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Sommario

Negli ultimi decenni, i progressi nella chemioterapia hanno contribuito ad aumenta-

re la sopravvivenza dei pazienti oncologici, ponendo tuttavia l’attenzione su una nuova

priorità clinica: il miglioramento della qualità della vita nei sopravvissuti, spesso com-

promessa da effetti collaterali persistenti. Tra questi, fino al 70% dei pazienti segnala

difficoltà cognitive, note come chemobrain, che includono deficit di concentrazione, ra-

gionamento, apprendimento e memoria, rendendo difficile lo svolgimento delle attività

quotidiane. Nonostante la rilevanza del fenomeno, attualmente non esistono strategie

efficaci per la sua prevenzione o trattamento.

In questo contesto, il progetto AI4ChemoBrain intende sviluppare un modello predit-

tivo di rischio individuale dell’insorgenza di chemobrain, attraverso l’impiego di tecnolo-

gie di apprendimento automatico e intelligenza artificiale.

Il presente studio si inserisce nella fase iniziale del progetto, dedicata all’analisi di

un dataset storico contenente dati comportamentali ottenuti da test cognitivi effet-

tuati su modelli murini. L’obiettivo è lo sviluppo di un classificatore in grado di pre-

vedere la presenza di deterioramento cognitivo nei soggetti. A tal fine, sono stati ad-

destrati e valutati diversi algoritmi supervisionati di machine learning, che hanno portato

all’identificazione di modelli con un’accuratezza superiore al 95%. Tali sistemi costitui-

scono uno strumento affidabile per l’individuazione dei soggetti con deficit cognitivi,

risultando utili per le fasi successive del progetto.

È stata inoltre condotta un’analisi esplorativa mediante algoritmi non supervisionati,

volta all’identificazione di eventuali fattori predittivi alternativi. Tuttavia, i risultati

non hanno evidenziato nei dati caratteristiche coerenti con la presenza di disfunzioni

cognitive, in linea con quanto rilevato dai modelli di classificazione supervisionata.
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Chapter 1

Introduction

This research is part of the AI4ChemoBrain project, which aims to develop a machine

learning-based tool to predict cognitive impairment in cancer patients undergoing chemo-

therapy. The focus of this study is on the analysis of historical preclinical data to create

supervised and unsupervised machine learning models to detect cognitive impairment

and identify potential novel predictive factors.

1.1 Motivation

Cognitive impairment is a debilitating side effect experienced by patients with cancer

treated with systemically administered anticancer therapies. With around 19.3 million

new cases of cancer worldwide in 2020 and the five year survival rate growing from

50% in 1970 to 67% in 2013, an urgent need exists to understand enduring side effects

with severe implications for quality of life. Among these, cognitive impairment is one

of the most challenging, as it severely affects daily functioning and general well-being of

individuals.

Often referred to as “chemobrain” or “chemofog”, cognitive impairment associated

with cancer treatment is characterized by a decline in performance in cognitive function

related to learning, attention, executive functions, memory, multitasking, and processing

speed, and is associated with chemotherapy, hormone therapy, immunotherapy, and tar-

geted therapies. Prevalence of clinically significant cognitive impairment varies between
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17% and 78% with self-reported measures, and is approximately 33% using objective

neurocognitive testing in post-chemotherapy patients with breast cancer. Although co-

gnitive impairment is a key factor in preventing patients from regaining their previous

quality of life, no management strategies or clinical guidelines are available [1].

In this context, the AI4ChemoBrain project aims to generate a tool for clinical use

to predict the onset of chemobrain based on machine learning (ML) and artificial intelli-

gence (AI) technologies. The objective of the project is the development of a predictive

demonstrator for cognitive complications during chemotherapy based on subject-derived

phenotype and omics data.

The model will exploit the tools of machine learning and artificial intelligence and

will be trained with historical datasets collected over the last 15 years from preclinical

models of cognitive decline and omics data, already validated through statistical analysis

and scientific publication. The ML/AI model will be tested with a dataset derived from a

preclinical chemobrain model, in order to assess the predictive ability of the chemobrain.

