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Abstract

The ΛCDM model is founded evidence of non-baryonic cold dark matter
(CDM), which dominates the matter content of the Universe, and a cosmo-
logical constant Λ in the assumption of a spatially flat universe. While it
successfully explains a broad range of cosmological observations, in the last
years, with the increase of the experimental sensitivity, statistically significant
tensions have emerged among different observations on the Hubble parame-
ter H0, the amplitude of the growth of structure S8 and the dark energy
equation-of-state parameter w. These discrepancies motivate the exploration
of alternative DE models.

In this work, we focus our study in a particular class of Coupled Dark
Energy models, where DE component is represented a scalar field which
evolves under a confining self-interaction potential and interacts with other
species. These models, named Bouncing Coupled Dark Energy (BCDE) mod-
els, present a peculiar dynamic represented by a bouncing point in which the
field stop and inverts in motion. This dynamic may alleviate the observed
tensions by suppressing the growth of structure at late-times. To test these
models at the non linear regime of the structure formation, we developed a
new implementation of the PANDA-Gdget4 N-body code. Our modifications
incorporate the key physical effects of BCDE, including the mass evolution of
coupled particles, a velocity-dependent friction term, and a fifth force which
enhances the gravitational interaction. This new implementation not only
enables the study of BCDE cosmologies but also provides a foundation for
simulating a broader class of Interacting Dark Energy (IDE) models. Using
our implementation, we perform cosmological simulations and analyze their
outcomes with the newly developed DORIAN Python library, which extracts
weak lensing observables from Gadget4 lightcone outputs. Our results high-
light the distinct signatures of BCDE models in the matter power spectrum,
halo mass function, and weak lensing signals, offering testable predictions for
future observational surveys.

Together, this pipeline, from theoretical analysis of dark energy models to
their non-linear evolution with our new implementation in PANDA-Gadget and
observational signatures in weak lensing with DORIAN, provides a robust
toolset to test and constrain coupled dark energy scenarios with upcoming
cosmological data.
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Chapter 1

Introduction

Cosmology can be defined as the study of the universe regarded as a whole.
One of the most fundamental ideas in Cosmology is the Cosmological Prin-

ciple which asserts that, on sufficiently large scales, the Universe is both homo-
geneous and isotropic. In other words, no location or direction in the universe
is favored with respect to others when viewed at large scales.

Obviously the universe is not perfectly homogeneous or isotropic on small
scales, as the distribution of stars, galaxies and clusters forms a highly struc-
tured pattern. However, when observed at scales much larger than those
of individual galaxies or galaxy clusters, the universe starts to appear more
homogeneous.

The Cosmological Principle was first introduced by Einstein as a simplify-
ing assumption (Einstein, 1917), but later has been supported by extensive ob-
servations. Measurements on Cosmic Microwave Background (CMB) strongly
suggest an universe which is uniform in all directions, (Aghanim et al., 2020).
Additionally, large-scale galaxy surveys demonstrate that the distribution of
matter becomes increasingly uniform when examined over large distances,
(Yadav et al., 2005).

In this chapter, we will present the fundamental concepts and theoretical
frameworks that feature modern cosmology. We will begin by outlining the es-
sentials of General Relativity and the FLRW metric, followed by a discussion
of cosmological distances and the Hubble law. Subsequently, we will explore
the role of the cosmological constant and the Friedmann models, examine lin-
ear perturbation theory, and discuss the statistical properties of cosmic struc-
ture. Finally, we will review key observational constraints and the successes
and challenges of the ΛCDM model in describing our Universe.

1.1 Fundamentals of General Relativity

The aim of cosmology is to construct theoretical models that explain and
predict the observed properties and behavior of the universe, from its large-
scale structure to its evolution over time.
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On large scales, the dominant force is gravity, so the most important ingre-
dient for a Cosmological model to physically describe the Universe is a theory
of gravity.

The best gravitational theory we have so far is Einstein’s General Relativ-
ity (Einstein, 1915; Will, 2014; Abbott et al., 2016) .

General Relativity links the geometrical properties of the Universe with
its energy content.

In Special Relativity (Einstein, 1905), the invariant interval between two
events, located at coordinates (t, x, y, z) and (t+ dt, x+ dx, y+ dy, z + dz), is
defined as:

ds2 = c2dt2 − (dx2 + dy2 + dz2) , (1.1)

where ds2 is invariant under a change of coordinate system. For ma-
terial particles moving under no external forces, their trajectories between
two events are those that make the value of

∫
ds stationary, corresponding

to straight-line motion between points, representing the shortest distance in
spacetime.

When external forces like gravity or electromagnetism act, they cause de-
viations from these straight-line trajectories. Gravity exerts the same force
per unit mass on all objects, this principle is called Equivalence Principle and
is the fundamental pillar of General Relativity. Einstein’s theory of General
Relativity reformulates gravity not as a force but as a property of spacetime
itself. Unlike the flat geometry of Minkowski spacetime, representative of the
Special Relativity, General Relativity allows spacetime to be curved. In this
framework, the interval between two event is expressed as:

ds2 = gµν(x)dx
µdxν ,

where we used the Einstein summation convention for which repeated indices
imply summation. The indices µ, ν range from 0 to 3, x0 = ct represent
the time coordinate, while x1, x2, x3 the three spatial coordinates. The metric
returns the actual physical distance between two infinitesimally close points in
spacetime defined in some arbitrary coordinate system. The metric tensor gµν
encodes the geometry of spacetime, determining how distances and intervals
are measured in a curved spacetime.

As mentioned above, particles move in the spacetime in such a way that
the integral along their path is stationary:

δ

∫
path

ds = 0 (1.2)

but in the presence of a gravitational field, these trajectories are no longer
straight and, from the stationary condition, it can be proved that the path of
a free particle is described by the geodesic equation:

d2xλ

dτ 2
+ Γλ

µν

dxµ

dτ

dxν

dτ
= 0 , (1.3)
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where Γ is called Christoffel symbol and describes the gravitational force act-
ing on the particle. It can also be shown that the following relation between
the Christoffel symbol and the metric tensor holds

Γρ
λµ =

1

2
gρν
(
∂gµν
∂xλ

+
∂gλν
∂xµ

+
∂gµλ
∂xν

)
. (1.4)

The key factor in Einstein’s equations is the relationship between the dis-
tribution of matter and the metric describing the space–time geometry. The
energy content of the universe is described by the energy-momentum tensor
Tµν which, considering a perfect fluid with pressure p and energy density ρ is
defined as

Tµν = (p+ ρc2)uµuν − pgµν , (1.5)

where uµ, uν are the fluid four-vectors defined as

uµ = gµνu
ν = gµν

dxν

dτ
, (1.6)

and τ represent the proper time c2dτ 2 = −ds2
In General Relativity, writing conservation equations requires taking deriva-

tives of tensors, such as the energy-momentum tensor Tµν . However, the or-
dinary partial derivative of a tensor is not itself a tensor, because it does
not transform properly under general coordinate changes. To account for
this, we introduce the covariant derivative, which includes correction terms
involving the Christoffel symbols Γλ

µν . These terms ensure that the derivative
remains tensorial, preserving proper transformation properties under coordi-
nate transformations. We can then define the covariant derivative ∇µ, applied
to a general tensor V µ

ν as

∇αV
µ
ν = ∂αV

µ
ν + Γµ

λαV
λ
ν − Γλ

ανV
µ
λ . (1.7)

In this way, the correct conservation equation of the energy-momentum tensor
can be written as

∇µT
µ
ν = 0 . (1.8)

To obtain a relation that connects the energy content (represented by
energy-momentum tensor Tµν) and the geometry of spacetime, which will be
some function of gµν , we need to define the Riemann curvature tensor Rλ

µνρ as

Rλ
µνρ ≡

[
∇µ ,∇ν

]
, (1.9)

where ∇ represents the covariant derivative and the notation [,] indicates the
commutator between two vectors.

It can be shown that equation 1.9 can be rewritten as

Rλ
µνρ = ∂µΓ

λ
νρ − ∂νΓ

λ
µρ + Γλ

µσΓ
σ
νρ − Γλ

νσΓ
σ
µρ , (1.10)
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and, being Γ a function of the metric tensor gµν , also the Riemann curvature
tensor is a function of gµν .

Defining the Ricci tensor Rµν as a contraction of the Riemann curvature
tensor, Rµν ≡ Rλ

λµν , and the Ricci scalar R as the contraction of the Ricci
tensor, R ≡ gµνRµν , we can then introduce the Einstein tensor Gµν as:

Gµν = Rµν −
1

2
gµνR . (1.11)

Finally, using the Bianchi’s identity ∇µGµν = 0 the equation 1.11 leads to

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (1.12)

which is the Einstein field equation. The right-hand side of the Einstein equa-
tion represents the source term which is described by the energy-momentum
tensor Tµ,ν , while the left-hand side describes the geometry of the space-time.

1.2 FLRW metric

The Cosmological Principle provides the foundation for constructing models
of the Universe. Since General Relativity is a theory rooted in geometry,
our analysis begins by examining the geometric characteristics of spaces that
are homogeneous and isotropic. To simplify, we can model the Universe as
a continuous fluid, where each element of the fluid is assigned three spatial
coordinates xi, with i = 1, 2, 3 . These coordinates, known as comoving
coordinates, uniquely identify the position of a fluid element in space. Addi-
tionally, every point in space-time can be described by these coordinates and a
time parameter τ , which corresponds to the proper time measured by a clock
moving with the fluid. The geometric properties of space-time are encoded
in the metric. By applying purely geometric reasoning, without resorting to
field equations, it can be shown that the most general form of the space-
time metric for a Universe obeying the Cosmological Principle is the so called
Friedmann-Lemaitre-Robertson-Walker metric (Friedmann, 1922; Lemâıtre,
1931; Robertson, 1935; Walker, 1937)

ds2 = (cdt)2 − a(t)2
[

dr2

1−Kr2
+ r2(dθ2 + sin2θdϕ)

]
, (1.13)

where r, θ, ϕ are the (spherical polar) comoving coordinates, t is the proper
time, a(t) is the cosmic scale factor. The scale factor a(t) is a function used
to take into account the expansion of the Universe. The parameter K is a
constant which describes the curvature of the Universe and takes only the
values 1,0,-1 which correspond to a hypersphere, a Euclidean space and a
space of negative curvature, respectively.
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As we already mentioned, the Einstein equations of General Relativity link
the geometrical properties of space–time with the energy–momentum tensor
describing the contents of the Universe. In particular, for a homogeneous and
isotropic perfect fluid with rest-mass energy density ρc2 and pressure p, the
solutions of the Einstein equations are the Friedmann cosmological equations

ä = −4

3
πG

(
ρ+ 3

p

c2

)
a , (1.14)

ȧ2 +Kc2 =
8πG

3
ρa2 . (1.15)

The time evolution of the scale factor a(t) can be obtained from the Fried-
mann equations assuming an equation of state which relates pressure and
density

K

a2
=

1

c2
H2

(
ρ

ρc
− 1

)
, (1.16)

where

ρc ≡
3H

8πG
, H ≡ ȧ

a
. (1.17)

The quantity H = ȧ
a
is called Hubble function and it will be explored in

detail in the next paragraph.
The parameter ρc(t) is called the critical density and is used to define

another quantity called the density parameter Ω

Ω(t) =
ρ(t)

ρc(t)
. (1.18)

We can understand the importance of Ω from equation 1.16 by considering
a one-component universe. If the density of the fluid is exactly equal to
the critical density, ρ(t) = ρc(t), then Ω(t) = 1. Substituting this result
into equation 1.16, we find that K = 0, so the universe is flat. Similarly, if
ρ(t) > ρc(t), then Ω(t) > 1, resulting in a positive curvature, K = 1, whereas
if ρ(t) < ρc(t), then Ω(t) < 1, which corresponds to a negative curvature,
K = −1.

Thus, the critical density ρc(t) represents a threshold value for the density
to discriminate the geometry of the Universe.

Dividing eq 1.15 by a20, where a0 corresponds to the scale factor at the
present time t0, one gets:(

ȧ

a0

)2

− 8πG

3
ρ

(
a

a0

)2

=
−Kc2

a20
.

Given the fact that the right term is constant in time, also the left term
must be a constant, this means that, to simplify the equation, we can evaluate
it at the time t = t0, which leads to(

ȧ

a

)2

t=t0

− 8πG

3
ρ(t0)

(
a0
a0

)2

= H2
0

(
1− ρ0

ρ0c

)
= H2

0 (1−Ω0) = −Kc
2

a20
. (1.19)
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1.3 The Hubble law

Having defined a metric to describe the geometry of our spacetime, we can
calculate the proper distance which separates two points on the spacetime (to
simplify, we put ourselves in a frame of reference for which dθ = dϕ = 0 and,
of course, dt = 0) as

dP =

∫ r

0

a√
1−Kr′2

dr′ = aF (r) , (1.20)

where the function F (r) is

F (r) =


sin−1 r (K = 1)

r (K = 0)

sinh−1 r (K = −1)

. (1.21)

Due to the presence of cosmic expansion, the proper distance at time t is
related to that at the present time t0 by

dP (t0) = a0F (r) =
a0
a
dP (t) , (1.22)

where a0 = a(t0) So, considering only the cosmic expansion (no peculiar ve-
locity), each point at a distance dP from the origin of our reference frame
exhibits a radial velocity

vr = ȧF (r) =
ȧ

a
dP = HdP , (1.23)

where this equation is called the Hubble law (Hubble, 1929). As we antici-

pated, the quantity H(t) =
˙a(t)

a(t)
is called Hubble function. Its value computed

at the present time H0 = H(t = t0) = 67.4±0.5kms−1Mpc−1(Aghanim et al.,
2020), which is called the Hubble constant, is still matter of debate and is the
origin of the so-called ”H tension”, which, as we will see in chapter 1.11.2,
constitutes one of the main challenges to the ΛCDM model. To take into ac-
count the uncertainty on H0, the dimensionless Hubble parameter h, defined
as

h =
H0

100 kms−1Mpc−1
(1.24)

is often used.

1.4 Cosmological Redshift

As the universe expands, radiation traveling through spacetime experiences
a stretching of its wavelength, causing photons to shift toward longer wave-
lengths and redder colors, a phenomenon known as cosmological redshift. The
redshift z of a luminous source is defined as

z =
λo − λe
λe

, (1.25)
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where λe is the wavelength emitted from the source at time te and λ0 is the
wavelength observed at time t0, with te < t0.

The radiation travels along null geodesic, ds = 0 in the eq. 1.13, therefore∫ t0

te

c dt

a(t)
=

∫ r

0

dr√
1−Kr2

= f(r) . (1.26)

A second photon emitted at t′e = te+ δte reaches the observer at t
′
0 = t0+ δt0.

Given that f(r) is only a function of the comoving distance r we can write∫ t0

te

c dt

a(t)
=

∫ t0+δt0

te+δte

c dt

a(t)
, (1.27)

breaking the second integral as
∫ t0+δt0
te+δte

=
∫ t0
te

−
∫ te+δte
te

+
∫ t0+δt0
t0

the relation
becomes ∫ te+δte

te

c dt

a(t)
=

∫ t0+δt0

t0

c dt

a(t)
. (1.28)

Assuming that the time interval between the emission and detection of two
photons is sufficiently small, we can approximate the scale factor a(t) as con-
stant during this period. This allows us to take it out of the integral, yielding
to:

a(t0)

a(te)
=
λ0
λe
. (1.29)

Using the definition of z in eq. 1.25, we obtain the following relation
between the redshift and the scale parameter

1 + z =
a0
a
. (1.30)

1.5 Cosmological Distances

In section 1.2 we defined the link between comoving coordinates and proper
distance, defining the FLRW (Friedmann-Lemaitre-Robertson-Walker) met-
ric. However, it is not possible to directly measure the proper distances of
astronomical objects. Since distant objects are only observed through the
light they emit, which requires a finite time to reach us, we cannot make mea-
surements along a surface of constant proper time, but only along sets of light
paths traveling to us from the past, i.e., our past light cone. However, we can
define other types of distances that are directly measurable.

1.5.1 Luminosity Distance

Considering a source with absolute bolometric luminosity L at a given comov-
ing coordinate r and time t, given the relation between the luminosity and
the flux F observed at a time t0 we can define the luminosity distance dl as

dl =

(
L

4πF

)1/2

. (1.31)
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In the case of a Euclidean, i.e. geometrically flat, universe the flux repre-
sents the energy emitted by the source, per unit time, deposited in a spherical
area which, at time t0, is 4πa

2
0r

2. The photons coming from the source have
been redshifted by the universe expansion by a factor a/a0. Also, the pho-
tons emitted by a source in a small interval δt arrive to the observer in an
interval δt0 = (a/a0)δt due time-dilation effect. Combining all these effects in
equation 1.31 we obtain that the observed flux corresponds to

F =
L

4πa20r
2

(
a

ao

)2

, (1.32)

from which one can obtain the luminosity distance

dl =
a20
a
r = (1 + z)a0r . (1.33)

1.5.2 Angular-diameter distance

Let us consider an object at comoving coordinate r at time t with transverse
physical size Dp(t). Measuring the angle subtended by Dp as ∆θ, we can
write, in the approximation of a very distant source,

Dp = ar∆θ , (1.34)

from which we can define the angular diameter distance as

da =
Dp

∆θ
= ar . (1.35)

It is interesting to notice that the angular diameter distance and the lu-
minosity distance are related by

dl = (1 + z)2da . (1.36)

1.6 The cosmological constant Λ

When Einstein formulated his theory of General Relativity, it was generally
accepted that the Universe was static. The first Friedmann equation

ä = −4

3
πG

(
ρ+ 3

p

c2

)
a ,

shows that the necessary condition for the Universe to be static is:

ρ = −3
p

c2
,

which means a negative energy density or pressure. In other words, considering

p = wρc2 ,
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the parameter w must be negative to account for the observed accelerated
expansion of the universe. However, within the framework of standard physics,
w is typically positive. For instance, non-relativistic matter (dust) has w = 0,
as it exerts negligible pressure, while radiation and relativistic particles have
w = 1/3, reflecting the relationship between energy density and pressure in
such components. Scalar fields corresponding to ordinary matter or radiation
generally yield to w ≥ 0, therefore, a negative value of w suggests the presence
of an exotic component, such as dark energy.

To justify a static universe Einstein modified his equations introducing the
cosmological constant Λ

Ri,j −
1

2
gi,jR− Λgi,j =

8πG

c4
Ti.j . (1.37)

If Λ is placed on the left-hand side of the equation, then it affects the ge-
ometrical part of the equation, while on the right-hand side it represents a
modification of the energy content. In the latter case, considering Λ as a new
cosmological fluid component, we obtain:

Ri,j −
1

2
gi,jR =

8πG

c4
T̃i,j ,

where we defined

T̃i,j = Ti,j +
Λc4

8πG
= −p̃gij + (p̃+ ρ̃c2)uiuj , (1.38)

and p̃, ρ̃ are the effective pressure,density corresponding to

p̃ = p− pΛ with pΛ =
Λc4

8πG
,

ρ̃ = ρ+ ρΛ with ρΛ =
Λc2

8πG
,

pΛ, ρΛ are the pressure,density associated to the cosmological constant Λ.
With these assumptions, the new Friedmann equations read

ä = −4

3
πG

(
ρ̃+ 3

p̃

c2

)
a ,

ȧ2 +Kc2 =
8πG

3
ρ̃a2 .

The condition for a static universe now leads to the relation:

ρ̃ = −3
p̃

c2
=

3Kc2

8πGa2
.

With the discovery of the expansion of the Universe in the late 1920s (Hub-
ble, 1929; Lemâıtre, 1931), the idea of a static solution was abandoned and Λ
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discarded. Toward the end of the 20th century, a groundbreaking discovery
revealed that the universe’s expansion is currently accelerating (Riess et al.,
1998; Perlmutter et al., 1997). This result reignited interest in the cosmo-
logical constant as a repulsive force counteracting the gravitational pull and
offering a simple explanation consistent with the latest observations.

Together, the detection of cosmic acceleration and the CDM as the domi-
nant matter component of the Universe (Bertone et al., 2005), form two of the
key observational foundations of the currently accepted standard cosmological
model.

1.7 Friedmann models

Now we will consider a set of homogeneous and isotropic model universes.
The Friedmann models, which form the foundation of modern cosmology, are
constructed under the assumptions of a perfect fluid, which presents an energy-
momentum tensor described by equation 1.5. In general, we can consider a
fluid which is described by the equation of state

p = wρc2 , (1.39)

where the parameter w is a constant and lies in the range 0 ≤ w ≤ 1. The
case w ≃ 0 represent any fluid component with negligible pressure. This is a
good approximation for any non-relativistic fluid or gas (even if gas at some
temperature exerts some pressure, this typically is way smaller than its rest
mass mc2). Instead, for a fluid composed by photons in thermal equilibrium
the equation of state takes the form

p =
1

3
ρc2 ,

from which it can be derived the parameter w in case of a fluid composed by
photons w = 1

3
.

Assuming an adiabatic expansion of the universe

d(ρc2a3) = −pda3 ,

if we replace the equation of state inside this adiabatic condition we get for a
general fluid component

ρ(t) = ρ0exp

[
−3

∫ a

1

1 + w(a′)

a′
da′
]
. (1.40)

In the case w is constant in time, w can be moved out of the integral, leading
to

ρ(t) = ρ0

(
a

a0

)−3(1+w)

. (1.41)
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This equation represents the evolution in time of the density ρ of a generic
cosmic component with equation-of-state parameter w. Each species of the
universe, possessing a different parameter w, presents a different density evo-
lution. For matter, w = 0,

ρm(t) = ρ0

(
a

a0

)−3

, ρm ∝ a−3 ,

while for radiation, w = 1
3
,

ρr(t) = ρ0

(
a

a0

)−4

, ρr ∝ a−4 .

Using the relation between the scale factor a and the redshift z, eq. 1.30,
the conditions read

ρm(t) = ρ0,m(1 + z)3 , ρm ∝ (1 + z)3 ,

ρr(t) = ρ0,r(1 + z)4 , ρr ∝ (1 + z)4 .

Is important to notice that, following the definition of pΛ,ρΛ in chapter
1.6, the parameter w associated with the cosmological constant is

wΛ =
pΛ
ρΛc2

= −1 ,

so, not only Λ does not act as a standard physical component, but using
equation 1.41, one can show that its energy density is constant in time

ρΛ(t) = ρ0,Λ .

