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Abstract

Automated decision-making systems are rapidly permeating socially sensitive do-
mains such as finance, healthcare, justice, and autonomous mobility. While these
data-driven solutions can increase efficiency, they can also perpetuate or amplify
existing inequities whenever the underlying algorithms exhibit unfair behavior.
This thesis provides a systematic investigation of algorithmic fairness, clarifying
multiple, often competing, formal definitions adopted in the literature and map-
ping them to practical risks of bias and discrimination that arise throughout the
machine-learning pipeline.

After surveying the main sources of bias—data imbalance, historical prejudice,
model opacity, and feedback loops—the work reviews mitigation strategies grouped
into three families: pre-processing (data-repair and re-sampling), in-processing
(fairness-aware losses, constraints, regularizers), and post-processing (prediction-
adjustment and explanation tools). Building upon these foundations, the thesis
introduces FairLib: a modular, open-source library designed to address limitations
in existing fairness toolkits by unifying bias-diagnosis metrics and mitigation algo-
rithms behind a consistent API. FairLib is model-agnostic, integrates with popular
ML frameworks, and facilitates reproducible experimentation through configurable
pipelines.

A preliminary evaluation on canonical benchmark datasets shows that selected
FairLib pipelines can reduce unfairness while leaving predictive accuracy broadly
unchanged. Although limited to a modest set of benchmarks, these findings suggest
that systematic fairness interventions are achievable without prohibitive trade-offs.

By coupling a critical analysis of fairness concepts with a practical, extensible
toolkit, this thesis aims to foster greater transparency and accountability in AI
systems and help practitioners deploy models that respect fundamental principles
of equity.
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A tutte le persone che, con la loro presenza, il loro affetto e il loro sostegno,
hanno reso questi anni indimenticabili.
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Chapter 1

Introduction

Artificial intelligence (AI) systems increasingly mediate decisions about credit,

employment, healthcare, justice, and mobility. Their scale and opacity mean

that even small statistical biases can translate into systematic, large-scale harm.

The goal of algorithmic fairness is therefore to ensure that automated decisions

do not introduce or amplify unjustified discrimination against protected groups

[MMS+21]. Achieving that goal, however, remains challenging because unfairness

can emerge at many points in the machine-learning (ML) pipeline, from data col-

lection to model deployment, and because technical, legal, and ethical notions of

“fair” often conflict in practice [SG21].

1.1 Scope of This Thesis

1.1.1 Diagnose the problem

We survey the landscape of algorithmic unfairness, definitions of fairness, sources of

bias (representation, measurement, aggregation, and historical), and the feedback

loops that can entrench disparities. We also review state-of-the-art mitigation

strategies that operate at three key stages of the ML lifecycle: pre-processing

(data repair and re-weighting), in-processing (fairness-constrained learning), and

post-processing (output adjustment).
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1.1.2 A practical solution

In this study, we present FairLib, a modular Python library that consolidates a

broad spectrum of fairness metrics and bias-mitigation algorithms within a sin-

gle, production-oriented interface. By elevating bias detection, remediation, and

continuous auditing to integral components of the machine-learning development

lifecycle, FairLib significantly reduces the practical barriers to deploying equitable

intelligent systems.

1.2 Motivation for FairLib

Although the landscape now includes several fairness-oriented toolkits—such as

Themis-ML, Fairness Indicators, and Google’s What-If Tool—this study focuses on

IBM’s AI Fairness 360 (AIF360) [BDH+18] and Microsoft’s Fairlearn [BDE+20].

These two libraries are among the most widely used and technically mature open-

source solutions, offering extensive metric suites and diverse bias-mitigation algo-

rithms. Precisely because of their popularity, richness, and maturity, they serve

as realistic benchmarks for day-to-day engineering; yet, as we show below, they

still suffer from four persistent shortcomings that motivate the development of

FairLib.

• Fragmented APIs and terminology: Conceptually identical operations

are exposed through incompatible class names, argument conventions, and

data structures, forcing practitioners to maintain fragile “glue code” when-

ever they switch between metrics or mitigation algorithms.

• Verbosity and operational complexity: Even elementary tasks—such

as computing a single fairness metric or launching a standard debiasing

pass—require boilerplate scripts and nested wrapper objects, making the

tool harder to learn and discouraging rapid experimentation.

• Binary-only focus: Most built-in metrics and mitigation routines assume

binary sensitive attributes and binary classification targets; multi-class set-

tings are either unsupported or require significant user re-implementation.
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• Integration barriers and rigid internal models: Neither toolkit plugs

cleanly into existing PyTorch or scikit-learn pipelines: mitigation methods

are hard-wired to internally defined estimators that can be adjusted only

through superficial hyperparameters. A practitioner cannot, for example,

inject a domain-specific neural network as the base learner for a fairness

algorithm without rewriting large portions of the codebase.

1.3 FairLib Objectives

FairLib is explicitly engineered so that each objective eliminates a corresponding

limitation identified above:

• Unifying fragmented APIs: A coherent, scikit-learn–style interface (fit,

transform, predict) and consistent terminology replace the incompatible

conventions that plague existing libraries, removing the need for brittle in-

tegration code.

• Reducing verbosity and complexity: Fairness metrics—and the accom-

panying debiasing routines—can be used in only a handful of lines, stream-

lining rapid prototyping.

• Extending beyond binary settings: All fairness metrics and evaluation

utilities natively support multi-class targets and both binary and categorical

sensitive attributes, while debiasing algorithms offer varying levels of sup-

port for multi-class settings together addressing key gaps in existing fairness

libraries.

• Providing end-to-end debiasing: Harmonized pre- and in-processing

modules let practitioners inject fairness at the point most compatible with

data-governance and privacy constraints.

• Enabling customizable trade-offs and models: Every mitigation al-

gorithm surfaces its fairness penalty as a hyperparameter and accepts a

user-supplied estimator, thereby supporting automatic exploration of the

fairness–utility frontier without sacrificing architectural flexibility.
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• Easier integration into existing workflows: Native PyTorch wrappers

and drop-in scikit-learn compatibility make FairLib straightforward to adopt

within established machine-learning pipelines, allowing the library to be ap-

plied with minimal effort.
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Chapter 2

Background

2.1 Introduction to AI Fairness

The use of machine learning algorithms has permeated every aspect of our lives:

from movie recommendations to hiring decisions and even to high-stakes areas

such as loan approvals or risk assessments in the judicial system. Although these

systems offer significant advantages—such as processing vast amounts of informa-

tion without fatigue—they are also susceptible to biases that can lead to unfair

decisions. As machine learning systems continue to be deployed in increasingly

sensitive domains, ensuring fairness becomes a critical concern for developers, pol-

icymakers, and society at large [MMS+21].

The concept of fairness in AI is multifaceted and involves technical, legal, and

ethical considerations. While technical solutions can address some aspects of bias,

a comprehensive approach requires understanding the social contexts in which

these systems operate and the historical inequalities they might perpetuate or

amplify. This report provides an overview of fairness in AI, including its definitions,

origins of bias, mitigation strategies, and applications across various domains.

2.1.1 What is Fairness?

Fairness refers to the principle that every individual or group should be treated

justly and impartially. In decision-making, this means that processes, whether

human or automated, should not introduce unjustified discrimination based on

CHAPTER 2. BACKGROUND 5



2.1. INTRODUCTION TO AI FAIRNESS

inherent or acquired characteristics such as gender, ethnicity, or socioeconomic

status [MNDWLS24].

The notion of fairness is deeply rooted in philosophical and legal traditions,

with concepts such as distributive justice, procedural fairness, and equal oppor-

tunity providing frameworks for understanding what constitutes fair treatment

[KKBK21]. In the context of automated decision systems, fairness extends these

principles to ensure that algorithms do not perpetuate or amplify existing social

biases [BCG21].

For example, in a recruitment system, fairness requires that candidates be eval-

uated solely on their skills and qualifications, free from biases related to gender or

ethnicity [Che23]. Similarly, in credit scoring, a fair system would assess credit-

worthiness based on relevant financial factors rather than characteristics protected

by anti-discrimination laws [GGR24].

It’s worth noting that fairness is context-dependent, and what constitutes fair

treatment may vary across different domains and cultures. Nevertheless, certain

fundamental principles, such as non-discrimination and equal treatment of similar

cases, remain consistent across contexts [KKBK21].

2.1.2 The Importance of Fairness in AI Systems

Ensuring fairness in artificial intelligence is crucial, especially when these systems

make decisions that directly affect people’s lives [CDG23, YW24]. Unfair AI sys-

tems can perpetuate and even exacerbate existing social inequalities, affecting

individuals’ access to opportunities, resources, and services.

A canonical example is the COMPAS system, used in U.S. courts to assess

the risk of recidivism. Studies have shown that COMPAS tends to produce higher

false-positive rates for African-American defendants compared to Caucasian defen-

dants under similar conditions. This means that Black defendants were more likely

to be incorrectly labeled as high-risk, potentially leading to harsher sentencing or

denial of parole [YW24].

Beyond the justice system, fairness concerns arise in numerous domains:

• Employment: Resume screening algorithms might inadvertently favor can-

didates from certain demographic groups or educational backgrounds [KBA24].
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• Healthcare: Diagnostic tools calibrated on data from predominantly one

demographic group may be less accurate for others[NHS+24].

• Financial Services: Credit scoring algorithms might systematically dis-

advantage certain communities, reinforcing historical patterns of exclusion

[Fer23].

• Education: Automated evaluation systems might penalize students whose

learning styles or language patterns differ from the norm [KBA24].

The consequences of unfair AI systems extend beyond individual harms to

societal impacts. When automated systems systematically disadvantage certain

groups, they can erode trust in technology, reinforce stereotypes, and contribute

to social polarization. Instead, fair AI systems have the potential to promote

inclusiveness, reduce discrimination and create more equitable outcomes [Fer23].

2.1.3 Origins of Bias and the Feedback Loop

Bias in AI can stem from multiple sources, each requiring different approaches for

mitigation:

• Bias in the Data: If the training data is skewed or unrepresentative of the

true population, the algorithm will learn and reproduce these biases, some-

times even amplifying them. For instance, facial recognition systems trained

predominantly on light-skinned faces perform worse on darker-skinned indi-

viduals [BG18].

• Bias in the Problem Formulation: How we define the problem and

choose variables can introduce bias. For example, using proxies like ZIP

codes instead of more direct measures can inadvertently incorporate demo-

graphic biases if neighborhoods are segregated.

• Bias in the Algorithms: Even with unbiased data, design choices—such

as optimization functions, regularization techniques, or modeling assump-

tions—can introduce unfairness. For instance, prioritizing overall accuracy

might lead to models that perform well on majority groups but poorly on

minorities [NHS+24].
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• Bias in Evaluation: If we evaluate models using metrics that do not ac-

count for fairness considerations, we might deploy systems that appear suc-

cessful but discriminate in practice.

