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Abstract

Robots deployed in dynamic environments must be able to adapt autonomously
to changing conditions and perturbations. This thesis examines online adapta-
tion strategies for minimally cognitive robotic agents, with a focus on their abil-
ity to achieve and sustain high performance. We explore a range of adaptive
controllers, including architectures inspired by Braitenberg vehicles and Artificial
Neural Network-based strategies, from simple feed-forward topologies to recurrent
networks with internal memory, each tested in navigation with a collision avoidance
task. Our experimental results compare the performance of various mechanisms
and adaptation policies, highlighting the trade-offs between reactivity, memory,
and robustness in different online adaptation settings.
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Introduction

Robots are increasingly required to operate in unstructured, unpredictable environ-

ments where pre-programmed behavior isn’t sufficient. Classical design approaches

typically rely on prior knowledge of all the possible scenarios the system might en-

counter. When applied to real-world contexts, characterized by noise, change, and

uncertainty, this strategy falls short. To address this, research in autonomous

robotics has progressively moved toward adaptive systems capable of adjusting

their behavior during execution. Online adaptation is a promising paradigm in

this area.

While in traditional offline learning methods, control mechanisms are opti-

mized in simulated or limited environments and later deployed, in online adap-

tation, robots can modify their control policies continuously and autonomously

based on real-time feedback obtained from operations. This is especially relevant

in lifelong learning contexts, where the primary measure of interest is long-term

cumulative performance rather than momentary optimality [BRB23]. Such mech-

anisms are inherently more resilient to environmental variability, internal compo-

nent degradation, and unexpected interactions.

This thesis explores a range of adaptive controllers, including both neural

network-based architectures and reactive designs inspired by Braitenberg vehicles,

equipped with various online adaptation strategies. In particular, we investigate

whether different adaptation mechanisms can achieve and maintain high perfor-

mance over extended operational periods, while retaining the flexibility to respond

effectively to novel or perturbed conditions.

The adaptive mechanisms presented were tested on the collision avoidance task,

which was chosen for multiple reasons. First, it is one of the most used benchmarks

for adaptive robots equipped with minimal cognitive capabilities. Second, it is a

LIST OF FIGURES 1



LIST OF FIGURES

continuous task without a clearly defined beginning or end, making it particularly

well-suited for ongoing, online adaptation processes. So, in our case, the robot’s

goal is to explore an arena while avoiding collisions with walls and obstacles,

receiving feedback through its proximity sensors. This minimal yet cognitively

meaningful setup captures the essential challenges of sensorimotor adaptation.

Structure of the Thesis This thesis is organized into four main chapters:

• Chapter 1 – Theoretical Background: Illustrates the theoretical foun-

dations of adaptive systems, focusing on online adaptation, including an

overview of related works.

• Chapter 2 – Braitenberg Architectures: Presents and evaluates two

controllers inspired by Braitenberg vehicles, comparing different sensor-to-

motor mappings.

• Chapter 3 – Neural Networks: Discusses a range of neural network-based

controllers. It starts with feed-forward architectures, progresses to recurrent

ones, and explores various RNN variants, including tests with multiple robots

and malfunctions.

• Chapter 4 – Thymio Demo: Demonstrates the application of one of the

proposed adaptive strategies on a physical Thymio robot, showcasing real-

world feasibility.
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Chapter 1

Theoretical Background

As previously mentioned, autonomous robots are increasingly deployed in dynamic

and uncertain environments. From service robotics in households to planetary ex-

ploration, we want them to be as reliable and robust as possible. In unknown or

uncertain scenarios, where the conditions faced during operation may differ signif-

icantly from those assumed at design time, the ability of a robot to adapt during

its lifetime becomes crucial for successful execution and long-term autonomy. Tra-

ditional robot control systems are typically designed with fixed architectures and

predefined behaviors. In these cases, the robots operate effectively and meet ex-

pectations only under the specific environmental conditions for which they were

intended. However, when confronted with any unexpected and unprogrammed

change, such as unmodeled disturbances, hardware wear, or terrain variation, their

behavior may be faulty or fail altogether. These limitations have led to a growing

interest in biologically inspired, evolutionary principles. Evolutionary robotics is

a subfield that draws inspiration from Darwinian evolution and seeks to automat-

ically generate robot controllers through a process of artificial selection, mutation,

and reproduction. In this context, the controllers are allowed to evolve and mu-

tate over successive generations, guided by their fitness evaluation, rather than

being hand-designed. In the work by Floreano and Keller, Evolution of Adaptive

Behaviour in Robots by Means of Darwinian Selection [FK10], it is shown how

complex adaptive behaviors can emerge in robotic systems through Darwinian

selection. They demonstrate that sophisticated behaviors, such as obstacle avoid-
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ance, homing, cooperation, and altruism, can arise from simple Neural Network

controllers, not as a consequence of task-specific direct programming but rather

as the result of selective pressures acting on random mutations in the controller’s

genotype, which encodes the structure and parameters of the NN. The experiments

carried out in this work demonstrate the effectiveness of evolutionary methods in

generating robust and adaptive behaviors capable of autonomous operation even

in complex or unknown settings. For instance, their robots evolved to navigate

through a looping maze without collisions, developed an intermediate-speed strat-

egy that implicitly accounted for sensor latency, and co-evolved strategies for pur-

suit and evasion in a predator-prey setting, also highlighting the open-ended nature

of adaptive behavior when shaped by dynamic interactions with the environment

or other agents.

A first key distinction to discuss in adaptive robotic systems lies between of-

fline and online adaptation paradigms. In offline adaptation, the robot’s control

policy is trained or evolved before deployment (through a wide range of tech-

niques, such as evolutionary algorithms, supervised learning, and reinforcement

learning), and the entire optimization process takes place in a simulated or con-

trolled environment. Once a sufficiently performing controller is obtained, it is

transferred to a physical robot, and from this point onward, the behavior re-

mains fixed. Offline adaptation enables controlled experimentation and large-scale

parallel optimization, but it suffers from several inherent limitations. First and

foremost, performance is tightly coupled to the assumptions and fidelity of the

training environment. When we move to real-world scenarios, these assumptions

often break down due to intrinsic noise, unexpected dynamics, and partial observ-

ability. This mismatch between simulation and reality is known as the reality gap,

and it isn’t the only limitation. Offline methods are static and assume that the

robot’s hardware and environment remain constant over time. In the real world,

this assumption is unrealistic, as sensors and actuators undergo aging and me-

chanical wear, and components may become damaged or require replacement. All

these variations can significantly impair the performance of a fixed controller that

lacks the ability to adapt post-deployment. The alternative to overcoming these

limitations is online adaptation. Online adaptation refers to a robot’s ability to

autonomously modify its control strategy during operation in response to environ-
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mental feedback. In this context, robot controllers are equipped with mechanisms

that enable them to adjust themselves in response to changes and new experi-

ences, both to maintain and improve their performance. Online adaptation can

take various forms, each offering different levels of flexibility. A relatively simple

approach is behavior switching, where the robot selects from a set of predefined

controllers based on contextual cues. More flexible is parameter tuning, where

internal variables (such as neural weights or decision thresholds) are adjusted on-

line. The most general form is purely adaptive behavior, in which the robot starts

with no pre-structured control and develops effective behavior solely through trial-

and-error interaction with its environment. An example of purely adaptive form

is provided by Baldini et al. On the Performance of Online Adaptation of Robots

Controlled by Nanowire Networks [BRB23]. In this work, robots are controlled by

nanowire networks, neuromorphic devices that are small, low-power, and struc-

turally immutable. In fact, each nanowire network has a unique topology that

cannot be precisely replicated or modified after it is manufactured. Consequently,

an offline-trained controller optimized for one device cannot be directly trans-

ferred to another, forcing independent training for each robot. This renders the

standard offline paradigm impractical. To address this challenge, the authors em-

ploy a purely online adaptation mechanism, where each robot begins from a state

of complete ignorance, with sensor-to-network couplings initialized randomly and

no predefined behaviors, learning rules, or structural priors. Adaptation occurs

entirely during deployment: robots iteratively explore alternative configurations

and refine them based solely on performance feedback. The authors analyzed two

online adaptation strategies: random adaptation, which samples new configura-

tions blindly, and local adaptation, which incrementally improves upon previously

successful behaviors. Their results demonstrate that online strategies that main-

tain and refine previously effective solutions outperform those that lack memory

or guidance, especially when evaluated over the robot’s entire lifespan, also re-

inforcing the importance of treating robot adaptation as a continuous, life-long

process rather than a one-time optimization. In fact, evaluating the quality of a

robot’s behavior based solely on momentary or peak performance can be mislead-

ing. A single high-performing episode may demonstrate that a robot is capable

of performing a task, but it does not guarantee that it will do so consistently
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across time and conditions. Real-world robotic systems are expected to operate

autonomously for extended periods, meaning sustained performance is far more

relevant than isolated success. A shift in evaluation is required, from focusing

on peak performance metrics to considering cumulative or lifelong performance.

Cumulative performance accounts for the total reward or score obtained over the

entire operational lifetime of the robot, offering a more comprehensive view of the

system’s adaptability, stability, and resilience. This shift may favor strategies that

are slower to reach optimality but reliably maintain acceptable performance over

time, which is much more valuable in real-world deployment. Another example

of this purely adaptive methodology was explored by Braccini et al. in An In-

vestigation of Graceful Degradation in Boolean Network Robots Subject to Online

Adaptation [BBR24], who studied how Boolean network robots can exhibit graceful

degradation and structural robustness under online adaptation. In their work, the

robot’s control system is modeled as a Boolean network, and adaptation involves

reconfiguring the couplings between sensors and the Boolean network in response

to environmental changes or partial damage. The experiments demonstrate that

even under adverse conditions, such as sensor failures or structural perturbations,

robots can recover functionality without relying on predefined behaviors. This

resilience stems solely from the inherent characteristics of online adaptation and

the ability to rewire and select new configurations online.

As briefly mentioned before, the effectiveness and character of an adaptive

mechanism are also influenced by the robot’s embodiment and the environment in

which it operates. Embodiment refers to the physical instantiation of the robot,

including its sensors, actuators, morphology, and control substrate, as well as all

their characteristics such as range, resolution, response time, mechanical robust-

ness, and computational limitations. The environment, on the other hand, encom-

passes both the static and dynamic features of the external world that interact

with the robot. Together, these two domains form the sensorimotor loop through

which behavior is generated, evaluated, and modified. Similarly, adaptive behav-

ior does not emerge solely from control logic; it arises from the dynamics between

a robot’s body and the world it acts upon. Physical constraints such as sensor

delay, actuator inertia, or morphological asymmetry can shape how a robot learns,

stabilizes, and refines its responses. In this view, adaptation is not simply about
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adjusting internal variables but about co-adapting to the physical properties of the

robot’s body and its environment. This is well illustrated in the work of Floreano

and Keller [FK10], where evolved neural controllers implicitly learn to account for

limitations like sensor refresh rates and wheel momentum. For instance, in their

maze navigation task, the robots had evolved to use intermediate movement speeds

that indirectly compensated for sensor latency, even though no such compensation

was ever explicitly programmed. This kind of fine-tuned behavioral calibration is

a direct consequence of embodiment-aware adaptation.

One fundamental aspect of online adaptation is that at each decision point,

the robot must choose between two conflicting objectives: exploiting previously

successful behaviors to maintain performance, or exploring new, potentially better

behaviors that have not yet been tested. A robot that only exploits may become

stuck in a suboptimal behavior, while one that only explores may waste time on

unproductive trials. This dilemma is known as the exploration-exploitation trade-

off, and it is essential to manage both sides of it effectively for achieving high

cumulative performance in the long run. The exploration-exploitation dilemma is

formalized and explored in the Multi-Armed Bandits chapter from the book Rein-

forcement Learning: An Introduction by Richard Sutton and Andrew Barto [SB18].

In this setting, an agent is faced with k slot machines (arms), each with an un-

known and potentially different reward distribution. At each time step, the agent

selects an arm to pull and receives a stochastic reward. The goal is to maximize

the total reward over a sequence of actions. However, since the reward distribution

is initially unknown, the agent must experiment with different arms (exploration)

while also remembering and reusing those known to yield higher payoffs (exploita-

tion). Several strategies have been developed to address the Multi-Armed Bandit

(MAB) problem. One of the simplest is the ϵ-greedy algorithm, in which the agent

selects the best-known arm with probability 1 − ϵ and a random arm with prob-

ability ϵ. This approach introduces controlled stochasticity, allowing exploration

while still favoring high-performing actions. Another class of methods, such as

the Upper Confidence Bound (UCB), balances exploration and exploitation by se-

lecting arms based not only on expected reward but also on the uncertainty (or

confidence interval) of their estimates. Online adaptation mechanisms in robotics

can be interpreted as approximations of MAB strategies. For example, in the

CHAPTER 1. THEORETICAL BACKGROUND 7



work of Baldini et al. [BRB23], two contrasting approaches are proposed: Random

Adaptation (RA) and Local Adaptation (LA). RA corresponds to pure exploration

as it generates entirely new controller configurations at each step, without regard

for past performance, similarly to a multi-armed bandit agent with ϵ = 1. On the

other hand, LA embodies a more balanced approach. It perturbs the best-known

configuration slightly in search of nearby improvements, switching to full explo-

ration only when current performance falls below a threshold. This mechanism is

conceptually similar to an ϵ-greedy strategy with an adaptive ϵ value: the robot

exploits known good configurations when possible. Still, it can fall back on full

exploration when the current behavior is deemed unsatisfactory.

Many adaptation mechanisms draw direct inspiration from biology. Animals

have evolved to cope with uncertainty, injury, and novel environments through a

layered process of adaptation that spans evolution, development, and individual

experience. Understanding how natural systems achieve this level of robustness of-

fers valuable insights and practical design principles for building more resilient and

autonomous robots. Unlike traditional engineering methods, which rely on precise

models and assumptions, biological systems embrace redundancy, approximation,

and trial-and-error as mechanisms of adaptation. An example of bio-inspired adap-

tive control in robotics can be found in the work Robots that adapt like animals by

Cully et al. [CCM14]. In their work, a six-legged robot can recover from physical

damage such as a broken leg without requiring external intervention, retraining, or

reprogramming. The core of their approach is a behavior-performance map that

catalogs a large number of diverse locomotion strategies, each associated with a

set of behavioral descriptors and an expected performance score. During an offline

phase, the map is populated with thousands of solutions that vary not only in

efficiency but also in their underlying control strategies. Here, diversity is essen-

tial: it ensures that the map contains alternatives that may become useful in the

face of unforeseen situations. Later, when deployed in the real world, the robot

uses the map to guide a rapid trial-and-error adaptation process. Upon detecting

performance degradation, the robot begins sampling candidate behaviors from the

repertoire (the map), evaluating them in real-time, and converging on one that

performs well given its current damaged state. This process does not require an

explicit diagnosis of the damage but instead allows for behavior reorientation based
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on empirical feedback. This strategy mimics the way animals attempt new move-

ment strategies after injury, until they find one that works. The overall framework

is a hybrid of offline and online adaptation. The behavior-performance map serves

as a form of structured, precomputed knowledge (analogous to the innate instinc-

tive set of behaviors in animals) while real-time feedback and behavioral evaluation

drive the actual adaptation to damage. Such a design avoids many pitfalls of both

extremes: pure online adaptation may require long search times or extensive trial

phases that are sometimes impractical in time-sensitive tasks. On the contrary,

pure offline strategies may fail entirely if their assumptions do not match the de-

ployed conditions. Building on this theoretical background, the following chapters

of the thesis present and compare multiple mechanisms for online adaptation. The

primary goal is to assess their effectiveness not only in achieving peak performance

but also in maintaining high cumulative performance over time and varying con-

ditions, by analyzing a range of different architectures, exploration–exploitation

strategies, and adaptation mechanisms, to identify which design principles con-

tribute most to long-term autonomy, generalization, and fault tolerance.
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Chapter 2

Braitenberg Architectures

Braitenberg Architectures [Bra86] inspired both controller mechanisms presented

in this chapter.