The project will then validate the predictive model with internal and external cohorts to

ensure its robustness, effectiveness, and translatability in the clinical environment. The

ultimate goal is the transfer of the model to the clinical setting to promote adjuvant

therapies and support personalised medicine, helping to improve the empowerment of

cancer patients and reduce the economic burden of treatment side effects.

The AI4ChemoBrain project is co-funded by the Emilia-Romagna ERDF Regional

Programme (ERDF RP) 2021-2027, ACTION 1.1.2 [2].

1.2 Research objectives

Within the AI4ChemoBrain project, which is still in its early stages, my contribution

focuses on the analysis of historical data related to preclinical models of cognitive decline.

These data, provided by the lead partner of the project IRET Foundation, consist of

behavioural measures from murine models collected through well-established cognitive

tests.

The primary objective of the analysis is to develop a supervised machine learning

model capable of detecting cognitive impairment, based on the validated historical data-
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set. This model will serve as a reliable tool for classifying samples in new datasets

generated during the later stages of the project, providing a solid foundation for the

assessment of cognitive decline in subsequent phases. To achieve this goal, various ML

algorithms are trained and evaluated, in order to identify the most accurate model. Also,

an analysis is performed to understand the impact of specific characteristics in predicting

cognitive impairment, finding the most influential ones.

In addition, an exploratory unsupervised approach is used to investigate potential

alternative predictive factors of cognitive impairment. By applying clustering techniques,

the goal is to uncover novel patterns or factors that may not be immediately evident from

traditional predictive models.

1.3 Thesis structure

The thesis is structured into the following chapters:

• Chapter 1: This chapter introduces the motivations and context in which the study

was conducted and outlines the main goals of the research.

• Chapter 2: This chapter reviews the state of the art, defines key concepts, and

provides the necessary definitions to understand the framework of the research, fo-

cusing on cognitive impairment in murine models and the behavioural tests used to

assess it.

• Chapter 3: This chapter provides a detailed description of the dataset used in the

study, including its origin, structure, and integration process. It also presents an

exploratory data analysis to examine attribute types, distributions, and key patterns

through statistical and visualization techniques.

• Chapter 4: This chapter describes the data preprocessing phase, a critical step in

obtaining high-quality data. It presents the methods used to clean, normalize, and

transform the raw data into a suitable format for analysis.
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• Chapter 5: This chapter provides an overview of machine learning models, describing

concepts and mechanisms of the supervised and unsupervised techniques used.

• Chapter 6: This chapter gives a description of the modelling phase for the classifica-

tion task of the project. It reports the results of the trained models and provides a

comparison between them. Performance evaluation and interpretation of the classi-

fiers are also provided for a complete understanding of the results obtained.

• Chapter 7: This chapter describes the unsupervised analysis objectives and the results

obtained from the clustering techniques used. It gives an interpretation of the models

trained, exploring the correlation between the identified clusters and the true labels

associated with the samples.

• Chapter 8: This chapter provides a comprehensive understanding of the results ob-

tained by both the supervised and unsupervised approaches, within the specific con-

text of the project. It draws conclusions from the study and outlines future research

directions.
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Chapter 2

State of the Art

Animal models are essential for studying both normal and disordered cognitive pro-

cesses. In particular, murine models provide a fundamental framework for evaluating

cognitive performance, offering valuable insights into learning and memory deficits. Be-

havioural tests serve as key tools for the assessment of cognitive impairment.

2.1 Cognition in murine models

Cognition is the mental action or process of acquiring knowledge and understanding

through thought, experience, and the senses. It encompasses all aspects of intellectual

functions and processes such as perception, attention, learning, memory, comprehension

and production of language, intelligence, and reasoning [3].

Specifically, memory is defined as the ability to store, maintain, and retrieve in-

formation, while learning is the acquisition of information that changes behaviour and

memory. In addition, memory is classified according to different criteria, including dura-

tion (short-term memory and long-term memory), function (working memory and refer-

ence memory), and content (explicit memory and conceptual memory) [4].