Using equation 1.19 we can rewrite the second Friedmann equation, in the
case of a single-component universe, as(

ȧ

a0

)2

= H2
0

[
Ω0

(
a0
a

)1+3w

+ (1− Ω0)

]
, (1.42)

or also as

H(t)2 = H2
0

(
a0
a

)2[
Ω0

(
a0
a

)1+3w

+ (1− Ω0)

]
. (1.43)

Assuming a flat Universe (Ω = 1) dominated by non-relativistic matter
(w = 0), the equation 1.43 leads to:

a(t) = a0

(
t

t0

) 2
3

. (1.44)

This model is also known as Einstein-de Sitter and, as we can notice from
the above equation, represents a Universe that expands for an indefinite time.
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In the ΛCDM model, the dark energy component is represented by the
cosmological constant with a constant value of w = −1, which corresponds
to a constant equation-of-state parameter w = −1. In this case the equation
1.43 can be rewritten as:

H(z)2 = H2
0

[
Ω0,k(1 + z)2 + Ω0,m(1 + z)3 + Ω0,r(1 + z)4 + Ω0,Λ

]
. (1.45)

1.8 Linear perturbations

While the cosmological principle states that the Universe is homogeneous and
isotropic on large scales, observations show that it is neither homogeneous nor
isotropic on smaller scales. From stars and galaxies to clusters and superclus-
ters, cosmic structures exhibit significant density fluctuations.

Gravitational instability is the primary mechanism driving the formation
of these structures.

In 1902, Jeans formulated a theory (Jeans, 1902) demonstrating that,
starting with a homogeneous and isotropic fluid, small perturbations in density
(δρ) and velocity (δv) could evolve over time. His calculations revealed that
such density fluctuations could grow if the influence of pressure is significantly
weaker than the contribution of self-gravity, which drives the collapse.

However, in his calculations, Jeans did not take into account the expansion
of the Universe, which had not been discovered yet.

The presence of a cosmic expansion significantly suppresses the growth of
density fluctuations: while gravitational pull tends to induce the collapse by
accreting matter in overdense regions, the same matter is being diluted by the
cosmic expansion.

Starting from primordial overdensities with small amplitude, these fluctu-
ations grew over time under the influence of gravity, eventually forming the
complex cosmic structures we observe today.

Using Jeans theory, we can find analytic solutions to describe the evolution
of density perturbations.

Jeans theory is valid only under the assumption of small perturbations, i.e.
within the linear regime. In chapter 3, we will see how to follow the evolution
of perturbations in a non-linear regime.

The core principle of Jeans theory is the concept of the Jeans scale, λJ ,
which represents the threshold above which the gravitational force of a mat-
ter distribution dominates over the opposing force generated by the pressure
gradient. The collapse conditions reads

Fg ≃
GM

λ2
≃ Gρλ3

λ2
> Fp ≃

pλ2

ρλ3
≃ v2s

λ
, (1.46)



Chapter 1. Introduction 13

from which it can be retrieved that the Jeans scale is

λJ ≃ vs√
Gρ

.

Considering an expanding universe, we also have to take into account the
scale of the cosmological horizon RH . The horizon scale indicates the length
under which we have causal connection, and it is defined as

RH(t) = a(t)

∫ t

0

cdt′

a(t′)
. (1.47)

On scales larger than the cosmological horizon, λ > RH , regions of the Uni-
verse are not causally connected, as there has not been enough time for signals
to travel across these distances. As a result, gravity is the dominant inter-
action governing the evolution of perturbations on super-horizon scales. In
contrast, on sub-horizon scales, i.e. λ < RH , microphysical processes, such
as radiation pressure, become significant. These effects can oppose to the
gravitational collapse, especially in the early universe when radiation is the
dominant component, thereby influencing the growth rate and amplitude of
density perturbations.

1.8.1 Super-horizon scales

Let us first consider the case of perturbation over the horizon scale λ > RH . As
we said we consider only gravitational interaction. We treat the perturbation
as a small spherical overdense universe, Ω > 1, inside a flat universe, Ω = 0,
which for simplicity we approximate as Einstein-de Sitter.

Applying the second Friedmann equation (1.15) to both the perturbation
and the background, one gets:

H2
b =

8πG

3
ρb (background) (1.48a)

H2
p =

8πG

3
ρp −

c2

a2
(perturbation) (1.48b)

Given the fact that the perturbation is evolving inside the background uni-
verse, we can synchronize the two by matching their Hubble parameters,
Hb(t) = Hp(t). By equating the two expressions and defining the density
contrast δ as

δ ≡ ρp − ρb
ρb

(1.49)

we obtain that the evolution in time of the perturbation is given by

δ =
3c2

8πG

1

a2ρb
∝ 1

a2
1

ρb
(1.50)
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This equation tells us that the evolution of the density contrast of the pertur-
bation at scales λ > RH depends on the behavior of the background density
ρb. In particular,

t < teq : ρb = ρr ∝ a−4 so δ ∝ a2 (1.51a)

t > teq : ρb = ρDM ∝ a−3 so δ ∝ a (1.51b)

In the case λ > λH , all the components of the universe are coupled only
by the effect of gravitational interaction. In this way, the perturbations follow
the behavior of the dominant component of the respective epoch, which is
radiation for t < teq and dark matter for t > teq.

t < teq δb ∝ δDM ∝ δR ∝ a2 (1.52a)

t > teq δR ∝ δb ∝ δDM ∝ a (1.52b)

1.8.2 Sub-horizon scales

We will now treat, instead, the solutions in the case of perturbation within
the horizon scales λ < λH .

Within the horizon scale, the evolution of perturbations is shaped by mi-
crophysical effects that influence their growth and dynamics. To analyze their
behavior in this regime, we begin with the fluid dynamic equations. From
these, Jeans theory provides a framework for describing the interplay of forces
governing the evolution of perturbations.

The equations of motion for a perfect fluid, in the Newtonian approxima-
tion, considering the cosmic expansion, are given by

∂ρ

∂t
+∇ · ρu⃗ = 0 (1.53a)

∂u⃗

∂t
+ (u⃗ · ∇)u⃗+

1

ρ
∇p+∇φ = 0 (1.53b)

∇2ϕ− 4πGρ = 0 (1.53c)

p = p(ρ, s) = p(ρ) (1.53d)

∂s

∂t
+ u⃗ · ∇s = 0 (1.53e)

These are respectively the continuity equation (1.53a), the Euler equation
(1.53b), the Poisson equation (1.53c), the equation of state (1.53d) and the
condition of adiabatic fluctuations (1.53e). In these equations, ρ represents the
density of the fluid, u the total velocity 1, p the pressure, ϕ the gravitational
potential, and s the entropy. The last equation (1.53e) leads to a fluid whose
equation of state depends only on pressure and density. In this way, the
pressure p can be expressed as a function of ρ only, and we can consider the
system composed by only the first four equations.

1we call u the total velocity and v the peculiar one
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The fundamental idea in Jeans theory is to start from a solution (back-
ground) which satisfies the equations above and add a small linear perturba-
tion.

Here we consider r, x as the physical and comoving distances

r = ax (1.54)

If we want to derive the total velocity we obtain

u = Hr + v (1.55)

where the peculiar velocity v has been defined as

v = aẋ (1.56)

In this way, the background velocity corresponds to the Hubble flow Hr,
while the small perturbation is given by the peculiar velocity v, leading to the
following system of equations:

ρ = ρb + δρ (1.57a)

u = Hr + v (1.57b)

ϕ = ϕb + δϕ (1.57c)

p = pb + δp (1.57d)

Introducing this perturbed solution into the system of equations 1.53 and
neglecting terms of higher order, we obtain the following system of equations:

∂

∂t

∣∣∣∣
r

δρ+ ρb∇rδv + 3Hr∇rδρ = 0 (1.58a)

∂

∂t

∣∣∣∣
r

δv +Hδv +Hr∇rδv = −v
2
s

ρb
∇rδρ−∇rδϕ (1.58b)

∇2
rδΦ = 4πGδρ (1.58c)

where ∂
∂t

∣∣∣∣
r

and ∇r are referred to the proper coordinate frame. Moving to

comoving frame, the system becomes

∂

∂t

∣∣∣∣
x

δρ+
ρb
a
∇xδv + 3Hδρ = 0 (1.59a)

∂

∂t

∣∣∣∣
x

δv +Hδv = −1

a
v2s∇xδ −

1

a
∇xδϕ (1.59b)

1

a2
∇2

xδΦ = 4πGδρ (1.59c)
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where we defined δ = δρ/ρb.
To solve the system of equations we move to Fourier space considering

solutions in the form of plane waves

δf(x, t) = δfk(t)exp(ik · x) (1.60)

in this way the system can be rewritten as

δk +
ikδvk
a

= 0 (1.61)

δv̇k +
ȧ

a
δvk = −ik

a

[
v2sδk + δΦk

]
(1.62)

δΦk = −4πGρbδka
2

k2
(1.63)

Splitting the velocity field in a parallel and perpendicular component with
respect to the k direction as vk = vk,∥ + vk,⊥ the perpendicular component of
the Euler equation decrease with time, δk,⊥ ∝ a−1 so we will neglect it.

Finally, combining all three equations, we obtain that the growth of linear
matter density perturbation at sub-horizon scales in comoving coordinates
reads

δ̈k + 2Hδ̇k + k2
v2s
a2
δk = 4πGρbδk (1.64)

while, in physical coordinates it reads

δ̈k + 2Hδ̇k + v2sk
2δm = 4πGρbδb (1.65)

where δ̈k represents the acceleration of the perturbation growth, 2Hδ̇k is the
expansion term that slows down the perturbation growth, the term v2sk

2δk
indicates the dissipation due to velocity, and 4πGρbδk represents the gravita-
tional contribution to the perturbation growth.

For t > teq, the universe is matter-dominated, behaving like an Einstein-
de Sitter model ( section 1.7). In this case the equation 1.65 becomes the
following

δ̈k +
4

3

δ̇k
t
+

2

3

δk
t2

(
k2v2s
4πGρb

− 1

)
= 0 (1.66)

To study the growth of density perturbations in the early universe, we
consider solutions to the perturbation equations in the form of a power law in
time, δk ∝ tα, obtaining the following dispersion relation:

3α2 + α + 2

[
k2v2s
4πGρb

− 1

]
= 0 (1.67)

This is a quadratic equation in α, which means that it admits two solutions.
By setting the discriminant ∆ = 0 we find the characteristic length

λJ =
vs
5

√
24π

Gρb
(1.68)
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which is called Jeans length. This length marks the threshold between gravi-
tational collapse and pressure-supported oscillations.

For scales under the Jeans scale, λ < λJ , the equation 1.67 has discrimi-
nant ∆ < 0, leading to two imaginary solutions. Physically, this means that
perturbations do not grow but instead oscillate as sound waves. Since these
modes do not contribute to structure formation, they can be neglected when
studying the growth of cosmic structures.

For scales above the Jeans scale, λ > λJ , the determinant ∆ > 0 so the
equation 1.67 presents two real solutions defined by

α1,2 =
−1± 5

√
1−

(
λJ

λ

)2
6

(1.69)

Assuming for simplicity scales way larger than Jeans length, λ≫ λJ , then
α1,2 ≃ −1±5

6
leading to the following solutions:

δ− ∝ t−1 ∝ a−3/2

δ+ ∝ t2/3 ∝ a
(1.70)

The decaying solution δ− rapidly becomes negligible as the universe ex-
pands. Since structure formation relies on the amplification of perturbations
over time, the only physically relevant solution is the growing mode δ+.

The above solution applies to all non-relativistic matter (baryons and
CDM) once they decouple from radiation. However, the behavior of per-
turbations differs significantly before and after matter-radiation equality(teq).

It can be shown that in a radiation-dominated universe, radiation pertur-
bations are not able to grow inside the horizon because radiation pressure
(from relativistic particles) opposes to gravitational collapse. So for t < teq
radiation perturbations do not grow within the horizon and, given that bary-
onic matter is still coupled with radiation, neither baryonic perturbations are
able to grow.

Unlike baryons, dark matter is collisionless and decoupled from radiation
early on. Let us study the case of DM fluctuation inside the horizon at t < teq.
Equation 1.65 can be written as

δ̈DM + 2Hδ̇DM − 4πGρb,DM = 0 (1.71)

where we wrote for simplicity δk,DM = δDM and we neglected the dissipation
term k2v2sδDM assuming scales way bigger than the Jeans scale.

Solving this equation one can find that the growth of DM perturbation
inside the horizon for t < teq is described by

δDM = 1 + 3
a

aeq
with a < aeq (1.72)

This equation indicates a logarithmic growth of dark-matter perturbation dur-
ing the radiation-dominated epoch, much slower than the δ ∝ a growth in the
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matter-dominated epoch. The cosmic horizon expands with time, meaning
that progressively larger scales enter the horizon as time increases.

The fate of a DM perturbation depends on when it crosses the horizon:

• t < teq: Once inside the horizon, their growth is severely limited accord-
ing to equation 1.72. By teq, they have grown by at most a factor of
5/2, this heavily suppression is called the Meszaros effect

• t > teq: They remains outside the horizon durin the readiation-domination
epoch, continuing to grows as δ ∝ α2 until teq

Only after the equivalence, when the Universe passes from radiation-dominated
to matter-dominated, the dark-matter perturbations inside the horizon con-
tinue to grow as δ ∝ a.

While DM perturbations restart to grow right after teq, baryonic matter
remains coupled to radiation until they decouple at later times.

When baryonic matter finally decouples from radiation, dark matter has
already formed shallow potential wells during the radiation era (due to its
earlier decoupling). For this reason, baryonic perturbations do not evolve
freely but instead fall into the preexisting DM halos. This rapid growth of
baryonic perturbation is called baryon catch-up and is described by

δb ∝ δDM

(
1− adec

a

)
(1.73)

1.9 Statistical properties of Clustering

In this section, we introduce the foundational methods used to quantify the
clustering of matter in the Universe, focusing in particular on the two-point
correlation function and the power spectrum. Together, these statistical mea-
sures are fundamental to connect theoretical models of structure formation
with observational data, enabling precise constraints on cosmological param-
eters and the underlying physics of the Universe.

We already saw how gravitational instability is the main driving force
leading to the formation of structures in the universe. To accurately analyze
gravitational instability, we must develop statistical methods that can set the
initial conditions to the gravitation instability equation and validate theoret-
ical models by comparing them with observed galaxy distributions at large
scales.

Density perturbations are believed to originate from quantum fluctuations
stretched during the final stages of inflation, resulting in nearly Gaussian
stochastic distributions, as confirmed by Planck measurements showing neg-
ligible deviations from Gaussianity in the CMB anisotropies (Akrami et al.,
2019). For this reason we can define the density fluctuation δ(x⃗)

δ(x) =
ρ(x)− ρ̄

ρ̄
(1.74)



Chapter 1. Introduction 19

as a random field, whose probability is set by a Gaussian statistical distribu-
tion

p(δ) =
1√

2πσ(t)
exp

{
−1

2

[
δ

σ(t)

]2}
(1.75)

with a zero mean ⟨δ⟩ = 0, to ensure that the universe is homogeneous and
isotropic, and variance σ2(t) = ⟨δ2⟩.

According to the ergodic hypothesis, each realization of a stochastic pro-
cess, as long as constituted by a sufficiently large amount of data, becomes
representative of the whole ensemble statistical properties. Therefore, it is
possible to construct, formally, a ‘realization’ of the Universe by dividing it
into cubic cells of volume V with periodic boundary conditions at the faces of
each cube.

In Section 1.8, we analyzed the linear evolution of density perturbations
by representing them as plane waves characterized by a wavevector k. This
approach is particularly effective because, according to the Fourier decompo-
sition theorem, any general perturbation can be expressed as a sum of these
plane wave modes, which evolve independently from one another as long as
the evolution remains in the linear regime.

This allows us to write the following relation for the density fluctuation:

δ(x) =

∫
d3k

(2π)3
δke

ik·x (1.76)

where k is the comoving wavenumber and x the comoving coordinate.
Given two points in space at positions x,x+r we can define the correlation

function as
ξ(|r|) = ⟨δ(x)δ(x+ r)⟩ (1.77)

Using equation 1.76 the correlation function can be written in Fourier space

ξ(r) =

∫
d3k

8π3

∫
d3k′

8π3
⟨δkδk′⟩ei(k+k′)·xeik·r (1.78)

where we called

δ(x) =

∫
d3k′

(2π)3
δk′e

ik′·x

δ(x+ r) =

∫
d3k

(2π)3
δke

ik·x
(1.79)

The power spectrum P (k) can be defined using the relation

⟨δkδk′⟩ = (2π)3δD(k+ k′)P (k) (1.80)

where δD(k + k′) is the Dirac delta. Substituting equation 1.80 inside 1.78
we obtain the following relations between the Power spectrum P (k) and the
correlation function ξ(r)

ξ(r) =
1

(2π)3

∫
d3k P (k)eik·r (1.81)
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The Power spectrum determines the importance of a fluctuation with
wavenumber k, in fact we can notice that for k = −k′ we have P (k) ∝
⟨|δ(k)|2⟩. Precisely the power spectrum P(k) represents a power density while
the power is the integral of P(k) on the Fourier space volume

∫
P (k)d3k. For

this reason P(k) depends only on amplitude of k (and not k).
Since ξ(r) only depends on distance r, we can use spherical coordinates

,
∫
d3k =

∫
dkx

∫
dky

∫
dkz =

∫ 2π

0

∫ π

0
sinθdθ

∫∞
0
k2dk obtaining, for k = −k′

⟨|δ(x)|2⟩ = (2π)3P (k) δ
(3)
D (0) = P (k)V∞ (1.82)

where V∞ is the volume of the universe.
We can define the variance σ2 of the density field as

σ2 = ⟨|δ(x)|⟩ (1.83)

If we divide the universe in independent samples, each large enough to be
considered representative, we can compute the variance σ2 through a double
average: the average on all volumes of the spatial quadratic average of δ

σ2 =
1

V

∫
⟨δ2(x)⟩d3x (1.84)

Using the Parseval theorem 2 the latter relation becomes

σ2 =
1

(2π)3

∫ ∞

−∞
P (k)d3k (1.85)

which indicates that the covariance is just the integral of the power spectrum
on the whole Fourier space. Passing to spherical coordinates, equation 1.85
can be written as

σ2 =
1

2π2

∫ ∞

0

k2P (k)dk (1.86)

Actually, what we found is valid for a punctual variance, but in real sit-
uations we use average quantities such as the density within a given volume,
so what we calculate is not a punctual variance but a filtered one.

We can define the filtered density field as

δM(x) = δ(x) ∗W (x, R) (1.87)

where W (x, R) is the filter function. A commonly used filter is the top-hat
filter, which is centered at position x and has a radius R. The corresponding
filter function W is constant within the sphere of radius R, and zero outside.

The convolution operation does not change the distribution property mean-
ing that also δM is a Gaussian distribution.

2According to Parseval Thorem the integral on the whole range x (−∞,+∞) of the prod-
uct of two functions is equal to the integral on the infinite Fourier space of the transformed
quantity times a factor 1/2π
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Using the convolution property in Fourier space we can finally define the
mass variance as

σM =
1

(2π)3

∫ ∞

−∞
P (K)Ŵ 2(k,R)d3k (1.88)

It is interesting to notice that as R → 0 , the mass variance σ2
M → σ, meaning

that when the filter radius tends to 0 we increase the precision (i.e. we are able
to probe smaller and smaller regions) and the mass variance tends to coincide
to the punctual one. Conversely, as R → ∞ , the variance σ2

M → 0 which is
expected since when filtering the whole space, the density contrast δ would
have zero mean. By convention the filtering radius is set at R = 8Mpch−1,
defining σ8 as:

σ8 =
1

(2π)3

∫ ∞

−∞
P (K)Ŵ 2(k,R = 8Mpch−1)d3k (1.89)

1.9.1 Power Spectrum

At the end of inflation, the oscillations of the inflaton field generate primordial
density fluctuations, which provide the initial conditions for the later forma-
tion of cosmic structures. Inflation is a period of extremely rapid and nearly
uniform exponential expansion, meaning that space expands at almost the
same rate everywhere with negligible variations. This near-uniformity ensures
that inflation does not introduce any preferred physical scale (no particular
size or distance is favored over another). As a result, the statistical properties
of the primordial fluctuations must be scale-invariant, meaning that they have
the same amplitude across all observable scales, a prediction that aligns with
observations of the cosmic microwave background (Akrami et al., 2019). This
is reflected assuming a power spectrum in a power law form

P (k) = Akn (1.90)

where A is the amplitude of the power spectrum and n the spectral index.
We have seen that density field fluctuations, which form with a primordial

amplitude δ = δ(x, ti) at initial time ti grow over time according to the growing
solution of the dispersion relation. This means that at a later time t > ti, the
fluctuations evolve as δ(t) = δ+(t). Since this solution is solely a function of
time, it does not introduce any dependence on scale. This statement holds
as long as we consider scales significantly larger than the Jeans scale λ≫ λJ
where gravitational interaction is the dominant force. In such a regime, all
perturbations grow in the same way across all scales.

Now, if we assume that the initial power spectrum follows the form P (k, ti) =
Pi ∝ δ2i , at a given time t > ti the power spectrum evolves, in an EdS model,
as

P (k, t) ∝ δ2i δ
2
+(t) (1.91)
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With these assumptions, the mass variance

σ2
M ∝ δ2+(t)

∫
Pid

3k ∝ δ2+(t)

∫
Aknd3k ∝ δ2+(t)k

n+3 ∝ δ2+(t)M
−n+3

3 (1.92)

So far we assumed the validity of the linear approximation, which is valid
in the limit |δ| < 1, σ2 < 1. To check the limit of our approximation we can
define the mass M∗ at which we lose linearity as σ2

M(M∗) ∼ 1 leading to

M∗(t) ∝ δ
6

n+3

+ (1.93)

As we saw in chapter 1.8 the horizon scale has an impact on the evolution
of perturbation growth and so on the power spectrum.

Assuming the universe as an EdS model, the increase of horizon radius is
given by

RH ∝

{
a2 (a < aeq)

a3/2 (a > aeq)
(1.94)

while the growth factor

δ+ ∝

{
a2 (a < aeq)

a (a > aeq)
(1.95)

If we consider a perturbation entering the horizon before the equivalence
aH < aeq, where we called aH the time at which the perturbation enters the
horizon, the growth of density fluctuations is significantly suppressed. This
suppression occurs because the dominant radiation component exerts substan-
tial pressure, counteracting the gravitational collapse that would otherwise
amplify perturbations. The growth of such perturbations can be described by
the relation:

δ(k, teq) = δ(k, ti)

(
aH
ai

)2

∝ δ(k, ti) a
2
H (1.96)

which states that the power spectrum gets modified by a factor a2H . Smaller-
scale perturbations (larger k) enter the horizon earlier, this relationship im-
plies that aH ∝ k−1, allowing us to rewrite the density contrast as: δ(k, teq) ∝
δ(k, ti)k

−2

and, since the power spectrum is proportional to the square of density
contrast, it follows that:

P (k, teq) ∝ Pi k
−4 (1.97)

The steep k−4 dependence implies a strong suppression of power on small
scales, as a consequence of the Meszaros effect described in section 1.8, whereby
perturbations that enter the horizon during the radiation-dominated era un-
dergo minimal growth due to the opposing influence of radiation pressure
counteracting gravitational collapse. Consequently, these small-scale modes
contribute less to the overall structure formation, as their power spectrum falls
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off rapidly for k > keq, where keq corresponds the scale of the cosmological
horizon at teq.