2.1 Binary

The core of this controller mechanism is a four-bit binary configuration that di-

rectly encodes sensor-to-motor connections, allowing reactive obstacle-avoidance

behavior. In the spirit of Braitenberg architectures [Bra86], the four binary weights

govern the influence of two virtual proximity sensors on the two wheels. Each vir-

tual proximity sensor is calculated by averaging three physical sensors, with three

taken from the robot’s left side and three from its right. While Braitenberg vehicles

are typically hardcoded, in this and the following mechanism, the sensors-wheels

mapping evolves over time, following online behavioral adaptation practices.

At the start of each epoch, the robot’s four-bit configuration is randomly initi-

ated, as described by the pseudocode in 1. During an epoch, at each step, the robot

senses the environment and computes motor speeds using the current four-bit bi-

nary configuration. The bits define whether each sensor contributes to the left

and/or right wheels, as illustrated by the schematic representation of Figure 2.1.

The resulting wheel velocities determine the robot’s reactive motion.

The same configuration is maintained, used, and evaluated throughout an entire

epoch. At each step, the configuration is evaluated using the fitness function
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Algorithm 1: Braitenberg-inspired online adaptation mechanism - Bi-
nary Version

1 Initialize config ← random 4-bit vector
2 best config ← config

3 best fitness ← −∞
4 for each epoch in 1 to MAX EPOCHS do
5 fitness accum ← 0
6 for each step in 1 to MOVE STEPS do
7 Sense environment
8 Act using current config
9 fitness accum ← fitness accum + evaluate performance()

10 end
11 avg fitness ← fitness accum / MOVE STEPS

12 if avg fitness > best fitness then
13 best config ← config

14 best fitness ← avg fitness

15 end
16 else
17 config ← mutate(config)

18 end

19 end

L sensor R sensor

L wheel R wheel

Figure 2.1: Schematic representation of the Braitenberg-inspired binary mecha-
nism. Virtual proximity sensors on the left and right are connected to the cor-
responding wheel actuators via binary-weighted pathways. The four-bit configu-
ration encodes excitatory (1) or inhibitory (0) connections between sensors and
wheels.
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explained in the pseudocode 2.

Algorithm 2: Fitness evaluation function

1 left sensor value ← get left sensor value
2 right sensor value ← get right sensor value
3 i← max(left sensor value, right sensor value)
4 left v norm ← normalize velocity(left v)

5 right v norm ← normalize velocity(right v)

6 V ← (left v norm+ right v norm)/2
7 return V · (1− i)

This fitness function is inspired by the one proposed in the study by Floreano

et al. on the evolution of adaptive behavior in robots [FK10]. The original fitness

function is defined as:

Φ = V · (1−
√
∆v) · (1− i) (2.1)

Where:

• V is the average normalized wheel speed;

• ∆v is the absolute difference between the normalized speeds of the two

wheels;

• i is the maximum activation value among the proximity sensors.

This formulation has been changed and adapted. In their work, the velocities are

in the range [−1, 1], where speeds in the range [0, 1] correspond to rotation in

one direction and speeds in the range [−1, 0] correspond to rotation in the other

direction [FK10]. In our case, normalized speeds are in the [0, 1] range, so the

(1 −
√
∆v) portion would be maximized only by using the same values of the

wheels’ velocities, resulting in a forward movement for the robot, regardless of

obstacles. So, our version of the formula results in:

Φ = V · (1− i) (2.2)

All the fitness values calculated are cumulated at each execution step and then

averaged at the end of an epoch to obtain the final average fitness produced by
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a specific configuration. This average value is then evaluated against the highest

(average) fitness value found so far. If the newly collected average exceeds the

best one, the current average and configuration become the baseline to evaluate

the next ones. Otherwise, a new candidate configuration is randomly generated

by flipping a bit of the current one, as described in the pseudocode 3. This new

configuration will be used and evaluated in the subsequent epoch.

Algorithm 3: Bit-flip mutation operator

1 i← random index in {1, 2, 3, 4}
2 config[i] ← 1− config[i]
3 return config

To assess this mechanism, a total of 60 independent replicas were run. Half of

these were run with uniform additive noise (±0.01) applied to proximity sensors

and wheel actuators. For each run and each epoch, we saved the epoch number,

the configuration used in that epoch, and the average fitness value produced.

The collected data was evaluated through a variety of metrics to understand and

compare results.

All the mechanisms presented in this chapter and the subsequent one were run

in the ARGoS simulator [PTO+12] using the Footbot robot.

Best Configuration per Run For each experimental run, the configuration

that achieved the highest fitness was identified and recorded. This data produces

two plots, Figure 2.2 and Figure 2.3, which enable a comparative analysis of the

four-bit binary configurations that were most effective across multiple independent

trials.

In both settings, specific configurations appear repeatedly among the top per-

formers, suggesting a pattern of convergence toward effective sensor-to-motor map-

pings. In the noiseless condition, configuration 0110 emerges most frequently as

the best across 30 runs, followed closely by 1011 and 1010. Notably, 0110 also

yields the highest single-run fitness. In the noisy scenario, the overall distribution

of top configurations broadens slightly. Even in this case, configuration 0110 is the

most frequent, closely rivaled by 1110. Surprisingly, the configuration yielding the

highest single-run fitness is 1111.
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Figure 2.2: Left: Scatter plot showing the best fitness achieved per run along with
the associated 4-bit configuration. Right: Bar plot displaying the frequency with
which each configuration appeared as the best-performing solution across all runs.

Figure 2.3: Left: Scatter plot showing the best fitness achieved per run (with
noise) along with the associated 4-bit configuration. Right: Bar plot displaying
the frequency with which each configuration appeared as the best-performing so-
lution across all runs (with noise).

Since the mapping used is {(sL, wL), (sL, wR), (sR, wR), (sR, wL)}, where (sx, wy)

means that sensor x influences wheel y, we expect the best configuration to be 1010,

where each sensor influences the respective wheel only. In both scenarios, configu-

ration 1010 is among the best, but it is neither the only one nor the absolute best

one. We directly observed the best and the worst configurations in the simulation
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arena, shown in Figure 2.4, to examine the quality of the resulting behaviors.

Figure 2.4: ARGoS Simulation arena. The robot moves inside the walls. The
obstacles are inspired by the arena used in [FK10] for the Collision-Free Navigation
experiments.

Accordingly to Figure 2.2, the most successful configurations in the noiseless

setting are 0110, 1010, 1011, and 1001. Each of these exhibits a different motion

strategy.

• 0110: Both left and right sensors influence only the right wheel. This causes

the robot to turn left in response to any obstacle that it encounters. While

effective in some situations, it lacks flexibility. In several cases, a right turn

would be faster, but the robot is always forced to perform a wider, and

consequently slower, turn to the left, as can be observed at second 0:54 in

the simulation recording here.

• 1010: As previously said, the left sensor affects the left wheel and the right

sensor affects the right wheel. This mapping enables the robot to turn away

from obstacles on either side of it. However, it can struggle in frontal collision
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scenarios, especially when encountering sharp angles (e.g., the 90◦ wall cor-

ners of the simulation arena), where it may become stuck due to symmetric

influence. This behavior can be observed here.

• 1011: Both sensors influence the left wheel, and the right sensor also influ-

ences the right wheel. The robot can turn both ways, but with a stronger

bias toward right turns. This results in frequent right turns and occasional

imperfect left turns where the robot scrapes against obstacles and drifts along

them, as shown at second 0:40 in the linked video here.

• 1001: It is the mirror configuration of 0110; both left and right sensors

influence only the left wheel. This forces the robot to turn to the right in all

situations, so similarly to 0110, this results in inefficient turns as the one at

second 0:14 in here.

Unsurprisingly, the configurations with the lowest performance are 0000, 0001,

and 0100. These all fail to produce meaningful, if any, responses to obstacle

proximity.

• 0000: No sensor influences any wheel. As a result, the robot is completely

unresponsive to obstacles and doesn’t move, as demonstrated in this record-

ing.

• 0001: The right sensor influences the left wheel, meaning the robot can only

detect obstacles on the right and can only react by turning further to the

right, colliding, or freezing entirely, as shown here.

• 0100: This produces the same asymmetric behavior as 0001, but mirrored.

The left sensor affects the right wheel, causing the robot to react only to left-

side stimuli by turning left. Again, this leads to collisions and unresponsive

behavior.

In the noisy setting, the top-performing configurations are 0110, 1011, 1010,

and 1110. Despite the introduction of noise, the first three showcase a behavior

consistent with the noiseless scenario. Their resulting behaviors can be observed

from the recordings 0110, 1011, and 1010 respectively. In 1110, the left sensor
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influences both wheels, while the right sensor influences the right wheel exclusively.

This allows for bidirectional turning but with a stronger bias towards left turns.

The resulting behavior resembles the 1011 case; the robot might become stuck and

drift on walls and obstacles when turning right, as it happens at second 0:25 in

this recording.

The lowest-performing configurations under noise remain unchanged from the

previous scenario: 0000, 0001, and 0100; their corresponding behavior is identical

to the earlier setting and can be visualized in the recordings 0000, 0001, and 0100,

respectively.

Fitness Statistics across Configurations The two plots, Figure 2.5 and Fig-

ure 2.6, display the average and median fitness for each of the 16 possible four-bit

configurations, presenting another view on the configurations’ performance.

Figure 2.5: Comparison of average and median fitness across all 4-bit binary con-
figurations.

In both contexts, 0110, 1001, 1011, 1010, and 1110 consistently achieve the

highest values. These configurations enable balanced and reactive behaviors, such

as the ability to turn in both directions or respond effectively to obstacle proximity

on either side. On the contrary, 0000, 0001, 0100, and 1100 yield the poorest

statistics, as expected.

Interestingly, the statistical results stay consistent between the noiseless and

noisy conditions. However, in the noisy case (Figure 2.6), several configurations
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Figure 2.6: Comparison of average and median fitness across all 4-bit binary con-
figurations, from noisy data.

like 0010, 1000, and 1111 display slightly elevated medians compared to the noise-

less scenario, suggesting that some configurations may be more robust or flexible

in the presence of noise.

Average Fitness over Time Figure 2.7 shows two curves, representing the evo-

lution of the average fitness across all epochs, under noiseless and noisy conditions.

Figure 2.7: Evolution of average fitness across epochs for binary Braitenberg mech-
anism under noise and no-noise conditions.

Although the gap between the two curves is small, the first thing noticeable

is that the orange line, representing noisy setting data, exhibits more frequent
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and higher peaks. This may suggest that noise avoids stagnation and promotes

flexibility.

A notable observation in both cases is the high variance in the curves. This

is inherent to the nature of the binary controller, where a single bit flip in the

sensor-motor mappings can produce significantly different behaviors.

Mean Cumulative fitness Figure 2.8 presents the evolution of the mean cumu-

lative fitness over 300 adaptation epochs. The cumulative metric captures the total

reward (fitness) accumulated over time, thus reflecting the lifelong performance of

each approach.

Figure 2.8: Mean cumulative fitness across epochs for binary Braitenberg mecha-
nism under noise and no-noise conditions.

The curves indicate a performance advantage for the noisy condition, with the

corresponding curve consistently above that of the noiseless counterpart. Despite

the fluctuation previously seen in Figure 2.7, both curves suggest successful be-

haviors in both cases, with the noisy setting again being at an advantage.

Final Fitness Sum Distribution Figure 2.9 offers a comparison of the total

fitness accumulated over all epochs for each replica in the noiseless and noisy con-

ditions. This highlights not only the median performance but also the variability

and range of outcomes across independent runs.

The box plots have a similar inter-quartile range1 (IQR) width; however, the

1The IQR represents the middle 50% of the data, spanning from the first quartile (Q1, below
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noisy box plot exhibits a noticeably higher median total fitness. This metric rein-

forces what has been previously shown: noise, rather than impairing adaptation,

appears to enhance it.

Figure 2.9: Distribution of total fitness across replicas under noise and no-noise
conditions (binary Braitenberg mechanism).

Maximum Fitness Distribution Unlike cumulative fitness, which captures

overall performance across all epochs, this metric focuses on each replica’s best-

performing moment, presenting the distribution of the highest fitness value achieved

by each replica during the entire run.

Figure 2.10 shows two similar plots in terms of median, while the box plot

spread of the noiseless scenario is wider both in the upper and lower ends.

Cumulative % of Successful Replicas Finally, Figure 2.11 illustrates the

cumulative percentage of replicas that reached or exceeded a fitness threshold of

0.40.

which 25% of the data fall) to the third quartile (Q3, below which 75% of the data fall). It
indicates the spread of the central values and is visualized by the height of the box. A smaller
IQR suggests more consistency across runs, while a larger IQR indicates greater variability.
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Figure 2.10: Distribution of maximum fitness across replicas under noise and no-
noise conditions (binary Braitenberg mechanism).

Figure 2.11: Cumulative percentage of successful replicas over time under noise
and no-noise conditions (binary Braitenberg mechanism).

The threshold was chosen by directly observing the robot in the simulation

arena and concluding that a configuration yielding a fitness value above 0.40 results

in a satisfactory obstacle-avoidance behavior.

Both scenarios eventually reach 100% success, indicating that all replicas, re-

gardless of noise, are capable of discovering effective configurations if given suffi-
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cient time. If we consider a narrow window going approximately from epoch 5 to

epoch 10, we can observe that the noiseless curve lies above the other one. Past

this window, the noisy curve dominates for the remaining epochs.

2.2 Continuous

The second and last mechanism inspired by Braitenberg Architectures [Bra86]

shares many design principles with the first. While in the binary case (Section 2.1),

the sensor-to-motor mapping is a four-bit binary configuration, in the continuous

case, the mapping is represented by four real-valued parameters in the range [0, 1],

where 0 is the total inhibition of a particular connection and 1 represents the maxi-

mum activation of a connection. Real-valued parameters allow a more fine-grained

modulation of the connections, offering a broader and richer space of possible con-

figurations.

Apart from the initialization and mutation of configurations, the algorithm,

observable from Pseudocode 4, stays identical to the binary one, including the

fitness evaluation.

Configurations are muted by introducing a small perturbation δ ∈ [−0.2,+0.2]

to one of the four parameters, chosen randomly, as formally described in Algorithm

5. Unlike binary mutation, this operator performs a bounded additive adjustment

to simulate continuous variation. After the selected parameter is mutated, it is

clamped back into the [0, 1] range to ensure the fitness calculation remains valid.

This mechanism was evaluated similarly to the binary case; 60 independent

runs were executed using the same arena (see Figure 2.4). Half of these were

run with uniform additive noise (±0.01) applied to proximity sensors and wheel

actuators. The same data was saved and later analyzed using a similar set of

metrics.

