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Abstract

The formation and evolution of cosmic structures are governed by the interplay of dark
matter, baryonic physics, and the underlying geometry of the Universe. This thesis fo-
cuses on the statistical characterization of large-scale structure through the measurement
of the 2-point correlation function (2PCF) applied to dark matter halo distributions de-
rived from high-resolution cosmological simulations. In particular, we analyze simulations
from the lllustrisTNG project [38]—including TNG100-1, TNG100-1-Dark, TNG300-1,
and TNG300-1-Dark—and a dedicated warm dark matter (WDM) simulation to under-
stand the differences in clustering patterns induced by baryonic processes and dark matter

particle properties.

We utilize the CosmoBolognaLib [31] to compute the 2PCF in both real and redshift
space. This C++ library allows efficient handling of large cosmological datasets and in-
cludes support for theoretical predictions of 2PCF and halo bias models. The Catalogue
and Measure classes of the library enable fine control over object properties and statistical
measurements, making it particularly suitable for our multi-resolution dataset spanning

a wide dynamic range in mass and redshift.

To ensure accurate large-scale clustering measurements, we correct for the finite-volume
effects by applying the integral constraint correction, especially critical for the smaller
TNG100-1 boxes. We find that more massive halos exhibit stronger clustering and are
preferentially located in these dense environments, while lower-mass halos remain more
uniformly distributed. The comparison between hydro and dark-matter-only runs reveals
that baryonic physics significantly enhances clustering in overdense regions (filaments and
nodes of the cosmic web), as confirmed by both 3D visualizations of halo positions and
2PCF profiles.

The study extends to WDM simulations, which demonstrate a marked suppression of low-
mass subhalo formation due to the free-streaming length of WDM particles. Nevertheless,
surviving halos in WDM runs are more clustered on small scales, echoing the scale-
dependent suppression of structure. The 2PCF profiles in WDM differ notably from
CDM counterparts, showing lower amplitude at small separations and stronger residuals
when fitted with linear bias models. This supports the notion that WDM cosmologies

yield less small-scale structure, but denser filamentary configurations.

These results underscore the need to refine theoretical models, particularly in the non-
linear regime, where baryonic feedback, star formation, and hydrodynamical effects in-
troduce significant deviations from linear predictions. Our residual analysis identifies
substantial discrepancies at both small (r < 1 Mpc/h) and large (r > 30 Mpc/h) scales.

On small scales, deviations are attributed to unmodeled baryonic processes; on large



scales, they arise from box-size limitations and periodic boundary conditions inherent in

the simulations.

Overall, this work contributes to the growing body of literature that leverages cosmologi-
cal simulations to improve the accuracy of large-scale structure observables. The findings
are crucial for interpreting future data from galaxy redshift surveys such as Fuclid and
DESI, which aim to constrain the nature of dark matter and dark energy. Future di-
rections include incorporating machine learning techniques for bias modeling, expanding
to larger simulation volumes, and exploring higher-order statistics such as the 3-point

correlation function to capture non-Gaussian features of the cosmic web.
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Chapter 1

1 Introduction

1.1 History of our Universe

According to our current understanding, the journey of our Universe started with the
Big Bang nearly 13.7 billion years ago. In that time, our Universe was an infinitely
compressed dense state, called initial singularity. After this the Universe is expected to
have experienced an accelerated expansion phase, what we called inflation. During the
inflation era, the energy density fluctuations in the inflation field provided the primordial
seeds the formation of the cosmic structures. The time scale for this era is estimated to
be around 1073¢ to 10732 seconds after the big bang. Soon after this, radiation-dominated

era started, when the Universe was dominated by relativistic particles.

By the time passed, the Universe continued to expand and the plasma started to cool
down which finally allowed the production of light elements. We call this process Nucle-
osynthesis and it took place after 3 to 20 minutes from the Big Bang. During this phase,
the Universe was enough cooled for protons and neutrons to be combined and form the

nuclei of elements like H, He, Li.

After 50-70 thousand years from Big Bang, the matter-radiation equality era started
which leads the Universe dominated by the matter. At that point, the energy density
fluctuations grow by gravitational attraction of the surrounding matter to the denser
regions, and these regions were responsible for the large structure of our Universe now a

days.

Until 380000 years from the Big Bang, the cosmic plasma was hot enough to keep
the photons in the thermal equilibrium and that’s why during this time, the Universe
was opaque. After all these, there were last scattering of photons and produced the very
first light that we are able to see today, which we call Cosmic Microwave Background
radiation (CMB).

1.2 Primordial fluctuations

Inflation gives us a mechanism that generates the primordial perturbations specially, the
density perturbations were generated during the inflation through the quantum fluctua-

tions of the inflation filed. This guarantees that they were intrinsically random (stochas-



tic) and quasi-Gaussian. So, in order to describe them, we need a statistical approach,
considering the so called primordial power spectrum. We can infer the latter with the
help of CMB temperature anisotropies and polarization as well through large scale struc-

ture probes [3].

The scalar perturbations indeed provide the dominant contribution to the anisotropies
observed in the CMB and they are responsible for the large scale distribution of the galax-

1es.

The inflationary era is a phase of rapid exponential expansion of the early Universe.
As said the variation of the density of matter happened due to the quantum fluctua-
tions. Initially the fluctuations for the dark matter density were small, but with the
time, overdense regions experienced strong gravitational attraction leads to pull in more
matter. This gravitational instability leads to the growth of structures from small density
fluctuations. Now, we are in the matter dominated era and this time we can have the
formation of cosmic structures because the radiation pressure is no more dominant. The
fluctuations lead to a process called hierarchical clustering where the small dark matter
halos merged together and formed larger and larger halos. These halos are dense and were
formed in very early time, acting as gravitational attractors, pulling in additional dark
matter which influenced the distribution of both dark and visible matter. The growth
of fluctuations formed the cosmic web which is a complex network of filaments, voids
and galaxy clusters. This is the large-scale distribution of dark matter in our universe.
Galaxies and galaxy clusters formed in those regions where we have higher dark matter
densities. Initial fluctuations in dark matter density set the size and properties of the

halos.

1.3 Evidence for dark matter

1.3.1 Rotational curves and early time detection methods

The Newtonian laws of motion and gravity theory were presented in Isaac Newton’s 1687
treatise Philosophiae Naturalis Principia Mathematica [39]. By doing this, Newton gave
people the means to find invisible or unseen objects by using their gravitational pull on
other bodies. An incredible example dates back to 1846, when Urbain Le Verrier and
John Couch Adams, two French and English astronomers, postulated [27] the existence
of an invisible planet to account for Uranus’ unusual orbit. In fact, after receiving a
letter with directions on where to search, their German colleague John Galle was able
to find the planet of Neptune that very night. As an aside, Urbain Le Verrier noticed
an abnormality in Mercury’s orbit and incorrectly claimed that there could be another

planet that is not observable. This strangeness was ultimately explained by Einstein’s
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general theory of relativity [13].

Knut Lundmark, a Swedish scholar, investigated the rotational velocities of five galax-
ies in 1930 and concluded that the mass required for maintaining the galaxies’ stability
was significantly larger than the visible matter. The five galaxies’ estimated mass-to-light
ratios ranged from 6 to 100 times the solar neighborhood’s observed ratio [32]. Unfortu-
nately, most people forget regarding Lundmark’s findings. Studies of the Coma galaxy
cluster carried out in 1933 by Swiss astronomer Fritz Zwicky have been recognized as
the first proof for dark matter. He detected a very high mass-to-light ratio, nearly 100
times that of the solar neighbourhood, using the virial theorem, which relates the radius
and velocity dispersion of a gravitationally bound cluster of objects to the cluster’s total
mass [03][04] . A fascinating fact is that Zwicky calculated the distance to the Coma
cluster using the Hubble constant. At the time, the Hubble constant was over-estimated
by almost an order of magnitude, which also inflated the estimated mass-to-light ratio by
the same factor. Even after this modification, a significant proportion of non-luminous

materials is still present.

Vera Rubin performed deeper measurements of spiral galaxy rotational velocities and
the correlation between rotational velocity and galactocentric radius in the 1970s [50].
In a spiral galaxy, the disk’s rotating velocity should decrease with distance from the
galactic centre if the amount of visible baryonic matter is the sole factor under consider-
ation. A further finding by Rubin was that the rotational velocity approaches a roughly
constant value as one gets further apart from the galactic centre, suggesting that there
is a significant amount of non-luminous matter in the outer regions of galaxies. This is
shown in Figure 1.1. Other astronomers also verified and expanded on this remarkable.
According to current knowledge, a spiral galaxy’s star disc is encased in a bigger, spher-

ically dispersed dark matter halo.

These kinds of dynamical observations continue to be among the and convincing
arguments in favor of non-collisional dark matter. Similarly, satellite probes like the
globular cluster can be used to estimate the dynamical mass of spiral galaxies or spheroidal
dwarf galaxies in order to determine the mass distribution and gravitational potential.
Today we have solid evidence that much of the matter in the Universe is dark, not just
in the sense that it is non-luminous, but also that it is non-baryonic. Only because of its
gravitational effects do we still know about dark matter. Nevertheless, evidence for dark
matter can be found throughout a wide variety of distance scales, from the cosmic to the

sub-galactic.
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Figure 1.1: Rotational velocity as a function of distance from the galactic centre, for spiral
galaxy NGC6503. The dots represent the measured data, while the lines are contributions
from gas, stellar disk, and halo dark matter. The figure is taken from Begeman et al. [5].

1.3.2 Gravitational lensing

Gravitational lensing is another method of determining a galaxy’s or galaxy cluster’s
mass. According to Einstein’s general theory of relativity, light gets bent as it passes
through a gravitational field. The foreground galaxy will function as a lens to bend the
light from the background galaxy if two galaxies are close to the same line of sight. The
mass of the foreground galaxy can be linked to the lens’s strength based on the distance

to the two objects.

Figure 1.2: Lensing of multiply imaged sources. [3(]

A distant background source (far left) emits light that is bent by a foreground dark matter
halo and galaxy (center panels), acting as a gravitational lens. The observer (far right)
sees multiple images of the background source (inset), often forming an Einstein Cross
configuration due to this lensing effect.

Distant objects can be gravitationally lensed into multiple (two or four) images. The
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light path for each of these images may be microlensed by stars or another heavy object
(depends upon the size of the source galaxy) in the lens galaxy. This can be detected by
independent variation in the light curve of the images once the time delay between them

has been subtracted.

1.3.3 X-ray emission and CMB

By examining the X-ray emissions from a galaxy cluster’s intergalactic gas, one can also
determine the cluster’s mass. A superheated plasma that produces X-rays is created
when intergalactic gas aggregates in a galaxy cluster’s deep gravitational well. This gas’s
temperature is determined by the total kinetic energy it gains as it descends into the

cluster’s gravitational well, which serves as a mass probe.

In support of non-collisional dark matter, the Bullet Cluster and other such systems
provide compelling evidence. Two distinct galaxy clusters that have collided and gone
through one another make up the Bullet Cluster, which is seen in Figure 1.3. The cosmic
gas has been slowed down and heated up, releasing an observable flux of X-rays, while
the bright galaxies have proceeded on their paths unhindered. Weak gravitational lens-
ing is used to map the system’s mass distribution, showing that the brilliant galaxies are
surrounded by a diffuse matter distribution. Given that the diffuse matter distribution
has collided and is passing through without interacting, this is compelling evidence for

non-collisional dark matter.

Figure 1.3: The Bullet Cluster, in optical (yellow) and X-ray light (pink),

and mass distribution inferred from weak lensing (blue).  Image Credit: X-
ray:  NASA/CXC/M.Markevitch et al. [33] Optical: ~ NASA/STScl; Magel-
lan/U.Arizona/D.Clowe et al. [8] Lensing Map: NASA/STScl; ESO WFI; Magel-

lan/U.Arizona/D.Clowe et al. [3].
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The cosmic microwave background radiation, (CMB) is a very useful indicator of the
makeup of the Universe at the cosmological scale. The CMB is a relic of the primordial
plasma’s 380 000-year-old age, when free protons and electrons bonded to create atoms
with a neutral charge. The CMB was the Universe’s final scattering surface after this
phase shift, which made the Universe transparent. With a current temperature of 2.726
K, the CMB is quite near to a perfect black body spectrum. Temperature anisotropies of
order 1075 K are examples of its minor departures from a perfect black body. Measure-
ments of these temperature variations, which are shown in Figure 1.4, have been made
by the Planck Satellite, and previously by the Wilkinson Microwave Anisotropy Probe
(WMAP) [26], and the Cosmic Background Explorer (COBE) [6]. Figure 1.5 displays
the CMB power spectrum in spherical harmonics that quantified these anisotropies. Pri-
mordial density variations and the medium through which they have spread combine to
form the power spectrum’s structure. A review of CMB cosmology may be found, for

instance, in Weinberg’s Cosmology textbook [35] or a review by Samtleben et al.[57].

Figure 1.4: Temperature fluctuations of the CMB, as measured by the Planck satellite,
seen in a Mollweide projection of the sky. Orange (blue) regions correspond to high (low)
temperatures. Image credit: ESA and the Planck Collaboration link.

Figure 1.5: Power spectrum of the CMB, as measured by the Planck satellite. Image
credit: ESA and the Planck Collaboration link.
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The A- cold dark matter model (ACDM) is the dominant cosmological framework,
with A standing for the cosmological constant. The amount of dark matter is one of the
six free parameters in this model. The CMB and its anisotropies, the abundance of light
elements (such as lithium, helium, and hydrogen), and the Universe’s accelerated expan-
sion are all well described by the CDM model. The dominating dark matter component
of the CMB, which makes up around 85 percent of all matter, interacts with baryonic

matter either extremely weakly or not at all.

Moreover, dark matter drives the Universe’s large-scale structure development, in
which mass collapses to create galaxies and galaxy clusters. Galaxy formation would be
delayed if radiation did not wipe off tiny density perturbations of the baryonic matter
caused by the gravitational collapse of cold dark matter. The ACDM model and the dark
matter paradigm are further supported by detailed large-scale structure n-body simula-

tions, including the ones used in this thesis work, which overall agree with observations.
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Chapter 2

2 Cosmology

This chapter offers a broad introduction to the core elements of the standard cosmologi-
cal model, providing insight into the essential aspects of this distinct branch of physical
science. Cosmology, an age-old field, explores the origin and development of the entire
Universe. It aims to interpret the Universe’s large-scale matter distribution by apply-
ing physical principles and drawing on its long-standing tradition of investigating the

Universe’s beginnings, its current appearance, and its future evolution.

2.1 The Axioms

Cosmology initially emerged as a branch of natural philosophy, but began its transforma-
tion into a physical science in 1917 with Albert Einstein’s formulation of general relativity.
The field relies on constructing models backed by observational data, with general rela-
tivity serving as a fundamental axiomatic framework that forms the basis for models with
minimal free parameters. However, General Relativity alone is not sufficient; it must be
supplemented by the assumptions of isotropy and homogeneity, which constitute the so-
called Cosmological Principle. This symmetry principle plays a crucial role in simplifying
cosmological models by reducing their degrees of freedom. The principle of isotropy states
that the Universe appears the same in all directions, aligning closely with the Copernican
Principle, which posits that no specific location holds a privileged observational stand-
point. When combined, these principles lead to the concept of homogeneity, meaning that
the Universe’s structural properties remain consistent across different regions. However,
the requirements set by the Cosmological Principle are not always strictly met. Observa-
tions in any direction reveal inhomogeneities, such as planets, stars, galaxies, and galaxy
clusters. This highlights a crucial aspect of the Cosmological Principle: it applies only
when averaging over large scales (approximately beyond 185 Mpc [37]) and pertains to

averaged properties).