A particularly concerning phenomenon is the feedback loop, where biased

predictions influence future data collection, which in turn reinforces the original

bias [EFN+17]. For instance, predictive policing algorithms might direct more

officers to neighborhoods already experiencing higher policing, leading to more

arrests, which then reinforce the prediction that these areas have higher crime

rates. This creates a self-fulfilling prophecy that can entrench and amplify existing

disparities.

Historical biases present in society can also manifest in AI systems through the

data they’re trained on. Language models trained on internet text may inherit

sexist or racist associations present in their training corpus. Word embeddings

trained on standard text corpora reflect gender and racial stereotypes present in

society [CBN17].

2.1.4 Types of Bias and Sources of Discrimination

Understanding the various types of bias that can affect AI systems is essential

for developing effective mitigation strategies. A number of frameworks have been

proposed to categorize these biases, including those affecting data, model design,

and deployment contexts [MMS+21, SG21].

• Representation Bias arises when the dataset does not adequately reflect

the diversity of the population. For instance, Buolamwini and Gebru found

that commercial facial recognition systems perform worst on darker-skinned

women, illustrating severe underrepresentation in benchmark datasets [BG18,

SG21].

• Measurement Bias occurs when proxies are used in place of direct mea-

surements. For example, arrest records used in predictive policing intro-

duce racial disparities due to historically biased law enforcement practices

[EFN+17, SG21].
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• Aggregation Bias, Evaluation Bias, User Interaction Bias, and Tem-

poral Bias are discussed as distinct sources of harm that emerge when

models are designed, validated, or deployed without accounting for subgroup-

specific differences or time-based shifts. These were formally characterized

in lifecycle frameworks proposed by Suresh and Guttag [SG21].

• Historical Bias reflects the reproduction of long-standing social inequali-

ties. Language models, for instance, have been shown to encode and replicate

gender and racial stereotypes learned from text corpora [CBN17].

• Algorithmic Bias stems from model design decisions, including feature se-

lection, optimization objectives, or regularization strategies, which may pro-

duce disparate outcomes even when the training data is balanced [MMS+21].

Discrimination in AI can be direct, involving explicit use of protected attributes,

or indirect, where neutral criteria disproportionately impact certain groups. These

forms can be explainable, meaning they can be justified by relevant non-protected

attributes, or unexplainable, which is considered unfair or illegal. Frameworks for

quantifying and mitigating such discrimination have been proposed to distinguish

between the two [KZC12, CDG23].

Understanding these distinctions is crucial for ethical and legal assessments of

AI. While certain disparities may reflect legitimate factors (e.g., qualifications),

others are manifestations of unjustified bias that require targeted safeguards in

both design and deployment phases.

2.1.5 Definitions of Fairness

One of the central challenges in developing fair AI systems is that there is no

single, universally agreed-upon definition of fairness. Different notions of fairness

capture different intuitions and may be more appropriate in different contexts

[VR18] [MPB+21].

Some of the most commonly used formal definitions include:

Notation. A denotes a protected attribute (e.g., gender, race, age) with generic

values a and b under comparison; Y is the ground-truth outcome label (Y = 1

indicates the positive class); and Ŷ is the model’s predicted label.

CHAPTER 2. BACKGROUND 9
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• Demographic Parity: The probability of a positive prediction must be the

same across groups, irrespective of the protected attribute:

P (Ŷ = 1 | A = a) = P (Ŷ = 1 | A = b).

This criterion seeks equal representation but can be inappropriate when base

rates legitimately differ between groups.

• Equalized Odds: Conditioned on the true outcome, both the true–positive

and false–positive rates must be equal across groups [HPS16]:

P (Ŷ = 1 | Y = y, A = a) = P (Ŷ = 1 | Y = y, A = b) for y ∈ {0, 1}.

Thus, the model’s errors are distributed fairly.

• Equal Opportunity: A relaxation of Equalized Odds that focuses only on

the true-positive rate:

P (Ŷ = 1 | Y = 1, A = a) = P (Ŷ = 1 | Y = 1, A = b).

This is particularly relevant in settings like hiring, where qualified candidates

(Y = 1) should have equal chances regardless of group.

• Predictive Parity: The precision of the classifier must be the same across

groups:

P (Y = 1 | Ŷ = 1, A = a) = P (Y = 1 | Ŷ = 1, A = b).

This guarantees that a positive prediction has the same meaning for every

group.

Importantly, these definitions can conflict with each other [KMR16]. This

creates inherent trade-offs that must be navigated based on the specific context

and ethical priorities.

The choice of fairness definition should be guided by the specific application

domain, the nature of the task, the potential harms of different types of errors,
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and the ethical values being prioritized. For instance, in medical diagnosis, we

might prioritize equality of false negative rates to ensure that serious conditions

aren’t missed for any group, while in criminal justice, we might prioritize equality

of false positive rates to avoid wrongful punishment.

2.1.6 Trade-offs Between Fairness and Other Objectives

An important consideration in implementing fair AI systems is the potential trade-

off between fairness and other objectives such as accuracy, efficiency, or inter-

pretability.

The most widely discussed trade-off is between fairness and accuracy. Imposing

fairness constraints typically reduces a model’s overall predictive performance, as

measured by conventional metrics like accuracy or F1 score. This creates a Pareto

frontier where improvements in fairness come at the cost of reduced accuracy, and

vice versa. The extent of this trade-off varies depending on the specific fairness

definition, the dataset characteristics, and the learning algorithm used.

Beyond accuracy, fairness may also trade off against:

• Interpretability: More complex models that incorporate fairness constraints

may be harder to interpret, reducing transparency and making it difficult to

identify sources of bias;

• Computational Efficiency: Many fairness-aware algorithms require addi-

tional computational resources for training and inference, potentially limiting

their applicability in resource-constrained environments.

• Privacy: Ensuring fairness often requires collecting and analyzing sensitive

demographic data, which may conflict with privacy objectives or regulations

like GDPR.

• Individual Utility: Group fairness measures may sometimes reduce utility

for specific individuals who would have received positive outcomes under an

unfair but more accurate model.
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• Short-term vs. Long-term Fairness: Interventions that promote fairness

in the short term may have unintended consequences that reduce fairness in

the long term, or vice versa.

Achieving fairness in AI systems isn’t just a technical challenge — it involves

making value-based decisions about which goals matter most in a given context.

These decisions should include input from people with different backgrounds, espe-

cially those who might be affected by the system, and should be guided by ethical

principles, legal standards, and domain-specific knowledge.

It’s also important to remember that these trade-offs aren’t fixed. They depend

on things like data quality, model complexity, and how the problem is defined.

Better data collection, more advanced algorithms, and clearer definitions of fairness

can help ease — though not completely solve — these tensions [KMR16, CR20].

2.2 Methods for Mitigating Bias

Researchers have developed numerous approaches to address bias in AI systems,

which can be categorized based on the stage of the machine learning pipeline where

they’re applied:

2.2.1 Pre-processing techniques

These methods focus on transforming the input data to remove discriminatory

patterns before model training. Examples include:

• Reweighing or resampling data to balance representation across groups;

• Transforming features to remove correlations with protected attributes [KZC12];

• Learning fair representations that preserve task-relevant information while

obscuring protected attributes [MMS+21];

• Data augmentation to generate synthetic samples for underrepresented groups

[MMS+21].
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2.2.2 In-processing techniques

These approaches incorporate fairness considerations directly into the learning

algorithm, often by modifying the objective function or adding constraints. Ex-

amples include:

• Adversarial debiasing, which uses an adversarial approach to remove informa-

tion about protected attributes from the learned representations [MMS+21];

• Fair classification with constraints, which explicitly incorporates fairness cri-

teria as constraints in the optimization problem [CDG23];

• Fair reinforcement learning, which modifies reward functions to account for

fairness considerations [MMS+21].

2.2.3 Post-processing techniques

These methods adjust the output of already trained models to ensure fairness.

Examples include:

• Threshold optimization, which applies different decision thresholds for dif-

ferent groups to equalize error rates;

• Calibration techniques that ensure predictions have the same meaning across

groups;

• Reject option classification, which identifies and manually handles cases in

the critical region between positive and negative classifications [KZC12].

2.2.4 Comparative Analysis of Mitigation Approaches

Each of these methods presents trade-offs.

Pre-processing Methods offer flexibility and compatibility with any model,

though they may not completely eliminate bias.

In-processing Approaches often achieve better fairness-accuracy trade-offs, but

they require access to the model’s internal components.
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Post-processing Strategies tend to be easier to implement, albeit sometimes at

the cost of robustness [MMS+21, SG21].

The choice of mitigation strategy should be guided by practical considerations

such as:

• Access to protected attributes during training and deployment;

• Computational resources available;

• Regulatory requirements regarding the use of protected attributes;

• The specific fairness definition being targeted.

Importantly, bias mitigation is not a one-time fix. Effective fairness in AI re-

quires ongoing auditing, evaluation, and adjustment as societal values, population

characteristics, and contexts evolve [SG21].

Recent work emphasizes the importance of domain-specific fairness frameworks.

For instance, fairness in healthcare may prioritize equitable health outcomes over

statistical parity, whereas fairness in education or finance may involve different

risk-benefit trade-offs [MMS+21].

2.3 Fairness in Different Application Domains

The implementation of fairness principles varies significantly across different do-

mains, reflecting the diverse nature of AI applications:

• Criminal Justice: Beyond the COMPAS example, many risk assessment

tools are used to make decisions about bail, sentencing, and parole. Fair-

ness is especially important here because these decisions have serious conse-

quences for people’s lives and happen within a system that has a history of

discrimination. Research shows that even factors that seem neutral, like past

arrests, can reflect racial bias caused by unequal policing [BHJ+17, EFN+17].

Fairness in this area means finding the right balance between keeping the

public safe and protecting individual rights, while also being careful not to

repeat injustices from the past.
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• Healthcare: AI is playing a growing role in healthcare, from diagnosing ill-

nesses to suggesting treatments and managing how resources are distributed.

One study [OPVM19] found that a commonly used algorithm gave lower risk

scores to Black patients than to White patients with similar health condi-

tions, which led to fewer referrals for extra care. Ensuring fairness in health-

care requires more than just accounting for demographics — it also means

recognizing variations in how diseases appear, how different groups respond

to treatment, and the unequal access to medical services.

• Finance: Credit scoring, loan approval, insurance pricing, and other finan-

cial algorithms can significantly impact individual economic opportunities.

Studies have found evidence of disparate impacts in mortgage lending, with

certain demographic groups receiving higher interest rates or being denied

loans more frequently, even after controlling for relevant financial factors

[BMSW22]. Fairness in financial contexts must balance risk assessment with

ensuring equal access to financial services and preventing the perpetuation

of historical economic disparities.

• Education: AI systems are used for admissions decisions, student assess-

ment, personalized learning, and resource allocation in educational settings.