Best Configuration per Run For each independent experiment, we identify

and record the best configuration in terms of fitness value. As previously men-

tioned, for this mechanism, configurations are composed of real-valued numbers,

thereby increasing our total number of possible configurations from 16 to infinity.

Many of these configurations can be considered similar in terms of their resulting
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Algorithm 4: Online adaptation for Braitenberg continuous mechanism

1 config ← 4 random real-valued parameters ∈ [0, 1]
2 best config ← config

3 best fitness ← −∞
4 for epoch in 1 to MAX EPOCHS do
5 fitness accum ← 0
6 for step in 1 to MOVE STEPS do
7 sense environment
8 act using config

9 fitness accum ← fitness accum + evaluate performance()

10 end
11 avg fitness ← fitness accum / MOVE STEPS

12 if avg fitness > best fitness then
13 best config ← config

14 best fitness ← avg fitness

15 end
16 else
17 config ← mutate(config)

18 end

19 end

Algorithm 5: Continuous configuration mutation

1 i← random index in {1, 2, 3, 4}
2 δ ← random float in [−0.2, +0.2]
3 config[i] ← clamp(config[i] + δ, 0.0, 1.0)
4 return config

behavior; e.g., {0, 0, 0.99, 0.60} is very similar to {0, 0.05, 0.89, 0.59}. So to gain

comprehensive insights on which configurations, or better, which kinds of config-

urations, performed better, we first approximate each configuration number to its

closest integer (0 or 1). Formally, each number in the [1, 0.5] range is approximated

to 0 while numbers in the (0.5, 1] range to 1. Results from this analysis are shown

in Figure 2.12 and Figure 2.13.

Different configuration groups appeared from the noiseless scenario, listed in

Figure 2.12. Among the most frequent best configurations, we find some that also

appear in the binary case, such as 0110, 1010, and 1011. Looking at the scatter plot

24 CHAPTER 2. BRAITENBERG ARCHITECTURES



2.2. CONTINUOUS

Figure 2.12: Left: Scatter plot showing the best fitness achieved per run along with
the associated (approximated) 4-bit configuration. Right: Bar plot displaying the
frequency with which each (approximated) configuration appeared as the best-
performing solution across all runs.

Figure 2.13: Left: Scatter plot showing the best fitness achieved per run (with
noise) along with the associated (approximated) 4-bit configuration. Right: Bar
plot displaying the frequency with which each (approximated) configuration ap-
peared as the best-performing solution across all runs (with noise).

on the left, good fitness results were achieved by all, especially 1010, which stayed

the most consistent. Interestingly, one of the best configuration groups found is

0010, meaning only the right sensor influences the right wheel. 0010 delivers high

fitness values and is the second most frequent configuration group.
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In the noisy scenario (Figure 2.13), the most frequent best configuration groups

are 1110, 1011, and 1001, which all returned good fitness values, in a range similar

to the noiseless case. The configuration group 0010 appeared again as one of the

best, but at a significantly lower frequency.

The behaviors produced by the best and worst configurations found for this

mechanism were directly observed as well, in the same arena (Figure 2.4) and sim-

ulation conditions as the previous mechanism. This time, not the approximations

but the real configurations were put under analysis.

From the noiseless setting, the best configurations found are 0.99 0.15 0.80 0.74,

0.79 0.65 0.95 0.17, 0.85 0.66 1.00 0.09, 0.80 0.58 1.00 0.00.

• 0.99 0.15 0.80 0.74: This configuration produces a stronger influence on the

left wheel, due to the high values on the first and fourth weights (0.99 and

0.74). The robot can turn in both directions, although its turning bias leans

to the right. The resulting behavior closely resembles that of 1011: right

turns are dominant, with occasional imprecise left turns, during which the

robot collides and drifts along obstacles, as it happens at second 0:23 in here.

• 0.79 0.65 0.95 0.17: Functionally similar to the previous case, this setup

exhibits a stronger influence on the right wheel, while still allowing for bidi-

rectional turning, similarly to 1110. Turns to the left are prevalent, alongside

less frequent and less precise right turns. This behavior is captured by this

recording

• 0.85 0.66 1.00 0.09 and 0.80 0.58 1.00 0.00: Among all best configurations,

these two are the most similar (in behavior) to 1010. The second of the

two (0.80 0.58 1.00 0.00) appears to be the most stable and effective, and

unlike 1010, it does not get stuck in sharp corners, as showcased at second

0:55 in here. In contrast, 0.85 0.66 1.00 0.09 may present the hitting and

scraping obstacles behavior observed in less balanced configurations. This

last behavior is captured by this recording.

There are numerous configurations registered as worst, but many of them can

be considered similar to each other, in form and delivered behavior. As an ex-

ample, the following were chosen: 0.00 0.00 0.03 0.85, 0.48 0.80 0.00 0.00, and
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1.00 0.65 0.99 0.46. In the first two cases, the robot is unresponsive to obsta-

cles, freezing completely. In the third and final configuration example, due to the

medium and high influence on all wheels from all sensors, the robot often bumps

into obstacles, as in this simulation recording.

In the noisy scenario, the following configurations emerged as best:

• 0.48 0.83 0.91 0.00: The highest values (0.83 and 0.91) represent the influence

on the right wheel. With this configuration, the robot can only turn left.

It might attempt a right turn but without succeeding; the robot begins the

right turn, then bumps into the obstacle and finishes with a left turn. This

can be viewed at second 0:08 in here.

• 1.00 0.12 0.37 0.80: This is the opposite scenario of the previous configu-

ration. The left wheel has the most influence, and the robot can only turn

to the right. Since the right wheel is slightly influenced by the right sensor,

when sensing an obstacle on the right side, it may try to turn to the left,

without success. When turning left is more convenient, the robot attempts

to do so, but it still ends up turning right, often after bumping into the

obstacle. The resulting behavior of this configuration is recorded here.

• 1.00 0.00 0.93 0.31: This case is very similar to 1010. The robot can turn

both left and right (as shown here) and, unlike 1010, it does not get stuck

in corners.

• 0.91 0.13 0.89 0.76: Finally, with this configuration, it can turn both ways,

but the influence is stronger on the left wheel, so when trying to turn left, it

bumps and drifts away as in 1011, as it happens at second 0:01 in this video.

The configurations labeled as worst from the experiments with noise are similar

to those found in the noiseless scenario: the majority of the worst configurations

have almost all elements close to 0.00; in these cases, the robot does not move at

all when detecting an obstacle. A case different from these but still equally bad is

0.71 0.82 0.70 0.84; both wheels have a similarly strong influence. This causes the

robot to freeze, unable to decide which way to turn when encountering obstacles,

as it happens here.
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Correlation between Configuration Fitness and Distance from Optimal

(1010) Another observation that can be made on the continuous configurations

obtained and the one considered as the optimal best is given by the four scatter

plots in Figure 2.14 and Figure 2.15.

Figure 2.14: Fitness values plotted against Euclidean (left) and Manhattan (right)
distances from the optimal binary configuration (1, 0, 1, 0).

Figure 2.15: Fitness values (collected in noisy scenario) plotted against Euclidean
(left) and Manhattan (right) distances from the optimal binary configuration
(1, 0, 1, 0).

These scatter plots show the fitness achieved by continuous configuration con-

trollers as a function of their distance from the optimal binary configuration 1010,

in both noisy and noiseless settings. In each case, the left panel uses Euclidean
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(L1) distance, while the right panel uses Manhattan (L2) distance 2. Each point

represents a single configuration trial during an epoch.

The plots examine whether configurations that are numerically closer to the

optimal binary configuration also tend to yield higher fitness values. Both distances

show a weak, though visible, negative correlation: in general, configurations farther

from the reference point tend to perform worse. This suggests that the behavior

encoded by 1010 lies near a local maximum in the configuration space. A few

outlier configurations at moderate distances still achieve high fitness, indicating

that while proximity to 1010 is a useful heuristic, it is not a strict requirement for

good performance. These outliers may represent alternative local optima.

Average Fitness over Time Figure 2.16 showcases the evolution of average

fitness across epochs, in both noisy and noiseless experimental settings.

Figure 2.16: Evolution of average fitness across epochs for continuous mechanism
under noise and no-noise conditions.

The learning curves reveal high variance in both conditions, but with slightly

different trends. In the early stages, the noisy case shows a slight advantage,

with curve peaks higher than the other. In the mid-epochs, the noiseless scenario

curve constantly dominates, whereas in the later stages, the two curves alternate

in dominance. Notably, the noisy curve starts higher but finishes at a significantly

2Manhattan (L1) distance sums the absolute differences across dimensions, while Euclidean
(L2) distance computes the square root of the sum of squared differences, giving more weight to
larger deviations.
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lower fitness value, while the noiseless one reaches a final higher value, despite

starting at a lower level.

If we compare this plot (Figure 2.16) with the corresponding binary one (Fig-

ure 2.7), we can state that in both cases, high variance is evident. In the continuous

mechanism, fitness improves more steadily, especially under the noiseless condi-

tion, which ultimately outperforms the noisy one. In contrast, the binary version

shows no clear long-term winner, even if the noisy condition exhibits more frequent

and higher peaks.

Mean Cumulative Fitness The plot illustrated in Figure 2.17 tracks the ac-

cumulation of fitness over time, describing long-term performance in both noisy

and noiseless scenarios.

Figure 2.17: Mean cumulative fitness across epochs for continuous Braitenberg
mechanism under noise and no-noise conditions.

Both conditions show steady improvement, but the noiseless setting eventually

accumulates more fitness than the noisy one, especially in the later stages. During

the first ≈ 90 epochs, the orange curve, representing the noisy scenario, prevails

while later the situation inverts and the gap gradually widens. This reinforces the

previously mentioned insight that, for the continuous mechanism, noise is beneficial

initially but detrimental in the long run when stable optimization is required.

Compared to the binary mechanism (Figure 2.8), where the noisy curve is

consistently above, final results are inverted. In the binary case, the noiseless

curve reaches just above the mean cumulative fitness value of 60 while the other
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curve (noisy) reaches around 65. On the contrary, in the continuous case, the noisy

curve is just above 60 while the other curve (noiseless) reaches around 65.

Final Fitness Sum Distribution In Figure 2.18, the box plots offer a different

view of the cumulative fitness score.

Figure 2.18: Distribution of total fitness across replicas under noise and no-noise
conditions (continuous Braitenberg mechanism).

The noiseless box plot presents a slightly higher median and reduced spread

and IQR, compared to the noisy one. Wider ranges and more extreme values, both

on the lower and higher end, suggest that noise here introduces more variability

across runs, increasing the likelihood of both strong and weak outcomes.

Maximum Fitness Distribution The plot in Figure 2.19 compares the best

fitness values reached by each mechanism across all runs.

The two conditions exhibit very similar distributions, with nearly identical

medians, similar spreads, and overlapping inter-quartile ranges, meaning that both

conditions are equally capable of discovering high-performing solutions. A similar

result is also achieved in the binary case, as can be observed from Figure 2.10.
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Figure 2.19: Distribution of maximum fitness across replicas under noise and no-
noise conditions (continuous Braitenberg mechanism).

Cumualtive % of Successful Replicas Figure 2.17 illustrates the cumulative

percentage of replicas that reached a fitness of at least 0.40 at any point during

their execution.

Figure 2.20: Cumulative percentage of successful replicas over time under noise
and no-noise conditions (continuous Braitenberg mechanism).

By observing the curves, we can see that neither the noisy nor the noiseless

32 CHAPTER 2. BRAITENBERG ARCHITECTURES



2.2. CONTINUOUS

condition reaches 100% of successful replicas, but both curves reach at most ≈ 50%

during their last epochs. We can also observe that throughout all the epochs, the

noisy curve consistently dominates.

This result contrasts with the one obtained with the binary controllers (Fig-

ure 2.8). In the binary version, all replicas reach full convergence extremely quickly,

within the first ≈ 20 epochs, regardless of noise presence. In contrast, the contin-

uous version exhibits a much slower and more gradual increase, yet never achieves

complete success.
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Chapter 3

NNs

The mechanisms presented and evaluated in this section differ from the previous bi-

nary and continuous strategies. Previously, obstacle avoidance behavior emerged

through a direct mapping between sensor inputs and motor outputs. The con-

trollers described here, on the other hand, use artificial neural networks (ANNs),

introducing an additional level of processing between sensing and actuation.

3.1 Feed-Forward Neural Network

The mechanism presented in this section is the first to be implemented through a

Neural Network. The core idea remains the same: the robot senses its environment

and, over time, must find the optimal configuration to avoid obstacles. While in

the previous two mechanisms, the task of obstacle avoidance was achieved through

direct mappings from sensors to wheel velocities, in this network-based mechanism,

the internal processing differs. Instead of a fixed or parametrically tunable sensor-

to-motor mapping encoded in a compact vector, here the robot’s decisions emerge

from a layered neural architecture transforming sensory inputs through weighted

connections. These weights are the parameters of the neural network, which are

learned and optimized over time.

The basis of the whole mechanism can be observed in Pseudocode 6. The con-

troller is a standard Feed Forward Neural Network with optional hidden layers.

The input layer receives two inputs: the virtual proximity sensor values for the
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left and right sides. The output layer produces the two values used to control

the robot’s left and right wheel velocities. If a hidden layer is present, it con-

tains H neurons. The network parameters are stored in a real-valued vector θ, of

size PARAMS, initialized with random values in the range [−1, 1]. The number of

parameters depends on the network topology:

• No hidden layer (H = 0): the network directly connects the two inputs

to the two outputs, with each output having its pair of input weights and

one bias (as can be observed in Figure 3.1), resulting in 2× 2 + 2 = 6 total

parameters.

L wheel R wheel

L sensor R sensor

wL1 wR2

wR1 wL2

  σ(𝑤𝐿1𝑠𝐿 +𝑤𝐿2𝑠𝑅 + 𝑏𝐿)   σ(𝑤𝑅1𝑠𝐿 +𝑤𝑅2𝑠𝑅 + 𝑏𝑅)

Figure 3.1: Schematic representation of the feed-forward NN controller with no
hidden layer (H = 0). Each virtual proximity sensor influences both wheel actu-
ators through real-valued weighted connections. The wheel speeds are computed
as sigmoid-activated weighted sums of the two sensor inputs, plus a bias term.

• With hidden layer: the parameter count increases to account for input-to-

hidden weights, hidden biases, hidden-to-output weights, and output biases:

PARAM COUNT = I ·H +H +H ·O +O
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where I = 2 (inputs), H is the number of hidden neurons, and O = 2

(outputs). The schematic representation of this case can be visualized in

Figure 3.2.

...

L wheel R wheel

L sensor R sensor

 σ(Σj wLj·hj + bL)  σ(Σj wRj·hj + bR) 

h1 hH
hj = σ(wjL·sL + wjR·sR + bj)

wjL

wjL
wjR

wjR

wLj

wLj
wRj

wRj

Figure 3.2: Schematic representation of the general feed-forward NN controller
with a hidden layer (H > 0). Each hidden neuron receives input from both sensors
and computes an activation value through a weighted sum and a bias, followed by
a sigmoid. The wheel velocities are obtained by aggregating the activations of all
hidden neurons using another set of weights and biases, followed by a final sigmoid
activation.