The task of understanding deficits in memory and learning in humans is daunting

due to the complexity of neural and cognitive mechanisms in the nervous system. This

job is made more difficult for clinicians and researchers by the fact that many techniques

used to research memory are not ethically acceptable or technically feasible for use in
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humans [4]. However, humans and animals exhibit significant similarities in cognitive

abilities, such as episodic memory and spatial orientation skills. In particular, murine

models (mice and rats) share numerous neurological and brain dynamics similarities

with humans. For instance, in both humans and rodents, the ability to orient toward

specific reference points and to create cognitive spatial maps is essential for survival and

is mediated by common brain structures, such as the hippocampus [5]. These shared

mechanisms make murine models a valuable tool for exploring the fundamental processes

of cognition and its dysfunctions, such as deficits in memory and learning.

Therefore, to improve the study of human pathological conditions, simulations are

conducted using animal models. Cognitive decline can be induced in rodents through

various methodologies, including brain lesions, genetic manipulations, or pharmacological

treatments.

Among the various models, the Tg2576 mouse is widely used to investigate learning

and memory. It is a transgenic model for the study of Alzheimer’s disease (AD),

a neurodegenerative disorder characterized by memory loss and personality changes,

leading to dementia.

The Tg2576 model expresses a mutation in the APP (Amyloid Precursor Protein)

gene, leading to the formation of amyloid plaques in the brain, one of the key pathological

features of AD. Tg2576 mice develop behavioural manifestations similar to those observed

in humans affected by Alzheimer’s disease, such as deficits in memory and learning.

These animals exhibit difficulties in navigating complex environments, mirroring epi-

sodic memory loss and impaired executive functions seen in patients with senile dementia.

They present an impairment of short-term memory at about 9 months of age, while long-

term memory shows a marked deterioration around 12 months [6]. These characteristics

make Tg2576 mice an ideal model for investigating the mechanisms underlying cognitive

impairment, as well as for testing potential pharmacological therapies.

2.2 Cognitive impairment assessment

Cognitive impairment is assessed through behavioural tests that evaluate specific

cognitive abilities, such as memory, spatial learning, attention, and problem-solving skills.
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Over the decades, different tests have been developed to analyse learning and memory

disorders in animals. Among the most used are the Morris Water Maze, Novel Object

Recognition, Y-Maze, Open Field, Touch-Screen Systems, and Contextual Fear Condi-

tioning. Each of these tests explores different brain domains, requires different techno-

logical support, and has its own strengths and limitations. Three of these tests used in

the study of cognition in laboratory rodents are described below.

2.2.1 Morris Water Maze

The Morris Water Maze (MWM) is a spatial learning test for rodents, developed

by the neuroscientist Richard Morris. Spatial learning refers to the animal’s ability to

learn the location of a reward. The MWM assesses the ability to learn to find a hidden

platform in a swimming arena, using distal cues.

The test procedure involves placing the animal in a circular pool filled with water

and evaluating the strategy it adopts to reach a target area, a platform positioned at

a specific point in the pool. The subject must learn to use distal cues (i.e., visual

landmarks arranged around the pool) to navigate a direct path to the platform, which

is made invisible (submerged under the water’s surface). The animal is given a series

of daily trials, starting from different positions around the perimeter of the pool. With

repeated trials, an improvement in the ability to quickly locate the platform is observed,

demonstrating the acquisition of familiarity with the environment and spatial learning.

At the end of the learning phase, a final trial (probe trial) is conducted, during which

the platform is removed from the pool, and the animal’s search in what was the target

area is evaluated [7] [8].

Figure 2.1: MWM test: setup and learning progression.
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Subjects with cognitive impairments struggle to perform the task, as they fail to

remember the platform’s location and consequently exhibit inefficient navigation within

the arena.

The main measurements of the MWM are: Path Length, Latency (swim time: the

time from the start of the test to the identification of the platform), and Swim Speed.