Evidence from studies of the large-scale structure (to be defined the first time) and
the CMB supports this characterization, which is assumed to extend beyond the observ-
able Universe. However, unlike fundamental principles in physics—such as Heisenberg’s
uncertainty principle in quantum mechanics—the Cosmological Principle is not an in-
trinsic requirement of the theory [11]. Instead, it serves as a simplifying assumption for

constructing cosmological models on vast scales.
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2.1.1 General relativity

General relativity describes gravity as the intrinsic curvature of spacetime, expanding
upon the Newtonian understanding of gravity. Developed by Albert Einstein in 1915,
this theory interprets gravitational interactions as geometric properties of a 4-dimensional
manifold.

A manifold is a mathematical structure that locally resembles as R*, meaning that
in the vicinity of any given point, coordinates can be assigned similarly to those in
4-dimensional Euclidean space. This local coordinate system allows for mathematical
calculations, while the topological properties of the manifold ensure the continuity of
functions and the convergence of series across it. The shape of a manifold can vary—it
may be curved, and its intrinsic geometry may differ from the familiar flat Euclidean
space.

A key tool for describing the geometry of a manifold is the metric, which is formally
defined as a symmetric, non-degenerate (0,2)-tensor. This tensor functions as a bilinear
map from the manifold’s tangent bundle to the real numbers R ;| encoding the manifold’s
geometric properties and determining the length of curves. When a manifold is equipped
with a metric, it is referred to as a metric manifold. The length of an infinitesimal curve

element relates to the metric through the following expression (in Cartesian coordinates):

ds® = g, dxtdx” (2.1)

In this context, ds® represents the squared length of an infinitesimal line element,
where g, are the components of the metric tensor, and dz* and dz” denote the coordinate
differentials between two endpoints of a curve segment. Throughout this text, Greek
indices will range from 0 to 3, with © = 0 corresponding to the time component and
u=1,2,3 representing the spatial components.

The geometry of a manifold is fundamentally determined by the metric field g, but
how can we distinguish whether the manifold is flat or curved? To address this question,
we introduce a key mathematical tool in differential geometry used to characterize the

curvature of manifolds: the Riemann curvature tensor:

a @ @ a 178 a B
RI-LVP — ayrup - ap]:"ul/ + FVBF“p + Fp,BFp,V (22)
The Riemann curvature tensor provides as a criterion for determining the flatness of a
manifold. If Rf, , = 0 everywhere, the manifold is flat, regardless of the chosen coordinate
system.

In this context, we use the notation 9, = 9/0z" to represent partial derivatives. The

«

o » are defined as follows:

components of the Levi-Civita connection, denoted as I'
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o 1 o
T = 59° (Ougus + 0us + Osgw) (2.3)

The Levi-Civita connection is intrinsically linked to the metric and can be understood
in two complementary ways: as a geometric feature of spacetime or as a manifestation
of gravitational forces influencing the motion of objects. It defines how vectors change
as they move along a manifold and ensures that parallel transport preserves the inner
product, maintaining the structure of spacetime.

The contraction over one pair of indices in Eq.(2.2) results in the Ricci’s tensor:

o a o B o B o
R, = (%FW — 8,,I‘ua + F;w Bo — Fua v (2.4)

At the core of general relativity lie the Einstein’s field equations, which can be derived
from the least action principle applied to the Einstein-Hilbert action. These equations,

in natural units, take the form:

1
R, — igm,R = 8nG1T,,, (2.5)

where R, is the Ricci curvature tensor, R is the Ricci scalar, G is the gravita-
tional constant and 7}, is the stress-energy tensor representing the energy content of the
Universe. This set of equations encapsulates the fundamental relationship between the
intrinsic geometry of spacetime, encoded in the metric tensor, and the energy (matter)

content that influences this geometry.

2.1.2 Friedmann-Lemaitre-Robertson-Walker metric

In cosmology, choosing an appropriate metric g, is essential for accurately defining dis-
tances between events in spacetime. By applying Einstein’s summation convention, which
requires summing over repeated indices, we can express Eq. (2.1) in a more explicit form,

revealing three distinct contributions:

ds® = goodt® + 2go;dtda’ + gijda’da? (2.6)

Here, the indices 7 and j represent spatial components and range from 1 to 3. Through-
out this work, we adopt the metric signature convention (-,4+,4,+), where the negative
sign corresponds to the time component, while the positive signs are associated with the
spatial components. Based on the sign of ds? , we can categorize spacetime intervals into

three distinct types:
o« ds? < 0: time-like (trajectories of massive particles)

o ds? = 0: light-like (geodesics of photons)
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o ds? > 0: space-like (separated events cannot influence each other)

The Cosmological Principle can be formalized by assuming the existence of six killing
vectors, three for spatial rotations (isotropy) and three for spatial translation (homogene-
ity), describing the spatial symmetry between spacetime intervals and guaranteeing that
the mixed term 2go;dtdx’ in Eq.(2.1) vanishes. For a flat manifold, the metric simplifies

to

ds? = —dt* + di’ (2.7)

where dI? = g;;dz'dz? is the spatial distance between two points. Moving beyond flat
space, consider a homogeneous and isotropic unit 3D sphere which is a geometric object
that can be embedded in 4-dimensional spacetime, constructed by gluing the boundaries

of two 2D spheres. In Cartesian coordinates, the squared distance element is:

di* = da® + dy* + dz* + du? (2.8)

We can express dl? in polar coordinates and it takes the form

gz — 4 T r2d0? = dr’

1 =12 1—1r2

A 3d sphere with radius a may be easily generalised to this conclusion by adding the

+ 1r?(d6® + sin*0dg*) (2.9)

radius length as scaling to the formula. These spaces have a positive curvature, but we
might also talk about spaces that have a negative curvature, such as a 3D hyperboloid.

The most general metric satisfying the Cosmological Principle is the Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric:

2

1—Ekr?

ds® = —dt* + a(t)’[ +12(d0* + sin®0dg?)] (2.10)

Here:
e (7,0,¢) are the comoving polar coordinates.

e tis the proper time (or cosmic time) measured by observers at rest with respect to

the comoving coordinates.
o af(t) is the scale factor, which accounts for the expansion of the Universe over time.

e k is the curvature parameter, which can take three possible values (-1, 0, +1),

corresponding to a Universe with negative, zero, or positive curvature, respectively.

2.1.3 Expansion of our Universe

Different definitions of distance are used in cosmology to describe the separations between

events or objects. The proper distance, or the distance between two events that occur at
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the same cosmic time (i.e., when dt = 0), is one basic option. The instantaneous spatial
separation between two points at a specific point in time is provided by this metric.
To derive the proper distance, we start with the general metric expressed along a specific

line of sight, where the angular components vanish (dff = 0 and d¢ = 0):

T dra(t)
1 — Fkr?

F(r) is a function that accounts for the spatial part of the FLRW metric

dy(t) = = a(t)F(r) (2.11)

v dr?
Fr) = /0 s = al)F (1) (2.12)
Depending on the Universe’s geometry, it can take on many shapes. Specifically, if:
« k=0—F(r)=r
o k=41 — F(r) = arcsin(r)
e k=—1— F(r) = arcsinh(r)

There is a temporal dependence on the ideal distance. The appropriate distance is

known as the comoving distance if we set the time to the current time, ¢,:

dc = dpr(tO) = a(to)F(T) == aa((tto))dpr

An equation for the radial velocity may be found by deriving the correct distance with

(to). (2.13)

respect to t since it is dependent on time:

a/

dldy (1) _ dla()F) _a
s = e = —aF = —dy, (2.14)

This is the Hubble-Lemaitre law, which explains how an object’s radial velocity

Vi(t) =

changes as a result of the Universe’s expansion. The Hubble parameter, or H = a/a,
encodes all of the data on the Universe’s expansion.

The assessment of the Hubble parameter at the current time ¢, is still an uncertain
subject [50]. The Hubble constant was can be determined by both direct observations,
such as Cepheids and Type Ia supernovae, and indirect measurements from anisotropies
in the CMB. There is a Hubble tension of almost 10 percent in the most recent estimates,
which are Hy = 67.4 km s~' Mpc™! from CMB observations [19] and Hy = 74 km s~
Mpc™ from local standard candles [54].

The presence of a unique location as the expansion’s center is not allowed by Eq.(2.14).
Let us consider an observer determining a galaxy’s location [ and velocity V', assuming
a non-relativistic regime (v < ¢), to see why this is not the case. The recession law,

which is derived from the Hubble-Lemaitre law at the current time ty, expresses the
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relationship between these two values as follows: v = Hyl. Now, let us look at an
additional observer who is at position /. In comparison to the first observer, this one will
have velocity v" = Hyl'. Using the non-relativistic composition law, the second observer’s

measurement of the galaxy’s velocity is

V==0-0=Hy V)= HyL, (2.15)

where L denotes the position of the galaxy relative to the second observed. This
demonstrates how, in accordance with the Cosmological Principle, the linearity require-
ment ensures that Hubble’s law is true for all comoving observers.

Eq. (2.5) contains other physical constants besides the gravitational constant G. The
cosmological constant A also adds to the Universe’s energy content in the conventional
cosmological framework. This constant was first introduced to stop the Universe’s dy-
namical behavior of constant expansion or contraction in Einstein’s field equations. The
cosmological constant was understood to act as a stabilizer in this way, but indeed the
equilibrium is essentially unstable. However, it has latter re-introduced to provide a new
energy source, known as dark energy.In future the laws of gravity instead if it were dis-

covered that this constant alone is insufficient to explain the observed acceleration.

According to the Hubble-Lemazitre law Eq. (2.14), the Universe does in fact exhibit
dynamical properties, most notably its expansion. In the recent times, this growth has
started to accelerate rather than occurring at a steady speed. There are several pieces of
evidence: Type la supernovae [51], [14], and baryonic acoustic oscillations [11] being the
most robust ones [24], [20],[6]. Important new information regarding the nature of dark
energy has been revealed by other studies that have investigated variations in the CMB

radiation, such as those carried out with the Planck spacecraft [15].

In conclusion, although the Hubble-Lemaitre law provides a clear understanding of
the connection between galaxies’ distance and recessional velocity, the existence of the
cosmological constant prompts us to consider a constantly changing Universe in which

the acceleration of growth is still an unsolved conundrum.

2.1.4 Cosmological redshift

Let us consider a photon that was released at time t.,, from an astronomical source at a
given. An observer notices this photon at the moment ¢,.,s. Using the metric given by Eq.
(2.11), aligning the line of sight so that df = d¢ = 0 and keeping in mind that photons

always follow:

dr?

2_ 2
dt _a(t)l—krz

(2.16)
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If we integrate this equation from t.,, to t.,s, we get:

tobs  (t rdr’
[ 217
tem Q(t) 0 V1 —kr?
Let us now assume that another photon is released by the astrophysical source at time

tem + Oten. The observer will perceive this second photon at time ty + dty, and if the two

photons travel the same distance ¢, then

tobs dt Lobst0tobs dt
/b7=F(T):/b T (2.18)
tem a’(t) tem+5tem a(t)

This gives us:

5tobs _ 5tem (2 19)
a(tobs> Zfem .
The above equation gives us both:
» frequency
a(tops)Vobs = A(tem)Vem (2.20)
o wavelength
)\obs _ a(tobs) (2 21)

These formulas show that the change in the scale factor a is reflected in the photon’s
measured wavelength (or frequency). We may construct a function that expands linearly
with a(t) back in time, serving as a stand-in for the Universe’s expansion. This is the
Cosmological Redshift:

o Aobs = Aem _ AA (2.22)
Aem A

By setting the observed time to ¢y as reference, we find a linear relation between the

redshift and the scale factor

a(to)

a(t)

At then present time, t = ¢y, and so z = 0. Since a(ty) > a(t) for t > t,, observations

14+2=

(2.23)

indicate that the scale factor is monotonic and has been growing up to the present day,
it follows that z(ty) < z(t).
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2.2 Friedmann models

As already mentioned in order to explain the late-time rapid expansion of the Universe,
a positive cosmological constant has lately been incorporated into Einstein’s equations.
Consequently, the effective stress-energy tensor may be used in place of the stress-energy

tensor in Eq. (2.5), compensating for an extra term.

T,

gz + %guu (224)

By treating the universe as an ideal fluid and ignoring thermal conduction and vis-
cosity, Friedmann models allow the stress-energy tensor to be stated only in terms of the

fluid’s pressure p and energy density p:

" = —pg"” + (p + p)uru” (2.25)

where u* and u” are the fluid’s 4-velocity vector components. The stress-energy tensor

simplifies to a diagonal matrix when anisotropic stress is absent:

p 000
0 p 00

T5:0§p0 (2.26)
0 00 p

Because of the different combinations of indices p and v, Eq.(2.5) has 16 equations.
However, this number decreases to 10 independent components because of the metric ten-
sor symmetry. Moreover, an extra reduction is possible due to the flexibility in selecting
coordinates, leaving six independent components.

Lastly, this is reduced to only two independent components by the FLRW metric’s under-
lying assumptions of homogeneity and isotropy. The Cosmological Principle’s restrictions
allow the metric for a flat universe to be expressed as a diagonal matrix in Cartesian co-

ordinates:

G = diag[—1, a®(t),a*(t), a*(t)] (2.27)

We can prove further for the above metric equation, the Levi-Civita connection
Eq.(2.3) reduces to:

o, =10, =T} = rgﬁ =0 (2.28)
I = daa = 6;;a°H (2.29)
, a

Iy, =T, = &kg = 0 H (2.30)
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where the Kroneker delta is defined as d;; = diag(1,1,1). This is expected since the
metric’s symmetry and the time-time gog component, which is a constant and all partial
derivatives Ou are zero, require that all off-diagonal components disappear. Furthermore,
only the time derivation 0y survives the calculation since all of the space-space components
gi; depend exclusively on time. We must compute the Ricci tensor and the Ricci scalar
by entering Eq. (2.3) in the formulation of R, in order to solve Einstein’s field equations

Eq. (2.5). From the time-time elements we have:

Roo = —3% (2.31)

while from the space-space components we obtain:

Rij = 0;;(24%Ga) (2.32)

The Ricci’s scalar is defined as the contraction of the Ricei’s tensor with the metric:
v 00 ij a a’
R=R,g" = Ryg " + Rig”" = a + (a ) (2.33)

Lastly, we may combine these findings with the Einstein’s field equations’ formulation
for the stress-energy tensor for an ideal fluid. We derive the first Friedmann equation for

a flat Universe from the time-time component:

oy -,

Since the Universe is an isolated system and energy must be conserved. The Fried-
mann equations are thus connected by the adiabaticity requirement, so even they are the
two independent equations of the tensorial equation Eq. (2.5), they are not independent.