The robot executes a complete epoch by using a fixed configuration (θ), which

encodes all neural network weights and biases. At each epoch, the robot senses the

environment, and the obtained sensor readings are fed into the NN (see Pseudocode

6), which outputs motor velocities based on the current θ. The resulting motion

translates into a behavior maintained throughout an entire epoch and evaluated

at each step, using the same fitness function described in Algorithm 2. The fitness

values obtained at each step are cumulated during an epoch and averaged at the

end of it. If the current θ outperforms the configuration previously found as best,

it is retained as the new best and will be used as baseline in the successive epochs,
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until overthrown. Otherwise, the current configuration is mutated by selecting a

random parameter in θ and modifying it by adding a small random δ, as described

in pseudocode 7. The newly obtained configuration will be used and consequently

evaluated in the following epoch.

Algorithm 6: Online adaptation for Feed Forward NN mechanism

1 θ ← vector of PARAMS random real-valued weights ∈ [−1, 1]
2 best θ ← θ
3 best fitness ← −∞
4 for epoch in 1 to MAX EPOCHS do
5 fitness accum ← 0
6 for step in 1 to MOVE STEPS do
7 sense environment → (sL, sR)
8 output ← FFNN forward(sL, sR, θ)
9 set motor speeds using output

10 fitness accum ← fitness accum + evaluate performance()

11 end
12 avg fitness ← fitness accum / MOVE STEPS

13 if avg fitness > best fitness then
14 best θ ← θ
15 best fitness ← avg fitness

16 end
17 else
18 θ ← mutate(θ)
19 end

20 end

Algorithm 7: mutate function for perturbing one weight

1 Function mutate(θ):
2 i← random index in [1, PARAMS]
3 δ ← random float in [−0.5, +0.5]
4 θ[i]← clamp(θ[i] + δ, −1.0, 1.0)
5 return θ

The neural forward pass, described in Algorithm 8, operates differently de-

pending on the presence of hidden neurons:
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• For H = 0, output neurons are computed as:

zL = wL1 · sL + wL2 · sR + bL, then outL = σ(zL)

With an equivalent formulation for the right wheel.

• For H > 0, each hidden neuron computes an activation value:

hj = σ(wjL · sL + wjR · sR + bj)

And the output neurons then compute the output values used to calculate

wheel velocities:

outL = σ

(∑
j

wLj · hj + bL

)
with a symmetric equation for outR.

Algorithm 8: Feed Forward function for computing motor outputs

1 Function FFNN forward(sL, sR):
2 if H = 0 then
3 zL ← wL1 · sL + wL2 · sR + bL
4 zR ← wR1 · sL + wR2 · sR + bR
5 outL ← sigmoid(zL)
6 outR ← sigmoid(zR)

7 end
8 else
9 for j in 1 to H do

10 z ← wjL · sL + wjR · sR + bj
11 hj ← sigmoid(z)

12 end
13 zL ←

∑
j wLj · hj + bL

14 zR ←
∑

j wRj · hj + bR
15 outL ← sigmoid(zL)
16 outR ← sigmoid(zR)

17 end
18 return (outL, outR)

This NN-based mechanism was tested and assessed, in the same arena as before
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(Figure 2.4), using different hidden layer (H) sizes. For each hidden layer size

tested, a total of 60 independent runs were executed; half of these runs added

uniform additive noise (±0.01) to the proximity sensors and wheel actuators. For

each epoch of each run, we saved the epoch number with the corresponding fitness

value produced. The acquired data was studied using a variety of suitable metrics.

Average Fitness Over Time Figure 3.3 and Figure 3.4 present the evolution

of average fitness across epochs for varying numbers of hidden units H, under both

noiseless and noisy conditions.

Figure 3.3: Evolution of average fitness across epochs for Feed Forward NN-based
mechanism under no-noise condition, with different hidden layer sizes.

Figure 3.4: Evolution of average fitness across epochs for Feed Forward NN-based
mechanism under noise condition, with different hidden layer sizes.
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In both cases, the smallest controller with H = 0 has the worst performance.

Its average fitness starts lower than the others and either stagnates or degrades

even further in the presence of noise. In contrast, the best-performing H size is

consistently H = 10, which quickly rises above 0.40 and maintains stable high

values across most epochs, even in the presence of noise.

Intermediate values of H (e.g., H = 2 and H = 4) reach moderate to high

peaks during learning but show less consistency, frequently oscillating and failing

to retain optimal behavior throughout the run. The curves for H = 6 and H = 8

show more stable trends compared to lower H, especially in the noiseless case, but

they still fail to match the peak and sustained performance of H = 10.

H = 12 performs well in the early stages of the noisy scenario, but it never

reaches the H = 10 performance. While in the noiseless setting, it goes through

some high peaks, but it appears very unstable. This can be due to overfitting and

increased network complexity.

Mean Cumulative Fitness Mean cumulative fitness trend is captured by the

plots of Figure 3.5 and Figure 3.6.

Figure 3.5: Mean cumulative fitness across epochs for continuous Feed Forward
NN-based mechanism under no-noise condition.

In both cases, with and without noise, H = 10 outperforms the others, reaching

even higher values in the noisy setting. It is followed by H = 8 and H = 6 variants,

which perform almost identically and consistently rank just below the best, in the

noiseless case. While under noisy conditions, H = 12 takes the second position,
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Figure 3.6: Mean cumulative fitness across epochs for continuous Feed Forward
NN-based mechanism under noise condition.

overtaking both H = 6 and H = 8. Despite this result, H = 12 exhibits an

average-to-low performance in the noiseless case.

When there is no noise, H = 2 starts slower but narrows the gap by the end of

the run, approaching the performance of H = 6 and H = 8, though the separation

between these curves is more visible between epochs 200 and 250. In the noisy

case, H = 2 is in the middle performing groups with H = 4, H = 6, and H = 8,

which all perform very similarly.

The H = 0 (no hidden layer) case remains the worst-performing overall, sig-

nificantly behind when running either with or without noise.

Final Fitness Sum Distribution The distribution of final cumulative fitness

for the Feed-Forward NN with various hidden layer sizes is depicted in Figure 3.7

and Figure 3.8.

The version with H = 10 hidden units achieves the highest median fitness,

under both noiseless and noisy conditions. In the latter case, its performance

improves, showing a higher median and a tighter IQR and whiskers, indicating

better stability.

H = 6 conquers second place when run without noise, achieving a slightly lower

median than the best one, but a more compact box plot spread, suggesting a more

consistent behavior. Under noisy conditions, H = 12 exhibits the second-highest

median fitness, while H = 6 follows closely with a marginally lower median but a
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broader IQR and overall distribution. In the opposite scenario, H = 12 retains a

relatively low median and a wide spread.

Other configurations, H = 2, H = 4, and H = 8, showcase similar achieve-

ments in both settings, while H = 0 once again performs the worst, characterized

by the lowest median.

Figure 3.7: Distribution of total fitness across replicas under no-noise condition
(Feed Forward NN-based mechanism).

Figure 3.8: Distribution of total fitness across replicas under noise condition (Feed
Forward NN-based mechanism).

Maximum Fitness Distribution Figure 3.9 and Figure 3.10 illustrate the dis-

tribution of maximum fitness values across replicas for each H configuration.

In the noiseless setting, the controller with H = 6 hidden units slightly out-

performs all other configurations, closely followed by H = 2, which also has the
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smallest IQR, and H = 10. In this setting, the worst-performing variants are

H = 4 and H = 12, as evidenced by their lower medians and broader spreads,

reflecting both reduced peak performance and greater variability.

Under noisy conditions, the H = 10 configuration emerges as the top per-

former, with the highest median maximum fitness and a compact box plot spread,

suggesting both robustness and high peak capability. H = 6, H = 8, and H = 12

share the second spot with similar median values. Among them, H = 6 has the

narrowest IQR, reinforcing its stability, whereas H = 8 exhibits one of the widest

ones, indicating more erratic behavior. In this case, H = 0, H = 2, and H = 4

present the lowest medians.

Figure 3.9: Distribution of maximum fitness across replicas under no-noise condi-
tion (Feed Forward NN-based mechanism).

Figure 3.10: Distribution of maximum fitness across replicas under noise condition
(Feed Forward NN-based mechanism).
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Cumulative % of Successful Replicas The last metric used provides insights

on the cumulative % of replicas that surpass a certain fitness value threshold, as

can be observed in Figure 3.5 and Figure 3.6.

Figure 3.11: Cumulative percentage of successful replicas over time under no-noise
condition (Feed Forward NN-based mechanism).

Figure 3.12: Cumulative percentage of successful replicas over time under noise
condition (Feed Forward NN-based mechanism).

In the noiseless condition, the configuration with H = 4 is the first to reach

100% successful replicas, well before the others. H = 0, H = 2, H = 8, H = 10,

and H = 12 all reach 100% around one third of total epochs. The slowest to

reach full success is H = 6, despite beginning with the highest initial percentage.

Interestingly, while H = 10 is not the earliest to saturate, it shows the steepest

curve in the earliest epochs, indicating fast initial adaptation.
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In the noisy condition, the H = 2 controller is the first to reach 100% successful

replicas, closely followed by H = 10. Most other configurations (H = 0, H = 4,

H = 8, and H = 12) behave similarly, reaching full success before one-third of the

execution epochs. The H = 6 configuration, which had the slowest convergence

even in the noiseless case, again falls behind all others, only reaching full success

during the last third of the epochs. In the very early epochs, the steepest initial

gains are observed for H = 4, H = 8, and H = 12, indicating rapid initial growth,

with H = 12 also starting with the highest percentage of replicas above threshold.

46 CHAPTER 3. NNS



3.2. RECURRENT NEURAL NETWORK

3.2 Recurrent Neural Network

This mechanism extends the architecture of the Feed-Forward Neural Network by

incorporating a memory component into the network. The main idea remains

unchanged: the robot must explore the environment and, over successive epochs,

optimize its behavior to avoid obstacles. However, while in the feed-forward ap-

proach each decision depends solely on current sensor readings, in the recurrent

mechanism each neuron also integrates past internal states. The core algorithm is

described in Pseudocode 9.

Algorithm 9: Online adaptation for Recurrent NN mechanism

1 θ ← vector of PARAMS random real-valued weights ∈ [−1, 1]
2 best θ ← θ
3 best fitness ← −∞
4 prev hidden ← H real-valued units initialized to 0
5 prev output ← 2 real-valued units initialized to 0
6 for epoch in 1 to MAX EPOCHS do
7 fitness accum ← 0
8 for step in 1 to MOVE STEPS do
9 sense environment → (sL, sR)

10 (outL, outR)← RNN forward(sL, sR, θ, prev hidden, prev output)
11 set motor speeds using output
12 fitness accum ← fitness accum + evaluate performance()

13 end
14 avg fitness ← fitness accum / MOVE STEPS

15 if avg fitness > best fitness then
16 best θ ← θ
17 best fitness ← avg fitness

18 end
19 else
20 θ ← mutate(θ)
21 end

22 end

For each epoch, the robot’s behavior is based on a fixed configuration θ, which

encodes the neural network’s weights and biases. During each step of an epoch,

sensor readings are processed by the function described in Algorithm 10, which

computes the motor outputs based on the current configuration θ. When no hidden
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layer is present, recurrence is handled directly through feedback from the previous

output values. When a hidden layer is included, recurrent connections are applied

to hidden activations, which then influence the final output computation.

Algorithm 10: RNN forward: Recurrent Neural Network activation with
memory

1 Function RNN forward(sL, sR):
2 if H = 0 then
3 zL ← wL1 · sL + wL2 · sR + bL + αL · prev output[1]
4 zR ← wR1 · sL + wR2 · sR + bR + αR · prev output[2]
5 outL← sigmoid(zL)
6 outR← sigmoid(zR)
7 prev output ← (outL, outR)

8 end
9 else

10 foreach hidden neuron j = 1 to H do
11 if j is odd then
12 j̄ ← j + 1
13 else
14 j̄ ← j − 1
15 end
16 z ← wjL · sL + wjR · sR + bj
17 +αself · prev hidden[j] + αcross · prev hidden[j̄]
18 hj ← sigmoid(z)

19 end
20 zL ←

∑
j wLj · hj + bL

21 zR ←
∑

j wRj · hj + bR
22 outL← sigmoid(zL)
23 outR← sigmoid(zR)
24 prev hidden ← (h1, h2, . . . , hH)
25 prev output ← (outL, outR)

26 end
27 return (outL, outR)

A behavior (resulting from a configuration θ) is used and evaluated through-

out an entire epoch; at each step, its produced fitness is calculated using the same

function used for the previous mechanisms (see 2). The fitness values are accumu-

lated and then checked at the end of the epoch; if the configuration θ has led to
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better performance than the current best, it is stored as the new best. Otherwise,

a single parameter is perturbed via the same mutation strategy adopted for the

Feed-Forward NN, explained in Algorithm 7.

The structure of the network and the way the parameters are interpreted differ

depending on whether we include a hidden layer or not:

• No hidden layer (H = 0): in the architecture, illustrated in Figure 3.13,

each output receives weighted input from both proximity sensors, plus a bias

term and a recurrent loop from its own previous output (obtained in the

preceding step). In this case, the total number of used parameters is:

PARAMS = I ·O +O +O

where I = 2 inputs (left/right sensor), O = 2 outputs (left/right wheels).

The first O terms represent the input-to-output weights, the next O are

output biases, and the final O are the recurrent self-loop weights for each

output neuron (denoted as αL, αR).

• With hidden layer (H > 0): the network, illustrated in Figure 3.14,

includes H hidden neurons, and recurrence is applied at the hidden layer.

Each hidden neuron receives input from both sensors, a bias, a recurrent

self-loop, and a cross-loop from a paired hidden neuron j̄. The total number

of parameters in this case is:

PARAM COUNT = I ·H +H +H · 2 +H ·O +O

Where the terms respectively account for: input-to-hidden weights, hidden

biases, loop and cross-loop recurrent weights per hidden neuron, hidden-to-

output weights, and output biases. Each hidden neuron has two recurrent

terms: one self-loop (αjj), and one cross-loop from a paired neuron (αjj̄),

where:

j̄ =

j + 1, if j is odd

j − 1, if j is even
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...
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L sensor R sensor
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Figure 3.13: Schematic representation of the RNN architecture with no hidden
layer. Each wheel is controlled by a single output neuron receiving input from
both proximity sensors, a bias term, and a recurrent self-loop contribution from
its previous output (αL ·out(t−1)

L for the left wheel, αR ·out(t−1)
R for the right wheel).

...

L wheel R wheel

L sensor R sensor

 σ(Σj wLj·hj + bL)  σ(Σj wRj·hj + bR) 

h1 hH
 hj = σ(wjL·sL + wjR·sR + bj+ αjj ·hj

(t-1) + αjȷ̄ ·hȷ̄
(t-1))
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 σ(wL1·sL + wL2·sR + bL + αL·outL
(t-1))  σ(wR1·sL + wR2·sL + bR + αR·outR

(t-1))
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Figure 3.14: Schematic representation of the general RNN architecture with a
hidden layer. Each hidden neuron hj receives weighted input from both sensors, a

bias term bj, a recurrent self-connection (αjj · h(t−1)
j ), and a cross-connection from

a paired hidden unit (αjj̄ · h
(t−1)

j̄
). j̄ denotes the partner neuron of j.
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Similarly to previously mentioned cases, this mechanism was tested in the same

arena (see Figure 2.4), using different hidden layer (H) sizes. For each hidden

layer size tested, a total of 60 independent runs were executed; half of these added

uniform additive noise (±0.01) to proximity sensors and wheel actuators. For each

epoch of each run, we saved the epoch number with the corresponding fitness value

produced. The acquired data was examined using the same suite of metrics as the

Feed Forward NN.