In contrast, perturbations that enter the horizon after matter-radiation
equality, corresponding to scales with aH > aeq, evolve under very different
conditions. By this epoch, the universe has transitioned to matter domina-
tion, and the absence of significant pressure support allows perturbations to
grow unimpeded by radiation effects. The growth of these perturbations is
described by:

δ(k, teq) = δ(k, ti)

(
aeq
ai

)2

∝ δ(k, ti) (1.98)

Here, the growth factor depends only on the ratio of the scale factors and
is independent on k. This means that the shape of thr primordial power
spectrum is preserved:

P (k, teq) ∝ Pi(k) (1.99)

As a result, the power spectrum exhibits a peak at keq, corresponding to
the scale that entered the horizon at matter-radiation equivalence.

In general we can link the initial power spectrum to the one at equivalence
defining a transfer function T (k) as

P (k, teq) = P (k, ti)T
2(k) (1.100)

where the transfer function accounts for the different perturbation evolution
between large scales (small k) and small scales (large k).

Since dark matter is collisionless, we cannot speak of a true dissipation in
its perturbations. However, once dark matter decouples from radiation (well
before teq), its particles begin to propagate freely, interacting only gravita-
tionally and moving from regions of higher density to lower density. This
phenomenon, known as free streaming, determines the free-streaming scale
λFS as the scale below which dark matter perturbations are smoothed out.

The free-streaming scale strongly depends on the Dark Matter nature. In
Hot Dark Matter scenario (HDM) the dark matter particles are light particles
which decouple from radiation when they are still relativistic. This implies a
larger free-streaming massMFS ∼ 1016M⊙ with respect to Cold Darm Matter
(CDM) case, for which insteadMFS ∼ 105−6M⊙. This implies that in the case
of Hot Dark Matter (HDM), small-scale perturbations are suppressed, caus-
ing structure formation to begin on large scales first, a so-called top-down
scenario. In contrast, Cold Dark Matter (CDM) allows small-scale pertur-
bations to grow first, leading to a hierarchical formation process known as a
bottom-up scenario.

In figure 1.1 we can better see how in CDM-dominated universe most of the
power reside in smaller scales while for HDM-dominated universe the opposite
occurs. The WDM curve represents a Warm Dark Matter model which is
a hypothetical form of dark matter composed of particles with masses and
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Figure 1.1: Late time linear power spectra in universe dominated by hot,warm
and cold dark matter presented in Frenk and White (2012). The y-axis gives
the total power density per decade in spatial frequency k.

thermal velocities intermediate between those of Cold Dark Matter (CDM)
and Hot Dark Matter (HDM).

Current observations align well with the hierarchical merging of structures
of CDM scenario (Frenk and White, 2012), for which the transfer function is
represented by

T (k) ∝

{
k0 for k < keq

k−2 for k > keq
(1.101)

Later in time, as density fluctuations approach unity in amplitude, they
transition into the non-linear regime, where linear approximations are no
longer valid for describing their growth.

1.10 Gravitational Lensing

Gravitational lensing is a powerful tool in modern cosmology, offering a unique
method for probing the distribution of matter in the universe, including both
visible and dark matter (Weinberg, 2008; Bartelmann and Schneider, 2001).
This phenomenon arises from the deflection of light by gravitational fields, as
predicted by Einstein’s theory of General Relativity (Congdon and Keeton,
2018). When light from distant galaxies passes near massive objects, such as
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galaxy clusters or large-scale structures, its trajectory is bent, leading to dis-
tortions in the observed images of background sources. Gravitational lensing
is typically categorized into two regimes (Weinberg, 2008):

• Strong Lensing: Produces dramatic effects such as multiple images,
arcs, or Einstein rings. It occurs when the lensing mass is very dense
and it can provide detailed information about the mass distribution of
the lens.

• Weak Lensing: Involves subtle distortions in the shapes of background
galaxies, typically by large-scale structures. Although the individual dis-
tortions are small, statistical analysis over large galaxy samples enables
the reconstruction of the underlying matter distribution, including dark
matter.

To model the trajectories of light rays in a cosmological context, we make
several simplifying assumptions. First, we assume that the geometry of the
space-time is well described by the FLRW metric (see section 1.2).

We then adopt the Born approximation, which assumes that the pertur-
bations of the light rays are sufficiently weak, allowing the deflection to be
calculated along the unperturbed, straight path.

Third, we assume the gravitational potential Φ of the lens to be weak,
|Φ2| ≪ c2, allowing it to be treated within the Newtonian approximation.
Under these conditions, the deflection angle α̂ can be expresses as (Coles and
Lucchin, 2002):

α̂ =
2

c2

∫
∇⊥Φdl (1.102)

where the integral is taken along the photon’s trajectory, and ∇⊥Φ denotes
the gradient of the Newtonian potential perpendicular to the light path. We
consider only ∇⊥Φ because only the perpendicular component of the gravita-
tional potential gradient affects the direction of the light ray.

Considering the potential of a point-like lens with impact parameter b, i.e.
the perpendicular distance between the light path and the lens, and distance
along the ray’s trajectory z, we can write the potential of the lens as

Φ(b, z) = − GM√
b2 + z2

(1.103)

which, when substituted into the deflection angle equation, yields:

∇⊥Φ(b.z) =
GMb

(b2 + z2)3/2
(1.104)

By replacing the latter in equation 1.102, we obtain the following relation:

α̂ =
2

c2

∫
∇⊥Φdz =

4GM

c2b
(1.105)
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Figure 1.2: Picture from Coles and Lucchin (2002) which describes the grav-
itational lensing of a photon traveling from source S to the observer O. The
photon is deflected by an angle α̂, the angular separation os the source S and
image L from the optic axis are β and θ respectively.

In the weak lensing regime, the lens can be approximated as a thin mass
layer characterized by its surface density Σ, which can be written as the
integral of the matter density along the photon path

Σ(ξ) =

∫
ρ(ξ, z)dz (1.106)

The total deflection angle is then a superposition of the contributions of
all the mass elements in the lens plane (Bartelmann and Schneider, 2001):

α̂(ξ) =
4G

c2

∫
(ξ − ξ′)Σ(ξ′)

|ξ − ξ′|
d2ξ′ (1.107)

In other words, the deflection is a vector sum of contributions from all
mass elements in the lens plane, weighted by their distance from the light ray.

If we assume that the lens has circular symmetry, the deflection angle
always points toward the center of mass, and its magnitude depends only on
the enclosed mass

M(ξ) = 2π

∫ ξ

0

Σ(ξ′)ξ′dξ′ (1.108)

allowing us to write

α̂(ξ) =
4GM(ξ)

c2ξ
(1.109)

Considering the geometry in figure 1.2, we can introduce the reduced de-
flection angle α as

α =
Dds

Ds

α̂ (1.110)
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Assuming β, θ, α̂ to be small angles we get

θDs = βDs − α̂Dds (1.111)

from which, by employing equation 1.110, we obtain

β = θ −α (1.112)

This equation is called the lens equation and relates the angular position
of the image (θ) to the angular position of the source (β).

To generalize beyond spherical symmetry, we can simplify the mathemat-
ical description of gravitational lensing by defining the scaled potential, also
known as lensing potential, ψ(θ) with the following relation:

ψ(θ) =
1

D

2

c2

∫
Φ(Ddθ, z)dz (1.113)

While the gravitational potential Φ is a 3D function, the scaled potential
ψ represents the projection of the 3D potential onto the 2D plane.

Having defined the scaled potential ψ, the gradient of ψ with respect to θ
is precisely the deflection angle (Coles and Lucchin, 2002)

∇θψ = Dd∇ξψ =
2

c2
Dds

Ds

∫
∇⊥Φdz = α (1.114)

where, as shown in figure 1.2, for small angles ξ = Ddθ.
If we compute the Laplacian of the scaled potential, we obtain

∇2
θψ =

2

c2
DdDds

Ds

∫
∇2

ξΦdz =
2

c2
DdDds

Ds

4πGΣ = 2
Σ

Σ∗
(1.115)

in which we used the Poisson equation ∇2Φ = 4πGρ, and we defined a critical
surface density Σ∗ ≡ c2

4πG
Ds

DdDds
.

Therefore, we can define the convergence κ as:

κ(θ) ≡ Σ(θ)

Σ∗
(1.116)

Combining equation 1.115 and the definition of the convergence κ in equa-
tion 1.116, We obtain a two-dimensional analogue of the Poisson equation
(Coles and Lucchin, 2002)

∇2
θψ = 2k(θ) (1.117)

This relation highlights the direct link between the lensing potential and the
surface mass density projected along the line of sight.

The critical surface density Σ∗ serves as a threshold: if the local surface
mass density Σ satisfies κ = Σ/Σ∗ ≥ 1, the lensing potential is strong enough
to produce multiple images of the same background source.
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According to the lens equation (1.112), if this equation admits more than
one solution for a fixed source position β, then the observer detects multi-
ple images at different angular positions θ (Bartelmann and Schneider, 2001;
Congdon and Keeton, 2018).

This defines the strong lensing regime. In contrast, if k < 1, the lensing
can be classified as weak and produces only small, single-image distortions.

Equation 1.117 admits as a general solution (Coles and Lucchin, 2002;
Bartelmann and Schneider, 2001):

ψ(θ) =
1

π

∫
κ(θ)log(|θ − θ′|)d2θ′ (1.118)

From this, using the gradient of the potential as defined in equation 1.114, we
obtain the deflection:

α(θ) =
1

π

∫
κ(θ)

θ − θ′

|θ − θ′|2
d2θ′ (1.119)

In general, the lens produces a mapping of the source plane onto the image
plane. The local properties of this mapping are best specified by the Jacobian
matrix (Coles and Lucchin, 2002)

Aij =
∂βi
∂θj

=

(
δij −

∂αi(θ)

∂θj

)
=

(
δij −

∂2ψ

∂θi∂θj

)
(1.120)

Defining the notation

ψij ≡
∂2ψ

∂θi∂θj
(1.121)

equation 1.117 brings to

k =
1

2
(ψ11 + ψ22) (1.122)

Using the elements of ψij we can construct the components of a shear
tensor

γ1 =
1

2
(ψ11 − ψ22) ≡ γcos(2ϕ)

γ2 = ψ12 = ψ21) ≡ γsin(2ϕ)
(1.123)

Using these terms we can write the distortion matrix as

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
(1.124)

which can be rewritten as

A = (1− κ)

(
1 0
0 1

)
− γ

(
cos2ϕ sin2ϕ
sin2ϕ −cos2ϕ

)
(1.125)

where we used γ =
√
γ21 + γ22 . This notation is useful because it allows a

simple visual interpretation of the effects of lensing. A pure convergence k
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corresponds to an isotropic magnification of the source in such a way that
a circular source becomes a larger, or smaller, but still circular image. The
components γ1 and γ2 of the shear are represented in such a way that γ is the
magnitude of the shear and ϕ its orientation. A non-zero shear transforms a
circular source into an elliptical image.

1.10.1 Weak Lensing Observables

The ability of a gravitational lens to produce multiple images depends on its
effective ”strength,” commonly quantified by the dimensionless convergence κ.
While the classification into weak and strong lensing is a useful simplification,
it is not a fundamental distinction as both phenomena arise from the same
underlying physics (Normann et al., 2024). Nonetheless, from a mathematical
standpoint, multiple imaging occurs when k > 1, corresponding to surface
mass densities exceeding the critical threshold Σ∗.

In contrast, the weak lensing regime is defined by k ≪ 1, where the lensing
mass is insufficient to generate multiple images. Instead, it induces small
but coherent distortions in the shapes of background galaxies, typically at
the percent level. These subtle effects cannot be inferred from individual
sources but emerge statistically across large samples of galaxies (Bartelmann
and Schneider, 2001). Weak gravitational lensing thus serves as a powerful
probe of the large-scale matter distribution in the universe. Measuring shear
patterns over wide sky areas, enables the reconstruction of the projected mass
density, tracing both luminous and dark matter structures.

Statistical analyses across wide fields of view, enabled by deep galaxy
surveys and high-resolution imaging (Abbott et al., 2022; Heymans et al.,
2021), have provided constraints on key cosmological parameters, including:

• The matter density parameter Ωm

• The amplitude of matter fluctuations encoded in S8

• Dark energy properties through redshift evolution of lensing signals

Furthermore, weak lensing tomography, combining shear measurements
across multiple redshift bins, offers a powerful means of mapping the growth
of structure over cosmic time. This makes weak lensing a uniquely sensitive
tool for testing theories of gravity and distinguishing between dark energy
models and modifications to General Relativity.

1.11 Observational contrains and ΛCDM model

The discovery of the accelerated expansion of the universe, primarily through
observations of Type Ia supernovae (SNe Ia), marked a turning point in cos-
mology. This discovery, later corroborated by measurements of the Cosmic
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Microwave Background (CMB) and large-scale structure, revealed that the
universe is dominated by a mysterious form of energy known as dark energy.
The standard cosmological framework, known as the ΛCDM model, incor-
porates both a cosmological constant Λ (as a form of dark energy) and cold
dark matter (CDM) to describe the evolution of the Universe. While Λ suc-
cessfully accounts for a wide range of cosmological observations, significant
theoretical and observational tensions persist. This section outlines the key
observational pillars supporting the ΛCDM model and introduces the central
problems that challenge its completeness. These unresolved issues motivate
the investigation of alternative dark energy models, which will be the focus of
the next chapters.

CMB and BAO

The cosmic microwave background (CMB) anisotropies contain valuable in-
formation of the early universe, capturing conditions before cosmic structures
formed, when photons decoupled from baryons. The angular power spectrum
of CMB temperature anisotropies is dominated, at scales below the horizon,
by acoustic peaks that arise from gravity-driven sound waves in the photon-
baryon fluid. The measurement of the positions and the amplitude of these
peaks (Frieman et al., 2008) allows cosmologists to determine that the uni-
verse is flat within a few percent and indicates that matter contributes only
to a small fraction of the cosmic energy budget. However, they also reveal
that matter accounts for only about a quarter of the total energy density. To
make these observations consistent, in particular when combined with large-
scale structure measurements or independent determinations of the Hubble
constant, a smoothly distributed energy component is required. This leads
naturally to the dark energy hypothesis, which explains the observed late-
time acceleration of the Universe.

Dark energy also leaves its mark on large-scale CMB anisotropies through
the integrated Sachs-Wolfe (ISW) effect. As photons traverse evolving gravi-
tational potential wells, they experience differential redshifts, causing a small
correlation between the CMB and the low-redshift matter distribution.

CMB provides critical constraints on cosmological parameters, such as
the Hubble constant H0 and the matter density ΩM , the latest constrains of
Planck satellite will be described in section 1.11.1.

Type Ia Supernovae

Type Ia supernovae (SNe Ia) are characterized by their hydrogen-free spec-
tra and prominent silicon (Si II) absorption lines at peak brightness. Their
light curves follow a well-defined pattern, brightening and fading smoothly
with remarkable uniformity. At maximum luminosity, SNe Ia can rival the
brightness of their host galaxies, making them detectable at high redshifts,
where the influence of local peculiar velocities is minimal. This combination
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of consistency in behavior and intrinsic brightness renders SNe Ia exceptional
standard candles for measuring cosmic distances and constraining cosmologi-
cal parameters.

However, the peak luminosity of Type Ia supernovae (SNe Ia) exhibits
significant intrinsic variation, which initially posed a challenge for their use
in cosmology. A breakthrough came with the discovery of a key empirical
correlation (Phillips, 1993) which relates the shape of the light curve to the
peak luminosity, allowing to determine the absolute magnitude MB of SNIa.

In this way, by measuring the apparent magnitude mB of Supernovae one
can compute the luminosity distance dL using

m−M = 5log10(dL)− 5 (1.126)

where dL is measure in parsec.

Figure 1.3: Hubble diagram of SNe Ia measured by th Supernova Cosmology
Project and High-z Supernova Team from Perlmutter and Schmidt (2003).

In the late 1990s (Frieman et al., 2008) two independent teams, the Super-
nova Cosmology Project (Perlmutter et al., 1997) and the High-Z Supernova
Search (Riess et al., 1998), used SNe Ia to measure the SN Hubble diagram
to much larger distances than was previously possible, but discovered that
distant supernovae were fainter than expected in a decelerating universe, pro-
viding the first direct evidence for cosmic acceleration.
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The Hubble diagram, which plots the distance modulus of SNe Ia against
redshift, is a powerful tool for constraining the properties of dark energy.
The observed dimming of high-redshift SNe Ia implies that the universe has
been accelerating for the past several billion years. By fitting the Hubble
diagram to cosmological models, astronomers can constrain the equation-of-
state parameter w of dark energy, as shown in 1.6, which describes the ratio
of its pressure to its energy density.

Recent results from DESI collaboration (DESI et al., 2025a,b) suggest a
deviation from the standard ΛCDM model, favoring a dynamical dark energy
scenario where the equation-of-state parameter, modeled as w(a) = w0 +
wa(1− a), is consistent with w0 > −1 and wa < 0.

1.11.1 ΛCDM model and its challenges

The cosmological constant Λ and the evidence of non-baryonic cold dark mat-
ter (CDM) (Bertone et al., 2005; Bergström, 2012), which dominates the mat-
ter content of the Universe, constitute now the two fundamental pillars from
which the cosmological model (ΛCDM) takes its name.

The ΛCDM model is founded on the assumption of a spatially flat uni-
verse, which is strongly supported by cosmic microwave background (CMB)
observations. It successfully explains a broad range of cosmological observa-
tions, from the anisotropies in the CMB to large-scale structure formation and
the observed accelerated expansion of the Universe.

The cosmological constant Λ is interpreted as the energy density of the
vacuum, which has a constant equation of state w = −1, meaning that its
density remains constant over cosmic time.

The latest and most precise constraints on the ΛCDM parameters come
from the Planck satellite’s 2018 data release (Aghanim et al., 2020), which
provides a comprehensive analysis of the CMB power spectra and confirms a
nearly flat universe with a total matter density parameter Ωm ≃ 0.315 and a
cosmological constant contribution ΩΛ ≃ 0.685

Despite the agreement with observations (Aghanim et al., 2020), two fun-
damental problems arise from the cosmological constant Λ: the fine-tuning
problem and the coincidence problem.

As we saw in section 1.6, the Einstein equations are modified by the pres-
ence of the cosmological constant Λ, which introduces a density ρΛ, and pres-
sure pΛ, related by:

ρΛ = −pΛ
c2

=
Λc2

8πG
(1.127)

As observations lead to ΩΛ ≃ 0.68 (Aghanim et al., 2020), one can find
that the energy density associated with the cosmological constant must be

|ρΛ| ∼ 10−48GeV 4 (1.128)
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The energy density of the cosmological constant ρΛ can be interpreted as
the energy of the vacuum in Quantum Field Theory, that can be theoretically
estimated by summing the zero-point energies of all quantum fields up to a
high-energy cut-off scale. Assuming such cut-off at the Planck scale, MPl ∼
1018GeV (Carroll, 2001), leads to:

|ρΛ| ∼ 1072GeV 4 (1.129)

The cosmological constant problem arises when comparing this theoretical
estimate of ρΛ to the value derived from observational constraints, revealing
a discrepancy of ∼ 120 orders of magnitude.

The cosmological constant problem highlights a severe fine-tuning issue:
the observed vacuum energy density is incredibly small compared to theoret-
ical predictions, requiring a severe cancellation of nearly 120 orders of mag-
nitude. Alternative theories, such as Dynamical dark energy models, propose
that the vacuum energy evolves over time, potentially avoiding the need for
such extreme fine-tuning by naturally driving the effective cosmological con-
stant toward a small value through dynamical processes rather than static
cancellation.

The cosmological coincidence problem, instead, questions why the den-
sities of dark energy and matter are of the same order of magnitude today
(ρΛ/ρm ∼ O(1)) (Velten et al., 2014), given that their evolution differs dras-
tically: while matter dilutes with expansion according to ρm ∝ a−3, the cos-
mological constant term ρΛ remains constant. As we saw, the cosmic history
can be divided into three different epochs. First, a radiation-dominated epoch
which lasts until the matter component overcomes the radiation one, starting
the matter-dominated epoch. Then, at recent epochs, the Universe moves
from matter-domination to dark-energy domination. Under the assumption
of a cosmological constant (w = −1), the redshift of this equivalence can be
easily evaluated as

ρ0,m(zΛ,eq)(1 + zΛ,eq)
3 = ρ0,Λ (1.130)

which leads to

zΛ,eq =

(
ρ0,Λ
ρ0,m

)1/3

− 1 ≃ 0.30 (1.131)

In the standard ΛCDM model dark energy remains constant while matter
dilutes as ρm ∝ a−3, making their current similarity appear an unnatural
coincidence. This would require highly fine-tuned initial conditions, as their
densities diverge drastically in both the early universe (dominated by matter
and radiation) and the far future (dark energy-dominated).

These Λ-related problems suggest that the cosmological constant might
not be the complete explanation for dark energy. As such, theorists have
explored dynamical alternatives, such as interpreting dark energy as a scalar
field (Wetterich, 1988) or modeling interactions between dark energy and dark
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matter (Wetterich, 1994; Amendola, 2000), to refine our understanding of cos-
mic acceleration. In chapter 2 we will describe a particular class of Interacting
Dark Energy (IDE) models to offer a viable alternative to ΛCDM model.

1.11.2 Observational Tensions

In the last few years, with the increase of the experimental sensitivity, sta-
tistically significant tensions have emerged among different observations on
the Hubble constant H0, figure 1.4, the amplitude of the growth of struc-
ture S8 (Di Valentino et al., 2021b,a) and a third tension from DESI results
(DESI et al., 2025a,b) related to the dark energy equation-of-state parameter
w within the ΛCDM model.

Figure 1.4: Hubble Constant predictions and measurements taken from the re-
cent literature shown in Verde et al. (2019). Bottom panel shows late-Universe
measurements which are in tension with the early-Universe measurements in
the top panel.

Regarding H0, while observations based on the CMB and on the assump-
tion of a ΛCDM cosmology lead to H0 = (67.36±0.54) km/s/Mpc (Aghanim
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Figure 1.5: Constraints on the structure growth parameter S8 from different
probe combinations shown in Heymans et al. (2021). As we can notice the
Planck-2018 (Aghanim et al., 2020) contrain on S8 (from CMB analysis) is in
tension with S8 measures in later times (such as the cosmic shear observations
from Heymans et al. (2021))).

et al., 2020), recent observations of Cepheid variables in the the Small Magel-
lanic Cloud (SMC) find H0 = (73.17±0.86) km/s/Mpc (Breuval et al., 2024).
In the same way, a tension on the parameter S8 ≡ σ8

√
Ωm/0.3 is found, where

Ωm represents the cosmic matter density in units of critical density and σ8
the amplitude of linear matter density fluctuations measured on the 8Mpc/h
scale. As shown in figure 1.5, extimations based on CMB observations lead
to S8 = 0.834± 0.016 (Di Valentino et al., 2021a) while low-redshift measure-
ments conduct to values of S8 ≃ 0.73± 0.01 (Burger et al., 2023).