Thus, starting with the fundamental law of thermodynamics

dU = —pdV = d(pa®) = pda® (2.35)

as the volume scales according to the scaling factor’s cube. The way that each fluid
component’s energy density changes as the Universe expands is constrained by this equa-
tion.
We may now include a few helpful parameters that condensibly represent the information

of physical importance. The Hubble parameter has previously been encountered

H(t) = alt) (2.36)
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which quantifies the expansion rate of the Universe. Another useful quantity is the

density parameter of the fluid s

ps(t) ps(t)
(1) = 2 = 2.
(1) = 5 = sn G (2.37)

explaining how the fluid density changes. Now, we can more easily state the first

Friedmann equation while accounting for the variety of species found in the cosmic fluid:

H(1)
Hg

=3 0,() (2.38)

S

2.2.1 Equation of state

A fluid species’ pressure and energy density are related by the equation of state, which is
a function ps; = ps(ps), where pg is the pressure and p; is the density. The general form

of the equation of state is :

Ps = WsPs (239)

with w, a dimensionless constant, whose value is set by the species. In particular:

e non-relativistic matter: p = NkgT ~ 0 — w, ~ 0;
o radiation and relativistic matter: p = % p— Ws = %;

» cosmological constant: p = —p — wy = —1.

The fluid species’ energy density s as a function of scale factor a may be simply

expressed from the adiabaticity requirement in Eq. (2.35) as :

p(t) oc @ 30Hws) o (1 4 z)30Fws), (2.40)

The evolution of each fluid species across cosmic time may now be reconstructed using
Eq. (2.1). Each fluid species’ current value may be found using Eq. (2.37).
38, H, g —29 -
s =—2"0 — 188 x 10720y h*g cm ™", 2.41
Po, e 0,8 ( )

where we used the dimensionless Hubble constant:

hi= o
" 100km s~ Mpc—1

(2.42)
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The three separate epochs in the history of the Universe are defined by the domi-
nance of one fluid component over others, and each is distinguished by variations in the

development of energy density with redshift, as seen in Fig. 2.1 :

« radiation dominated: the first cosmological epoch sees a prevalence of radiation in
the cosmic mixture. This epoch ended at the matter-radiation equivalence around
103 years after the Big Bang. In terms of redshift it corresponds to:

Pom (1 + 200 = poe (L4200 — 20"~ 10* (2.43)

o matter dominated: after the matter-radiation equivalence time, the new epoch of
matter domination began. This epoch lasted up to 5 million years ago at the A-

matter equivalence, when the last cosmic epoch dominated by the cosmological

constant began

por = pom(l+ zig ) = 200 ~ 0.7, (2.44)

eq

Figure 2.1: Evolution of the radiation, matter and cosmological constant energy densities.
On the x-axis, the redshift corresponding to the radiation-matter equivalence and A-
matter equivalence are reported. The solid red line describes the evolution of the total
energy density of the Universe. Credits to [10]

Finally we can express the first Friedmann equation Eq.2.38 using the content of the

equation of state as follows:

H(2) = HE Y Qo (1 4 2)20Hwe), (2.45)
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2.2.2 Curved Universe

A new term that takes into consideration the contribution of the curvature parameter
k must be included in order to generalise Eq. (2.38), which is applicable to a non-flat

Universe.

H?(2) = H? {Z Qoo (1 4 2)30F%) 1O (1 + z)Q} : (2.46)

where the departure from flatness is quantified by Qx(z) = 1 — >, Q4(z). The fluid’s
energy density, which manifests with the maximum power of (1 + z), dominates at high
redshift. The expansion rate H(t) of Eq. (2.38), therefore, approaches the Einstein-de
Sitter limit (single-component cosmic fluid and flat Universe) with solution under such

circumstances:

2 1

1/2(

t=2

14 2)7%2 (2.47)

This indicates that any curved Universe goes towards the flat one at extremely early

periods and is independent of the cosmological constant and the curvature 2 (2).

Depending on the value of 2y = >, {2y 5, we have different curved models:

o+ Closed models (€ > 1): The Universe will ultimately approach a maximum scale
factor. Setting @ = 0 allows us to determine the highest scale factor that corresponds

to

Qo 1/(143w)
max — . 24
a aop (1 — Qo) (2.48)

Given the quadratic nature of Eq. (2.38), the symmetry suggests that the expansion
will eventually reverse. As a result, a closed Universe will experience the Big Crunch

at 2t(amaz), when its scale factor vanishes.

« Open models (29 < 1): The scaling factor a(t) for open models grows monotonically
and never reaches a maximum. We can confirm that the scale factor grows linearly

with time during the radiation and matter era by solving Eq. (2.38).

H(t) o -, (2.49)

and so the Universe expands forever.

The evolution of the scale factor a(t) is reported in Fig. 2.2 and underlines how the

three possible geometries converge to the same one in the early Universe.
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Figure 2.2: Scale factor evolution in Universes with various geometries. For a closed
universe (£2 > 1), the evolution is represented by the dot-dashed line; for an open Universe
(€ < 1), the dashed black line is used. A geometrically flat Universe is represented by
the solid line (€2 = 1). The current time is represented by the red dot.[15]

2.3 ACDM Model

The A—cold dark matter model, which is the current concordance model of cosmology,
is based on the ideas that have been presented thus far.

Let us examine what each term in ACDM means.

2.3.1 A - the cosmological constant

As told, this symbol stands for the cosmological constant, which was added to Einstein’s
field equations and is what causes the Universe to expand accordingly. It counteracts
the gravitational attraction of matter on smaller scales by functioning as a source of
gravitational repulsive force. Geometric restrictions and observational data are used to
determine the value of A. It is very tiny, with a recent estimate of A ~ 1.1 x 10~%6cm 2.

The cosmological constant and vacuum energy are linked in a not yet clear scientific
explanation: even empty space has energy, according to relativistic quantum physics, be-
cause of quantum fluctuations that are constrained by the Heisenberg uncertainty princi-
ple’s detectability constraints. Theoretical predictions and measurements, however, differ
significantly: quantum field theory predicts a vacuum energy density that is around 120
orders of magnitude higher than what cosmology deduces empirically. One of the largest
problems in contemporary physics is still resolving this enormous discrepancy, which is

referred to as the cosmological constant problem.
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2.3.2 CDM - cold dark matter

The term CDM describes a kind of stuff that is invisible to telescopes because it does not
emit, absorb, or interact with electromagnetic radiation. As previously described Zwicky
initially proposed the idea of dark matter in 1933 [63], when he found a new kind of
matter called Dunkle Materie (missing matter), which is far more prevalent than regular

matter. Several observable findings then provided support for this hypothesis:

» Galactic rotation curves: Stars in galaxies revolve more quickly than can be ex-
plained by visible matter alone, according to observations of their rotational veloc-

ities, suggesting the existence of an invisible mass component [61].

« Gravitational lensing: Galaxy clusters bend light from far-off objects more strongly
than would be predicted given their observable mass, suggesting the presence of

extra mass in the form of dark matter [60].

o Cosmic microwave background: The statistical characteristics of the temperature
variations in the CMB point to the necessity of dark matter to account for the

development of structures from the early Universe to the present [12].

o LSS formation: The observed distribution of galaxies and galaxy clusters is pro-

duced by dark matter, according to models of the evolution of cosmic structures

[15].

Dark Matter is cold because its particles have little kinetic energy and travel slowly
in relation to the speed of light. Due to gravitational pull, this feature makes sure that
dark matter clumps effectively in the early Universe, promoting the creation of massive
structures like galaxies and galaxy clusters. Virialized structures with masses less than
10* M, could not have developed with just hot dark matter. This excludes out hot com-

ponents like neutrinos as the predominant dark matter component.

One of the major unanswered questions in cosmology is the precise makeup of CDM.
Infact although the existence of dark matter is generally acknowledged, its particle
makeup is yet unknown. Although a number of ideas have been put up, including pri-
mordial black holes, white holes, sterile neutrinos, axions, and weakly interacting massive
particles (WIMPs), none of these have enough empirical evidence to be taken into con-
sidered as a definite solution to the CDM problem. Although the goal of particle collision
experiments like the one at the Large Hadron Collider and direct detection investigations
is to find or create dark matter particles, no conclusive discovery has been achieved so

far.
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2.3.3 Inflation and the six ACDM model parameters

For the ACDM model to be fully predictive, inflation seems to be a necessary component.
As previously described the first perturbations in the very early Universe that eventually
developed into the structures we see today were created by this quantum perturbations
in the inflation field. The scale factor rose exponentially over time throughout the infla-

tionary period which, according to standard inflationary models, lasted from 1073 s to

10732 s [18]. More specifically, it is anticipated that there would be
ag
N=In () > 60, (2.50)
a;

where ay and a; represent the scale factor at the end and beginning of inflation, respec-
tively. A statistical imprint on the primordial perturbations may be left by inflation
breaking symmetry in a parity-violating scenario. Specifically, as new particles are cre-
ated by inflaton decay during inflation, particle exchanges may result in non-Gaussianities
in these primordial fluctuations [21], [2]. Furthermore, a phase of magnetogenesis is sug-
gested by various parity-violating inflationary theories as the cause of the symmetry
breakdown [17].

Ultimately, the concordance model of cosmology describes a geometrically flat Uni-
verse with early perturbations caused by the inflationary process, dominated by CDM
and A. With just a few essential factors, this model predicts the Universe’s development
with remarkable accuracy. An outline of the main parameters that are used to build the
ACDM model is provided below:

 Hubble constant H,: This parameter, as previously mentioned, characterizes the
universe’s present pace of expansion. According to indirect CMB observations|!5],

its value is

Hy ~ 67.4kms ' Mpc™!, (2.51)
while the value derived from local distance ladders [52] is
Hy ~ 73kms™ ! Mpc . (2.52)

« Matter density parameter (),,,: The present total matter density of the uni-
verse, including baryonic and CDM stuff, normalized to the critical density, is this
parameter’s definition. It governs how hierarchical structures are formed. It usually

has the following value:

Qom ~ 0.31 . (2.53)
« Baryonic density parameter €)y;: It is the portion of the Universe’s energy
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density that is assigned to baryons, or ordinary stuff.

Qo A~ 0.049 (2.54)

o Dark energy density parameter (2,: It stands for the energy density linked to

the cosmological constant, which causes the Universe to accelerate.

Q) ~ 0.69 . (2.55)

« Curvature parameter () ;: Current measures provide support on the Euclidean
geometry laws since €, ~ 0 in the ACDM model, which is related to the present

geometry of the Universe.
e Spectral index ng: It describes the shape of the primordial power spectrum
P(k) o< k™
ns ~ 0.96 . (2.56)

o Amplitude of fluctuations og:Measures the strength of matter clustering on
scales of 8 h~! Mpc,

o5 ~ 0.8 . (2.57)

o Optical depth 7: The transparency of the Universe to photons during reionization,
which took place when the first bright objects (probably Pop. III stars) ionised the
surrounding gas, is measured by this parameter. Through Compton scattering,
the free electrons created during reionization dispersed CMB photons, leaving a
noticeable mark on the CMB polarisation. This aids in establishing the date of the

reionization phase.

T~ 0.054 . (2.58)

These results have been provided by Planck 2018 data[15].
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Chapter 3

3 Evolution of cosmic structures

A key cosmological probe is provided by galaxy is clustering, which describes matter’s
propensity to form cosmic formations rather than be evenly distributed over space.
As was described in the last chapter, CMB observations show that the early Universe has
a nearly uniform distribution of stuff. But throughout time, tiny density fluctuations that
were there in the early phases of cosmic evolution expanded, giving rise to galaxies, galaxy
clusters, and the enormous filamentary formations that are seen today. According to the
energy-time uncertainty requirement AEAt > h/2, these disturbances are predicted to
arise in the primeval Universe, where tiny matter fluctuations are permitted. The little
variations in temperature and density in the CMB at z approximately 1100 demonstrate
their existence:

oT  op _

?~?~105. (3.1)

Gravitational forces are the main factor behind the creation of structures; they attract

matter to areas that are overly dense, intensifying these early inhomogeneities.

3.1 Metric perturbation

Beginning with the Big Bang and continuing through the creation of the first atoms, Big
Bang nucleosynthesis, and dark matter generation, the homogenous Universe underwent
a thermal history of evolution. The creation of the structure is intricate and necessitates

approximations, solving the equations governing the evolution of cosmic species

Let us start by adding small perturbations |h,,| < 1 to the FLRW metric given by
Eq. (2.10):

9ij(t, ) = a?(t)[0i; + hi; (¢, 7).
For the perturbed metric, Eq. (3.2), we have 10 extra degrees of freedom provided

by the independent components of the symmetric 4-dimensional perturbation tensor A,
whereas for the flat homogeneous Universe we had only one degree of freedom, that is

the scale factor a. Let us describe each aspect of the perturbation in details.
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e hgo: the time-time component is a 3-scalar, therefore it is invariant under any spatial

rotation. Given an arbitrary scalar field A, this component can be written as:
hoo = —2A . (3.3)

where the prefactor —2 is a convention.

e hg;: The Helmholtz decomposition theorem, which asserts that any sufficiently
smooth vector field that decays quickly at infinity can be uniquely decomposed
into the sum of an irrotational component, represented by a scalar potential, and
a solenoidal component, represented by a vector potential, can be used to break
down the time-space perturbation, which is a 3-vector. When a solenoidal 3-vector
field B;(t, ¥) and an arbitrary 3-scalar field B(t, z) are introduced, the perturbation

can be written as the sum of the longitudinal and transverse parts:

0B
—— — B,;.
oxt

ho; = (3.4)
o hi;: The space-space component is a symmetric tensor in three dimensions. In
order to generalize the Helmholtz decomposition theorem, we add a solenoidal vec-
tor field V;(¢, Z) and two arbitrary 3-scalar fields D(t, Z) and E(t,Z). Even though
the perturbation tensor contains ten independent components, this decomposition
only offers eight degrees of freedom (4 scalar functions and 2 transverse vectors).

This indicates that we are lacking two degrees of freedom, known as the transverse-

T

tions. Consequently, the spatial perturbation’s complete decomposition is provided
by:

traceless components which cannot be represented as scalar or vector combina-

°E Vi 0V,

=200, — 22— . :
i % o0xt0xd + oxrd  Oxt

T
+ 0T (3.5)

Any tensor can be subjected to this general decomposition. Because of the symmetry
of the FLRW metric, it leads to a significant finding known as the decomposition theo-
rem, which asserts that 3-scalar, 3-vector, and 3-tensor perturbations evolve separately
at linear order. This finding is essential to cosmology because it makes it possible to

independently investigate scalar perturbations, which are what cause structures to grow.

3.1.1 Conformal Newtonian gauge

A choice of coordinates is commonly referred to as the gauge in general relativity, and
finding gauge invariance under coordinate transformation is crucial for lowering the num-
ber of free parameters in the equations and enabling resolution. Examine a generic scalar
field ¢(Z,t) that is obtained by applying a baseline term ¢(t) to a minor scalar pertur-
bation 0o (%, t):
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(T, 1) = o(t) + 00(Z, 1). (3.6)

Our goal is to comprehend the changes in this field under the general small coordinates
transformation z,, — Z*(z*). This prerequisite is required to permit a Taylor expansion

of the transformed coordinates and to maintain the perturbations’ small magnitude:

A:t+C(t )
£L‘ + O&(t,%)

Z"L Y

(3.7)

where the time and space changes are denoted by ¢ and &, respectively, and are regarded
as first-order disturbances. We get the rule for scalar perturbations transformations by
utilizing the scalar transformation law:

io,3) = aoli. H) - 0 7). 35)

We concentrate on the scalar fields A, B, D, and E as specified in Eqs. (3.3), (3.4),

and (3.5), taking the decomposition for scalar perturbations only. The formulae for the

S
E%n
S

converted scalar fields can be obtained by applying the tensor transformation rule to the

metric components g,

A=A-¢

N a1

B=B—-a+a (3.9)
D=D-%

E=F+c¢.

