Tµν , (1.6)

where Rµν denotes the Ricci tensor, R the Ricci scalar, and Tµν the energy-momentum
tensor, with µ, ν = 0, 1, 2, 3. In this analysis, we adopt the assumption that the energy-
momentum tensor can be effectively represented by that of an ideal fluid. Consequently,
we neglect viscosity and thermal conduction, as the energy-momentum tensor is then
reduced to a function dependence solely on pressure and density. In particular, we
express the energy-momentum tensor as

Tµν = −p gµν +
(
p+ ρ c2

)
uµuν , (1.7)

uµ, uν being the 4-velocities. This formulation represents a system of 10 equations, since
the metric tensor has to be symmetric. Due to the cosmological principle, however, only
two independent equations remain, famously referred to as the Friedmann equations
(Friedmann, 1922):

ȧ2 +Kc2 =
8πG

3
ρ a2 (1.8)

ä = −4πG

3

(
ρ+

3 p

c2

)
a (1.9)

where the dots represent derivatives with respect to cosmological time. We can manipu-
late Eq. (1.8) to obtain the following expression:

K c2

a2
=

(
ȧ

a

)2(
ρ

ρc
− 1

)
, (1.10)

where the critical density ρc, is defined as

ρc =
3

8πG

(
ȧ

a

)2

. (1.11)

Next, we introduce the density parameter, defined as

Ω =
ρ

ρc
, (1.12)

so that the geometry of space is open, flat, or closed depending on whether Ω is less
than, equal to, or greater than unity. Figure 1.1 illustrates the evolution of the cosmic
scale factor for the three possible spatial curvatures, under different combinations of
cosmological fluid components. Together with the Friedmann equations, it is essential
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Figure 1.1: Time evolution of the cosmic scale factor for different density parameter
values (Casado, 2020).

to account for the adiabatic condition, as the universe constitutes a closed system. This
condition can be expressed as follows:

d(ρc2 a3) = −p da3, (1.13)

where ρc2 represents the energy density per unit volume.
It is often convenient to introduce the conformal time τ , defined as

η =

∫
dt

a(t)
, (1.14)

which enables the FLRW metric to be written as

ds2 = a(η)2
[
(c dη)2 −

(
dr2

1− k r2
+ r2dΩ2

)]
. (1.15)

We now examine the behaviour of the Friedmann equations in order to find a
static solution, that is, one where ȧ = ä = 0. As we shall show, this necessitates the
introduction of an additional term. From Eq. (1.9), we observe that imposing ä = 0

implies a relationship between pressure and density that causes the term in parentheses
to vanish. Thus:

ρ = −3p

c2
. (1.16)
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Given the requirement for pressure and density to be positive quantities, Einstein
introduced a new constant Λ in the field equation to address this concern. This constant
was later shown to be incorrect in the context in which Einstein conceived it, yet it is
still employed today, albeit with a different interpretation. Defining a new term for the
energy-momentum tensor such as

T̃ij := Tij +
Λc4

8πG
gij, (1.17)

allows us to preserve the form of the Einstein field equation by replacing Tij with T̃ij,
while maintaining the structure of the energy-momentum tensor. This is achieved by
substituting pressure and density with the modified expressions:

p̃ = p+ pΛ = p− Λc4

8πG
, (1.18)

and

ρ̃ = ρ+ ρΛ = ρ+
Λc2

8πG
. (1.19)

With these modifications, we can also rewrite the two Friedmann equations, thus
preserving their formal structure.

1.3 The Hubble-Lemaître law

Starting with the FLRW metric and setting dt = 0, we define the proper distance dP
between two points as:

dP :=

∫ r

0

a dr′

(1− kr′2)1/2
= a(t)f(r). (1.20)

The function f(r) depends on the value of k, and takes the following form in each
case:

• f(r) = r, for k = 0;

• f(r) = sin−1 (r), for k = 1;

• f(r) = sinh−1 (r), for k = −1.

Next, we define the comoving distance as the proper distance at the present time t0:

dC := dP (t0) = a0 f(r) =
a0
a(t)

dP (t), (1.21)
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where a0 ≡ a(t0).
Taking the time derivative of the proper distance, we obtain the Hubble-Lemaître

law (Lemaître, 1927; Hubble, 1929)

d

dt
dP = ȧ(t)f(r) =

ȧ(t)

a(t)
dP , (1.22)

where, in the final step, we multiply and divide by the scale factor a(t). We define the
Hubble parameter H(t) such as

H(t) :=
ȧ(t)

a(t)
, (1.23)

and the Hubble parameter computed at the present time t0 is

H0 =
ȧ(t)

a(t)

∣∣∣∣
t=t0

. (1.24)

The Hubble parameter at the present time indicates the isotropic expansion rate of
the Universe, and it is a constant throughout space for a fixed time. Current estimates in
the literature hover near 67 km s−1Mpc−1 (Kozmanyan et al., 2019; Sneppen et al., 2023).
Nevertheless, it is essential to highlight the so-called “H0 tension”, which arises from the
two distinct methods used to estimate the Hubble constant. Specifically, measurements
from the local universe (using a distance ladder method) yield a higher value of H0

compared to those based on the Cosmic Microwave Background (CMB). In fact, there
is a 4σ to 6σ deviation between these two estimated values of H0 and this may suggest
the need for new physics beyond the ΛCDM model (Hu and Wang, 2023).

We can also parameterise H0 in unity of 100 km s−1Mpc−1, as follows:

H0 = h 100 km s−1Mpc−1. (1.25)

We call h the reduced Hubble parameter: it is useful to take into account the uncertainty
in H0.

1.4 Redshift

Sources (such as galaxies or clusters) in our Universe follow the expansion of the universe
itself. Consider a source located at a comoving coordinate r. The redshift z is a directly
observable variable, related to the scale factor a, and can be defined as

z :=
λo − λe

λe

, (1.26)
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where λo is the wavelength observed at point O (the location of the observer) at a time
t0, and λe is the wavelength emitted by the source at an earlier time te. Consider a
source emitting a first pulse at a time te, with a wavelength λe that reaches the observer
at a time t0, with a wavelength λ0, and a second pulse at a time t = te+ δte that reaches
the observer at a time t′ = t0 + δt0. If δte and δt0 are small, since light rays travel across
null geodesic (i.e. ds2 = 0), we can integrate the FLRW metric over a light-like interval
to obtain

a0
a

=
λo

λe

, (1.27)

where we choose a coordinate system in which light rays travel along a path with
dθ = dϕ = 0. Thus, we can directly link the redshift to the scale factor a(t):

z + 1 =
a0
a(t)

. (1.28)

A varying scale factor between the present time and the time at which the light ray
was emitted causes a shift in the wavelength. If a0 > a(t), then z > 0, which results in
a redshift of the wavelength. In contrast, if a0 < a(t), we observe a blue-shift.

1.5 Cosmological distances

Depending on the specific requirements, different definitions of distance may be adopted
in cosmology. The proper distance, while formally defined, has limited practical utility,
owing to intrinsic challenges in directly measuring the separations between objects.
Another distance, already introduced, is the comoving distance (i.e. the proper distance
computed at the present time), which we redefine here in a more general form as:

χ(z) =

∫ z

0

c dz′

H(z′)
(1.29)

We now proceed to define the luminosity distance, derived from the conservation of
flux:

l =
L

4πd2L
. (1.30)

We find

dL = a0 r(1 + z), (1.31)

where r is a dimensionless polar coordinate. This distance became particularly useful
with the discovery of the standard candles (objects whose intrinsic luminosity is known,
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such as Type Ia supernovae) and, in principle, can be measured directly by using this
method. The final distance we define is the angular distance, denoted as:

dA =
ds

dθ
= a(t)r, (1.32)

where we employ the FLRW metric, setting dϕ = 0, and dt = 0 (i.e. we know the proper
length of the object). This leads to the following result:

ds2 = a(t)2r2dθ2. (1.33)

The relation between these two distances is governed by the redshift and is given by:

dA
dL

=
a(t) r

a0 r (1 + z)
=

1

(1 + z)2
. (1.34)

This is referred to as the duality relation: any deviation from this relation would
imply an inconsistency of the metric, entailing a reassessment of the assumptions of
homogeneity and isotropy.

1.6 The deceleration parameter

Let us expand the scale factor in a Taylor series around t0, up to the second order:

a(t) = a0 +
da

dt

∣∣∣∣
t0

(t− t0) +
1

2

d2a

dt2

∣∣∣∣
t0

(t− t0)
2 +O(t− t0)

3, (1.35)

with a0 ≡ a(t0). This can be rewritten as

a(t) = a0

[
1 +H0(t− t0)−

1

2
q0H

2
0 (t− t0)

2

]
, (1.36)

by introducing the deceleration parameter

q := − ä(t) a(t)

ȧ2(t)
. (1.37)

Consequently, the deceleration parameter at the present time is

q0 := − ä0 a0
ȧ20

. (1.38)

The deceleration parameter is a dimensionless quantity by construction, and serves
as a measure of the variation in the expansion rate of our Universe. Since the first term
of the expansion dominates on small scales, the measurement of q0 is best achieved at
cosmological distances, where the second term becomes predominant. The deceleration
parameter at the present time has been found to be negative, indicating that the
expansion of the Universe is accelerating.
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1.7 Friedmann models

In this section, we shall examine a class of homogeneous and isotropic cosmological
models, governed by the Friedmann equations, which provide a relatively simple descrip-
tion of an evolving universe. Using the value of the critical density at the present time,
Eq. (1.8) can be reformulated as follows:

H2
0

(
1− ρ0

ρ0,c

)
= −kc2

a20
. (1.39)

We introduce the general equation of state for a cosmological fluid:

p = wρc2, (1.40)

where w = 0 and w =
1

3
correspond to the equation of state for the non-relativistic

matter and the radiative components, respectively.
In conventional physics w is constrained within the range 0 ≤ w < 1, a domain

referred to as “the Zel’dovich interval”. Notably, the value of w associated with the
cosmological constant lies beyond this range. Substituting the pressure, as derived from
the general equation of state, into the adiabatic condition, Eq. (1.13), subsequently
expanding the differential, and separating variables, we obtain:

(1 + w)
da3

a3
= −dρ

ρ
−→ ρ ∝ a−3(1+w). (1.41)

As evident from this equation, the matter and radiative components evolve differently
with respect to the scale factor a(t). Regarding the cosmological constant, characterised
by an equation of state parameter w = −1, it is noteworthy that its energy density
remains unchanged over time. In the present epoch, the cosmological constant constitutes
the dominant component, although the contribution from matter cannot be disregarded.
The significant role played by Λ drives the universe to accelerate expansion: this can be
easily inferred from the second Friedmann equation, if incorporating all the contributions
from both matter and Λ. Including both terms also into the Eq. (1.8) we obtain:

ȧ2 + kc2 =
8π

3
G (ρM + ρΛ) a

2. (1.42)

Dividing by a20, assuming a0 = 1 and explicitly expressing ρΛ, we derive

ȧ2 − 8π

3
GρMa2 − Λc2

3
a2 = −kc2, (1.43)

which, with the appropriate substitutions, takes the form

H2
0 (1− ΩM − ΩΛ) = −kc2. (1.44)
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Throughout this analysis, we have omitted the radiative component, as it is negligible
in the present epoch, given that Ω0,R ∼ 10−5. By defining Ω0,tot = Ω0,M+Ω0,Λ, it becomes
evident that the necessary condition for the Universe to be flat is Ω0,M + Ω0,Λ = 1.
Starting again from the first Friedmann equation, we now derive a general expression
for the Hubble parameter. Analyzing the evolution of the density, normalized to its
present-day value, taking into account the definition of the critical density, and then
generalising the equation to include all relevant cosmological fluid components, we can
express H as follows:

H2(z) = H2
0 (1 + z)2

{(
1−

∑
i

Ω0,i

)
+
∑
i

[
Ω0,i (1 + z)1+3wi

]}
, (1.45)

where the subscript i denotes the i-th component.

1.8 Single-component Universe

The simplest model of the Universe is that of a Universe filled with a single-component
cosmological fluid. As shown in Eq. (1.45) the evolution of several key quantities can be
determined by substituting different values of w, corresponding to different components.
Moreover, we can distinguish between two possible spatial geometries of the Universe:
flat and curved.

1.8.1 Flat Universe

Since we are assuming a flat universe, we set Ω0,w = 1, causing the term inside the first
parenthesis to vanish, and thus leading to the following relation:

ȧ =
da

dt
∝ a−

1+3w
2 (1.46)

Separating the variables and solving for the scale factor, we obtain

a(t) = a0

(
t

t0

) 2
3(1+w)

=

{
a ∝ t1/2 forw = 1/3

a ∝ t2/3 forw = 0
(1.47)

It is interesting to notice that, with w constrained within the Zel’dovich interval, the
condition t → 0 implies a → 0, which mandates the existence of a singularity. Conversely,
as t → ∞, the scale factor shows the same asymptotic behaviour, leading to an infinite
expansion of the universe. Another fundamental quantity to derive is the Hubble
parameter, given by
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H =
ȧ

a
=

2

3(1 + w)t
, (1.48)

alongside the deceleration parameter

q =
1 + 3w

2
, (1.49)

and the density evolution

ρ =
1

6πG(1 + w)2 t2
. (1.50)

In particular, the model with w = 0 is the so-called “Einstein-de Sitter Universe”
(Einstein and de Sitter, 1932).

At first glance, defining these quantities might seem unnecessary, given that observa-
tional evidence confirms our Universe does not conform to a single-component model.
However, the significance of such a model lies in the fact that, for most of its life, every
universe, whether curved or flat, exhibits behaviour similar to that of such a kind of
universe.

1.8.2 Curved Universe

In the case the universe is either closed or open, we again start our analysis with the first

Friedmann equation, Eq. (1.45), divided by
(a0
a

)2
. We recall that we are considering

Friedmann models, which describe universes with a single-component fluid. The equation
then takes the form: (

ȧ

a0

)2

= H2
0

[
(1− Ω0) + Ω0

(a0
a

)1+3w
]
. (1.51)

Our focus is on comparing the two terms inside the square brackets, and we take the
absolute value of the first term to account for both open and closed universes. By
writing

|1− Ω0| ≪ Ω0

(a0
a

)1+3w

, (1.52)

we obtain

a0
a

= 1 + z ≫
∣∣Ω−1

0 − 1
∣∣ 1
1+3w ≡ a0

a∗
= 1 + z∗. (1.53)

This relation indicates that, for the first term in the square brackets to be negligible,
the following condition must hold: a ≪ a∗, or equivalently z ≫ z∗. In other words, if
we are sufficiently close to the Big Bang (the precise proximity to be determined) we
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can safely neglect the curvature term (1− Ω0). As expected, this leads to an equation
analogous to the one previously derived for a single-component universe:

ȧ

a0
= H0Ω

1
2
0

(a0
a

) 1+3w
2

, (1.54)

with the only distinction being the additional factor of Ω
1
2
0 . This illustrates why, as

mentioned earlier, even curved universes exhibit behaviour similar to flat ones, at least
during the primordial phases. Having now reached a strong conviction that Ω0 ∼ 1,
substituting even extreme values (such as 10−1 or 10) for it in the equation for a∗, and
assuming w = 0, would lead to the fact that the curvature term only becomes non-
negligible in the relatively recent past (for z ∼ 10 or less). Conversely when considering
the case in which a > a∗, or equivalently z < z∗, the first term within the square
brackets becomes negligible. This allows us to investigate the asymptotic behaviour
in regimes approaching to the present epoch or even extending into the future. Under
these conditions, the first Friedmann equation becomes:(

ȧ

a0

)2

= H2
0 (1− Ω0). (1.55)

At this stage, we distinguish between two different cases: one in which Ω0 > 1, cor-
responding to a closed universe, and another in which Ω0 < 1, describing an open
universe.

• Ω0 < 1. By separating variables in Eq. (1.55) and solving for the scale factor a(t),
we obtain a ∝ t. This implies that the ultimate fate of open universes is an infinite
linear expansion over time.

• Ω0 > 1. On the other hand, for curvature parameter values exceeding unity, there
exists a critical moment at which the expression within the square brackets of
Eq. (1.51) vanishes. At this point, cosmic expansion ceases, and the scale factor
begins to decrease. In this scenario, the universe ultimately undergoes a re-collapse
into a singularity, an event referred to as the “Big Crunch”.

The final aspect we aim to examine is the evolution of the density parameter. Starting
from the first Friedmann equation, expressed in terms of H2 as a function of the redshift,

H2(z) = H2
0 (1 + z)2

[
(1− Ω0) + Ω0(1 + z)1+3w

]
, (1.56)

and recalling the definition of Ω as the ratio between the density and a critical threshold,
alongside the evolution of the density,

ρ = ρ0

(a0
a

)3(1+3w)

, (1.57)
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Figure 1.2: Relation between distances and redshifts for three different cosmological
models: flat (left) and open (middle) universe with a single matter component, and flat
universe with a cosmological constant (right). The cones originate from the observer’s
location. (Hamilton, 1997).

we derive the evolution of the density parameter Ω (z), given by

Ω−1(z)− 1 =
Ω−1

0 − 1

(1 + z)1+3w
. (1.58)

Several implications follow from this expression. Firstly, in the asymptotic limit
z → ∞, we recover Ω → 1, as anticipated. This confirms that, near the Big Bang, all
universes exhibit behaviour analogous to the Einstein-de Sitter universe. Moreover,
since the denominator of the second term remains strictly positive for any redshift and
any physical admissible value of w (which is constrained within the Zel’dovich interval),
we observe the following: for Ω0 > 1, or equivalently, Ω−1

0 < 1, it follows that Ω−1(z) < 1

and thus Ω(z) > 1. In other words, if the universe was initially closed, it will remain
closed throughout its entire evolution. The same reasoning applies to the case of an
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open universe, reinforcing the conclusion that the curvature sign is preserved over cosmic
time.

1.9 ΛCDM model

The ΛCDM model (where Λ is the cosmological constant and CDM stands for Cold
Dark Matter) currently represents the standard and most widely accepted framework in
cosmology, as it accounts for a wide range of observational data. As these findings reveal,
our Universe, at the present epoch, cannot be characterised by a single-component fluid,
since there are two major constituents we have identified. The first is matter, with
ΩM ∼ 0.3, and the second is the cosmological constant Λ, which can be interpreted
as dark energy, for which ΩΛ ∼ 0.7. Matter is generally understood to consist of
both baryonic and dark components, with the latter predominantly composed of CDM,
although its precise nature remains a subject of ongoing debate and is yet to be
definitively determined (Feng, 2010). CDM is estimated to constitute the majority of
the matter component, with ΩDM ∼ 0.26. It is crucial to consider also the influence of
the cosmological constant, which is supported by several observational data, such as the
study of supernovae (Riess et al., 1998; Adil et al., 2024) and the LSS of the universe
(Barrow and P., 1993; Hameeda et al., 2022).

The relationship between distances and the cosmic scale factor is illustrated in
Figure 1.2. On the right-hand side, the flat case, including a cosmological constant, is
shown. This model reflects our current understanding of the Universe, and comparing
it with the other two cases in the figure clearly reveals the significant impact of the
cosmological constant on cosmic evolution.

1.10 Thermal history of the Universe

In this study the ΛCDM cosmological model is adopted: this is embedded in the
framework of the “hot Big Bang” model, wherein the universe originates from a singularity
with infinite density. The concept of an infinite density at the very beginning follows
from a mathematical extrapolation of the equations of the model, and should not be
regarded as a physical state, as the current understanding of physics breaks down at
this point. Although this model does not describe the physical laws governing the Big
Bang itself, it remains the most widely accepted paradigm because of its consistency
with contemporary observations.

Our knowledge begins at 10−43 s after the Big Bang. At this epoch, temperatures are
extremely high, on the order of 1032 K, and the entropy is equal to unity. On timescales
shorter than or comparable to the Planck time, both gravitational and quantum effects
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are present. From this moment until approximately 10−33 seconds after the Big Bang
the strong, weak and electromagnetic interactions might be unified, as described by
Grand Unified Theories (GUTs).

At around t ∼ 10−33 s, the energy falls below 1015 GeV and the inflationary era
occurs. Without delving too deeply into the details of inflationary models, as this lies
beyond the scope of the present thesis, we highlight only the key concepts and the
reasons why they are essential to complement the standard cosmological model.

Inflation is a phase of accelerated expansion in the early Universe, characterised by a
well-defined onset and end. Here, we consider slow-roll models involving a matter scalar
field. These models typically rely on the potential energy of a scalar field, ϕ, which
offers an easy and natural explanation for such an expansion. In slow-roll inflation, the
scalar field evolves slowly over time, resulting in a nearly constant Hubble parameter
throughout the inflationary period. It is worth noting that no known scalar field is, in
fact, a good candidate for such models. However, the necessity of an inflationary phase
is widely acknowledged, as it addresses several shortcomings of the standard Big Bang
model:

• Horizon problem: inflation allows for the justification of the extreme isotropy
(such as the temperature of the CMB, section 1.11) between regions that, without
inflation, would never have entered into causal connection in the past.

• Flatness problem: if the Universe had been born with a value of Ωtot even slightly
different from unity, we would now observe values significantly deviating from one.
The inflationary epoch solves this issue by driving the total density parameter
extremely close to unity, to within one part in 10−60.

• Magnetic monopoles problem: although we have not explored GUTs in detail, these
theories predict the existence of magnetic monopoles, which, however, have never
been observed. Inflationary models, and, thus, the era of accelerated expansion,
predict such a dramatic dilution of magnetic monopoles, that they are rendered
virtually absent in the Universe today.

• Primordial fluctuations: the standard Big Bang model does not account for the
origin of the primordial fluctuation seeds. Inflation, on the other hand, naturally
predicts their generation. Moreover, during this phase, it becomes possible for
particles to survive, since a baryon-antibaryon asymmetry emerges.

Eventually, after the inflationary era, also the electroweak and the strong forces
decouple.
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Figure 1.3: The large-scale history of the Universe, from the Big Bang to the present
day. This illustration highlights several key epochs in cosmic evolution, including the
inflationary period and the release of the CMB, tracing the transition from the dark
ages to the emergence of cosmic structures that eventually reionised the Universe.
https://www.esa.int (Planck Collaboration).

1.10.1 Cosmological eras

We now provide a brief summary of the different cosmological eras, each characterised
by the contributions of various particle species. As the temperature decreases, particles
decouple from radiation or undergo annihilation, depending on their mass. This process
leads to the loss of their contribution to the energy budget of the cosmic fluid. In fact,
in the early Universe, the energy contributions from decoupled particles, or from those
still coupled but no longer relativistic, become negligible, and can be safely disregarded
in the overall energetics of the system.

• Quark epoch: At approximately 10−12 seconds after the Big Bang, the weak and
electromagnetic interactions separate. However, the temperature remains too high
for quarks to form hadrons, and the cosmic fluid exists as a quark-gluon plasma.

• Hadron epoch: This epoch begins when the energy drops to ∼ 150 MeV (cor-
responding to t ∼ 10−5 s after the Big Bang) and lasts until around 1 second
post-Big Bang. During this period, quarks begin to bind into hadrons, marking

https://www.esa.int/ESA_Multimedia/Images/2015/02/The_history_of_the_Universe
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the onset of nucleon formation.

• Leptonic epoch: this era begins with the annihilation of pions and continues until
the final particles annihilation (i.e. electrons-positrons annihilation), which occurs
10 s after the Big Bang. During this epoch, muons annihilate, neutrinos decouple
from radiation, and electron – positron pairs undergo annihilation, shaping the
subsequent evolution of the Universe.

• Radiative epoch: following the annihilation of electron-positron pairs, the radiative
era begins. This period is characterised by the initial formation of deuterium, after
which other light nuclei start to form. For instance, helium forms approximately
200− 300 s after the Big Bang. The formation of light nuclei during this epoch is
well described by the theory of primordial nucleosynthesis, which hinges on the
initial ratio of neutrons to protons, with its evolution driven by temperature. This
represents one of the key successes of the Big Bang theory.

• Recombination era: this is the moment in which hydrogen recombines, meaning
electrons start to bind to nuclei, allowing photons to propagate freely, without being
continuosly absorbed and re-emitted. The plasma transitions from being optically
thick to transparent. The cosmic microwave background (CMB, section 1.11)
photons detected today were last scattered during this epoch.