The MWM method offers several advantages for assessing cognitive function in ro-

dents: (1) It does not require pre-training and can be completed quickly with a small

number of animals. (2) It allows analysis of learning and memory retrieval through

“training” and “probe” trials. (3) It eliminates confounding olfactory cues. (4) It helps

distinguish non-mnemonic behaviours and identify motor or motivational deficits. (5) It

enables learning and relearning experiments, allowing multiple drug doses to be tested on

the same group. (6) It avoids more aversive procedures like food deprivation or electric

shock. (7) It is cost-effective, easy to set up, and simple to use [9].

However, the MWM test also has some limitations that could affect the analysis

of the experiment: (1) It may cause stress or hypothermia in the animals, which can

influence spatial learning. (2) The influence of non-cognitive factors on performance. (3)

The impact of the swimming strategy adopted by the animal on performance. (4) It is

less sensitive in evaluating working memory than other methods [10].

2.2.2 Contextual Fear Conditioning

The Contextual Fear Conditioning (CFC) is a test that evaluates fear conditioning,

useful for analysing the mechanisms of learning and memory in animals and exploring

the behavioural response to the perception of danger. The idea behind fear conditioning

is that a fearful experience establishes an emotional memory that can result in long-term

behavioural changes and, in some cases, these changes can become part of the permanent

behavioural repertoire of the individual.

In this paradigm, mice are conditioned by pairing a tone (conditioned stimulus, CS)

with foot shock (unconditioned aversive stimulus, US). The animals are later examined in

two ways: one evaluates contextual fear and the other examines fear responses elicited by
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the CS (cued fear conditioning). Fear in both tests is signified by immobility or freezing

behaviour. This response is a direct reflection of the conditioned emotional response in

animals [7].

Figure 2.2: CFC test: schematic representation of the protocol.

The main parameter assessed in CFC is the % of Freezing (the duration of immobili-

zation of the subject relative to the total duration of the test).

The strengths of the fear conditioning paradigm are multiple: (1) Conditioning re-

quires only a single session. (2) The stimuli are under direct control of the investigator.

(3) The behavioural responses have been operationally defined, validated, and are simple

to measure [7].

During testing, specific precautions must be taken to ensure that the observed emo-

tional responses are due to conditioning and not to other factors: (1) Since odours

can influence rodent behaviour and induce freezing, the testing room must be properly

cleaned between experiments using odourless cleaning products. (2) Animals should be

housed in a group before testing, as isolation can cause abnormal behaviours and inter-

fere with attention and learning. (3) Test subjects should be kept in a different room

from the testing area to prevent them from hearing the stimulus before the test [7].

2.2.3 Y-Maze

The Y-Maze test (YM) is used to measure short-term spatial memory in murine

models. It is based on rodents’ intrinsic curiosity to explore new environments while

there are no positive or negative stimuli in the maze.
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This test uses a Y-shaped maze consisting of three arms of equal size and equidistant

from each other, identified as A, B, and C. The animal is initially placed in arm A and

allowed to freely explore the maze for a limited period (typically 8 minutes). Explora-

tion is considered optimal when the subject visits all three arms in sequence without

immediate repetitions, demonstrating the ability to remember and continuously update

information about the last arm explored. In contrast, memory impairment disrupts

this ability, leading to a lower percentage of spontaneous alternations. Therefore, a

high percentage of alternation is indicative of good short-term spatial memory, where

alternation is defined as a sequence of consecutive entries into three different arms [4]

[11] [12].

Figure 2.3: YM test: illustration of examples of a correct and an incorrect alternation.

The main parameters considered for YM analysis are:

• No Entries Tot (the total number of entries into the arms)

• Visited Arms (the sequence of visited arms: A, B, C)

• No of Alternations (the number of alternations)

An alternation is defined as a sequence of consecutive entries into three different

arms. For example, if the sequence of arm entries is ABCABC, the alternations

are 4: ABC, BCA, CAB, ABC. In the Y-maze, there are six possible alternation

sequences (clockwise: ABC, BCA, CAB; anti-clockwise: ACB, CBA, BAC).

• % of Correct Alternations (percentage of correct alternations)
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The percentage of correct alternations is calculated as follows:

% of Correct Alternations =

(
No of Alternations

No Entries Tot− 2

)
× 100 (2.1)

One of the main advantages of the Y-Maze is its simplicity: it does not require rules

learning, extensive animal handling, or food or water deprivation for prolonged periods

[13].