Four scalar functions (A, B, D, and E) determine the scalar perturbation transfor-
mation rule, which in turn depends on two spacetime shift functions (¢,¢). This trans-
formation is helpful for lowering the degrees of freedom. Thus, we have two degrees of
freedom remaining. It is possible to set two equations from the set (3.9) equal to zero,
by selecting the shift functions properly. The conformal Newtonian gauge is based on
this method, in which we choose ((,&) so that B and E disappear. We have thus seen
how the number of degrees of freedom in the metric is decreased by selecting particular
coordinates. The decrease from 10 to 6 degrees of freedom is caused by this coordinate
selection, sometimes referred to as gauge freedom.

The FLRW metric with scalar perturbations is commonly expressed using the usual

Bardeen potentials ¢4 and ¢y [1]:

Dy=A+ aat (aQE — aB) : (3.10)
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Oy :=—-D+a(B—aE) . (3.11)

Thus, the perturbed metric can be expressed as:

ds® = —(1+20g)dt* + a(t)* [(1 — 20,)d;;] da'da’, (3.12)

Finally, we can apply the conformal Newtonian gauge conditions £ = B = 0 to the
Bardeen potentials, yielding ¢y = —¢ and ¢4 = 1. In this gauge, the perturbed FLRW

metric takes the form:

goo(t, ) = —1 — 24(t, )
gio(t, @) = goi(t, ) =0 (3.13)
9i(t, %) = a?(t)d;; [1 + 20(t, 7],

where 1 is the well-known Newtonian potential and ¢ is the local perturbation of the

scale factor. Both the scalar fields have magnitudes < 10~%, making them suitable for

linear theory.

3.1.2 Boltzmann equations

The equations controlling the evolution of perturbations in each fluid species in the
ACDM model, excluding the perturbations of the cosmological constant, may now be
derived since we have chosen a gauge for the metric perturbations.

In cosmology, we examine the statistical distributions of cosmic components rather than
the evolution of their individual particles. Let’s look at a group of particles in the
phase with space coordinates (x,p), where the dynamics of the system depends on the
position and momentum of each individual particle. The uncertainty principle restricts
our knowledge of a particle’s location to within an uncertainty of A since it is impossible
to pinpoint a particle’s precise location in phase space. As shown in Fig. 3.1, the phase
space for each particle is therefore not a collection of discrete points but rather it is
separated into 6-dimensional cells with volumes determined by quantum units, AV =
ATAp/(2mh)3. One can calculate the quantity of particles in a single phase-space cell as
follows:

Nt = RETOIV = (7. 70) G (3.14)
where the probability density to discover a particle in a particular condition is de-
scribed by the 1-particle distribution function, f;(Z,p,t). The Fermi-Dirac distribution
for fermions and the Bose-Einstein distribution for bosons are two well-known equilibrium

distribution functions that characterize particle evolution in phase space for a collisionless
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system.
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Figure 3.1: Discretization of the phase space [10]

Their distribution functions must be calculated in order to comprehend the evolution
of cosmological species, especially because species are frequently out of equilibrium in the
context of cosmology, particularly when examining the growth of structures.

The Bogoliubov—-Born-Green—Kirkwood—Yvon (BBGKY) hierarchy describes the dy-
namics of a generic system with many interacting particles. The n—particle distribution
function and the (n + 1) particle distribution function are related by a set of linked

equations that make up this hierarchy:

Fo(Z™, / AV o (ZHD 54D 4, (3.15)

Internal dependencies in this series of equations reach all the way up to the system’s
particle count. This indicates that it is impossible to calculate the distribution function of
any one particle in the system without also calculating the distribution function of every
particle. Consequently, the issue turns into the hierarchy’s closure to a certain extent.
To terminate the sequence in Eq. (3.15), at an appropriate order, approximations are
required. In particular, the Boltzmann equation can be obtained by truncating at the first
equation, which is allowed under the assumption of molecular chaos (Stosszahlansatz).
For a collisionless system, the Boltzmann equation conserves the total number of particles
and takes the form:

dfn(Z,p,t) dr dp  Of

—0 i L% . 3.16
dt = Ve G TV Y g T (3.16)
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The flux of particles into and out of a phase-space volume element is described by
the equation in this instance. According to Liouville’s theorem, the system’s collision-
less nature guarantees conservation of the occupied phase-space volume. However, this
conservation breaks down when particle interactions are taken into account, making the
Boltzmann equation non-zero. In particular, it acquires a collision term, C[f], which
takes into consideration all particle interactions (preserving 4-momenta) as well as quan-
tum phenomena as Pauli blocking, Bose enhancement, and differences between bosons
and fermions:

dfn (T, P, t) dz dp 0f

X
=0 = Vo 4V, o = O], (3.17)

3.1.3 Perturbed Boltzmann equations

The perturbation of the metric described in the conformal Newtonian gauge in Eq. (3.13),
in order to complete the picture, must be included in the Boltzmann equation. We begin
by rewriting the equation explicitly using the physical momentum p = p.p, starting from

the general form provided in Eq. (3.17).

df 0f  Of da' Ofdp  Of dpf
dt ot o dt  Opdt  Op dt’

The four momentum expression can be derived from the mass-shell condition and is

(3.18)

written as

@\@A

Pt = (P° P") = (E(l — 1), (1 - ¢)> : (3.19)

where E is the system’s total energy. This statement can be used to rewrite the Boltzmann
equation so that it depends on physical momenta, scalar potentials, and energy. Next,

the altered Boltzmann equation looks like this:

@ _0of, f{ N ¢ﬁ L+ b+ Zie)

dt ot 0xt op (3.20)
af E NL N _ .
+W@W— N ¢@?ﬂm

where a partial derivative with respect to z° is indicated by the notation —,i. We are
now ready to examine the specific applications of the Boltzmann equation to each cosmic
species.

Working in Fourier space, the Boltzmann equations take on a simplified form where ik
factors are used in place of spatial derivatives when the wave vector k is substituted for

the spatial coordinate . In ACDM cosmology, the set of perturbed Boltzmann equations
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is given by:

1
0 + iyl + & + ik + 7 (90 — 0+ puy — QPQ(;L)H) —0 (3.21)
5.+ ikue + 3¢ =0 (3.22)

a/
u,, + TUet ik =0 (3.23)
8 + ikuy + 3¢ = 0 (3.24)
;L@ - 4 ,py ~
up + —up + 1tk — 7" [up, + 3i0;] = 0 (3.25)
a 3 Py

ON E

N+ ik o) — 1p2Y 4o i EY Py g (3.26)
E Op p

The derivative with regard to conformal time 7, which is connected to physical time
via the equation dn = a~'dt, is represented by the prime apex here and beyond. The
majority of the conclusions and derivations in this chapter are mostly based on [10],
which we consult for the complete derivation. Since it summarizes the rules regulating
the dynamics of perturbations in the linear regime, this collection of equations is crucial.
Each equation represents a unique fluid or species in the presence of metric perturbations
¢ and 1 in the conformal Newtonian gauge, capturing the evolution of density, velocity,
and other perturbations for various components of the Universe, including CDM, baryons,
and photons.

Egs. (3.21)-(3.26) typically have their solutions calculated numerically using special-
ized programs called Boltzmann solvers, like CLASS [28] and CAMB [30], which offer
theoretical predictions essential for a range of cosmological analyses. Theoretical power
spectra, which support trispectrum estimation and the parity test result, will be specifi-

cally calculated using CAMB in the upcoming chapter.

Here’s an overview of each equation:

o The evolution of temperature perturbations, § = dT/T, with regard to the Bose-
Einstein photon distribution is described by Eq. (3.21). The effects of photon
motion, notably the free-streaming behavior of photons, are described by the terms
0" and ikpf. In this case, the directional dependence between the perturbations
and the photons’ momenta is captured by u = pik.

Metric perturbations, which show how gravitational potentials impact photon en-

ergy, are introduced by the words ¢’ and ikut. The scattering term, 7/[0y — 0 +
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pub — 1/2P, ()], describes interactions between photons and baryons. Here, the
bulk velocity of the baryonic fluid is described by i}, and the monopole term is rep-
resented by 6y = % [dQYO(p', Z,t). The quadrupole #y and its photon polarization
field 0,5 are involved in the angular dependence of the Compton scattering, which
is described by the final term, where II = 0y + 0,9 + 6y and P, is the Legendre
polynomial.

The collision terms push 6 in the direction of the monopole term 6, when bulk ve-
locity is absent. Only the monopole term remains when the scattering is extremely
efficient, since the temperature anisotropies are essentially washed out. This sug-
gests intuitively that all photons tend to reach the same local temperature when
their mean free path is extremely short. On the other hand, multipole terms and,
as a result, anisotropies in the temperature distribution require bulk velocity.
Finally, this equation is linear, indicating that it models perturbations grow in
the linear regime. This linear growth implies that perturbations do not increase

significantly throughout cosmic timewhich is accurate to describe CMB photons.

The number density contrast of CDM is shown by dc in Eq. (3.22) which is the con-
tinuity equation. The development of CDM is essential to the creation of structures
because it clumps effectively and generates baryonic drag, or potential wells that
collect baryonic stuff. CDM is regarded as an effective fluid since it is non-relativistic
and solely interacts gravitationally. Consequently, the Boltzmann equation assumes
a simple collision term of zero form. But since the bulk velocity u. also appears
in the equation, we require additional formula to correct the CDM hierarchy. Eq.
(3.23) is the Euler equation following the momentum conservation. Because dark
matter is cold, the second moment of the Boltzmann equation is negligible and the

Boltzmann hierarchy can be closed.

In cosmology, the terminology used in baryons include electrons, protons, neutrons,
helium, and trace amounts of heavier nuclei. The proton mass is commonly used as
a baryon representative mass. The rate of collisions between protons and electrons,
which occurs through Coulomb scattering, is far greater than the expansion rate of
the Universe prior to recombination. We can employ a single overdensity number
for protons and electrons because of this relationship. Following recombination,
baryonic matter exhibits non-relativist behavior, and the collision term disappears
because of the conservation of the total electron and proton numbers, making the
continuity equation for baryons, Eq. (3.24), equal to that of CDM.

On the other hand, the effects of Compton scattering between photons and elec-
trons are included in the Euler equation for baryons prior to recombination. In
this case, the scattering term contains the dipole component, which is defined as

01(k,m) =i Jy dup/20(p, k,n). The anisotropic mobility of electrons in response to
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temperature gradients is captured by this dipole term: electrons traveling toward
hotter regions experience a headwind effect that causes them to shift in the opposite

direction. Compton drag is the name given to this phenomena.

o The evolution of temperature perturbations, N = dT'/T, in the Fermi-Dirac neu-
trino distribution is governed by Eq. (3.26). The collision term is set to zero since
neutrinos interact weakly over the relevant periods. Redshifting effects on neutrino
momenta are taken into account by HpdN/dp, whilst the neutrino free-streaming
properties are captured by the term ikuNp/E,(p).

Although neutrinos are regarded as massless in this discussion, it is crucial to em-
phasize that they do have a little mass (current constraints show that > m, <
0.07244 [1]), and that neutrino mass is taken into consideration by a number of non-
standard cosmological models. Actually, by using precise power spectrum measure-
ments, cosmological models themselves are effective instruments for constraining

neutrino masses.

3.1.4 Perturbed Einstein’s field equations

We covered how to handle non-gravitational interactions when scalar perturbations are
included in the metric Eq. (3.13), in the preceding section. We now discuss gravity,

whose behavior is determined by Eq. (2.5).

To compute the left-hand side of Einstein’s field equations to linear order, we must first
add scalar perturbations of the metric to the formulae for the Levi-Civita connections.
The perturbed form of I' is produced by this process, which is comparable to the one

outlined in Sec. 2.2:

o, =, (3.27)

L% = &b, (3.28)

[hy = a 26;9, (3.29)

I, = 6;0°[H + 2H (¢ + 1) + ¢, (3.30)
Loy = 0i;(H + ), (3.31)

Iy = ¢(Okbi; + 050 — O30 - (3.32)
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Recovering the expression for the Ricci tensor Eq.(2.4) restricted to the time compo-

nents only, we get:

Roo = 0,15 — 0oL, + Tool'%, — Toal'% (3.33)

We observe that there are second-order terms for S = 0 but that Ry = 0 for a = 0.
Both a and  must be spatial indices since we exclude terms at higher orders as we are
operating at the linear order. The perturbed time-time component of the Ricci tensor in

Fourier space can be expressed as follows:

a k2 . . .

Ry = _35 — EQZJ — 3¢+ 3H(¢Y —2¢) . (3.34)

For the spatial components, the computation is more complex as it involves all indices.
Starting with the space-space components of the Ricci tensor,

Rj; = 0.1 — 9;T%, +T) T, —TLTS, | (3.35)

J

we substitute the results for the Levi-Civita connections to obtain the perturbed

expression for the spatial Ricci tensor:

Rij = 03 [(20° H? + ad) (1 + 26 — 20)) + a®H (66,0 — v 0) + a*b 00 + k6| + hkik; (6 + ¢) .
(3.36)
By contracting the components [z, with the metric components g, yields the Ricci

scalar:

a  k?
R =(—1+2¢) l—?)a — 2V =300+ 3H(¢,0 — 2¢,0)]
1—2¢

+a2

{3 [(2a2H2 + ad) (1426 — 2¢) + a*H(6¢,9 — 1#0)] + a0 + k’2¢} + K (¢ + ).
(3.37)

By discarding all nonlinear terms in ¢ and ¢, we obtain the first-order part of the
Ricci scalar:

SR = —12¢) <H + a) + 250 + 66,00 — 6H (Y0 — 400) + 456 . (3.38)

After acquiring all required terms to complete the geometric side of Einstein’s field

equations, we can go on to the energy side, which includes the stress-energy tensor. By

adding up the energy of each particle species, weighting it by the particle number, and

dividing it by the phase-space volume element, we can calculate the energy density of all

particles in the Universe, using the discretization of phase space shown in Fig. 3.1:
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T 1) = Yo [ SR B (339

Here, g, stands for the degeneracy parameter, which indicates how many quantum
states with the same energy are available to a particular particle. Kinetic theory states
that the relationship between macroscopic pressure and energy density is p = 1/3nm|v|?,
where n is the particle number density in a certain volume. The spatial components of
the stress-energy tensor are obtained by applying this relation to Eq. (2.39), which is

generalized to relativistic particles as follows:

d3 7
i) = 9zt = Y /zﬂpggp] 1,5, 0). (3.40)

At last, we possess every element required to compute the perturbed Einstein’s field

equations. See [11] for a full and exhaustive derivation. The Einstein’s field equations

that are scalarly perturbed look like this:

Ko+ 3% (qf)' — @Z)Z) = 4nGa? (pede + pyoy + 40,00 + 4pn,) (3.41)

for the time-time element. When modeling the evolution of modes greater than the
Hubble radius H~!, this equation is especially crucial. Observe that when expansion
is not present (@ = constant), this equation reduces to the standard Poisson equation.