• Equivalence: at a redshift z ∼ 103 the density of matter equals the density of
radiation. From this moment on the matter component prevails, and first cosmic
structures emerge.

A summary of the cosmic history of the Universe over the past 13.8 billion years is
shown in Figure 1.3.

1.11 Cosmic Microwave Background

As mentioned in the previous section, the CMB originates at the time of last scattering
(at z ∼ 1100), after wich photons can propagate freely throughout the universe. We now
turn our attention to a statistical analysis of the CMB, starting from the temperature
map of photons.

As depicted in Figure 1.4, the CMB temperature is not completely homogeneous but
exhibits subtle fluctuations around a mean value of 2.72548± 0.00057 K (Fixsen, 2009).
These variations are the lingering imprints of primordial density perturbations, the tiny
seeds that gave rise to the cosmic structures we observe today. As previously outlined,
their origin can be traced back to quantum fluctuations arose during the inflationary
epoch.
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Figure 1.4: Temperature map of the CMB around its mean value of ∼ 2.726 K. Regions
shaded in light blue and deep blue indicate temperatures below the average, while areas
rendered in orange and red correspond to regions with temperatures above the mean (Ade
et al., 2014).

Given a mean temperature T , one can characterise these angular temperature
deviations using the expression:

δT

T
(θ, ϕ) =

T (θ, ϕ)− T

T
=

∞∑
l=0

+l∑
m=−l

al,mYl,m(θ, ϕ) (1.59)

where, in the second step, we have expanded the temperature field in terms of spherical
harmonics. Here, θ and ϕ denote angular coordinates on the celestial sphere, al,m are the
coefficients encoding the amplitude of fluctuations at given values of l,m, and Yl,m are
the spherical harmonics, which are themselves defined in terms of Legendre polynomials:

Yl,m(θ, ϕ)

√
2l + 1

4π

(l −m)!

(l +m)!
Pm

l (cos θ)eiϕ. (1.60)

We define the angular power spectrum Cl as

Cl = ⟨|al,m|2⟩ =
1

2l + 1

+l∑
m=−l

|al,m|2, (1.61)

which quantifies the contribution of each multipole l to the reconstruction of the
temperature fluctuation field. As mentioned above, the CMB exhibits temperature
anisotropies which are not only intrinsic (i.e. reflecting the physical conditions at the
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Figure 1.5: Angular power spectrum of the CMB starting from l = 2. The x-axis displays
the angular scales, with the corresponding representations of multipoles shown at the
top. The red dots represent Planck satellite measurements, together with their error bars.
The green curve illustrates the best-fitting model within the framework of the ΛCDM
model. The surrounding pale green band encompasses the spread of predictions from
model variants that remain consistent with observational data (Ade et al., 2014).

time of last scattering) but also the result of all the interactions experienced by photons
from redshift z ∼ 1100 to the present day. These secondary anisotropies are of great
cosmological significance, as they encode valuable information about the growth of
density perturbations and the subsequent formation of cosmic structures.

In Figure 1.5 we present the angular power spectrum of the CMB, which encapsulates
a wealth of physical information. A brief overview of the most striking features is
presented below.

At large angular scales, the spectrum retains the imprint of primordial fluctuations,
those generated in the very early Universe. Moving to smaller scales, the regular
series of peaks and troughs correspond to acoustic oscillations of the tightly coupled
photon–baryon fluid, oscillating within the gravitational potential wells shaped by
dark matter. These oscillations are progressively damped on the smallest scales due
to Silk damping, a diffusive mechanism that erases anisotropies as photons gradually
escape from over-dense regions through repeated scattering. Of particular interest is
the position of the first acoustic peak, which is linked to the size of the sound horizon
at recombination. Encoded in its multipole position is crucial information about the
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geometry of the universe, allowing to infer the value of the total energy density parameter
Ωtot. Although numerous other physical processes contribute to the detailed shape of the
spectrum, a full treatment would extend beyond the scope of this thesis. We therefore
limit ourselves to a brief mention of some secondary anisotropies, which arise from
photon interactions occurring after the last scattering. Even in this domain, a rich
variety of effects emerge, of which we highlight only a few below.

• The early ISW effect occurs because photons traveling from last scattering to
today experience time-dependent gravitational potential variations due to the
non-negligible radiation energy density at recombination. It appears on angular
scales just larger than the first acoustic peak, at slightly lower multipole moments,
l.

• The late Sachs–Wolfe effect results from the decay of gravitational potentials when
cosmological perturbations evolve differently than in an EdS universe, evolving
more rapidly or more slowly, as in the case of the ΛCDM model. It becomes
significant at redshifts z ≲ 1, affecting large angular scales near the horizon size,
when dark energy dominates.

• The Rees-Sciama effect is the nonlinear counterpart of the ISW effect, linked to
potential changes in the nonlinear regime.

• The Sunyaev-Zeldovich effect arises as photons, much cooler than hot cluster
plasmas, gain energy through Inverse Compton scattering, showing prominently
at large l values, corresponding to small angular cluster sizes.

While the correspondence between theory and observation is remarkably tight across
small and intermediate angular scales, a mild suppression is evident at large scales,
particularly around 6 degrees. These large-scale anomalies in the CMB pattern may
point to features not yet fully accounted for by the standard model, hinting at the need
to revisit or refine certain aspects.

1.12 Formation of cosmic structures

Linear theory

To study the evolution of the Universe, it is essential to comprehend the mechanisms
through which primordial matter fluctuations amplify over time. In this context, the
introduction of the Jeans theory (Jeans, 1902) is mandatory. The fundamental approach
starts from the core equations of linear Jeans theory, which are the conservation of mass,
the Euler and the Poisson equation:
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∂ρ

∂t
+∇ · (ρv) = 0, (1.62)

∂v

∂t
+ (v · ∇)v = −∇p

ρ
−∇ϕ, (1.63)

∇2ϕ = 4πGρ. (1.64)

Assuming an adiabatic behaviour of the perturbations, the entropy evolution is
governed by:

∂S

∂t
= 0. (1.65)

Thus, the equation of state p = p(ρ, S) simplifies to p = p(ρ), with pressure p now
depending solely on the density field. These equation chracterise the evolution of
large-scale matter distribution.

The next step in our treatment involves incorporating the effects of the background
expansion of the Universe. To this end, we introduce two quantities that will prove
essential in the forthcoming analyses: the conformal time η and the conformal Hubble
parameter H, defined respectively as:

η(z) =

∫ ∞

z

dz′

H(z′)
, (1.66)

H =
a′

a
=

da

dη

1

a
= aH. (1.67)

where a prime denotes a derivative with respect to the conformal time.
The velocity can be decomposed into two components: the background Hubble flow

and the peculiar velocity u, resulting in

v = Hx+ au. (1.68)

The density contrast δ, a key quantity in structure formation, is given by:

δ(x, η) =
ρ(x, η)− ρ

ρ
(1.69)

where ρ denotes the background (mean) density. By substituting this definition into the
continuity and Euler equations, using the conformal quantities introduced before, we
obtain:

δ′ +∇ [(1 + δ)u] = 0, (1.70)
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u ′ +Hu+ (u · ∇)u = −∇Φ− ∇p

ρ
(1.71)

where Φ is the gravitational potential.
In the linear regime, assuming small perturbations, these equations reduce to

δ′ +∇u = 0, (1.72)

u ′ +Hu = −∇Φ (1.73)

Taking the divergence of the linearised Euler equation, and combining it with the
continuity equation, leads to a second-order differential equation governing the evolution
of the density contrast:

δ′′ +Hδ′ − 3

2
ΩM,0H2δ = 0 (1.74)

where ΩM,0 is the present-day matter density parameter
The general solution to this equation can be written as a linear combination of two

independent solutions:

δ(x, η) = D+(η)A(x) +D−(η)B(x), (1.75)

being A,B functions which describe the initial density field. D+(η) and D−(η) are
the amplitude of the growing and decaying modes, respectively. The decaying mode
rapidly becomes negligible, and the growth of structures is governed by the growing
mode D+(η), commonly referred to as the linear growth factor. As a result, the density
contrast evolves proportionally to this growth factor:

δ(x, η) = D+(η)δ(x, 0). (1.76)

In a FLRW Universe containing only matter and vacuum energy, with densities ΩM

and ΩΛ, the linear growth factor is given by

D+(a) =
5

2
H(a)ΩM,0

∫ a

0

da′

a′3H(a′)
(1.77)

with H(a) = (ΩMa
−3 +Ωka

−2 +ΩΛa
−1)1/2 and the curvature density Ωk is defined to be

the density deficit Ωk ≡ 1− ΩM − ΩΛ, which is respectively positive, zero, and negative
in open, flat, and closed Universes (Hamilton, 2001). Its logarithmic derivative is the
dimensionless linear growth rate, f :

f =
d lnD+(a)

d ln a
(1.78)

is related to the amplitude of the peculiar velocities and thus to redshift space
distortions (RSD, section 2.4). The growth of structure provides a particularly sensitive
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probe for testing modified gravity scenarios. Within the ΛCDM model, based on GR,
a well-established relationship exists between the linear growth rate and the matter
density parameter:

f ≃ Ωγ
M(z) (1.79)

where the growth index parameter γ ≃ 0.545 is a precise prediction of GR. This relation
therefore offers a powerful means to test the validity of GR on cosmological scales: any
significant deviation between the observed growth rate and the prediction under GR
assumptions could point towards new physics governing the LSS of the Universe.



Chapter 2

Clustering

2.1 The Newtonian gauge

Before delving into the analysis of clustering statistics, it is crucial to clarify the gauge
in which our physical quantities are defined. The observed distribution of galaxies, both
on the sky and along the line of sight, is shaped not only by the underlying matter
density, but also by a range of relativistic effects, all of which must be framed within a
consistent theoretical setup.

It is therefore appropriate at this stage to make our choice of gauge explicit. While
any gauge is, in principle, equally legitimate, some gauges lend themselves more naturally
to physical interpretation. In the context of galaxy clustering, the conformal Newtonian
gauge stands out as particularly convenient: it is well suited for dealing with scalar
perturbations of the metric, although it can be generalised to include vector and tensor
modes (Bertschinger, 1993). This gauge will underpin our relativistic description of
density fluctuations, peculiar velocities, RSD, and gravitational effects, all of which leave
a distinct imprint on the observed LSS. This choice of gauge is also central to modern
treatments of relativistic galaxy number counts, as it provides a clear link between
metric perturbations and observational effects such as RSD, relativistic Doppler terms,
and gravitational lensing (Yoo, 2010; Bonvin and Durrer, 2011; Breton et al., 2019).

In the conformal Newtonian gauge, the perturbed FLRW metric with scalar pertur-
bations takes the form:

ds2 = a2(η)
[
−(1 + 2Ψ)dη2 + (1− 2Φ)δijdx

idxj
]
, (2.1)

where Ψ and Φ are the Bardeen potentials (Bardeen, 1980) and we have set c = 1. In
the absence of anisotropic stress, the two potential coincide, Ψ = Φ, and the metric
simplifies to:

38
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ds2 = a2(η)
[
−(1 + 2Φ)dη2 + (1− 2Φ)δijdx

idxj
]
. (2.2)

In this case, the potential Φ can be interpreted as a gravitational potential in the
Newtonian limit. The assumption of negligible anisotropic stress is not particularly
far-fetched for most of cosmic history, as in a matter- and dark energy-dominated
universe such contributions are indeed negligible.

Within this gauge, the Poisson equation reads:

∆Φ =
3Ω0

2

δ(x, η)

a
, (2.3)

where all quantities are expressed in comoving coordinates and adopting a conformal
time parametrisation, given by Eqs. (1.66) and (1.67), assuming a flat background and
a linear perturbation theory. At linear order, the comoving peculiar velocity field is
related to the potential by:

vi(x, η) =
2

3Ω0

Hf ∇iΦ. (2.4)

This result can be obtained by solving the continuity and Euler equations in linear
theory under the assumption δ ∝ D+(η) with D+ the linear growth factor, and using
the Eq. (1.78), thereby neglecting decaying modes.

As mentioned in the beginning of this section, the following treatment adopts
this specific gauge: it is therefore not gauge-invariant, and hence not fully general.
Nevertheless, it is the most commonly employed approach in the literature, because,
being quasi-Newtonian, it allows, under certain well-justified assumptions (such as the
absence of anisotropic stress), to express the relevant quantities in a familiar Newtonian
form.

2.2 The power spectrum

As we have seen, cosmological perturbations originate from quantum fluctuations at
the end of the inflationary era and evolve under the effect of gravitational interactions
encoded in metric perturbations. In relativistic treatment, the perturbations δ(x, η),
defined by Eq. (1.69), are functions of both conformal time η and spatial coordinates x,
and evolve under the action of the metric potentials expressed in a given gauge, such as
the Newtonian gauge.

Standard single-field slow-roll inflationary models predict that the fluctuations follow
a Gaussian distribution, so that the probability of observing a perturbation with a
density contrast δ = δ(x, η) is given by



CHAPTER 2. CLUSTERING 40

p(δ) =
1√
2πσ2

e−
δ2

2σ2 , (2.5)

where σ denotes the standard deviation. It is important here to consider the ergodic
hypothesis, which states that, for a sufficiently large and statistically homogeneous
system, ensemble averages can be replaced by spatial averages within a single realisation.
Since we have access to only one observable Universe, we cannot perform an average
over multiple realisations of the cosmic density field. Instead, under the assumption of
statistical homogeneity and isotropy on large scales, we rely on spatial averages within
our single realisation to estimate ensemble properties. This substitution allows us to
infer statistical quantities, such as the 2PCF, from observations of the LSS.

We have previously stated that our primary interest is in the statistical analysis of
perturbations, δ. However, it is also aknowledged that not all matter components are
observable. Let us define the numerical fluctuation of galaxies as the ratio between the
number of galaxies within a given volume and the mean number of galaxies, expressed
as

δg =
δNg(V )

N g

. (2.6)

It is reasonable to hypothesise that galaxies, like other tracers, could serve as a fiducial
sample of the total matter distribution, and thus follow the same density fluctuations.
Consequently, at linear order, we can relate these quantities as

δg = b δM , (2.7)

where b denotes the linear bias factor, which is dependent on redshift and mass, and δM
represents the matter density field averaged over a certain volume. This quantity can
be defined at each position x as

δM(x) =
δM(x)

M
= δ(x) ∗W (x, R), (2.8)

where the symbol ∗ denotes a convolution operation, M is the mass averaged over a
given volume and W is a convolution filter, commonly known as the window function.
Several filters can be employed, such as the top-hat filter or the Gaussian filter. In
the latter case, the advantage lies in the fact that convolving with a Gaussian function
does not alter the properties of the density field itself, which remains of Gaussian type,
though its variance evolves as

σ2
M(R) = ⟨δ2M(x)⟩. (2.9)
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where ⟨⟩ is the ensemble average. The variance is a decreasing monotonic function with
increasing radius. In the limiting case where the filtering radius tends to ∞, the result
is the averaged field. Since σ2

M is proportional to the square density field fluctuations,
and the growth of these fluctuations is scale-independent, it follows that, starting from
an initial variance distribution, one can expect it to exhibit self-similarity after a certain
amount of time. Given that σ2

M = 1 defines the threshold below which linear theory
is applicable, it is noteworthy that smaller scales are the first to transition into the
nonlinear regime. The variance is linked to the power spectrum P (k), and we aim to
investigate this relationship. Standard inflation models predict the absence of preferred
scales, allowing the primordial power spectrum to be characterised by a power-law form,
such as:

Pin(k) = A

(
k

k∗

)ns

, (2.10)

where A represents the amplitude, ns denotes the spectral index and k∗ is a pivot scale.
Notably, the spectral index can take values greater than or less than zero, signifying
a dominance of power on either small or large scales, respectively. However, since the
variance depends on k through an integral, it is necessary for it to converge that n > −3

for k → 0 and n < −3 for k → ∞. Moreover, given the moment at which a certain mass
becomes nonlinear, a relationship between time and mass is established, we must further
constrain the values of the spectral index, if we wish for smaller masses to form prior to
larger ones, and energy to be an increasing function of mass. This is called hierarchical
formation, which requires n to be in the range −3 < n < 1. Among the several values
that n can assume, there exists a particular one, predicted by inflation, which derives
from the fact that potential fluctuations are mass independent, exhibiting a white-
noise-like (i.e. scale-invariant) behaviour. This is realised for n = 1 and corresponds
to the so-called Zel’dovich spectrum (Zeldovich, 1972). As perturbations evolve from
inflation to the present epoch, different physical processes modify their amplitudes in
a scale-dependent way. This evolution is encoded in the transfer function T (k), which
relates the present-day potential fluctuations to the primordial ones. Accordingly, the
linear matter power spectrum becomes:

PL(k, a) ∝ D2
+(a)T

2(k)Pin(k), (2.11)

where D + (a) is the growth factor. For biased tracers, such as galaxies, the power
spectrum reads:

Pg(k, a) = b2(a)PL(k, a). (2.12)

In modern cosmological analyses, T (k) is computed using Boltzmann codes such as
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CLASS (Lesgourgues, 2011) or CAMB (Lewis and Challinor, 2011), and include the
effects of dark matter, baryons, neutrinos, radiation and the cosmological constant.

2.3 The 2-point correlation function

We now focus on the counterpart of the power spectrum in configuration space, to char-
acterise structural clustering, that is, the correlation function, as originally formulated
in the 1960s (Totsuji and Kihara, 1969), and further developed during the 1970s and
1980s (Peebles and Hauser, 1974).

Considering the probability of finding a first galaxy (or any other object) in a small
comoving volume dV1 at a position x1, and a second galaxy in a volume dV2 at a position
x2, we have, respectively:

dP1 = n̄dV1, (2.13)

dP2 = n̄dV2. (2.14)

where n̄ denotes the mean number density of objects per unit volume.
The uncorrelated probability of simultaneously finding one galaxy in dV1 and another

in dV2 is then

d2P = n̄2 dV1 dV2, (2.15)

with the mean number of objects in a volume V given by ⟨N⟩ = n̄ V .
However, when spatial clustering is present, the joint probability of locating a second

galaxy within dV2, given that a first one has already been observed in dV1, is modified
to:

d2P = n̄2dV1dV2 [1 + ξ(x1,x2)] , (2.16)

where ξ(x1,x2) is the 2PCF. Statistical homogeneity and isotropy imply that ξ depends
only on the comoving separation r = x2 − x1, and hence ξ(x1,x2) = ξ(r) = ξ(r).
Moreover, ξ(r) ≥ −1 ensures that d2P ≥ 0.

As evident in Eq. (2.16), the 2PCF, ξ(r), serves as a measure of the excess (or deficit)
in the joint probability relative to the expectation under a random spatial distribution.
The 2PCF can also be directly related to the density field, as follows. Given that
ρb = n̄m, and ρ(x) = n(x)m, we can express the number density as

n(x) =
ρ(x)

ρb
n̄. (2.17)
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The probability of locating an object within a volume dV , at the position x, is

dP (x) = n(x) dV =
ρ(x)

ρb
n̄dV. (2.18)

Hence, the probability of finding two objects, one situated at position x and the other
at position x+ r, is given by

d2P =
n̄2

ρ2b
⟨ρ(x) ρ(x+ r)⟩ dV1dV2. (2.19)

Since

δ(x) =
ρ(x)

ρb
− 1, (2.20)

then ξ(r) = ⟨δ(x)δ(x+ r)⟩, which is the 2PCF in the continuum.
The 2PCF is positive at small scales and becomes negative at large scales. This

means that dark matter haloes and galaxies cluster on small scales with a probability
larger than that of the homogeneous case. In particular, if we want to estabilish the
2PCF for biased objects, we have to multiply the dark matter 2PCF by the square of
the linear bias factor b:

ξobj(r) = b2ξDM(r). (2.21)

Finally, the relation between the 2PCF and the power spectrum is the following:

ξ(r) =
1

(2π)3

∫
eik·rP (k) d3k. (2.22)

2.3.1 The 2-point cross-correlation function

We now aim to introduce the cross-correlation function that this thesis focuses on. The
formalism follows that previously introduced for the auto-correlation, with the difference
that we now consider two sets of tracers, labeled 1 and 2. The cross-correlation function
ξ12, at a separation r⃗, is thus defined through the joint probability of locating an object
from set 2 in a volume dV2, given that an object from set 1 has already been found in a
volume dV1:

d2P = n̄1n̄2dV1dV2 [1 + ξ12(r)] , (2.23)

where n̄1, n̄2 are the mean number densities per unit volume of objects of sets 1 and 2,
respectively. The cross-correlation function between the two populations is:

ξ12(r) = ⟨δ1(r1)δ2(r2)⟩, (2.24)
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where δ1(r1) and δ2(r2) are the overdensisites of populations 1 and 2.
The cross-correlation between two populations of galaxies or haloes is anti-symmetric

under exchange of the line-of-sight coordinates. Suppose that we have a brighter popu-
lation, B, and a fainter population, F, that we want to cross-correlate: the correlation
changes if the bright galaxy is in front of or behind the faint one. The cross-correlation
function ξBF is made of a symmetric and an anti-symmetric part:

ξBF = ξsBF + ξaBF, (2.25)

with
ξsBF ≡ 1

2
[ξBF(∆xz,∆x⊥) + ξBF(−∆xz,−∆x⊥)] , (2.26)

ξaBF ≡ 1

2
[ξBF(∆xz,∆x⊥)− ξBF(−∆xz,−∆x⊥)] . (2.27)

The terms ∆xz and ∆x⊥ represent the line-of-sight (along z-axis) and transverse separa-
tion:

∆xz ≡ xz,B − xz,F, (2.28)

∆x⊥ ≡ x⊥,B − x⊥,F. (2.29)

2.3.2 Estimators of the 2-point correlation function

From an observational point of view, the 2PCF is inferred from discrete tracers of the
underlying matter distribution. This requires comparing the number of pairs of objects
separated by a specific distance with the expected number of pairs that would occur
if the objects were distributed randomly. The most straightforward estimator for the
2PCF (Peebles and Hauser, 1974) can be expressed as

ξ(r) =
DD(r)

RR(r)
− 1, (2.30)

where DD(r) and RR(r) denote the normalised number of data-data and random-
random object pairs, respectively, each separated by a distance r, and normalised with
respect to the total number of random-random pairs.

More accurate estimators for both the auto-correlation and cross-correlation functions
can be found in the literature. For this thesis project, the Landy-Szalay estimator was
used to determine both the auto-correlation and the cross-correlation functions (Landy
and Szalay, 1993):

ξ(r) =
DD(r)− 2DR(r)−RR(r)

RR(r)
, (2.31)
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ξ(r) =
D1D2(r)−D1R2(r)−R1D2(r) +R1R2(r)

R1R2(r)
, (2.32)

where the subscripts 1 and 2 refer to the two different catalogues used, D1D2 and R1R2

represent the pair counts for data-data and random-random objects, respectively, while
D1R2, R1D2, DR correspond to mixed data-random terms.

2.3.3 Multipole moments

The 2PCF has already been defined as the probability of finding two objects separated
by a distance r. Consequently, if the system is isotropic, the 2PCF depends only on
the distance. However, this assumption ceases to hold once redshifts are used to infer
distances without accounting for peculiar velocities and relativistic effects, thereby
breaking the isotropy of the system. In such circumstances, the 2PCF must account for
two dependencies: one on the norm of the distance r, and the other on the angle along
the line of sight. As a result, 2PCF is generally expressed as ξ = ξ (r, µ), where µ is the
cosine of the angle between the line of sight and the comoving separation r.