Recent results from the Dark Energy Spectroscopic Instrument (DESI,
(DESI et al., 2025a,b)) have further challenged the ΛCDM model. The DESI
collaboration reports a 2.3σ tension between their baryon acoustic oscilla-
tion (BAO) measurements and CMB-derived parameters within ΛCDM (DESI
et al., 2025a,b). When combined with CMB data, the DESI measurements
favor a dynamical dark energy model with a time-evolving equation of state,
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Figure 1.6: Tension on the Dark Energy w parameter presented in DESI et al.
(2025b). While the ΛCDM constant value of w = −1 is represented by the
intersection of the dotted lines (w0 = −1, wa = 0), the DESI results suggest a
time-dependent w with w0 > −1 and wa < 0

parametrized as w(a) = w0 + wa(1 − a) resulting in a w that evolves from
∼ (w0 + wa) at high redshifts to a present-day value of w0, over ΛCDM at
3.1σ significance. The preferred solutions (figure 1.6) lies in the quadrant with
w0 > −1 and wa < 0, suggesting a weakening of dark energy at late times.
This preference increases to 2.8−4.2σ when Supernova datasets are included,
depending on the SNe sample used (DESI et al., 2025b).

These tensions pose persistent challenges to the standard ΛCDM cosmol-
ogy, suggesting the need for alternatives to the latter. Among the proposed
solutions, dynamical dark energy models, particularly those involving inter-
actions in the dark sector, have gained traction as potential ways to reconcile
these tensions (Poulin et al., 2018; Di Valentino et al., 2021b,c).

In the next chapter, we will focus on a specific class of these models, called
coupled dark energy (Amendola, 2000), examining how its non-gravitational
interactions could provide a unified framework for mitigating both the H0 and
S8 tensions.
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Dark Energy models

The ΛCDM model, while remarkably successful in describing a wide range of
cosmological observations, faces significant theoretical and observational chal-
lenges, as we have seen in the previous chapter. These include the fine-tuning
problem of the cosmological constant Λ, the cosmic coincidence problem and
tensions in current measurements of the Hubble constant H0, the amplitude of
matter fluctuations S8 and the deviation of the Dark Energy equation-of-state
parameter w from the w = −1 ΛCDM case, as recently highlighted by DESI
results (DESI et al., 2025a,b).

In this chapter, we investigate several dark energy models that extend
the standard cosmological framework. We begin by introducing quintessence
models in which the dark energy is represented by a time-evolving scalar field.
From there, more complex interactions can be introduced, such as couplings
between dark energy and dark matter (Amendola, 2000), leading to Coupled
Dark Energy models. Finally, a particular subclass of Coupled Dark En-
ergy models is represented by Bouncing Dark Energy models, in which the
scalar field evolves under a confining self-interaction potential, giving rise to a
peculiar dynamics. These models, in fact, offer an alternative to standard at-
tractor solutions by allowing the field to undergo a ”bounce” in its trajectory,
potentially addressing both early and late-time acceleration.

As we will describe later, the latter models provide viable alternatives that
may help resolve some of the limitations of the ΛCDM model.

2.1 Quintessence

Since the discovery of an accelerated cosmic expansion, the cosmological con-
stant Λ has been widely adopted to explain this effective repulsive pull acting
against gravitational attraction at cosmological scales. While ΛCDM success-
fully describes a broad range of cosmological observations, it faces two major
challenges, as discussed in Chapter 1.11:

• The fine-tuning problem: A precise and unnatural tuning of Λ is

37
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required to match observations, given the large discrepancy between
theoretical predictions and the observed value.

• The coincidence problem: Dark matter and dark energy have com-
parable energy density in the current epoch, leading to question their
independent nature and origin as postulated in the ΛCDM model.

Among dynamical dark energy models, one of the simplest and most nat-
ural extensions of ΛCDM is quintessence, in which a light classical scalar
field ϕ slowly rolls down a self-interaction potential V (ϕ), leading to a time-
dependent equation of state (Joyce et al., 2016; Wetterich, 1988; Ratra and
Peebles, 1988). In this scenario, the equation of motion for the scalar field is
described by the homogeneous Klein-Gordon equation:

ϕ̈+ 3Hϕ̇+
dV

dϕ
= 0 , (2.1)

where ϕ is assumed to be spatially homogeneous, i.e. ϕ(x⃗, t) = ϕ(t) and V (ϕ)
is the self-interaction potential.

The energy density ρϕ and pressure pϕ of a quintessence field follow from
its stress-energy tensor (Wetterich, 1988; Ratra and Peebles, 1988; Peebles
and Ratra, 2003). Starting with the action:

S =

∫
d4x

√
−g
[
−1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
, (2.2)

the stress-energy tensor is obtained by variation of the action with respect
to the metric gµν :

Tµν = ∂µϕ∂νϕ− gµν

[
1

2
gαβ∂αϕ∂βϕ− V (ϕ)

]
. (2.3)

For a homogeneous field ϕ(t) in FLRW metric, we compute the pressure p and
density ρ as:

T00 =
1

2
ϕ̇2 + V (ϕ) ≡ ρϕ (2.4)

Tii = a2
(
1

2
ϕ̇2 − V (ϕ)

)
≡ a2pϕ . (2.5)

In this way the energy density and pressure are

ρϕ =
1

2
ϕ̇2 + V (ϕ)

pϕ =
1

2
ϕ̇2 − V (ϕ) .

(2.6)

The scalar-field dark energy can be described by the equation-of-state
parameter

w =
pϕ
ρϕ

=
ϕ̇2/2− V (ϕ)

ϕ̇2/2 + V (ϕ)
=

−1 + ϕ̇2/2V

1 + ϕ̇2/2V
. (2.7)
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If the scalar field evolves slowly (ϕ̇2/2V ≪ 1) we have w ≃ −1, which
means that the scalar field behaves like a cosmological constant.

Conversely, if the term ϕ̇
2V

gets larger, the quintessence model can exhibit a
significant departure from the cosmological constant (w ≃ 1) behavior. As we

show in chapter 5.1, if the kinetic term ϕ̇
2
≫ V the equation-of-state parameter

w approaches the value +1, behaving like a ”stiff matter” (La Vacca et al.,
2009).

2.2 Coupled Dark Energy

After introducing quintessence as a dynamical scalar field responsible for cos-
mic acceleration, it is natural to consider interactions between this field and
other cosmic components. The coupled quintessence model, proposed by Wet-
terich (1994) and Amendola (2000), explores this idea by allowing explicit
coupling between the quintessence field and matter. Coupled Dark Energy
models are essentially quintessence models, i.e. dark energy is represented
by a dynamic scalar field, with the presence of a direct coupling between the
quintessence scalar field and the matter component.

In Coupled Dark Energy models, interactions between the DE scalar field
and other species can be controlled by a time-dependent coupling function,
named β.

A scalar field coupled to ordinary matter (beyond gravitational interac-
tions) with a strength comparable to gravity would likely has already been
detected (Carroll, 1998). However, if the coupling to baryonic matter dif-
fers from the coupling to dark matter (Amendola, 2000), it is possible that
such a coupling exists. In the case of constant coupling, observational con-
straints (Gómez-Valent et al., 2020) place upper limits on the coupling con-
stant β ≲ 0.05.

In this work, we consider a coupled dark energy (DE) model where the
DE scalar field interacts exclusively with cold dark matter (CDM). While such
models could, in principle, include a coupling to baryonic matter, this scenario
is strongly disfavored by local gravity experiments, as discussed in Damour
et al. (1990). For instance, solar system tests impose stringent constraints on
deviations from General Relativity, effectively ruling out significant couplings
to baryons (Will, 2014). Therefore, we set the DE-baryon coupling to zero,
focusing instead on the interaction between DE and CDM.

Considering a multi-component system, the total stress energy tensor T µν

is conserved (Kodama and Sasaki, 1984)∑
α

∇νT
ν
(α)µ = 0 . (2.8)

However, for an individual species α, this conservation law may not hold, as
long as 2.8 is fulfilled.
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The energy transfer between different species and the DE scalar field can
be described by introducing a source term Q(α)µ. For a single component α

∇νT
ν
(α)µ = Q(α)µ(ϕ)T(α)∇ν(ϕ) , (2.9)

where ∇ν represents the covariant derivative, T(α) is the trace of the stress-
energy tensor relative to the component α with α=c for CDM, b for baryons,
r for radiation, n for neutrinos.

Maintaining valid the total stress-energy conservation , eq. 2.8, we can
write the coupling term associated with the dark energy scalar field as

∇νT
ν
(ϕ),µ =

∑
α

[
Q(α)(ϕ)T(α)

]
∇νϕ . (2.10)

Given the definition of stress-energy tensor in section 1.1, we can compute
its trace T , in a FLRW metric, as

T = T µ
µ = 3p− ρ . (2.11)

For radiation and relativistic neutrinos, the equation-of-state parameter is
w = 1/3, which implies p = ρ/3, leading to a vanishing trace T. Therefore,
their stress-energy tensors are traceless and, as we can see from 2.9 they remain
uncoupled, regardless of the value of Q.

Assuming a Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, for
which we have the line element ds2 = a2(τ)(−dτ 2 + δijdxidxj), we obtain

Γ0
00 = Γi

00 = Γ0
i0 = 0 ,

Γi
j0 = δij

ȧ

a
,

Γ0
ij = δij ȧa .

(2.12)

The ν = 0 component of 2.9 sets the conservation equation for each species

∂ρc
∂t

+ 3Hρc = −Q(c)ρcϕ̇ ,

∂ρb
∂t

+ 3Hρb = 0 ,

∂ρr
∂t

+ 4Hρr = 0 ,

(2.13)

while, for the ϕ component we obtain the following Klein-Gordon equation

ϕ̈+ 3Hϕ̇+
∂V (ϕ)

∂ϕ
= Q(ϕ)0ρc . (2.14)

If we define the coupling coefficient β as

βα ≡
√

3

2
Q(α)0MPl , where MPl =

1

8πG
, (2.15)
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then we can rewrite the Klein Gordon equation as

ϕ̈+ 3Hϕ̇+
dV (ϕ)

dϕ
=

√
2

3
βc(ϕ)

ρc
MPl

, (2.16)

and the CDM conservation equation as

∂ρc
∂t

+ 3Hρc =

√
2

3
βc(ϕ)

ρcϕ̇

MPl

. (2.17)

While the first Friedmann equation can be written as

3H2 =
1

MPl

(ρr + ρc + ρb + ρϕ) . (2.18)

We can notice that, differently from the ΛCDM case, the CDM density
does not scale anymore like a−3, but its density evolution is affected by the
presence of the coupling with the DE scalar field according to

ρm(a) = ρm(a0)a
−3exp

[
−
√

2

3

∫
β(ϕ)

MPl

dϕ

da
da

]
, (2.19)

where the exponential extra factor accounts for the energy exchange between
the DE scalar field and the CDM component.

If one assumes the conservation of the number density of CDM particles,
the mass of coupled matter particles is not constant anymore but changes in
time according to

Mc(a) =Mc(a0)exp

[
−
√

2

3

∫
β(ϕ)

MPl

dϕ

da
da

]
. (2.20)

So, finally, the background dynamic equations which describe the evolution
of a cosmological model characterized by the coupling between dark energy
and dark matter are given by

ϕ̈+ 3Hϕ̇+
dV (ϕ)

dϕ
=

√
2

3
βc(ϕ)

ρc
MPl

,

ρ̇c + 3Hρc =

√
2

3
βc(ϕ)

ρcϕ̇

MPl

,

ρ̇b + 3Hρb = 0 ,

ρ̇r + 3Hρr = 0 ,

3H2 =
1

MPl

(ρr + ρc + ρb + ρϕ) .

(2.21)
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2.3 Bouncing Coupled Dark Energy

The time evolution of the scalar field ϕ is determined by the choice of the
self-interacting potential V (ϕ). Different choices of V (ϕ) will also affect the
expansion history and consequently the growth of cosmic structures. Two
widely used the potentials V (ϕ) are the inverse power-law (Ratra and Peebles,
1988)

V (ϕ) = Aϕ−α , (2.22)

and the exponential (Wetterich, 1988)

V (ϕ) = Ae−αϕ , (2.23)

where ϕ has been expressed in units of the reduced Plank mass MPl =
1/
√
8πG. In both cases, the scalar field evolves monotonically by rolling down

the potential.
A different choice of V (ϕ) is represented by the SUGRA potential (Brax

and Martin, 1999)

V (Φ) = Aϕ−αeϕ
2/2 , (2.24)

which is a combination of the Ratra-Peebles and exponential potentials. The
key feature of the SUGRA potential is the presence of a global minimum
point for ϕ =

√
α where the derivative of the potential V (ϕ) in equation 2.16

vanishes.
Consider a scalar field starting from its minimum with zero velocity, i.e.

ϕi =
√
α, ϕ̇ = 0. From equation 2.16, the acceleration of the scalar field reads

ϕ̈ =

√
2

3
βc

ρc
MPl

. (2.25)

Therefore, in the presence of a coupling β ̸= 0, the potential moves away from
its equilibrium point (ϕ =

√
α) evolving towards the direction specified by the

sign of the coupling β.
As explained in Baldi (2011), we will consider our model to start at rest

in its global minimum at very early times as initial conditions due to the fact
that in radiation dominated era any dynamical evolution of the scalar field
could be efficiently damped by Hubble friction.

It is interesting to notice that in the absence of any coupling between CDM
and DE, the scalar field remains at rest at its minimum point throughout the
entire expansion history of the universe, acting as a cosmological constant Λ.

We can see an example of the evolution in redshift of a DE scalar field
characterized by a SUGRA potential in figure 2.1 taken from Baldi (2011).
Baldi (2011) employed a SUGRA potential with the scalar field starting at
rest at its potential minimum, at very high redshifts, with a negative coupling
βc = −0.15. Therefore, we can see from eq. 2.25 that the initial acceleration
of the scalar field ϕ̈ ∝ βc is negative, leading the field to evolve towards the
left part of the curve, i.e. the power-law side of the SUGRA potential. The
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bounce takes place when the scalar field reaches its inversion point (labeled
as ϕinv in figure 2.1) after which the field inverts its evolution rolling back
towards its minimum point.

The case of positive coupling β > 0 would result in a different evolution of
the field ϕ as its initial acceleration would be positive, leading to an evolution
of the field towards the right part of its potential, i.e. the exponential side of
the SUGRA potential.

While the shape of the SUGRA potential in the left part is described by
a power law ϕ−α the right part is represented by a potential eϕ

2/2. Therefore,
Bouncing Coupled Dark Energy models (BCDE) with same amplitude of β
but opposite sign result in significantly different evolutions due to the different
shape of the potential, and so different bouncing point.

Figure 2.1: Trajectory of a DE scalar field ϕ along its self-interaction SUGRA
potential shown in Baldi (2011). The model is characterized by a coupling
coefficient βc = −0.15, α = 2.15, for this reason the potential starts from its
minimum ϕm =

√
α ≃ 1, 47 and evolves to the left-side part of the potential.

The potential evolves until it reaches the inversion point ϕinv where it inverts
its motion and rolls back to its minimum.

As one can see from the CDM continuity equation, eq. 2.17, the energy
transfer between CDM and the DE scalar field is directly proportional to the
factor βcϕ̇.

In case of a positive coupling βc > 0, the scalar field velocity, before reach-
ing the inversion point, is positive. This implies a positive factor βcϕ̇, leading
to a decreasing CDM particle mass. Once the field reaches the inversion point,
it reverses its direction of motion, changing the sign of ϕ̇, which in turn causes
the CDM particle mass to increase.

In case of negative coupling β < 0, the sign of the initial field velocity ϕ̇ is
negative, since the initial acceleration ϕ̈ is also negative. Therefore, the factor
βϕ̇ is still positive, resulting again in a decreasing CDM mass in the early
universe. Similarly to the β > 0 case, after the scalar field with β < 0 passes
the inversion point, ϕ̇ changes sign, and the CDM mass begins to increase.
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Figure 2.2: Mass evolution of CDM and baryons as function of redshift for
different choice of coupling strength βc in a SUGRA potential.

Figure 2.2 shows the evolution of the particle mass in units of m(z = 0)
for both CDM and baryonic particles.

2.4 Linear perturbations

Following the calculations shown in Amendola (2000, 2004), we can rewrite
the background equations in the previous chapter as

x ≡ ϕ′

MPl

√
6
, y ≡

√
V (ϕ)/3

MPlH
, r ≡

√
ρr/3

MPlH
, v ≡

√
ρb/3

MPlH
. (2.26)

where the prime represents a derivative with respect to the e-folding time
N ≡ ln(a). Using these new variables the density parameters Ωα = ρα/(3H

2M2
Pl)

can be written as

Ωb = v2, Ωr = r2, Ωϕ = x2 + y2 . (2.27)

Consistently with the latest observations of Planck (Aghanim et al., 2020),
we assume the Universe to be exactly flat, leading to Ωc = 1−x2−y2−r2−v2.
With these assumptions the background equations can be expressed as

x′ =
x

2

(
3x2 − 3y2 + r2 − 3

)
+ αy2 + βc(ϕ)

(
1− x2 − y2 − r2 − v2

)
,

y′ =
y

2

(
3x2 − 3y2 + r2 + 3

)
− αxy ,

r′ =
r

2

(
3x2 − 3y2 + r2 − 1

)
,

v′ =
v

2

(
3x2 − 3y2 + r2

)
,

H ′ = −H
2

(
3x2 − 3y2 + r2 + 3

)
.

(2.28)
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The system of equations 2.28 describes the time evolution of the cosmic
background in the presence of a coupling between CDM and DE.

Considering a perturbed metric in the form of longitudinal gauge (Amen-
dola, 2004)

ds2 = a2(τ)
[
− (1 + 2Φ)dτ 2 + (1− 2Φ)δijdx

idxj
]

(2.29)

where τ is the conformal time and Φ the gravitational potential, we can write
the conformal Hubble function as H ≡ (da/dτ)/a = aH. We can then define
a set of perturbation variables as

δc ≡ δρc/ρc ,

δb ≡ δρbρb ,

ui ≡ a dxi/(Hdt) ,
∇ · uc ≡ θc ,

∇ · ub ≡ θb ,

φ ≡ δϕ/(MPl

√
6) .

(2.30)

Since we are interested in the evolution of matter density perturbations dur-
ing matter domination, for simplicity we neglect the radiation density fluctu-
ations. We also define the dark energy scalar mass m2

ϕ and its dimensionless
version m̂2

ϕ (Amendola, 2000)

m2
ϕ =

d2V (ϕ)

dϕ2
, m̂2

ϕ ≡
m2

ϕ

H
=

1

H

d2V (ϕ)

dϕ2
= 2α2y2 . (2.31)

To represent a characteristic scale associated with the perturbation, we
can define the parameter λ such that in Fourier space λ = H/k, while in real
space λ−2 corresponds to the operator −H−2∇2.

Perturbing the Einstein equations and the conservation equations we ob-
tain the following linear perturbation equations

δ′c = −θc + 3Φ′ − 2βcφ
′ − 2β′

cφ ,

θ′c = −
(
1 +

H′

H
− 2βcx

)
θc + λ−2(Φ− 2βcφ) ,

δ′b = −θb + 3Φ′ ,

θ′b = −
(
1 +

H′

H

)
θb + λ−2Φ ,

φ′′ +

(
2 +

H′

H

)
φ′ +

(
λ−2 + m̃2

ϕ −
Ωcβ

′
c

x

)
φ

− 4Φ′x− 2y2αΦ = βcΩc(δc + 2Φ) .

(2.32)

The derivative of the coupling term β′ contributes to the last equation of
the system 2.32 as an effective mass term (Amendola, 2004)

m̂2
βc

≡ Ωcβ
′
c(ϕ)

x
. (2.33)
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Restricting ourselves to the Newtonian limit, λ ≪ 1, the perturbation
equations for baryon and CDM read (Baldi, 2010)

δ′c = −θc − 2β′
cφ ,

θ′c = −
(
1 +

H′

H
− 2βcx

)
θc −

3

2
[Ωbδb + ΩcδcΓc] ,

δ′b = −θb ,

θ′b = −
(
1 +

H′

H

)
θb −

3

2
[Ωbδb + Ωcδc] ,

(2.34)

where

Γc ≡ 1 +
4

3

β2
c (ϕ)

1 + λ2m̂2
. (2.35)

The Newtonian limit in the last equation of the system 2.32, as shown in
Amendola (2004), leads to ϕ ∼ λ2, this suggest that the term β′

c in the first
equation of 2.32 can be dropped as long as β′

c ∼ O(1) and the same for λ2m̂2,
from which we get

Γc = 1 +
4

3
β2
c (ϕ) . (2.36)

With these considerations, the perturbation equations 2.32 allow us to
derive the dynamic equations for the density fluctuation as done in Baldi
(2010)

δ′′c +

(
1 +

H′

H
− 2βcx

)
δ′c −

3

2
[Ωbδb + ΩcδcΓc] = 0 , (2.37)

δ′′b +

(
1 +

H′

H

)
δ′b −

3

2
[Ωbδb + Ωcδc] = 0 , (2.38)

and the vectorial acceleration equations in real space for baryon and CDM

v̇c = −H̃vc −∇
[∑

i=c

ΓcGMi(ϕ)

ri
+
∑
j=b

GMj

rj

]
, (2.39)

v̇b = −Hvc −∇
[∑

i=c

GMi(ϕ)

ri
+
∑
j=b

GMj

rj

]
, (2.40)

where H̃ ≡ H[1 − 2βc(ϕ)x] and vb,vc are the peculiar velocities for baryon
and CDM respectively.

As already shown by Baldi (2010), from equations 2.39 we can notice
that the presence of a coupling between DE-CDM modifies the acceleration
equation of CDM particles through three factor modifications.

Firstly, the 2βc(ϕ)xvc affects the Hubble expansion term as an extra fric-
tion. This extra friction term does not depend only on the coupling βc but
also on the sign of the scalar field velocity term x ∝ ϕ̇/H. Therefore, the
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background evolution of the scalar field has a direct impact on the CDM
acceleration through the friction term.

Second, the mass of coupled particles, CDM in our case, is not a con-
stant anymore but changes according to equation 2.20, leading to a different
contribution to the gravitational potential.

Third, the gravitational acceleration of CDM particles includes an extra
factor Γc = 1+ 4

3
β2
c , which accounts for the fifth-force mediated by the scalar

field.
The modifications introduced by the coupling between dark energy and

cold dark matter have profound implications for both the background evolu-
tion and the growth of cosmic structures, potentially offering a pathway to
alleviate some of the observational tensions in modern cosmology, particu-
larly those related to the Hubble constant H0 and the amplitude of matter
fluctuations S8. As demonstrated, the energy transfer between CDM and
the DE scalar field, which depends on both the coupling strength βc and the
evolution of the scalar field, can alter the expansion history of the universe.
This modification may help to reconcile discrepancies in H0 by introducing
a dynamical mechanism that adjusts the late-time expansion rate without
violating early-universe constraints.