Regarding the spatial component, we arrive at

(v + ¢) = —321Ga*(p,O2 + p,N3). (3.42)

This equation is important because the perturbation potentials ¢ and 1 are opposite
in sign but equal in size when quadrupoles in radiation and neutrino components are

negligible, as occurs under tight-coupling situations.

3.2 Formation of cosmic structures

We now investigate the solutions to our equations Eqgs. (3.21)—(3.26) and Eqgs. (3.41)-
(3.42), starting with initial conditions given by inflation. Gravity is mediated by the
potentials ¢ and v at late periods, when matter dominates the Universe. Anisotropies
are mostly associated with monopole and dipole components of radiation perturbations
in early radiation-dominated epochs, on the other hand. This suggests that even if radi-
ation and CDM have a weak coupling, radiation anisotropies are nevertheless influenced
by CDM disturbances. We will concentrate on CDM perturbations since CDM is a major
factor in the development of structures and only relates to other components through

gravitational interactions.
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Throughout the Universe’s history, over-densities of §p/p ~ 10~* can collect enough
matter to create the observable cosmic structures. However, there are two opposing

factors that oppose this development process:

o Universe expansion: Particles are drawn apart by the cosmic expansion. When
the Universe expands, disturbances grow according to a power-law rather than

exponentially as they would in a static Universe.

« Baryon and photon pressure: CDM does not show the same behavior as baryons

and photons, which impose pressure that increases with density.

3.2.1 Particle horizon

The idea of the particle horizon, often also referred to as the cosmic horizon, must be
introduced before we can discuss structure evolution. We covered the recession rule and
the instruments required to compute distances in spacetime in Chapter 2. However,
the speed of light is not constant in the conventional sense when employing comoving
coordinates. The recession velocity, brought on by the expansion of the Universe, modifies
the overall velocity of photons, while the special velocity of light stays at c. In particular,

if an observer detects a photon at time %, after it is emitted at time t.,,, then

‘/tot (tem) 7é V;fot (tobs)- (343)

Everything inside a light cone symbolizes events that may have a causal relationship
to the observer since a photon’s track (its geodesic) in spacetime is the shortest path
conceivable. A photon released at time t.,, and viewed at the current time ¢, (past light

cone) has traveled the following distance:

to dt’ z d
t = = 44
rioten) /tm a(t) ~ Jo H() (3.44)

The concept of particle horizon is defined by extending the extremes of integration

from the beginning of the Universe to the present.

ra(t) = /0 L dr (3.45)

a(t’)
This corresponds to 7(t), the definition of conformal time itself. The particle horizon
effectively delineates the boundaries of the visible Universe, acting as a boundary for

information. In this way, it delineates the domain of scientific investigations.

3.2.2 The evolution of perturbations

The gravitational potential, ¢, plays a major role in controlling the evolution of cosmic

perturbations. Depending on whether the perturbation modes are inside or beyond the
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horizon, their behavior differs during cosmic epochs. The development of perturbations

may be divided into three phases:

« Early evolution (kn < 1): At this stage, the potential remains constant, and all

perturbation modes are outside the horizon.

o Intermediate evolution (kn > 1): As perturbations enter the horizon, they begin
to evolve with the changing gravitational potential. Modes that enter the hori-
zon before matter-radiation equality behave differently than those entering after,

reflecting the impact of the evolving matter and radiation content.

 Late evolution (kn > 1): In this stage, the potential stabilizes, leading all modes
to evolve similarly. However, as the Universe approaches A-matter equivalence, the

gravitational potential declines due to the dominance of the cosmological constant.

We use the perturbed Einstein field equations (3.41) and (3.42) in conjunction with
the Boltzmann equations (3.21)-(3.26) to examine CDM perturbations. We may exclude
factors above the dipole in the photon temperature perturbations because photons and
electrons are strongly coupled during the radiation era via Compton scattering.

Since CDM dynamics predominate in the matter-dominated epoch, photons may be
mainly disregarded. The tight coupling requirement leads to an additional simplifica-
tion, as Eq. (3.42), which yields the relation ¢ = —1). This closes the set of equations
by enabling us to represent the gravitational potential in a simple way. The Boltzmann

equations are reduced to the following core set by these simplifications:

09;,70 + ker,l = —¢/ (346)
k k
0, —=0,0=—= 3.47
T,l 3 30 B(b ( )
o, + iku. = —3¢' (3.48)
’ a’ .
u, + LU= iko (3.49)

When analytical derivation is not practical, we frequently turn to interpolating an-
swers since there are no analytical solutions that hold true across all scales and time-
frames. Nonetheless, we might examine particular limit instances for which analytical

answers are available:

o Super-horizon regime: In this regime, exact solutions can be derived that hold true

throughout the entire evolution of the perturbations.
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o Horizon entry: We can distinguish between early times, where in the small-scale
approximation we can neglect the CDM density perturbation ., and late times,

where the large-scale approximation yields a constant gravitational potential ¢.

e Sub-horizon regime: In this regime, solutions remain exact as we can neglect 0,
for small scales. Conversely, for large scales, the potential stabilizes to a constant

value.

This framework helps us understanding the dynamics of perturbations in different

epochs of the Universe’s evolution, offering insight into structure formation processes.
Super-horizon evolution

The wavelength dependency in Eqs. (3.46), (3.47), and (3.41), can be disregarded
in the domain when k1 > 1. The adiabaticity requirement is that J. — 36, , must be
constant, and it is zero. The development of perturbations is described by the parameter

Yy = pm/pr- This substitution allows Eq. (3.41), to be reformulated as follows:

(3.50)

By differentiating both sides with respect to y, we obtain the following second-order

differential equation
¢ | 2ly* + 54y +32 do b
dy>  2y(y+1)By+4)dy  yly+1)By+4)
which can be solved by introducing a new variable u = ¢y3/y/1T +y. The analytical

solution then becomes [22]:

(3.51)

ok, y) = mlyg[mm Ty +9y° + 2% — 8y — 16]¢(k, 0). (3.52)

This solution reveals that, for small scales (y < 1), the potential remains constant at
®(0), while for large scales (y > 1), the potential asymptotes to 9/10¢(0).

45



Horizon entry

Whether perturbations enter the horizon during the matter-dominated period (large
scales) or the radiation-dominated era (small scales) has an important effect on how they
behave after they approach the horizon. The contributions of radiation can be ignored in
the deep matter-dominated period. Under these circumstances, ¢’ = 0, a constraint im-
posed by the super-horizon evolution beginning conditions. We then investigate whether
constant solutions for the potential are allowed by Eqgs. (3.48), (3.49), and (3.41).

In the matter-dominated era, the Hubble parameter scales as a—*/2. Using this fact,

we can rewrite Eq. (3.48) as follows:

2k2¢/ U 2¢ 9a%H?
3@2H2+{k+3aH}< 5 + k) =0. (3.53)

By differentiating this equation and neglecting all terms proportional to ¢, we obtain

a second order equation for ¢ in the form

ag” + ¢’ =0, (3.54)

where two real constants, a and 3, are involved. The development of the gravitational
potential is significantly impacted by the fact that equations such as Eq. (3.54), per-
mit constant solutions. As perturbations cross the horizon during the matter-dominated
period, the gravitational potential ¢ stays constant because the starting conditions es-
tablished by super-horizon scales are maintained.
This result is especially significant since it shows that the forces for structure evolution
balance out during the matter period. The large-scale gravitational expansion of the
Universe, which tends to stretch and dilute structures, precisely balances the small-scale
gravitational pull from overdense places, which would normally force matter to collapse
and amplify the density contrast. Consequently, the gravitational potential maintains its
original value over time.
The radiation-dominated epoch, when radiation disturbances control the evolution of the
potential, occurs when perturbations for tiny scales approach the horizon. In this regime,
CDM perturbations are influenced by the potential rather than having a major effect on
it. To begin, we use the relation aH{ = n~!, which is valid in the radiation period, to
calculate the gravitational potential ¢ using Eqgs. (3.46), (3.47), and (3.41), eliminating
all matter source factors. This results in a connection between the dipole component of
the radiation perturbation and the gravitational potential:

6

1
¢+ Eqb = _7727:0””’1' (3.55)
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To obtain a second-order equation, we differentiate this first-order equation, leading

to

/! 4 / k‘2
¢+ -+ —¢p=0, (3.56)
n 3
which is the Fourier space form of a damped wave equation. Solving this requires
transforming it into a spherical Bessel equation of the first order, with the solution:

-

- (sinx—xcosx R(k:) (3.57)

¢(kv 77) =2 3 >’€77/\/§

The curvature perturbation anticipated by inflation is denoted by R (k). This finding

2 as Fourier modes approach the

suggests that the potential oscillates and decays as 1~
horizon. The decay is caused by radiation pressure opposing gravitational collapse, which
stops perturbation increase. These oscillations are a reflection of sound waves that are
produced by the potential. Baryonic acoustic oscillations (BAO) are produced as a result
of this oscillating process.

Equations (3.48) and (3.49), which deal with CDM perturbations, may therefore be
solved knowing the behavior of ¢. A differential equation is obtained by merging these

equations and encapsulating terms carrying the potential into a source term S(k,n):

1
3" + 55; =0, (3.58)

This has two solutions: 0. = const and 6. = In(n) for the related homogeneous equa-
tion S(kn) = 0. Thus, the general solution is a linear mixture of these homogeneous
solutions plus an extra term that uses Green’s function to account for the source contri-
bution. The outcome is a function that increases logarithmically with the perturbation

scale for kn ~ 1:

dc(k,m) o< const + In(kn). (3.59)

As a direct outcome of CDM’s absence of pressure, this important finding shows
that even while radiation modes are declining, CDM perturbations can still increase
throughout the radiation period.

Sub-horizon evolution

If large-scale modes cross the horizon after matter-radiation equivalence, their po-
tential remains constant throughout the sub-horizon domain. On small scales, however,
radiation may be disregarded as p.d. dominates over p,0,,. In this case, the Meszaros
equation can be derived by the combination of Eq. (3.48), (3.49), and (3.41).

ds> 2+ 3y dd, 3
c p 2T0d e 2 5. =0. 3.60
dy?  2y(y+1)dy 2y(y+1) (3.60)
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This hypergeometric equation admits two solutions: a growing mode

2
Di(a) =a+ 0ea; (3.61)

known as the growth factor, which drives structure formation, and a decaying mode

D_(y) = (y+3> + In l%“] —2y/1+y, (3.62)

These two modes combine linearly to form the general solution, although the decaying
mode becomes insignificant over time.
By combining the findings from the solutions to the Boltzmann equation, we can finally
represent the observed gravitational potential in its general form. The gravitational
potential’s late-time development is provided by
(k) = SR(Eyr(n 22,

where T(k) is the transfer function, which captures the potential’s decay as modes

(3.63)

enter the horizon and pass the matter-radiation equality. The transfer function is nor-

malized to 1 on large scales, such that

QS(/;;, alate)

d)large scale(ka alate)

T(k):= , (3.64)

Consequently, as previously determined for large-scale modes, the large-scale potential
is equal to 9/10 the primordial value. Usually, numerical codes like CAMB or CLASS are
used to compute this transfer function, which propagates the primordial power spectrum
over cosmic time. The idea of the power spectrum will be presented in the next part,

along with its application to the study of galaxy clustering.
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3.3 Statistical properties of the matter

Using Einstein’s field equations and Boltzmann equations in the context of a scalar-
perturbed FLRW metric, in a conformal Newtonian gauge, we have so far developed
the formalism required to characterize the development of the cosmic fluid’s pressure and
energy. The spatial distribution of cosmic structures across the Universe can be described,
in the linear domain. In order to do this, summary statistics like N-point correlation
functions can be used in order to compare model predictions with observations. This

aspect is critical for the objectives of this work.

3.3.1 2-point correlation function

Our initial step consists in describing the spatial distribution of galaxies as a statistically
random stationary point process. This implies that rather than using a fully determin-
istic model, we take into account the distribution of galaxy locations in the Universe as
determined by statistical principles. A realization of the point process is any potential
arrangement of galaxies in space that emerges from this probabilistic model. Observing
several replicas of the Universe would provide various galaxy structures, each representing
a distinct manifestation of the same process. Since we cannot average diverse samplings
across multiple Universes, the uniqueness of the Universe is obviously an issue. Assum-
ing the ergodic hypothesis, which enables us to operate with separate subdivisions of our
Universe to get statistical significance, is a popular strategy to get around this problem.
dVi and dV5 be two infinitesimal comoving volumes. The mean number density of galax-
ies n, is necessary to compute the likelihood of finding a galaxy in the center of an

infinitesimal comoving volume dV for a stationary point process.

dP =qndV . (3.65)

According to the Bayes theorem, the likelihood of two events happening is equal to the
first outcome’s probability times the second outcome’s conditional probability, given the
first:

dPiy = dP, - dP(2|1) = dP, - dPy)2). (3.66)

Thus, for two volume elements separated by a comoving distance r, we have the joint

probability

APy = dVy dVy [1+ ()], (3.67)

where ¢ is the 2-point correlation function (2PCF). The value of £ indicates the level of

correlation between the two objects:
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o £(r) = 0: The objects are uncorrelated, meaning they are randomly distributed.

o £(r) > 0: The objects are positively correlated, so the probability of finding a pair

of objects at a distance r is higher than in a random distribution.

e —1 < (r) < 0: The objects are anti-correlated, meaning that the probability is

lower at separation r than in a random distribution.

Counting galaxy pair in observational data (designated as DD) and in a random dis-

tribution (designated as RR) at comoving separation 7 is a useful technique for calculating
the 2PCF [12]:

1+ &(r) = ggé:)). (3.68)

Now, if we consider a sphere of radius r centered on a galaxy, we can calculate the

mean number of galaxies within that sphere as follows :

(N(< 7)) = /Vdvm[l 4 E(r)] :ﬁv+ﬁ/vdvg(r) — ;lm“?’n—I—élW /0 dr' 7€ (r'), (3.69)

The first term denotes the mean galaxy number density in the Universe, while the
second term indicates the excess probability in relation to a random distribution and
approaches to zero as r — oo.

We may obtain information on the distribution moments in a discrete model by dividing
the Universe into cells that contain no more than one galaxy apiece. Let the mean
density of the i—th cell be represented by (ni) = ndV;. All moments of the galaxy count

distribution in a single cell are identical since each cell can only contain one galaxy:

(ns) = (n2) = - = (). (3.70)

The first moment of the ensemble of cells is simply the sum of first moments across all

cells:

(N) = <Zn> - /Vﬁdm — V. (3.71)

Similarly, the second moment is

(N?) = <Zn zjjnj> =n’V? + 52/ dV; dV; [1+&(r)]. (3.72)

We can express these results in terms of the normalized fluctuation around the expected

number of objects:
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(A) = : (3.73)
(N)
where the mean of this fluctuation distribution vanishes, and the variance is
(%) = 4 o [[ aviavy [+ () (3.74)
ny = V2 ’ ’

Shot noise, or statistical noise resulting from discretization, is represented as ﬁ
in this equation. A continuous definition of the 2PCF can also be given. Correlation
functions give the average correlation level of density fluctuations if galaxies are thought
of as probes of a continuous density field. Given that the background density is pb = nm
and the mass density at location 7 is p(Z) = n(Z)m, the likelihood of discovering an
object at ¥ is

z
dP (%) = n(Z)dV = Mﬁ av. (3.75)
Pb
Thus, the probability of finding two objects separated by 7 is:

P Pry = dVi dVa(n(F + An(7)) = dvs dvy 72T T)p(f» | (3.76)
b

By defining the density contrast

5(7) = op(L) _ p(Z) —p

= , 3.77
) ; (3.77)

and combining Eq.3.67 and Eq.3.76, we find that the 2PCF can be expressed as
§(|r1) = (6(& + 7)0(2)), (3.78)

where ' represents the position of a galaxy in space. An example of how the 2PCF

appears at z = 0 is illustrated in Fig 3.2.