Automated grading systems, for instance, may penalize certain writing styles

or language patterns associated with particular cultural backgrounds. Fair-

ness in education requires considering diverse learning styles, cultural con-

texts, and educational backgrounds while ensuring that AI systems support

rather than hinder educational equity [MMS+21].

• Employment: AI-powered resume screening and hiring tools can reflect

and reproduce workplace discrimination if trained on biased historical hir-

ing data. For instance, algorithms may deprioritize resumes with minority-

associated names or nontraditional educational paths [Che23]. Fair employ-

ment AI demands careful review of what constitutes “merit” and ensures

equal opportunity.

• Public Services: Government systems increasingly use AI for eligibility

screening, benefits administration, and fraud detection. These services im-
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pact vulnerable populations most directly. Fairness in public services is cru-

cial to prevent administrative exclusion or harm, and must be designed with

high accountability standards [SG21].

These diverse applications highlight the need for domain-specific approaches to

fairness that consider the unique ethical challenges, stakeholder perspectives, and

regulatory frameworks relevant to each context. Moreover, they emphasize that

technical solutions alone are insufficient—organizational practices, institutional

policies, and legal frameworks must also evolve to support fair AI deployment.

2.4 Fairness Algorithms and Metrics

The state-of-the-art in algorithmic fairness is built upon several foundational pil-

lars that have evolved over time. These pillars form a comprehensive framework for

addressing bias in machine learning systems through a systematic approach. First,

researchers have developed various metrics to identify and quantify bias, enabling

precise measurement of different fairness notions across demographic groups. Sec-

ond, a rich ecosystem of mitigation algorithms has emerged, categorized by their

position in the machine learning pipeline: pre-processing techniques that transform

training data before model development; in-processing methods that incorporate

fairness directly into the learning algorithms; and post-processing approaches that

adjust model outputs to ensure fair predictions. Together, these components pro-

vide practitioners with a diverse toolkit to address fairness concerns across dif-

ferent contexts and applications, balancing the often competing goals of accuracy

and equity. The following sections examine each of these pillars in greater detail,

highlighting key approaches and their theoretical foundations.

2.4.1 Fairness Metrics

Fairness metrics are essential for quantifying bias in machine learning models.

They provide a means to evaluate how well a model adheres to various fairness

definitions, enabling practitioners to identify and address potential disparities.

Commonly used metrics include:
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Statistical Parity Difference (SPD)

Measures whether positive prediction rates are balanced across different demo-

graphic groups. Formally:

SPD = P (Ŷ = 1 | A = a)− P (Ŷ = 1 | A = b) (2.1)

In this formula 2.1, A denotes a protected attribute (e.g., gender, race, age) with

categories a and b under comparison, and Y is the ground-truth outcome label

(Y = 1 indicates the positive class). A value close to 0 indicates that the model

assigns positive outcomes at equal rates to both groups. SPD is useful for detecting

allocative bias—whether one group is favored in outcome distribution [DHP+11].

Disparate Impact (DI)

Quantifies the ratio of positive prediction rates between different demographic

groups.

DI =
P (Ŷ = 1 | A = a)

P (Ŷ = 1 | A = b)
(2.2)

In this formula 2.2, A denotes a protected attribute (e.g., gender, race, age) with

categories a and b under comparison, and Y is the ground-truth outcome label

(Y = 1 indicates the positive class). Values below 0.8 are typically seen as indica-

tive of potential disparate impact, according to the 80% rule. DI is widely used in

legal and regulatory contexts as a clear and interpretable indicator [FFM+15].

Equal Opportunity Difference (EOD)

Evaluates whether true positive rates are equal across protected groups.

EOD = P (Ŷ = 1 | Y = 1, A = a)− P (Ŷ = 1 | Y = 1, A = b) (2.3)

In this formula 2.3, A denotes a protected attribute (e.g., gender, race, age) with

categories a and b under comparison, and Y represents the ground-truth outcome

label (Y = 1 for the positive class). A value near 0 implies that among the

individuals who should receive a positive outcome (Y = 1), each group is equally
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likely to be correctly identified. EOD is crucial for ensuring equal quality of service

[HPS16].

2.4.2 Pre-processing methods

A Pre-processing algorithm transform the training data to remove bias before

model training. These techniques act directly on the data—by transforming fea-

tures, learning new representations, or rebalancing weights—to reduce the influ-

ence of protected attributes and improve fairness regardless of the downstream

model. Commonly used pre-processing methods includes:

Learning Fair Representations (LFR)

This technique learns a compressed data representation that is informative for

prediction, reconstructs the input, and obscures group membership. A simplified

view of the objective is:

Lfair = prediction loss + reconstruction loss + fairness penalty (2.4)

More formally, the training minimizes a combined loss:

LLFR = λy ℓ(ŷ(z), y) + λx ∥x− x̂(z)∥2 + λaD(z, A) (2.5)

where:

• z = f(x) is the latent representation,

• ŷ(z) is the prediction output,

• x̂(z) is the reconstructed input,

• D(z, A) penalizes statistical dependence between the representation and the

protected attribute.

This enables training fair models on top of a transformed space where sensitive

information is less present [ZWS+13].
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Disparate Impact Remover

This method transforms features to reduce their dependency on the protected

attribute. At a high level, the transformation pushes each feature toward a “fair”

version that is equally distributed across groups:

x′ = (1− α) · x+ α · xfair (2.6)

The formal transformation applies quantile mapping using Cumulative Distri-

bution Functions:

x′ = (1− α)x+ αF−1(Fx|A(x)) (2.7)

Where Fx|A is the CDF of the feature within group A, and F−1 is the global

inverse CDF. The parameter α ∈ [0, 1]controls how strongly features are adjusted.

This technique reduces disparate impact by making feature distributions more

similar across groups [FFM+15].

Reweighing

Reweighing rescales every training instance so that, in expectation, the protected

attribute A and the class label Y become independent. For each combination of

outcome y and group a, the weight defined by Kamiran & Calders is

w(y, a) =
P (Y = y)P (A = a)

P (Y = y, A = a)
, (2.8)

where all probabilities are estimated from the original dataset. If the joint

event (Y=y, A=a) occurs less often than would be expected under independence,

w(y, a)> 1 and the instance is up-weighted; otherwise it is down-weighted. Ap-

plying these weights yields a rebalanced sample in which the empirical joint dis-

tribution satisfies Pw(Y = y, A = a) = P (Y = y)P (A = a), thereby removing

correlation between A and Y and encouraging fairer learning [KC12].

2.4.3 In-processing methods

An In-processing algorithm modifies the learning algorithm to incorporate fairness

constraints during model training. These methods can be more effective than pre-
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processing, as they directly influence the model’s decision-making process. Com-

mon in-processing techniques include:

FaUCI: Fairness Under Constrained Injection

Augments any stochastic-gradient–based learner with a generic penalized loss that

can host any group-fairness metric (statistical parity difference, equalized odds,

disparate impact, . . . ) and works with binary, categorical, or continuous sensitive

attributes.

Lh,A(X, Y ) = E
(
h(X), Y

)
+ λFh,A(X, Y ) (2.9)

where

• E(h(X), Y ) is the model’s standard error term (e.g., cross-entropy),

• Fh,A(X, Y ) is the regularization term that measures the violation of the cho-

sen fairness metric with respect to the sensitive attribute A,

• λ ∈ R>0 is the hyperparameter that balances accuracy and fairness.

Because Fh,A(X, Y ) is a plug-in term, the same implementation can enforce several

metrics simply by swapping Fh,A [MCCO24].

Adversarial Debiasing

Train a predictor and an adversary simultaneously: the predictor tries to forecast

the label Y; the adversary tries to recover the protected attribute A from the pre-

dictor’s internal representation (or logits). If the adversary fails, the representation

is (approximately) independent of A.

∇WLP − proj∇WLA

(
∇WLP

)
− α∇WLA (2.10)

Where

• ∇WLP is the gradient of the predictor (task) loss with respect to the model

weights W ;

• ∇WLA is the gradient of the adversary loss;
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• proj∇WLA

(
∇WLP

)
denotes the projection of ∇WLP onto ∇WLA (defined as

0 when ∇WLA = 0);

• α is a tunable hyperparameter that can vary at each training step.

At convergence, the predictor attains high task accuracy (low LP ) while remaining

uninformative about the sensitive attribute A (high adversary loss LA) [ZLM18].

Prejudice Remover

Make the prediction Ŷ statistically independent of the protected attribute by

adding a mutual-information regularizer to the learner’s objective.

− L(D; Θ) + η R(D,Θ) +
λ

2
∥Θ∥22, (7)

Equation (7) is the master template: the first term is the negative log-likelihood

to be minimized for accuracy, the second is a fairness penalty weighted by η > 0,

and the third is the usual ℓ2 weight decay controlled by λ > 0.

M [y | x, s; Θ] = y σ(x⊤ws) + (1− y)
(
1− σ(x⊤ws)

)
, (8)

Each sensitive state s ∈ S has its own weight vector ws. The sigmoid σ turns the

linear score into a probability, ensuring that the overall objective stays differen-

tiable for gradient optimization.

RPR(D,Θ) =
∑

(xi,si)∈D

∑
y∈{0,1}

M [y | xi, si; Θ] ln
P̂ (y | si)
P̂ (y)

, (11)

RPR is an empirical mutual-information estimate between the predicted label Y

and the sensitive attribute S; pushing it toward zero makes the two statistically

independent and therefore mitigates indirect prejudice.

∑
(yi,xi,si)∈D

lnM [yi | xi, si; Θ] + η RPR(D,Θ) +
λ

2

∑
s∈S

∥ws∥22, (12)

Substituting the logistic model (8) into the likelihood and plugging (11) for R

yields the concrete objective (12). Minimizing it balances three forces: data fit

CHAPTER 2. BACKGROUND 21



2.4. FAIRNESS ALGORITHMS AND METRICS

(first sum), fairness (middle term, scaled by η), and model simplicity (last term,

scaled by λ).

The algorithm was first introduced by Kamishima et al.; for further details,

please consult the original paper [KAAS12].

Meta-Algorithm for Fair Classification

Linear-fractional group performance. For a classifier f ∈F and each group

Gi (i∈ [p]), a linear-fractional group-performance vector q(f) = (q1(f), . . . , qp(f))

satisfies [CHKV20]

qi(f) =

α
(i)
0 +

k∑
j=1

α
(i)
j Pr

[
f = 1

∣∣Gi, A
(i)
j

]
β
(i)
0 +

ℓ∑
j=1

β
(i)
j Pr

[
f = 1

∣∣Gi, B
(i)
j

] (i ∈ [p]).