Moreover, the variable mass of coupled CDM particles and the fifth-force
contribution (Γc = 1 + 4

3
β2
c ) modify the effective gravitational potential, in-

fluencing structure formation. Therefore, a well-tuned coupling could sup-
press the growth of large-scale structure at late times, potentially easing the
S8 tension between cosmic microwave background (CMB) measurements and
low-redshift probes.

Given these effects, coupled DE-CDM models present a compelling frame-
work for addressing key observational challenges. Their ability to simultane-
ously impact both the background expansion and perturbation growth makes
them a rich and testable alternative to ΛCDM . For these reasons, further in-
vestigation of these models, particularly their phenomenological consequences
and observational signatures, will be a crucial focus in the following chapters.
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Chapter 3

Non-linear structure formation

As perturbations continue to grow over time, they eventually exit the linear
regime, meaning that the linear approximation can no longer be used to obtain
analytical solutions. The linearized equations of motion provide an excellent
description of gravitational instability at very early times when density fluc-
tuations are still small (δ ≪ 1). However, the linear regime of gravitational
instability breaks down when δ becomes comparable to unity, signaling the
transition into the non-linear regime.

In the non-linear regime, bound structures begin to form, and baryonic
matter becomes dynamically significant due to hydrodynamical effects, star
formation, and heating/cooling processes.

The most powerful tool available to study structure formation in the non-
linear regime is numerical simulation, particularly N-body simulations.

N-body simulations represent the matter distribution using a discrete num-
ber of point-like tracers, referred to as ”particles,” and track their evolution
numerically. Cosmological N-body simulations compute the time evolution
of the matter distribution starting from initial conditions consistent with cos-
mological observations at high redshifts, within periodic, comoving simulation
boxes.

3.1 Gravitational algorithms

Gravity is the fundamental force driving instability processes that lead to
structure formation.

As a result, the computation of gravitational interactions is the primary fo-
cus of cosmological N-body codes. However, the long-range nature of gravity,
combined with the high dynamic range required to accurately model structure
formation, makes the precise and efficient calculation of gravitational forces
particularly challenging.

In the ΛCDM paradigm, the Universe’s matter density is dominated by
dark matter, which is assumed to be composed of unknown, non-baryonic par-
ticles. Due to the vast number of particles involved, direct N-body modeling

49
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of a galaxy or the Universe is computationally infeasible. Instead, a statistical
approach using distribution functions is employed.

The state of an N-particle system (Springel, 2014) is described by the exact
phase-space distribution function:

F (r, v, t) =
N∑
i=1

δ(r − ri(t))δ(v − vi(t)) , (3.1)

which counts the number of particles at phase-space point (r, v) at time t.
The one-particle distribution function is obtained by ensemble averaging over
many realizations:

f1(r, v, t) =

∫
Fp dr1dr2 . . . drNdv1dv2 . . . dvN , (3.2)

where p represents the probability distribution of the system’s phase-space
states.

For an uncorrelated system, the two-particle distribution function simpli-
fies as

f2(r, v, r
′, v′, t) = f1(r, v, t)f1(r

′, v′, t) . (3.3)

This assumption holds in collisionless systems, such as dark matter and stars in
galaxies, where gravitational interactions dominate over short-range collisions.

Since probability is conserved in phase-space, the system obeys Liouville’s
theorem:

∂p

∂t
+
∑
i

(
vi
∂p

∂ri
+ ai

∂p

∂vi

)
= 0 . (3.4)

From this, the Vlasov (collisionless Boltzmann) equation follows

∂f

∂t
+ v · ∇rf + a · ∇vf = 0 , (3.5)

which describes the evolution of the phase-space distribution function in a col-
lisionless system. The acceleration is given by the self-consistent gravitational
potential

∇2Φ = 4πGρ, ρ(r, t) = m

∫
f(r, v, t)dv . (3.6)

Together, these equations form the Poisson-Vlasov system, governing the
large-scale evolution of dark matter and stellar systems.

Since directly solving these equations is infeasible, N-body simulations ap-
proximate the system using macro-particles that sample phase space, enabling
a computational approach to structure formation in cosmology.

The equations of motion of such a system of particles take the form

⃗̈xi = −∇⃗iϕ(r⃗i) ,

ϕ(r⃗) = −G
N∑
j=1

mj[
(r⃗ − r⃗j)2 + ϵ2

]1/2 , (3.7)
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where ϵ is the softening length used to ensure the collisionless behavior of
the system, avoiding large-angle scattering and the high numerical cost that
would be needed to integrate the orbits with sufficient accuracy in singular
potentials (Springel, 2014). The adoption of a softening length also implies
the introduction of a smallest resolved length scale.

Adopting a direct summation scheme for each of the N equations, we
have to calculate a sum of N partial forces, leading to a computational cost
of the order O(N2). Hence, despite being an exact calculation, it becomes
prohibitive for large particles number N .

We need faster and less expensive calculation schemes that allow us to
increase the number of particles. The most widely adopted methods are

• the Particle-mesh (PM) algorithm,

• the Hierarchical multipole methods (”Tree algorithm”),

• the Tree-PM method (which is the combination of the two).

3.1.1 PM algorithm

In the Particle-Mesh (PM) method, gravitational forces are computed using
a grid-based approach, where particles are interpolated onto a mesh, and the
potential is solved with Fourier methods.

Firstly, the discrete system of particles, each with a given position and
mass, is converted to a continuous density field adopting a shape function,
which describes the mass fraction assigned from a particle to a close mesh grid
cell. Considering xm the position of cell centers, xi the position of a particle
i, h the cell side-length, this step is performed by defining an assignment
function W

W (xm − xi) =

∫ xm+h
2

xm−h
2

S(x′ − xi)dx
′ =

∫
Π

(
x′ − xm

h

)
S(x′ − xi)dx

′ ,

which represents the fraction of mass of particle i assigned to cell m, where
S(x) is the shape function and Π(x) is a top-hat filter defined as:

Π =

{
1 for |x| ≤ 1

2

0 otherwise
.

In this way, the density assignment function W can be written as the
convolution

W (x) = Π

(
x

h

)
⋆ S(x) ,

and the density field can be computed as

ρ(xm) =
1

h3

N∑
i=1

miW (xi − xm) .
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Figure 3.1: NGP (top), CIC(middle) and TSC(bottom) assignment schemes
taken from Springel (2014). While for NGP the whole particle mass is assigned
to one cell, for the CIC and TSC the mass contribution is divided among the
close cells.

The density field depends on the specific choice of the shape function S(x),
here we will see some of the most commonly employed assignment schemes.

The simplest possible choice for a shape function is the Nearest Grid Point
(NGP) scheme in which the shape function is represented by a Dirac δ function

S(x) = δ(x) . (3.8)

In this way the particles contribute with their total mass to the closest grid
cell (i.e. the cell where they are located). The resulting mass fraction W is

W (xm − xi) = Π

(
xm − xi

h

)
. (3.9)

Another possible choice is the Cloud-In-Cell (CIC) assignment described
as

S(x) =
1

3
Π

(
x

h

)
, (3.10)

in which the mass of each particle is distributed over a cubical volume of the
same size of the mesh cells. For the CIC assignment scheme, the assignment
function becomes

W (xm − xi) =

∫
Π

(
xm − x

h

)
1

h3
Π

(
xm − xi

h

)
dx . (3.11)
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The number of cells involved in the CIC assignment depends on the number
of dimensions of the simulation. In the 3 dimensional case the cells involved
are 23 = 8.

The next higher-order assignment scheme is represented by the Triangular
Shaped Clouds (TSC) scheme. In this case the shape function is described by
the following:

S(x) =
1

h3
Π

(
x

h

)
⋆

1

h3
Π

(
x

h

)
, (3.12)

which leads to the following assignment function

W (xm − xi) =
1

h6

∫
Π

(
xm − x

h

)
Π

(
x− xi

h

)
Π

(
x− x′

h

)
dxdx′ . (3.13)

As one can see in the bottom panel of figure 3.1, assuming a TSC assignment
scheme with total base length of the triangle 2h, the particle mass is in general
spread over 3 cells per dimension, thus over 33 = 27 cells for 3D grids.

When interpolating particle masses onto a grid in Particle-Mesh (PM)
simulations, the choice of the assignment scheme affects both accuracy and
computational cost. NGP represents the simplest approach: while computa-
tionally efficient, this scheme produces discontinuous density and force fields
that jump abruptly as particles cross cell boundaries. The resulting force law
is piecewise constant, leading to noticeable artifacts in the simulation.

CIC provides a smoother alternative by distributing each particle’s mass
over the nearest grid cells (which are 2 in 1D, 4 in 2D, or 8 in 3D). This
scheme generates continuous forces that vary piecewise linearly, offering sig-
nificantly better behavior than NGP. However, the first derivative of the force
still exhibits discontinuities.

TSC offers the highest quality interpolation among these three schemes,
spreading each particle’s mass over a wider neighborhood (3 cells in 1D, 9
in 2D, or 27 in 3D). This produces forces with continuous first derivatives,
resulting in the smoothest representation of the density field. The trade-off
comes in increased computational cost and memory requirements, particularly
for large simulations.

After the density field is obtained, the algorithm moves to Fourier space
to obtain the gravitational potential. Assuming a periodic density field in a
cubic box of size L, the density field can be represented as a Fourier series

ρ(x) =
∑
k

ρke
ikx , (3.14)

where k = 2π
L
(nx, ny, nz) are the discrete wavevectors (with nx, ny, nz integers)

and ρk are the Fourier coefficients, representing the amplitude of each mode.
The coefficients ρk are computed via the Fourier transform of the discretized
density field

ρk =
1

L3

∫
V

ρ(x)e−ikxdx . (3.15)
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Once the density field is expressed in Fourier space, we can substitute the
latter in the Poisson equation obtaining the following relation

Φk = −4πG

k2 ρk . (3.16)

Equation 3.16 represents the Poisson equation in Fourier space in a periodic
space. It represents a fundamental result as it states that the potential in
Fourier space Φk can be easily obtained by dividing ρk by the square wavenum-
ber k2, making the solution computationally efficient.

Moving back to real space, through an inverse Fourier transform, the force
field can finally be computed solving f = −∇Φ with a finite difference method
scheme.

Once the force field is computed on the PM grid, the force acting on each
particle is assigned through a weighted average based on the density function
W . Thus the total force F(xi) acting on a particle i is given by

F(xi) =
∑
m

W (xi − xm)fm , (3.17)

where fm is the force field in a given cell-grid m. To ensure momentum conser-
vation, the W (x) assignment function used during force computation must be
the same as that used during mass assignment, otherwise a different assign-
ment kernel could introduce spurious accelerations violating Newton’s third
law.

3.1.2 Tree algorithm

The Tree algorithm solves the N-body problem by recursively dividing the
simulation domain into sub-domains (Tree nodes) with a hierarchical tree
structure. This method approximates gravitational forces by hierarchically
grouping distant particles and representing their collective influence through
multipole expansions.

This reduces the required N − 1 (per particle) partial forces computation
for a direct-summation approach to an order of O(logN) computations.

The gravitational potential generated by the points inside a node is

Φ(r) = −G
∑
i

mi

|r− xi|
, (3.18)

where xi is the position of the i particle inside the node and r the position
of the point where we want to compute the potential. This equation can be
rewritten as

Φ(r) = −G
∑
i

mi

|r− s+ s− xi|
, (3.19)
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considering s as the center-of-mass of the distant particle group. Expanding
the denominator under the assumption |xi − s| ≪ |r− s|

1

|y + s− xi|
=

1

|y|
− y · (s− xi)

|y|3
+

1

2

yT [3(s− xi)(s− xi)
T − (s− xi)

2]y

|y|5
+ · · ·

(3.20)
where y ≡ r − s. Having carried out the expansion with respect to the
center-of-mass s of the particle group, the dipole term y·(s−xi)

|y|3 vanishes. The

monopole is represented by the total mass M =
∑

imi, while writing the
quadrupole tensor as

Qij =
∑
k

mk

[
3(s− xk)i(s− xk)j − δij(s− xk)

2
]
, (3.21)

and neglecting higher order terms, the potential expansion becomes

Φ(r) = −G
(
M

|y|
+

1

2

yTQy

|y|5

)
. (3.22)

The acceleration of particles

a(x) = −∇Φ(x) (3.23)

can then be computed through differentiation. The monopole term yields:

−∇
(
GM

|y|

)
= −GM

|y|3
y (3.24)

while, for the quadrupole term, we obtain

−∇
(
G

2

yTQy

|y|5

)
= −G

2

(
2Qy

|y|5
− 5yTQy

|y|7
y

)
. (3.25)

Combined together, the total acceleration can be computed as

a = −G
(
M

|y|3
y +

Qy

|y|5
− 5

2

yTQy

|y|7
y

)
. (3.26)

To compute the gravitational acceleration of a particle at position x, the
tree is walked starting from the root node (which contains all the particles)
and dividing it into child nodes, each with half the side-length of the parent
one. To determine whether to divide a given node into subnodes or evaluate
its multipole expansion and stop walking along the corresponding branch, the
code compares the angle subtended by the node with a pre-defined critical
angle θc. Considering l the side-length of the node and r the distance, if

l

r
< θc ,
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the gravitational contribution of particles within the considered node can be
evaluated with a multipole expansion (so the node is not further divided).
Changing the critical angle θc allows to control the accuracy of the force com-
putation. When θc is small, more tree nodes must be opened and evaluated,
reducing the residual force errors at the cost of increased computational effort.
In the limiting case where θc → 0, the tree algorithm becomes equivalent to
a direct summation method. Here, every particle-particle interaction is com-
puted individually, eliminating approximation errors but incurring in the full
O(N2) computational cost.

3.1.3 Tree-PM

The primary advantage of the Particle Mesh (PM) method is its speed, as it
reduces the computational cost per timestep from N2 (for direct summations)
to N .

However, the key disadvantage is the limited spatial resolution, constrained
by the mesh size h. Consequently, any information at scales smaller than the
mesh size is lost.

For the Tree algorithm, the spatial resolution is continuously adapted
based on the clustering level. Furthermore, the accuracy of the force calcula-
tion can be tuned by modifying the tree opening angle, and the algorithm’s
speed does not strongly depend on the clustering level. However, the primary
disadvantage arises in highly uniform matter distributions, as e.g. the matter
density field at high redshifts. In such situations, the almost vanishing force
on each particle is the result of the cancellation of many larger contributions.
This needs substantial computational effort to achieve high accuracy in force
calculations, making the process numerically expensive.

To combine the speed of the PM and overcome the latter disadvantage of
the Tree, a combination of these two is often adopted. The basic concept is to
split the potential in a short-range Φshort

k and a long-range component Φlong
k

as

Φk = Φlong
k + Φshort

k . (3.27)

The Tree method is used to evaluate the short-range component, where
the Tree performs better, while the long-range is computed using the PM.
The short-range component is multiplied by a smoothing function to suppress
its contribution at long distances, the same is done to suppress short-range
contributions for long-range component:

Φlong
k = Φke

k2r2s ,

Φshort
k = Φk

[
1− e−k2r2s

]
,

(3.28)

where rs is the spatial scale of the force-split. This force-shaping factor allows
for the reduction of inaccuracies, such as force anisotropies arising from the
mesh geometry, to arbitrarily small levels. Consequently, the long-range force
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is accurately calculated by the PM scheme, even in the transition region be-
tween force components. Transforming back to real space equation 3.28, and
assuming a single point of mass m in a box L with rs ≪ L, we get

Φshort(x) = −Gm
r
erfc

(
r

2rs

)
, (3.29)

where erfc(x) represents the complementary error function defined as

erfc(x) = 1− 1√
π

∫ x

−x

e−t2dt2 . (3.30)

This function is characterized by a smooth transition from 1 to 0 as x increases,
ensuring a smooth cut-off of the short-range force at large distances. The
short-range potential coincides with the Newtonian one up to truncation factor
that rapidly turns off the force at distances of order rs.

Figure 3.2: Force decomposition (left) and force error (right) in the Tree-PM
scheme taken from Springel (2005). The position of the force-split scale rs is
marked by a dashed vertical line

As we will see in chapter 4, to incorporate the additional physics introduced
by the Coupled Dark Energy models we aim to test, both the Tree and the
PM algorithms must be modified. This is because a fundamental feature
of Coupled Dark Energy models is the presence of a fifth force, which we
implement by modifying the gravitational constant G. Consequently, both
the Tree and the PM algorithms require adjustments, as the gravitational
constant enters into the force calculation in both schemes.
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3.2 Gadget-4

GADGET-4, (Springel et al., 2021), is a modern simulation code designed to
model cosmic structure formation and galaxy evolution.

We decided to implement out modifications in Gadget-4 in this work,
rather than its older versions, because it includes major advancements in high-
precision large-scale structure simulations, along with improved modularity
and flexibility.

Gadget-4 employs a TreePM method (see section 3.1.3) for gravitational
forces, combining the high-resolution accuracy of a Tree algorithm with the
efficiency of a long-range PM solver. The code operates in a Newtonian
approximation and supports both periodic and non-periodic boundary con-
ditions, making it suitable for cosmological simulations as well as isolated
astrophysical systems.

A major advancement over its predecessor, GADGET-2 (Springel, 2005),
GADGET-4 introduces significant improvements in force accuracy, time inte-
gration, and scalability. Key upgrades include:

• Modern, modular codebase (written in C++ with improved maintain-
ability)

• Reduction of floating-point errors through the use of integer coordinates
for particle positions

• Enhanced hydrodynamics with support for smoothed particle hydrody-
namics (SPH)

• Optimized parallelization, allowing efficient runs on large supercomput-
ing architectures

A significant advancement in GADGET-4 compared to its older versions is
its shift from C to C++ as the primary programming language. While earlier
versions relied on C for low-level control, the adoption of C++ enables mod-
ern object-oriented features, improving modularity and extensibility (Springel
et al., 2021). This transition also facilitates more sophisticated memory man-
agement and parallelization techniques, which are crucial for large-scale cos-
mological simulations.

While these advancements enable more precise and efficient simulations,
they also pose significant challenges for implementing extension modules de-
veloped for older versions. The fundamental changes in code structure, in-
cluding the transition from C to C++ as code language and the consequent
shift to an object-oriented design, prevent the direct porting of existing mod-
ules from previous versions (GADGET-2 and GADGET-3) designed for specialized
physics (such as modified gravity or alternative dark energy models).

For this reason, the Coupled Dark Energy implementation already avail-
able in C-GADGET (a modified version of GADGET-3 code, as described in Baldi
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et al. (2010)), cannot be trivially ported to GADGET-4. Adapting it requires
substantial modifications to ensure compatibility with GADGET-4’s new archi-
tecture.

To start a simulation in GADGET-4, a parameter file must be prepared,
containing run-time parameters of the simulation setup such as initial condi-
tions, output frequency, time integration settings, and numerical parameters
for hydrodynamics and gravity solvers. This file dictates the fundamental
properties of the simulation, including particle mass resolution, gravitational
softening length, and cosmological parameters.

Additionally, a configuration script is required to set up the compilation
environment. This script defines the necessary compilation flags such as type
of boundary conditions employed (vacuum or periodic), physics included and
so on. Notably, GADGET-4 allows users to enable comoving integration in this
file. When activated, the simulation adopts comoving coordinates, simplifying
cosmological simulations by factoring out the expansion of the universe.

The simulation outputs are stored at specified intervals, providing snap-
shots that contain the evolving cosmic structures, which can later be analyzed
using post-processing tools.

GADGET-4 offers a LIGHTCONE output feature, which records particles at
their exact positions and peculiar velocities when they intersect the backward
lightcone during the simulation. This produces specialized output files, simi-
lar to snapshots but organized according to the lightcone crossing time. When
activated through the configuration switch, users can specify maximum red-
shift and shell thickness parameters by setting the appropriate values in the
parameter file. The LIGHTCONE MASSMAPS option extends this functionality by
generating mass shells specifically for weak lensing applications. It processes
the lightcone particle data to create mass maps, which serve as essential input
for weak lensing calculations, as we will see in Chapter 5.

GADGET-4 includes an advanced group finder algorithm to identify halos
and substructures in simulation data. The algorithm combines two key meth-
ods:

• Friends-of-Friends (FoF): Links particles based on a user-defined link-
ing length (typically a fraction of the mean interparticle separation) to
identify halo candidates.

• SUBFIND: A substructure detection algorithm that decomposes FoF
halos into gravitationally bound subhalos. SUBFIND identifies local
density peaks and removes unbound particles, enabling the study of
hierarchical structure formation.

The group finder operates on-the-fly during simulations or as a post-processing
tool, supporting large datasets. These snapshots can be analyzed using post-
processing tools such as Pylians3 (Villaescusa-Navarro, 2018), a powerful
toolkit designed for cosmological simulations.
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Pylians3 enables the computation of fundamental observables in large-
scale structure studies, including density field, power spectrum, and Halo and
Subhalo Properties. Figure 3.3 shows an example of how the density field
evolves at different redshifts for our ΛCDM simulation, as extracted from the
snapshot files using Pylians3.

Figure 3.3: Density field in a slice of 500×500Mpc/h and thickness 30Mpc/h
extracted from our ΛCDM simulations at different redshift

Pylians computes the density contrast from simulation snapshot files by
first selecting particles on a thin slab perpendicular to one axis to create a two-
dimensional projection. The density field is computed by spreading particles
masses onto a grid adopting a specified mass-assignment scheme (see section
3.1.1).

The local density in each grid cell is then compared to the average density
across the entire volume to calculate the overdensity. This measures how
much denser or emptier each region is compared to the cosmic average. We
can appreciate from figure 3.3 how the density perturbations evolve across
cosmic time, gradually forming the intricate cosmic web structure we observe
at present time.
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3.3 PANDA-GADGET-4

The aim of this thesis work is to investigate cosmological models beyond the
standard ΛCDM framework. In particular, we are interested in alternative
theories for cold dark matter (CDM) and the cosmological constant (Λ) that
could potentially address the current observational challenges associated with
the standard cosmological constant.

The PANDA (Parameterised dArk eNergy and moDified grAvity) extension
of GADGET-4 (Casalino & Baldi in prep.) introduces a parametrized imple-
mentation of dark energy and modified gravity models.

Unlike other methods that solve full field equations for specific theories,
PANDA adopts a parameterized approach, including modifications of gravity
by adding a dependence to time and space to the gravitational constant G,
rather than treating it as a fixed constant. The main motivation behind this
parameterized approach is its significantly lower computational cost compared
to solving the coupled differential equations involving modified gravity fields.

In PANDA, Newton’s constant G is replaced by a function Geff (t,x), de-
pendent on time and space whose form is determined by the chosen MG or
dark energy model. The main consistency constraint of the function is to
obtain the gravitational constant when the gravity modification parameters
mimic ΛCDM. This function Geff enters both the Particle-Mesh (PM) and
Tree-force calculations, ensuring self-consistent evolution of structure forma-
tion under the influence of beyond-ΛCDM physics.

PANDA’s parametrized framework was designed for standard Dark Energy
(DE) and Modified Gravity (MG) theories and could not simulate Interacting
Dark Energy (IDE) models featuring non-universal coupling between dark
energy and a specific matter species. In this work, we introduce a unified
phenomenological approach that maps IDE onto an effective MG description.
For instance, in coupled dark energy models, where dark energy interacts
with dark matter, the scalar field’s fluctuations can be recast as an effective
modification of gravity.