Average Fitness Over Time Figure 3.15 and Figure 3.16 show the evolution

of average fitness for different hidden layer sizes H, in both noiseless and noisy

conditions.

Figure 3.15: Evolution of average fitness across epochs for Recurrent NN-based
mechanism under no-noise condition, with different hidden layer sizes.

In both scenarios, the network without a hidden layer (H = 0) underperforms

compared to all other configurations; its average fitness consistently falls below

the others and exhibits high instability.

Among all other variants with H > 0, performance is similar both in noiseless

and noisy conditions. In the first setting, H = 6 reaches the highest values on the

last epochs, while maintaining relatively high values throughout the run. Other

hidden layer sizes also perform well and achieve high values (e.g., H = 10, H = 12),

but they show more instability. When noise is introduced, the distinction between

architectures becomes less sharp. In the second half of the epochs, all versions

except H = 0 tend to converge toward similar average fitness ranges, with the
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Figure 3.16: Evolution of average fitness across epochs for Recurrent NN-based
mechanism under noise condition, with different hidden layer sizes.

highest peaks obtained by H = 10 and H = 12. Although H = 6 also performs

well, it suffers a drop in the final epochs, while H = 12 maintains a more stable

trend overall.

Compared to the feed-forward network, the recurrent architecture appears

slightly more resilient to noise and maintains a tighter grouping of fitness across

hidden sizes. Moreover, while the feed-forward NN favored larger hidden layers

(with H = 10 dominating, see Section 3.1), the RNN performs well even with

smaller hidden sizes, such as H = 6.

Mean Cumulative Fitness From Figure 3.17 and Figure 3.18, we can observe

the evolution of cumulative fitness across epochs for each network size under both

noiseless and noisy conditions.

Once again, H = 0 has the worst performance, consistently accumulating the

least fitness over time, regardless of noise condition. In the noiseless setting, H = 6

achieves the best cumulative performance, clearly dominating all other curves after

one third of the epochs. It is closely followed byH = 2,H = 10, andH = 12, which

perform almost identically. In the presence of noise, the network with H = 12

surpasses all others from the beginning, consistently accumulating the highest total

fitness throughout the run. It is followed by a dense group composed of H = 4,

H = 6, H = 8, and H = 10, which all perform comparably, with overlapping

curves. H = 2 joins H = 0 in the lowest performing group, falling behind all other
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configurations after ≈ one-fourth of epochs.

Compared to the Feed-Forward NN (see Section 3.1), the recurrent version de-

livers a more robust and tighter distribution of performance across hidden layer

sizes. In both networks, the inclusion of hidden units substantially improves cu-

mulative performance, with the highest cumulative fitness values being ≈ 120.

Figure 3.17: Mean cumulative fitness across epochs for continuous Recurrent NN-
based mechanism under no-noise condition.

Figure 3.18: Mean cumulative fitness across epochs for continuous Recurrent NN-
based mechanism under noise condition.

Final Fitness Sum Distribution Figure 3.19 and Figure 3.20 illustrate the

distribution of total fitness values accumulated across all epochs for each hidden

layer size in the recurrent NN.
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Figure 3.19: Distribution of total fitness across replicas under no-noise condition
(Recurrent NN-based mechanism).

Figure 3.20: Distribution of total fitness across replicas under noise condition
(Recurrent NN-based mechanism).

In the noiseless scenario, the configuration with H = 6 hidden units emerges

as the best-performing variant, achieving the highest median value and a compact

box plot spread. While H = 10 and H = 12 reach similarly high medians, their

spreads are wider, especially in the lower whiskers, suggesting more instability in

outcomes.

Under noise, both H = 6 and H = 12 tie for the highest median fitness, with

similar box shapes, indicating robust behavior even under perturbation. Their

medians are closely followed by H = 10, though H = 10 now exhibits the widest

IQR of all, suggesting inconsistent results.

As in previous evaluations, the H = 0 variant performs the worst overall, with

the lowest median fitness and a tight but lower distribution spread.
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Maximum Fitness Distribution The distribution of the maximum fitness val-

ues obtained from the Recurrent NN is shown in Figure 3.21 and Figure 3.22.

Figure 3.21: Distribution of maximum fitness across replicas under no-noise con-
dition (Recurrent NN-based mechanism).

Figure 3.22: Distribution of maximum fitness across replicas under noise condition
(Recurrent NN-based mechanism).

In the noiseless setting, the H = 6 controller emerges as the top performer,

achieving the highest median maximum fitness. Surprisingly, H = 0 and H = 12

achieve the second-best median and tighter IQRs. However, H = 12 also presents

the widest whiskers, indicating a broader variance in peak performance across runs.

In this case, the lowest median was obtained by H = 8.

When tested with noise, H = 0 interestingly reaches the highest median along-

side H = 12. Both maintain relatively tight inter-quartile ranges, even if H = 0

presents a very wide upper whisker. H = 10 secures both the second-highest me-
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dian and the smallest IQR and whiskers among all, indicating excellent robustness

even with noise disturbance. The lowest median values are brought by H = 2 and

H = 6.

Cumulative % of Successful Replicas Figure 3.23 and Figure 3.24 show

the evolution of the cumulative percentage of successful replicas, defined as those

reaching average fitness ≥ 0.4 over training epochs, for various hidden layer sizes

H, both in noiseless and noisy conditions.

Figure 3.23: Cumulative percentage of successful replicas over time under no-noise
condition (Recurrent NN-based mechanism).

Figure 3.24: Cumulative percentage of successful replicas over time under noise
condition (Recurrent NN-based mechanism).
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In the noiseless scenario, H = 4 is the first to record 100% successful replicas,

converging rapidly within the first one-sixth epochs. It is followed by H = 0 and

H = 2, which also reach complete success closely after. Interestingly, while H = 10

is the last to reach 100%, it starts with the highest initial success rate, surpassing

90% before the others. Meanwhile, H = 6, H = 8, and H = 12 exhibit similar

behaviors, all reaching full success midway.

In the noisy condition, the dynamics shift. The first configuration to reach

100% is H = 8, which demonstrates the steepest growth during the initial 50

epochs. It is shortly followed by H = 2, which once again shows strong per-

formance. The final configuration to converge is again H = 10, reaching 100%

around epoch 200, maintaining its trend of fast early learning but delayed full

success. Notably, H = 12 begins with the highest initial success rate. Overall, all

hidden-layer configurations except H = 10 show convergence within the first half

of the training run, demonstrating robustness even in noisy environments.

3.3 RNN variants

This section is dedicated to all the variants created and tested based on the RNN

mechanism discussed earlier.

While both feed-forward and recurrent architectures demonstrated compara-

ble performance trends across metrics, the Recurrent NN was selected for further

experimentation not only due to its architectural interest, but also because it con-

sistently achieved higher cumulative fitness, more stable maximum fitness across

replicas, and faster convergence to successful behaviors, even when in the presence

of noise. Accordingly, all subsequent experiments were conducted in the presence

of additive noise (±0.01), applied to both proximity sensor readings and wheel

actuators.

All further presented experiments were tested with a fixed layer size of H = 10.

H = 10 was chosen as a balanced compromise between robustness and early-stage

effectiveness. To carry out this choice, we only considered Cumulative Fitness

Sum distribution, Maximum Fitness distribution, and Cumulative % of successful

replicas ; prioritized in this order.

In the final fitness sum distribution box plot (see Figure 3.20), the top three

CHAPTER 3. NNS 57



3.3. RNN VARIANTS

configurations in terms of median performance are H = 12, H = 6, and H = 10.

In the maximum fitness distribution (Figure 3.22), H = 10 again exhibits strong

results. It records the third-highest median (just behind H = 0 and H = 12),

but it outperforms both in stability, presenting the tightest IQR and whiskers of

all configurations. Lastly, the cumulative percentage of successful replicas plot

(Figure 3.18) shows that H = 10 has the fastest growth in the very early stages,

being the first to surpass 90% of successful replicas. Although H = 6, H = 8,

and H = 12 eventually reach 100% before, the early dominance of H = 10 reflects

a strong initial learning curve, which can be valuable when adaptation speed is

critical. All these considerations make H = 10 a reliable, robust, and balanced

choice for the subsequent experiments.

3.3.1 Exploration VS Exploitation variants

In online adaptation, a mechanism must repeatedly decide whether to exploit the

current configuration θ or explore new ones through mutation. This decision is

known as the exploration–exploitation trade-off, a foundational dilemma in rein-

forcement learning and evolutionary strategies [SB18]. On one hand, exploitation

favors the best-known behavior to maximize short-term reward; on the other, ex-

ploration introduces random variation that may uncover better solutions in the

long term, especially in non-stationary settings or environments that aren’t fully

known. It’s crucial to find the right balance between the two: too much exploita-

tion risks premature convergence to suboptimal configurations, while excessive

exploration may prevent convergence altogether.

This section presents thirteen different RNN mechanisms variants, which aim to

further explore this trade-off in online learning. The structure of these mechanisms

follows a similar adaptation loop, described in the pseudocode at 11, however they

can be differentiated and grouped based on whether and how they incorporate

memory of past configurations, and how they balance exploration (i.e., mutating

the current configuration θ) with exploitation (i.e., retaining a previously effective

configuration).

In the first group of strategies, the system does not retain any memory of

previously used configurations. Still, its only available knowledge, at the end of
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Algorithm 11: Online adaptation loop for exploration–exploitation vari-
ants
1 θ ← random vector of neural weights
2 past θ ← either none, previous or all
3 for epoch in 1 to MAX EPOCHS do
4 fitness accum ← 0
5 for step in 1 to MOVE STEPS do
6 sense environment → (sL, sR)
7 (outL, outR)← RNN forward(sL, sR, θ)
8 set motor speeds from output
9 fitness accum ← fitness accum+ evaluate performance()

10 end
11 avg fitness ← fitness accum/MOVE STEPS

12 configuration adaptation(avg fitness, epoch)

13 end

each epoch, is the current fitness. Four sub-variants were implemented:

• No Memory 50–50: a random value p ∈ [0, 1] is drawn at the end of each

epoch. If p ∈ [0.5, 1], the system explores by mutating θ; if p ∈ [0, 0.5),

it exploits by retaining the current configuration, the only configuration it

knows.

• No Memory 10–90: if p ∈ [0.1, 1], the system explores; if p ∈ [0, 0.1), it

retains θ.

• No Memory 90–10: if p ∈ [0.9, 1], the system explores via mutation; if

p ∈ [0, 0.9), it keeps the current configuration.

• No Memory Epoch-Based: an exploration threshold

pexplore = 1− epoch

MAX EPOCHS
(3.1)

is computed dynamically. If p ∈ [0, pexplore], exploration is triggered; other-

wise (p ∈ (pexplore, 1]), the system exploits.

The logic of these variants is formalized in Algorithm 12.
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Algorithm 12: Exploration vs. Exploitation - no past configuration
memory

1 Function configuration adaptation(avg fitness, epoch) :
2 p← random uniform value in [0, 1]
3 if variant is no memory 50–50 then
4 if p ≥ 0.5 then
5 θ ← mutate(θ)
6 end
7 else
8 retain current θ
9 end

10 else if variant is no memory 10–90 then
11 if p ≥ 0.1 then
12 θ ← mutate(θ)
13 end
14 else
15 retain current θ
16 end

17 else if variant is no memory 90–10 then
18 if p > 0.9 then
19 θ ← mutate(θ)
20 end
21 else
22 retain current θ
23 end

24 else if variant is no memory epoch-based then
25 pexplore ← 1− epoch

MAX EPOCHS

26 if p ≤ pexplore then
27 θ ← mutate(θ)
28 end
29 else
30 retain current θ
31 end

The second group of variants compares the current configuration to the one

used in the previous epoch. After computing average fitness, the system decides

either to mutate the current θ or exploit the fitter configuration between the two.

Again, four different sub-implementations are considered:
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• Prev vs Current 50–50: a random value p ∈ [0, 1] is sampled. If p ∈
[0, 0.5), the system exploits by retaining the fitter configuration between the

one used in the previous epoch and the current one. If p ∈ [0.5, 1], exploration

occurs via mutation of θ.

• Prev vs Current 10–90: if p ∈ [0, 0.1), the system selects the fitter of the

current and previous configurations; if p ∈ [0.1, 1], it mutates θ.

• Prev vs Current 90–10: if p ∈ [0, 0.9], the fitter of the two recent config-

urations is preserved; if p ∈ (0.9, 1], mutation is triggered.

• Prev vs Current Epoch-Based: an epoch-based exploration probabil-

ity is computed exactly as for the previously mentioned group (see Equa-

tion (3.1)). If p ∈ [0, pexplore], exploration is performed (mutation); otherwise

(p ∈ (pexplore, 1]), exploitation selects the best between current and previous

θ.

This family of mechanisms is described in Algorithm 13.

For the third group, rather than comparing only to the immediately previous

configuration, these strategies track and retain all previously evaluated configura-

tions, selecting the all-time best one (either the current θ or from any of the past

ones). Even in this case, we have four analogous sub-mechanisms:

• All vs Current 50–50: at the end of each epoch, a value p ∈ [0, 1] is

sampled. If p ∈ [0, 0.5), the best configuration is selected between the current

one and the best seen so far across all epochs (exploitation); if p ∈ [0.5, 1],

mutation is applied (exploration).

• All vs Current 10–90: if p ∈ [0, 0.1), exploitation occurs by reusing the

best configuration overall; otherwise (p ∈ [0.1, 1]), the system explores via

mutation.

• All vs Current 90–10: with p ∈ [0, 0.9], the algorithm exploits by us-

ing the best-so-far configuration; if p ∈ (0.9, 1], exploration via mutation is

performed.
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Algorithm 13: Exploitation vs Exploration - previous fitness memory

1 Function configuration adaptation(avg fitness, prev fitness,

epoch) :
2 p← random uniform in [0, 1]
3 if variant is prev vs current 50–50 then
4 if p < 0.5 then
5 Use the fitter of the current (epoch e) or previous (epoch e-1)

configuration.
6 end
7 else
8 θ ← mutate(θ)
9 end

10 else if variant is prev vs current 10–90 then
11 if p < 0.1 then
12 ... same logic as above ...
13 end
14 else
15 θ ← mutate(θ)
16 end

17 else if variant is prev vs current 90–10 then
18 if p ≤ 0.9 then
19 ... same logic as above ...
20 end
21 else
22 θ ← mutate(θ)
23 end

24 else if variant is prev vs current epoch-based then
25 pexplore ← 1− epoch

MAX EPOCHS

26 if p ≤ pexplore then
27 θ ← mutate(θ)
28 end
29 else
30 Use the fitter of the current (epoch e) or previous (epoch e-1)

configuration.
31 end

• All vs Current Epoch-Based: the exploration probability is computed

using the formula in Equation (3.1)). If p ∈ [0, pexplore], the current configu-

ration is mutated; otherwise (p ∈ (pexplore, 1]), the best among all past and
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current configurations is selected for the next epoch.

All approaches from the third group are formally described in Algorithm 14.