The τ -rule and the ρ-Fair program. Fairness is imposed by the τ -rule

ρq(f) := min
i∈[p]

qi(f)/max
j∈[p]

qj(f) ≥ τ,

[CHKV20]. Leading to the constrained optimization

min
f∈F

Pr[f ̸= Y ]

s.t. ρq(m)(f) ≥ τm, m = 1, . . . ,M,
(ρ-Fair)

Reduction to Group-Fair. Introducing per-group bounds ℓ
(m)
j , u

(m)
j converts

ρ-Fair to the linear program [CHKV20]

min
f∈F

Pr[f ̸= Y ]

s.t. ℓ
(m)
j ≤ q

(m)
j (f) ≤ u

(m)
j , m = 1, . . . ,M, j = 1, . . . , p,

(Group-Fair)
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Lagrangian threshold form (linear q). With q ∈ Qlin the Lagrangian yields

the instance-dependent threshold [CHKV20]

sλ(x) = Pr
[
Y = 1 | X = x

]
− 1

2
+

p∑
i=1

λi

k∑
j=1

α
(i)
j

π
(i)
j

η
(i)
j (x), fλ(x) = I

[
sλ(x) > 0

]
,

where π
(i)
j = Pr[Gi, A

(i)
j ] and η

(i)
j (x) = Pr[Gi, A

(i)
j | X = x].

Dual convex optimization. Optimal multipliers λ⋆ are obtained from the con-

vex program [CHKV20]

λ⋆ = arg min
λ∈Rp

EX

[
(sλ(X))+

]
+

p∑
i=1

(
α
(i)
0 − ui

)
λi +

p∑
i=1

(
ui − ℓi

)(
λi

)
+
,

and the resulting classifier fλ⋆ is provably optimal for Group-Fair, while repeated

calls with adaptive bounds solve ρ-Fair (Algorithm 1 in the paper) [CHKV20].

2.4.4 Post-processing methods

After a model has been fully trained, post-processing acts only on its outputs

(scores or hard labels). This means you can retrofit fairness guarantees without

touching the training data or the learning algorithm—very handy when you must

comply with new regulations but cannot retrain. Below are three classic methods,

each with a short plain-language description followed by the minimal mathematics

that drives it.

Equalized Odds

Modifies predictions to equalize error rates across protected groups by applying

group-specific thresholding or probabilistic flipping to model outputs. It ensures

that both the false positive rate (FPR) and false negative rate (FNR) are

equal across groups:

Pr(Ŷ = 1 | Y = 0, A = a) = Pr(Ŷ = 1 | Y = 0, A = a′) (FPR equality) (2.11)
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Pr(Ŷ = 0 | Y = 1, A = a) = Pr(Ŷ = 0 | Y = 1, A = a′) (FNR equality) (2.12)

This is often achieved by solving a linear program that adjusts predictions post

hoc while minimizing accuracy loss [HPS16].

Calibrated Equalized Odds

Adjusts predictions while maintaining calibration—that is, the predicted proba-

bility P̂ (Y = 1|X) must match the true frequency:

Pr(Y = 1 | P̂ = p,A = a) = p for all groups a. (2.13)

It seeks a transformation of scores that retains this calibration while bringing

FPR and FNR differences between groups below a small threshold ε. This allows

a trade-off between fairness and probabilistic interpretability of outputs [PRW+17].

Reject Option Classification

Introduces a rejection option for uncertain predictions that might reflect bias.

Specifically, in a band around the decision boundary (typically p ∈ [0.5−θ, 0.5+θ]),

predictions are flipped in favor of the disadvantaged group:

Ỹ =


1 if A is disadvantaged and |p− 0.5| ≤ θ,

0 if A is advantaged and |p− 0.5| ≤ θ,

original prediction otherwise.

(2.14)

This improves statistical parity by reducing unfair decisions near the boundary

where the model is least confident [KKZ12].

2.5 Fairness Toolkits and Libraries Overview

IBM’s AI Fairness 360 (AIF360) and Microsoft’s Fairlearn are two prominent

open-source toolkits designed to operationalize fairness techniques in machine

learning. Both provide extensive libraries of fairness metrics and bias-mitigation
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algorithms: AIF360 offers several detection metrics and nine pre-, in-, and post-

processing mitigations [BDH+18], whereas Fairlearn complements a dashboard

for diagnostic visualization with reduction- and post-processing-based mitigations

for both classification and regression [BDE+20]. Despite this breadth, recent

empirical studies reveal substantial usability barriers [DNL+22]. Further, hur-

dles arise from API and documentation design: inconsistent terminology (e.g.,

CorrelationRemover in Fairlearn versus DisparateImpactRemover in AIF360)

and limited explanatory material oblige many users to copy code from toy exam-

ples rather than adapt algorithms systematically [DNL+22]. Finally, the libraries’

research-centric architecture complicates integration into production pipelines, es-

pecially where access to protected attributes is constrained by privacy or compli-

ance requirements [HWVD+19]. In short, while AIF360 and Fairlearn lower the

entry barrier to technical fairness assessments, their current incarnations remain

far from “plug-and-play.” Addressing gaps in task coverage, guidance, and work-

flow integration is therefore essential if such tools are to fulfil their promise in

real-world machine-learning practice.

2.6 Challenges in Fairness Implementation

In operationalizing algorithmic fairness, practitioners face multiple interrelated

challenges. First, numerous formal definitions of fairness exist (e.g., demographic

parity, equalized odds), and many of these criteria conflict or cannot be satisfied

simultaneously [KMR16, XZ24]. This forces stakeholders to decide which defini-

tion best aligns with their context and values. Second, pursuing fairness often

involves trade-offs with model accuracy or other performance measures, since fair-

ness constraints can degrade predictive accuracy [CDPF+17]. Third, bias in data

presents a major obstacle: historical datasets may reflect societal prejudices, and

models can inadvertently use proxy features correlated with protected attributes,

leading to residual unfairness even after interventions [BS16]. Fourth, fairness

solutions must be tailored to each domain’s legal and social context; for example,

anti-discrimination laws in some sectors restrict the use of sensitive attributes and

mandate specific fairness criteria, necessitating domain-specific approaches [VB17].

Finally, even when technical solutions are available, deploying them in real-world
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systems is difficult. Open-source fairness toolkits (e.g., AI Fairness 360 [BDH+18])

provide many metrics and mitigation algorithms, but practitioners often struggle

with their usability and integration into existing workflows [HWVD+19, LS21].

These challenges highlight that achieving fairness in practice requires not only

better algorithms, but also careful attention to context, data quality, and human-

centered tool design.
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FairLib Architecture

FairLib is designed as a comprehensive, modular Python package for analyzing and

mitigating bias in machine learning models, providing both theoretical foundations

and practical tools for fairness-aware machine learning.

3.1 Core Architecture

The library follows a layered architectural pattern with clear separation of con-

cerns, enabling flexible composition of fairness techniques while maintaining con-

sistency across different algorithmic approaches. The architecture is built around

five core components that work synergistically to provide a complete fairness-aware

machine learning ecosystem.

3.1.1 Enhanced Data Foundation Layer

At the foundation lies the FairLib DataFrame, an extension of Pandas DataFrame

that serves as the primary data container with native fairness awareness. This en-

hanced data structure provides explicit declaration and validation of protected

attributes with automatic consistency checking, ensuring that sensitive informa-

tion is properly tracked throughout the data processing pipeline. The DataFrame

maintains centralized management of prediction targets with support for multi-

target scenarios, allowing researchers to work with complex prediction tasks while

preserving fairness metadata.
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The FairLib DataFrame provides native support for calculating fairness metrics

directly on the dataset without requiring external dependencies, streamlining the

evaluation workflow.

3.1.2 Unified Metrics Framework

The metrics layer provides a comprehensive framework for standardized evaluation

of algorithmic fairness. This framework implements individual fairness metrics

including Statistical Parity Difference (SPD), Disparate Impact (DI), and

Equality of Opportunity (EOO), each designed to capture different aspects

of algorithmic bias. The framework maintains a consistent interface across all

metrics, enabling seamless metric switching and comparison without requiring code

restructuring.

The metrics system supports flexible output formats, providing both numeri-

cal results for automated analysis and detailed breakdowns by sensitive attribute

groups for interpretability. These metrics are designed for dual use as standalone

evaluation tools and as integrated components within algorithmic frameworks, par-

ticularly for in-processing techniques that incorporate fairness constraints directly

into the optimization process.

3.1.3 Bias Mitigation Processing Layer

The processing layer encompasses two complementary paradigms for bias miti-

gation, each following consistent interface patterns that facilitate interoperability

and ease of use.

The pre-processing module focuses on data transformation algorithms that

remove bias before model training begins. This module implements a common

Preprocessor base class with standardized fit, transform and fit transform

methodology, ensuring consistent behavior across different algorithms. The mod-

ule includes Learning Fair Representations (LFR), Disparate Impact Remover,

and Reweighing algorithms, each addressing different aspects of data bias. These

algorithms maintain data integrity while ensuring fairness properties in the trans-

formed datasets, allowing practitioners to address bias at the data level before any

model training occurs.
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The in-processing module provides model training algorithms that incorpo-

rate fairness constraints during the learning process itself. This module implements

a unified Processor interface with consistent fit and predict methods, mirror-

ing familiar machine learning patterns. The module includes Fairness Under

Constrained Injection (FaUCI), Adversarial Debiasing, and Prejudice

Remover algorithms, each offering different approaches to integrating fairness ob-

jectives into the optimization process. These algorithms seamlessly blend fairness

considerations with predictive performance, enabling practitioners to find optimal

trade-offs between accuracy and fairness.

3.1.4 Framework Integration Layer

The integration layer provides native support for popular machine learning ecosys-

tems, ensuring that FairLib can be adopted within existing workflows without

requiring fundamental architectural changes. PyTorch’s integration allows deep

learning models to be wrapped and enhanced with fairness capabilities while pre-

serving their original interfaces, enabling researchers to apply fairness techniques

to complex neural architectures. Scikit-learn compatibility ensures that stan-

dard fit/predict/transform patterns enable drop-in replacement within existing

ML pipelines, reducing the barrier to adoption.

3.1.5 Consistency and Interoperability

Cross-cutting architectural principles ensure system coherence across all com-

ponents. The architecture enforces uniform interface patterns where all algo-

rithms follow consistent method signatures and parameter conventions, reduc-

ing the learning curve for practitioners working with multiple techniques. Meta-

data preservation ensures that fairness-relevant information, including sensitive

attributes and target specifications, is automatically maintained across all op-

erations, preventing the loss of critical information during complex processing

pipelines.

This architectural design enables users to seamlessly transition between dif-

ferent fairness approaches, combine multiple techniques, and integrate fairness
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considerations into existing machine learning workflows without requiring funda-

mental changes to their development practices.
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Chapter 4

Implementation Details

This section describes the core implementation details of the FairLib library’s main

components: Dataframe, Metrics, Pre-processing, and In-processing algorithms.

4.1 Metadata–Enriched DataFrame

Fairness assessments and mitigation strategies depend critically on two orthogonal

pieces of information: (i) the decision variable y (target) and (ii) one or more

protected or sensitive attributes S. In conventional pipelines, these identifiers

are typically passed as arguments to each function invocation, a practice that is

both verbose and error-prone. To streamline this process, metadata are embedded

directly into the standard pandas.DataFrame.