Although valuable, the Y-maze task has several limitations. The interpretation of

results can be complex in models exhibiting locomotor alterations (hypo- or hyper-

locomotion), stereotypic behaviours, or anxiety-related novelty avoidance. Furthermore,

high performance in the test may reflect rigid and repetitive behaviour rather than actual

memory efficiency, making it challenging to distinguish between functional memory and

behavioural perseveration [13].

2.3 Y-Maze test: a deeper insight

This paragraph provides a more detailed analysis of the Y-Maze test, as the historical

dataset examined in this study consists of performance data from preclinical models that

underwent this test.

First, performance in this test is evaluated based on the % of Correct Alternations

parameter: the higher this value, the better the performance, while a lower value indi-

cates a cognitive deficit.

It is important to note that in murine models, specifically in Tg2576 mice, this deficit

(impairment in spontaneous alternations) typically appears around 9 months of age [6].

To date, most studies that have used this cognitive test have been restricted to a

narrow range of parameters derived from the test, such as the total number of entries

(No Entries Tot) and the number of alternations (No of Alternations).

Recent advances in video-tracking technology have enabled the analysis of various be-

havioural aspects in addition to arm entry and alternation rates. These technologies
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offer contour-based tracking with millisecond resolution, enhancing the accuracy of loco-

motive behaviour analysis. Furthermore, applying deep learning techniques has greatly

improved the accuracy of body point detection, enabling the tracking of multiple body

points and the analysis of a rich behavioural repertoire [14].

Among the additional parameters available from the Y-Maze test tracking software,

there are the following:

• Duration (total duration of the test)

• Distance (total distance covered by the animal)

• No Entries A/B/C (number of entries into each arm)

• First Zone Entered (first arm visited by the animal)

• Mean Speed (mean speed performed by the animal)

• Max Speed (maximum speed reached by the animal during the test)

• Rotations (total number of full-body rotations performed)

• Clockwise Rotations (number of full-body rotations in the clockwise direction)

• Anti-clockwise Rotations (number of full-body rotations in the counterclockwise di-

rection)

• Path Efficiency (index of the efficiency of the path taken by the animal to get from

the first position in the test to the last position)

Furthermore, the software can provide a set of additional parameters specific to each

arm (A, B, C) and to particular sequences (ABC, BCA, CAB, etc.).

For each arm, available statistics include:

• No of Entries (number of entries in the specific arm)

• No of Exits (number of exits from the specific arm)

• Time (total time spent in the arm during the test)
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• Distance (total distance traveled in the arm)

• Mean Speed (mean speed performed in the arm)

Similarly, for each sequence, the software can track:

• Number (number of times the sequence was performed)

• Time (total time spent performing the sequence)

• Latency to 1st Start (time before the first occurrence of the sequence)

• Average/Minimum/Maximum Distance (average, shortest, and longest distances cov-

ered during the execution of the sequence)

• Average/Minimum/Maximum Duration (average, shortest, and longest durations of

the sequence performances)

The parameters listed above represent only a portion of the data provided by the

Y-Maze test tracking software. In addition to these, the system monitors a wide range

of variables, allowing for a comprehensive analysis of locomotor patterns, exploration

strategies, and behavioural dynamics.

The analysis of these additional parameters can be useful for a deeper understanding

of cognitive function and potential deficits in murine models. They are a potential

instrument to integrate and improve the results obtained from the analysis of traditional

measures alone.

Although high spatio-temporal resolution tracking data are readily available, and

facilitate the analysis of various behavioural factors, the influence of these parameters

on the spontaneous alternation rate remains unexplored.
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Chapter 3

Dataset Description

Real-world data are typically noisy, incomplete, and may originate from heteroge-

neous sources. A thorough comprehension of the dataset, including its structure, attrib-

utes, and inherent patterns, is essential to ensure its quality and reliability. Knowledge

about data is useful for data preprocessing, the first major task of the data mining

process.