Algorithm 14: Configuration adaptation - full memory

1 Function configuration adaptation(avg fitness, epoch) :
2 p← random uniform in [0, 1]
3 best so far ← configuration with highest fitness seen so far
4 if variant is all vs current 50–50 then
5 if p < 0.5 then
6 Use the fitter of the current or best-so-far configuration.
7 end
8 else
9 θ ← mutate(θ)

10 end

11 else if variant is all vs current 10–90 then
12 if p < 0.1 then
13 ... same logic as above ...
14 end
15 else
16 θ ← mutate(θ)
17 end

18 else if variant is all vs current 90–10 then
19 if p ≤ 0.9 then
20 ... same logic as above ...
21 end
22 else
23 θ ← mutate(θ)
24 end

25 else if variant is all vs current epoch-based then
26 pexplore ← 1− epoch

MAX EPOCHS

27 if p ≤ pexplore then
28 θ ← mutate(θ)
29 end
30 else
31 Use the fitter of the current or best-so-far configuration.
32 end

Lastly, in this final mechanism, the exploration probability is dynamically

adapted based on both epoch progression and the variance in recent fitness perfor-
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mance. A sliding window of the last W average fitness values is maintained and

used to compute a variance score v. If variance is low, possibly indicating stag-

nation, exploration is boosted by an additional factor scaled to the current epoch.

Additionally, regardless of variance, if a performance drop is detected from the

previous epoch to the current epoch, exploration probability is slightly increased.

The resulting exploration probability pe determines whether to mutate θ or reuse

the better of the current and previous. This behavior is detailed in Algorithm 15.
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Algorithm 15: Fitness Variance–Driven exploration vs exploitation

1 θ ← random vector of neural weights

2 fitness history ← empty window of size WINDOW SIZE

3 for epoch in 1 to MAX EPOCHS do

4 fitness accum ← 0

5 for step in 1 to MOVE STEPS do

6 sense environment → (sL, sR)

7 (outL, outR)← RNN forward(sL, sR, θ)

8 set motor speeds from output

9 fitness accum + = evaluate performance()

10 end

11 avg fitness ← fitness accum/MOVE STEPS

12 update fitness history with avg fitness

13 compute variance v over fitness history

14 pe ← BASE EXPLORATION

15 if v < VARIANCE THRESHOLD then

16 pe ← pe + (1− epoch

MAX EPOCHS
) · ADDITIONAL EXPLORATION

17 end

18 if avg fitness ¡ prev fitness then

19 pe ← pe + DROP BONUS

20 end

21 p← random value in [0, 1]

22 if p ≤ pe then

23 mutate θ

24 end

25 else

26 Use the fitter of the current or previous configuration.

27 end

28 prev fitness ← avg fitness

29 end

This time, considering the number of total mechanisms to evaluate, each vari-

ant was tested and evaluated on 10 independent runs, using the same arena (see
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Figure 2.4). As previously explained, all executions are set to have a fixed hidden

layer size of H = 10, and uniform additive noise (±0.01) for proximity sensors and

wheel actuators.

Final Fitness Sum Distribution Figure 3.25 illustrates the distribution of

total fitness values accumulated over all epochs for each of the thirteen adaptation

mechanisms explained above.

Figure 3.25: Distribution of total fitness across replicas (RNN Exploration VS
Exploitation variants).

Among the memory-less variants, the 90–10 strategy stands out as the best-

performing configuration, exhibiting the highest median and one of the narrowest

IQRs, which translates to robust and consistent performance. While its opposite,

the 10–90 variant, performs the worst, with the lowest median of the whole anal-

ysis, and a reasonably low whisker as well, indicating that excessive exploration

in the absence of memory can impair convergence and stability. The 50–50 and

epoch-based mechanisms lie in between: both achieve moderate and very similar

medians, but the added stochasticity from their higher exploration rates leads to

higher variability across runs, resulting in the second largest box plot spread.

In the -1 memory group, retaining the precedent configuration, the 10–90 vari-

ant achieves the highest median among all configurations in this category, with

a tight IQR and only a single mild outlier; aggressive exploration results prove
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effective when paired with short-term memory. In contrast, the 90–10 variant

underperforms significantly, showcasing the lowest median and widest IQR of all

thirteen, possibly due to being stuck in suboptimal behaviors due to insufficient

exploration. The balanced (50–50) approach yields average results, with a median

similar to that of the memory-less 50− 50. Lastly, for this group, the epoch-based

variant delivers a slightly lower median than the best of this group while presenting

a smaller IQR and whiskers, offering a good compromise.

Regarding the third group (where the current configuration is tested against

the best overall), the performances of these variants are similar to each other.

The epoch-based mechanism is the clear winner overall; it obtains the highest

median and the tightest spread across all other box plots. This demonstrates

how combining stronger initial exploration with final exploitation of all-time bests

is highly effective. The 90–10 variant also performs well, achieving a similarly

high median and a quite narrow IQR. Despite the opposite 10–90 strategy being

the worst in this group, it is still not among the worst overall. The fixed 50–50

variant concludes this group; it is again a middle-ground option, offering decent

performance but not matching the stability or effectiveness of its epoch-based and

90–10 counterparts.

Ultimately, the fitness variance-based adaptation strategy yields an average

performance. Its median isn’t among the highest, but it remains competitively

high. However, the IQR is moderately wide, and it does present the lowest outlier,

suggesting high variability in outcomes.

Maximum Fitness Distribution The distribution of maximum fitness values

is reported in Figure 3.26.

In the memory-less group, the 90–10 variant once again demonstrates strong

performance, attaining the highest median in its group and one of the tightest

IQRs overall. Its success suggests that, as a good solution is discovered, intense

exploitation can deliver great results, even without past configuration memory. By

contrast, the worst of this group and one of the worst overall is 10–90. Its median

and upper bound are both limited, while the spread is relatively wider compared

to many others in this analysis. The 50–50 strategy achieves a higher median and

tighter IQR, showcasing better reliability. Meanwhile, the epoch-based variant
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median is in between 50 − 50 and 10 − 90. However, it has a noticeably broader

distribution.

Figure 3.26: Distribution of maximum fitness across replicas (RNN Exploration
VS Exploitation variants).

In the second group (short-memory), the 10–90 and epoch-based variants are

among the strongest performers across all mechanisms, both achieving high medi-

ans and tight IQRs. Precisely, the epoch-based strategy slightly surpasses 10–90

in median. In contrast, the 90–10 variant exhibits very high variance, presenting

the widest spread and a significantly low outlier too. Yet, the worst median value

of all is achieved by the 50–50 strategy.

When considering all past configurations, the epoch-based variant dominates,

achieving the highest median of all, confirming the advantage of combining full

memory with decreasing exploration. Both the 90–10 and 10–90 variants follow

closely; they have similar high medians, and while the second one shows a wider

spread, the first one presents some outliers, bringing them to a tie. The 50–50

mechanism shows the least performing results within the group, but achieves an

average overall performance.

The fitness variance-based mechanism had a moderate median, even if it does

not achieve the absolute best fitness values. It stands out for its tight IQR, but a

relatively low outlier suggests instability in outcomes.
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Cumulative % of Successful Replicas As the final metric, Figure 3.27 tracks

the cumulative number of replicas that reached a fitness score of at least 0.4

throughout training.

Figure 3.27: Cumulative percentage of successful replicas (RNN Exploration VS
Exploitation variants).

During the early epochs, most variants display similar trends, with a steady

increase in successful replicas. However, they diverge in long-term performance.

The all vs current 90–10 and no memory 90–10 variants are the first to reach 100%

success. Interestingly, these two strategies represent opposite memory usages;

full memory and no memory both benefit from strong exploitation. The prev vs

current 90–10 and fitness variance-based strategies lag significantly behind, never

achieving full success. While the first one mirrors its poor performance observed

in the previous metrics, the second case is more unexpected, having demonstrated

consistent behavior in previous metrics. Most remaining strategies all achieve full

success with slight differences in convergence timing.

To conclude, across all evaluation metrics used for this analysis, we can observe

a few consistent patterns emerging.

First, epoch-based exploration, particularly when combined with memory, con-

sistently led to satisfactory performance.

Second, extreme exploration (as in the 10–90 configurations) proves effective

only when supported by memory. The prev vs current 10–90 variant, for instance,
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reaches high peak fitness and exhibits tight distributions. While the same explo-

ration rate without memory, as in no memory 10–90, results in lower performance.

Third, extreme exploitation (90–10) yields mixed results. The all vs current

90–10 is one to achieve full convergence earliest. However, other 90–10 strategies,

especially prev vs current 90–10, suffer from poor overall performance and incon-

sistency. Excessive exploitation can be effective either through fortunate early

discoveries or when paired with full past memory.

Overall, the most robust and reliable adaptation strategies are those that in-

tegrate memory (either of the previous or all past configurations) with a decaying

exploration rate over epochs.

The fitness variance-based mechanism, while not among the worst performers,

fails to match the top ones. Its adaptive logic offers potential. Still, it may

require more finely tuned thresholds or dynamic ranges to compete with the best-

performing approaches.

3.3.2 Multi-Armed Bandit variants

The following variants presented in this section are inspired by the algorithms pre-

sented in theMulti-Armed Bandits chapter from the book Reinforcement Learning:

An Introduction by Richard Sutton and Andrew Barto [SB18]. In Multi-Armed

Bandit problems, a learner repeatedly selects from a set of actions (or arms) and

receives feedback. The reward distribution of each arm is unknown, and the goal

is to maximize the cumulative reward over time by balancing between exploita-

tion (selecting the best-known arm) and exploration (trying others to gather more

information). These methods are particularly suited for this study, where robot

controllers must continuously update and select among neural network configura-

tions θ in real time. In this setting, instead of assuming full access to state–action

mappings, the problem is reduced to choosing which configuration to reuse (ex-

ploitation) or mutate (exploration), similar to selecting among arms that deliver

noisy, stochastic rewards.

Three main mechanisms were derived from the book chapter [SB18] and adapted

for this setting, the first one being ε-greedy action selection. In this approach, an

agent repeatedly selects among discrete actions, or arms, by either exploiting the
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currently best-known action or exploring alternatives. In our implementation (for-

mally described in Algorithm 17), each action corresponds to a neural network

configuration, θ.

The core functioning is similar to previous mechanisms; at each epoch, the

current configuration (θi) is translated into robot motion behavior and used for a

fixed number of steps. The cumulative fitness obtained across these steps is used

to compute an average reward (fitness) for that epoch. Then, the value estimate

Q[i] for the active configuration θi is updated using the standard sample average

formula [SB18]:

Q[i]← Q[i] +
r −Q[i]

N [i]
(3.2)

where r is the reward (the observed average fitness for the epoch), and N [i] is

the number of times configuration i has been used so far. After updating the Q

value for the current configuration, the algorithm decides whether to exploit the

best configuration seen so far (i.e., the one with the highest Q) or to explore by

generating a new configuration through mutation. The same mutation strategy

seen for other RNN variants is applied here as well (see Algorithm 7). This decision

is driven by a random value p ∈ [0, 1] and an exploration probability ϵ. With

probability ϵ, exploration is triggered; otherwise, the configuration with the highest

current estimate is reused, as dictated by the original ϵ-greedy policy:

• With probability 1− ε, select θj where j = argmaxk Q[k] (exploitation).

• With probability ε, create θi+1 ← mutate(θi) (exploration).

Starting from the baseline algorithm, two sub-variants were implemented, con-

cerning the usage of ϵ. One is the standard ϵ-greedy policy, with a fixed ϵ value,

held throughout the run. This was tested with values of ϵ ∈ {0.1, 0.5, 0.9} to ob-

serve the impact of different levels of exploration. The second sub-variant adapts

the ϵ value, and consequently the exploration rate, in the [0.1, 0.9] range based on

the current epoch:

ε(epoch) = max(0.1, 0.9− 0.8 · epoch

MAX EPOCHS
) (3.3)

This ensures stronger early exploration, gradually shifting toward heavier exploita-
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tion at the end of a run.

The second main variant group takes from the classical ε-greedy selection strat-

egy but replaces the sample-average update rule with an incremental update that

uses a constant step-size parameter α, as described in Reinforcement Learning: An

Introduction [SB18]. This variation is particularly indicated for nonstationary en-

vironments, where the reward distribution associated with each arm (in this case,

each configuration θ) may change over time.

Instead of computing the mean of all observed rewards for a configuration

θi, the value estimate Q[i] is updated using the exponentially weighted moving

average:

Q[i]← Q[i] + α · (r −Q[i]) (3.4)

where r is the observed reward (average fitness) for the current epoch, and α is

a fixed learning rate. This rule assigns greater weight to recent observations, en-

abling the algorithm to adapt more quickly to changes in performance. In practice,

it improves responsiveness at the cost of increased variance.

As in the standard ϵ-greedy formulation, the decision to explore or exploit is

governed by the probability ϵ:

• With probability ε, the system explores by mutating the current configura-

tion θi to produce a new one.

• With probability 1− ε, it exploits by selecting the configuration θj with the

highest Q[j].

Even for this mechanism, two different sub-variants were considered, described

in Algorithm 18. Similarly to the standard ϵ-greedy variants, in the first one ϵ is

fixed for the whole run, and three different exploration rates were tested (0.1, 0.5,

and 0.9). As one can imagine, the second sub-variant focuses on adapting the ϵ

value: the exploration rate is reduced linearly over time following the same decay

schedule defined in Equation (3.3). In both cases, regardless of ϵ, the mechanisms

were run and evaluated with two different α values: 0.1 and 0.2.

The third and last Multi-Armed Bandit mechanism explored is the gradient

bandit method, which differs essentially from the other two methods seen before.

Instead of estimating expected rewards directly for each configuration, this ap-
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proach maintains a preference value H[i] for each arm, which is updated using the

gradient of expected reward relative to H[i].

In this case, action selection is very diverse and is performed probabilistically

via a softmax distribution over preferences H:

πi =
eH[i]∑
k e

H[k]
(3.5)

with πi representing the probability of selecting configuration i at a given epoch.

This stochastic policy favors configurations with higher preferences, but still as-

signs non-zero probability to all others, enabling continual and varied exploration.

After each epoch, preferences are updated to move in the direction of the

gradient of the expected reward calculated over H. The update rule is given by:

H[i]← H[i] + α · (r −B) · (1− πi) for the selected i (3.6)

H[k]← H[k]− α · (r −B) · πk for all k ̸= i (3.7)

where r is the observed average fitness (reward), B is a running baseline reward

(the average of previous rewards), and α is the learning rate controlling the mag-

nitude of preference updates. At each epoch, a configuration is sampled stochas-

tically according to its softmax probability πi (see Equation (3.5)), which biases

selection toward those with higher preferences. The selected configuration is then

reused directly if already existing, or mutated into a new configuration if it has

not been instantiated before, following the same mutation algorithm as before (see

Pseudocode 7). Over time, configurations that yield rewards higher than the base-

line are favored, meaning their preference is higher, whereas the preferences for

poorly performing configurations are reduced. This implicitly drives the system to

concentrate probability mass around effective configurations, while still preserving

stochasticity.

This mechanism was run and tested with three values of α: 0.05, 0.1, and 0.2.

The whole adaptation mechanism is shown in Algorithm 16.