4.1.1 Design choice

Although defining a new subclass of DataFrame might appear to be a clean and

modular solution, it proves to be impractical in real-world scenarios. Many widely

used libraries, such as scikit-learn, perform internal operations that downcast

custom subclasses to the base DataFrame, thereby stripping away any additional

functionality or metadata. To preserve compatibility while extending functionality,

the approach adopted here relies on monkey patching [Car19]: descriptors are

attached at runtime to the global pandas.DataFrame class, allowing the enriched

interface to coexist seamlessly with existing tooling.
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«external»
pandas.DataFrame

DataFrameExtensionProperty

«descriptor»

DataFrameExtensionFunction

«descriptor»
ColumnsContainerProperty ColumnDomainInspectorProperty

dynamically added
(properties & functions)

Figure 4.1: FairLib DataFrame Architecture

a) Metadata descriptors. The attributes targets and sensitive are imple-

mented as descriptors that read from and write to keys in df.attrs. Because

attrs is serialized by pandas I/O backends, the annotations persist across

copies, slices, concatenations, and round-trip storage.

b) Utility transforms. Methods such as unpack() are provided to operate

on the data while preserving and propagating the associated metadata, even

when structural changes occur in the underlying columns.

c) Metric facades. Parameterless methods such as disparate impact() and

statistical parity difference() automatically retrieve y and S from the

stored descriptors and delegate the computation to standard routines defined

in metrics.

4.1.2 Implementation

Each descriptor is implemented as a specialized property that manipulates df.attrs.

Metric wrappers include validation logic and invoke the appropriate computational

backend using the metadata declared on the frame. A summary diagram can be

read in Figure 4.1.
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4.2 Fairness Metrics

The metrics module embodies a rigorously structured architectural strategy aimed

at reconciling computational performance with usability and extensibility. Central

to its design is a clear separation of concerns that distinguishes the mathematical

core of fairness metric computation from their operational integration within the

overarching data analysis framework.

The adoption of a dual-layer architecture is motivated by the heterogeneity of

the intended user base and use cases. On the one hand, data scientists require effi-

cient and portable computational primitives that integrate seamlessly with NumPy-

centric analytical workflows. On the other hand, end-users and applied practition-

ers benefit from higher-level abstractions that interface intuitively with custom

data containers. To this end, core metric functions such as disparate impact,

statistical parity difference, and equality of opportunity are implemented

as independent, framework-agnostic operations over NumPy arrays. These low-

level primitives are encapsulated within class-based wrappers (DisparateImpact,

StatisticalParityDifference, etc.), which inherit from a common Metric base

class, thereby enabling polymorphic usage and seamless integration with the DataFrame

abstraction layer.

A particularly novel aspect of the design is the extension mechanism, which al-

lows metric functionalities to be dynamically attached to DataFrame instances via

a descriptor-based pattern, implemented through DataFrameExtensionFunction.

In practice, this design allows users to invoke metrics via an object-oriented syn-

tax (e.g., df.statistical parity difference()), which enhances discoverability and ease

of use. This syntactic convenience significantly enhances the discoverability and

accessibility of fairness evaluation tools, aligning with established paradigms in

exploratory data analysis and interactive computing. A summary diagram can be

read in Figure 4.2.

The inherent multidimensionality of fairness evaluation outcomes necessitated

the introduction of dedicated data structures. In particular, the DomainDict class

provides a semantically rich mapping layer that supports flexible querying across

sensitive attributes, prediction targets, and their value combinations. This enables

domain-aware operations such as selective retrieval by attribute names, partial
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Figure 4.2: FairLib Metrics Architecture

assignments, or intersectional groupings, which are essential for nuanced fairness

analyzes across diverse population strata.

Robust input validation and exception handling are implemented as first-class

concerns within the library. The check and setup utility performs comprehensive

precondition checks to ensure the dimensional alignment of sensitive attributes

and outcome variables, issuing informative warnings in edge cases such as low

group cardinality or missing categories. Furthermore, boundary conditions—such

as metrics computed on empty demographic groups—are gracefully handled using

NaN or infinite values, preserving the semantic consistency of results while avoiding

runtime interruptions.

Finally, the metrics module supports multiple output modalities via the as dict

parameter, which enables users to toggle between matrix-based representations op-

timized for numerical pipelines and dictionary-based formats that enhance read-

ability and facilitate downstream processing (e.g., visualization or reporting). This

dual-mode output capability reflects a deliberate design decision to serve both pro-

grammatic and interpretive aspects of fairness analysis within responsible machine

learning workflows.

4.2.1 Statistical Parity Difference

Statistical Parity Difference represents a fundamental group fairness metric that

quantifies the disparity in favorable outcome probabilities between privileged and
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unprivileged demographic groups. The theoretical foundation of this metric rests

on the principle of demographic parity, which stipulates that a fair algorithmic sys-

tem should produce equal acceptance rates across all protected groups, irrespective

of the underlying ground truth distribution.

Mathematically, Statistical Parity Difference is formulated as:

SPD = P (Ŷ = 1|S = unprivileged)− P (Ŷ = 1|S = privileged) (4.1)

where Ŷ denotes the predicted outcome, S represents the sensitive attribute, and

the probabilities are computed over the respective demographic subgroups.

The implementation in FairLib follows a dual-layer architectural pattern, pro-

viding both a low-level functional interface and a high-level object-oriented wrap-

per. The core computational logic iterates through all unique combinations of

target and sensitive attribute values, calculating group-specific acceptance rates

through array masking operations. For each sensitive group s, the algorithm com-

putes the privileged rate as |i:ŷi=t∧si=s|
|i:si=s| and the unprivileged rate as |i:ŷi=t∧si ̸=s|

|i:si ̸=s| ,

where t represents the target value. The implementation incorporates robust error

handling for edge cases, including scenarios with empty subgroups, where infinite

values are assigned to maintain mathematical consistency. The metric returns val-

ues in the range [−1, 1], with zero indicating perfect fairness and values within

[−0.1, 0.1] generally considered acceptable in practical applications.

4.2.2 Disparate Impact

Disparate Impact constitutes a ratio-based fairness metric that emerged from legal

frameworks, particularly the “80% rule” established in US anti-discrimination ju-

risprudence. This metric addresses the detection of indirect discrimination by mea-

suring the relative likelihood of favorable outcomes between demographic groups,

providing a multiplicative rather than additive perspective on fairness violations.

The mathematical formulation of Disparate Impact is expressed as:

DI =
P (Ŷ = 1|S = unprivileged)

P (Ŷ = 1|S = privileged)
(4.2)
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This ratio-based approach offers intuitive interpretation: values below 1.0 indicate

systematic disadvantage for the unprivileged group, while values above 1.0 suggest

the opposite bias pattern.

The computational implementation mirrors the Statistical Parity Difference

algorithm in its structural approach, utilizing the same group-wise probability

estimation methodology. However, the critical distinction lies in the final aggre-

gation step, where the unprivileged rate is divided by the privileged rate rather

than subtracted. The implementation demonstrates careful attention to numeri-

cal stability, handling division-by-zero scenarios through appropriate infinite value

assignments. The algorithm maintains consistency with legal standards by pro-

ducing values in the range [0,∞), where perfect fairness corresponds to 1.0, and

the legally acceptable threshold of 0.8 serves as a practical lower bound. Moreover,

the FairLib implementation supports more complex scenarios, including multi-class

targets and multiple sensitive attributes. It performs a comprehensive combinato-

rial evaluation across all target and attribute combinations, organizing the results

in a structured DomainDict format. This design facilitates intersectional fairness

analysis across diverse demographic categories.

4.2.3 Equality of Opportunity

Equality of Opportunity represents a more nuanced approach to algorithmic fair-

ness that focuses specifically on ensuring equitable treatment among qualified in-

dividuals across demographic groups. This metric, grounded in the philosophical

principle of meritocratic fairness, addresses scenarios where the primary concern

is preventing discrimination against individuals who legitimately deserve favorable

outcomes.

The theoretical framework centers on the concept of True Positive Rate (TPR)

equalization, mathematically expressed as:

EOO = TPRprivileged− TPRunprivileged (4.3)

where TPRg = P (Ŷ = 1|Y = 1, S = g) represents the true positive rate for

demographic group g. This formulation ensures that qualified individuals (those

with Y = 1) have equal probabilities of receiving positive predictions regardless of
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their protected attribute status.

The implementation architecture in FairLib demonstrates sophisticated han-

dling of the three-way relationship between true labels, predictions, and sensitive

attributes. The algorithm employs boolean masking operations to identify qualified

individuals within each demographic group, subsequently computing group-specific

true positive rates through vectorized operations. The algorithm creates a boolean

mask for the privileged group (e.g., sensitive column == privileged value) and

its complement for the unprivileged group (sensitive column! = privileged value).

It then intersects these masks with the positive ground-truth mask (target column ==

positive target) to isolate qualified individuals in each group

The true positive rates are calculated as the ratio of correctly predicted pos-

itive cases to total positive cases within each group, with appropriate handling

of empty sets through infinite value assignment. Unlike previous metrics, Equal-

ity of Opportunity requires an additional input—the ground truth labels (true

outcomes)—making it suitable for post-hoc fairness evaluation after model train-

ing The metric produces values in the range [−1, 1], where zero indicates perfect

equality of opportunity, and the implementation supports flexible positive class

specification through the positive target parameter, accommodating diverse label-

ing conventions across different application domains.

4.3 Pre-Processing Algorithms

The pre-processing module of FairLib implements a suite of algorithms designed

to mitigate bias in datasets before model training. These algorithms transform the

input data to reduce the influence of sensitive attributes, ensuring that subsequent

learning processes are less affected by inherent biases.

The preprocessing module uses a consistent interface architecture (inspired

by scikit-learn) designed specifically to work with FairLib’s enhanced DataFrame

structure. The core interface consists of three primary methods: fit(), transform(),

and fit transform(), see Figure 4.3. The fit transform() method serves as the

primary interface that all preprocessing algorithms must implement, combining pa-

rameter learning and data transformation in a single operation. For algorithms

requiring separate fitting and transformation phases, the fit() method learns
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Figure 4.3: FairLib Pre-processing Algorithms Architecture

parameters from the training data without modifying it, while transform() ap-

plies the learned transformation to new data. This separation enables efficient

preprocessing of multiple datasets using the same learned parameters, which is

particularly useful in train–test scenarios.

All methods are designed to work exclusively with FairLib’s custom DataFrame,

which extends the standard pandas DataFrame by preserving metadata for target

and sensitive attributes. In particular, the DataFrame’s unpack() method auto-

matically extracts the feature matrix, target labels, and sensitive attribute indices,

while built-in validation ensures consistent data structure across algorithms.