3.1 Dataset overview

The dataset used in this study consists of data collected from the Y-Maze cognitive

test performed on murine models. Data represent the performance of subjects in this

test, capturing key behavioural metrics that reflect their cognitive abilities. By analysing

these performance indicators, potential cognitive disorders can be assessed.

3.1.1 Data origin

The dataset is a historical collection derived from studies conducted over the past 15

years at the IRET Foundation laboratory (Bologna).

The data collection was constructed according to specific criteria. First, all studies

conducted in the laboratory were screened to identify those that involved mice and fo-

cused on learning and memory tests, specifically Morris Water Maze, Contextual Fear

Conditioning, and Y-Maze. From this subset, only studies involving the Tg2576 murine
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model of Alzheimer’s disease were selected. To ensure data reliability, additional refine-

ment steps were applied, excluding cohorts that did not meet specific validation criteria,

such as those not supported by scientific publications.

For this research, the analysis focuses specifically on the results obtained from the

Y-Maze cognitive test.

3.1.2 Data integration

The Y-Maze data were provided by the project partners in two distinct datasets, each

containing different aspects of the data collected during the YM test.

The first collection (Dataset 1: dataset init.xlsx ) contains labelled data, including

subject characteristics and a limited set of key parameters of the test (No Entries Tot,

Visited Arms, % of Correct Alternations). This set of data consists of 556 samples,

gathered from nine different studies.

The second collection (Dataset 2: dataset ymaze received.xlsx ) is unlabelled and in-

cludes a comprehensive set of 196 features extracted from the YM tracking software,

alongside subject-related attributes. These additional parameters provide valuable in-

sights that can enhance the understanding of the subjects’ performance. This dataset

comprises 462 samples, collected from seven distinct studies.

The Final Dataset (dataset def.xlsx ) used in this study was created by integrating

these two independent collections.

The integration process was carried out on the basis of the common attributes shared

by both datasets. Specifically, the additional parameters from Dataset 2 were merged

with the labelled data in Dataset 1, ensuring that each sample retained its original

classification while incorporating the extended feature set. To ensure completeness and

consistency, only the samples present in both collections were included, resulting in a

final dataset where each record contains values for every feature.

To facilitate this integration, data harmonization steps were necessary to resolve in-

consistencies between the two collections. These included standardising attribute names

to ensure correspondence between equivalent features and addressing discrepancies in

formatting and structure (details on this cleaning process in Chapter 4).
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This integration resulted in a comprehensive dataset of 388 samples, containing a

wide range of cognitive performance metrics (see Table 3.1). The final dataset is smaller

than the initial collections of data because the two datasets were not entirely compatible.

Only samples in both collections were retained for integration.

Dataset Samples YM Features Label

Dataset 1 556 3 Yes

Dataset 2 462 196 No

Final Dataset 388 196 Yes

Table 3.1: Summary of dataset characteristics before and after integration.

By combining these sets of data, a more robust and diverse dataset was obtained,

ensuring a more complete representation of cognitive performance and enabling a more

accurate and generalizable analysis.

3.1.3 Dataset structure

The final dataset consists of multiple groups of attributes, each providing essential

information about the subjects and their cognitive performance.

The attributes are structured as follows:

• Subject Identifier (2 attributes): Unique identifier of each subject, consisting of

Animal ID and Study.

• Subject-Related Data (3 attributes): Biological characteristics of the subjects,

including Strain, Gender, and Age (expressed in months).

• YM Performance Metrics (196 attributes): Quantitative measures extracted from

the Y-Maze test, categorized into:

◦ General Parameters (19 attributes): General performance indicators.
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◦ Arm-Related Parameters (35 attributes x 3 arms): Features describing movements

in a specific arm of the maze.

◦ Sequence-Related Parameters (12 attributes x 6 sequences): Metrics analysing

specific movement sequences.

• Label (3 attributes): Classification of cognitive performance for different levels of

certainty, Label 80, Label 90, and Label 100.

The complete list of attributes of the dataset can be found in Appendix A.

The label assigned to each subject indicates the presence or absence of cognitive

impairment based on their performance in the Y-Maze test. Specifically, the classification

was determined using the % of Correct Alternations parameter, which serves as a

critical measure of cognitive function. This classification was established according to

predefined thresholds, which were derived from a detailed analysis of the % of Correct

Alternations parameter.