As for the Exploration vs. Exploitation case (Section 3.3.1), each of these

variants was tested and evaluated on 10 independent runs, using the same arena

(see Figure 2.4), with a fixed hidden layer size of H = 10 for the NNs, and uniform
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Algorithm 16: Online adaptation based on gradient bandit

1 H ← array of preferences initialized to 0
2 B ← 0 // running baseline average reward

3 θi ← randomly initialized configuration

4 for epoch in 1 to MAX EPOCHS do
5 fitness accum ← 0
6 for step in 1 to MOVE STEPS do
7 sense environment → (sL, sR)
8 (outL, outR)← RNN forward

9 set motor speeds using outputs
10 fitness accum← fitness accum+ evaluate performance()

11 end
12 avg fitness ← fitness accum/MOVE STEPS

13 B ← B+ avg fitness−B

epoch+1

14 compute softmax probabilities πi ← eH[i]∑
k eH[k]

15 foreach configuration k do
16 if k = i then
17 H[k]← H[k] + α · (avg fitness−B) · (1− πk)
18 else
19 H[k]← H[k]− α · (avg fitness−B) · πk

20 end

21 end
22 sample configuration j according to πk

23 θi+1 ← mutated copy of θj (if new)

24 end

additive noise (±0.01) for proximity sensors and wheel actuators.

Final Fitness Sum Distribution Figure 3.29 presents the distribution of the

final sum of fitness for all the variants and cases tested.

Variants based on standard ϵ-greedy selection generally achieved strong perfor-

mance, with ϵ = 0.1 obtaining one of the highest median sums and tightest IQR,

indicating both excellent efficiency and stability. Larger ϵ values (0.5, 0.9) show

slightly more variability and lower medians, indicating that performance tends to

decline as exploration rate increases. Still, they all reach satisfying performances.

For ϵ-greedy with α, performance depends heavily on the learning rate. The

74 CHAPTER 3. NNS



3.3. RNN VARIANTS

combination α = 0.1, ϵ = 0.1 is the worst performer overall, with a low median,

very low outliers, and a significantly wider spread compared to others. Increasing

α to 0.2 slightly improves the median but also introduces substantial variance,

both with ϵ = 0.1 and ϵ = 0.9. Using an epoch-adaptive ϵ significantly helps both

α = 0.1 and α = 0.2 cases, with the latter outperforming all the others in terms

of median.

Gradient bandit methods show moderate to good total fitness depending on

the learning rate. While α = 0.05 and α = 0.1 have lower medians, α = 0.2 reaches

honorable total sums with good consistency.

Figure 3.28: Distribution of total fitness across replicas (Multi-Armed Bandit vari-
ants).

Maximum Fitness Distribution The distribution of the maximum fitness val-

ues obtained from the Multi-Armed Bandit variants is reported in Figure 3.22.

Standard ϵ-greedy selection variants again show great overall performance with

very high medians, high top and bottom whiskers, and minimal box plot spreads.

The decaying ϵ case median slightly outperforms the others, obtaining the highest

maximum fitness median value of all.

The α variants struggle more with maximum fitness, especially when paired

with an ϵ value of 0.1, bringing the lowest maxima and widest spread results.
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Higher values of ϵ or adaptive ϵ strategies clearly improve performance, with α =

0.2 adaptive ϵ reaching the highest values in this group, exhibiting particularly

good stability as well.

Gradient bandit strategies showcase average performance overall, with α = 0.2

performing best. Lower α values tend to exhibit some inconsistent outcomes,

possibly due to slower convergence.

Figure 3.29: Distribution of maximum fitness across replicas (Multi-Armed Bandit
variants).

Cumulative % of Successful Replicas Figure 3.30 shows the evolution of

the cumulative percentage of successful replicas, defined as those reaching average

fitness ≥ 0.4 over training epochs.

All standard ϵ-greedy variants reach 100% success, with ϵ = 0.1 being the

fastest. ϵ = 0.5 and ϵ = 0.9 reach complete success around epoch 70, while the

decaying-ϵ strategy was slower, but still converged fully in the first half of the total

epochs.

For the α variants, only a few managed full convergence: (α = 0.1, ϵ = 0.9),

(α = 0.2, ϵ = 0.5), and (α = 0.2, ϵ epoch-based). The worst case (α = 0.1,

ϵ = 0.1) only reached 50% success.

Gradient bandit strategies also yielded varied outcomes. The α = 0.05 and

α = 0.2 cases reached full success very early, in the first few epochs, while α = 0.1
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stagnated at around 75%, possibly due to some sensitivity to the choice of learning

rate.

Figure 3.30: Cumulative percentage of successful replicas (Multi-Armed Bandit
variants).

To conclude this analysis, among the Multi-Armed Bandit variants explored,

the most effective mechanisms, particularly in terms of the final fitness sum, were

those that incorporated a decaying exploration probability over time. The top

three performers were α = 0.2 + ϵ decaying with epochs, ϵ decaying with epochs,

and ϵ = 0.1, which consistently achieved high median values across all evaluation

metrics. In contrast, the worst-performing group was the ϵ-greedy with constant α

family. These methods are designed for nonstationary problems, but in this case,

the environment and the reward function (fitness) don’t change drastically across

epochs. The one interesting exception to the group is the α = 0.2 + decaying ϵ

variant, which benefits from high early exploration to diversify its configuration

pool and then reduces randomness in later epochs, stabilizing the effect of large α

updates. Thus, despite the Q-values being updated with a high α, having fewer

new random configurations limits instability. Similarly, α = 0.1+ decaying ϵ out-

performed its static-ϵ siblings but without ever overthrowing the top performers.
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Algorithm 17: Online adaptation - ϵ-greedy

1 Q, N ← arrays for value estimates and counts

2 θi ← randomly initialized configuration

3 Q[i] ← 0, N[i] ← 0

4 for epoch in 1 to MAX EPOCHS do

5 fitness accum ← 0

6 for step in 1 to MOVE STEPS do

7 sense environment → (sL, sR)

8 (outL, outR)← RNN forward(sL, sR, θi)

9 set motor speeds using outputs

10 fitness accum← fitness accum+ evaluate performance()

11 end

12 avg fitness ← fitness accum/MOVE STEPS

13 N[i]← N[i]+ 1 , Q[i]← Q[i]+ avg fitness−Q[i]

N[i]

14 p← random uniform in [0, 1]

15 if adaptive ϵ then

16 ϵ← max(0.1, 0.9− 0.8 · epoch

MAX EPOCHS
)

17 if p ≤ ϵ then

18 θi+1 ← mutate(θi) , Q[i+1] ← 0, N[i+1] ← 0

19 end

20 else

21 θi ← θj where j = argmaxk Q[k]

22 end

23 end

24 else

25 if (ϵ = 0.1 and p < 0.1) or (ϵ = 0.5 and p ≤ 0.5) or (ϵ = 0.9 and

p ≤ 0.9) then

// explore

26 else

// exploit

27 end

28 end

29 end
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Algorithm 18: Online adaptation - ϵ-greedy with α Q-value updates

1 Q ← array of estimated values for each configuration

2 θi ← randomly initialized configuration

3 Q[i] ← 0

4 for epoch in 1 to MAX EPOCHS do

5 fitness accum ← 0

6 for step in 1 to MOVE STEPS do

7 sense environment → (sL, sR)

8 (outL, outR)← RNN forward

9 set motor speeds using outputs

10 fitness accum← fitness accum+ evaluate performance()

11 end

12 avg fitness ← fitness accum/MOVE STEPS

13 Q[i] ← Q[i]+ α · (avg fitness− Q[i])

14 p← random uniform in [0, 1]

15 if adaptive ϵ then

16 ϵ← max(0.1, 0.9− 0.8 · epoch

MAX EPOCHS
)

17 if p ≤ ϵ then

18 θi+1 ← mutate(θi) , Q[i+1] ← 0

19 end

20 else

21 θi ← θj where j = argmaxk Q[k]

22 end

23 end

24 else

25 if (ϵ = 0.1 and p < 0.1) or (ϵ = 0.5 and p ≤ 0.5) or (ϵ = 0.9 and

p ≤ 0.9) then

// explore

26 else

// exploit

27 end

28 end

29 end
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3.4 Additional Experiments with Best Five

From all the previous RNN variants, we selected five based on the obtained results.

We used them to conduct further experiments, aiming to gain insights into their

robustness and adaptivity when multiple robots are involved or malfunctions may

occur.

The selected five are:

• the exploration vs. exploitation variant with −1 memory and epoch-based

exploration rate: previous VS current + exploration % based on epoch,

• the exploration vs. exploitation variant with full memory and epoch-based

exploration rate: all VS current + exploration % based on epoch,

• the multi-armed bandit variant with α value at 0.2 and ϵ value based on

epochs,

• the multi-armed bandit variant with ϵ value based on epochs,

• the multi-armed bandit variant with a fixed ϵ of 0.1.

3.4.1 Multiple Robots

The first type of experiment involves having multiple robots in the arena, either

using their own mechanisms or acting as wandering, moving obstacles. The pri-

mary goal is to assess how each mechanism performs in varied multi-agent settings

where other robots act as moving obstacles, potentially altering the difficulty and

dynamics of the obstacle avoidance task.

5 robots - 5 mechanisms

Five robots are placed simultaneously in the same arena (see Figure 2.4) and each

is assigned one of the five selected adaptive mechanisms listed earlier. At the

beginning of each run, robots are randomly positioned and oriented within the

environment, and no external synchronization or communication is used among

them.
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Each robot operates independently, maintaining its own online adaptation loop,

fitness computation, and internal data structures. Controllers evolve their behav-

ior through the same adaptation logic, configuration, and architecture used in

isolation.

This experiment was conducted through 10 independent runs, meaning that

for each variant, we collected data from 10 replicas where all mechanisms were

operating simultaneously. Each robot maintained separate data structures and

logging to collect and analyze data independently per mechanism. All mechanisms

had a fixed hidden layer size of H = 10, and uniform additive noise (±0.01) for

proximity sensors and wheel actuators.

By placing heterogeneous adaptive strategies in direct interaction, we aim to

evaluate their robustness, adaptability, and tolerance under shared environmental

constraints using a set of metrics equivalent to those previously employed.

Final Fitness Sum Distribution The distribution of final cumulative fitness

for each robot in the shared environment is depicted in Figure 3.31.

Figure 3.31: Distribution of total fitness across replicas (5 robots - 5 controllers
scenario).

All five mechanisms achieve relatively high total fitness scores, despite the

coexisting condition. Among them, the best performer is the decaying ϵ-greedy,
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which produces the highest median total fitness along with a tight IQR, indicating

great performance and consistency across replicas. This is followed by the all vs.

current + epoch-based exploration rate mechanism, which has the second-highest

median but also a considerably larger IQR, pointing to less stability. The ϵ = 0.1-

greedy variant’s performance is satisfying, having the smallest box plot spread and

the third-highest median. The worst one in this case is previous vs. current +

epoch-based, presenting the lowest median and the widest IQR, suggesting poorer

performance and less stability across runs.

Maximum Fitness Distribution Distribution of the maximum fitness values

is shown in Figure 3.32.

Figure 3.32: Distribution of maximum fitness across replicas (5 robots - 5 con-
trollers scenario).

All mechanisms produced peak fitness values within a similar range (around

0.45–0.5), with occasional outliers exceeding this range up to ≈ 0.6. The previous

vs. current + decaying exploration rate variant exhibits a median value close

to the others, but simultaneously displays the highest and lowest fitness values,

indicating high variance. By contrast, the decaying ϵ-greedy and ϵ = 0.1-greedy

strategies delivered the most stable performance, combining high median values

with compact IQR.
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Cumulative % of Successful Replicas Figure 3.30 shows the evolution of

the cumulative percentage of successful replicas, defined as those reaching average

fitness ≥ 0.4 over epochs.

Figure 3.33: Cumulative percentage of successful replicas (5 robots - 5 controllers
scenario).

In this case, all vs. current + epoch-based and decaying ϵ-greedy were the

earliest to reach 100% success, almost at the same time. Despite ϵ = 0.1-greedy

starting with the highest initial success rate, it only completed its convergence at

the end, after epoch 250. To conclude, α = 0.2 + decaying ϵ and previous vs.

current + epoch-based exploration failed to reach full success within the given time

frame, stabilizing below the other, both at ≈ 75%.

1 mechanism - wandering obstacles

In this second experiment, a single robot is placed in the arena (Figure 2.4) and

controlled by one of the five selected mechanisms. To simulate a dynamic and

unpredictable environment, four additional robots of the same kind are placed

as moving obstacles; they do not perform any learning or evaluation but instead

act as distractors. At each step, one of their two wheels is randomly chosen and

assigned a new velocity uniformly sampled from the [0, 10] range, simulating a

random walk.
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For each of the five mechanisms, we executed 10 independent runs, exploiting a

fixed hidden layer size of H = 10, and uniform additive noise (±0.01) for proximity

sensors and wheel actuators. The comparative analysis is based on the same

performance metrics adopted for the previous experiment.

Final Fitness Sum Distribution Figure 3.34 illustrates the distribution of

final cumulative fitness for each mechanism when encountering moving obstacles.

Figure 3.34: Distribution of total fitness across replicas (1 controller with wander-
ing obstacles scenarios).

All mechanisms exhibit relatively high total fitness scores in this setting, and

their medians are quite similar to each other. The fixed ϵ = 0.1-greedy variant

shows the highest median total fitness but the widest spread as well, characterized

by a wide IQR, low bottom-whisker, and the presence of an extremely low outlier.

The previous vs current + decaying exploration % mechanism ranks second in

terms of median and shows more consistent performance with a narrower IQR and

box plot spread. The decaying ϵ-greedy variant presents the third-best median,

as well as achieving very contained IQR and whiskers, resulting in the smallest

spread. Oppositely, all vs current + decaying exploration % and the α = 0.2 +

epoch-based ϵ yielded the lowest medians and broad IQRs.
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Maximum Fitness Distribution Figure 3.34 shows the distribution of the

maximum fitness values obtained by each mechanism during the runs.

Figure 3.35: Distribution of maximum fitness across replicas (1 controller with
wandering obstacles scenarios).

The highest maximum fitness values are observed in previous vs current +

epoch-based exploration and decaying ϵ-greedy, both of which also report the tight-

est IQRs and whiskers; the former slightly outperforms the latter in terms of me-

dian. All the other mechanisms exhibit satisfactory performance, showing more

variation, with their medians being below the two best but still close to them.

Among these, ϵ = 0.1-greedy displays the longest IQR and very low outliers.

Cumulative % of Successful Replicas The final metric focuses on the cumu-

lative percentage of successful replicas, shown in Figure 3.36.

The fastest convergence to 100% of successful replicas (fitness≥ 0.4) is achieved

by both previous vs current + epoch-based exploration and decaying ϵ-greedy almost

simultaneously and very early, with all replicas reaching the threshold within the

first 25 epochs. In contrast, both α = 0.2+ epoch-based ϵ and ε = 0.1-greedy never

reach full success rate during the simulation, even though the α = 0.2 variant seems

to be performing better than decaying ϵ-greedy, in the first few epochs. The all

vs current variant lags in the early epochs but manages to reach 100% in a short

amount of time, around epoch 80.
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Figure 3.36: Cumulative percentage of successful replicas (1 controller with wan-
dering obstacles scenarios).