38 CHAPTER 4. IMPLEMENTATION DETAILS



4.3. PRE-PROCESSING ALGORITHMS

4.3.1 Reweighing

The Reweighing algorithm implementation follows the statistical approach pro-

posed by Kamiran and Calders [KZC12], where instance weights are computed to

achieve statistical parity across different demographic groups. The core implemen-

tation centers around a static method reweighing, which calculates four distinct

weight values corresponding to the combinations of privileged/unprivileged group

status and favorable/unfavorable outcome.

The algorithm first validates the input DataFrame structure and identifies the

target column. It then creates boolean masks for favorable and unfavorable out-

comes using a private utility function get favorable unfavorable masks. For

each combination of sensitive attribute value and target outcome, a weight is com-

puted using the ratio formula

w =
noutcome × ngroup

ntotal × njoint

,

where noutcome is the total number of instances with the specified outcome (favor-

able or unfavorable) in the entire dataset, ngroup is the number of instances in the

given demographic group (privileged or unprivileged), ntotal is the total number

of instances in the dataset, and njoint is the number of instances that belong to

both that group and that outcome category. The implementation also includes a

specialized variant called ReweighingWithMean. This variant handles cases with

multiple sensitive attributes by computing weights for each attribute independently

and then averaging them, providing a more nuanced approach for intersectional

fairness scenarios. The final transformed DataFrame includes a new weights col-

umn that can be directly used with scikit-learn classifiers via the sample weight

parameter during training.

4.3.2 Learning Fair Representations

The Learning Fair Representations (LFR) algorithm is implemented as a deep

neural network consisting of three interconnected components—an encoder, a de-

coder, and a classifier—constructed with PyTorch. The encoder network trans-

forms the input features into a lower-dimensional “fair” representation, as illus-
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Figure 4.4: Architecture of the Learning Fair Representations (LFR) algorithm.
The encoder compresses input features into a fair representation and the classifier
predicts the target label from the fair representation [TYJY+24].

trated in Figure 4.4, using a three-layer fully connected architecture (input → 64

→ 32 → latent dim) with ReLU activations; this 64–32 configuration is simply

the library’s default and can be replaced by defining custom Encoder, Decoder,

and Classifier modules that respect the required layer dimensions, making the

entire LFR pipeline fully customizable. The decoder then attempts to reconstruct

the original feature space from this representation using the symmetric architec-

ture (latent dim → 32 → 64 → output dim), which can likewise be adapted to

alternative depths or widths.

Finally, a classifier component predicts the target label from the fair repre-

sentation using a two-layer network that culminates in a sigmoid output unit for

binary classification; like the encoder and decoder, this classifier can be freely

re-implemented to suit specific tasks.

The training process optimizes a multi-objective loss function

Ltotal = αz Lz + αx Lx + αy Ly ,

where Lz is a fairness loss defined as the sum of squared differences between the

mean representations of the protected and unprotected groups, Lx is a recon-

struction loss (measured as the mean squared error between the original features

and their reconstructed counterparts), and Ly is the binary cross-entropy loss for

predicting the target. All three networks (encoder, decoder, and classifier) are

trained jointly using the Adam optimizer, and input features are standardized via
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scikit-learn’s StandardScaler prior to training. During each forward pass, the

encoder produces a fair representation, which the decoder uses to reconstruct the

inputs and the classifier uses to predict the outcome. This joint training procedure

ensures that the learned representations preserve predictive utility while minimiz-

ing sensitive attribute information. In particular, the fairness loss term Lz serves

as a statistical parity regularizer, encouraging the encoded representations to be

independent of the sensitive attribute.

4.3.3 Disparate Impact Remover

The Disparate Impact Remover algorithm implements the fairness-aware “data

repair” technique proposed by Feldman et al. [FFM+15]. This technique trans-

forms feature distributions to achieve statistical parity across demographic groups

through quantile-based distribution alignment.

In the implementation, the first step is to compute the empirical cumulative

distribution function (CDF) for each feature within each sensitive attribute group.

A helper function make cdf is used for this purpose; it returns a callable CDF

for a given feature by sorting the feature values and enabling binary search lookup

of quantile positions. During the fitting phase, the algorithm then constructs a

quantile “map” for each feature as follows: it groups the data by sensitive attribute,

establishes a common grid of quantile values (e.g., using np.linspace from 0 to

1), and computes the median feature value across all groups at each quantile level.

These median values across quantiles form a reference distribution for the feature

that represents a merged (fair) version of the original group-specific distributions.

In the transformation phase, each feature value x is adjusted via this reference

distribution. For a given data point, the algorithm first determines the quantile

rank of x within the CDF of its own sensitive group. It then uses linear inter-

polation (via np.interp) to map that quantile to the corresponding value in the

reference (median) distribution. The resulting value xmedian is the fully “repaired”

version of x (i.e., the value x would have in the median distribution). Finally,

the algorithm computes the output as a weighted combination of the original and

repaired values:

xrepaired = (1− λ)xoriginal + λxmedian
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Here λ is the repair level parameter that controls the trade-off between fairness

and data fidelity.

This approach makes the marginal distributions of each feature much more

similar across different demographic groups, thereby reducing disparate impact,

while still preserving some original data characteristics. The repair level λ allows

practitioners to balance between achieving complete distributional fairness (λ = 1,

using only the median-aligned value) and preserving the original feature values

(λ = 0, no adjustment). Additionally, the implementation preserves metadata

consistency by keeping the same column names and retaining sensitive attribute

information in the transformed DataFrame.

4.4 In-Processing Algorithms

The in-processing module of FairLib implements advanced fairness-aware machine

learning algorithms by integrating fairness constraints directly into model training.

This approach enables the simultaneous optimization of predictive accuracy and

fairness objectives, allowing practitioners to achieve better trade-offs between these

often competing goals. The implementation follows a modular design pattern, and

all algorithms inherit from a common Processor base class that defines standard

fit() and predict() methods. This abstraction ensures a consistent interface

across different fairness algorithms and compatibility with FairLib’s DataFrame-

based data handling system, making it easy to interchange in-processing mitigation

methods within the library. A summary diagram can be read in Figure 4.5.

4.4.1 Adversarial Debiasing

Building on the original Adversarial Debiasing framework of [ZLM18], we adopt the

architectural refinement proposed by [BCZC17] in which the adversary consumes

an intermediate hidden representation rather than the predictor’s final logits. This

shift from an output-based to a representation-based adversarial signal encourages

the predictor to remove sensitive information earlier in the network and has been

shown to yield stronger fairness guarantees while retaining predictive power.

The algorithm is implemented as a dual-network architecture in PyTorch, con-
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Figure 4.5: FairLib In-processing Algorithms Architecture
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sisting of a predictor network and an adversarial network connected via a custom

gradient-reversal layer. At the heart of the implementation is the GradientReversal

function, a custom autograd function that forwards inputs unchanged in the for-

ward pass but in the backward pass multiplies the gradients by −λadv, thereby

reversing and scaling them by the factor λadv.

The predictor network is a three-layer feed-forward model: each hidden layer

applies batch normalization (BatchNorm1d) before a linear transformation, fol-

lowed by a ReLU activation and dropout (default drop rate 0.3) for regularization.

Crucially, it returns both the task logits and the hidden representation h that

serves as input to the adversary. Both the predictor and the adversary can be

replaced with custom nn.Modules, provided they share a compatible interface: (i)

the predictor must expose a representation whose dimensionality matches the ad-

versary’s input size, and (ii) both modules must return logits suitable for their

respective loss functions.

An example of this architecture is shown in Figure 4.6.

This flexibility allows practitioners to experiment with deeper, convolutional,

or transformer-based architectures without changing the training loop. The adver-

sarial network mirrors the predictor’s architecture (including batch normalization

and dropout) but employs LeakyReLU activations in its hidden layers. During

training, an alternating optimization strategy is employed: in each iteration, the

adversary is first updated for a fixed number of steps (adv steps) to better pre-

dict the sensitive attribute from h (with predictor parameters frozen), and then

the predictor is updated (via the gradient-reversal mechanism) to minimize its pri-

mary prediction loss while maximizing the adversary’s loss. This effectively forces

the predictor to learn representations that confound the adversary, thereby pro-

moting fairness at the representation level. To stabilize training, gradient clipping

(max-norm 1.0) is applied to both networks, and optimization is performed with

AdamW (including weight decay). Hyperparameters such as learning rates, batch

size, the number of adversary steps, and the critical λadv parameter controlling the

fairness–accuracy trade-off remain fully configurable.
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Figure 4.6: Adversarial Debiasing architecture: a predictor network learns to make
predictions while an adversarial network attempts to predict the sensitive attribute
from the predictor’s internal representation, following the hidden-layer strategy.
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4.4.2 FaUCI: Fairness Under Constrained Injection

The FaUCI (Fairness Under Constrained Injection) algorithm incorporates fair-

ness metrics directly into the loss function as regularization terms. It is imple-

mented through a modular loss architecture that seamlessly integrates with stan-

dard PyTorch training workflows. In particular, a hierarchical loss design is used:

a base loss (e.g. cross-entropy for classification) is encapsulated by a BaseLoss

class, and a PenalizedLoss subclass extends this by adding a fairness regulariza-

tion term. The total loss at each training step is computed as a weighted sum of

the base loss and the fairness penalty:

Ltotal = (1− w)Lbase + wLfairness, (4.4)

where w is the regularization weight that controls the trade-off between ac-

curacy and fairness. The fairness penalty leverages a pluggable metric system

(implemented in torch metrics.py) supporting metrics such as Statistical Par-

ity Difference (SPD) and Disparate Impact (DI). These metrics are computed on

each mini-batch during training to provide an on-the-fly estimate of unfairness.

For example, the SPD metric is calculated as the absolute difference in positive

outcome probability between the protected and unprotected groups, while the DI

metric is the ratio of these probabilities. Both metrics are efficiently computed

using the model’s predictions for the current mini-batch, with a small epsilon

(e.g. 10−7) added to probability estimates to ensure numerical stability (avoiding

division by zero or undefined log values). The FaUCI class serves as the main pro-

cessor for this algorithm, wrapping an arbitrary PyTorch model and managing the

training loop via a flexible interface. It allows users to specify custom optimizers,

base loss functions, and fairness metrics (along with the regularization weight w).

During training, the sensitive attribute values for each batch are passed into the

loss computation (via a property injection mechanism) so that the fairness met-

ric can be evaluated for that batch’s predictions. The implementation supports a

range of hyperparameters including the number of epochs, batch size, and the reg-

ularization weight w, making FaUCI a versatile framework for exploring different

fairness–accuracy trade-offs.
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4.4.3 Prejudice Remover

The Prejudice Remover algorithm is implemented via a mutual-information-based

regularization framework, which explicitly penalizes the model for encoding statis-

tical dependence between its predictions and the sensitive attribute. The core of

this approach is a PrejudiceRemoverLoss that augments the standard prediction

loss with a mutual information (MI) penalty term:

Ltotal = Lbase + η ·MI(Ŷ , S) (4.5)

where η is a hyperparameter controlling the strength of the fairness regularization.