Multipole moments are important summary statistics for analysing the anisotropic
2PCF, ξ(r, µ). When considering an isotropic system, the only non-vanishing multipole
is ξ0, that is, the monopole. When introducing RSD (section 2.4), the isotropy breaks,
and if we further consider a non-symmetric distribution under inversion, even odd
multipoles arise. The lth order multipole moment of the 2PCF is given by:

ξl(r) =
2l + 1

2

∫ 1

−1

ξ(r, µ)Ll(µ) dµ, (2.33)

where Ll(µ) is the Legendre polynomial of lth order. In practice, due to the finite number
of object pairs, the integral is approximated by a discrete sum as:

ξl(r) ≃
2l + 1

2

1∑
µ=−1

ξ(r, µ)Ll(µ) δµ. (2.34)

Here we consider the first five multipoles:

ξ0(r) =
1∑

µ=0

ξ(r, µ) δµ, (2.35)

ξ1(r) =
3

2

1∑
µ=−1

ξ(r, µ)µ δµ, (2.36)

ξ2(r) =
5

2

1∑
µ=0

ξ(r, µ)(3µ2 − 1) δµ, (2.37)
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ξ3(r) =
7

4

1∑
µ=−1

ξ(r, µ)(5µ3 − 3µ) δµ, (2.38)

ξ4(r) =
9

8

1∑
µ=0

ξ(r, µ)(35µ4 − 30µ2 + 3) δµ. (2.39)

2.4 Mapping from real to redshift space

Our primary objective, from now on, is to derive all the contributions that lead to an
asymmetry in the cross-correlation function, and consequently to the emergence of odd
multipoles, with particular focus on extracting relativistic effects, as will be discussed
later. We begin by describing all sources of distortion, starting with the standard RSD.
We emphasise that its derivation relies on the Newtonian linear approximation and
the distant-observer limit. We subsequently address geometric distortions, light-cone
and evolutionary effects, and finally lensing contributions. A dedicated chapter will be
reserved for relativistic distortions, followed by a comprehensive summary of all the
aforementioned contributions.

In redshift space, the observed positions of cosmological objects are affected by
RSD, which arise when the observed redshifts are interpreted as purely cosmological,
neglecting the contribution from peculiar velocities. This effect induces an anisotropy in
the observed matter field, enhancing the observed clustering in redshift space relative to
that in real space.

On large scales, peculiar motions are predominantly governed by the gravitational
infall of structures, such as galaxies, during cosmic formation, a phenomenon known
as the Kaiser effect: this process induces a characteristic anisotropy in the correlation
function, manifesting as a flattening along the line of sight. Conversely, on smaller
scales, RSD arise primarily from randomised velocities within virialised structures, but
contributions may also stem from coherent or chaotic motions in their surroundings,
especially in the quasi-linear infall regions, giving rise to the so-called Fingers of God
(FoG). This effect causes elongation of the structures along the line of sight. All these
effects are shown in Figure 2.1.

It is possible to establish the relationship between the power spectrum in real space
and in redshift space by drawing on key theoretical considerations (Kaiser, 1987). The
first one states that the number density of objects must be preserved when mapping
between these two representations, which is expressed as

ns(xs)d
3xs = nr(xr)d

3xr, (2.40)

where the subscripts s and r denote quantities in redshift and real space, respectively.
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Figure 2.1: The 2-dimensional redshift-space 2PCF ξ(σ, π) of the 2dF Galaxy Red-
shift Survey is shown as a function of transverse (σ) and radial (π) pair separa-
tions. The contour lines correspond to constant values of the correlation function
at ξ = 10, 5, 2, 1, 0.5, 0.2, 0.1. Notable features include the radial elongation at small
separations (the so-called “Fingers of God”) and the large-scale flattening due to coherent
infall (Kaiser effect). For visual clarity and to enhance the perception of anisotropy, the
data from the first quadrant (upper right) have been symmetrically reflected about both
coordinate axes (Peacock et al., 2001).

The second aspect is that the observed redshift, at first order, is given by:

zobs ≃ H0x+ v · x̂, (2.41)

where the first term corresponds to the Hubble-Lemaître flow, while the second arises
from the peculiar velocity component along the line of sight. The observed position of
an object is given as:

xs = x+
v · x̂
aH

. (2.42)

Introducing the Jacobian J as

J :=

∣∣∣∣ d3xd3xs

∣∣∣∣ , (2.43)

and solving for Eq. (2.42), while taking into account the Eq. (2.40), leads to

1 + δs = (1 + δ)

[
1− ∂

∂x

(
v · x̂
aH

)]
. (2.44)

A first-order expansion reveals that, in redshift space, the overdensity field consists
of the sum of its real counterpart and a correction term. We adopt the distant observer
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approximation, which corresponds to the small-angle or flat-sky limit: the core assump-
tion is that the line-of-sight direction, n̂ = x/x, can be regarded as constant across
the observed region. In other words, provided that galaxies lie close to one another
within the (x, y) plane, we may replace x̂ in Eq. (2.44) with a fixed radial unit vector
directed towards the centre of the survey area, that is, for example, êz. For these reasons,
taking the Fourier transform of the overdensity yields the following expression for the
perturbation in the density field of haloes and galaxies:

δs(k) =
[
b + fµ2

k

]
δ(k), (2.45)

where µk = k · êz denotes the cosine of the angle between the line of sight and the
wavevector k. As previously introduced, the factor f is the growth rate, defined as the
logarithmic derivative of the growth factor D+, Eq. (1.78), which describes the growth
of the matter perturbations. There exists an empirical fitting formula for the growth
rate f as follows:

f(a) ∼ Ωγ
m(a), (2.46)

where the exponent is γ ≃ 0.545 in GR, and we will explain its implications in what
follows.

Eq. (2.45) formalises the behaviour regarding large-scale RSD. Firstly, given that
fµ2

k ≥ 0, the observed overdensity in redshift space always exceeds that in real space,
where it would simply be b δ(k). A second key aspect of Eq. (2.45) is that the amplifi-
cation specifically affects perturbations whose wavevectors are aligned with the line of
sight. In contrast, perturbations with k perpendicular to the line of sight are unaffected
by RSD. Therefore the galaxy power spectrum in redshift space also depends on the
orientation of k, not only on its value: this dependence is accounted for by µk.

Thus, the power spectrum in redshift space can be expressed in terms of its real-space
counterpart as

Ps(k, µk) = PL(k)
(
1 + fµ2

k

)2
+ PN, (2.47)

where PL(k) is the linear matter power spectrum, PN is a white-noise term in the galaxy
power spectrum (i.e. a scale-independent constant).

Let us now recall Eq. (2.45) to see how this is related to the multipoles of the
correlation function through the multiplying factor:

(b+ fµ2
k)

2 = b2 + f 2µ4
k + 2fµ2

k

= b2 +
1

5
f 2 +

2

3
bf +

(
4

7
f 2 +

4

3
bf

)
L2(µk) +

8

35
L4(µk).

(2.48)
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As we can see from this expression, this introduces two even multipoles in addition
to the monopole of the 2PCF and power spectrum in redshift space.

It is important at this point to recall the expression for the growth rate f . In fact, f
provides a direct observational window into the nature of dark energy: a more rapid
expansion of the Universe, driven by dark energy, leads to a lower growth rate of cosmic
structures. Conversely, if a modified gravity model is considered at fixed H(z), an
enhanced growth rate is generally expected, as most modifications to gravity tend to
increase its strength. A particularly significant test, therefore, involves comparing the
observed growth rate with the value predicted by GR. In this context, measurements of
RSD can place constraints on f , potentially leading to challenges or further validations
of GR.

2.5 Geometric distortions

Geometric distortions (GD) arise when an incorrect cosmological model is assumed to
convert redshifts and angular positions into comoving coordinates. This effect overlaps
with the dynamical distortions discussed in the previous section, but manifests itself
even in the absence of peculiar velocities. Since radial and transverse coordinates depend
differently on cosmological parameters, any mismatch between the true and the assumed
cosmology leads to a deformation of the observed structures. As a result, intrinsically
isotropic distributions may appear elongated or compressed along the line of sight,
providing a powerful geometric test of the underlying cosmological model.

2.5.1 The Alcock-Paczynski test

In 1979, Alcock and Paczynski devised a test aimed at placing constraints on cosmo-
logical parameters (Alcock and Paczynski, 1979). In what follows, we reconstruct its
fundamental steps.

Consider the observed galaxy position, given by the spherical coordinates (θ, ϕ) and
the redshift z. These coordinates can be converted into a 3D position xobs and this is
possible if we choose a fiducial cosmology and thus a fiducial distance-redshift relation
χ(z), which differs from the one of the real Universe:

χfid(z) = χtrue(z) + δχ(z). (2.49)

To simplify the calculations, we can set xobs = 0 and fix the redshift to a mean value,
z = z̄. For the transverse component, the assigned values are

(x1, x2)obs = χfid(z) · (θ1, θ2), (2.50)
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where θ1, θ2 represent the two components of θ. Meanwhile, if the true cosmology was
considered, the relation would be:

(x1, x2)true = χtrue(z) · (θ1, θ2), (2.51)

or, in terms of (x1, x2)obs, as

(x1, x2)true =

(
1− δχ(z)

χfid(z)

)
(x1, x2)obs. (2.52)

Thus, as evident from this equation, if δχ > 0 then the comoving distance χ that we
have assigned to the galaxy in the transverse direction is larger than the real one, and
the opposite happens for δχ < 0.

The line-of-sight observed component x3,obs is related to the redshift (recall that we
have fixed it to a mean value z̄) through the following expression:

x3,obs(z) = χfid(z)− χfid(z̄) ≃
1

Hfid(z̄)
(z − z̄), (2.53)

where the second step follows from a first-order expansion in z − z̄. This approximation
is valid when considering narrow redshift slices. It also derives from the definition of the
derivative of the comoving distance with respect to redshift, dχ/dz = 1/H, assuming
c = 1. As for the transverse coordinates, the true value of x3 (corresponding to the
correct cosmology) is given by:

x3,true(z) =
1

Htrue(z̄)
(z − z̄) =

Hfid(z̄)

Htrue(z̄)
x3,obs(z). (2.54)

Using δH(z) = Htrue(z)−Hfid(z) we obtain:

x3,true(z) =

(
1 +

δH(z̄)

Hfid(z̄)

)
x3,obs. (2.55)

Finally, the relationship between the true and observed coordinates, to account for
due to a wrong distance-redshift relation is

xtrue = ([1− α⊥]x1,obs, [1− α⊥]x2,obs, [1− α∥]x3,obs), (2.56)

where

α∥ = − δH

Hfid(z)
, (2.57)

α⊥ =
δχ

χfid(z)
, (2.58)
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which, as said, we can safely evaluate at z̄. We can also express α∥ and α⊥ in terms of
true quantities as:

α∥ + 1 =
Htrue(z)

Hfid(z)
, (2.59)

α⊥ + 1 =
χtrue(z)

χfid(z)
. (2.60)

This effect is known as the “Alcock-Paczynski” (AP) effect (from which follows the AP
test).

We now briefly show how this wrong cosmology can affect the power spectrum. We
start from defining the true wavevector in terms of the observed one as follows:

ktrue = ([1− α⊥]k1,obs, [1− α⊥]k2,obs, [1− α∥]k3,obs). (2.61)

By considering the Fourier transform of the redshift-space overdensity, we can easily
write

Ps(kobs, z̄) = PL(k, z̄)
(
1 + fµ2

k

)2 ∣∣∣∣
([1−α⊥]k1,obs, [1−α⊥]k2,obs, [1−α∥]k3,obs)

+ PN. (2.62)

The difference between this equation and the Eq. (2.47) lies in the inclusion here of
coordinate rescaling effects. The form of the expression is preserved, thanks to the fact
that the number of galaxies in a given volume is independent of the coordinate system
used to describe them.

The Eq. (2.62) includes two effects:

• The RSD, due to ignoring peculiar velocities, derived in Section 2.4;

• The AP effect, arising from the fact that the coordinates assigned to galaxies are
based on an assumed distance–redshift relation, which may differ from the true
one.

The constant noise term PN is unaltered by either of these effects. While RSD in the
linear regime affects only the amplitude of the power spectrum, the AP effect modifies its
shape. This distinction allows us to disentangle the two contributions. In this sense, the
AP test is a powerful cosmological probe, helping us to discriminate between different
cosmological models.



Chapter 3

Redshift-space distortions in the dipole
of cross-correlation

One of the key scientific goals of the Euclid mission is to detect, with high statistical
significance, the anisotropies in the large-scale distribution of galaxies. Such measure-
ments offer a stringent observational test of GR on cosmological scales and have the
potential to unveil subtle signatures of modified gravity or relativistic effects imprinted
on the LSS of the Universe.

In this thesis, we have taken a further step beyond classical dynamical and geometrical
distortions, introducing the full range of distortions, including relativistic contribution,
that affect redshift measurements and leave imprints in the dipole of the 2-point cross-
correlation function. These distortions have been the central focus of the work presented
here. Most studies focus on the even multipoles of the 2PCF, which are largely dominated
by standard RSD. In contrast, wide-angle, evolution, and relativistic effects induce an
anti-symmetry in the observed distribution of cosmic objects when cross-correlating
two different galaxy populations, thereby giving rise to odd multipoles. In recent years,
many authors have investigated the impact of relativistic distortions on object counts
and on the 2PCF (Bonvin and Durrer, 2011; Challinor and Lewis, 2011). Calculations
remain highly non-trivial and are therefore typically carried out in the linear regime
and under the distant-observer approximation. A linear mapping between real and
redshift space is also assumed. Within this framework, one can isolate and analyse the
various contributions to the multipoles of the 2PCF on linear scales. Extending beyond
standard RSD effects to include relativistic contributions allows for additional tests
of GR and provides valuable insights into the nature of dark matter and dark energy.
It is essential to account for these relativistic RSD effects when performing precise
analyses, as standard RSD alone do not generate an antisymmetric component in the
cross-correlation function. Although incorporating these extra terms is more challenging
due to their subtlety, it enables more stringent tests of GR on large cosmological scales.

52
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This is especially important because these relativistic contributions depend on the
linear growth rate, which characterises the evolution of cosmic structures and is closely
connected to GR via the growth index parameter γ, Eq. (1.79).

3.1 Wide-angle effect

It is essential to incorporate additional terms when seeking more accurate predictions
than those provided by standard RSD.

Figure 3.1: Two alternative definitions of the angle employed to extract the dipole
are considered, both arising from the breakdown of the distant observer approximation
(Gaztanaga et al., 2017).

One such correction arises upon relaxing the distant observer approximation, wherein
the lines of sight to the two galaxies in a pair are no longer parallel. This deviation
introduces modifications to the standard Kaiser expressions for the monopole, quadrupole,
and hexadecapole, and, moreover, induces an additional antisymmetric contribution to
the 2PCF. The precise form of this wide-angle effect depends crucially on the definition
of the angle used to extract the multipoles.

There are various ways of defining the angle between a pair of galaxies and the
observer’s line of sight. In Figure 3.1 two of the most common choices are illustrated:
σij represents the angle between the median and the vector connecting the median
to j, while βij is the angle between the direction of i and the vector connecting i to
j. The former definition ensures that i and j are handled symmetrically. The latter,
βij, appears more natural when capturing relativistic effects: it centres the coordinate
system on one galaxy and characterises how the correlation signal varies around it.

This is particularly relevant for effects such as gravitational redshift, which are
expected to generate a dipolar modulation about each galaxy. In galaxy groups and
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clusters it is due to the differential gravitational potential between the central, massive
galaxy, located deeper in the potential well, and the surrounding, less massive companions
(Wojtak et al., 2011).

At leading order in d/r, the mathematical expression of the dipole does not depend
on the choice of angular variable. Differences arising from angular parametrisation only
appear at order (d/r)3, as a consequence of geometric projection effects rather than
any physical dependence on coordinates. For the scales considered in this thesis, such
higher-order corrections are entirely negligible. Let us take a step back and reconsider
the cross-power spectrum, which may be expressed as:

Pgal = (b1 + fν2
1)(b2 + fν2

2)P (k), (3.1)

where ν1,2 denote the cosine of the angles between the wavevector k̂2 and k̂2 and the
line of sight, respectively, and b1, b2 are the biases of the two populations.

This expression can be expanded in Legendre polynomials and transformed into
configuration space via an inverse Fourier transform. However, this yields a result that
depends on two angular variables, µ1 = x̂1 · r̂ and µ2 = x̂2 · r̂, which proves cumbersome
for interpretation. For the purposes of this thesis we choose the angle defined by the
scalar product between the median position of the galaxy pair and their separation
vector. Being x1 and x2 the positions of objects of the first and second populations, we
thus have

x =
x1 + x2

2
, (3.2)

r = x2 − x1. (3.3)

Considering the angle defined by µ = x̂ · r̂, which is symmetric under exchange of pairs,
we do not need any additional terms for the dipole due to the choice of angle. We also
have ν = k̂ · x̂, ν1 = k̂ · x̂1, ν2 = k̂ · x̂2 and νr = k̂ · r̂. Expressing all quantities using
these definitions and expanding to linear order in O(r/x), we obtain:

(b1 + fν2
1)(b2 + fν2

2) = A+
r

x
B, (3.4)

where A is the standard symmetric contribution responsible for the even multipoles,
and B is the antisymmetric term that gives rise to the dipole and octupole terms:

B = (b1 − b2)f

[
L1(νr)L1(ν)−

1

3
L1(µ)−

2

3
L1(µ)L2(ν)

]
, (3.5)

where Ll are the lth-order Legendre polynomials (Gaztanaga et al., 2017; Breton et al.,
2019).

The wide-angle contribution to the odd multipoles is given by:



CHAPTER 3. RSD IN THE DIPOLE OF CROSS-CORRELATION 55

ξwa(r, µ) = (b1 − b2)
2r

5x
f [−L1(µ) + L3(µ)] γ

0
2(r), (3.6)

where

γ0
2 =

1

(2π)2

∫
k2j2(kr)P (k, z) dk, (3.7)

with P (k, z) the linear matter power spectrum, j2(kr) the 2nd-order spherical Bessel
function and H0 the conformal Hubble parameter at z = 0.

3.2 Light-cone and evolution effects

When analysing the clustering properties of high-redshift objects at a quantitative level,
it is essential to properly account for light-cone effects (Kaiser, 2013). Cosmological
observations are, in fact, only feasible on the light-cone hypersurface defined by the
current observer. The time evolution of the sources, such as the bias, introduces
contamination in the observational data.

Figure 3.2: Representation of the light-cone effect. When considering observations on
the light cone, the peculiar motions of galaxies G and G′ cause their observed radial
positions to differ from those they had at the reference conformal time η∗. As a result,
their true separation along the line of sight at the time of observation, r′ − r, does not
coincide with the radial separation u′ − u that they had at η∗ (Bonvin et al., 2014).

Given a metric gµν , the past-light cone of a point xµ is defined as the set of all points
yµ for which there exists a null geodesic connecting yµ to xµ. It therefore includes all
events that can be observed at xµ via light propagation1 In practice, the light cone can

1To be more precise: let (M, g) be a 4D Lorentzian manifold, where M is a differentiable manifold
representing spacetime, and g the metric tensor. At each point p ∈ M, there exists a tangent space
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be parameterised by a pair of angles, defining the direction of observation, and a redshift.
This has a fundamental implication: we are unable to observe anything beyond our past
light cone. As previously mentioned, cosmological observations do not correspond to a
snapshot taken on a constant-time hypersurface, but rather to what is observed along
the light cone. Consequently, the coordinate system used, i.e. angles and redshift, is
affected by these perturbations and must be corrected accordingly.

These effects can be probed using a key observable: galaxy number counts. The
observed galaxy counts are affected by perturbations in the underlying distribution,
such that:

∆obs = ∆+ δ∆, (3.8)

where δ∆ is the correction term and x = xobs − δx quantifies the difference between
the observed and true position of the source. It should be noted that, in computing
this quantity at a given point xµ = (η,x), one typically neglects the fact that photons
propagate through a perturbed spacetime, as including this would lead to higher-order
contributions in the fluctuation expansion (Bonvin et al., 2014).

To illustrate the light-cone effect, consider a galaxy located at a position q at a
conformal time η∗, and assume for simplicity that all galaxies share a common peculiar
velocity v. At a later conformal time η the position of the galaxy will be:

x = q + v(η − η∗). (3.9)

Since the observed galaxy position (η,x) lies on the observer’s light cone, the radial
distance is given, to the lowest order, by r = η0 − η, where η0 is the conformal time
today. If we denote by u the line-of-sight component of the initial position, q, and by r

the observed radial position, then we obtain:

r = u+ n̂ivi(η − η∗) = u+ n̂ivi(r∗ − r). (3.10)

This lies at the core of the light-cone effect, namely that we observe galaxies which are
not stationary but have moved over time, and this displacement affects the coordinates
by which we measure them. This is summarised in Figure 3.2: the true separation
between galaxies along the line of sight is represented by the difference r′ − r, which
differs from their separation at time η∗. The light-cone effect thus introduces a density
fluctuation in the observed number counts, given by

∆LC =
v · n
c

, (3.11)

which gives rise to the following anti-symmetric term contributing to the dipole:

TpM: the tangent bundle is defined as the disjoint union of all tangent spaces over M. The light cone
at a point p is the set of tangent vectors v ∈ TpM satisfying the condition g(v, v) = 0.
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ξLC = − 1

2π2
f(b1 − b2)

H
c

∫
dk k j1(kr)P (k, z), (3.12)

where jl is the spherical Bessel function of lth-order.
Let us now extract the evolution term, by connecting these fluctuations with that a

fixed time η∗ through a Taylor expansion as:

[∆ + δ∆]η ≃ [∆ + δ∆]η∗ +
∂

∂η
[∆ + δ∆]

∣∣∣∣
η∗

(η − η∗), (3.13)

with η−η∗ small compared to the Hubble time. To the time difference η−η∗ corresponds
a spatial difference r − r∗ with r ≡ η0 − η∗, being η0 the conformal time today. The
second term on the right-hand side is referred to as the evolution term. This term
also accounts for the spatial dependence of v⃗ since, if the number count of objects is
conserved, at linear order we have

−∇ivi =
∂∆

∂η
. (3.14)

These evolution contributions to the antisymmetry in the cross-correlation function
are dominated by the evolution of the bias and of the growth rate. As we have already
shown in the previous section, also in this case at the first order the choice of the angle
does not affect these terms.

Such contributions to the dipole can be written as:

⟨ξevo1⟩ = r

6
[(b1 − b2)f

′ − f(b′1 − b′2)]

[
γ0
0(r)−

4

5
γ0
2(r)

]
, (3.15)

⟨ξevo2⟩ = r

2
(b1b

′
2 − b2b

′
1)γ

0
0(r), (3.16)

where

γ0
0(r) =

1

2π2

∫
dk k2j0(kr)P (k, z), (3.17)

γ0
2(r) =

1

2π2

∫
dk k2j2(kr)P (k, z). (3.18)

A prime denotes a derivative with respect to the comoving distance.
We decomposed the evolution term into two contributions, ξevo1 and ξevo2, since ξevo2

is also generated in real space and it does not contribute to the dipole when only the
relativistic terms are considered by subtracting the contributions in real space.
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3.3 Gravitational lensing term

When light propagates through regions of gravitational potential, produced by massive
objects such as galaxy clusters, it is deflected, which can result in the source of that
light appearing at a different angular position from its true location. The study of
gravitational lensing is not as recent as one might assume, with its origins predating
even the development of GR. In the early 1800s, Soldner computed the deflection of light
by modelling it as a particle and applying Newtonian mechanics, deriving a deviation
angle of 2GM/(bc2).

With the discovery of GR by Einstein, researchers confirmed that gravity bends
light and explored its implications. Eddington and others predicted that gravitational
lensing could generate multiple images of distant objects. Einstein demonstrated that
stellar lensing was too subtle to detect, but Zwicky proposed that galaxies could produce
observable image splittings, approximately 1 arcsecond, thus making lensing a valuable
tool in extragalactic astronomy, although it remains a relatively rare phenomenon.

Gravitational lensing was first observed in 1979 with the discovery of the “twin
quasar” (Walsh et al., 1979). Since then, numerous lensed quasars, galaxies, arcs, and
Einstein rings have been discovered, with current and upcoming surveys expected to
identify thousands more.

Consider observing a source emitting photons, such as a galaxy, and let β denote the
true angular position, which is the direction from which a photon would have arrived in
the absence of any deflection. The angle θ corresponds to the observed direction of the
photon, as seen by the observer. Under the distant observer approximation, where the
deflection angle and the reduced deflection angle can be considered equivalent (α̂ ≃ α),
the lens equation reads:

β = θ − α. (3.19)

A schematic representation of this configuration is provided in Figure 3.3.
The deflection angle of a photon (whether reduced or not, as already noted) is given

by:

â =
2

c2

∫
∇⊥Φdλ. (3.20)

This expression represents the gradient of the dimensionless Newtonian potential (Φ/c2)
perpendicular to the light ray, integrated along the photon’s path. The factor of two
arises because the perturbed Minkowski metric features identical perturbations in both
its temporal and spatial components.