1 mechanism with best configurations initialization - wandering obsta-

cles

As a final experiment for this section, we want to check how well each adaptation

mechanism can maintain performance when starting from a previously learned

optimal configuration. For each mechanism, 10 replicas of the single-robot static

environment case were analyzed to extract the highest-performing configuration

from each. These top configurations were then reused as initialization points for

new simulations under dynamic conditions, where one of the five best mechanisms

is assigned to a robot, and the other four robots act as wandering, moving obstacles.

For each of the five mechanisms, we executed 10 independent runs (so that each

of the 10 best configurations found can be exploited and observed exactly once),

setting a fixed hidden layer size of H = 10, and uniform additive noise (±0.01) for
proximity sensors and wheel actuators. The comparative analysis is based on the

same performance metrics adopted for the previous experiment.

Final Fitness Sum Distribution Figure 3.37 illustrates the distribution of

final cumulative fitness for each mechanism when dealing with moving obstacles

and initialized with a previously identified optimal configuration.
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Figure 3.37: Distribution of total fitness across replicas (1 controller starting with
best configurations with wandering obstacles scenario).

All mechanisms achieve a strong overall performance. Most notably, compared

to the random initialization case, all mechanisms except for previous vs current

have reduced box plot spreads. The all vs current, α = 0.2 + ϵ based on epoch,

and decaying ϵ-greedy mechanisms also show improved median total fitness values.

Whereas, ϵ = 0.1-greedy displays a slightly lower median but benefits from greatly

reduced variance. Its IQR is tighter, and although outliers are still present, they

are substantially less extreme than in the random initialization scenario. The best-

performing method by median is decaying ϵ-greedy, while the worst total fitness

medians are brought by previous vs current and α = 0.2 + decaying ϵ.

Maximum Fitness Distribution Figure 3.38 shows the distribution of the

maximum fitness values obtained by each mechanism.

The highest maximum fitness median and the smallest spread are again achieved

by decaying ϵ-greedy, confirming its stability and high performance. The worst re-

sults are obtained by ϵ = 0.1-greedy, with the worst median and some low outliers,

and previous vs current, which has the second-lowest median and the largest IQR

and whiskers. All other mechanisms — all vs current, α = 0.2 + decaying ϵ,

and decaying ϵ-greedy show improved maximum fitness medians compared to the

random initialization case, presented earlier.
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Figure 3.38: Distribution of maximum fitness across replicas (1 controller starting
with best configurations with wandering obstacles scenario).

Cumulative % of Successful Replicas The final metric focuses on the cumu-

lative percentage of successful replicas, and is shown in Figure 3.39.

Figure 3.39: Cumulative percentage of successful replicas (1 controller starting
with best configurations with wandering obstacles scenario).

Here, ϵ = 0.1-greedy never reaches 100% success, although it performs strongly

during early epochs. Other mechanisms like α = 0.2 + decaying ϵ, all vs current,
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and decaying ϵ-greedy all reach full success notably early, within the first 15 epochs.

This represents a significant improvement over their performance in the previous

test. On the contrary, previous vs current mechanism performs worse in this

experiment, achieving full success much later (around epoch 200–250), whereas it

reached 100% very early in the random initialization setting.

To conclude this analysis, among the five selected mechanisms, decaying ϵ-

greedy is the overall best performer. It maintained high median values with tight

spreads across all scenarios, and it was the only method to reach 100% success-

ful replicas early and consistently, regardless of the environment or initialization

strategy. The all vs. current variant also showed strong performance, although its

variance was occasionally higher than that of ϵ-based methods; it improved when

initialized with good configurations. The constant-α (α = 0.2) with decaying ϵ

strategy yielded mixed results: while it had moderate medians and convergence

speed when randomly initialized, it clearly benefited from initialization with good

configurations. The previous vs. current strategy showcased the highest instability

during multi-controller tests, with the lowest medians and largest variance. How-

ever, it proved very competitive in the wandering-obstacle scenario with random

initialization. For this mechanism, starting from its best configurations did not

yield further improvements but rather deteriorated performance. Finally, the fixed

ϵ = 0.1-greedy mechanism is considered the weakest performer: it either failed to

reach full convergence or did so only in later epochs, and it repeatedly produced

low outliers. Although it occasionally showed high median values, these good re-

sults were always paired with high instability as well. Its performance improved

slightly when initialized with its optimal configurations, but it still lagged behind

the top-performing strategies.

3.4.2 Wheels and Sensors Malfunctions

To further test the robustness and adaptability of the five selected mechanisms,

we simulate two types of malfunctions in the system through sensor noise and

actuator noise. These disturbances were designed to simulate realistic hardware

imperfections and assess each controller’s ability to cope with degraded input or

execution.
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To simulate proximity sensor malfunctioning, random uniform noise in the

range [−0.1, 0.1] was injected into the virtual proximity sensor readings. While

for the wheel actuator faults, uniform noise in the same [−0.1, 0.1] range was

added to the computed wheel velocities.

The different types of malfunction were kept separate, so for each kind and each

mechanism, 10 independent runs were executed. For both cases, in each replica,

only a single side (left or right) was affected to assess asymmetrical disturbances.

Specifically, for sensor noise, the disturbance was applied to the left-side sensors

in 5 replicas and to the right-side sensors in the remaining 5. In this scenario, the

NNs operate with altered proximity sensor values. Similarly, for actuator noise, 5

runs had noise added to the left wheel and 5 to the right wheel. The perturbed

wheel velocities were used in both the neural control phase (for obstacle avoidance)

and the random exploration phase (when no obstacles were detected).

Final Fitness Sum Distribution Figure 3.40 presents the total fitness distri-

bution in the presence of selective virtual proximity sensor noise.

Figure 3.40: Distribution of total fitness across replicas (sensor malfunctions sce-
narios).

Among the tested mechanisms, all VS current with epoch-based exploration %

and decaying ϵ-greedy appear as the most robust, achieving the highest median val-

ues and maintaining tight IQRs. They both present outliers; decaying ϵ-greedy ’s
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outlier is very close to the minimum, while for all VS current the outlier is consid-

erably lower. The ϵ = 0.1-greedy variant performs comparably; its box plot spread

is similar to all VS current, it presents no outliers, but the median is slightly lower

than the best. In contrast, the previous VS current mechanism yields the low-

est median fitness, while α = 0.2 + decaying ϵ shows high variability; its median

is relatively strong, but it suffers from the widest spread and the most extreme

outlier, indicating a highly unstable behavior.

In this case, the best-performing mechanism in terms of median is α = 0.2

+ decaying ϵ, reaching the highest median value of all mechanisms. However, its

performance is damaged by a significantly broad inter-quartile range and a severe

low outlier. All VS current ’s median follows closely after, showing a shorter IQR

as well. Even in this case, the ϵ = 0.1-greedy variant delivers the weakest results,

with the lowest median and the largest spread. Both decaying ϵ-greedy and prev

VS current show average results. Their median fitness values aren’t low, but are

still below the top-performing strategies.

Figure 3.41: Distribution of total fitness across replicas (wheel malfunctions sce-
narios).

Maximum Fitness Distribution Figure 3.42 and Figure 3.43 display the dis-

tribution of the highest fitness values obtained during each run, under sensor and

actuator noise, respectively.
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Under sensor noise, all mechanisms demonstrate strong performance, all reach-

ing maximum values in the 0.47–0.48 range during their executions. The best-

performing methods in terms of median values are all vs. current and α = 0.2

with decaying ϵ, both of which achieve the highest medians. However, the latter

has a slightly lower median, exhibits a wider IQR, and has a notably low-end

outlier, suggesting less stable performance. These are closely followed by prev vs.

current and decaying ϵ-greedy. Their medians are lower but still considerably high.

Moreover, their overall box plot spreads are relatively tight. The last one is the

ϵ = 0.1-greedy variant, which records the lowest median. Although the difference

with the others is marginal, it still maintains high values across runs and shows

good stability.

Figure 3.42: Distribution of maximum fitness across replicas (sensor malfunctions
scenarios).

When dealing with wheel noise, once again, α = 0.2 with decaying ϵ achieves

the highest median and some of the highest individual fitness values. However,

its broader spread and low outlier mark it as less reliable. On the contrary, all

vs. current and decaying ϵ-greedy show more consistency. Their median values are

immediately below the highest, but their IQRs and whiskers are more compact.

The ϵ = 0.1 mechanism, on the other hand, yields the lowest median and widest

variability.
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Figure 3.43: Distribution of maximum fitness across replicas (wheel malfunctions
scenarios).

Cumulative % of Successful Replicas The final metric focuses on the cu-

mulative percentage of successful replicas, shown in Figure 3.44 and Figure 3.45.

Figure 3.44: Cumulative percentage of successful replicas (sensor malfunctions
scenarios).

When selective sensor noise is applied, ϵ = 0.1 and all VS current show the
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fastest convergence, achieving full success within the first 30 epochs. Prev VS

current follows closely, reaching 100% before one-sixth of epochs, despite having

lower median fitness in other metrics. In contrast, decaying ϵ-greedy and α = 0.2 +

decaying ϵ have a strong early start but stall below full success for most of the run.

While the former ultimately reaches 100% in the last epochs, the latter plateaus

at 90% and never converges fully

Figure 3.45: Cumulative percentage of successful replicas (wheel malfunctions sce-
narios).

Interestingly, under selective noise for wheel actuators, all mechanisms eventu-

ally reach 100% success. Notably, decaying ϵ-greedy starts relatively lower but is

the first to achieve full success. α = 0.2 + decaying ϵ and all VS current initially

perform better but converge later. The last one to reach full convergence is ϵ = 0.1;

it starts low and always trails behind the others, but it eventually reaches 100%

of successful replicas.

To conclude this last analysis, we can state that across both malfunction set-

tings, all vs current with decaying exploration rate showed the best performance,

consistently combining high median fitness, low variance, and fast convergence.

This stable performance under both sensor and actuator disturbances marks it as

the most robust and effective strategy in these experiments. The α = 0.2 variant

also achieved high medians but at the cost of greater variability and slower conver-
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gence, making it less reliable despite its potential. Decaying ϵ-greedy performed

well overall, showing both strong fitness and stability, although it never ranked

first. Prev vs current performance delivered average performance across all met-

rics, never excelling nor failing completely. Finally, ϵ = 0.1 can be considered the

worst one, often presenting weaker performance and greater instability, especially

under wheel noise.
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Chapter 4

Thymio Demo

To check and validate the feasibility of the proposed online adaptation mecha-

nisms in a real-world scenario, we conducted a live demonstration using a physical

Thymio robot controlled by the decaying ϵ-greedy mechanism. The experiment

replicated the simulation environment used with Footbot robots, by recreating the

original simulation arena (see Figure 2.4) as a similar 1m×1m physical arena with

similar obstacles.

The chosen mechanism was adapted to the Thymio robot while maintaining

the same logic flow explained in Algorithm 17. The main adaptations regard the

proximity sensors used and the range of possible velocity values for the robot

wheels. While for the Footbot we exclusively used positive velocities only, in the

[0, 10] range; for the Thymio to move correctly and extensively, we need both

positive and negative velocity values. So, the range of possible wheel velocities

was changed to a [−300, 300] range. As a consequence, the fitness evaluation

function was restored to its original form to account for the negative values as

well:

Φ = V · (1−
√
∆v) · (1− i) (4.1)

To qualitatively illustrate the evolution of robot behavior over time, we recorded

the robot’s motion at three points during execution: at epoch 0, epoch 50, and

epoch 100. These recordings are available at Epoch 0, Epoch 50, and Epoch 100

respectively. As can be seen from the first video, the robot starts with a random

configuration biased towards forward movement and left turns. At epoch 0, this
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bias causes the robot to collide with an obstacle on its left side, and it will take

some mutation epochs to reach a configuration that allows for backward move-

ment, enabling the robot to move away from the wall. From the second video,

we can see that by epoch 50, the robot can turn right more often. Although the

right turns may be imperfect and result in a collision, the robot doesn’t stay stuck

for long. In the last video, at epoch 100, movements and turns are smoother and

collisions are reduced. This progression example highlights the effectiveness of the

online adaptation mechanism in shaping and refining behavior over time.
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Conclusions

This thesis explored online adaptation strategies for robots performing a continu-

ous collision avoidance task through a spectrum of varied adaptive control mech-

anisms, ranging from Braitenberg-inspired mappings to recurrent neural network

(RNN) controllers, with a focus on their ability to adapt in real-time and maintain

long-term performance under different conditions.

The experiments carried out demonstrate that even simple reactive architec-

tures can result in effective avoidance behaviors when tuned appropriately, despite

suffering from rigidity and limited expressiveness. Neural networks, in contrast,

offer greater flexibility and performance, even in the presence of noisy sensors or

actuators.

Among all the mechanisms tested, those that retained past memory and used

an epoch-based exploration rate yielded the most consistent and high-performing

results. These mechanisms achieved rapid convergence, high fitness medians, and

low variance, even in the presence of sensor and wheel noise, or when tested in more

complex scenarios involving dynamic obstacles. In contrast, other strategies, such

as fixed ϵ-greedy (e.g., ϵ = 0.1) or purely memoryless approaches, showcased some

limitations. They were more sensitive to noise, slower to reach full success across

replicas, or prone to more erratic behavior due to the lack of historical context or

poor balance between exploration and exploitation. The worst-performing variants

often failed to reach the success threshold consistently or exhibited wide fitness

variance, particularly under perturbations or in multi-robot settings.

The study also included a real-world demonstration using a physical Thymio

robot, where one of the adaptive RNN controllers was successfully deployed, demon-

strating that it is indeed feasible to translate adaptive behaviors from simulation

to physical hardware and obtain satisfying results.
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Future additional research on the topic could investigate the scalability of the

presented approaches to other tasks, such as homing or goal-directed navigation, as

well as to more complex tasks involving sequential goals or team-based coordina-

tion. Another direction could also include exploring the combination of multiple

adaptive mechanisms, aiming to balance the complementary strengths of differ-

ent strategies. Ultimately, further experimentation and in-depth analysis of the

transferability from simulation to reality could help enhance the applicability of

adaptive controllers in dynamic, real-world environments.
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Appendix A

Custom extensions to the

resilient-swarms/thymio library

Although these additions were not ultimately used in the final experiments, as part

of the early stages of this thesis project, I developed extensions to the resilient-

swarms/thymio1 library to support more behaviors within this Thymio simulation

library.

To enable spatial awareness for the Thymio robot in simulation, I implemented

a custom positioning sensor plugin that provides absolute position and orientation

data. This involved creating both a control interface and a corresponding sim-

ulator plugin that reads the robot’s position from the ARGoS EmbodiedEntity

and exposes it to the Lua scripting environment. In Lua, this allowed access to

the robot’s position and orientation through functions, supporting use cases like

gradient sensing, path tracing, or implementing behaviors based on absolute ori-

entation (e.g., taxis or homing). To evaluate the positioning sensor in practice, I

tested it through an obstacle avoidance behavior using both Lua and C++.

Building on the positioning sensor, I implemented a synthetic temperature

gradient centered at a fixed source location. The simulated temperature was com-

puted as a function of distance from the source, with temperature values that

asymptotically approached a maximum near the source. A physical sensor did

not measure this temperature; instead, it was derived from the robot’s position,

1https://github.com/resilient-swarms/thymio
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mimicking biological thermal sensing. This sensor was tested on a thermotaxis

task where the robot steers toward the heat source using its absolute orientation

and position.
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