Here MI(Ŷ , S) measures the mutual information between the model’s output Ŷ

and the sensitive attribute S, which is zero if the predictions are independent

of S. In practice, this mutual information is estimated on each mini-batch by

computing the joint distribution P (Ŷ , S) and the marginal distributions P (Ŷ )

and P (S) from the batch’s predictions and labels. The implementation calculates

group-conditional probabilities (such as P (Ŷ = 1 | S = 0) and P (Ŷ = 1 | S = 1))

by averaging the model’s predicted probabilities for the positive class within each

sensitive group in the batch. Using these, it obtains estimates of P (Ŷ = 1, S = 0),

P (Ŷ = 1, S = 1), etc., for all four combinations of binary outcome and sensitive

value. To prevent numerical issues (e.g. log(0)), a small epsilon (10−8) is added

to each probability estimate. The mutual information penalty is then computed

as the Kullback–Leibler divergence between the joint and product-of-marginals

distributions:

MI(Ŷ , S) ≈
∑

y∈{0,1}

∑
s∈{0,1}

P (Ŷ = y, S = s) log
P (Ŷ = y, S = s)

P (Ŷ = y)P (S = s)
(4.6)

which corresponds to summing over the four possible (y, s) combinations in the

binary case. The PrejudiceRemover class integrates this loss into a PyTorch train-

ing pipeline, allowing flexible model architectures via dependency injection and au-

tomatically converting FairLib’s DataFrame inputs into tensors for training. The

training routine ensures proper gradient flow through the mutual information term

(so that the model’s predictions are influenced by the penalty), and it supports
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both binary cross-entropy and mean squared error as the base loss (depending on

the prediction task). To help practitioners monitor progress, the implementation

includes extensive logging of metrics, tracking the model’s predictive performance

as well as fairness indicators (such as the estimated MI or group outcome differ-

ences) at each epoch. This mutual-information regularization approach (originally

proposed by Kamishima et al. [KAAS12]) encourages the model to produce fairer

predictions by explicitly discouraging any measurable dependency between Ŷ and

S.
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Chapter 5

Evaluation and Results

This chapter presents an empirical evaluation of the proposed Python library for

algorithmic fairness. We analyze its behavior along four complementary axes:

verbosity of the API, ease of use, seamless integration within existing machine–

learning pipelines, and quantitative impact on fairness metrics. The goal is to

provide a comprehensive view of the trade–offs introduced by the library and to

validate its practical utility.

5.1 Verbosity Analysis

In this section we quantify the amount of code required to express common fair-

ness workflows using the library such as computing fairness metrics, applying pre-

processing algorithms, and integrating in-processing techniques.

5.1.1 Metrics

The FairLib library provides a streamlined interface for computing a wide variety

of fairness metrics, allowing for efficient integration into experimental workflows.

In particular, it supports the evaluation of group fairness criteria with minimal

coding effort. The code snippet 5.1 illustrates how to compute key metrics such

as Statistical Parity Difference, Disparate Impact, and Equality of Opportunity,

which are commonly used to assess the presence of bias in classification models.�
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1 import fairlib as fl

2

3 dataset = load_example_dataset ()

4 fairlib_dataframe = fl.DataFrame(dataset)

5

6 # Setting the target feature and sensitive attributes

7 fairlib_dataframe.targets = ’income ’

8 fairlib_dataframe.sensitive = [’sex’, ’race’]

9

10 # Calculating fairness metrics

11 fairlib_dataframe.statistical_parity_difference ()

12 fairlib_dataframe.disparate_impact ()

13 fairlib_dataframe.equality_of_opportunity ()� �
Listing 5.1: Example Python script for computing fairness metrics

Only twelve lines-eight if we omit comments-are needed to progress from raw

tabular data to a structured fairness report. Each metric call returns a dictio-

nary. The library automatically infers the target and sensitive attributes from the

DataFrame metadata, eliminating the need for explicit parameter passing. This

significantly reduces cognitive load and potential errors in specifying these identi-

fiers.

5.1.2 Pre-processing Algorithms

The library’s pre-processing algorithms are designed to be easily applied to datasets

with minimal boilerplate code. The code snippet 5.2 demonstrates how to apply

the Reweighing algorithm, which adjusts instance weights to mitigate bias in clas-

sification tasks. The example shows how to instantiate the algorithm, fit it to the

data, and transform the dataset in just a few lines of code.�
1 import fairlib as fl

2

3 dataset = load_example_dataset ()

4 fairlib_dataframe = fl.DataFrame(dataset)

5

6 # Setting the target feature and sensitive attributes

7 fairlib_dataframe.targets = ’income ’
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8 fairlib_dataframe.sensitive = [’sex’, ’race’]

9

10 reweighing = fl.Reweighing ()

11 reweighed_df = reweighing.fit_transform(fairlib_dataframe)

12 # The reweighed DataFrame now contains adjusted instance

weights to mitigate bias in classification tasks.� �
Listing 5.2: Example Python script for applying the Reweighing pre-processing

algorithm

Support for multiple sensitive attributes enables intersectional fairness

analysis within the library’s framework. Instance weights are automatically com-

puted and appended to the dataset, allowing for seamless integration with scikit-

learn classifiers via the sample weight parameter.

The Reweighing algorithm is particularly useful for addressing disparities in

classification outcomes by adjusting the weights of instances based on their sensi-

tive attributes. The library’s design allows users to easily switch between different

pre-processing techniques, such as Learning Fair Representations or Disparate Im-

pact Remover, with minimal code changes.

5.1.3 In-processing Algorithms

The in-processing algorithms in FairLib are designed to be easily integrated into

existing machine learning workflows. The code snippet 5.3 illustrates how to apply

the Adversarial Debiasing algorithm, which trains a model to make predictions

while simultaneously minimizing bias with respect to sensitive attributes.�
1 import fairlib as fl

2 from sklearn.model_selection import train_test_split

3

4 EPOCHS = ...

5

6 X = load_feature_dataset ()

7 y = load_target_dataset ()

8

9 X_train , X_test , y_train , y_test = train_test_split(

10 X, y, test_size =0.3, random_state =42
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11 )

12

13 fair_model = fl.AdversarialDebiasing(

14 input_dim=X_train.shape [1],

15 hidden_dim =8,

16 output_dim =1,

17 sensitive_dim =1,

18 lambda_adv =1, # Fairness intervention

19 )

20

21 fair_model.fit(X_train , y_train , num_epochs=EPOCHS)

22 y_pred = fair_model.predict(X_test)� �
Listing 5.3: Example Python script for applying the Adversarial Debiasing in-

processing algorithm

The example shows how to instantiate the Adversarial Debiasing processor,

fit it to the training data, and make predictions with just a few lines of code.

The library’s design allows users to easily switch between different in-processing

techniques, such as FaUCI or Prejudice Remover, with minimal code changes.

5.2 Integration into Existing Pipelines

This section explores how the library can be embedded into pre–existing scikit–

learn /PyTorch pipelines with minimal refactoring. We discuss interoperability

with data preprocessing stages, hyperparameter optimization loops, and model

persistence mechanisms.

5.2.1 Preprocessing Integration

The library’s preprocessing algorithms can be seamlessly integrated into existing

data pipelines. The code snippet 5.4 shows a basic example of binary classification,

without the application of any fairness algorithms.�
1 from sklearn.linear_model import LogisticRegression

2 from sklearn.metrics import accuracy_score

3 from sklearn.model_selection import train_test_split
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4

5 X = load_features_dataset ()

6 y = load_target_dataset ()

7

8 X_train , X_test , y_train , y_test = train_test_split(X, y,

test_size =0.3, random_state =42)

9

10 classifier = LogisticRegression ()

11 classifier.fit(X_train , y_train)

12

13 y_pred = classifier.predict(X_test)

14 accuracy = accuracy_score(y_test , y_pred)

15

16 print(f"Accuratezza sul test set: {accuracy :.4f}")� �
Listing 5.4: Example Python script of a classification process without application

of fairness

In contrast, the code snippet 5.5 demonstrates how to apply the LFR pre-

processing algorithm to the same dataset, adjusting instance weights based on

sensitive attributes.�
1 import fairlib as fl

2 from sklearn.linear_model import LogisticRegression

3 from sklearn.metrics import accuracy_score

4 from sklearn.model_selection import train_test_split

5

6 X = load_features_dataset ()

7 y = load_target_dataset ()

8

9 X.sensitive = ’gender ’ # Example sensitive attribute

10 EPOCHS = ...

11 BATCH_SIZE = ...

12

13 X_train , X_test , y_train , y_test = train_test_split(X, y,

test_size =0.3, random_state =42)

14

15 layers_shape = X_train.shape [1]

16
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17 lfr = fl.LFR(

18 input_dim=layers_shape ,

19 latent_dim =8,

20 output_dim=layers_shape ,

21 alpha_z =1.0,

22 alpha_x =1.0,

23 alpha_y =1.0,

24 )

25

26 lfr.fit(X_train , y_train , epochs=EPOCHS , batch_size=BATCH_SIZE)

27

28 X_train_transformed = lfr.transform(X_train)

29 X_test_transformed = lfr.transform(X_test)

30

31 classifier = LogisticRegression ()

32 classifier.fit(X_train_transformed , y_train)

33

34 y_pred = classifier.predict(X_test_transformed)

35 accuracy = accuracy_score(y_test , y_pred)

36

37 print(f"Accuratezza sul test set: {accuracy :.4f}")� �
Listing 5.5: Example Python script of a classification process with application of

fairness

This example illustrates how the library’s preprocessing algorithms can be eas-

ily integrated into existing data pipelines, allowing users to apply fairness tech-

niques without significant changes to their codebase. The preprocessing step is

performed before model training, ensuring that the model learns from a fair rep-

resentation of the data.