We now consider a simple application by examining the case of a point mass
potential, Φ = −GM/r. Let the photon travel along the z-axis, and let x⃗ = (x, y)

represent coordinates in the plane perpendicular to the direction of motion. Under the
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Figure 3.3: Lensing effect: the apparent source is seen from the observer under an angle
θ, this is the result of the photon deflection due to the potential of the lens, encountered
on its path (Gao, 2024).

assumption of distant observer, that is, the light ray is emitted at z = −∞ and received
at z = +∞, we obtain:

â =
2

c2

∫ +∞

−∞
∇⊥Φdz (3.21)

=
2

c2

∫ +∞

−∞
dz

(
∂Φ/∂x

∂Φ/∂y

)
(3.22)

=
2

c2

∫ +∞

−∞
dz

GM

r3

(
x

y

)
(3.23)

=
2GM

c2
x

∫ +∞

−∞
dz

1

(b2 + z2)3/2
(3.24)

=
4GM

bc2
x̂, (3.25)

where b = (x2 + y2)1/2 and x̂ = x/b is the unit vector in the transverse plane. The final
result is precisely twice what would be obtained from a purely Newtonian treatment: to
a hypothetical massless particle moving at a speed c, a heuristic model inconsistent with
Newtonian mechanics but useful as a point of comparison with GR. Imagine to observe
two populations of galaxies, the first one brighter and a fainter second one located
behind the first one. The lensing produced by the brighter population will affect the
second population leading to fluctuations in the number galaxies counts, which induces
an anti-symmetry. Thus, the lensing contribution to the dipole is the following, as given
by Matsubara (2000):
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⟨ξlens⟩ = ⟨∆std∆lens⟩

= −9ΩM(z)rH2

8π
(b1 − b2)

∫ 1

−1

µ2dµ

∫
dk kJ0

(
kr
√

1− µ2
)
P (k, z),

(3.26)

where J0 is the first kind Bessel spherical function of 0th-order.

3.4 Relativistic Doppler term

As has been extensively emphasised throughout, our primary observable is the galaxy
number counts. These counts are not solely influenced by density fluctuations and velocity
gradients, as considered by the standard RSD model. Instead, a richer phenomenology
emerges, incorporating contributions from the gravitational potential and relativistic
corrections arising from peculiar velocities. The relativistic Doppler effect provides, in
fact, an additional contribution that must be taken into account, and its contribution
to the number density fluctuation is given by:

∆Rel,Doppler = −

(
Ḣ
cH2

+
2

Hχ

)
v · n, (3.27)

where dots denote derivatives with respect to conformal time. It should be noted that
the most significant part of this contribution stems from the second term in the round
brackets:

∆div = − 2

Hχ
v · n. (3.28)

Let us rewrite Eq. (2.42) in an equivalent form as2:

s = r +
v · n
H

. (3.29)

The volume elements in real and redshift space are, respectively:

d3r = r2dr dΩ, (3.30)

d3s = s2ds dΩ, (3.31)

with

ds = dr +
1

H
∇r(v · n)dr. (3.32)

2Here the time dependence is not considered.
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Figure 3.4: Line of sight divergence effect: the solid circles represent the true distribution
of objects, whereas the dashed circles correspond to the observed distribution. Arrows
denote the overall peculiar velocity of the system (Breton, 2018).

At linear order, the Jacobian reads:∣∣∣∣dsdr
∣∣∣∣ = 1 +

1

H
∇r(v · n) + 2

rH
(v · n). (3.33)

The third term of this equation leads to the effect commonly referred to in the
literature as the line-of-sight divergence effect, and it is clearly illustrated in Figure 3.4:
a volume subtending a given solid angle appears denser if it is moving towards the
observer, and less dense if receding. The effect is proportional to the velocity field
along the line of sight and becomes the dominant contribution to the dipole on large
scales. Although this term originates from a purely geometric consideration, it naturally
enters the relativistic framework when adopting a fully relativistic treatment of redshift
distortions in a perturbed FLRW spacetime. It is therefore conventionally grouped
under the label relativistic Doppler contribution, as it forms part of the complete set
of relativistic corrections to galaxy number counts. By contrast, it is typically absent
from standard treatments of RSD, as it becomes observationally relevant in the context
of cross-correlating two distinct galaxy populations. This is because the projection of
peculiar velocities along the line of sight differs depending on whether a galaxy lies in
front of or behind its companion in the pair. As a result, an anti-symmetric contribution
emerges in the correlation function, manifesting itself as a non-vanishing dipole.

The contribution from the accelerating expansion of the universe is given by
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∆q = − Ḣ
cH2

v · n. (3.34)

The whole contribution to the dipole, arising from the two terms considered here, is
the following:

⟨ξRel,Doppler⟩ = 1

2cπ2

(
Ḣ
H

+
2c

χ

)
f (b1 − b2)

∫
dk kj1(kr)P (k, z). (3.35)

The first term in the round brackets is of the order of 10−3, and it overwhelmingly
dominates over the contribution arising from the acceleration of the cosmic expansion,
which is of the order of 10−5.

3.5 Contribution from acceleration

We also introduce an additional term contributing to the generation of a dipole that
arises from a variation in the velocity of the observed objects along the line of sight and
enters the fluctuation in number counts as:

∆acc =
1

Hc
v̇ · n. (3.36)

The contribution to the dipole reads:

⟨ξacc⟩ = − 1

2cπ2

(
f 2 +

ḟ

H
+

Ḣ
H2

f

)
H(b1 − b2)

∫
dk kj1(kr)P (k, z) (3.37)

3.6 Gravitational redshift

The second effect we need to introduce is that arising from the gravitational potential
(McDonald, 2009). As a photon climbs out of a gravitational potential well, it undergoes
an energy loss, manifesting itself as a redshift. When considering two distinct galaxy
populations that differ in mass-luminosity, the associated photons are redshifted to
varying degrees. This differential gives rise to a breakdown of the isotropy in the observed
galaxy distribution.

In Figure 3.5 a schematic difference between classic RSD (left panel) and gravitational
redshift (right panel) is shown. We consider galaxies residing within the symmetric
gravitational potential well of a cluster, observed from a distant point, denoted as O.
Let B represent the central brighter galaxy of the cluster, located at the bottom of the
gravitational potential well. The other cluster members are labeled F1 and F2, denoting
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Figure 3.5: Schematic illustration of the difference between Doppler RSD, on the left-
hand side and gravitational redshift distortions, on the right-hand side (Bonvin et al.,
2014).

two such galaxies (fainter than B) positioned symmetrically with respect to B in real
space. In redshift space, the relative positions of these galaxies are altered: galaxies
appear compressed along the line of sight. However, this effect is symmetric, thus F1

and F2 remain equally displaced with respect to B.
The situation changes when gravitational redshift is considered. In this case, all

three galaxies are shifted in the same direction, but the central galaxy B undergoes the
largest gravitational redshift. This leads to an asymmetry: F1 now appears closer to B

than F2, breaking the front-back symmetry.
The result is, once again, a cross-correlation function composed of two terms: one

symmetric and one antisymmetric. In Fourier space, this corresponds to an imaginary
part in the power spectrum.

We can express the contribution of the potential term to the fluctuation in number
counts by decomposing it into two components:

∆pot,1 =
1

Hc
∇rΨ · n, (3.38)

which correspond to the first order contribution in H/k, and

∆pot,2 =

(
Ḣ
H2

+
2c

Hχ

)
Ψ

c2
− 1

Hc2
Ψ̇, (3.39)

which represents the next-to-leading order contribution in H/k, retaining only the
dominant terms. These give rise to dipolar contributions of the form:

⟨ξpot,1⟩ = 3H
4cπ2

ΩM(z)(b1 − b2)

∫
dk kj1(kr)P (k, z), (3.40)

⟨ξpot,2⟩ = −3HH0

4π2c2
ΩM(z)(b1 − b2)

(
Ḣ
H2

+
2c

Hχ
− f + 1

)∫
dk j1(kr)P (k, z). (3.41)
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3.7 Shapiro time delay

The Shapiro time delay is an effect arising from the gravitational potential well sur-
rounding massive structures, as first described by Irwin I. Shapiro in 1964. When a
photon travels across a potential well of a massive object, its propagation is delayed
relative to the time it would take in an unperturbed, flat spacetime. The net result is
effectively as though the photon had “slowed down” along its trajectory. Unlike the local
gravitational redshift effects, the Shapiro delay is an integrated effect, since it builds up
along the line of sight as the photon travels across gravitational fields.

This propagation delay induces a perturbation in the observed signal and, in particu-
lar, in the correction to the observed number count fluctuations. The contribution from
the Shapiro delay to the number density contrast is encapsulated by an integral over
the gravitational potential along the line of sight, and plays a role, albeit subdominant,
in the suit of relativistic corrections to LSS observables:

∆Shapiro =
2

c2χ

∫ χ

0

(Φ + Ψ) dχ′, (3.42)

where Φ and Ψ are the Bardeen potentials.
When applied to galaxy number counts, especially in cross-correlations between two

different populations of galaxies (e.g., bright and faint), the Shapiro delay induces an
antisymmetric distortion along the line of sight, generating a non-zero dipole in the
2-point cross-correlation function:

⟨ξShapiro⟩ = − 3

2π2c2
ΩM(z)H2(b1 − b2)

∫
dk j1(kr)P (k, z). (3.43)

3.8 Integrated Sachs-Wolfe effect

A final effect that must be accounted for is the integrated Sachs-Wolfe (ISW) effect,
which arises from time-dependent variations in the gravitational potential experienced
by photons along their trajectories.

In a spatially flat Universe, within the linear regime, the gravitational potential
remains constant in time at any fixed comoving location. Thus, the detection of a
significant ISW signal constitutes compelling evidence for a deviation from this behaviour,
potentially indicative of an additional component in the energy content of the Universe,
such as a cosmological constant.

This effect is clearly evident on large angular scales, but becomes largely subdominant
on smaller angular scales, as fluctuations tend to average out along the line of sight
(Afshordi, 2004).

The observed density fluctuation in number counts due to the ISW effect is given by:
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∆ISW =
1

Hc2
(Φ̇ + Ψ̇), (3.44)

which contributes an anti-symmetric term to the dipole

⟨ξISW⟩ = 3H
2π2c2

ΩM(z)(b1 − b2)(1− f)

∫
dk j1(kr)P (k, z). (3.45)

3.9 Summary of the dipole modelling

We now summarise all the aforementioned effects in order to determine the total expected
number of object counts, accounting for both standard RSD contributions and relativistic
corrections. We also include, in the most general form possible, the evolution bias fevo
and magnification bias s. Magnification bias quantifies the change in the observed
number density of galaxies due to gravitational lensing magnification. Specifically, it
measures how the observed galaxy number density responds to the survey luminosity
threshold at fixed redshift, making it a survey-dependent quantity. Evolution bias, on
the other hand, characterises the physical change in the comoving number density of
galaxies relative to the conserved case. It describes how the comoving number density
evolves with redshift at a fixed luminosity threshold, depending on the nature of the
tracer population. Processes such as galaxy and halo formation, evolution, and mergers
lead to a non-conservation of the comoving number density, encapsulated by a non-zero
evolution bias (Maartens et al., 2021). Ultimately, evolution bias leads galaxies to merge,
reducing their number density and changing the clustering properties of the population
as a whole. In the simplest model of structure growth, galaxies are always hosted within
haloes whose masses increase with time. In such a picture, evolution bias corresponds to
the increase in the average halo mass that hosts a particular galaxy after its formation.
Larger values of the evolution bias correspond to faster growth of halo masses, primarily
due to continuous merging processes (Percival and Schaefer, 2008).

In the linear regime, we begin by considering a linear mapping between real and
redshift space, expressed as

∆s = ∆r + 1− |J | (3.46)

where J denotes the Jacobian of the transformation from real space to redshift space.
As outlined in Challinor and Lewis (2011); Bonvin and Durrer (2011); Bonvin et al.
(2014); Tansella et al. (2018); Breton et al. (2019), the contributions to the observed
galaxy number counts can be computed as the sum of the following terms:

∆std = bδ −H−1∇r(v · n), (3.47)



CHAPTER 3. RSD IN THE DIPOLE OF CROSS-CORRELATION 66

∆Doppler = −

(
Ḣ
cH2

+
2− 5s

Hχ
+ 5s− fevo

)
v · n, (3.48)

∆acc = H−1v̇ · n, (3.49)

∆lens =
5s− 2

2χc2

∫ χ(z)

0

(χ− χ′)

χ′ ∆Ω(Φ + Ψ)dχ′, (3.50)

∆pot =
1

Hc
∇rΨ · n+

(
Ḣ
H2

+
(2− 5s)c

Hχ
+ 5s− fevo

)
Ψ

c2
− 1

Hc2
Ψ̇, (3.51)

∆sh =
2− 5s

χc2

∫ χ(z)

0

dχ′(Ψ + Φ), (3.52)

∆ISW =
1

c3

(
Ḣ
H2

+
(2− 5s)c

Hχ
+ 5s− fevo

)∫ χ(z)

0

dχ′(Φ̇ + Ψ̇), (3.53)

∆LC =
v · n
c

, (3.54)

where ∆Ω denotes the angular part of the Laplacian:

∆Ω ≡
(
cot θ∂θ + ∂2

θ +
1

sin2 θ
∂2
ϕ

)
, (3.55)

which is linked to the term of the Laplacian perpendicular to the line of sight via
∆Ω = χ2∆⊥. Here δ represents the matter density contrast in Newtonian gauge, b is
the linear bias, ∆rsd is the standard RSD term, ∆lens is the lensing term, ∆q describes
the contribution from the accelerated expansion of the Universe, ∆acc derives from
the acceleration of the sources, ∆pot is the contribution from gravitational potential
as the sum of the first order term and the second-order term (H/k), ∆sh denotes the
Shapiro time-delay contribution, ∆ISW is the Integrated Sachs-Wolfe term and ∆LC is
the light-cone contribution due to the fact that observed position of sources on the
light-cone is different from the position on constant-time hypersurface (Bonvin et al.,
2014).

Recalling that the 2-point cross-correlation function between two different populations
is given by ξ = ⟨∆2

1∆
s
2⟩, the terms that generate asymmetries read:

ξA =
∑
i

⟨∆std
1 ∆A

2 ⟩+ (1) ↔ (2), (3.56)

where ∆A is given by Eqs. (3.47) to (3.54).
Using Eq. (3.56), we can write all the different contributions to the dipole, such as:

⟨ξLC⟩ = −fGγ1
1(r), (3.57)
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⟨ξDoppler⟩ =

(
Ḣ
H2

+
2c

Hχ

)
fGγ1

1(r), (3.58)

⟨ξacc⟩ = −

(
f 2 +

ḟ

H
+

Ḣf

H2

)
fGγ1

1(r), (3.59)

⟨ξpot⟩ = 3ΩM(z)

2
G

[
γ1
1(r)−

H
H0

(
2c

Hχ
+

Ḣ
H2

− f + 1

)
γ2
1(r)

]
, (3.60)

⟨ξISW⟩ = 3ΩM(z)
H
H0

G(1− f)γ2
1(r), (3.61)

⟨ξwa⟩ = −2

5
(b1 − b2)f

r

χ
γ0
2(r), (3.62)

⟨ξevo1⟩ = r

6
[(b1 − b2)f

′ − f(b′1 − b′2)]

[
γ0
0(r)−

4

5
γ0
2(r)

]
, (3.63)

⟨ξevo2⟩ = r

2
(b1b

′
2 − b′1b2)γ

0
0(r), (3.64)

⟨ξlens⟩ = ⟨∆std∆lens⟩ = −9

4
ΩM(z)

rH
c
Gω̄(r, z), (3.65)

with
γm
l (r)

1

2π2

(
H0

c

)m ∫
dk k2−mjl(kr)P (k, z), (3.66)

ω̄(r, z)
1

2π

(
H0

c

)m ∫ 1

−1

µ2 dµ

∫
dk kJ0

(
kr
√

1− µ2
)
P (k, z), (3.67)

G = (b1 − b2)
H
H0

. (3.68)

A dot represents a derivative with respect to the conformal time, while a prime is a
derivative with respect to the comoving distance, f is the linear growth rate, jl is the
lth-order spherical Bessel function and J0 is the Bessel function of the first kind of
0th-order. Here P (k, z) is the linear power spectrum at a mean redshift z:

⟨δ(k, z) δ(k′, z)⟩ = (2π)3P (k, z)δD(k, k
′). (3.69)



Chapter 4

Results

4.1 Methods

For the present thesis, we made use of data from the RayGalGroupSims suite (Ray-
GalGroupSims), a collection of high resolution N-body simulations that incorporate all
first-order relativistic observational effects within the weak-field approximation (Bre-
ton et al., 2019). The simulated volume spans 2625 (Mpc/h)3 and is populated with
Np = 40963 particles, with a mass resolution of approximately 1.88× 1010 h−1M⊙. Cru-
cially, full-sky light-cones over the redshift interval z ∼ [0, 0.5] are constructed on-the-fly
during the simulation run, thereby eliminating the need for replicas.

Haloes within the light-cone have been identified using the parallel Friends-of-Friends
(pFoF) algorithm. Their apparent positions on the sky have been computed via a
ray-tracing procedure that accounts for all first-order relativistic effects within the
weak-field approximation. These include redshift and angular distortions induced by
the relativistic Doppler effect, gravitational redshift, the transverse Doppler shift, the
Integrated Sachs–Wolfe and Rees–Sciama effects, as well as weak gravitational lensing.

4.1.1 N-body simulations

Numerical simulations in cosmology have become indispensable tools, now widely
employed across the field. These simulations offer a dual advantage: they allow for
testing cosmological analysis pipelines before applying them on observations, and allow
us to predict future outcomes, when closed-form solutions are not available. In particular,
N-body simulations provide a means to investigate the evolution of systems comprising
an enormous number of particles, systems for which no analytical solutions exist for
their dynamics.

To generate this catalogue, the RAMSES code (Teyssier, 2002) was employed. This
code combines the particle-mesh (PM) method with adaptive mesh refinement, enabling

68
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both high efficiency and accuracy. In the PM approach, particles are distributed within a
specified volume alongside a grid that acts as a regular lattice. The grid elements, or cells,
are used to compute the gravitational evolution of particles. Unlike particle–particle
codes, which directly compute interactions between individual pairs of particles, PM
codes are more computationally efficient, as they treat the gravitational force as an
external field. However, due to the limited resolution of the grid, this method is accurate
primarily on scales larger than the grid spacing. The main advantage of this approach lies
in its physical analogy to a fluid, allowing for a more tractable description of large-scale
gravitational dynamics. It is further enhanced by adaptive mesh refinement, which
locally increases the grid resolution in regions of high particle density, thereby improving
accuracy through the use of finer grids where needed.

4.1.2 Construction of halo catalogues

To construct halo catalogues, all snapshots of the simulation were used. A snapshot
refers to a simulated box at fixed cosmic time that contains all particles (and grid
cells) within it. The initial conditions are assumed to be Gaussian, as supported by
observations of the CMB (Akrami et al., 2020), with the density field defined by the
linear power spectrum P (k, z), with the initial redshift set to approximately z ≃ 50.
This power spectrum can be computed using a Boltzmann solver such as CAMB (Lewis
et al., 2000). The simulation starts at z ≃ 50. The initial box consists of a periodic,
homogeneous, and isotropic particle distribution, with each particle placed at the centre
of a cell. The power spectrum is then used to perturb the distribution, yielding the
true initial particle positions and velocities corresponding to the initial snapshot. The
initial redshift must be chosen carefully to satisfy some constraints. First, it cannot be
too high, since the simulation neglects radiation density fluctuations: as a result, the
simulation cannot start during the radiation-dominated era. Additionally, starting from
excessively high redshifts would lead to the accumulation of numerical errors, which
could overwhelm the weak initial density perturbations.

Once the initial conditions are set, the subsequent evolution of the system can be
followed using Lagrangian quantities. As described in Teyssier (2002), the main steps for
evolving particles in PM codes are as follows. From the particle distribution, the mass
density is interpolated onto the grid, in this case using the Triangular Shaped Cloud
method, which produces a smoother and more regular density field. The gravitational
potential is then computed by solving the Poisson equation, Eq. (1.64), and its gradient
is calculated to determine the gravitational acceleration. Acceleration is used to update
the particle velocities for the subsequent time step, and the new particle positions are
obtained accordingly.
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Outputs

During the simulation run, two types of output are produced: snapshots and light cones.
As said, a snapshot provides a static view of the simulation box at a fixed cosmic time,
with no reference to an observer. In contrast, light cones are constructed from the
perspective of a virtual observer, who perceives the past light cone: the greater the
distance to the particles, the higher their corresponding redshift.

There are essentially two main approaches to building light cones. The first approach
consists of generating the light cone once the simulation has been completed. In this case,
the light cone is built as a concatenation of snapshots: at the boundary of a simulation
box at a given redshift, the same box at a higher redshift is appended. However, this
procedure leads to replicas: the same photon trajectory may intersect identical structures
at different redshifts. Although interpolating quantities such as particle positions and
velocities onto the light cone from each snapshot can enhance the resolution, it does not
eliminate the problem. The second approach, which is the one adopted to generate the
catalogues used in this thesis, is known as the onion-shell approach (Fosalba, 2008). In
this case, the light cone is constructed on the fly, during the simulation. At each time
step, a shell containing particles and cells, within a narrow redshift interval, is saved.
The final light cone is then assembled by concatenating all such shells. The light cones
generated may be either narrow- or full-sky. Here, the full-sky configuration was used:
the distribution of particles is recorded in all directions around the observer, up to a
redshift corresponding to half the box length. Once the density field was obtained, the
matter power spectrum was computed using POWERGRID (Prunet et al., 2008). Our
primary interest lies in the power spectrum at wave numbers k > 0.3hMpc−1, a regime
in which relativistic corrections become important, significantly shaping the spectral
features alongside nonlinear effects. In Figure 4.1 the comparison between the linear
power spectrum and that of the simulation is shown.

At low k, the discrepancy arises primarily due to cosmic variance, resulting from
the fact that we are working with a single realisation of a randomly sampled particle
distribution. This inherently limits the statistical power of the analyses. Drawing robust
conclusions on these scales would require simulations with significantly larger volumes,
such as e.g. DEUS-FUR (Alimi et al., 2012). At higher values of k, two main effects,
both associated with the finite resolution of the data, modify the shape of the power
spectrum. Firstly, shot noise introduces a spurious contribution with an amplitude of
(L/N)3, where L is the box size and N the number of cells in the grid per dimension.
Secondly, the Nyquist frequency, defined as kNyq = π(N/L), sets a fundamental upper
limit on the recoverable Fourier modes. In practice, to ensure numerical reliability
and avoid aliasing artefacts (Colombi et al., 2009), the analysis is typically restricted
to modes that satisfy k ≲ kNyq/2. Lastly, structure identification is performed using
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Figure 4.1: Dashed black line: linear power spectrum. Solid red line: linear power
spectrum computed from the snapshot. Both are at z = 0 (Breton et al., 2019).

the FoF algorithm. This method defines a linking length b, usually set at a fraction
(commonly 0.2) of the mean separation between particles. Starting from a given particle,
neighbouring particles within this linking length are recursively connected to form a
percolating structure. Groups containing more than 100 particles are then identified as
dark matter haloes.

4.1.3 Ray-tracing with Magrathea-Pathfinder

To connect sources and the observer, ray-tracing techniques are employed. Several ap-
proaches exist for implementing ray tracing in simulations; in this case, the method con-
sists of directly solving the geodesic equations. The simulation used employs Magrathea-
Pathfinder, a hybrid Message Passing Interface/pthreads C++11 code. The strength
and long-term potential of this approach lie in the fact that, while traditional ray-tracing
codes are typically limited to studies of gravitational lensing, Magrathea-Pathfinder
provides a unified framework that includes both gravitational lensing and redshift pertur-
bations and, in particular, it implements first-order corrections in metric perturbations.
This capability enables, in particular, detailed investigations of relativistic effects in
galaxy clustering analyses. A detailed description of the code is provided in Breton and
Reverdy (2022); here we summarise the key concepts.