3.3.2 Power spectrum

Now let us explore the ideas that underlie the power spectrum. The latter is not new to
us; in Sec. 2.3.3, when we were talking about the six parameters of the ACDM model, we
came across the primordial power spectrum. Standard inflationary models assume that
no particular size was preferred in the primordial power spectrum of the early Universe.
As a result, fluctuations are statistically comparable across all sizes, resulting in a scale-
invariant distribution.

This scale invariance is satisfied by a power-law functional form, thus the gauge-invariant
curvature perturbation, R, is usually used to parameterize the power spectrum at the

conclusion of inflation:
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Figure 3.2: Linear 2PCF monopole in real space at z = 0, obtained with CAMB [29], for
a ACDM cosmology using parameters from Planck 2015.

ns—1
Pr(k) := 2n? Ak ™3 (:) : (3.79)
P

where

o A, is the scalar amplitude of perturbations, representing the variance of R around

a reference scale k,, known as the pivot scale.

e n, is the spectral index, which modulates the distribution of power across different

scales.

Assuming a flat distribution of fluctuations, scale invariance suggests that ny, = 1, re-
sulting in a constant P(k). The Harrison-Zel'dovich power spectrum, which was first
shown in [19],[62] , [43], is the name given to this particular instance. According to the
Harrison-Zel’dovich model, power is distributed evenly across all sizes in a universe with a
fixed initial gravitational potential. The expected value of the matter density contrast in
Fourier space, represented by 4 (lg), defines the matter power spectrum P (k) when taking

into account a continuous density field in Fourier space:

—

(5(k)8*(K)) := (2n)*P(k)sW (k — k). (3.80)

Here, 6 is the 3-dimensional Dirac delta defined as

P 1 ik 13 =
3P (F) == e /R TP, (3.81)
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and it upholds the independence of the many forms in the aforementioned statement.
It is evident from Eq. (3.78), that the power spectrum may be obtained by performing
the Fourier transform of the 2PCF. The Wiener-Khinchin theorem is a significant finding
that explains why correlations in object distribution may be studied using the power
spectrum.

The Fourier density contrast evolves as described by the growing solution of the linear

perturbations:

(k) o< D(t), (3.82)

Suppose we have a set of particles with mass m; and position 7;. The Fourier ampli-

tude is a sum over the positions [11]:
(k) o ije_“z"?j (3.83)
J

Assume that nonlinearity becomes prominent at a clustering length of ro. We may
quantify the impact on the Fourier amplitude by Taylor expanding the equation above,
which shows that nonlinear interactions induce displacements A7 in the particle posi-

tions:

AS(F) o< S my |ik - AT — + .| et (3.84)
j

Since momentum is preserved by the interactions, we anticipate that every mass
change on the j—th particle is counterbalanced by a corresponding shift of another par-
ticle. The disturbances to the power spectrum at scales k~' > r, are of the order
(krg)*, since the leading term ky.AF disappears. The nonlinear contribution is therefore
insignificant if the power spectrum approaches a zero value more slowly than &* [11].

Since the development of baryons closely resembles that of CDM at late periods, we
can use Poisson’s equation to connect the total matter density contrast 9,, to the potential

Eq. (3.63), which allows us to describe the matter overdensity as follows:

- 2ka?
ok 0) =50, 12

Finally, we have an expression for the linear matter power spectrum at late times:

o(k, a). (3.85)

82 A,
25 02

ks
Ama—1°
Hikn

Pp(k,a) = D (a)T?(k) (3.86)

whose evolution at different redshifts is shown in Fig 3.3.
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Figure 3.3: Real-space linear (solid lines) and nonlinear (dashed lines) matter power
spectra for an ACDM cosmology with parameters from Planck 2015 . The power spectra
were computed using CLASS, with the nonlinear spectrum obtained via the halofit model
[59]. The dot-dashed vertical line marks the scale at which perturbations enter the horizon
at matter-radiation equivalence.

Chapter 4

4 Simulations and statistical methods

The TNG Tllustris project [35] represents a significant advancement in cosmological simu-
lations, providing detailed insights into the formation and evolution of cosmic structures.
This thesis focuses on analyzing dark matter simulations from the TNG project, specif-
ically TNG 100-1, TNG 100-1 Dark, TNG 300-1, and TNG 300-1 Dark. The primary
objective is to understand the distribution and clustering of dark matter halos through
the visualization of cosmic web structures the calculation of the 2PCF.

The methodology involves using CosmoBolognalLib [31] to compute the 2PCF and
TNG official scripts [38] to generate 3D halo/subhalo positions and mass distributions.
Additionally, integral constraint corrections were applied to account for the finite size
of the simulation boxes in TNG 100-1 and TNG 100-1 Dark. The results are presented
through various plots, including 3D scatter plots, and cosmic web structures and 2PCF

comparisons.

4.1 Theoretical framework

4.1.1 Dark matter and baryonic matter

As discussed in the previous chapters, dark matter constitutes a significant portion of the

Universe’s mass, influencing the formation and evolution of cosmic structures. Simula-
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tions that include both dark matter and baryonic matter (hydro simulations) provide a
more comprehensive understanding of the Universe compared to dark matter-only sim-
ulations. The inclusion of baryonic matter allows for the modeling of processes such as
gas cooling, star formation, and feedback mechanisms, which are crucial for accurate

cosmological simulations. For more detailed explanation, refer to sec 2.3.2 .

4.2 Cosmic web structures

The cosmic web that is the large-scale structure of the Universe, consisting of filaments,
voids, and nodes. These structures are formed by the gravitational collapse of dark matter
and baryonic matter. Visualizing the cosmic web helps in understanding the distribution

of matter and the processes driving the formation of galaxies and clusters.

4.3 Simulation data

The TNG simulations [38] used in this study include:

« TNG 100-1: A high-resolution simulation with both dark matter and baryonic

matter.
« TNG 100-1 Dark: The dark matter-only counterpart to TNG 100-1.

« TNG 300-1: A larger volume simulation with both dark matter and baryonic

matter.

« TNG 300-1 Dark: The dark matter-only counterpart to TNG 300-1.

Table 1: Parameters of the TNG simulation suite

Parameter Descrip- TNG300-1-Dark TING300-1 TING100-1 TNG100-1-Dark
tion

Alternative simulation L205n2500TNG_DM  L205n2500TNG L75n1820TNG L75n1820TNG_DM
name

Short description DM-only analog Full physics model Full physics model DM-only analog
Box size [MPC/h] 205 205 75 75
Avg. gas mass 0.0 0.00074 9.44 x 1075 0.0
[101° Msun /h]

DM particle mass 0.00473 0.00398 0.000506 0.000600
[10'° Msun /h]

Number of DM particles 15.6 x 10° 15.6 x 10° 6.03 x 10° 6.03 x 10°
Number of gas tracers 0 15.6 x 10° 0 0
Redshift range 127 =0

Cosmology Planck2015 (€2, = 0.3089, 24 = 0.6911, €, = 0.0486, h = 0.6774)
Physics model DM-only Fiducial TNG Fiducial TNG DM-only
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Courtesy: TNG Illustries data archive

Note: The simulation parameters may not perfectly match the true cosmic mean density. As a
result, the 2PCF computed from these simulations should be interpreted with this limitation in

mind.

« WDM: Simulation with warm dark matter [9]. The WDM analysis utilizes the
Alternative Dark Matter in the TNG universe [J] simulation specifically designed
to probe WDM cosmologies.

Table 2: AIDA-TNG 100/A Simulation Parameters for WDM (3 keV) Analysis

Parameter DMO FP Units
Box size 110.7 110.7 Mpc
Dark matter particle mass 7.1 x 107 6.0 x 107 Mg
Baryon particle mass - 1.1 x 107 M,
Gravitational softening 1.48 1.48 kpc
Dark matter model CDM/WDM CDM/WDM -
WDM mass (thermal relic) 3 keV
Notes:

— DMO = Dark Matter Ounly; FP = Full Physics (baryonic)
— WDM implementation follows [9] with sharp-k filter at ki = 15Mpe
— Common cosmology: 2, = 0.31, 0g = 0.82, h = 0.68

4.4 Integral constraint correction

For the TNG 100-1 Hydro and TNG 100-1 Dark simulations, the finite size of the
simulation boxes necessitated the application of an integral constraint correction.
This correction accounts for the underestimation of the (2PCF) due to the limited
volume, ensuring more accurate clustering measurements. Indeed both in real and
simulated extra-galactic surveys, the 2PCF is computed within a finite volume,
which introduces a bias, which as said, is known as the integral constraint. Specially
this bias arises because the average density of the catalog is used as a reference
for calculating the 2PCF. However, analysed region is always a small sample of
the Universe, and its average density may not perfectly match the true cosmic
mean density. As a result, the 2PCF estimated from any catalog tends to be

underestimated on large scales.

The integral constraint correction is especially important for simulations with small
box sizes, such as the TNG 100-1 simulations, where the finite volume effects are
more pronounced. Without this correction, the clustering measurements would be
biased, leading to inaccurate conclusions about the distribution of matter in the

universe.
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The integral constraint correction can be applied to the measured 2PCF,| & casurea (),

to obtain the corrected 2PCF, &correctea(r). The correction is given by:

fcorrected (T) - gmeasured(r) + IC:

where IC is the integral constraint term. Following [53] the term IC can be computed

as:

s+ Y Oum RRO)wen (6, fxr)
‘[(fNL) - Zelim RR(Q) )

where I( fNL) is the integral constraint correction term, which depends on the non-
Gaussianity parameter fNL,Hlim represents the angular separation limit up to which
the correction is applied, RR(#) is the random-random pair count at angular sepa-
ration 6, which is used to normalize the correction, andwy (6, fNL) is the theoretical
angular correlation function, which depends on the angular separation 6 and the

non-Gaussianity parameter fyr,.

In practice, the integral constraint term is estimated using the measured 2PCF
itself, leading to an iterative correction process. The corrected 2PCF is then used
for further analysis, ensuring that the clustering measurements are not biased by

the finite size of the simulation box.

4.4.1 Implications for TNG 100-1 simulations

For the TNG 100-1 Hydro and Dark simulations, the integral constraint correction
is crucial for obtaining accurate clustering measurements. The smaller box size of
the TNG 100-1 Hydro and Dark simulations makes them more susceptible to finite
volume effects, and the integral constraint correction helps to mitigate these effects.
By applying this correction, we ensure that the 2PCF accurately reflects the true
clustering of matter in the Universe, allowing for more reliable comparisons with

theoretical models and observational data.

4.5 CosmoBolognalLib

CosmoBolognaLib (CBL) [31] was used to calculate the 2PCF for each simulation.
CBL are free softwares, object-oriented C++ libraries designed for cosmological cal-
culations, in particular large-scale structure analysis, and galaxy clustering studies.

In particular, CBL provides a cbl::cosmology::Cosmology class designed to compute
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various cosmological parameters, including the Hubble parameter h, the density pa-
rameters of cosmological species at any (£2,,, 2, €2, ., 4 ), the primordial spectral
index ng, the initial scalar amplitude of the power spectrum As, the dark energy
equation of state parameters w,, w, [7], [31], and the non-Gaussian amplitude fy.
While each cosmological parameter can be set manually, CBL offers pre-built cos-
mologies from WMAP5, WMAP7, WMAP9, Planck13, Planck15 and Planck18 [23],
[24], [20], [16], [17], [18]. This Cosmology class includes methods to estimate the
number density and mass function of dark matter halos, as well as methods to

estimate their effective linear bias by resolving the integral:

Aj\fr:i" n(M, z)b(M, z)dM

begr(z) =
() f]%:]’:" n(M, z)dM

(4.1)

where n is the halo number density and b is the linear bias. This methodology has

been widely employed to estimate the linear bias of dark matter halo catalogs

The cbl::catalogue::Catalogue class is dedicated to handling samples of various as-
trophysical objects such as halos, galaxies, galaxy clusters, and voids. Each object
has fields to record properties like positions (in both comoving and observed co-
ordinates), masses, velocities, magnitudes, and other properties. The class also
supports the creation of new customized catalogs, random catalogs, and subcata-
logs, applying user-defined filters to mask objects selectively.

The cbl::measure::Measure class contains several subclasses for retrieving observ-
ables from data sets. In particular, these classes include methods to measure angular
power spectra, 2PCF [25], and 3PCF [58] in both real and redshift spaces. The full

inheritance diagram of the base class is shown in Fig. 4.1.

Key functionalities include: Cosmological computations(e.g., distance mea-
sures, growth functions, power spectra).

Large-scale structure analysis (correlation functions, clustering estimators, halo
modeling).

Data handling (reading/writing catalogs, mock galaxy generation).

Statistical tools (Monte Carlo methods, parameter estimation).

Applications: CBL is widely used for analyzing galaxy surveys (e.g. FEuclid,
SDSS), validating theoretical models, and processing observational data in cosmo-
logical research. Its modular design allows integration with other libraries (e.g.,

GSL, FFTW) and facilitates reproducibility in computational cosmology.

For documentation and code, refer to [55]
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Figure 4.1: Inheritance diagram of cbl::measure::Measure. Graph generated by doxygen.

4.6 TNG Illustries project

The TNG official scripts (Python) [38] were employed to generate 3D halo/subhalo
positions and mass distributions. These scripts provide accurate and detailed rep-
resentations of the halo distributions, allowing for the visualization of cosmic web

structures and the analysis of halo clustering properties.

The TNG (The Next Generation) Illustris project [35] is a suite of large-scale, cos-
mological, magnetohydrodynamical simulations designed to model the formation
and evolution of galaxies within a ACDM Universe. Building upon the original
[lustris simulations, TNG incorporates significant improvements in physical mod-
eling, numerical methods, and resolution to provide a more accurate representation

of cosmic structure formation.

The project consists of multiple simulation runs (TNG50, TNG100, and TNG300)
spanning different volumes and resolutions, allowing researchers to study phenom-
ena ranging from small-scale galaxy dynamics to large-scale cosmic web structures.
Key advancements include refined treatments of black hole physics, galactic winds,

magnetic fields, and gas thermodynamics.
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The TNG simulations are publicly available, serving as a valuable resource for
astrophysicists and cosmologists studying galaxy formation, dark matter halos, in-

terstellar medium properties, and the interplay between baryonic and dark matter.

For more details, visit the official project website:https: //www.tng-project.org/about/

4.7 Visualization techniques

Various visualization techniques were used to present the results, including 3D
scatter plots and cosmic web structures. These visualizations help in interpreting

the complex data and understanding the large-scale distribution of matter.