In the case of Interactive Dark Energy models, the fluctuations of the
scalar field can be written as a time-dependent coupling coefficient β(t) times
the gravitational potential. Since β(t) is spatially homogeneous, it can be
moved out of the gradient and the additional force on the particles reduces to
the standard gravitational acceleration multiplied by some function of β.

This mapping, which we implemented in PANDA (as described in section
4), allows to simulate IDE models using the same parametrized framework
developed for MG.

Currently, C-GADGET code (Baldi et al., 2010), a modified version of GADGET-3
code, already includes an implementation of some IDE models. Our main
goal is to extend this functionality to PANDA, which is built on the more ad-
vanced GADGET-4 code. This decision is motivated by several reasons. First,
GADGET-4 offers significant improvements in computational efficiency, paral-
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lelization, and numerical accuracy, making it better suited for the increasingly
demanding simulations required by modern cosmology. Second, one of the
main features of PANDA, already present in C-GADGET, is the possibility to
read and implement in the simulation cosmological parameters, such as the
Hubble function H and the dark energy parameter wDE, from an external
input table.

As we are going to see with greater focus in chapter 4, we can expand this
function to implement the parameters needed to simulate a coupled dark en-
ergy cosmology, such as the coupling coefficient β, the particle mass variation
coefficient ∆m, the scalar field velocity ϕ̇. By doing so, we not only maintain
consistency with existing implementations but also open the door to studying
a wider range of interacting dark sector models. Finally, future observational
surveys will require highly precise simulations to test alternative cosmologies
against real data. GADGET-4’s improved performance and scalability make
it the ideal platform for these challenges, ensuring that coupled dark energy
models can be explored with the necessary detail and statistical precision. In
particular the LIGHTCONE output available in GADGET-4 makes these simula-
tions efficiently comparable to observations from wide-field galaxy surveys as
the lightcone data directly replicates the observational geometry of surveys.
This capability makes PANDA a highly efficient tool for connecting theoreti-
cal predictions with forthcoming observational constraints on interacting dark
energy models, further reinforcing our motivation to implement the Coupled
Dark Energy framework from C-GADGET into PANDA.



Chapter 4

Numerical Implementation in
PANDA-Gadget-4

The presence of a coupling between a DE scalar field ϕ and different cosmo-
logical species introduces some additional physical processes as described in
Section 2.2. To extend the study of the evolution of cosmic structure for-
mation for a coupled dark energy model into the non-linear regime, which
requires numerical simulations, the PANDA-GADGET-4 code has to be modified.

In this chapter, we present the modifications implemented in the PANDA
version of GADGET-4 to incorporate the physical processes associated with
coupled dark energy models. These modifications, as described in chapter 2,
focus on three main aspects :

• the particle mass variation induced by the coupling (equation 2.20),

• the extra friction term (equation 2.39),

• the fifth force contribution to particles gravitational acceleration (equa-
tion 2.39).

Additionally, we detail the setup process for generating the initial conditions
consistent with coupled dark energy models, including the construction of in-
put tables containing the relevant cosmological functions. This ensures that
the simulations reflect the theoretical framework accurately from the begin-
ning of the evolution. Finally, we present a validation test designed to verify
the correctness and stability of our modifications. These tests compare the
outputs of the modified code against known results performed in Baldi (2012).
Once the code’s accuracy is established, we describe the final simulations used
to explore the impact of coupled dark energy on cosmic structure formation
in the non-linear regime.

63
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4.1 Input Table

To perform the calculations required by the new implementation, the code
relies on a set of time-dependent variables. These are provided via an input
table file containing:

• H(a): the Hubble function,

• βc(a): the coupling coefficient for cold-dark-matter particles,

• βb(a): the coupling coefficient for baryonic particles, which is set to zero
for the models under consideration,

• ∆mc(a): the mass-variation coefficient for cold-dark-matter particles,

• ∆mb(a): the mass-variation coefficient for baryonic particles, which is
identically unity for the models under consideration,

• ϕ̇: the time derivative of the dark energy scalar field.

All of the above quantities are computed by a separate code that integrates
the background equations (see Eq. 2.21) for a specific coupled dark energy
model and generates the corresponding input tables (as described in chapter
5.1).

This design choice of keeping the background and linear perturbations
integration external to PANDA-Gadget was made to avoid overloading the sim-
ulation code with additional time-consuming calculations.

At the beginning of each simulation run, our new implementation reads this
input table to initialize all necessary variables. The option to use an external
input table can be enabled in the configuration file, and the respective file-
path in the parameter file. This design allows for flexibility in testing different
models while keeping the main simulation code efficient. In order to smoothly
evaluate these quantities at any time-step during the simulation, and provide
accurate results even between the discrete set of points provided in the input
table, i wrote new functions that employs cubic spline interpolation from the
GNU Scientific Library (GSL (Galassi et al., 2002)).

4.2 Mass Variation

In section 2.2 we showed how the presence of a coupling between a Dark
Energy scalar field and a given coupled matter species leads to an energy
exchange which is dictated by a factor βϕ̇ in equation 2.17. As a consequence,
the mass of the coupled particle species is no longer constant but changes
according to equation 2.20.

As we described in chapter 3.3, the main goal of this work is to include a
treatment for coupled dark energy cosmology, already available in C-GADGET,
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Figure 4.1: Evolution with redshift of the mass-variation coefficient of CDM
particles for a coupled dark energy model featuring the same potential slope
α = 1 and different coupling strength β.

to the PANDA version of GADGET-4, extending the possibility of treating IDE
models with the more sophisticated GADGET-4 N-body code. For this reason,
similar to C-GADGET (Baldi et al., 2010), the mass variation is implemented in
PANDA-Gadget using a factor ∆m computed from equation 2.20 as

∆m(a) = e
−
√

2
3

∫ 1
a

β
MPl

dϕ
da

da
. (4.1)

The code initially saves the original particle mass as m0, i.e. the mass at
present day, then at each timestep the particle mass is updated by multiplying
the original mass by the time-dependent ∆m factor, obtaining

m̃(a) = m0 ·∆m(a) , (4.2)

where m̃(a) is the updated mass.
The coefficients ∆m(a) are obtained by numerically integrating the sys-

tem of background equations 2.21, as we will explain in section 5.1, and are
provided to the new PANDA-Gadget implementation as part of the input table,
as described in section 4.1.

4.3 Cosmological extra velocity-dependent ac-

celeration

An additional modification in the PANDA-Gadget code involves the velocity-
dependent term present in equation 2.39, which, as shown in Baldi et al.



66 Chapter 4. Numerical Implementation in PANDA-Gadget-4

(2010), leads to the following relation

H̃ = H

(
1− β

MPl

ϕ̇

H

)
. (4.3)

We can write the Hubble contribution to the particle acceleration as

v̇i = −H
(
1− β

MPl

ϕ̇

H

)
vi . (4.4)

As shown in chapter 3.2, in standard cosmological simulations, Gadget4
does not compute the term Hv due to the fact that the adoption of comoving
coordinates removes it from the acceleration equation.

Here we address r ,x as the physical and comoving coordinates respec-
tively, for which the following relation holds

r = a(t)x ṙ = Hr + v p , (4.5)

with v p ≡ a(t)ẋ the peculiar velocity.
Gadget, however, instead of using the peculiar velocity v p employs the

variable p ≡ a2(t)ẋ . In this way

v̇ p =
1

a
ṗ − H

a
p , (4.6)

and applying this relation to equation 4.4 we obtain that the extra acceleration
due to this effect can be written as((Baldi et al., 2010)):

ṗ i = βα(ϕ)
ϕ̇

MPl

p i , (4.7)

where i represent the particle index, βα represent the coupling strength of a
given species α.

In case of zero-coupling βα = 0 the extra velocity-dependent term vanishes,
resulting in a standard Newtonian acceleration in comoving coordinates.

For a coupled dark energy cosmological scenario, instead, the extra term

βα
ϕ̇

MPl
ap i has to be added to the Newtonian acceleration of each particle.

As already pointed out in Baldi et al. (2010), this extra term does not
depend on any matter distribution but represents a purely cosmological drag
that would be present even in the absence of any gravitational attraction.

As with mass variation (Section 4.2), this friction term depends on the fac-
tor βϕ̇, meaning that its sign can change over time according to the evolution
of the scalar field ϕ.

In this study, we consider a DE scalar field described by a SUGRA self-
interacting potential, which starts from its minimum with ϕ̇ = 0 (see Chapter
2).
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In this scenario, the initial sign of the factor βϕ̇ is positive for both posi-
tive and negative values of β (Section 2.3), resulting in a net acceleration of
particles in the direction of their motion.

When the scalar field eventually reaches its inversion point, the scalar field
velocity ϕ̇ changes sign, leading to βϕ̇ < 0.

At this point, the extra term in Equation 4.7 accelerates the particles in
the opposite direction of their motion, effectively slowing them down.

As a result, this velocity-dependent term acts like a drag force in the
early universe and as a frictional force at later times allowing to modulate the
growth of structures in different epochs of the cosmic evolution.

4.4 Tree-PM Algorithm

One of the most crucial features in a coupled dark energy scenario is the mod-
ified gravitational interaction between particles. In this context, the gravi-
tational interaction between two particles, labeled i and j, is described by a
modified gravitational constant represented by:

G̃ = GN ·
(
1 +

4

3
βiβj

)
, (4.8)

where GN is the standard Newtonian gravitational constant in the ΛCDM
model and βi , βj are the coupling strength of particles i, j respectively (as
we derived in section 2.4).

If either of the two interacting particles is uncoupled (β = 0), the ex-
tra force vanishes, and the gravitational interaction reduces to the standard
Newtonian case as described in ΛCDM cosmology.

To reproduce this behavior in the numerical simulations, the code must
be able to distinguish between different particle species during gravitational
acceleration calculation, in order to assign the appropriate coupling coefficient
β for each interaction.

As explained in the previous chapter, in the Gadget-4 code the gravi-
tational interaction is computed by means of a Tree-PM algorithm. Conse-
quently, both the tree and the PM algorithms must be modified to consistently
implement the gravitational dynamics of a coupled dark energy model.

4.4.1 Tree algorithm modifications

According to what discussed in chapter 3.1.2, in a standard Tree algorithm
when the angular dimension of a given node is below the critical opening angle,
the node is not further dived but its gravitational contribution is evaluated
by multipole expansion. In standard GADGET-4 each node carries information
on the position of its center of mass and its total mass. This works fine in
an uncoupled cosmological model because all particles interact with the same
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gravitational constant. However, in the case of a species-dependent coupling
among particles, the code needs to assign a different gravitational constant
based on the interacting species. Therefore, the new implementation needs
each particle to bring information on its own type and, in addition to the
total mass and the total center of mass position, each node has to carry
information about the center of mass position and total mass of each particle
species separately.

To this end we modified the particle structure that contains all the particle
information used by the code during the tree-walk, adding the information on
the particle type. For the node, we included in the node structure also the
information on the center of mass of each particle type which is evaluated at
each time-step.

In this way, when computing the tree contribution to the particle acceler-
ation, the new implementation is able to distinguish among different particle
types, assigning the right coupling for each scenario

ṗi =
1

a

∑
j ̸=i

G̃ijmjxij

|xij|3
=

1

a

∑
j ̸=i

(1 + 4
3
βiβj)Gmjxij

|xij|3
. (4.9)

Again, we followed the same approach as in C-GADGET implementation
(Baldi et al., 2010), extending it to the PANDA version of GADGET-4.

4.4.2 PM algorithm modifications

Recalling what discussed in section 3.1.3, in a Tree-PM algorithm the long-
range part of the gravitational force is computed evaluating the density dis-
tribution on a cubic grid and passing to Fourier space in order to calculate
the force on the grid. First, the mass of each particle is spread out over
nearby grid cells, adopting a mass-assignment scheme to create a smooth
density field. Next, this density is converted into Fourier space, where the
gravitational potential can be computed easily with equation 3.16. Once the
potential is found, it is transformed back into real space, the forces on the
grid are calculated and interpolated back to the individual particle positions.

Considering that the gravitational interaction of each particle species de-
pends on its coupling coefficient β, the PM procedure is repeated as many
times as there are coupled particles with different coupling functions.

At each repetition of the PM the code selects only one particle type (the
one matching the type selected by the given repetition) computing the grav-
itational force grid only of one particle type at time. The total force is then
built by adding the contribution of different partial force grids, one for each
coupling type, each multiplied by the factor 4

3
βiβj as

ṗi =

(
1 +

∑
j

+
4

3
βiβj

)
ṗ0
i , (4.10)
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where the sum on j account for all the different grids, βj is the coupling
of particles contained in the j grid, ṗ0

i represents the pm-acceleration for a
particle of type i of the standard GADGET-4 code which is computed as we
explained in section 3.1.1.

4.5 Initial Conditions

The setup of initial conditions in a cosmological N-body simulation requires
defining the initial positions and velocities of all particles within the simu-
lation volume at the starting redshift zi of the simulation. Typically, this
initialization follows a random-phase realization of the power spectrum corre-
sponding to the chosen cosmological model, based on the Zel’dovich approxi-
mation (Zel’dovich, 1970). The power spectrum normalization is determined
to match the expected σ8, the root-mean-square fluctuations computed with
a top-hat filter with radius R = 8h−1Mpc, at a reference redshift, commonly
taken as z = 0.

In this work, we adopt the same power spectrum for both CDM and baryon
particles and for all models under investigation, discarding possible distortions
of the transfer function due to early effects of the coupling. This approach
implicitly assumes that the coupling between dark energy (DE) and cold dark
matter (CDM) does not modify the shape of the initial matter power spec-
trum. As such, we neglect any early-time effects of the coupling on the statis-
tical properties of the density field. This approximation is generally justified,
since in all models considered, the coupling effects remain small at high red-
shifts.

For all the simulations that we will employ in this work we generate initial
conditions at zi = 99 using N-GenIC code (Springel, 2015) to displace an
initial glass distribution (White, 1994). First, we set the amplitude of the
displacements at zCMB to the same value for all models, ensuring consistency
with CMB observations. We then rescale these displacements by the linear
growth factor D+, evaluated for each specific model between zCMB and zi =
99, to correctly set the initial power spectrum amplitude at the simulation’s
starting redshift. In this way, only the ΛCDM model will match the reference
σ8 value at z = 0, while the alternative (BCDE) models will deviate due to
their distinct growth histories.

The power spectrum at the initial redshift of the simulation is computed
using CAMB (Code for Anisotropies in the Microwave Background, (Lewis
et al., 2000)) through a python script assuming a ΛCDM cosmology.

The cosmological parameters used for CAMB and for the final simulations
are the one from Planck-2018 data release (Aghanim et al., 2020) and listed
in table 5.1.

Once particles positions have been assigned, velocities are computed in
Fourier space according to the linear perturbation theory relation v(k, a) ∝
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d lnD+

d lna
defined by the growth rate function for each model (Baldi, 2012).

4.6 Code Validation

In this chapter we have described the implementations applied to the PANDA-GADGET-4
code to enable the simulation of a Coupled Dark Energy model. We now pro-
ceed with validating the code before analyzing the models of interest. To
assess the accuracy of our implementation, we select some models present
in the CoDECS project (COupled Dark Energy Cosmological Simulations),
presented in Baldi (2012). We simulate these models using our new imple-
mentation in PANDA-GADGET-4, adopting different boxsize particle numbers
compared to those used in Baldi (2012), and compare the results with the
same models, run with the same parameters, simulated using the already
validated C-GADGET code. Despite the presence of baryonic particles these
simulations do not include hydrodynamics and are, therefore, purely collision-
less N-body runs. In particular, we are going to test the EXP003 model which
is described by

• an exponential potential V (ϕ) = Ae−αϕ,

• with a slope α = 0.08,

• constant βb = 0, βc = 0.15,

• potential normalization A = 0.0218,

resulting in cosmological parameters consistent with WMAP7 (Komatsu et al.,
2011).

Firstly we generate the initial conditions using N-GenIC code (Springel,
2015), following the procedure described in section 4.5, and using the input ta-
bles obtained by integrating the background equations 2.21, as detailed in4.1,
for the EXP003 models. Then we run the simulations with both C-GADGET

and our newly implemented version of PANDA-GADGET, using the same initial
conditions and input tables.

The simulations have been carried out using 2×2563 particles in a comov-
ing box of 240h−1Mpc.

In order to compare the results between C-GADGET and PANDA, we compute
the nonlinear power spectrum of the matter distribution (CDM and baryons)
from the respective snapshot files. This is done using the Pylians3 Python
library (Villaescusa-Navarro, 2018), which we use to extract the power spec-
trum from the simulation data. Starting from the snapshot file, we determine
the density field on a grid employing a CIC assignment scheme, as described
in section 3.1.1. Having computed the density grid we are able to evaluate
the power spectrum as a function of the wavenumber k with the procedure
described in section 1.9.
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The maximum wavenumber that can be accurately resolved by the grid is
defined by the Nyquist frequency kNy =

πN
L
, which for a number of 2563 grid

cells in a 240h−1Mpc Boxsize corresponds to kNy ∼ 3.4hMpc−1.

Figure 4.2: Upper panel : Power spectrum ratio of the EXP003 model with
respect to ΛCDM , for our modified PANDA code vs. C-Gadget code for z=3.
Bottom panel : Percentage difference between PANDA and C-Gadget power
spectrum ratio.

The figures 4.2, 4.3, and 4.4 show the power spectrum of the EXP003
model, compared to the fiducial ΛCDM model. These results were obtained
from simulations run using both C-GADGET and our modified PANDA ver-
sion of the GADGET-4 code at redshifts z = 3, 1, and 0, respectively.

In the upper panels of these figures, the ratio of the EXP003 power spec-
trum to that of ΛCDM is shown for both PANDA and C-GADGET. The lower
panels display the percentage difference between PANDA and C-Gadget power
spectrum ratio.

As shown, the deviation of our PANDA implementation relative to the
previously validated C-GADGET code (Baldi et al., 2010) does not exceed
the 1% level, indicating good agreement between the two codes.
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Figure 4.3: Upper panel : Power spectrum ratio of the EXP003 model with
respect to ΛCDM , for our modified PANDA code vs. C-Gadget code for z=1.
Bottom panel : Percentage difference between Panda and C-Gadget power
spectrum ratio.



Chapter 4. Numerical Implementation in PANDA-Gadget-4 73

Figure 4.4: Upper panel : Power spectrum ratio of the EXP003 model with
respect to ΛCDM , for our modified PANDA code vs. C-Gadget code for z=0.
Bottom panel : Percentage difference between Panda and C-Gadget power
spectrum ratio.
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Chapter 5

Background and structure
formation observables from
simulated BCDE models

In this chapter, we present a comprehensive study of BCDE models, combining
background and linear perturbations analysis with cosmological simulations
to investigate their impact on the large-scale structure of the Universe. The
investigation is divided into two main parts: first, in section 5.1, we examine
the background evolution and linear perturbations of these models to assess
their viability and phenomenology at large scales; second, in section 5.3, we
analyze their nonlinear effects through numerical simulations.

As described in previous chapters, the presence of a coupling β introduces
distinctive physical effects, including a velocity-dependent friction term, an
effective fifth force and a mass evolution of coupled particles. Using the nu-
merical code introduced in section 4.1, we integrate the complete system of
background equations (eqs. 2.21) and linear perturbation equations (eqs. 2.37,
2.38). The results of this integration are presented in section 5.1, where we
analyze how different parameter combinations (α, βc) affect both the Hubble
function and the matter growth factor D+(a), with particular attention to
their potential to alleviate current cosmological tensions.

These models are then simulated with our modified version of the PANDA-Gadget4
code, which includes the necessary modifications to account for the BCDE sce-
nario (as described in chapter 4). This allows us to extend the study of BCDE
cosmology into the non-linear regime of structure formation.

Finally, section 5.3 presents the results of these simulations. By analyz-
ing matter statistics (the Power Spectrum), halo statistics (such as the Halo
Mass Function) and weak lensing predictions, we quantify how BCDE models
deviate from the standard ΛCDM paradigm.

It is important to remember that BCDE models represents just one partic-
ular example of the broader class of IDE models that can be simulated with
our newly developed implementation in PANDA-GADGET-4. This panoramic
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approach not only tests the theoretical consistency of BCDE but also demon-
strates the flexibility of our framework in studying generic coupled dark energy
scenarios. The pipeline, combining background and perturbation analysis,
nonlinear simulations with our new version of PANDA, and weak lensing pre-
dictions with DORIAN, provides a viable methodology to constrain a wide range
of IDE models with current and future cosmological surveys

5.1 Analysis of Dark Energy Models

As we discussed in section 2.4, the background evolution of the scalar field
ϕ and the presence of a coupling between DE and other matter components
directly affect the Hubble expansion rate H, the strength of the gravitational
interaction, and the mass of particles coupled with the DE scalar field.

In this work, we focus on the study of BCDE models, characterized by
a SUGRA self-interacting potential V (ϕ) = Aϕ−αeϕ

2/2 and a constant cou-
pling coefficient βc. As described in section 2.3, we assume that the coupling
between baryonic matter and DE scalar field is identically zero. We will in-
vestigate the model for various combinations of the coupling strength βc and
the self-interaction potential slope α.

We explored such dark energy models by employing a code which numeri-
cally integrates the background and linear perturbations equations of a BCDE
model, with a SUGRA potential and thus with a global minimum in ϕm =

√
α.

The models of interest were subsequently simulated using the coupled dark
energy implementation of the PANDA-Gadget4 N-body code (see chapter 4).

For the reference ΛCDM model, we consider cosmological parameters in
agreement with the results of Planck-2018 (Aghanim et al., 2020) which are
listed in table 5.1

Parameter Value

H0 67.36
Ωb 0.0493
Ωc 0.2645
ΩDE 0.6847
σ8 0.811
ns 0.9649
zeq 3402

Table 5.1: Cosmological parameters at z=0 listed in Aghanim et al. (2020)
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Figure 5.1: Evolution of the scalar field ϕ (Top panel) and the scalar field
velocity ϕ̇ (Bottom panel) as a function of redshift for different Bouncing
Dark Energy models with the same slope a = 1 and different values of the
coupling βc. The scalar field velocity is per unit of

√
6MPl, consistently with

the definition of x in equation 2.26
.

Figure 5.2: Evolution of the scalar field ϕ (Top panel) and the scalar field
velocity ϕ̇ (Bottom panel) as a function of redshift for different Bouncing
Dark Energy models with the same coupling β = −0.15 and different values
of the slope α. The scalar field velocity is per unit of

√
6MPl, consistently

with the definition of x in equation 2.26
.