This algorithm integrates the geodesic equations directly,

d2xµ

dλ2
= −2Hdη

dλ

dxµ

dλ
− 2

c2
dΦ

dλ

dxµ

dλ
+ 2

∂Φ

∂xµ

(
dη

dλ

)2

, (4.1)
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using a standard 4th-order Runge–Kutta scheme. In the context of this simulation, ray
tracing is performed as a post-processing step following the N-body evolution. The
core of the Magrathea-Pathfinder library lies the construction of an N-dimensional tree
data structure. This refers to a spatial decomposition technique (such as an octree in
3D), whereby the simulation volume is recursively subdivided into smaller cells or nodes.
This hierarchical structure enables efficient localisation of a given point (e.g. a photon’s
position) within the simulation domain and facilitates the identification of neighbouring
cells.

Once the photon’s location is determined within the tree, the algorithm searches
for surrounding cells up to a given level of refinement, in order to interpolate local
Eulerian quantities (such as gravitational potentials and velocities) at that position. The
interpolation proceeds as follows: the algorithm first attempts to identify the finest-level
cell containing the photon. If eight adjacent cells of the same refinement level are found,
interpolation is carried out using their values. If not, the algorithm ascends the tree to
a coarser refinement level and repeats the search. This process continues until a valid
set of neighbouring cells is located. If no such set is found even at the coarsest level,
the integration of the geodesic is aborted, as there is insufficient data to ensure reliable
interpolation.

4.1.4 Producing observables

The primary aim is to connect the source to the observer located at the origin of the
light cone (i.e., to determine the geodesic linking the two). This is achieved by requiring
the angular separation between the source and the photon, at the same comoving radius,
to be zero.

To this end, a root-finding algorithm is employed. Consider an observer positioned at
the origin of the light cone, observing a photon that has been deflected by gravitational
lensing. The observer perceives the source at an apparent angle θ, whereas the true
angle, β = (β1, β2), corresponds to the comoving coordinates of the source. The tentative
photon at the n-th iteration is denoted by ζn. Initially, the photon is emitted in the
direction β. If the photon fails to intercept the source, the initial angle is adjusted and
the process repeated iteratively. This continues until the photon successfully reaches
the source, which, in the example illustrated in Figure 4.2, is assumed to occur at the
second iteration. The initial angle corresponding to ζ2 is θ, interpreted as the apparent
angle under which the source is seen.

Angles are defined in spherical coordinates. The corresponding normalised comoving
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Figure 4.2: Geodesic-finder algorithm. See text for the detailed description (Breton et al.,
2019).

coordinates are computed as: 
x = cos(β1) sin(β2)

y = sin(β1) sin(β2)

z = cos(β2).

(4.2)

The same expressions can be used to convert apparent angles into apparent normalised
coordinates, by replacing βi by θi.

4.1.5 Redshift terms

The perturbed redshifts zi are defined as follows:

1 + z0 =
a0
a
, (4.3)

1 + z1 =
a0
a

[
1− (Φs − Φo)

c2

]
, (4.4)

1 + z2 =
a0
a

[
1− (Φs − Φo)

c2
+

v · n
c

]
, (4.5)

1 + z3 =
a0
a

[
1− (Φs − Φo)

c2
+

v · n
c

+
1

2

(v
c

)2]
, (4.6)

1 + z4 =
a0
a

[
1− (Φs − Φo)

c2
+

v · n
c

+
1

2

(v
c
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− 2

c2

∫ η0

ηs

dη Φ̇

]
, (4.7)
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1 + z5 =
(gµνk

µkν)s
(gµνkµkν)o

. (4.8)

Here, the subscripts o and s denote quantities evaluated at the observer and the
source position, respectively. The velocity appears without a subscript since the observer
velocity is set to zero: our focus is on the dipole that arises around the source. Individual
contributions to the total redshift are as follows:

• z0 corresponds to the cosmological redshift arising from the scale factor;

• z1 accounts for the gravitational potential;

• z2 incorporates the relativistic Doppler shift due to the line-of-sight peculiar
velocity;

• z3 introduces the transverse Doppler effect, which is relevant solely on small scales;

• z4 includes the ISW contribution.

The last term, z5, is directly inferred from GR. However, in practice, it is almost
indistinguishable from z4.

4.2 CosmoBolognaLib

The CosmoBolognaLib (CBL) has formed the backbone of this thesis. These are
free software C++ libraries, specifically designed in the context of LSS cosmological
computations, a field in which numerical and computational techniques have become not
merely advantageous, but utterly indispensable, the “deus ex machina” of contemporary
cosmology. The libraries offer a versatile and robust framework for managing both
observational and simulated extragalactic catalogues, as well as for constructing the
corresponding random catalogues. This infrastructure enables the computation of 1-,
2-, and 3-point statistical estimators in configuration space, thereby facilitating the
derivation of constraints on cosmological parameters and offering a rigorous testbed for
cosmological models (Marulli et al., 2016). A hallmark feature of the CBL is its bespoke
parallel chain-mesh algorithm, purpose-built to optimise the performance of pair and
triplet counting across large data sets. In addition, the libraries provide a comprehensive
suite of tools for quantifying statistical uncertainties and performing likelihood-based
inference. Over the years, their capabilities have been further extended to enable the
study of cosmic voids as well (Ronconi and Marulli, 2017). Entirely developed in C++,
CBL retains the flexibility to seamlessly integrate into high-level scripting environments
such as Python, thereby ensuring both performance and accessibility.
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The original contribution of this work is twofold. On the one hand, a pipeline has been
developed for computing the 2-point cross-correlation function between two catalogues,
specifically tailored for configurations involving two distinct random catalogues, and for
the extraction of all multipoles, both even and odd, up to the hexadecapole. On the
other hand, dedicated routines have been implemented to model the dipole, building
upon the theoretical frameworks discussed in the preceding chapters.

4.3 Computing resources

All the numerical analyses and simulations presented in this thesis were carried out on
two machines running the Ubuntu Linux operating system, which provided a stable
and efficient environment for scientific computing. The first machine is equipped with 4
logical CPUs (2 physical cores with simultaneous multithreading), with a base frequency
ranging from 1.2 GHz up to 2.4 GHz, and support for frequency boosting. The storage
device is a 270 GB hard disk drive (HDD). This machine has 16 GB of RAM, enabling
the handling of large data sets and memory-intensive numerical computations, such
as Monte Carlo integration and estimation of the 2PCF. Additionally, it features a
64 GB swap partition, which serves as additional virtual memory and ensures stable
performance during particularly demanding tasks. Although not a high-performance
computing platform, this hardware configuration proved sufficient for part of the work
presented in this thesis, and was primarily used for analyses involving catalogues with
fewer objects.

The second machine used for the analysis is equipped with a 500 GB solid state
drive (SSD) storage device, and a 6-core processor (with 12 logical processors via
hyperthreading) with a base frequency of 3.50 GHz and a maximum boost frequency
of 4.6 GHz, and a swap space of 128 GB. This second machine enabled the analysis of
the larger catalogues, allowing for random samples up to 5 times the size of the data
catalogue, and more than ten the size of the catalogues for smaller data sets, albeit with
very long computation times in the first case. Further improvements will be achievable
in the future through the use of supercomputers.

4.3.1 Open Multi-Processing

For pair counting, Open Multi-Processing (OpenMP) is employed. OpenMP is an
application programming interface (API) that facilitates shared-memory parallel pro-
gramming across multiple platforms in C, C++, and Fortran (Dagum, L. and Menon R.,
1998). It enables developers to parallelise existing sequential code relatively easily using
compiler directives, thereby optimising the utilisation of multi-core processors. OpenMP
manages the creation and coordination of multiple threads that execute portions of
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the code concurrently, following a fork-join model: the master thread forks a team of
worker threads to perform parallel tasks and subsequently joins them once the work
is complete. It is widely used in cosmology for estimating cross-correlation functions
(Kerscher, 2022), and is currently also employed within the CBL.

The function responsible for counting pairs of objects, such as galaxies or haloes,
operates between a primary catalogue and a second catalogue accessed via a chain-mesh
structure. This procedure is typically employed in cosmology for estimating 2PCF. The
function begins by initialising with the catalogues, a pair object to accumulate counts,
and control flags, whilst starting a timer to measure performance. It then retrieves
the number of objects in the first catalogue and obtains a reference to the second
catalogue from the chain-mesh. Subsequently, the function enters a parallel region
created with OpenMP, where the number of threads is set to the maximum available
on the system. Each thread acquires a unique identifier and instantiates a private
pair object to accumulate counts locally, thereby avoiding concurrent writes to shared
memory that could result in data corruption. Within this parallel region, a for-loop is
dynamically distributed among the threads. Each thread processes a subset of objects
from the first catalogue. For every object processed, the function identifies nearby
objects in the second catalogue by querying the chain-mesh, which efficiently restricts
the search to spatially proximate candidates. The function then iterates over these
neighbouring objects, updating the thread-local pair counts by invoking the appropriate
methods.

4.3.2 Computational time

Counting pairs is a fundamental operation in many fields, such as cosmology, where
it is often necessary to compute statistics like the 2PCF. The naïve approach to pair
counting involves comparing each object in one catalogue with every other object in the
same catalogue, or in a different one, resulting in a computational complexity that scales
as O(N1N2), where N1 and N2 denote the number of objects in the same catalogue or
in different catalogues. This scaling applies to the data–data (D1D2), data–random
(D1R2), random-data (R1D2) and random–random (R1R2) pair counts, required by
estimators such as that of Landy–Szalay (Landy and Szalay, 1993), for auto-correlations
or when cross-correlating distinct catalogues, Eq. (2.32). This quadratic scaling rapidly
becomes prohibitive for large data sets and their typically even larger associated random
catalogues, as the number of pairwise comparisons increases dramatically with sample size.
To mitigate this computational challenge, spatial indexing and partitioning techniques
are commonly employed. In particular, efficient evaluation of the 2PCF requires skipping
pairs separated by more than a chosen maximum distance rMax, since ξ(r) is nearly zero
at large scales. One widely used approach is the chain-mesh (or grid-based) method,
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which divides the spatial domain into cells of a chosen size. Each object is assigned to
a cell, and pair searches are restricted to objects in the same cell or in neighbouring
cells within a search radius of rMax. This procedure significantly reduces the number
of unnecessary distance calculations between distant pairs, whose separation is beyond
the scale of interest. The algorithm, thus, reduces the computational cost, which
becomes roughly proportional to the number of pairs with r ≤ rMax. For instance, in
the cross-correlation function, the total cost C scales with the number of galaxy pairs
as follows:

C = f(ND1ND2 +ND1NR2 +NR1ND2 +NR1NR2), (4.9)

where f is the fraction of pairs with r ≤ rMax. Since random catalogues are typically
much denser than data catalogues, the cost is usually dominated by the R1R2 term.
Defining the random-to-data ratio as

Mr =
NR1

ND1

=
NR2

ND2

, (4.10)

the cost expression simplifies to:

C = f ND1ND2(1 + 2Mr +M2
r ). (4.11)

Another factor that impacts computational performance is the cell size used in the
chain-mesh algorithm. In the implementation of the chain-mesh within the CBL, the
cell size is defined as

cell_size = f × rMax, (4.12)

where f is a dimensionless parameter typically ranges between 0.1 and 0.2. In general,
the cell size should be smaller than the minimum scale of interest rMin to ensure that all
pairs with separation greater than or equal to rMin are correctly counted. However, in
this work, the factor has been optimised and allowed to exceed the value of 0.2. This
choice is justified by the following considerations:

• Inclusion of adjacent cells: the chain-mesh algorithm searches not only within the
cell containing a given object but also within neighbouring cells. This overlapping
search mitigates the risk of missing pairs, even if the cell size is somewhat larger
than the minimum scale (Marulli et al., 2016);

• Numerical convergence tests: extensive tests have been performed by varying
the value of f and verifying that the measured 2PCF remains stable within the
statistical uncertainties. This empirical validation indicates that the increase in
cell size does not significantly bias the pair counts;
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• Computational efficiency: increasing the cell size reduces the total number of
cells and, thus, the overhead associated with neighbour searches, leading to faster
computations without significantly compromising accuracy. Although larger cells
contain more objects on average, resulting in a greater number of operations within
the innermost loops, this cost increases linearly, whereas the number of cells to be
examined decreases cubically. As a result, a reduction of approximately 25 to 35%
in the computation time of pair counting was achieved. Although this approach
proved effective for the present analysis, it is not claimed to be universally optimal,
and further testing will be required to assess its robustness in the context of CBL.

Further improvements could be in the direction of splitting random catalogues into a
number of subcatalogue of the same size as the data catalgues and excluding pairs across
different subcatalogues when computing random-random pairs. This method has been
shown to outperform the use of diluted random catalogue and could represent a further
direction to improve computational efficiency. In fact, it reduces the computation time
by a factor of more than ten for a random catalogue fifty times larger than the data
catalogues, without affecting the estimator variance, as shown by Keihänen et al. (2019).

4.4 Codes and data validation

The RayGalGroupSim catalogues have already been extensively validated by Breton
et al. (2019) and rasera2021, as have the CBL, e.g. Marulli et al. (2016, 2017a), to
name but a few. Nevertheless, as a preparatory step for the subsequent analysis, and
in order to verify the integrity of catalogues, the robustness of random samples, and
the consistency of pre-existing codes, we performed a series of preliminary tests. These
included the measurement of the 2PCF, with particular attention paid to ensuring that
the even multipole moments behaved as expected, both in real and redshift space. In
Figure 4.3, a representative subsample of the complete data set is shown, identified by
its (RA,Dec, z) coordinates.

The corresponding random catalogue was generated to match the properties of the
data catalogue, resulting in a complete overlap between the two distributions.

In Figure 4.4, the monopole of the 2PCF computed for this data set is shown
in real space. The monopole decreases with increasing scales, approaching zero on
large scales. This indicates that haloes cluster more strongly than in a homogeneous
distribution, particularly on small scales. On large scales, instead, the Universe becomes
increasingly homogeneous, which explains why the monopole tends to vanish. At around
100h−1Mpc, a distinct peak is visible in the monopole: this is the baryon acoustic peak,
the configuration-space manifestation of the baryon acoustic oscillations (BAO) observed
in Fourier space. These oscillations are relics of the recombination era and serve as
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Figure 4.3: A subsample of the catalogue (blue points) and its corresponding random
sample (red points), with each object identified by its right ascension, declination, and
redshift.

a standard ruler for precise distance measurements, thus enabling a reconstruction of
the geometry of the Universe. Furthermore, they provide valuable information on the
distribution of matter and the nature of dark energy (Eisenstein et al., 2005; Bassett
and Hlozek, 2009; Adam et al., 2025). The superimposed best-fitting model corresponds
to the matter correlation function, scaled by the square of the linear bias factor, i.e. is
given by:

ξ(r) = ξM(r) b
2. (4.13)

The halo bias was computed at a volume-averaged redshift z = 0.341, using the model
proposed by Castro et al. (2024), which has been recently implemented in the CBL.
Error estimation is described in Section 4.5.1.

This model clearly provides a poorer fit on scales smaller than around 25h−1Mpc, as
such scales start to be more strongly affected by nonlinear effects. Figure 4.5 shows the
first three even multipoles of the redshift-space 2PCF, computed for the full data set.
In the linear regime and under the distant observer approximation, the redshift-space
2PCF can be written as:

ξ(s) = ξ0(s)L0(µ) + ξ2(s)L2(µ) + ξ4(s)L4(µ), (4.14)

where µ is the cosine of the angle between the line of sight and the separation vector s
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Figure 4.4: Real space monopole of the 2PCF, computed considering all haloes (black
circles), with errors estimated using the jackknife resampling method. The fitting model
is shown as a black solid line. The lower panel displays the residuals calculated as the
difference between data and model, normalised by the error. The yellow and grey bands
represent the 1σ and 2σ confidence intervals, respectively.

and Ll are the Legendre polynomials. The multipoles are given by:

ξ0(s) =

(
1 +

2

3
β +

1

5
β2

)
ξ(r), (4.15)

ξ2(s) =

(
4

3
β +

4

7
β2

)[
ξ(r)− ξ(r)

]
, (4.16)

ξ2(s) =
8

35
β2

[
ξ(r) +

5

2
ξ(r)− 7

2
ξ(r)

]
, (4.17)

where β = f/b is the linear RSD parameter. The function ξ(r) is the linear real-space
correlation function (computed for tracers), and the barred functions are defined as:

ξ(r) =
3

r3

∫
dr′ξ(r′)r′2, (4.18)

ξ(r) =
5

r5

∫
dr′ξ(r′)r′4. (4.19)

To account for nonlinear effects and small-scale motions (the so-called Fingers of
God), an empirical approach known as the dispersion model is commonly adopted
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Figure 4.5: Monopole (green circles), quadrupole (red triangles) and hexadecapole (blue
diamonds) of the 2PCF in redshift space, computed considering all haloes. Errors
are estimated with the jackknife resampling method. Each multipole is fitted with the
dispersion model (green solid line for the monopole, red dashed line for the quadrupole and
blue dotted line for the hexadecapole). The lower panel displays the residuals calculated
as the difference between data and model, normalised by the error. The yellow and grey
bands represent the 1σ and 2σ confidence intervals, respectively.

(Peebles, 1980; Peacock and Dodds, 1996). This model has been widely used in the
literature to describe RSD, especially in the quasilinear regime (Marulli et al., 2012,
2017b; Nadathur and Percival, 2019). It appears to perform well also in the cases
considered here (Figure 4.4 and Figure 4.6).

Nevertheless, several more refined models have been developed to improve the agree-
ment with observations, particularly on intermediate and nonlinear scales. Notable
examples include the streaming model with scale-dependent velocity dispersion (Scoc-
cimarro, 2004) and the TNS model, which incorporate higher-order corrections from
perturbation theory (Taruya et al., 2010).

Once we verified everything was correct, we proceeded with the 2-point cross-
correlation function. For this purpose, the catalogue was partitioned into six logarithmic
mass bins, as detailed in Table 4.1. We recall that a halo is defined as a structure
containing at least 100 particles, each of mass 1.88× 1010 h−1M⊙.

Three further examples of the monopole for the 2PCF in redshift-space are displayed
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Figure 4.6: Redshift space monopole for the 2PCF of three different data sets: H800, H1600

and H3200 (from top to bottom panel). Each panel below the plots shows the residuals,
calculated as the difference between data and model, normalised by the error. The yellow
and grey bands represent the 1σ and 2σ confidence intervals, respectively.
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Name N haloes n particles per halo M (M⊙h
−1) bias

H100 5.5× 106 100− 200 1.88× 1012 − 3.76× 1012 1.12

H200 3.4× 106 200− 400 3.76× 1012 − 7.52× 1012 1.25

H400 1.9× 106 400− 800 7.52× 1012 − 1.50× 1013 1.45

H800 1.0× 106 800− 1600 1.504× 1013 − 3.008× 1013 1.71

H1600 4.0× 105 1600− 3200 3.008× 1013 − 6.016× 1013 2.09

H3200 2.0× 105 3200− 6400 6.016× 1013 − 1.203× 1014 2.63

Table 4.1: Sub-sample characteristics: name, number of haloes, number of particles per
halo, range of masses in each sub catalogue and bias.

in Figure 4.6. By comparing them with the monopole computed in real space (Figure 4.4),
we observe that the redshift space monopole exhibits a broader and flatter shape, as also
noted by previous studies, and tends to remain approximately 10–20% higher than its
real space counterpart (Valageas and Clerc, 2012). These not only served to validate the
codes and models employed, but also provided the basis for a subsequent a-posteriori
analysis using MCMC fitting, which will be presented and discussed below.

4.5 The 2-point cross-correlation function

As introduced in the beginning of this section, part of this work involved develop-
ing a code for the subsequent analysis of simulated data from the RayGalGroup-
Sims. Firstly, it was necessary to extend the existing code for computing the cross-
correlation function to allow its use with two distinct random catalogues. This was
implemented within the class cbl::measure::twopt::TwoPointCorrelationCross,
employing the Landy–Szalay estimator, Eq. (2.32). Subsequently, a dedicated class,
cbl::measure::twopt::TwoPointCorrelationCross_multipoles, was created to en-
able the extraction of multipoles, including odd multipoles. After constructing the
catalogues in (RA,Dec, z) and generating the corresponding random catalogues (one for
each data catalogue), and after instantiating the object responsible for measuring the
multipoles of the cross-correlation, the method measure allows selection between two
different uncertainty estimation techniques, Poisson and jackknife, with provisions for
future implementation of the bootstrap method. These methods will be described in
detail in the next section. If the position of each object of a pair is given by x1 and
x2 we choose x = (x1 + x2)/2, r = x2 − x1 and µ = x̂ · r̂, where a hat denotes a unit
vector. The angle defined this way is symmetric under exchange of pairs (Gaztanaga
et al., 2017). The pair counts in each radial and angular bin are stored and subsequently
used to compute the multipoles via Eqs. (2.35) to (2.39).
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Figure 4.7: Monopole of the 2-point cross-correlation function between H3200 and H1600

in real space. The model is represented by a black solid line. Errors were estimated with
the jackknife resampling method. Lower panels display the residuals calculated as the
difference between data and model, normalized by the error. The yellow and grey bands
represent the 1σ and 2σ confidence intervals, respectively.

In Figures 4.7 and 4.8, as in the case of the 2PCF, we show examples of the monopole
in real space and of the even multipoles in redshift space, for representative cases of cross-
correlations between two distinct catalogues. The agreement between the measurements
and theoretical predictions for the even multipoles is generally good, particularly at
intermediate scales. However, at small scales the discrepancy becomes significant, as
the analysis enters the quasi-linear regime, where more refined models and appropriate
corrections are required. On large scales, the monopole also appears to remain higher
than in the corresponding 2PCF shown in Figure 4.4, indicating that the more massive
tracer population contributes to an enhanced clustering signal on large scales.
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Figure 4.8: Monopole (green circles), quadrupole (red triangles) and hexadecapole (blue
diamonds) of the 2-point cross-correlation function between H3200 and H1600 in redshift
space. Each multipole is fitted with a dispersion model (green solid line for the monopole,
red dashed line for the quadrupole and blue dotted line for the hexadecapole). Errors
were estimated with the jackknife resampling method. Lower panels display the residuals
calculated as the difference between data and model, normalized by the error. The yellow
and grey bands represent the 1σ and 2σ confidence intervals, respectively.

4.5.1 Evaluation of measurement uncertainties

In the CBL framework, there are three standard approaches for estimating statistical
uncertainties associated with 2-point clustering measurements, particularly in the context
of the galaxy auto-correlation function. These methods are:

• Poisson errors;

• The jackknife resampling technique;

• The bootstrap method.

The Poisson error is the most straightforward statistical estimate that one can adopt
when dealing with discrete counting processes. If we register a number of counts N , the
variance is simply given by:

σ2(N) = ⟨(N −N)2⟩ = N. (4.20)
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The standard deviations associated with the data-data (DD) and random-random
(RR) pair counts are typically taken to be

√
DD and

√
RR, respectively. However,

Poisson statistics provide a reasonable approximation to the uncertainty only under the
assumption that the events (or galaxy pairs) are independent and uncorrelated. In fact,
this assumption breaks down in more realistic cosmological scenarios, particularly when
correlated structures and systematic effects come into play. Sample variance constitutes
a major source of non-Poissonian uncertainty, reflecting the intrinsic limitation inherent
to any observation of large-scale density fluctuations, as we are confined to observing
only a finite region of the Universe. This effect is particularly relevant in the context of
deep surveys (Moster et al., 2011) and highly clustered tracers (Somerville et al., 2004),
which, despite probing large comoving volumes in redshift space, typically span only a
limited area of the sky. As a result, the variance among different realisations, driven
by the underlying LSS, can be substantial, and is not captured by simple Poisson error
estimates. For this reason, this type of error has not been adopted in this work, despite
having been implemented for 2-point cross-correlation measurements.

Figure 4.9: Comparison between different error estimates for the monopole of the 2PCF.
Left panel: 2PCF of H800, with the random catalogue containing 3 times more objects than
the data catalogue. Right panel: 2PCF of H3200, with the random catalogue containing 10
times more objects than the data catalogue. Black circles and green diamonds represent
the jackknife estimates with 16 and 64 subregions, respectively. Blue squares show
errors estimated using the bootstrap resampling method with 100 mocks. Purple triangles
correspond to Poisson errors.