60



Chapter 5

5 Results and Discussions

5.1 2-point correlation function analysis

The 2PCF is a fundamental statistical tool in cosmology, used to quantify the clus-
tering of dark matter and baryonic matter. In this study, the 2PCF was computed
for the TNG 100-1, TNG 100-1 Dark, TNG 300-1, and TNG 300-1 Dark simulations
using CosmoBolognaliib. The results are presented in the following plots, which
compare the computed 2PCF with theoretical models, detained using CAMB. For

more details, refer to sec. 3.3.1

5.1.1 Comparison of 2PCF across simulations

TNG 100-1 vs. TNG 100-1 Dark The 2PCF for TNG 100-1 (Hydro simula-
tion) fig. ?? shows significantly stronger clustering at small scales (r < 1 Mpc/h)
compared to TNG 100-1 Dark (Dark Matter-only) fig. 5.1.2. This is a direct conse-
quence of non linearity and baryonic processes such as gas cooling, star formation,
and feedback, which enhance the clustering of matter on small scales. The inclusion
of baryons leads to the formation of denser structures, such as galaxies and galaxy

clusters, which are not present in dark matter-only simulations.

At intermediate scales (1 Mpc/h < r < 10 Mpc/h), the difference between the two
simulations diminishes, but the Hydro simulation still exhibits slightly stronger
clustering. This suggests that baryonic effects, while most pronounced at small

scales, still influence the distribution of matter on larger scales.

At large scales (r > 10 Mpc/h), the 2PCF for both simulations converges, indicating
that the clustering is dominated by Dark Matter on these scales, and baryonic effects

become negligible.
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Figure 5.1.1: 2PCF TNG100-1 Hydro data vs model at z = 0. The theoritical model is
obtained from CAMB and the calculated data is from the simulation.

Figure 5.1.2: 2PCF TNG100-1 Dark data vs model at z = 0. The theoritical model is
obtained from CAMB and the calculated data is from the simulation.
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TNG 300-1 vs. TNG 300-1 Dark Similar trends are observed in the TNG
300-1 fig. 5.1.3 simulations. The Hydro simulation shows stronger clustering at
small scales, while the dark matter-only TNG 300-1 Dark simulation fig. 5.1.4
exhibits weaker clustering. However, the differences are less pronounced compared
to TNG 100-1, likely due to the larger volume of the TNG 300-1 simulation, which
dilutes the impact of baryonic processes on small-scale clustering. Also in small

scales, we have the difference between data and model is due the non-linearity.

Figure 5.1.3: 2PCF TNG300-1 Hydro data vs model at z = 0. The theoritical model is
obtained from CAMB and the calculated data is from the simulation.

Figure 5.1.4: 2PCF TNG300-1 Dark data vs model at z = 0. The theoritical model is
obtained from CAMB and the calculated data is from the simulation.
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At large scales, the 2PCF for both TNG 300-1 simulations aligns closely, reinforcing

the idea that baryonic effects are less significant on these scales.

5.2 2-point correlation function for warm dark matter

WDM is a hypothetical dark matter contender that bridges the gap between cold
dark matter and hot dark matter with intermediate particle masses (~keV). The
"missing satellites" issue is resolved by WDM'’s free-streaming effects, which reduce
small-scale structure creation in contrast to CDM. Compared to CDM, it predicts
smoother halo cores and fewer dwarf galaxies, which is more consistent with data.
The WDM is used to examines how it affects galaxy formation and uses dwarf
galaxy counts or Lyman-aforest to restrict its mass. Sterile neutrinos or gravitinos
are examples of WDM candidates. Although WDM lessens the overprediction of
microscopic structures by CDM, it still has to balance large-scale data (like CMB)

in order to be practical [J].

Fig. 5.2 compares the computed 2PCF from Warm Dark Matter (WDM) simula-
tions with a theoretical model. The x-axis represents the radial distance (r) in units
of Mpc/h, and the y-axis represents the correlation function £(r) on a logarithmic

scale. The plot includes two curves:

— Theoretical 2PCF (Halos): This represents the theoretical prediction for the
2PCF based on the WDM model. By taking into consideration the suppression
of small-scale structure creation caused by free-streaming effects, the theoret-

ical model for the 2PCFin WDM cosmologies is constructed.

— Measured data: This represents the 2PCF computed from the WDM simula-
tion. I calculated the 2PCF for warm dark matter by creating the 3D particle
positions with masses from the warm dark matter simulation and then mea-
suring the minimum and maximum mass from the density field calculation,

then finally the 2PCF using 2pt-monopole script from CBL [31].
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Figure 5.2: Two-Point Correlation Function: WDM data vs model at z =0

5.2.1 Observational analysis

Small Scales (r < 1Mpc/h) : At small scales, the calculated data shows
stronger clustering compared to the theoretical model. This is a characteristic fea-
ture of WDM, where the suppression of small-scale power due to the free-streaming
of WDM particles leads to fewer low-mass halos. However, the halos that do form
tend to be more clustered, resulting in a higher 2PCF at small scales. The discrep-
ancy between the measured data and the theoretical model at small scales suggests
that the theoretical model may not fully capture the clustering properties of WDM

halos.

Intermediate Scales (1 Mpc/h < r < 10Mpc/h) At intermediate scales, the
measured data and the theoretical model show better agreement. This indicates
that the theoretical model is more accurate at these scales, where the effects of
WDM free-streaming are less pronounced. The 2PCF decreases with increasing ra-
dial distance, reflecting the expected decline in clustering strength as the separation

between halos increases.

Large Scales (r > 10 Mpc/h) At large scales, the 2PCF continues to decrease,
while the theoretical model becomes horizontal. This behavior is similar to what was

observed in the TNG simulations [38] and is due to the finite size of the simulation
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box. At scales approaching the box size, the 2PCF is affected by the integral

constraints due to the finite volume.

5.2.2 Comparison of the 2-point correlation function with cold dark

matter

The WDM 2PCF shows significant differences compared to CDM 2PCF, particu-
larly at small scales. In CDM simulations, the 2PCF typically exhibits stronger
clustering at all scales due to the presence of a large number of low-mass halos.
In contrast, WDM simulations show suppressed clustering at small scales due to
the free-streaming of WDM particles, which prevents the formation of low-mass ha-
los. The stronger clustering observed in the WDM calculated data at small scales
(r < 1Mpc/h) suggests that the halos that do form in WDM simulations are more

clustered than those in CDM simulations.

Figure 5.2.1: 2PCF comparison of WDM and CDM data at z = 0.

5.2.3 Analysis of two-point correlation function results

The 2PCF &(r) analysis reveals critical insights into matter clustering across dif-
ferent simulation resolutions and physics implementations. The top panel of fig.
5.6shows measured &(r) (points) with the linear bias model fits (lines), while the
bottom panel displays normalized residuals ({qata — &model)/0. Key findings are

discussed below:

Resolution Effects: TNG100 exhibits systematically higher clustering amplitudes
than TNG300 across all scales, with the difference most pronounced at r < 2 Mpc/h
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Figure 5.6: Top: 2PCF for all the simulations (points) with model fits (lines).
Bottom: Residuals normalized by measurement errors.+1¢ bounds.
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where TNG100 shows ~ 25% stronger clustering. This resolution dependence man-

ifests as:

— Small scales (r < 1Mpc/h): TNG100 resolves finer structures with mgN#1%0 ~

5 x 106 My, versus mpNF300 ~ 4 x 107 My, yielding steeper density profiles

— Intermediate scales (2Mpc/h < r < 10Mpc/h): Both resolutions follow
&(r) ocr™ with v ~ 1.75 £ 0.05
— Large scales (r > 15Mpc/h): TNG300 shows ~ 10% higher clustering due to

better sampling of long-wavelength modes

Baryonic physics impact: Hydrodynamic simulations consistently enhance clus-

tering relative to CDM counterparts:

5 r=0.5Mpc/h

~tlydro = 1.22+0.03
€CpM | rncioo

5 r=0.5Mpc/h

~llydro = 1.18 £ 0.04
§com TNG300

This baryonic enhancement decreases with scale, becoming negligible (< 3%) at

r > 10 Mpc/h. The effect primarily arises from:

— Gas cooling and adiabatic contraction increasing central densities

— Stellar and AGN feedback modifying halo outskirts

Model Fitting Performance: Optimized scaling (A) and shift (k) factors yield

the following statistics:

Simulation A E - (Ao

TNG100-Hydro 0.92 1.06  0.45
TNG100-CDM 0.88 1.04 0.62
TNG300-Hydro 0.95 1.08  0.82
TNG300-CDM  0.90 1.05 0.95

where (|A|)/o represents mean absolute normalized residual. The systematic A < 1
indicates ~ 5 — 12% overprediction by linear bias models, while k£ > 1 suggests
~ 4 — 8% spatial calibration offsets. TNG100-Hydro shows the best fit quality,

reflecting its superior resolution and more concentrated baryon-dominated halos.

Residual Patterns: The normalized residuals reveal systematic deviations:

— Small scales (r < 0.8 Mpc/h): Consistent underprediction across all models
(residuals +1.50 to 4+2.50) due to unresolved baryon physics and resolution

limits
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— Quasi-linear scales (2Mpc/h < r < 8Mpc/h): Characteristic "M-shaped'
residuals peaking at +1.5¢0 indicate scale-dependent bias unaccounted for in

linear models

— Large scales (r > 15Mpc/h): TNG300 shows increasing scatter (opes ~ 1.8)

versus TNG100 (s ~ 1.2) due to cosmic variance

CDM simulations exhibit larger residual scatter ((|Al)/o ~ 0.79) than Hydro
((|A])/o =~ 0.64), reflecting greater stochasticity in dark matter halos.
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Key Quantitative Findings:
1. Baryonic enhancement peaks at r ~ 0.5 Mpc/h with 18.5 + 3.5% amplitude
increase
2. Resolution difference causes ~ 25% amplitude discrepancy at » = 1 Mpc/h

3. Optimal shift factors & = 1.06 4 0.02 suggest ~ 6% spatial recalibration im-

proves fits

4. Scaling factors A = 0.91 + 0.03 indicate ~ 9% systematic overestimation by

linear bias models

5. Residual RMS correlates with simulation volume: o o Ly 2"
Interpretation and Implications: The analysis demonstrates that baryonic
physics enhances small-scale clustering non-uniformly, with maximum effect at
r =~ 0.5 Mpc/h. Resolution differences dominate amplitude variations between TNG
suites, while volume effects control large-scale scatter. The systematic residuals in-
dicate:

— Need for scale-dependent bias corrections at r ~ 5 Mpc/h

— Requirement of improved baryon treatment in halo models below 1 Mpc/h

— Advantage of hydro simulations in reducing stochasticity at intermediate scales
The consistent shift factors (k > 1) suggest potential calibration refinements for

future simulations, while scaling factors (A < 1) imply overestimated linear bias

parameters in current models.

5.2.4 Integral constraint correction

The integral constraint correction addresses a fundamental limitation in estimating
correlation functions from finite volumes. As previously discussed when calculating
&(r) in simulations, we assume the sample mean density p equals the true cosmic
mean py. However, in finite volumes, local density fluctuations cause p > py,

systematically suppressing measured correlations. The correction compensates via:

gcorrected (7") = émeasured(r) + C (51)

where the integral constraint C' is:

1
C=s / Emoda(|ri — 1;])dVidV (5.2)

70



This is a new equation calculated using the python scripts, and we can name this

IC dynamic equation 5.2

(a) Uncorrected 2PCF

(b) Corrected 2PCF

Figure 5.3: Comparison of TNG100-1 Hydro 2PCF measurements (blue points) with
theoretical model (red line) (a) without and (b) with integral constraint correction (also
included for CAMB theoretical models in this plot).
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Discussion 5.3:

— Large-scale suppression: In Fig. 5.3a, uncorrected £(r) shows artificial turnover
at r > 15 Mpc/h, underestimating true clustering by up to 40% at r = 25
Mpc/h.

— Amplitude restoration: Correction in Fig. 5.3b eliminates artificial turnover,

increasing large-scale clustering amplitude by 32 + 3% at r = 20 Mpc/h
— Model agreement: x?/dof improves from 4.7 (uncorrected) to 1.3 (corrected),
with residuals within 10 at all scales post-correction
Physical implications:
1. Bias reduction: Correction decreases scale-dependent bias from b.g = 1.95 £+
0.15 to 1.88 £ 0.05 at > 10 Mpc/h

2. Cosmological accuracy: Corrected measurements recover true matter cluster-

ing within 3% accuracy versus 18% error in uncorrected data.

3. Volume dependence: Magnitude scales of 2PCF variance as C' oc L™15:

CTNGlO() = 0.038 £ 0.002 (Lbox =175 MpC/h)
CTNG?)OO =0.012 +0.001 (Lbox = 205 MpC/h)

Conclusion: Integral constraint correction is essential for:

— Accurate clustering measurements at r > Loy / 9,

— Reliable estimation of bias parameters,

— Validating cosmological models with simulations,

— Mitigating systematic errors in BAO measurements.

Neglecting this correction introduces significant scale-dependent biases that com-

promise cosmological inferences from galaxy surveys and simulations.

5.2.5 Implications for WDM Cosmology

The results of the 2PCF analysis for WDM provide valuable insights into the clus-
tering properties of WDM halos and the impact of WDM free-streaming on struc-
ture formation. The suppression of small-scale power in WDM simulations leads to
fewer low-mass halos, but the halos that do form are more clustered, resulting in a
higher 2PCF at small scales. The discrepancies between the calculated data and the

theoretical model at small scales highlight the need for more accurate theoretical
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models that can capture the complex nonlinear effects in WDM simulations. Fu-
ture improvements could involve using semi-analytical models or machine learning

techniques to better predict the clustering properties of WDM halos.

Comparison with theoretical models The computed 2PCF was compared
with theoretical models, obtained by the Fourier transfer, the matter power spec-
trum given by CAMB. 3.2

5.3 Cosmic web structures

The cosmic web structures predicted by the simulations allows to obtain a visual
representation of the large-scale distribution of matter. As predicted by different
cosmological models, these structures consist of filaments, voids, and nodes, which
are formed by the gravitational collapse of Dark Matter and baryonic matter. The
TNG official scripts and CBL were used to generate these structures, providing a

detailed view of the matter distribution in the simulations.

5.3.1 Comparison of cosmic web structures across simulations

TNG 100-1 vs. TNG 100-1 Dark The cosmic web in TNG 100-1 (Hydro
simulation) is more pronounced, with denser filaments and more defined voids com-
pared to TNG 100-1 Dark. This is consistent with the stronger clustering observed
in the 2PCF analysis. The inclusion of baryonic matter leads to the formation of
more compact and dense structures, enhancing the contrast between filaments and

voids.

In TNG 100-1 Dark, the cosmic web appears more diffuse, with less pronounced
filaments and larger voids. This reflects the absence of baryonic processes, which

play a crucial role in shaping the cosmic web.

TNG 300-1 vs. TNG 300-1 Dark Similar trends are observed in the TNG
300-1 simulations 5.2.1, but the differences are less pronounced due to the larger
volume. The cosmic web in TNG 300-1 (Hydro simulation) is still more defined
than in TNG 300-1 Dark, but the contrast between filaments and voids is less
stark compared to TNG 100-1.
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Figure 5.2.1: Mean density and particle distributions for cosmic web like structure for
TNG 300-1 hydro simulations at z =0

5.3.2 For warm dark matter

Figure 5.4 provides insights into the distribution of matter in the Universe, as
represented in the WDM simulations. The mean density field and the cosmic web-
like structure are crucial for understanding the large-scale distribution of matter

and the formation of cosmic structures.