78
Chapter 5. Background and structure formation observables from

simulated BCDE models

In figure 5.1 we show the evolution of the scalar field ϕ and its velocity
ϕ̇ as a function of redshift for different choices of the coupling strength βc.
All these models start from the same minimum point ϕm =

√
α = 1, then,

as soon as the CDM density ρc becomes significant, the scalar field starts to
accelerate according to equation 2.25. The value of the coupling strength βc
has a strong impact on the evolution of the scalar field. For models with
βc > 0, the positive coupling pushes the field away from its initial position
ϕm in the direction of larger field values, i.e. toward the exponential side of
the SUGRA potential. Conversely, for βc < 0, the field moves toward smaller
field values in the direction of the power-law side of the potential.

Figure 5.2, instead, displays the evolution of the scalar field ϕ and its
velocity ϕ̇ for models with negative coupling strength βc = −0.15 and dif-
ferent values of the slope α. First, we can notice that the starting point
ϕm, corresponding to the minimum value of the self-interaction potential, for
models with α = 2.0 is higher with respect to previous models, as for α = 2.0
ϕm =

√
α ≃ 1.41

Since the field moves away from its local minimum point ϕm, the scalar
velocity term 3Hϕ̇ and the potential derivative dV

dϕ
grows larger, slowing the

field evolution until it eventually stops and inverts its motion towards the
minimum point. This peculiar evolution of a coupled SUGRA scalar field has
an important impact on the growth of density perturbations, as we will show
in section 5.3.

It is interesting to note that, unlike other models where the scalar field
velocity increases after the inversion point until reaching a maximum at late
times, the models with β = −0.15 α = 0.5, 1.0 exhibits a different behavior.
For the α = 1.0 case, the scalar field velocity begin to decrease shortly after the
inversion point, before resuming to grow toward the global peak. This results
in a characteristic small bump in the velocity evolution prior to reaching
the maximum. Even more interesting is the behavior of the α = 0.05 model,
which, differently to other models, exhibits multiple bounces, before the scalar
field starts to roll back toward the minimum point. These multiple bounces
arise when the low values of α allowa the scalar field to approach ϕ = 0 before
being bounced back. Such behavior results in a scalar field inverting its motion
multiple times before starting to finally roll back towards its equilibrium point.

By comparing the evolution of the particles mass variation, in figure 5.3,
with the scalar field velocity ϕ̇ for each model, we clearly observe that the
minimum of the mass variation occurs precisely when the BCDE model crosses
ϕ̇ = 0, i.e., at the inversion points.

This behavior can be explained by considering the dynamics of momentum
conservation. When the mass decreases (i.e., when βϕ̇ > 0 at early times),
momentum conservation imposes an additional acceleration in the direction of
the particles motion. This corresponds to the extra anti-friction term, which
will be discussed in Section 4.3. Conversely, after the inversion point, when
the mass begins to increase and βϕ̇ < 0, momentum conservation leads to
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an additional acceleration that opposes the particles motion, leading to an
effective friction.

To investigate the background evolution and structure formation in the lin-
ear regime of such BCDE models, we numerically integrate the set of dynamic
equations described in section 2.3.

ϕ̈+ 3Hϕ̇+
dV

dϕ
=

√
2

3
βc

ρc
MPl

, (5.1)

ρ̇c + 3Hρc = −
√

2

3
βc
ρcϕ̇

MPl

, (5.2)

ρ̇b + 3Hρb = 0 , (5.3)

ρ̇r + 3Hρr = 0 , (5.4)

3H2 =
1

M2
Pl

(ρc + ρb + ρr + ρϕ) , (5.5)

along with the perturbations equations discussed in section 2.4

δ̈c = −2H

[
1− βc

ϕ̇

H
√
6

]
δ̇c + 4πG [ρbδb + ρcδcΓc] , (5.6)

δ̈b = −2Hδ̇b + 4πG [ρbδb + ρcδc] . (5.7)

The integration is performed in two stages to ensure consistency with the
present-day cosmological observations. In the first stage, we perform a back-
ward integration from the present epoch (z = 0) to high redshifts, within
the ΛCDM framework. This step determines the high-redshift values of the
cosmological variables that correspond to the desired present-day parameters
within the reference ΛCDM model.

Using the high-redshift values obtained from the first stage as initial con-
ditions, we perform a forward integration for all the interacting dark energy
models. This provides a complete evolutionary history of all relevant quanti-
ties, which we record at fixed time intervals The output includes both back-
ground quantities and perturbation variables. The input tables we introduced
in section 4.1 are generated in this stage. The necessity for a first backward
integration stage arises from the fact that the initial values depend sensitively
on the specific present-day parameters. In this way the preliminary back-
ward integration ensure that the initial conditions for the forward integration
are compatible with the present day observations, before proceeding with the
second forward integration.

To compare the different behavior of each model in the growth of pertur-
bations, we normalize the growth factor, presented in the lower panel of figure
5.4, to the same value of ΛCDM at zCMB ≃ 1100.

In the upper panel of figure 5.4 we show the evolution of the Hubble
function ratio to the ΛCDM reference, for models with different couplings βc,
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as a function of redshift. We first note that the Hubble function is enhanced
by up to a factor ∼ 1.2 compared to the standard ΛCDM at z = 0, while
rapidly decreases below the ΛCDM level at higher redshift. This particular
behavior may help mitigating the Hubble tension seen in chapter 1.11.2 as H
transitions from a larger than ΛCDM value at low redshifts to lower values at
higher redshifts.

Simultaneously, as illustrated in the lower panel of figure 5.4, the growth
factor initially increases with respect to the standard ΛCDM model at early
times, but then reaches a turning point and begins to decrease sharply. This
leads to a growth factor that, at z = 0, is more than 10% lower than in the
ΛCDM case for βc = 0.15.

In figure 5.5, models with α = 2.0 exhibit a slightly stronger increase in H0

and a more pronounced decrease in the growth factor ratio at z = 0, compared
to the α = 1.0, β = −0.15 case, though still not as extreme as the β = 0.15
scenario.

Therefore, these models predict a higher Hubble function at z = 0 while
simultaneously exhibiting a lower growth factor at low redshifts.

These results are particularly intriguing because they highlight how BCDE
models, with an appropriate choice of the α and β parameters, may simulta-
neously alleviate both the Hubble tension and the S8 tension.

Now we will see the effect of a BCDE scenario on the evolution of the
density parameters Ω.

The evolution, as function of redshift, of density parameter Ω for matter,
radiation, and DE is shown in figures 5.6, 5.7.

We can notice that the equivalence between matter component Ωm and DE
ΩDE is shifted towards earlier times with respect to the ΛCDM case (dashed
line). This can be expected if one considers the mass transfer between coupled
particles, CDM in our case, and DE scalar field described in eq. 2.20 which
leads to a decreasing CDM particle mass in favor of the DE field. Of course
this effect depends on the the factor βcϕ̇ as described in 2.20.

For both positive and negative couplings βc the factor βϕ̇ is initially posi-
tive, leading, for both cases, to an earlier matter-DE equivalence.

While the dark matter–dark energy (DM–DE) equivalence is shifted to-
ward earlier times, the radiation–DM equivalence is not and remains approx-
imately at the same redshift as in the ΛCDM case, thereby not spoiling ob-
servations at high redshifts.

There are a few reasons for this. First, as shown in Section 2.2, photons
are uncoupled from the DE scalar field, so their energy density evolves as
in standard ΛCDM cosmology. However, since cold dark matter (CDM) is
coupled to DE, one might expect a shift in the radiation–matter equivalence
due to the mass loss of CDM particles. In our work, however, we consider
relatively weak coupling strengths (β ≤ |0.15|). Moreover, the equivalence
occurs at early times (zeq ∼ 3400), when the effects of the coupling are not
yet significant. As a result, the radiation–DM equivalence remains largely
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unaffected.
In this section, we have investigated the cosmological evolution of Bounc-

ing Coupled Dark Energy models, introduced in Chapter 2, focusing on their
behavior within the background and the linear regime. By analyzing the back-
ground expansion and the growth of linear perturbations, we have identified
key features of these models, such as their ability to simultaneously impact the
Hubble parameter H and the growth factor, potentially offering a resolution
to both the Hubble and S8 tensions discussed in section 1.11.2.

However, the linear analysis presented here is limited to large cosmolog-
ical scales, where perturbations remain small. To extend our investigation
into the non-linear regime, where structure formation occurs, we will simulate
these models using our modified version of the PANDA-Gadget4 N-body code,
described in Chapter 4. This enhanced version, includes a self-consistent im-
plementation of several interacting DE models, including the BCDE scenario
discussed in this chapter, that we will use as a testbed for our new N-body
implementation.
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Figure 5.3: Evolution of the particle mass variation as function of redshift
for BCDE models with the same slope α = 1.0 and different values of the
coupling βc (Upper panel) and for BCDE models with the same negative
coupling β = −0.15 and different values of the slope α (Bottom panel).
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Figure 5.4: Evolution of the Hubble function H (upper panel) and growth
factor δ+ (bottom panel) as function of redshift of Bouncing Dark energy
models, with the same α = 1, compared to standard ΛCDM model.
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Figure 5.5: Evolution of the Hubble function H (upper panel) and growth
factor δ+ (bottom panel) as function of redshift of Bouncing Dark energy
models, with the negative β, compared to standard ΛCDM model.
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Figure 5.6: Evolution of density parameters Ωr,Ωm,ΩDE as function of red-
shift of bouncing coupled dark energy models (solid lines) with positive cou-
pling compared to ΛCDM standard model (dashed lines)
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Figure 5.7: Evolution of density parameters Ωr,Ωm,ΩDE as function of red-
shift of bouncing coupled dark energy models (solid lines) with negative cou-
pling compared to ΛCDM standard model (dashed lines)
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5.2 Simulations

From the study conducted in section 5.1, we selected six distinct BCDE mod-
els, as listed in Table 5.2. These models were chosen to systematically investi-
gate how the coupling strength β and the potential slope α influence structure
formation, particularly in the non-linear regime.

The four models with α = 1.0 (A1BM15, A1BM1, A1BP1, A1BP15) and
the two models with α = 2.0 (A2BM15, A2BM1) extend the analysis of section
5.1 into the non-linear regime, using numerical simulations to probe features
like halo mass functions, matter clustering, and weak lensing observables.

Model α βc βb

ΛCDM 0.0 0.0 0.0
A1BM15 1.0 -0.15 0.0
A1BM1 1.0 -0.1 0.0
A1BP1 1.0 0.1 0.0
A1BP15 1.0 0.15 0.0
A2BM15 2.0 -0.15 0.0
A2BM1 2.0 -0.1 0.0

Table 5.2: List of cosmological BCDE models considered in this work, includ-
ing the ΛCDM fiducial model used as a reference.

The A1 models (α = 1.0) isolate the role of βc, with simulations reveal-
ing how positive vs. negative couplings alter halo formation or the power
spectrum. The A2 models (α = 2.0) test whether a steeper potential slope
exacerbates or mitigates these effects.

All the simulations have a box size of 500Mpc/h aside and contain 5123

CDM and baryon particles for a total particle number of 2× 5123 ∼ 3× 108.
The mass resolution at z = 0 for these simulations is mc = 6.77× 1010M⊙/h
for CDM and mb = 1.27 × 1010M⊙/h for baryons. For these simulations we
also modified the GADGET-4 code by disabling the hydrodinamics calculations
for the particles. This ensures that, despite their presence, the simulations
remain purely collisionless N-body runs, focusing solely on gravitational inter-
actions. As pointed out inBaldi (2012), the inclusion of baryonic particles is
essential for accurately modeling structure formation in coupled dark energy
(cDE) scenarios. Since baryons and CDM follow different dynamical equations
in these models, with baryons remaining uncoupled to the dark energy field,
omitting baryons would artificially amplify the coupling’s impact on structure
formation, leading to biased results. By retaining collisionless baryons, we not
only maintain physical consistency but may also capture distinctive features
in the relative distribution of CDM and baryons.
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5.3 Non-linear structure formation in BCDE

In this section, we present the results of the cosmological simulations of the
models listed in 5.2, focusing on the impact of Bouncing Coupled Dark Energy
(BCDE) models on large-scale structure formation. With the help of publicly-
available Python libraries like Pylians3 (Villaescusa-Navarro, 2018) for power
spectrum and halos analysis and the newly developed DORIAN library (Ferlito
et al., 2025) for weak lensing, we explore the nonlinear evolution of matter
perturbations, halo abundance, and gravitational lensing signatures in these
alternative cosmologies.

Our investigation centers on the distinctive features introduced by the cou-
pling between dark energy and cold dark matter (CDM), such as the velocity-
dependent friction term and the fifth force emerging in BCDE scenarios. By
comparing these models to the fiducial ΛCDM paradigm, we quantify devi-
ations in the matter power spectrum, halo mass function, and weak lensing
observables across multiple redshifts. The results highlight how the BCDE
scenario influences structure formation, offering insights into the late-time
evolution.

5.3.1 Matter power spectrum

The power spectrum we present here is computed from simulation data stored
in GADGET-4 snapshot files. These files contain the complete state of the sim-
ulated system at specific output times, including particle positions, velocities,
and other relevant quantities. Each snapshot consists of one or more files in
a structured binary format, typically HDF5, which allows for efficient storage
and retrieval of large datasets.

The snapshot files begin with a header that stores global information such
as the total number of particles, the simulation time or scale factor, cosmo-
logical parameters, and the box size. Following the header, the particle data
is organized into blocks, each containing specific information as coordinates,
velocities and particle IDs.

We can compute the matter power spectrum from GADGET-4 simulation
snapshots using the Pylians3 library (Villaescusa-Navarro, 2018). The pro-
cess begins by reading the snapshot data using Pylians’ readgadget module
to extract the header information, including the box size in Mpc/h, the total
number of particles, their masses in M⊙/h, and cosmological parameters like
Ωm, ΩΛ, and the Hubble parameter h.

Next, we construct the density field by distributing the particles onto a
3D grid by adopting a CIC mass-assignment scheme, as described in chapter
3.

The density field is then normalized to compute the overdensity, defined
as the density contrast relative to the mean density.

Once the density field is prepared, we compute the power spectrum us-
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ing Pylians’ Pk library. This involves taking the Fourier transform of the
overdensity field and measuring the average squared amplitude of the Fourier
modes as a function of wavenumber k.

Coherently with studies conducted in Baldi (2012), the models we investi-
gate share a common normalization of linear perturbations at the redshift of
the CMB. This choice results in different amplitudes of density perturbations
at z = 0, since each model evolves differently for z < zCMB.

As already discussed in Chapter 2.3, one of the consequences of introducing
a coupling between the dark energy (DE) scalar field and cold dark matter
(CDM) is the emergence of an additional velocity-dependent term that acts
as a friction-like force. This term is proportional to βϕ̇.

In particular, for the BCDE models we investigate, this friction term acts
as an effective drag in the early universe, accelerating CDM particles along
their direction of motion. However, once the scalar field reaches the inversion
point, the sign of ϕ̇ changes, and the extra term begins to slow down structure
formation, as discussed in section 5.1.

We now examine the effects of the coupling between the DE scalar field
and CDM on the nonlinear matter power spectrum for the BCDE mod-
els introduced in section 5.2. In particular we start with the A1 models
which share a common slope of α = 1.0 and feature coupling coefficients
β = −0.15, −0.1, 0.1, 0.15.

Each of these models features a different inversion point, leading to distinct
times at which the scalar field undergoes its bounce. As a result, the transition
from enhancement to suppression of structure formation occurs at different
epochs for each model.

Figures 5.8, 5.9, 5.10, 5.11 show the ratio of the nonlinear matter power
spectrum of each Bouncing Coupled Dark Energy model to the fiducial ΛCDM
cosmology at redshift z = 2, 1, 0.5, 0 respectively.

Figures 5.12, 5.13, 5.14, 5.15 show instead the power spectrum ratio of
models A2, featuring a potential slope α = 2.0, with respect to the A1BM15
model, with α = 1, βc = −0.15.

As one can notice from these plots, the linear power spectrum ratio de-
creases significantly from z = 2 to z = 0, reflecting the late-time evolution of
these models after passing the inversion point, when the clustering of matter
is suppressed.

This effect is most pronounced in the A1BP15 model, where the linear
amplitude of the power spectrum drops from 1.18 times the ΛCDM value at
z = 2 to 0.8 at z = 0.

Conversely, the non-linear power spectrum, at scales k ≳ 0.5h/Mpc, dis-
plays a strong increase of amplitude with time with respect to the ΛCDM
scenario.

In particular, at z = 0, the model A1BP15 presents the lowest value of
linear power spectrum (∼ 20% lower than ΛCDM) with a steep increase in
the non-linear regime (up to ∼ 20% more than ΛCDM) almost reaching the



90
Chapter 5. Background and structure formation observables from

simulated BCDE models

value of A1BM15 model.
The A1BM15 model, instead, presents a non-linear power spectrum much

closer to ΛCDM (less than 3% different) while, in the non-linear regime, it
grows up to ≃ 28% more than standard ΛCDM.

Models with lower amplitude of the coupling strength, A1BP1 and A1BM1,
end up with an almost identical shape of power spectrum, passing from ∼ 10%
less than ΛCDM in the linear regime to ∼ 10% more in the non-linear one.

Figure 5.8: Ratio of the non linear matter power spectrum of BCDE models
to the ΛCDM cosmology at redshift z = 2
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Figure 5.9: Ratio of the non linear matter power spectrum of BCDE models
to the ΛCDM cosmology at redshift z = 1

Figure 5.10: Ratio of the non linear matter power spectrum of BCDE models
to the ΛCDM cosmology at redshift z = 0.5
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Figure 5.11: Ratio of the non linear matter power spectrum of BCDE models
to the ΛCDM cosmology at redshift z = 0

Figure 5.12: Ratio of the non linear matter power spectrum of BCDE models
to the ΛCDM cosmology at redshift z = 2
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Figure 5.13: Ratio of the non linear matter power spectrum of BCDE models
to the ΛCDM cosmology at redshift z = 1

Figure 5.14: Ratio of the non linear matter power spectrum of BCDE models
to the ΛCDM cosmology at redshift z = 0.5
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Figure 5.15: Ratio of the non linear matter power spectrum of BCDE models
to the ΛCDM cosmology at redshift z = 0
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5.3.2 Halo mass function

Another powerful probe of cosmological structure formation is the halo mass
function (HMF), which quantifies the number density of dark matter halos
as a function of their mass and redshift. The HMF reflects the cumulative
impact of cosmological dynamics on the nonlinear growth of structure, mak-
ing it a sensitive tool for testing deviations from the standard ΛCDM model,
especially in scenarios involving dynamical or interacting dark energy. In this
section, we investigate the HMFs predicted by bouncing dark energy models
and compare them with the standard ΛCDM cosmology. The analysis focuses
on halo abundance statistics extracted from N-body simulations, where halos
are identified using the Friends-of-Friends (FoF) algorithm (Davis et al., 1985).
We employ the FoF algorithm with a linking length b = 0.2× d̄, where d̄ is the
mean inter-particle separation. This method groups together particles that
are closer than this distance threshold, capturing the structure of gravitation-
ally bound halos. Together with FoF we also apply SUBFIND algorithm which
decomposes each halo into gravitationally bound subhalos. The SUBFIND al-
gorithm identifies gravitationally bound substructures (subhalos) within dark
matter halos by first computing the local density at each particle’s position.
It then isolates locally overdense regions and applies an unbinding procedure
to retain only particles that are self-bound. For the main subhalo , the mass
enclosed within a radius where the density exceeds 200 times the critical den-
sity (M200) can be calculated by summing the bound particles within this
threshold, providing a physically meaningful measure of the subhalo’s virial
mass.

In our simulations, Cold Dark Matter (CDM) particles are used as primary
tracers of structure. Baryonic particles, which are not directly coupled to the
dark energy sector, are assigned to halos by associating each particle with the
FoF group of its nearest CDM neighbor.

Once the catalogs are generated, we compute the differential HMF using
the Pylians library. The mass range is divided into 50 logarithmic bins
spanning 2× 1012 to 1015M⊙, and we count the number of halos in each bin.

To standardize mass definitions, we compute M200 for each halo, defined
by the following relation:

M∆c =
4

3
πR3

∆c∆cρc . (5.8)

This is the mass enclosed within a sphere where the mean density equals
200 times the critical density ρc of the Universe. This spherical overdensity
mass is often preferred for observational comparisons and is consistent with
the conventions used in halo catalogs across various simulation efforts.

Once we have obtained the differential HMF (halos number per unit mass
and volume), we compute the cumulative mass function by integrating the
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differential HMF over the mass

N(> M) =

∫ ∞

M

dn

dM
dM (5.9)

So now the cumulative HMF, N(> M), represents the number density of
halos with masses above a given value.

In figures 5.16, 5.17, 5.18, 5.19 we can see the cumulative mass function
compared to the fiducial ΛCDM model at different redshifts. The bottom
panel in each figure displays the ratio of the number counts with respect to
the ΛCDM case.

As one can see from these figures, the BCDE models with a positive cou-
pling, β = 0.1, 0.15, exhibit a significantly lower number of halos compared to
the ΛCDM model.

In particular, for the A1BP15 model, this effect displays a strong mass
dependence, starting with approximately 30% fewer halos at low masses at
z = 2.5, and reaching up to a 70% reduction for higher-mass halos.

At lower redshifts, the mass dependence becomes more pronounced. By
z = 0, the number of halos is about 20% lower for halos with masses around
2·1012M⊙/h, and nearly 90% lower for halos with masses around 6·1014M⊙/h.

On the other hand, models with a negative coupling, β = −0.15,−0.1,
show a halo number density more consistent with the fiducial ΛCDM model
across all redshifts, with only a slight reduction of up to about 20% at z = 0
for the β = −0.1 model.

The A2BM15 and A2BM1 models offer a less extreme scenario than A1BP15,
with a number density of light halos close to ΛCDM and a reduction of heavy
halos slightly steeper than the models featuring the same coupling coefficient
but with α = 1.0.
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Figure 5.16: Cumulative Halo Mass Function (upper panel) and ratio to
ΛCDM cosmology (bottom panel) for BCDE models with same α = 1.0 and
different values of the coupling β. The gray area around the ΛCDM represent
the Poissonian errors based on the number counts of ΛCDM halos in each
mass bin.
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Figure 5.17: Cumulative Halo Mass Function (upper panel) and ratio to
ΛCDM cosmology (bottom panel) for BCDE models with same α = 1.0 and
different values of the coupling βc. The gray area around the ΛCDM repre-
sent the Poissonian errors based on the number counts of ΛCDM halos in each
mass bin.
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Figure 5.18: Cumulative Halo Mass Function (upper panel) and ratio to
ΛCDM cosmology (bottom panel) for BCDE models with negative coupling
βc < 0 and different values of the slope α. The gray area around the ΛCDM
represent the Poissonian errors based on the number counts of ΛCDM halos
in each mass bin.
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Figure 5.19: Cumulative Halo Mass Function (upper panel) and ratio to
ΛCDM cosmology (bottom panel) for BCDE models with negative coupling
βc < 0 and different values of the slope α. The gray area around the ΛCDM
represent the Poissonian errors based on the number counts of ΛCDM halos
in each bin of mass.
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5.3.3 Weak Lensing

Based on the theoretical framework of gravitational lensing described in sec-
tion 1.10, we now investigate the impact of our BCDE models on the Weak
Lensing observables from the fully non-linear mass distribution obtained from
our N-body simulations. This analysis uses lensed sources at a given red-
shift to study the matter distribution between the sources and the observer,
including both visible and dark matter.