Both the jackknife and bootstrap methods are based on resampling techniques.
In the jackknife approach, the data set is divided into N subvolumes. Consider the
cross-correlation function between two catalogues, i and j. For each of these, the 2-point
statistic, specifically the cross-correlation function ξij, is measured by systematically
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excluding one subvolume at a time. At a given redshift z, the covariance matrix is
defined as:

CovJKij =
N − 1

N

N∑
n=1

[
ξnij(z, ri)− ξij(z, ri)

] [
ξnij(z, rj)− ξij(z, rj)

]
, (4.21)

where, in case the dipole moment is considered, ξij is replaced by ξ1, as defined in
Eq. (2.36). This error estimation method has been validated on scales greater than
25h−1Mpc for 2-point clustering statistics; however, it is not well suited for the highly
nonlinear regime, for which a Monte Carlo approach would be more appropriate (Norberg
et al., 2009).

In contrast to the jackknife, the bootstrap method generates a large number of
synthetic samples by randomly selecting subvolumes with replacement. The target
statistic is recalculated for each realisation, thereby constructing an empirical distribution
from which uncertainties can be estimated. Although the bootstrap appears particularly
well-suited to nonlinear regimes, where it can capture non-Gaussian features, it has
been shown that it tends to systematically overestimate uncertainties across all scales
(Arnalte-Mur and Norberg, 2014). For what concerns our analyses, Figure 4.9 shows
that, while the Poisson error tends to be lower than the others, especially on large scales,
there are no significant differences between the jackknife and bootstrap methods. For
this reason, the jackknife resampling technique was adopted and implemented in the
present analysis of the 2PCF dipole, also because it is less computationally burdensome.

4.6 Modelling the dipole in the CosmoBolognaLib

As anticipated, the second part of this work required the implementation of the functions
necessary to model the dipole on linear scales. This phase involved the development of a
dedicated routine for setting the required parameters of the models. In order to compute
these models, some preexisting functions had to be adapted to allow the evaluation of
the integrals involved in the Eqs. (3.66) and (3.67). Additionally, specific routines were
implemented for computing the necessary derivatives, namely, the derivatives of the
linear growth rate f and the Hubble parameter H with respect to conformal time, as
well as the derivatives of the bias parameters of the two populations and of the linear
growth rate f with respect to comoving distance. With the aim of ensuring the highest
possible generality, each contribution to the model is kept separable.

In the previous chapter, we analysed each of these terms (and their internal contri-
butions) from a theoretical perspective, providing the rationale for why they cannot be
neglected in dipole analyses. We also presented the equations of the models used to
describe the dipole on linear scales.
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Here we provide only a brief summary, intended to reframe the subsequent discussion
on the various terms entering the models. In what follows, we neglect magnification bias,
since we are working with a simulation of dark matter haloes. Moreover, in many practical
applications, evolution bias is also often neglected because its contribution, entering
primarily through relativistic Doppler terms, is typically subdominant on the scales
of interest. This is especially true for galaxy samples whose comoving number density
evolves slowly with redshift. Additionally, given the modelling uncertainties associated
with galaxy evolution, omitting this term avoids introducing further systematic errors.
Nevertheless, the general formalism has been introduced to provide a comprehensive
framework, since this dark matter simulation (as well as other simulations) may be
populated with galaxies in the future, and to preserve completeness as much as possible
with a view to future surveys such as DESI or Euclid.

Beyond standard RSD contributions, certain additional terms, of geometric or
relativistic origin, must be taken into account, as they induce an antisymmetry in the
cross-correlation function, which in turn gives rise to a dipole moment. Modelling these
contributions individually is not merely an academic exercise; rather, it is a preparatory
step for the analysis of current and future surveys, which are expected to achieve the
precision and accuracy, along with the large volume, required to disentangle and model
the different effects.

In particular, among the relativistic contributions, in addition to the relativistic
Doppler effect and the gravitational potential, one must account for gravitational lensing,
the ISW effect, Shapiro time delay, and acceleration effects. Furthermore, some purely
geometric contributions, such as the wide-angle effect and the light-cone effect, also play
a role in shaping the dipole signal, alongside evolutionary effects.

4.6.1 Wide angle

Wide-angle corrections arise from the need to include additional terms beyond standard
RSD for more accurate predictions, when relaxing the distant-observer approximation.
This means that if the lines of sight to the two galaxies in a pair cannot be approximated
as parallel and introduces an antisymmetric contribution to the 2-point cross-correlation,
generating a dipole signal. The exact form depends on how the angle between galaxy
pairs and the observer’s line of sight is defined. Two common definitions exist: one treats
the galaxies symmetrically, while the other centers on one galaxy, tipically the brighter
(or the most massive one), to better captures relativistic effects like gravitational redshift
(Gaztanaga et al., 2017). At leading order, the dipole signal is independent of the
angle choice; differences only appear at higher orders and are negligible on the scales
considered.
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Dam and Bonvin (2025) demonstrated that wide-angle corrections to the even
multipoles, compared to the distant-observer approximation, become significant at large
separations, and that the monopole requires greater care than the quadrupole when
modeling wide-angle effects. This is because the quadrupole is dominated by pairs more
aligned with the line of sight, where wide-angle effects are smaller.

Regarding the wide-angle contribution to the dipole, Figure 4.10 presents the iso-
lated wide-angle effect’s contribution and explores how its shape varies with different
cosmological and model parameters, namely the redshift z and the growth rate f . If the
first population of galaxies is brighter than the second, the wide-angle effect induces a
negative dipole contribution, typically of the order of 10−4. This contribution increases
in magnitude for larger values of ∆b = b1 − b2, that is, for populations with more
pronounced differences in luminosity or mass.

Figure 4.10: Wide-angle contribution to the dipole across different parameter regimes.
Left panel: the biases of both populations and the redshift are kept constant; here, the
variation lies solely in the linear growth rate. The value of f corresponding to ΛCDM

in this plot can be roughly represented by the curve at 0.7. Bottom panel: the model is
shown for different values of redshift, with the galaxy biases fixed throughout. In this
context, changes in redshift are inherently accompanied by changes in the growth rate, as
predicted by the ΛCDM model.

The growth rate f explicitly enters the expression for the contribution of the wide-
angle to the dipole. As f increases at fixed redshift, so does the amplitude of the wide-
angle term, in step with the faster growth of density perturbations and, consequently, of
cosmic structures. In the context of modified gravity theories, deviations from GR can
alter the growth rate f . Such modifications affect the peculiar velocities and clustering
dynamics of galaxies, which in turn impact the wide-angle corrections to the dipole
signal. Therefore, the amplitude and scale dependence of the wide-angle term in the
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dipole could serve as sensitive probes to distinguish between different gravitational
models. Unlike some other contributions to the dipole, where the BAO feature can be
diminished or even absent, the geometric nature of the wide-angle term preserves the
BAO peaks. This characteristic renders the wide-angle effect particularly significant
when analysing the dipole at scales close to the BAO scale, even though a purely linear
treatment may be insufficient in this regime Castorina and White (2018).

As for the redshift dependence, we observe that the wide-angle contribution is most
prominent at low redshift, while at around z ∼ 0.3 it remains at the level of a few parts
in 10−4, confirming its subtle yet non-negligible impact in that regime. This should
come as no surprise, since the comoving distance increases with redshift, while the angle
between the line of sight and the galaxy pair separation vector narrows. As a result, the
wide-angle contribution becomes progressively suppressed at higher redshift, effectively
placing us back on firm ground within the distant-observer approximation.

The wide-angle effect is on the order of 10−4 across all scales considered at the
average redshift of the simulations used in this thesis (z ∼ 0.34). However, if one wishes
to investigate quasi-linear or nonlinear regimes, especially at low redshift and within
modified gravity contexts that require higher values of the linear growth rate f , one
should expect the wide-angle contribution to be not negligible, up to the order of 10−2.

4.6.2 Light cone and evolution term

When quantitatively analysing clustering of high-redshift objects, properly accounting
for light-cone effects is essential. Cosmological observations, in fact, are not made on a
surface of constant time, but rather along the observer’s past light cone, and all events
are observed via light signals, which propagates through a perturbed spacetime. This
introduces a subtle correction to the observed number density of objects (Bonvin et al.,
2014).

While estimating the distance between two galaxies, we are, in fact, reconstructing
the spatial gap between two events whose light reaches the observer at the same instant.
Since the galaxies are positioned at different depths along the line of sight, the light from
each must have originated at a different time in the past. If the galaxies are moving
with respect to the observer, their locations change between those two emission times.
This temporal mismatch leads to a subtle modification in the inferred separation.

Moreover, since sources evolve over time (and this produces, for examples, changes in
bias), this evolution contaminates observed data, although such effects are subdominant
at linear scales.

In Figure 4.11, we show the contribution of the light-cone term and the ξevo1 term
to the dipole. The evolution term arises from the explicit redshift dependence of the
galaxy bias and the growth rate. This term contributes at the level of 10−5 to the dipole
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signal, and becomes increasingly relevant at higher redshift, where the time derivatives
of cosmological functions are larger and evolution effects are more pronounced.

Figure 4.11: Contribution terms to the dipole from the light-cone effect (top panels) and
from the evolution term ξevo1 (bottom panels) with varying ∆b = b1 − b2 (left) and z

(right) in the ΛCDM model.

The contributions arising from the light cone are of the order of 10−5 at large scales,
for all values of ∆b and z considered. On smaller scales, however, these effects become
more prominent and require greater attention, especially since at these scales they
appear to be of the same order of magnitude as the contribution from the gravitational
potential, as we shall see shortly.

Figure 4.12 illustrates the contribution to the dipole induced by light-cone effects,
for different values of the growth rate f , while keeping all other cosmological and bias
parameters fixed. The amplitude of the dipole increases with f , which is physically
expected: a higher growth rate implies a faster evolution of density perturbations and
therefore larger peculiar velocities. These velocities, projected along the line of sight,
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contribute to distortions in redshift space that are asymmetric under the exchange of
galaxy positions, thereby inducing a net dipole signal.

Figure 4.12: Contribution to the dipole from the light-cone term with varying linear
growth rate. The value of f predicted by ΛCDM is approximately represented by the
curve at 0.7.

Modified gravity models often predict deviations from the standard ΛCDM growth
history, typically modifying the growth rate f , and, thus the growth of cosmic structures,
especially at low redshift (Brax et al., 2010). This increase leads to stronger peculiar
velocities and hence a more pronounced dipole contribution from the light-cone term.
As a result, the dipole signal becomes a sensitive probe of deviations from GR, making
accurate modelling of these subleading contributions, essential for robust constraints.

4.6.3 Lensing

Gravitational lensing occurs when light from distant sources is deflected by gravitational
potentials encountered along its path, resulting in a discrepancy between the observed
angular position and the source’s true location. This phenomenon alters the apparent
distribution of background galaxies and becomes particularly relevant in cross-correlation
analyses involving two galaxy populations at different redshifts, typically a foreground
population and a background (lensed) one. The mass distribution of the foreground
galaxies magnifies or demagnifies the background population, inducing a modulation in
the observed galaxy number counts.

Here lies the physical origin of the dipole signal: foreground galaxies act as lenses
that alter the photon paths of more distant sources, enhancing the apparent number of
galaxies behind the lens due to magnification, while leaving the foreground unaltered.
This leads to an antisymmetric contribution to the correlation function. The amplitude
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of this contribution depends on the difference in galaxy bias between the two populations
and on the projected matter power spectrum.

Although generally subdominant when compared to other contributions to the dipole,
the lensing effect must be accounted for in high-precision measurements, particularly at
high redshifts.

In Figure 4.13, the lensing contribution to the dipole is illustrated for various values
of the bias of the background (fainter) population and across different redshifts. The
amplitude of the effect increases with the bias difference, but remains nearly scale-
independent, exhibiting similar behaviour across a wide range of separations. Conversely,
the redshift dependence shows a marked suppression of the lensing contribution at higher
redshifts, while, for redshifts below z ∼ 0.1, the curves become almost indistinguishable.

At low redshifts gravitational potentials are deeper, due to the more evolved structure
formation, which enhances the deflection angle of photons. As a result, the lensing
contribution to the dipole can become non-negligible at low redshift.

Figure 4.13: Contribution to the dipole from the lensing effect. The different lines are
computed for different values of the bias of the fainter population (left panel) and of the
redshift (right panel).

4.6.4 Acceleration of objects

Another effect which contributes to the origin of a dipole signal derives from the
variation in velocity of the observed objects along the line of sight. This includes bulk
acceleration of galaxies, but also local effects, which may dominate this term for z ≲ 0.1.

In Figure 4.14, the dipole term is shown for different values of the bias of the fainter
population, redshift, and linear growth rate. It is interesting to note that, in the upper-
right panel, the dipole changes sign at around redshift z ∼ 0.1. This sign inversion may
originate from local effects dominating over the bulk acceleration of galaxies. In the
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lower panel, a similar behaviour is observed for values of f < 0.7, that is, when the
growth of structure is slower and local acceleration terms may dominate over global
contributions associated with the LSS growth.

Figure 4.14: Contribution to the dipole from the acceleration term, shown for various
values of the bias of the fainter population (top left panel), redshift (top right panel),
and linear growth rate (bottom panel). The ΛCDM expectation for f is roughly indicated
by the curve at 0.7.

This term could become extremely important in the context of modified gravity, as
an increase in the linear growth rate f causes it to grow rapidly and become comparable
in magnitude to other contributions, such as the gravitational potential, which we shall
now discuss. However, this is particularly true on small scales, where nonlinear effects
are known to play a role (Breton et al., 2019; Dam and Bonvin, 2025). For this reason,
with upcoming high-precision observations, it may become promising to attempt to
isolate this contribution.
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4.6.5 Relativistic Doppler

Figure 4.15: Top panels: contribution to the dipole from the relativistic Doppler term
as a function of varying ∆b (top) and linear growth rate f (bottom), where the ΛCDM
prediction for f is approximately traced by the curve at 0.7. Bottom panel: Contribution
to the dipole from the term associated solely with the accelerated expansion of the
Universe.

A key relativistic effect is the relativistic Doppler contribution, which also affects
fluctuations in number density, and observed redshift. The major contribution comes
from the the line of sight velocity divergence effect, meaning that volumes moving
towards the observer appear denser, while those moving away appear less dense. This
geometric effect becomes the dominant contributor to the dipole signal on large scales.
Though geometric in origin, the relativistic Doppler effect naturally fits within the
relativistic treatment of redshift distortions in a perturbed spacetime and is thus part
of the full relativistic corrections to galaxy number counts. The complete relativistic
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Doppler effect on the dipole is shown in the top panels of Figure 4.15. The dipole
contribution increases with the bias difference between the two populations and with the
linear growth rate, as a larger growth rate amplifies the peculiar velocity field. With a
keen eye, one can also discern a faint signal from the BAO at around 100h−1Mpc. The
contribution to the dipole from the Universe accelerated expansion, with its dependence
on redshift, is shown in the left bottom panel of Figure 4.15. As we approach the present
epoch, this contribution becomes more pronounced; nevertheless, it remains clearly
subdominant compared to the full relativistic Doppler signal, smaller by one to two
orders of magnitude. Quantitatively, the main relativistic Doppler term is on the order
of 10−3, while the contribution related to the accelerated expansion of the Universe is
around 10−4 − 10−5. As we will see later from the analysis of the dipole in the simulated
data, the relativistic Doppler term largely dominates the dipole contribution across all
the scales considered, except for scales approaching the nonlinear regime.

4.6.6 Gravitational potential

Gravitational redshift effects also contribute significantly to the dipole, although it is a
subdominant contribution at large scales with respect to the relativistic Doppler term,
as we will see in the following. As photons climb out of gravitational potential wells,
they lose energy and experience redshift. Different populations, varying in mass or
luminosity, undergo differing amounts of gravitational redshift, breaking the isotropy
of the observed galaxy distribution. While standard RSD symmetrically affect galaxy
positions along the line of sight, gravitational redshift introduces an asymmetry: the
central, more massive galaxy experiences a larger redshift than its companions, causing
a front-back asymmetry in their relative positions (Bonvin et al., 2014). This results in
a cross-correlation function with both symmetric and antisymmetric components (and
thus a dipole signal).

In Figure 4.16 (top panels) the total contribution from the potential term ξpot,1+ξpot,2

is shown. The overall contribution is of the order of 10−4 for a wide range of ∆b = b1−b2
and of redshifts. The bottom panel shows the contribution from the second-order terms-
only. A comparison with the previously described figures clearly shows how subdominant
this term is, relative to the total contribution from gravitational redshift.

From the top-left plot, we can observe the behaviour of the dipole term arising from
the gravitational potential as redshift varies. At leading order, this term depends on
the matter density parameter Ωm(z), and its behaviour therefore mirrors that of this
parameter. This explains at leading order why these curves are expected to lie at lower
values.

However, at low redshift, the contribution of the potential to the dipole signal is
not solely controlled by Ωm(z). An additional correction appears in the full expression,
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involving the conformal Hubble parameter H, the speed of light c and an inverse
dependence on the comoving distance χ. At low z, χ is small and this term becomes
very large, leading to a negative contribution in the dipole signal, Eq. (3.60)).

Figure 4.16: Gravitational redshift contribution to the dipole for different values of bias
of the fainter population (top left panel) and redshifts (top right panel). Bottom panel:
gravitational redshift contribution to the dipole from the leading-only terms in (H/k)2

for a broad range of the linear growth rate. The ΛCDM value of f is roughly illustrated
by the curve at 0.7 in this plot.

We can also observe a number of interesting features: the contribution from the
gravitational potential is smaller than that of the relativistic Doppler term, yet it is
entirely comparable to several other contributions, such as the light cone and wide-angle
effects. Naturally, our treatment is accurate on large, linear scales, while it breaks down
in the nonlinear regime. Nevertheless, a preliminary analysis makes it clear that, if one
aims to isolate the gravitational potential contribution, the effects of the light-cone and
wide-angle terms cannot be neglected. Therefore, this needs to be properly modelled
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and compared in a thorough analysis across all scales, as also confirmed by the recent
study of Dam and Bonvin (2025).

4.6.7 Shapiro time-delay

Figure 4.17: Contribution to the dipole from the Shapiro time delay.

The Shapiro time delay is a relativistic effect caused by gravitational potential wells of
massive structures, which cause delaying in photon propagation compared to unperturbed
flat spacetime. Unlike local gravitational redshift, it is an integrated effect accumulated
along the line of sight. This delay perturbs observed galaxy number counts, contributing
a subtle, but non-zero, relativistic correction. When cross-correlating different galaxy
populations, the Shapiro delay introduces an antisymmetric distortion along the line of
sight, generating a dipole in the 2-point cross-correlation function.

In Figure 4.17 the contribution to the dipole from the Shapiro time delay is illustrated,
for different values of ∆b = b1 − b2 and redshift.

Specifically, in the top-left plot we observe the behaviour of the dipole, arising from
the time delay effect, for increasing values of bias difference between the two populations.
The contribution tends to increase with the bias difference. A similar behaviour is
evident in the plot on the right. Higher redshift values correspond to a stronger dipole
signal from the time delay effect (which is little wonder, given that this is an integrated
effect accumulating along the photons’ path). The contribution from the Shapiro time
delay becomes progressively less significant at larger scales, albeit with only a slight
decreasing trend in magnitude. This is due to the fact that variations in the gravitational
potential are less pronounced on large scales, as the Universe tends to be homogeneous
and isotropic, and, as a result, the time delay effect is less prominent at these scales.
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In summary, although the Shapiro time delay is highly subdominant compared to
other relativistic contributions such as relativistic Doppler or gravitational redshift,
it plays a crucial role in breaking the symmetry of the correlation function when
cross-correlating distinct tracers of LSS. Its contribution is most significant on large
radial separations and can be probed via the dipole of the cross-correlation, offering
an additional relativistic signature to test GR on cosmological scales. Although this
contribution has been implemented in the CBL and its behaviour analysed, it has not
been taken into account in the analysed simulation, and we will also neglect it from now
on.

4.6.8 Integrated Sachs-Wolfe

Figure 4.18: Contribution to the dipole from the ISW effect. Bottom panel: the ΛCDM
prediction is for approximately f ≃ 0.7.

The ISW effect arises from time-dependent variations in the gravitational potential expe-
rienced by photons along their path. In a matter-dominated Universe, the gravitational
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potential remains nearly constant over time at large scales, leading to a negligible ISW
effect. However, when a component such as a cosmological constant or dark energy
drives an accelerated expansion, the gravitational potentials evolve with time, giving
rise to a non-zero ISW signal. Thus, the detection of a significant ISW effect provides
indirect evidence for the presence of dark energy. Moreover the ISW leave an imprint in
the dipole of the cross-correlation function.

The ISW effect on the dipole contributes a signal that decreases at larger scales, is
proportional to the bias difference between the populations considered, being stronger
for larger ∆b, and diminishes as redshift increases, given the nature of an integrated
effect.

In particular, the lower panel shows that for values of f > 1, the contribution is
opposite in sign to that for values within the range 0 < f < 1. Linear growth rates
exceeding unity make density perturbations to grow faster than the cosmic expansion
rate, implying an increase in the gravitational potential over time. This leads to photons
losing energy, resulting in negative fluctuations in the observed number counts. However,
such high values are incompatible with the standard ΛCDM model and instead would
necessitate alternative scenarios that involve modified gravity.

4.6.9 Closing remarks

r > 20h−1Mpc z ∼ 0.3

z ≲ 0.1 0.1 < z < 1 r ≲ 50h−1Mpc r > 50h−1Mpc

ξwa ≲ 10−2 ≳ 10−2 10−3/10−4 ≲ 10−4

ξLC ≲ 10−4 ≲ 10−4 ∼ 10−4 ≲ 10−4

ξevo ∼ 10−6 ∼ 10−5 ∼ 10−5 ∼ 10−5

ξlens ∼ 10−5 ∼ 10−5/10−6 ∼ 10−5 ∼ 10−5

ξRel,Doppler 10−5/10−4 ∼ 10−5 ∼ 10−3 ∼ 10−4

ξacc ≲ 10−5 ≲ 10−5 ∼ 10−5 < 10−5

ξpot ≲ 10−4 ≲ 10−4 ∼ 10−4 < 10−4

ξShapiro ∼ 10−6 ∼ 10−6 ∼ 10−6 ∼ 10−6

ξISW ∼ 10−6 ∼ 10−7 ≲ 10−6 ∼ 10−7

Table 4.2: Summary of all the dipole contributions.

In Table 4.2, a summary of all contributions to the dipole is shown, indicating the
order of magnitude of individual terms, to clearly visualise which effect dominates on
which scale, for redshifts up to unity and linear scales from 20 to 140h−1Mpc. We
choose z ∼ 0.3 as a representative value, as it is the mean redshift value of the haloes
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considered in this thesis. As can be seen at this redshift, the dominant relativistic
contribution to the dipole arises from the relativistic Doppler term, while at larger
scales the contributions from the relativistic Doppler effect and gravitational redshift
are comparable.

ξDoppler ξpot ξWA ξISW ξlens ξLC ξevo1 ξevo2

(β, z0) × ×
(θ, z0) ×
(β, z1) ×
(β, z2) × × ×
(β, z3)

(β, z4) ×
(θ, z5) × × × × × ×

Table 4.3: Terms to be considered when modelling the dipole for different angle and
redshift combinations.

All these contributions are summarised in Table 4.3. A cross means that the terms
should be added when predicting the dipole for different combinations of angles and
specific redshifts of the simulation, each including different contributions.

4.7 Dipole extraction and analysis

We have already described in detail how the RayGalGroupSims simulations are con-
structed. However, it is essential to provide some additional cosmological information
to fully contextualise the data. This supplementary information allows for a clearer
understanding of the underlying assumptions and parameters that shape the simulations,
ensuring the robustness of the analysis. The simulation consists of 13 million dark
matter haloes (Breton, 2018), with the full-sky version of the simulation set covering a
redshift range of [0, 0.5]. This set of simulations employ CAMB to compute the initial
matter power spectrum, assuming a ΛCDM cosmology with the following parameters:

h = 0.72,

Ωm = 0.25733,

Ωb = 0.04356,

Ωr = 8.076× 10−5,

ns = 0.963,

σ8 = 0.801,
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where Ωm, Ωb and Ωr represent the matter, baryon and radiation density parameters,
respectively, ns is the slope of primordial power spectrum and σ8 is a parameter used
to normalise the amplitude of fluctuation density, referred to a scale of 8h−1Mpc. The
initial conditions were generated using second-order Lagrangian perturbation theory
(2LPT), starting from a redshift of z ∼ 50.