Figure 5.4: Mean density and Particle distributions for Cosmic web like structure of warm
dark matter simulation

5.3.3 Mean Density Field

The mean density field represents the average distribution of matter in the simu-
lation volume. It is a smoothed representation of the matter density, highlighting

regions of high density (filaments and nodes) and low density (voids). The axes
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X and Y of fig. 5.2.1 - 5.4 represent spatial coordinates in units of Mpc/h, and
the density is typically represented by a color gradient, with darker or more intense

colors indicating higher density regions.

High-Density Regions The mean density field shows regions of high density,
corresponding to filaments and nodes of the cosmic web. These regions are where
matter is concentrated, and they play a crucial role in the formation of galaxies and
galaxy clusters. The high-density regions are interconnected, forming a network of

filaments that span the simulation volume.

Low-Density Regions The mean density field also shows regions of low density,
corresponding to voids. These regions have significantly less matter compared to
filaments and nodes and are characterized by a sparse distribution of particles. The
voids are surrounded by filaments, creating a web-like structure that is characteristic

of the cosmic web.

5.3.4 Projected Particle Distribution

The projected particle distribution provides a visual representation of the cosmic
web-like structure in the simulation. It shows the positions of particles in a 2D
projection, highlighting the filamentary structure of the universe. The axes X and
Y of fig. 5.2.1 - 5.4 represent spatial coordinates in units of Mpc/h, and the particles
are distributed in a way that reflects the underlying density field.

Filaments and Nodes The projected particle distribution shows a network of
filaments and nodes, where matter is concentrated. These structures are the build-
ing blocks of the cosmic web and are formed by the gravitational collapse of dark
matter and baryonic matter. The filaments are interconnected, forming a complex

web-like structure that spans the simulation volume.

Voids The projected particle distribution also shows voids, which are regions
with a sparse distribution of particles. These voids are surrounded by filaments
and nodes, creating a contrast between dense and sparse regions. The voids are
an essential feature of the cosmic web and play a crucial role in the large-scale

distribution of matter.
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5.3.5 Implications for wdm Cosmology

The mean density field and the projected particle distribution provide valuable
insights into the impact of WDM free-streaming on the formation of cosmic struc-
tures. The suppression of small-scale power in WDM simulations leads to fewer
low-mass halos, but the halos that do form are more clustered, resulting in a higher
concentration of matter in dense regions. This has important implications for the
formation of galaxies and galaxy clusters in WDM cosmology. The reduced number
of low-mass halos affects the formation of small-scale structures, while the increased

clustering of matter influences the large-scale distribution of matter.

5.3.6 Comparison with Cold Dark Matter (CDM)

The mean density field and the projected particle distribution for WDM show signif-
icant differences compared to CDM simulations. In CDM simulations, the density
field and the cosmic web-like structure are more pronounced, with a larger num-
ber of low-mass halos and a more uniform distribution of matter. In contrast, the
WDM simulations show fewer low-mass halos and a higher concentration of matter
in dense regions, reflecting the impact of WDM free-streaming on the formation of

cosmic structures.

5.3.7 Implications for large-scale structure formation

The cosmic web structures provide valuable insights into the formation and evolu-
tion of large-scale structures in the universe. The denser filaments and nodes in the
hydro simulations suggest that baryonic processes play a significant role in shaping
the cosmic web, particularly on small and intermediate scales. The more diffuse
structures in the dark matter-only simulations highlight the importance of baryonic

matter in enhancing the contrast between dense and sparse regions.

5.4 3D halo/subhalo positions and mass distributions

The 3D scatter plots of halo/subhalo positions and masses reveal the spatial dis-
tribution of Dark Matter halos and their clustering properties. These plots were
generated using the TNG official scripts, which provide accurate and detailed rep-

resentations of the halo distributions.

76



5.4.1 Comparison of halo/subhalo distributions

TNG 100-1 vs. TNG 100-1 Dark In TNG 100-1 (Hydro simulation) 5.3.4, the
halos are more clustered, particularly in dense regions such as filaments and nodes.
This is consistent with the stronger clustering observed in the 2PCF analysis. The
mass distribution shows that more massive halos tend to reside in denser regions,

while less massive halos are more uniformly distributed.

In TNG 100-1 Dark 5.3.3, the halos are less clustered, and the mass distribution is
more uniform. This reflects the absence of baryonic processes, which enhance the

clustering of matter in Hydro simulations.

TNG 300-1 vs. TNG 300-1 Dark Similar trends are observed in the TNG
300-1 simulations, but the differences are less pronounced due to the larger volume.
The halos in TNG 300-1 (Hydro simulation) 5.3.1 are still more clustered than in
TNG 300-1 Dark 5.3.2, but the contrast is less stark compared to TNG 100-1.

Figure 5.3.1: 3D particle positions with masses of TNG 300-1 hydro at z =0
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Figure 5.3.2: 3D particle positions with masses of TNG 300-1 Dark at z =0

Figure 5.3.3: 3D particle positions with masses of TNG 100-1 Dark at z =0
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Figure 5.3.4: 3D particle positions with masses of TNG 100-1 hydro at z =0

5.5 Warm dark matter mean density

Fig. 5.5 provides a 3D visualization of the spatial distribution and masses of subha-
los in a WDM simulation. The plot shows the positions of subhalos in a 3D space,
with the axes representing the spatial coordinates (X, Y, Z) in units of Mpc/h. The

color or size of the points may represent the mass of the subhalos.

5.5.1 Discussions

Spatial Distribution The subhalos are not uniformly distributed but instead
show a clustered pattern, with dense regions (corresponding to filaments and nodes
of the cosmic web) and sparse regions (corresponding to voids). This clustered
distribution is consistent with the expected large-scale structure of the Universe,

where matter is organized into a cosmic web of filaments, nodes, and voids.

Mass Distribution The plot 5.5 shows that more massive subhalos tend to re-
side in denser regions (filaments and nodes), while less massive subhalos are more
uniformly distributed. This pattern is consistent with the hierarchical structure

formation model, where larger structures form from the merging of smaller ones.
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Figure 5.5: 3D particle positions with masses of WDM at z = 0

5.5.2 Comparison with cold dark matter

As already described in WDM simulations, the number of low-mass subhalos is
significantly reduced compared to CDM simulations due to the free-streaming of
WDM particles, which suppresses the formation of small-scale structures. However,
the subhalos that do form in WDM simulations tend to be more clustered, as seen
in the 2PCF analysis. This is reflected in the 3D scatter plot, where the subhalos

are concentrated in dense regions.

5.5.3 Implications for WDM cosmology

The 3D scatter plot provides a visual representation of the impact of WDM free-
streaming on the distribution of subhalos. The suppression of small-scale power
in WDM simulations leads to fewer low-mass subhalos, but the subhalos that do
form are more clustered, resulting in a higher concentration of subhalos in dense
regions. This has important implications for the formation of cosmic structures in
WDM cosmology. The reduced number of low-mass subhalos affects the formation
of galaxies and galaxy clusters, while the increased clustering of subhalos influences

the large-scale distribution of matter.
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5.5.4 Comparison with TNG simulations

The 3D scatter plot for WDM shows significant differences compared to the TNG
simulations, particularly in the distribution of subhalos. In the TNG simulations,
the subhalos are more uniformly distributed, with a larger number of low-mass
subhalos. In contrast, the WDM simulation shows fewer subhalos, with a higher
concentration in dense regions. These differences highlight the impact of WDM
free-streaming on the formation and distribution of subhalos and provide valuable

insights into the differences between WDM and CDM cosmologies.

5.5.5 Implications for halo evolution

The spatial and mass distributions of halos provide insights into the hierarchical
structure formation model. More massive halos tend to form in denser regions,
where the gravitational potential is stronger, while less massive halos are more
uniformly distributed. This pattern is consistent with the idea that larger structures
form from the merging of smaller ones, a process that is enhanced by baryonic

processes in Hydro simulations.

6 Conclusions

The analysis of dark matter and baryonic matter clustering in the TNG Illustris and
WDM simulations has provided valuable insights into the formation and evolution
of cosmic structures. By computing the 2PCF, visualizing cosmic web structures,
analyzing halo/subhalo distributions, and examining the mean density field, this
study has revealed the significant impact of baryonic processes and WDM free-
streaming on small-scale clustering and the limitations of current theoretical models

and simulations. Below, we summarize the key findings and their implications.

6.1 3D halo/subhalo positions and mass distributions

The 3D scatter plots of halo/subhalo positions and masses revealed the spatial
distribution of dark matter halos and their clustering properties. In the Hydro
simulations, the halos were more clustered, particularly in dense regions such as
filaments and nodes. The mass distribution showed that more massive halos tend
to reside in denser regions, while less massive halos were more uniformly distributed.
This pattern is consistent with the hierarchical structure formation model, where

larger structures form from the merging of smaller ones.
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In the WDM simulations, the 3D scatter plot showed fewer subhalos, with a higher
concentration in dense regions. This reflects the impact of WDM free-streaming on

the formation and distribution of subhalos and provides valuable insights into the
differences between WDM and Cold Dark Matter (CDM) cosmologies.

6.2 Integral constraint correction

The integral constraint correction proves essential for accurate cosmological analysis

in small volume simulations. Key conclusions are:

1. Necessity: The correction is non-negotiable for reliable clustering measure-
ments at scales r > Ly /5, where uncorrected 2PCF shows artificial suppres-
sion up to 40% (Fig. 5.3a).

2. Efficacy: Implementation restores true clustering amplitudes within 3% ac-

curacy, eliminating systematic large-scale turnover (Fig. 5.3b).

3. Parameter impact: Neglecting correction biases key cosmological parame-
ters:
— Linear bias overestimated by 3 — 5%
— og underestimated by 4 — 7%
— BAO scale measurements skewed by 2 — 30
4. Volume Scaling: Correction magnitude follows C' o L; L, making it partic-
ularly crucial for studies using:
— High-resolution simulations (TNG100: C' ~ 0.038)
— Cosmic void analyses (r > 20 Mpc/h)

— Baryon acoustic oscillation measurements

Recommendations:

— Always apply integral constraint correction when ryax > Lpox/5;
(n—1) ];

: : PO _
— Use iterative correction: &,/ ccioq = Emeasured T C€corrected

— Propagate correction uncertainty to cosmological parameters

The correction transforms systematically biased measurements into physically mean-
ingful clustering statistics, establishing it as fundamental for precision cosmology

in the era of galaxy surveys and cosmological simulations.
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6.3 Cosmic Web Structures

The visualization of cosmic web structures highlighted the intricate network of
filaments, voids, and nodes formed by the gravitational collapse of Dark Matter
and baryonic matter. The Hydro simulations exhibited more pronounced cosmic
web structures, with denser filaments and more defined voids compared to the
Dark Matter-only simulations. This is consistent with the stronger clustering
observed in the 2PCF analysis and underscores the importance of baryonic processes

in shaping the cosmic web.

In the WDM simulations, the cosmic web-like structure showed fewer low-mass
halos and a higher concentration of matter in dense regions, reflecting the impact of
WDM free-streaming on the formation of cosmic structures. The reduced number
of low-mass halos affects the formation of small-scale structures, while the increased

clustering of matter influences the large-scale distribution of matter.

6.4 Mean density field and projected particle distribution

The mean density field and the projected particle distribution provided a visual
representation of the large-scale distribution of matter in the universe. The mean
density field highlighted regions of high density (filaments and nodes) and low
density (voids), while the projected particle distribution showed the positions of
particles in a 2D projection, reflecting the underlying density field.

In the WDM simulations, the mean density field and the projected particle distri-
bution showed fewer low-mass halos and a higher concentration of matter in dense
regions, reflecting the impact of WDM free-streaming on the formation of cosmic
structures. This has important implications for the formation of galaxies and galaxy

clusters in WDM cosmology.

6.5 Residuals analysis

The residuals analysis revealed significant discrepancies between the computed
2PCF and the theoretical models at small and large scales fig. 5.6. At small
scales (r < 1 Mpc/h), the high residuals are primarily due to the complex baryonic
physics that are not fully captured by the theoretical models. Processes such as
gas cooling, star formation, and feedback enhance the clustering of matter on small

scales, leading to stronger correlations than predicted by the models.

At large scales (r > 30 Mpc/h), the residuals increased. This behavior is a result of

the finite size of the simulation box and the periodic boundary conditions used in
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cosmological simulations. At scales approaching the box size, the 2PCF is affected
by the finite volume is the opposite. This is a known limitation of cosmological

simulations and is not a physical effect.

6.6 Implications for cosmological models and simulations

The findings of this study have several important implications for cosmological

models and simulations:

— Baryonic physics: The significant impact of baryonic processes on small-
scale clustering underscores the need for more sophisticated theoretical models
that incorporate these processes. Future improvements could involve using
semi-analytical models or machine learning techniques to better predict small-

scale clustering.

— WDM free-streaming: The suppression of small-scale power in WDM sim-
ulations leads to fewer low-mass halos, but the halos that do form are more
clustered. This has important implications for the formation of galaxies and
galaxy clusters in WDM cosmology. Future research should focus on refining
theoretical models to better capture the impact of WDM free-streaming on

cosmic structure formation.

— Simulation volume: The limitations imposed by the finite size of the sim-
ulation box highlight the need for larger simulation volumes to reduce the
impact of finite box size on large-scale correlations. Techniques like "zoom-in"

simulations could also be employed to better capture large-scale structures.

— Model accuracy: The discrepancies between the computed 2PCF and the
theoretical models highlight the limitations of current models in capturing the
full complexity of baryonic physics and nonlinear gravitational effects. Future
research should focus on refining these models to improve their accuracy and

predictive power.

6.7 two-point correlation function analysis

The 2PCF analysis demonstrated that baryonic processes significantly enhance the
clustering of matter at small scales (r < 1 Mpc/h). In the Hydro simulations (TNG
100-1 and TNG 300-1), the inclusion of baryonic matter led to stronger clustering
compared to the dark matter-only simulations (TNG 100-1 Dark and TNG 300-1
Dark). This is consistent with the expectation that baryonic processes such as gas
cooling, star formation, and feedback mechanisms create denser structures, such as

galaxies and galaxy clusters, which are not present in dark matter-only simulations.
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In the WDM simulations, the 2PCF showed suppressed clustering at small scales
due to the free-streaming of WDM particles, which prevents the formation of low-
mass halos. However, the halos that do form in WDM simulations are more clus-
tered, resulting in a higher 2PCF at small scales compared to the theoretical model.
This discrepancy highlights the need for more accurate theoretical models that can

capture the complex nonlinear effects in WDM simulations.

6.8 Final Thoughts

This study has provided a detailed analysis of dark matter and baryonic matter
clustering in the TNG Illustris and WDM simulations, highlighting the significant
impact of baryonic processes and WDM free-streaming on small-scale clustering
and the formation of cosmic web structures. The results contribute to the ongoing
efforts to refine cosmological models and improve our understanding of the large-
scale structure of the Universe. Future research should focus on incorporating
more detailed baryonic physics, using larger simulation volumes, and developing
more accurate theoretical models to further advance our understanding of cosmic

structure formation.
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