5.2.2 In-processing Integration

The library’s in-processing algorithms can be integrated into existing model train-

ing workflows with minimal code changes. The code snippet 5.6 shows a basic

example of training a PyTorch model without applying any fairness techniques.�
1 from sklearn.model_selection import train_test_split
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2 from sklearn.metrics import accuracy_score

3 import torch

4 import torch.nn as nn

5 import torch.optim as optim

6

7 EPOCHS = ...

8

9 X = load_features_dataset () # torch.tensor (N, D)

10 y = load_target_dataset () # torch.tensor (N,)

11

12 X_train , X_test , y_train , y_test = train_test_split(

13 X, y, test_size =0.3, random_state =42)

14

15 class SimpleNN(nn.Module):

16 def __init__(self , input_dim):

17 super().__init__ ()

18 self.linear = nn.Linear(input_dim , 2)

19

20 def forward(self , x):

21 return self.linear(x)

22

23 model = SimpleNN(X.shape [1])

24 loss_fn = nn.CrossEntropyLoss ()

25 optimizer = optim.Adam(model.parameters ())

26

27 for _ in range(EPOCHS):

28 optimizer.zero_grad ()

29 output = model(X_train)

30 loss = loss_fn(output , y_train)

31 loss.backward ()

32 optimizer.step()

33

34 with torch.no_grad ():

35 preds = torch.argmax(model(X_test), dim=1)

36 acc = accuracy_score(y_test.numpy(), preds.numpy())

37 print(f"Accuratezza sul test set: {acc:.4f}")� �
Listing 5.6: Example Python script of a PyTorch model training process without

application of fairness
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In contrast, the code snippet 5.7 demonstrates how to apply FaUCI in-processing

algorithm during model training.�
1 from sklearn.model_selection import train_test_split

2 from sklearn.metrics import accuracy_score

3 import torch

4 import torch.nn as nn

5 import torch.optim as optim

6

7 import fairlib as fl

8

9 EPOCHS = ...

10 BATCH_SIZE = ...

11

12 X = load_features_dataset () # torch.tensor (N, D)

13 y = load_target_dataset () # torch.tensor (N,)

14

15 X.sensitive = ’gender ’

16

17 X_train , X_test , y_train , y_test = train_test_split(

18 X, y, test_size =0.3, random_state =42

19 )

20

21

22 class SimpleNN(nn.Module):

23 def __init__(self , input_dim):

24 super().__init__ ()

25 self.linear = nn.Linear(input_dim , 2)

26

27 def forward(self , x):

28 return self.linear(x)

29

30

31 model = SimpleNN(X.shape [1])

32

33

34 fauci_model = fl.Fauci(

35 torchModel=model ,

36 optimizer=optim.Adam(
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37 model.parameters(

38 model.parameters (),

39 lr =0.001

40 )

41 ),

42 loss=nn.CrossEntropyLoss (),

43 fairness_regularization="spd", # or "di" or others

supported by _torch_metrics

44 regularization_weight =0.5, # Example weight , adjust as

needed

45 )

46

47 fauci_model.fit(X, y, epochs=EPOCHS , batch_size=BATCH_SIZE)

48

49 with torch.no_grad ():

50 preds = torch.argmax(fauci_model.predict(X_test), dim=1)

51 acc = accuracy_score(y_test.numpy(), preds.numpy())

52 print(f"Accuratezza sul test set: {acc:.4f}")� �
Listing 5.7: Example Python script of a PyTorch model training process with

application of fairness

This example illustrates how the library’s in-processing algorithms can be easily

integrated into existing model training workflows, allowing users to apply fairness

techniques without significant changes to their codebase. The in-processing step

is performed during model training, ensuring that the model learns to make fair

predictions while optimizing for accuracy.

5.3 Effect of Mitigation on Fairness

5.3.1 Experimental Setup

We describe the datasets, target variables, protected attributes, and evaluation

protocol employed to measure fairness both prior to and after applying the library’s

pre–processing and in–processing algorithms. For this evaluation, we use the Adult

Income dataset [BK96], which contains demographic information about individuals

and whether they earn more than $50,000 per year. The sensitive attribute is sex,
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and the target variable is income (binary classification: income ≤ $50,000 vs.

income > $50,000). The dataset is split into training and test sets, with the

training set used for model fitting and the test set for evaluation.

The evaluation protocol, for pre-processing algorithms, consists of the fol-

lowing steps:

1. Compute fairness metrics (Statistical Parity Difference, Disparate Impact)

on the original dataset.

2. Apply pre-processing algorithms (Reweighing, Learning Fair Representa-

tions, Disparate Impact Remover) to the training set.

3. Train a classifier (logistic regression) on the transformed training set.

4. Compute fairness metrics on the test set after applying the pre-processing

algorithms.

For in-processing algorithms, the evaluation protocol consists of:

1. Compute fairness metrics (Statistical Parity Difference, Disparate Impact)

on the original dataset.

2. Train a classifier (Neural Network) with in-processing algorithms (Adversar-

ial Debiasing, FaUCI, Prejudice Remover) integrated into the training loop.

3. Compute fairness metrics on the test set after training with in-processing

algorithms.

5.3.2 Results Summary

A concise presentation of key numerical results, focusing on disparity measures

(e.g., Statistical Parity Difference, Disparate Impact) and accuracy.

Pre-processing Algorithms Results

The results of applying pre-processing algorithms to the Adult Income dataset

are summarized in 3 figures. Figure 5.1 shows the accuracy of the baseline model

and the models trained after applying pre-processing algorithms. The accuracy
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Figure 5.1: Accuracy score for the baseline model and the models trained after
applying pre-processing algorithms. The accuracy is computed on the test set of
the Adult Income dataset.

is computed on the test set of the Adult Income dataset. Figure 5.2 shows the

Statistical Parity Difference (SPD) for the baseline model and the models trained

after applying pre-processing algorithms. The SPD is computed on the test set

of the Adult Income dataset. Figure 5.3 shows the Disparate Impact (DI) for the

baseline model and the models trained after applying pre-processing algorithms.

The DI is computed on the test set of the Adult Income dataset.

From the results obtained by applying the algorithms in the pre-processing

module, we observe that all algorithms successfully reduce the Statistical Parity

Difference (SPD) and Disparate Impact (DI) metrics compared to the baseline

model.
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Figure 5.2: Statistical Parity Difference (SPD) for the baseline model and the
models trained after applying pre-processing algorithms. The SPD is computed
on the test set of the Adult Income dataset.
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Figure 5.3: Disparate Impact (DI) for the baseline model and the models trained
after applying pre-processing algorithms. The DI is computed on the test set of
the Adult Income dataset.
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Figure 5.4: Accuracy score for the baseline model and the models trained after
applying in-processing algorithms. The accuracy is computed on the test set of
the Adult Income dataset.

In-processing Algorithms Results

The results of applying in-processing algorithms to the Adult Income dataset are

summarized in 3 figures. Figure 5.4 shows the accuracy of the baseline model

and the models trained after applying in-processing algorithms. The accuracy

is computed on the test set of the Adult Income dataset. Figure 5.5 shows the

Statistical Parity Difference (SPD) for the baseline model and the models trained

after applying in-processing algorithms. The SPD is computed on the test set of

the Adult Income dataset. Figure 5.6 shows the Disparate Impact (DI) for the

baseline model and the models trained after applying in-processing algorithms.

The DI is computed on the test set of the Adult Income dataset.

From the results obtained by applying the algorithms in the in-processing mod-

ule, we observe that all algorithms successfully reduce the Statistical Parity Differ-

ence (SPD) and Disparate Impact (DI) metrics compared to the baseline model.
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Figure 5.5: Statistical Parity Difference (SPD) for the baseline model and the
models trained after applying in-processing algorithms. The SPD is computed on
the test set of the Adult Income dataset.
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Figure 5.6: Disparate Impact (DI) for the baseline model and the models trained
after applying in-processing algorithms. The DI is computed on the test set of the
Adult Income dataset.

64 CHAPTER 5. EVALUATION AND RESULTS



5.3. EFFECT OF MITIGATION ON FAIRNESS

5.3.3 Discussion

The experimental results confirm that both the pre-processing and in-processing

algorithms implemented in the fairness-aware library are effective in mitigating

bias in classification tasks while preserving competitive predictive performance.

Specifically, the Statistical Parity Difference (SPD) and Disparate Impact (DI)

metrics exhibit substantial improvements over the baseline model, demonstrating

a marked reduction in outcome disparities between sensitive groups.

In the in-processing experiments, the baseline classifier largely mirrors the class

imbalance present in the training data: because roughly 75% of the training in-

stances belong to the negative class (label 0), the model predicts that outcome

at a similar rate. In contrast, models trained with fairness constraints not only

achieve a more balanced distribution of predicted classes — including a greater

proportion of positive outcomes (accuracy) — but also exhibit improved fairness

metrics. These results suggest that fairness-aware interventions can guide the

learning process toward more equitable and accurate decision boundaries.
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Chapter 6

Conclusion and Future Work

This thesis introduced FairLib, a modular and extensible Python library specifi-

cally engineered to address the challenges of implementing fairness-aware machine

learning in real-world scenarios. FairLib provides a unified, production-oriented

interface that consolidates a broad spectrum of fairness metrics and bias mitiga-

tion algorithms, supporting both pre-processing and in-processing interventions.

Its architecture is designed for seamless integration with popular machine learning

frameworks such as scikit-learn and PyTorch, enabling practitioners to incorporate

fairness considerations into their existing workflows with minimal friction.

The library’s design emphasizes usability, flexibility, and extensibility. By em-

bedding metadata for sensitive attributes and targets directly into the data struc-

ture, FairLib streamlines the process of fairness evaluation and mitigation, reduc-

ing boilerplate and minimizing the risk of errors. The consistent API across all

modules allows users to easily switch between different fairness metrics and mitiga-

tion strategies, facilitating rapid experimentation and comparative analysis. The

inclusion of advanced algorithms—such as Reweighing, Learning Fair Representa-

tions, Disparate Impact Remover, Adversarial Debiasing, FaUCI, and Prejudice

Remover—ensures that users can address a wide range of fairness definitions and

application contexts.

Empirical evaluation on benchmark datasets, such as the Adult Income dataset,

demonstrates that FairLib’s algorithms are effective in reducing bias as measured

by key metrics like Statistical Parity Difference (SPD) and Disparate Impact (DI),
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while maintaining competitive predictive accuracy. The results confirm that both

pre-processing and in-processing approaches implemented in FairLib can substan-

tially mitigate unfairness in classification tasks, supporting more equitable model

outcomes without prohibitive performance trade-offs.

Overall, FairLib advances the state of the art in fairness-aware machine learn-

ing tooling by lowering the barriers to adoption, promoting best practices, and

enabling systematic, reproducible fairness interventions throughout the machine

learning lifecycle. Its modular and extensible design positions it as a valuable

resource for both researchers and practitioners seeking to build transparent, ac-

countable, and equitable AI systems.

6.1 Future Work

A primary direction for future work is the addition of post-processing algorithms

to FairLib. Post-processing techniques operate on the outputs of trained models,

adjusting predictions to satisfy fairness constraints without requiring changes to

the underlying data or model architecture. By supporting post-processing meth-

ods—such as Equalized Odds, Reject Option Classification, and Calibrated Equal-

ized Odds—FairLib would enable practitioners to retrofit fairness guarantees onto

existing models, even in scenarios where retraining is infeasible or access to sen-

sitive attributes is restricted during training. Integrating these algorithms would

further broaden the applicability of FairLib, allowing users to address fairness con-

cerns at every stage of the machine learning pipeline and to comply with evolv-

ing regulatory requirements. Future releases will prioritize a unified interface for

post-processing mitigations, ensuring consistency with the library’s existing pre-

processing and in-processing modules. In addition to post-processing, it is planned

to expand the library’s functionalities by including additional fairness metrics, new

algorithms, and integration with other machine learning frameworks. It is also

planned to improve the documentation and examples to facilitate adoption by a

wider audience. Further empirical evaluations on different datasets and tasks are

planned to validate the effectiveness of the library in real-world scenarios.
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