The subdivision into sub-samples, considered in this work, is reported in Table 4.1.
Each catalogue was constructed using halo observed coordinates, (RA, Dec), derived
from the two angular coordinates provided by the simulation (the azimuthal angle and
the colatitude), and the redshift, directly extracted from the simulation data.

The corresponding random catalogues were generated on the same light cones,
preserving the same angular and redshift distribution (RA, Dec, z) as the data catalogues.
To preserve the clustering information along the line of sight, the redshift distribution is
smoothed by dividing it into 10 redshift bins. The selected redshift interval, ranging
from 0.05 to 0.465, ensures an accurate angular reconstruction by excluding sources too
close to the observer and avoids edge-related artefacts near the boundaries of the light
cone.

The selected haloes span a mass range between 1.88 × 1012 h−1M⊙ and 2.2 ×
1014 h−1M⊙. The total number of haloes considered is approximately 1.2× 107, corre-
sponding to a mean number density of 5.4× 10−4 Mpc−3.

Each catalogue, labelled as HN , includes dark matter haloes composed of a number of
particles between N and 2N . The mass resolution of the simulation is 1.88×1010 h−1M⊙.
The radial separation range was divided into 12 bins spanning from 20 to 140h−1Mpc.
This interval was chosen to focus on intermediate to large scales: these scales are of
primary interest for investigating the linear dipole signal, while still allowing for a
broader perspective that includes the transition to the quasi-linear regime at scales
below 30h−1Mpc. This choice provides an opportunity to assess to what extent the
theoretical models remain valid or begin to break down. Scales below 20h−1Mpc are
strongly affected by nonlinear effects and shot noise, while scales beyond 140h−1Mpc

are typically limited by sample variance. A bin width of approximately 10h−1Mpc

represents a good compromise between resolution and statistical robustness, ensuring
that the contribution to the dipole signal is adequately sampled, without introducing
excessive noise.

In the angular domain, 208 bins in µ = cos(θ)1 were considered, with µ allowed
to vary between −1 and 1. This fine angular resolution is essential to capture the
anisotropies induced by RSD and to ensure a reliable extraction of the dipole signal
from the data. A large number of angular bins reduces numerical noise and improves the

1We recall that the angle θ considered here is defined by the separation vector between the two
objects and the line of sight, which is taken to be the vector pointing to the midpoint between the two
objects. This is not, however, the only possible choice (de la Torre et al., 2025).
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accuracy of the discrete summation performed in the dipole calculation. We analysed
the dipole signal arising from various cross-correlations. To do this, we implemented
within the CBL both the functions to extract the multipoles of the cross-correlation
from the data, and the functions to model the different terms contributing to the dipole,
as described in detail in Chapter 3.

Throughout the analysis, we consider the first population to be the more massive
one, such that b1 > b2. The coupling between potential and relativistic Doppler effects,
as well as the full relativistic dipole, including potential, relativistic Doppler, wide-angle,
lensing, evolution, and ISW effects, on large scales, are shown. Superimposed models are
represented by solid black lines. The dipole models were tested by evaluating their χ2

values, in order to quantify how well the theoretical predictions reproduce the observed
signal. The chi-squared statistic is widely used to assess the agreement between observed
data and a theoretical model, and it quantifies the goodness of the fit (Plackett, 1983).
The χ2, for independent data, is defined as follows:

χ2 =
N∑
i=1

(xn,i − xth,i)
2

σ2
i

, (4.22)

where xn,i is the observed value, xth,i is the theoretical value, σ2
i is the variance of the

observed value and N is the total number of data points. Here we computed the reduced
χ2
r, which corresponds to the χ2, normalised by the number of degrees of freedom. As

expected, in cases where the observational errors are large compared to the amplitude
of the signal, the reduced χ2 becomes less informative and cannot reliably discriminate
whether the model is good or necessitates to be refined. In cases where the χ2 value is
relatively high, this may point to a tension between the theoretical prediction and the
observed dipole signal. Such a result indicates that the model does not fully capture the
features present in the data, possibly due to missing contributions or approximations
made in the theoretical treatment.

4.7.1 Contributions from the relativistic Doppler and gravita-
tional potential terms

The relativistic Doppler and gravitational potential contributions to the dipole in the
cross-correlation between differently biased tracers are presented in Figure 4.19. To
facilitate comparison, the y-axis scale is kept consistent across all plots, emphasizing
the differences among the various cross-correlations. The bias values of the populations
involved are indicated in the figure, with the bias difference ∆b ranging from 0.38 to
1.51. The observed dipole signal extracted from the data exhibits a general increasing
trend with the growing bias difference between the two catalogues.
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Figure 4.19: Relativistic Doppler+potential term of the dipole of the cross-correlation
function between different data sets. Models are shown as black solid lines.
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Correspondingly, the theoretical models scale proportionally with this bias difference,
as discussed in Chapter 3.

The cross-correlations shown involve catalogues with progressively increasing differ-
ences in halo mass, and therefore in galaxy bias, and specifically include cross-correlations
between the H3200 and H1600 catalogues and the other populations. This setup allows us
to examine how the dipole depends both on the individual bias values of the tracers,
and on the bias difference between them. Significant scatter is present at small and
intermediate scales, while the signal becomes smoother and tends to approach zero
at larger scales. The curves representing the linear theory fits for these data show a
dipole behaviour that tends to increase at small scales for the chosen bias values. The
measurements from simulations are in overall agreement with the expectations, except
for minor discrepancies at small scales; this is slightly visible e.g. in the second panel on
the left from the top. Recent studies appear to confirm this latter behaviour at small
scales. This could be a real effect, or could be due to sampling issues. The dipole signal
arises from perturbations in the observed redshift that incorporate both relativistic
Doppler and gravitational potential effects. Our model is cumulative, comprising several
contributions: terms associated with the cosmic expansion, the divergence term and the
acceleration term (which are properly identified as the relativistic Doppler effect), along
with the gravitational potential term. Additionally, evolution effects and wide-angle
corrections are included, although the latter two are subdominant.

While these components originate from an interplay between relativistic Doppler shifts
and gravitational potentials, the relativistic Doppler term overwhelmingly dominates the
dipole signal, being roughly one to two orders of magnitude larger than the contribution
from gravitational potentials alone. This dominance will also be evident in later
comparisons isolating these individual effects. The radial distance scale employed
matches that previously discussed for the even multipoles. It is important to acknowledge
that the models are developed within the linear perturbation regime, where we expect a
good description of the data. Nevertheless, restricting the analysis only to large scales
would be limiting, so we also explore the dipole behaviour on small and intermediate
scales. The number of radial bins is chosen to strike a balance between achieving
sufficient statistical robustness and adequate sampling within each bin. For the cross-
correlation involving the two most massive populations (bottom right panel), the data
show significant scatter around the model prediction. Although a faint dipole signal
appears at small and intermediate scales, the high uncertainties do not allow a definitive
interpretation nor any firm conclusion about the model accuracy.

In contrast, the other cross-correlations generally exhibit a reasonable agreement
between model and data. However, as also noted by Breton et al. (2019), the small
to intermediate scales (approximately 30 to 60h−1Mpc) remain the most challenging.
This difficulty arises because nonlinear effects, which are neglected in our current linear
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framework, become relevant at these scales. These discrepancies highlight directions for
future work aimed at improving the model. With the exception of the case mentioned
above, where the number of particles in the catalogues is limited, the χ2

r values computed
for the fits are generally close to unity. This is noteworthy given that the analysis also
includes data from small scales where the model is not expected to perform well.

The signal-to-noise ratio (S/N) for all the catalogues considered lies between 3.0

and 4.1, which indicates a statistically meaningful detection of the dipole signal. Only
in one case the S/N reaches a value of approximately 8, which may point to either an
anomaly in the analysis of that specific catalogue, such as an underestimated error or
a particular configuration amplifying the signal, or to a genuinely enhanced signal in
that configuration. Further investigation will be required to clarify the origin of this
deviation.

Given the limited volume of the simulations and the relatively small number of
tracers, these values demonstrate the robustness of the estimator and the viability of
measuring the dipole with future, larger data sets.

Increasing the number of realisations and improving the modelling at intermediate
scales will help to stabilise and enhance the significance of the detection. In this context,
forthcoming wide-area spectroscopic surveys such as Euclid are expected to provide the
volume, depth, and statistical power necessary to achieve a higher S/N , allowing for a
robust detection of the relativistic contribution to the dipole.

Although the contributions show in the figure arise from a coupling between the
relativistic Doppler effect and the gravitational potential, the relativistic Doppler term
is the one to dominate, as it is one to two orders of magnitude larger than the dipole
induced by the gravitational potential, as previously discussed. We will also see it later
on by the comparison between this two isolated effects.

4.7.2 Potential-only term

A comparison between the relativistic Doppler term and the gravitational potential-only
contribution to the dipole, for three representative cross-correlation configurations, is
shown in Figure 4.20. These cases were selected as illustrative examples covering different
ranges of halo population properties.

The top panels display the dipole signal for the cross-correlation between the two most
massive halo populations, H3200 and H1600, which also have the lowest number densities.
The left-hand panel shows the relativistic Doppler contribution, while the right-hand
panel shows the isolated gravitational potential term. The potential contribution in this
configuration is extremely difficult to isolate, mainly due to poor statistics stemming
from the small sample size. S/N ratio is 3.1 and 0.29 for the relativistic Doppler-only
and potential-only contribution, respectively, and we will discuss the implications in
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Figure 4.20: Top panels: cross-correlation between H3200 and H1600. Middle panels:
cross-correlation between H3200 and H200. Bottom panels: cross-correlation between H200

and H100. Comparison between relativistic Doppler only contribution (left panels) and
potential only contribution (right panels) to the dipole.
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what follows.
The middle panels refer to the cross-correlation between H3200 and H200, which

represents a case with a large bias difference between the two tracers. Again, the
relativistic Doppler term is shown on the left and the potential term on the right. In
this configuration, uncertainties are significantly reduced, though still sizeable on small
scales. While these error bars prevent us from drawing definitive conclusions on the
gravitational potential term, the dominance of the relativistic Doppler contribution is
evident. This is especially clear when comparing both the amplitude and shape of the
isolated effects with the corresponding total signal in Figure 4.19, as well as with the
analogous plots in the top panels. In particular, the relativistic Doppler contribution
remains approximately one order of magnitude larger than the potential one on small
and intermediate scales, in agreement with the theoretical predictions. These findings
are consistent with expectations: the relativistic Doppler term is enhanced as the bias
difference increases, while the gravitational potential contribution remains subdominant
and more sensitive to noise. Here S/N settles around 3.1 for the relativistic Doppler
contribution and 0.5 for the potential contribution.

The bottom panels correspond to the cross-correlation between the two least massive
halo populations, H100 and H200, both characterised by low bias values and a small bias
difference. Unlike the previous cases, this configuration does not show a clear dominance
of either contribution across the entire range of scales, and it is confirmed also by S/N

(1.9 for the relativistic Doppler term and 1.4 for gravitational potential only). Here, the
two effects appear to be comparable within the uncertainties. Due to the significantly
higher number of objects in both catalogues (approximately an order of magnitude more
than in the massive halo samples), the error bars are smaller, enabling a more stable
estimation of the χ2

r for the potential-only fit, which is included for this case only. The
resulting values are similar to those found for the joint contribution from the relativistic
Doppler and potential terms, shown in the previous section, and are deemed acceptable,
especially considering the known limitations of linear models on small scales.

As for the S/N : for the cross-correlations involving H3200, with H1600 and H200, the
relativistic Doppler-only signal yields values around 3, as also confirmed by Lepori et al.
(2025), although with studies involving small scales. In contrast, the potential-only
case remains at or below 0.5 in both configurations. Despite the high level of noise
due to the limited number of objects, the relativistic Doppler signal remains clearly
detectable. However, no firm conclusion can be drawn regarding the gravitational
potential contribution at these scales, primarily due to the large uncertainties stemming
from the low number density in the two catalogues.

In the cross-correlation between the less massive and more numerous halo catalogues,
H100 and H200, the overall signal is substantially lower, including the relativistic Doppler
contribution, due to the small bias difference between the tracers. In this case, the S/N
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is comparable for both effects (relativistic Doppler-only: 1.9; potential-only: 1.4), which
prevents us from drawing any definitive conclusions.

Nevertheless, the analysis and comparison of these three cross-correlation configu-
rations offer broader insights and valuable indications for future studies. Firstly, the
relativistic Doppler effect emerges as dominant, particularly on large scales, which
has hindered our ability to adequately isolate the gravitational potential contribution.
Theoretical considerations suggest that future investigations should prioritise catalogue
selections with pronounced bias differences, as these enhance the dipole signal. On the
data side, it is clear that very large and highly precise surveys, both simulated and real,
will be necessary, especially to attempt the detection of the weaker dipole contributions
on large scales.

In this respect, future wide-area spectroscopic surveys, such as Euclid, will be
essential to improve statistical significance, test relativistic predictions, and potentially
isolate the gravitational potential contribution in galaxy clustering.

4.7.3 Full dipole

In Figure 4.21, the total dipole signal is presented, which includes the relativistic Doppler,
gravitational potential, ISW, lensing, evolution, wide-angle and light-cone contributions.

Comparing this with the corresponding plots including only the relativistic Doppler
and potential terms (Figure 4.19), it is clear that the total signal is largely dominated
by the relativistic Doppler effect, across all scales considered, with an amplitude of the
order of 10−3.

The S/N are as follows: 2.98 (H3200–H1600), 2.50 (H3200–H800), 3.09 (H3200–H400),
3.94 (H3200–H200), 8.09 (H3200–H100), 3.07 (H1600–H800), 1.71 (H1600–H400), and 3.05
(H1600–H200). Most measurements reach a significance level of about 3σ, as confirmed
by other studies on the dipole in the literature (Lepori et al., 2025), except for two
cases: one exhibits a very high S/N , which, as previously discussed, could either be
a genuine physical signal, a particular feature of that cross-correlation, or simply an
artefact stemming from statistical fluctuations. The other case, H1600–H400, shows a
noticeably lower value.

Regarding this latter discrepancy, the lower S/N for the H1600–H400 cross-correlation
may be attributed to several factors:

• Sample variance: given the finite size of the catalogues, statistical noise might
have been reduced the effective significance;

• Systematic effects or incomplete modelling: certain methodological systematic
errors may affect this particular cross-correlation more strongly, and this could
thus represent an indication for models to require further refinement.
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Figure 4.21: Full dipole of the cross-correlation function between different data sets.
Models are shown as black solid lines.
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As for the model: the χ2
r values deteriorate when considering the full dipole model

compared to the simpler relativistic Doppler plus gravitational potential case. This
is unsurprising, as the increased complexity from adding further relativistic terms
introduces more uncertainties in modelling, which can lead to a poorer fit to the current
data. Accurately modelling these additional effects will likely require further theoretical
refinement to be compared to potentially higher-precision data.

As observed in all previous cases, there is a general trend of increasing dipole signal
in magnitude on small and intermediate scales, as well as with increasing bias difference
between the populations, as also shown by Bonvin et al. (2014) and Alam et al. (2017a).
These trends indicate promising directions for the analysis of future data sets from
surveys such as Euclid.

Disentangling the other contributions proves challenging, since their induced dipole
signals are one to several orders of magnitude smaller than the dominant relativistic
Doppler effect. The same considerations that apply to the gravitational potential
term also hold for ISW, evolution, wide-angle, and lensing effects, all of which remain
subdominant in the total dipole signal at large scales.

Figure 4.22: Dipole of the cross-correlation function between H3200 and H200. The total
model, resulting from the sum of all contributions to the dipole, is shown as a black solid
line. The other curves represent the individual contributions: relativistic Doppler (green
dashed line), gravitational potential (blue dotted line), ISW (grey line), lensing (magenta
line), and the combined effect of light-cone and evolution terms (red line).
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Figure 4.23: Dipole of the cross-correlation function between H3200 and H400. The total
model, resulting from the sum of all contributions to the dipole, is shown as a black solid
line. The other curves represent the individual contributions: relativistic Doppler (green
dashed line), gravitational potential (blue dotted line), ISW (grey line), lensing (magenta
line), and the combined effect of light-cone and evolution terms (red line).

Figure 4.24: Dipole of the cross-correlation function between H3200 and H800. The total
model, resulting from the sum of all contributions to the dipole, is shown as a black solid
line. The other curves represent the individual contributions: relativistic Doppler (green
dashed line), gravitational potential (blue dotted line), ISW (grey line), lensing (magenta
line), and the combined effect of light-cone and evolution terms (red line).
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Figure 4.25: Dipole of the cross-correlation function between H1600 and H400. The total
model, resulting from the sum of all contributions to the dipole, is shown as a black solid
line. The other curves represent the individual contributions: relativistic Doppler (green
dashed line), gravitational potential (blue dotted line), ISW (grey line), lensing (magenta
line), and the combined effect of light-cone and evolution terms (red line).

Figure 4.26: Dipole of the cross-correlation function between H1600 and H200. The total
model, resulting from the sum of all contributions to the dipole, is shown as a black solid
line. The other curves represent the individual contributions: relativistic Doppler (green
dashed line), gravitational potential (blue dotted line), ISW (grey line), lensing (magenta
line), and the combined effect of light-cone and evolution terms (red line).

In Figures 4.22 to 4.26, we present the cross-correlations with a S/N ∼ 3, for the
cases discussed above. The plots are shown in descending order of the bias difference,
∆b, between the population considered. The total model (black solid lines), which
includes the sum of all contributions, is displayed alongside the individual components:
the relativistic Doppler effect (green dashed lines), gravitational potential (blue dotted
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lines), ISW effect (grey lines), lensing (magenta lines), and the combination of light-cone
and evolutionary effects (red lines).

As clearly illustrated in these plots, the total dipole signal is dominated by the
relativistic Doppler contribution across all the scales considered. The ISW and lensing
terms remain significantly subdominant at all scales.

From these plots, in which we have zoomed in on the y-axis scale, we can also more
clearly see the imprint left by the BAO in the dipole of the cross-correlation function,
at around 100h−1Mpc

Although the models employed are linear, and therefore known to be inaccurate on
small scales, they nonetheless provide an important indication: at small separations,
the gravitational potential and light-cone effects can no longer be neglected in precise
modelling of the dipole. In particular, the contributions from the potential and the
light-cone become comparable in amplitude at these scales.

4.8 Dipole signal on small scales

Figure 4.27: Different contribution to the dipole for the cross-correlation between H3200

and H800 at low scales. Left panel: potential only (green square) and relativistic Doppler-
only (black diamonds) term contributions. Right panel: full dipole, thus including
potential, relativistic Doppler, ISW, wide-angle, lensing and evolution effects.

Everything we have presented so far, and which, it bears recalling, holds true on large
scales, within the linear regime, confirms the state of the art regarding the dipole signal
and its main contributors (Breton et al., 2019). Namely, the signal is very weak and
predominantly dominated by relativistic Doppler effects. These analyses also concur
that the models presented here are unable to accurately describe the dipole signal on
very small scales. Although our primary goal was to study the behaviour of the dipole
on large scales, gaining a comprehensive picture of its behaviour across all scales proves
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crucial. In Figure 4.27 we show the dipole signal for the cross-correlation between H3200

and H800. The left panel displays the potential and relativistic Doppler effects separately.
As we can see, the dipole tends to approach zero2 on scales larger than ∼ 25h−1Mpc.
Around scales of 15− 20h−1Mpc, the dipole signal remains above zero and appears to
increase going at smaller scales. Below these scales, we observe a sign reversal of the
dipole, where the nonlinear regime becomes significant. The comparison with the plot
on the right drives this point home even further. Linear models simply fail to predict or
explain this behaviour.

Furthermore, at scales below ∼ 20h−1Mpc, the signal arising from the gravitational
potential no longer appears negligible, when compared to the relativistic Doppler term, at
least within the error bars, and can even become the dominant contribution. This finding
is also supported by the current state of the literature. Breton et al. (2019) showed that
the dipole exhibits a sign reversal below approximately 25h−1Mpc. Similarly, Lepori
et al. (2025) have demonstrated how the dipole turns negative on small scales, and how
light-cone effects cannot simply be brushed aside at these scales, clearly at odds with
linear models.

Both the relativistic Doppler and gravitational contributions exhibit this behaviour,
which is well documented in the literature and clearly visible in Figure 4.27.

Regarding nonlinear effects on small scales, it is known that non-Gaussian features
arise from structure formation. One of the most prominent nonlinear phenomena is
the FoG effect, caused by the peculiar motions of objects within virialised gravitational
potential wells. While linear theory assumes that peculiar velocities and gravitational
potential perturbations remain small, on smaller scales the motions of objects, such as
galaxies within clusters, are driven by far stronger gravitational interactions than those
at large scales. The contribution of these peculiar velocities to the observed redshift can
easily outweigh that due to cosmic expansion.

A very recent study by Dam and Bonvin (2025) also shows that this sign inversion is
indeed present, and that neither light-cone effects nor wide-angle effects can be neglected
when analysing the dipole signal on small scales. These authors primarily focus on
improving the modelling of the dipole originating from the gravitational potential at
these scales. In this regard, their study attempts to model the dipole down to very small
scales, and validate their predictions on the RayGalGroupSims.

Their model succeeds in explaining the sign inversion in the dipole on these tiny
scales quite well, although it still fails in fully capturing the dipole trend around the
20h−1Mpc scale, where the signal appears to remain positive.

A more accurate modelling of the potential on small scales calls for, at least, the
inclusion of an additional component, known as the one-halo term, which arises from the

2Recall that the dipole due to the relativistic Doppler effect, on large scales, is of the order of, or
less than, 10−3, and that from the potential is of the order of, or less than, 10−4.
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internal dynamics of dark matter haloes and becomes significant at these scales. This
contribution effectively boosts the large-scale potential (which is described by spacetime
perturbation theory and valid in the linear regime). The LSS provides a smooth, weaker
potential, upon which local deviations, caused by the potentials of the dark matter
haloes themselves, are superimposed. When observing the LSS, this local contribution
cancels out, since the local potentials of widely separated objects are uncorrelated and
thus do not contribute to the correlation function. However, the situation can quickly
become quite complex at small scales, and as these authors point out, further refinements
of the models will be necessary in the near future.

4.9 A statistical analysis of the dipole

4.9.1 Likelihood

Inference is the process by which we can deduce the characteristics of a population
through the observation and analysis of a sub-sample, thereby reconstructing the proba-
bility distribution based on observed events and quantifying the degree of plausibility of
a hypothesis (or model) in light of the experimental data. We consider a probability dis-
tribution as a function of the model parameters for a fixed experimental outcome. This
distribution is referred to as the likelihood function. Let A and B be two independent
subsets of the event space, such that

P(A ∩ B) = P(A)P(B), (4.23)

where P (A,B) = P(A ∩ B) is referred to as the joint probability. Let us consider
an observable random variable X which follows a probability distribution f(X, θ),
depending on a set of unknown theoretical parameters θ = (θ1, ..., θM): this function
is the conditional probability of observing the variabile X given the parameters θ. If
the measurement is repeated N times, yielding N independent observations X1, ..., XN ,
the joint probability of observing X1 ∈ dX1, X2 ∈ dX2, and so on, is given by:

P(X1, X2, ..., XN) =
N∏
i=1

f(Xi|θ) dXi. (4.24)

Since inference is carried out after the data analysis has been completed, the Xi are
considered fixed, and the likelihood depends only on the model parameters. It is then
simply written as the joint probability distribution, thus

L(X, θ) = f(X1, θ) f(X2, θ) ...f(XN , θ). (4.25)
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It is logical to assume as the most plausible values for the set of parameters θ =

(θ1, θ2, ..., θM) the ones that maximise the likelihood. The general method is therefore
based on solving the following system of equations:

∂L(θ)
∂θj

= 0. (4.26)

Let us suppose we have a random variable X, whose Gaussian (normal) probability
distribution is

G(x, σ) =
1√
2πσ2

e−
(X−x)2

2σ2 , (4.27)

where x e σ2 represent the mean value and the variance, respectively.
Thus, taking N Gaussian distributed variables X, the likelihood takes the following

form:

L(X1, ..., XN , θ) ∝
N∏
i=1

exp

{
− [Xi − xi(θ)]

2

2σ2
i

}
. (4.28)

It is often convenient to maximise the logarithm of the likelihood: this is entirely
valid because the logarithm is a monotonically increasing function. Taking the logarithm
of the expression above yields:

−2 lnL(X1, ..., XN , θ) ∝ −2
N∑
i=1

{
− [Xi − xi(θ)]

2

2σ2
i

}
= χ2(θ). (4.29)

Therefore, in the case where the Gaussian distribution can be assumed, maximising
the likelihood is equivalent to minimising the function χ2.