For this analysis, we employ DORIAN (Ferlito et al., 2025), a newly de-
veloped Python library designed to perform full-sky ray tracing on GADGET-4

mass-shell outputs. DORIAN uses as input the mass-shell output generated
by GADGET-4 when the LIGHTCONE-OUTPUT option is enabled in the corre-
sponding configuration file. We have therefore preliminarily checked that such
option does work properly also for our modified PANDA version of the code.
This ensures that particles are recorded as they cross the backward light-
cone, organizing them into mass-shell outputs with user-defined thicknesses.
The maximum redshift of the lightcone and the shell thickness are specified
in the GADGET parameter file. For our simulations, we adopted the following
lightcone parameters:

• LightConeMassMapsNside = 4096

• LightConeMassMapThickness = 50Mpc/h

• LightConeMassMapMaxRedshift = 2.5

The Nside parameter defines the angular resolution of the HEALPix pix-
elization. In this work, we employed Nside = 4096, leading to maps with
12×N2

side ≃ 2× 108 equal-area pixels, corresponding to an angular resolution
of ∼ 0.86 arcmin. The maximum redshift selected, z = 2.5, requires repeating
the comoving simulation boxes multiple times during the ray-tracing proce-
dure. As we will discuss later, these box-replications can lead to geometric
artifacts in the deflection angle and convergence maps.

In the weak lensing regime, the distortion matrix A encapsulates the effects
of convergence (κ) and shear (γ), as derived in section 1.10:

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
, (5.10)

where we assumed the rotation component to be negligible.
As detailed in (Ferlito et al., 2025), DORIAN constructs the distortion matrix

from GADGET-4 mass-maps by employing the multiple-lens-plane approxima-
tion to trace light rays through a series of concentric mass shells, accounting
for the deflection caused by the matter distribution. The distortion matrix,
which describes the image deformation, is computed iteratively by combining
the contributions from each lens plane. The matrix includes convergence and
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shear terms, derived from the lensing potential and its derivatives, evaluated
using spherical harmonics for computational efficiency.

By iteratively tracing light rays through these planes and accounting for
their deflections, DORIAN computes the distortion matrix Aij capturing the
full weak lensing effects beyond the Born approximation (described in section
1.10).

In its most basic implementation, DORIAN assumes a ΛCDM model when
computing the comoving distance to the lensed source from the input red-
shift. However, in our BCDE models, the Hubble parameter H(z) differs
from ΛCDM, as we discussed in section 5.1, leading to different comoving
distances at the same redshift with respect to the ΛCDM. To address this, we
modified DORIAN’s raytracing function to accept the comoving distance of
the specified lensed source as an additional input. This ensures consistency
with the cosmology of our models and avoids inaccuracies introduced by the
ΛCDM assumption.

From the distortion matrix, we extract fundamental weak lensing quanti-
ties such as:

• the convergence (κ), which measures the magnification of background
sources,

• the deflection angle (α), which quantifies the bending of light rays due
to gravitational potential gradients.

Figures 5.20 show the full-sky convergence map for our fiducial ΛCDM
model considering the lensed source at three different redshift: z = 0.5, 1.0, 2.5.

The presence of vertical and diagonal bands in these convergence maps is
a manifestation of the box replication effect (Chen and Yu, 2024), a known
artifact arising from the finite size of the simulation box. Due to the rela-
tively small box size employed in our simulations, 500Mpc/h, the light-cone
construction requires multiple replications of the box along the line of sight,
particularly at higher redshifts. This repetition introduces artificial periodic
structures, visible as bands in the convergence maps. The effect is even more
pronounced in deflection angle maps as this quantity is directly proportional to
the gradient of the gravitational potential. Thus, if box replication introduces
sharp discontinuities or strong gradients in the underlying mass distribution,
these effects would be more directly and linearly reflected in quantities that
depend on first derivatives (like deflection) rather than second derivatives (like
convergence).

To better distinguish the evolution of convergence κ as a function of red-
shift, we plot the same convergence map of figure 5.20 but zoomed on a square
region with 20◦ angular size.

As expected, the convergence values increase with source redshift, reflect-
ing the greater integrated mass distribution encountered by photons traveling
over larger comoving distances (Bartelmann and Schneider, 2001; Kilbinger,
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2015). This behavior is explained by the fact that the effective convergence
κ is a weighted projection of the matter density contrast along the line of
sight. The maps at z = 2.5, therefore, exhibit stronger fluctuations compared
to those at lower redshift, as they probe a larger fraction of the universe’s
matter distribution.

To analyze the impact of the late-time evolution in a BCDE scenario on
weak lensing observables, in figure 5.22 we show the convergence maps differ-
ence of our BCDE models with respect to the ΛCDM case, as κΛCDM−κBCDE.
These plots highlight how the ΛCDM convergence is generally stronger com-
pared to BCDE models, aligning with the theoretical expectations for the
BCDE model, where late-time perturbations evolve more slowly due to the
presence of a friction term and the particle-mass variation that leads to lower
values of ΩM . This behaviour may alleviate the S8 tension that is primarly
appearing through weak lensing observations (Heymans et al., 2021; Burger
et al., 2023). The friction term in the BCDE model acts as a damping mecha-
nism, slowing down the growth of matter perturbations compared to ΛCDM.
In addition, the late-time mass variation leads to less massive particles, re-
sulting in a lower ΩM at low redshifts. As a result, at late times, the density
contrast in the BCDE model is lower. Since the effective convergence κ is a
weighted projection of the density contrast along the line of sight (Kilbinger,
2015; Ferlito et al., 2025), the slower growth of perturbations in BCDE natu-
rally leads to a lower convergence signal.

Figure 5.23 shows the full-sky deflection map of the fiducial ΛCDM model
considering the lensed source at three different redshift: z = 0.5, 1.0, 2.5. As
discussed above, the artificial patterns visible in these plots are caused by the
high number of box replications used to construct the full lightcone.

However, although this high number of replications affects the convergence
and deflection maps, it mainly impacts the largest angular scales, and does
not compromise the quality of our constraints (Takahashi et al., 2017). While
box replication introduces artificial structures and an excess of power at large
scales, its impact on the overall quality of cosmological constraints is mitigated
by the dilution effect over larger sky coverages (Chen and Yu, 2024).

Therefore, although this effect can lead to an excess of power at large
scales, it becomes negligible at smaller scales.

As done for the convergence κ, we show the deflection map focusing on
a square region with an angular size of 20◦ for the ΛCDM cosmology (figure
5.24), along with its difference relative to the BCDE models (figure 5.25).

The deflection angles in BCDE models are systematically lower than in
ΛCDM, particularly for the A1BP15 case, indicating weaker gravitational
potential gradients due to suppressed structure growth from dark energy in-
teractions. The A1BP15 model exhibits significantly reduced deflections that
become more pronounced at higher source redshifts, while the A1BM15 model
shows minimal deviation from ΛCDM, with nearly identical deflection angles
at lower redshifts.
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Before analyzing the impact of BCDE cosmology on the observable angu-
lar power spectrum, we assess the reliability of our pipeline by comparing the
angular power spectrum of our ΛCDM simulation, produced with our newly
implemented version of PANDA-Gadget4, against the theoretical ΛCDM pre-
dictions. To compute the theoretical ΛCDM angular power spectrum, we em-
ploy the CCL python library (Core Cosmology Library, (Chisari et al., 2019))
adopting the cosmological parameters listed in table 5.1. First, we define a
galaxy sample by specifying a redshift distribution centered on the redshift
of the lensed source, which for this test we assume zsource = 1.0. Then, we
create weak lensing tracers to model the distortion of galaxy shapes by large-
scale structure. These tracers incorporate the redshift distribution of source
galaxies. The angular power spectrum is then calculated from the correla-
tion of these tracers. Figure 5.26 show the comparison between the ΛCDM
angular power spectrum computed with DORIAN from our simulations out-
puts (solid line) and the theoretical prediction evaluated with CCL library
(dashed lines). As we can observe our ΛCDM weak lensing power spectrum
shows good agreement with theoretical predictions at large scales, while at
smaller scales it exhibits a power excess of ∼ 10% respect to the theoretical
prediction. This excess can be attributed to several resolution-related effects.
First, the finite pixel resolution of the convergence maps (with Nside = 4096)
limits the ability to accurately capture small-scale fluctuations. Second, the
mass resolution of the simulation, based on 2×5123 particles (for dark matter
and baryons), constrains the accurate representation of the nonlinear matter
distribution, particularly in dense regions. Finally, the shot noise associated
with the limited number of particles contributes to the excess power at high
multipoles. Addressing these limitations, for instance by increasing the sim-
ulation resolution and employing higher Nside values, may significantly help
reduce the discrepancy and improve the accuracy of the weak lensing signal
in the nonlinear regime.

Figure 5.27 presents the convergence angular power spectrum for our mod-
els, computed with DORIAN and binned into 80 equally spaced logarith-
mic bins in the range ℓ ∈ [1, 1.3 × 104]. Given that we produced our mass
maps with Nside = 4096, the maximum multipole ℓmax is set by default to
ℓmax = 3×Nside− 1 = 1.3× 104, consistent with the HEALPix convention.

We can notice how, for z ≤ 2.5, almost all the BCDE models exhibit
a convergence angular power spectrum lower than the ΛCDM value. Only
the A1BM15 model shows an angular power spectrum slightly higher than
ΛCDM at small scales (ℓ > 103), for lensed sources at z = 0.5. This aligns
with theoretical expectations, as the late-time evolution of our BCDE models
is characterized by suppressed structure growth due to the combined effect
of friction term and late-time mass variation, introduced by the BCDE cos-
mology (see section 5.1). In particular, the A1BP15 model exhibits a linear
amplitude of the angular power spectrum ∼ 60% lower compared to ΛCDM.
As a general trend, we also observe how the non-linear tails of the angular
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power spectra in these models increase with respect to the ΛCDM counterpart
for lower source redshifts.

In figure 5.28 we show the Probability Density Function (PDF) of con-
vergence field κ for BCDE models compared to ΛCDM. The BCDE models
consistently exhibit a higher probability, with respect to ΛCDM, for κ values
near zero, while it decreases below ΛCDM in both the high-κ and low-κ tails of
the distribution. This indicates that the BCDE models produce fewer extreme
density fluctuations (as the κ is the weighted projection of the density contrast
along the line of sight), leading to a more concentrated distribution of con-
vergence values around the mean. For lensed sources at z = 2.5, the A1BP15
model exhibits a higher probability for κ in the range −0.035 ≲ κ ≲ 0.025,
reaching a peak enhancement of 25% compared to ΛCDM. This effect becomes
even more pronounced at z = 0.5, where the range of enhanced probability
narrows to −0.01 ≲ κ ≲ 0.01, and the probability within this range reaches
a peak increase of 50% relative to the ΛCDM scenario. The narrowing of
the PDF reflects a reduction in both high-density peaks (massive structures)
and low-density voids, as the friction term in BCDE cosmology dampens the
overall clustering of matter at late times.

Finally, figures 5.29, 5.30 and 5.31 display the peaks and minima counts
of the convergence field κ, for the selected BCDE models, at lensed source
redshift z = 0.5, 1.0 and 2.5, respectively. For the peaks counts, we observe
that while A1BP15 model predicts an excess of low-κ peaks (κ ≲ 0.025)
at z = 2.5, other models, such as A1BM15, show the opposite trend. In
particular A1BM15 exhibits a peaks-deficit in a range 0 ≲ κ ≲ 0.07 and an
increased peaks-count at more extreme κ values.

The minima counts exhibit a more distinct difference between BCDE mod-
els featuring different sign of the coupling strength β. In fact, β > 0 models
show a minima distribution shifted toward larger κ value and a narrower dis-
tribution with a minima count up to 2 times the ΛCDM count for the A1BP15
model at z = 0.5. For the A1BP15 model, at z = 0.5, minima count is higher
than ΛCDM, in the range −0.01 ≲ κ ≲ 0, while it widens at larger redshifts.
This strong enhancement of shallow minima (corresponding to mildly under-
dense regions) is accompanied by a reduction of deeper minima (κ < −0.01).
Again, we can relate this effect to the suppressed growth of non-linear density
perturbations at late times. In contrast, β < 0 models show a behavior much
closer to the ΛCDM scenario.
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Figure 5.20: ΛCDM convergence map at different redshifts: z = 0.5 (top), z
= 1.0 (middle), and z = 2.5 (bottom)
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Figure 5.21: ΛCDM convergence maps zoomed over a region with angular size
= 20◦
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Figure 5.22: Convergence difference between ΛCDM and β = ±0.15
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Figure 5.23: ΛCDM deflection map at different redshifts: z = 0.5 (top), z =
1.0 (middle), and z = 2.5 (bottom)
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Figure 5.24: ΛCDM deflection maps zoomed over a region with angular size
= 20◦
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Figure 5.25: Deflection difference between ΛCDM and β = ±0.15
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Figure 5.26: Comparison between the ΛCDM angular power spectrum from
our simulations computed with DORIAN (solid line) and the theoretical predic-
tion evaluated using CCL library (Chisari et al., 2019).
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Figure 5.27: Angular power spectrum of the convergence field κ (upper panel)
and ratio to ΛCDM model (bottom panel) for different source redshift.
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Figure 5.28: PDF of convergence κ for different BCDE models (upper panel),
and PDF ratio with respect to the ΛCDM fiducial model (bottom panel
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Figure 5.29: Peaks counts (top) and minima counts (bottom) for BCDE mod-
els, compared to ΛCDM model, for z = 0.5
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Figure 5.30: Peaks counts (top) and minima counts (bottom) for BCDE mod-
els, compared to ΛCDM model, for z = 1.0
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Figure 5.31: Peaks counts (top) and minima counts (bottom) for BCDE mod-
els, compared to ΛCDM model, for z = 2.5
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Chapter 6

Conclusions

In this last chapter, we present a summary of the work carried out in this
thesis, which aims to develop, implement, and validate a new version of the
PANDA-GADGET-4 code to simulate cosmological observables such as matter
and halo clustering and weak gravitational lensing for Coupled Dark Energy
models. Alongside the code development, we also aim to validate the full sim-
ulation pipeline designed to study Coupled Dark Energy cosmologies. This
pipeline combines (i) a numerical code, introduced in chapter 5.1, to inves-
tigate the background evolution and linear perturbations for general classes
of interacting Dark Energy models; (ii) our newly developed implementation
within the framework of the PANDA-GADGET4 code for nonlinear structure for-
mation, offering a highly improved scalability and algorithm optimisations
with respect to the previous C-Gadget3 implementation (Baldi, 2010) as well
as a wide range of built-in output options, including 3D lightcones and spheri-
cal 2D mass maps; and (iii) the DORIAN library (Ferlito et al., 2025) to generate
weak lensing observables along the simulated lightcone.

In chapter 1, we reviewed the fundamental principles of modern cosmology,
including the FLRW metric, the Hubble law, and the growth of linear per-
turbations. We also highlighted the current observational tensions plaguing
the ΛCDM model, such as the Hubble tension, the S8 tension and the wDE

tension, which motivate the exploration of alternative theories like coupled
dark energy.

In Chapter 2, we introduced dark energy models, starting with quintessence
and extending to coupled dark energy scenarios. We discussed the unique fea-
tures of BCDE models, where the scalar field evolves under a confining self-
interaction potential, leading to a ”bounce” in its trajectory. These models
exhibit distinctive behaviors, such as time-varying particle masses, modified
gravitational interactions and an extra velocity-dependent friction term, which
can significantly impact the cosmic structure formation.

In Chapter 3, we provided an overview of numerical methods for simulat-
ing structure formation, focusing on the Tree-PM algorithm adopted by the
GADGET-4 code. We also introduced PANDA-GADGET-4, an extension designed
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to incorporate parameterized dark energy and modified gravity models, as
preparation for the new PANDA-GADGET-4 implementation we developed to
test Coupled Dark Energy features, discussed in the next chapter.

In Chapter 4, we detailed the modifications made to PANDA-GADGET-4 to
enable the simulation of Coupled Dark Energy models. Our implementa-
tion builds upon the Coupled Dark Energy framework already available in
the C-GADGET version of the GADGET-3 code. We extended this framework
to PANDA-GADGET, which features a hybrid shared-distributed memory par-
allelisation scheme to minimise communication overheads and provide opti-
mised scalability for large multicore HPC infrastructures. The Gadget4 code
is written in the C++ programming language whereas all previous versions
of Gadget have been written in standard C, which makes the porting of the
modifications required for Coupled Dark Energy models far from trivial, and
demands a careful validation of the new implementation to ensure its relia-
bility. These modifications include implementing the mass variation for cou-
pled particles dictated by the numerical solution of the scalar field dynamics,
adding a velocity-dependent friction term (directly related to the scalar field
evolution), and adapting the Tree-PM algorithm to account for the presence
of a fifth force, as well as allowing the use of a modified background expansion
encoded by a non-standard Hubble function H(z).

We then validated our implementation by comparing results with the es-
tablished C-GADGET code, achieving agreement within 1% for the nonlinear
matter power spectrum.

In Chapter 5 we first analyze the background evolution and linear per-
turbations of different BCDE models to evaluate the impact of the coupling
strength β and the potential slope α on the BCDE cosmology. We demon-
strated how these models can simultaneously increase the Hubble parameter at
late times while suppressing the growth of structures, offering a potential miti-
gation to the tensions observed within the ΛCDM cosmology. We then selected
the most promising models to be simulated with our new PANDA-GADGET-4

implementation to investigate their effects on the nonlinear structure forma-
tion. Our analysis of the nonlinear matter power spectrum revealed significant
deviations from ΛCDM. Models with positive coupling (β > 0) exhibit a sup-
pression of power on large scales, while showing a notable enhancement in the
nonlinear regime (k > 1, h/Mpc). For instance, the A1BP15 model α = 1,
β = +0.15 exhibits a ∼ 20% reduction in linear power at z = 0 and a ∼ 20%
increase in nonlinear regime (k ≳ 0.5h/Mpc) at z = 0. Noticeably, however,
this trend is strongly redshift-dependent, due to the oscillatory dynamics of
the Dark Energy scalar field, and the same model – which is the one showing
the largest deviations in our set of cosmologies – shows a ≳ 15% enhancement
of the linear amplitude at z = 2.

Halo statistics further underscored these differences. Models with β > 0
displayed a significant reduction in halo abundance, particularly for high-mass
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halos, with the A1BP15 model showing > 50% decrease in the number of halos
with masses higher than 1014M⊙/h at z = 0. This suppression of high-mass
halos is consistent with the late-time damping of structure growth caused by
the friction term in BCDE models. In contrast, models with negative coupling
(β < 0) remained closer to ΛCDM predictions, with only mild deviations. The
A1BM15 model exhibits a halo abundance that nearly identical to ΛCDM at
low redshifts (ratio remains under the 8% close to unity). The A2 models
(α = 2.0, βc < 0) show a steeper reduction in the number of high-mass halos
compared to their A1 (α = 1.0) counterparts, highlighting the role of the
potential slope in modulating structure formation.

Finally, we investigated the impact of BCDE cosmologies on Weak Lens-
ing observables such as the convergence maps, the convergence angular power
spectra, PDF, peaks and minima. Using the DORIAN library, we generated
full-sky lensing observables and found that BCDE models generally produce
weaker convergence signals, consistent with their suppressed growth of struc-
ture at late times.

The angular power spectrum of the convergence field κ revealed that al-
most all BCDE models exhibit lower power than ΛCDM for z ≤ 2.5. The
A1BP15 model, for instance, show a 60% reduction in the linear amplitude
of the angular power spectrum relative to ΛCDM. Only the A1BM15 model
displayed a slight excess in power at small scales (ℓ > 103) for lensed sources
at z = 0.5.

The Probability Density Function (PDF) of the convergence field κ further
illustrated these differences. BCDE models consistently exhibited a higher
probability for κ values near zero, while the tails of the distribution (both
high and low κ) were suppressed compared to ΛCDM. This indicates that
BCDE models produce fewer extreme density fluctuations, leading to a more
concentrated distribution of convergence values around the mean. For lensed
sources at z = 2.5, the A1BP15 model show a 25% higher probability for κ in
the range −0.035 ≲ κ ≲ 0.025, while at z = 0.5 this effect became even more
pronounced, with a 50% enhancement in probability for −0.01 ≲ κ ≲ 0.01.

Peaks and minima counts of the convergence field also highlighted the
distinctive features of BCDE models. At z = 2.5, these models predicted an
excess of low-κ peaks in the range −0.01 ≲ κ ≲ 0.05, which further shrinks
at lower redshifts. The number of shallow minima, −0.01 ≲ κ ≲ 0, in BCDE
models exceeded the ΛCDM prediction by a factor of 2 at z = 2.5 for the
A1BP15 model, while deeper minima, κ ≲ −0.01 were suppressed. These
results align with the theoretical expectation that the friction term in BCDE
cosmology dampens the growth of nonlinear density perturbations, reducing
the prevalence of both high-density peaks and deep voids.
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6.1 Future perspectives

The implementation of coupled dark energy (CDE) physics in PANDA-GADGET-4
we have developed in this work represents a significant advancement in cos-
mological simulations, opening new avenues for exploring a wide range of
interacting dark energy models. In particular, we demonstrated how Bounc-
ing Coupled Dark Energy (BCDE) models with a specific choice of potential
slope α and coupling strength β may possibly alleviate the current tensions
within the ΛCDM cosmology.

While this work focused on BCDE models, which represents a specific
subclass of coupled dark energy cosmologies, the modular design of our im-
plementation allows for seamless integration of generic coupled dark energy
scenarios. By decoupling the background and linear perturbation integration
(provided to the code via external input tables) from the nonlinear structure
formation (simulated in PANDA), our modified PANDA-Gadget4 version is able
to simulate a broad class CDE models without compromising computational
performance.

The pipeline we developed in this work, combining background and per-
turbation analysis, nonlinear simulations with PANDA-GADGET-4, and weak
lensing predictions with DORIAN, provides a powerful tool for constraining
a wide range of interacting dark energy models.

While our new implementation in PANDA-Gadget achieves high accuracy
(agreement with C-GADGET within 1%) the chosen 500Mpc/h box size creates
artificial repeating patterns when we generate full-sky weak lensing maps.
Also, the number of particles we simulated (2× 5123) gives us decent resolu-
tion for tracking dark matter, but might contribute the 10% difference from
expected results in the small-scale angular power spectrum (at scales smaller
than 1 h/Mpc). To improve these results in future work, we could run larger
simulations (≥ 1Gpc/h) to reduce the repeating box effects. Addressing the
current limitations, such as the 10% excess in the nonlinear power spectrum
at small scales, could further refine the accuracy of our predictions. With up-
coming cosmological surveys this pipeline will offer a powerful tool for testing
and discriminating between cosmologies beyond the ΛCDM.
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