4.9.2 Bayesian statistics

Let us interpret the probability as the degree of plausibility of a proposition. Bayesian
statistics involves inferring the probability distribution from observed frequencies, essen-
tially the inverse of the classical (frequentist) approach. Fundamentally, the Bayesian
framework relies on specifying, a priori, a (subjective) probability for a given event based
on prior knowledge, whether empirical or theoretical, and then updating the credibility
of that hypothesis in light of the data, leading to the so-called posterior probability. In
practical terms, one assumes that a given model, described by a set of parameters θ, is
valid, and seeks to determine the probability distribution over this parameter space in
light of the observed data X.

Bayes’ theorem (Bayes, 1763) states that the posterior probability can be written as
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P(θ|X) =
P(X|θ)P(θ)

P(X)
, (4.30)

where P(X|θ) = L(X, θ) is the likelihood. The function P(θ) is known as the prior
probability and represents prior knowledge. The term P(X) is a normalisation factor,
also called evidence, which reads

P(X) =

∫
P(X|θ)P(θ)dθ. (4.31)

A possible agnostic choice consists of adopting uniform priors, that is, priors of the
form P(θ) = const in the full domain, which assign equal probability to all values of θ
within a given interval. In this case, the posterior becomes proportional to the likelihood,
P (θ|X) ∝ L(θ), and maximising the posterior is therefore equivalent to maximising the
likelihood.

4.9.3 Markov Chain Monte Carlo

Although Bayes’ theorem theoretically enables the application of Bayesian statistics in
all circumstances, its analytical solution is often intractable, except in cases where the
likelihood takes a Gaussian form, see Eq. (4.28). However, with the exponential growth of
computational power and numerical simulations, several techniques have been developed
to tackle Bayesian inference problems. One of the most widely adopted approaches,
particularly in astrophysical and cosmological applications, is the MCMC method. This
class of algorithms generates sequences of points (the so-called “chains”) in the parameter
space, whose density is proportional to the posterior probability distribution of interest,
P (θ|X). The method relies on two fundamental concepts:

• Markovianity: the next state depends only on the current one;

• Ergodicity: the empirical distribution of the samples converges to the target
distribution.

We are interested in Markov chains that admit a unique invariant distribution, namely
the equilibrium distribution. This is typically reached after an initial transient phase,
commonly referred to as the burn-in period.

One of the most widely used MCMC algorithms is the Metropolis–Hastings algorithm.
Given a current state θt, it proposes a new state θ′ using a proposal distribution q(θ′|θt),
and accepts it with probability

α = min

(
1,

P(θ′|X)q(θt|θ′)
P(θt|X)q(θ′|θt)

)
. (4.32)
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If accepted, θt+1 = θ′, otherwise, the chain remains at θt (Hastings, 1970). In the original
Metropolis algorithm, the proposal is symmetric, q(θ′|θt) = q(θt|θ′), simplifying the
acceptance ratio (Metropolis et al., 1953).

After the burn-in period, the remaining samples are assumed to be representative of
the posterior. These can be used to estimate expectations and other statistical quantities
under the posterior model.

4.9.4 Testing GR with MCMC sampling

Finally, we perform a posterior analysis using MCMC, trying to constrain the linear
growth rate f and the two population biases from the dipole signal driven by relativistic
Doppler, gravitational potential and light-cone effects (Figure 4.31), even if these last two
terms are negligible at large scales with respect to the relativistic Doppler contribution
and compare the results with those obtained from the monopole fit. Testing GR on
large scales has become, in fact, one of the foremost objectives in modern cosmology,
alongside probing models of modified gravity.

A key test in this context concerns the linear growth rate, f , and its well-known
dependence predicted by GR (Linder, 2005): this allows a model-independent quantifi-
cation of gravitational modifications through the introduction of the growth index, γ,
which captures any deviations from the GR prediction.

Defining the priors

For the monopole of the 2PCF of the H3200, H1600, and H800 catalogues, the model
considered is the dispersion model (Kaiser, 1987; Peacock and Dodds, 1996). The free
parameters in this model are fσ8, bσ8 and σv, namely the linear growth rate and the
bias of the population multiplied by σ8, and the velocity dispersion, respectively.

Parameters Uniform Prior
fσ8 [0, 1]

bH3200σ8 [0, 2]
bH1600σ8 [0, 2]
bH800σ8 [0, 2]
σv [0, 1000] km s−1

Table 4.4: Adopted priors on the sampling parameters for the monopole fitting.

Instead, in the case of the dipole models, the free parameters are directly the linear
growth rate f and the biases of the two populations, b1 and b2. In all cases, the priors
are set to be flat and allowed to vary over a broad range of values. Specifically, Table 4.4



CHAPTER 4. RESULTS 120

shows prior values for the monopole fit with the dispersion model, while Table 4.5 shows
prior values for the dipole fit with the linear model including light cone, evolution,
gravitational potential and relativistic Doppler effects.

Parameters Uniform Prior
f [0.2, 1.2]

bH3200 [1, 3]
bH1600 [1, 3]
bH800 [0.5, 2.5]

Table 4.5: Adopted priors on the sampling parameters for the dipole fitting.

Regarding the priors for the dipole fit, these are again flat and allowed to vary
between 0.2 and 1.2 for f , and between 1 and 3 for the biases of the two populations.

Setting the likelihood

Once the model parameter priors are defined, we aim to compare the observed or
simulated data with our theoretical predictions. For this purpose, it is necessary to
specify a likelihood function, that is, the probability of observing the experimental data
given a particular set of model parameters. In cosmology, as in our case, the likelihood
is often assumed to be Gaussian, and there are several good reasons for this choice:

• Gaussianity of large-scale density fluctuations: on large cosmological scales, the
density field fluctuations are well described by a Gaussian random field, which
further justifies the use of a Gaussian likelihood.

• Central limit theorem: if the observed data (for example, the value of the dipole
or the correlation function at a given scale) is obtained as an average or sum of
a large number of independent, stochastic contributions, as happens in galaxy
clustering, where many effects add up, then the central limit theorem ensures
that the resulting distribution tends towards a Gaussian, regardless of the initial
distribution of the individual contributions.

The consequence of this assumption is that maximising a Gaussian likelihood is
computationally straightforward and corresponds to minimizing the χ2, as discussed
earlier.

It is important to note that the covariance should be calculated only once, based
on the fiducial cosmology, as done in CBL, and not recalculated during the MCMC3,

3This is beacuse doing so result in Fisher information content that violates the Cramér-Rao bound.
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due to independent, but artificial, information arising from the parameter-dependent
covariance matrix (Carron, 2013), which tends to cause an overestimation of the amount
of information present in the data.

Maximising and sampling the posterior

MCMC algorithms are widely used for sampling from complex probability distributions.
However, as the dimensionality of the parameter space increases, the computational cost
of thoroughly exploring the space becomes significant. For this reason, we first perform
a maximum a posteriori (MAP) estimation. This allows us to start the sampling close
to the peak of the posterior distribution, thereby avoiding long burn-in periods if the
initial positions are chosen sensibly.

MAP optimisation in the CBL uses the Nelder–Mead simplex method, which operates
on a set of k + 1 points, that form a simplex in an k-D space: for example, a triangle in
2D or a tetrahedron in 3D. The method seeks a local optimum by iteratively replacing
the worst vertex with a new point reflected through the centroid of the remaining vertices.
If the reflection improves the function value significantly, the algorithm attempts to
stretch the simplex further along that direction. If the reflection isn’t an improvement,
the simplex is drawn closer to better points to avoid overshooting tight valleys.

Termination is usually based on the standard deviation of function values at the
simplex vertices falling below a tolerance, or when the simplex shrinks sufficiently.

Although the Nelder–Mead algorithm is an effective first step in locating the peak, a
full exploration of the posterior distribution, including parameter uncertainties, requires
MCMC methods.

MCMC sampling is performed following the MAP estimation. The sampling strategy
incorporates the following elements:

• Thinning: Since each new sample depends on the previous one, successive points
can be highly correlated, often resulting in very similar values. Discarding a certain
number of samples helps reduce this auto-correlation, thereby yielding more robust
parameter estimates. However, it is generally not recommended to discard too
many samples, as this inevitably leads to some loss of information. In this work,
we adopt a conservative thinning factor of 10.

• Burn-in: this involves discarding the initial portion of the chain to allow it sufficient
time to converge. At first, the chain begins from an arbitrary position, often far
from the maximum of the posterior distribution, and requires some iterations
to "slow down” and reach the region of interest. However, performing a MAP
estimate beforehand mitigates this issue considerably. In our case, a burn-in length
of 200 proved sufficient to ensure that the chain was not excessively long.
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Validation of General Relativity constraints

We now present a final discussion in light of the results obtained after MCMC sampling.
We performed a fit of the monopole by considering jointly the three different catalogues:
H3200, H1600, and H800. These results are compared with the one obtained by the
dipole fitting. It may also be of interest to compare the dipole fitting with monopole
fitting for the cross-correlation, using a Kaiser term adapted for two populations with
different biases, to strengthen the reliability of the analysis, as shown by Gaztanaga
et al. (2017).

From theoretical expectations, we know that4

fσ8 ≃ 0.47

σ8 ≃ 0.801

bH3200 ≃ 2.63

bH1600 ≃ 2.09

bH800 ≃ 1.71

The plots with contour lines represent regions of equal posterior probabilities distribu-
tions of each pair of model parameters estimated from MCMC sampling. The histograms
along the diagonal show the 1D marginal distributions of each individual parameter,
i.e., the probability of that parameter regardless of the others. Specifically, the contours
outline the regions of probability density containing 68% and 95% of the joint probability.
These plots help reveal correlations or degeneracies between parameters: if the contours
are elongated or tilted, it means that the two parameters are correlated. All theoretical
predictions, shown as blue lines in Figures 4.28 to 4.30, lie within the 95% confidence
region, indicating a satisfactory level of agreement between the theoretical predictions
and the data. The parameter σv, on the other hand, is not directly predicted, and is
considered as a nuisance parameter. In fact, our primary focus lies on the value of fσ8,
which consistently falls within 2σ in all configurations considered, supporting the overall
consistency of the measurements with theoretical expectations.

4All values are computed at redshift z = 0.341.
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Figure 4.28: The 1- and 2-dimensional posterior distribution of the derived parameters
fσ8, bσ8 and σv for the monopole of the 2PCF of H800, using the dispersion model. The
contour areas correspond respectively to the 68% and 95% joint two-parameter confidence
levels.

Figure 4.29: The 1- and 2-dimensional posterior distribution of the derived parameters
fσ8, bσ8 and σv for the monopole of the 2PCF of H1600, using the dispersion model. The
contour areas correspond respectively to the 68% and 95% joint two-parameter confidence
levels.
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Subsequently, we performed a fit of the dipole signal, accounting for contributions
from the relativistic Doppler effect, gravitational potential, light cone, and evolution
effects (although the latter three are clearly subdominant), on large scales, considering
two representative cross-correlations: H3200–H1600 and H3200–H800. In Figure 4.31, we
show the data points (diamonds), overlaid with the theoretical model, computed by
fixing all parameters, as done in previous sections (black solid lines), alongside the
corresponding model predictions obtained by allowing the parameters to vary (purple
lines).

The known issues affecting the model on small and intermediate scales have already
been discussed and will not be repeated here; nevertheless, their presence cannot be
overlooked, as they inevitably weaken the robustness of our conclusions. The best-fit
models do not significantly improve the agreement with the data (in the first case, the
purple and black curves are almost indistinguishable), thus they yield estimates for
f and for the biases of the two populations that are fully consistent with the fiducial
cosmological model, as shown in Figure 4.31. All recovered values fall well within one
standard deviation of the theoretical predictions, underscoring their excellent agreement
with the fiducial model.

These results should be regarded as preliminary, providing a proof of concept for
what might be achievable, with real data sets, possibly covering larger volumes of the
Universe and featuring precise redshift measurements.

Figure 4.30: The 1- and 2-dimensional posterior distribution of the derived parameters
fσ8, bσ8 and σv for the monopole of the 2PCF of H3200, using the dispersion model. The
contour areas correspond respectively to the 68% and 95% joint two-parameter confidence
levels.
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Figure 4.31: Contribution to the dipole from the coupling between gravitational potential,
relativistic Doppler and light-cone effect, for the cross-correlation between H3200 and
H1600 (top panels) and H3200 and H800 (bottom panels). Black solid lines show the model
as derived from theory, while purple dashed lines show the fitting curve after a MCMC
analysis.

Figure 4.32: The 1- and 2-dimensional posterior distribution of the derived parameters
fσ8, bσ8 and σv for the dipole of the 2-point cross-correlation of H3200-H800, using
the linear model including light-cone, evolution, gravitational potential and relativistic
Doppler term. The contour areas correspond respectively to the 68% and 95% joint
two-parameter confidence levels.
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Figure 4.33: The 1- and 2-dimensional posterior distribution of the derived parameters
fσ8, bσ8 and σv for the dipole of the 2-point cross-correlation of H3200-H1600, using
the linear model including light-cone, evolution, gravitational potential and relativistic
Doppler term. The contour areas correspond respectively to the 68% and 95% joint
two-parameter confidence levels.

4.10 Additional considerations

Now that we have reached the conclusion of this thesis, it is pertinent to take stock of the
main challenges encountered or that may arise in such an analysis. When attempting to
detect a very subtle signal, such as the dipole in the large scale 2-point cross-correlation
function, there are numerous and diverse factors that must be carefully considered.

• One of the principal challenges lies in the necessity of acquiring data over large
volumes, whether real or simulated. A large data set is crucial to achieve ro-
bust statistics and to maximise the S/N , particularly when aiming to isolate
subdominant contributions on large scales. However, handling such amounts of
data inevitably entails significant computational costs, that must be carefully
managed. In this context, it is worth noting that we have observed the dipole
signal to be more pronounced in cross-correlations between populations with a
greater difference in bias. Therefore, it may be advantageous, at least initially, to
focus on these configurations to optimise the analysis.

• We have also considered, given that our work is based on a simulation, redshift
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values free of observational errors. Naturally, this is an idealisation, that does
not hold in real galaxy surveys, because redshift measurements are subject to
uncertainties arising from instrumental limitations, and other systematic effects.
Such errors can blur the signal and introduce biases, thereby complicating the
interpretation of clustering statistics and the extraction of cosmological parameters.

• Another critical issue stems from the limitations of the models on small scales.
The inability of linear models to accurately capture the behaviour of the dipole at
these scales is well documented in the literature. Despite ongoing advancements,
modelling this regime remains challenging, particularly in the quasi-nonlinear
region where the dipole appears to linger slightly above zero (Dam and Bonvin,
2025).

• Our analysis has been based on dark matter N-body simulations. While this
approach is convenient for a first validation of the pipelines, it proves insufficient
when confronting with real observational data. In such cases, a range of additional
factors, entirely neglected here, must be carefully considered. For instance, one
should consider reliable catalogue completenesses and purities. These quantify the
fraction of genuine astronomical objects successfully detected, and the fraction of
detections that correspond to real sources, respectively, thereby directly affecting
the reliability of any derived statistical measurements. A catalogue with low
completeness risks omitting a substantial portion of the underlying population,
thereby biasing number counts, redshift distributions, and ultimately the inferred
cosmological parameters, if not properly modelled. Conversely, low purity indicates
contamination by spurious detections or misclassified sources, which can dilute
the signal and distort measured correlations. Furthermore, selection effects, both
implicit and explicit, play a pivotal role in shaping the observed sample. These
encompass instrumental limitations, survey geometry, magnitude thresholds and
redshift-dependent detection efficiencies. If neglected, such effects can imprint
artificial patterns onto the data or suppress real cosmological signals. It is therefore
crucial to quantify and, where feasible, correct for these factors. This typically
involves constructing completeness and purity selection functions, validating mock
catalogues, and incorporating such selection functions into theoretical models.
These foundational considerations have been extensively discussed in cosmological
and astrophysical literature, e.g. Aguena and Lima (2018) and Datrier and Hendry
(2025).

All these aspects will, of course, need to be thoroughly addressed, to ensure greater
robustness in future conclusions. Only by carefully accounting for these challenges can
we hope to extract reliable cosmological information from forthcoming data sets. This
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will ultimately enable more stringent tests of fundamental physics, including GR on the
largest scales.



Chapter 5

Discussion and conclusions

In this chapter, we revisit the work undertaken, its underlying premises, the methods
employed, the results obtained, and the final conclusions, including some reflections
with a view to future developments.

5.1 Overview

One of the key scientific goal of modern cosmology is to detect anisotropies in the LSS
with high precision, thereby providing a stringent test of GR on cosmological scales.
Clustering statistics serve as an indispensable tool in this endeavour, enabling tighter
constraints on GR by probing the LSS of the Universe (Yoo, 2010; Bonvin and Durrer,
2011). While the bulk of analyses concentrate on even multipoles dominated by standard
RSD, relativistic, wide-angle, and evolutionary effects introduce an antisymmetric
component, manifesting as odd multipoles in the cross-correlation between different
populations of objects.

Incorporating relativistic RSD effects is essential, as conventional RSD alone cannot
produce a dipole signal (Bonvin et al., 2014; Gaztanaga et al., 2017; Breton et al., 2019).
Though subtle and challenging to model, these effects pave the way for more robust
tests of GR, and offer deeper insights into the nature of dark matter and dark energy.
The dipole signal arises from several contributions: some are geometric in origin, such
as wide-angle effects, while others require a fully relativistic treatment at linear order,
including the gravitational potential, relativistic Doppler shifts, lensing, and the ISW
effect. Hence, it is crucial to adequately model and isolate these effects on large scales.
Crucially, these relativistic contributions depend on the linear growth rate of cosmic
structures, which is intimately connected to GR through the growth index parameter, γ.

This thesis aimed to validate cosmological analyses beyond classical dynamical and
geometric distortions, by incorporating the full range of effects, including relativistic
contributions, which affect redshift measurements and manifest as a dipole in the 2PCF

129
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(Bonvin and Durrer, 2011). In particular, we tested models at large and intermediate
scales which will be used in the near future to constrain GR and investigate alternative
gravity models.

5.2 Main findings

To carry out our analysis, we used a set of dark matter halo simulations from the
RayGalGroupSims, comprising approximately 1.2 × 107, objects within a volume of
2625 (h−1Mpc)3, in order to assess the dipole contribution, and to test the concordance
between theoretical models and the measured signal. The RayGalGroupSims data were
binned logarithmically by mass, enabling the cross-correlation of distinct catalogues.

The work presented in this thesis involved the implementation of codes to compute
the multipoles of the cross-correlation function, including the odd multipoles, using two
separate random catalogues, as required by the Landy-Szalay estimator (Landy and
Szalay, 1993).

Poissonian errors and uncertainty estimates using the jackknife technique were also
implemented. Both the codes and the RayGalGroupSims were subsequently validated
through auto-correlation tests.

The second part of the thesis involved the implementation of linear models to
describe the dipole signal on large scales. These models incorporate terms accounting
for relativistic Doppler effects, light-cone effects, wide-angle contributions, gravitational
potential, the ISW effect, Shapiro time delay, lensing, and evolutionary effects. Each
contribution is implemented as an individual term, to ensure maximum flexibility for
future applications.

The main results obtained are as follows:

• We found that the dipole is overwhelmingly dominated by the relativistic Doppler
term at all scales and for all the cross-correlation considered, while all other
contributions are subdominant, both in the full signal, and with respect to other
contribution such as the gravitational potential.

• Nevertheless, we attempted to isolate the contributions from the gravitational
potential for three cross-correlation configurations. To perform this analysis on
these catalogues, it was necessary to use random catalogues more than 10 times
times larger than the data catalogues. We was not able anyway to detect a distinct
signal from gravitational potential term at large scales.

• S/N remains at approximately the 3σ level in nearly all configurations considered,
except for two cases where it is respectively significantly higher and lower than
this value, likely due to systematic errors in the analysis.
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• The agreement between models and measurements for the total dipole is fairly
good, with a reduced χ2

r ∼ 1, although further refinements are necessary. Isolating
the contribution of the gravitational potential proved to be particularly challenging,
and no definitive conclusions can be drawn at these scales.

• The model–data agreement worsen on scales below 60h−1Mpc, as also confirmed
by Breton et al. (2019).

• At smaller scales (below 30h−1Mpc), the agreement further deteriorates, mainly
due to the increasing importance of nonlinear effects, as also outlined by Giusarma
et al. (2017) among others. Moreover, at these scales, the gravitational potential
contribution is no longer subdominant and must be accounted for: even if for the
cross-correlation at nonlinear scales shown here, it seems to be of the same order
of the relativistic Doppler term, for many configurations, it has shown to dominate
over it at nonlinear scales (Lepori et al., 2025; Dam and Bonvin, 2025).

• A preliminary MCMC fit of the dipole model, including light-cone effects, evolu-
tionary contributions, gravitational potential, and the relativistic Doppler effect,
demonstrates, at an early-stage, agreement between the data and theoretical
predictions from the standard ΛCDM model. Although we are not yet in a posi-
tion to draw definitive conclusions, as the models require significant refinement,
particularly on intermediate and small scales, testing GR on large scales is, indeed,
feasible.

5.3 Future perspectives

As we have seen, the path is complex but opens up numerous possible avenues. Several
promising directions exist for future work. Firstly, refining theoretical modelling on
nonlinear scales is essential. For example, Breton et al. (2019) demonstrated that
nonlinear mapping effects contribute to the dipole signal at the order of 10−4, a level
that cannot be ignored when attempting to isolate the gravitational potential term.

Increasing the number of objects and improving simulation resolution would also
help isolate otherwise elusive dipole contributions. Extending the fitting procedure to
various population configurations and different dipole components would enable more
reliable and stringent tests of GR.

Additionally, developing simulations within modified gravity frameworks could pro-
vide valuable insights into model-data agreement under alternative theories, testing the
validity of ΛCDM models over f(R) modified gravity theory.

Furthermore, populating dark matter haloes with galaxies or clusters would yield a
more robust framework better suited for comparison with forthcoming observations from
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Euclid and to test the baryon effects on clustering statistics and on the dipole signal of
cross-correlation function in particular. Accurately simulating baryon dynamics is chal-
lenging, as it involves complex fluid processes such as collapse and structure formation,
along with feedback mechanisms from AGN, galactic winds, and supernovae. These
effects are likely to influence mainly small to intermediate scales. While computationally
demanding to achieve the necessary precision, this area represents surely a worthwhile
target for future investigation.

One natural direction for future work involves producing forecasts for ongoing or
upcoming large-scale galaxy surveys, such as Euclid (Mellier et al., 2025), the Rubin
Observatory Legacy Survey of Space and Time (LSST; Ivezić et al., 2019), or the
prospective Wide-Field Spectroscopic Telescope (WST; Mainieri et al., 2024).

In summary, this study highlights both the potential and the challenges of using
cross-correlation dipoles as probes of relativistic effects in the cosmic LSS. While several
limitations remain, particularly concerning modelling accuracy at small scales and the
extraction of subdominant contributions, this framework offers a promising basis for
future applications to high-precision cosmological surveys.

To conclude, an important avenue for future work would be the application of the
techniques, implemented and validated here, to actual observational data, for instance
from Euclid. Analysing real data with the statistical tools, presented in this work, will
offer an opportunity to directly test relativistic corrections and assess their significance
in the context of contemporary cosmology.
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