Each subject was assigned one of three possible labels:

• IMPAIRED, if their performance fell below the lower threshold, indicating cognitive

impairment.

• UNIMPAIRED, if their performance exceeded the upper threshold, suggesting in-

tact cognitive function.

• MID, if their performance was within an intermediate range, where there was un-

certainty about the presence of cognitive impairment.

The thresholds used to define these categories were established based on the 95%

Confidence Interval (C.I.) of the % of Correct Alternations parameter.

To account for different levels of certainty in label assignment, three distinct proba-

bility ranges were established: 80-90%, 90-100%, and 100% probability.

As a result, each subject was assigned three distinct labels corresponding to these

probability levels. The thresholds for the % of Correct Alternations parameter, which

guided the labelling process, are presented in Table 3.2.
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Probability Range Unimpaired (%) Range Impaired (%)

100% > 82.50 < 15.50

< 100% and > 90% > 68.50 < 53.50

< 90% and > 80% > 65.50 < 58.50

Table 3.2: Impaired/Unimpaired range definition.

It can be seen that as the probability increases—indicating a higher certainty in la-

bel assignment—the classification thresholds become more restrictive. Specifically, the

upper threshold for the Unimpaired category increases, requiring a higher percentage of

correct alternations to be classified as unimpaired. Conversely, the lower threshold for

the Impaired category decreases, meaning that a lower percentage of correct alterna-

tions is needed to be classified as impaired. Therefore, the intermediate range of values

corresponding to the Mid category expands, reflecting a wider range of uncertainty in

classification.

This labelling approach provides a classification of subjects into three categories of

cognitive impairment, considering different levels of certainty in detection, and based on

a statistical analysis of the dataset itself.

3.2 Exploratory data analysis

Before the data preprocessing step, it is essential to have an overview of the dataset in

order to understand its structure and main characteristics. Knowing the meaning asso-

ciated with each feature allows to understand its usefulness and impact on the analysis.

Exploratory data analysis (EDA) is an approach to analyse and investigate datasets

and summarise their main characteristics, often employing statistical graphics and data

visualization methods. It helps identify potential errors, find patterns within the data,

detect outliers, and reveal meaningful relationships between variables [15].

A detailed examination of the dataset was carried out to interpret the significance

of each parameter. This step was crucial to understanding the data and ensuring its

effective use.
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The preliminary analysis focused on:

• Feature types and values: Understanding the different attribute categories in the

dataset.

• Basic statistical descriptions: Examining key statistics such as mean, standard

deviation, and value ranges, to gain insight into data variability and correlations.

• Feature distributions: Analysing the distribution of data with respect to certain

features to detect patterns or inconsistencies.

This initial exploration provided valuable insights that guided subsequent prepro-

cessing steps, ensuring that only meaningful and non-redundant information was retained

for further analysis.

3.2.1 Feature types and values

The dataset consists mainly of numerical attributes, representing various measures

obtained from the performance of the subjects in the cognitive test. These numerical

features provide quantitative information on the subjects’ behaviour during the test,

reflecting characteristics of cognitive function that are essential for subsequent analysis.

Only a few features are nominal, which means that they represent categorical informa-

tion rather than numerical values.

An important nominal attribute is Strain, which distinguishes between different sub-

ject groups: Tg2576 and WT. The Tg2576 genotype refers to the transgenic murine

model of AD. These subjects are specifically used to study the onset of cognitive de-

cline, as they are genetically predisposed to experience cognitive problems. On the other

hand, the WT (Wild-Type) genotype represents the typical form of mice as it occurs

in nature. These subjects serve as control models to study cognitive impairment un-

der normal conditions. WT mice generally do not exhibit cognitive deficits, except for

age-related changes that naturally occur over time.

Other nominal features are Study (code of the study from which the data originate),

Gender and the labels.
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3.2.2 Basic statistical descriptions

Basic statistical descriptions can be used to identify properties of the data and high-

light which data values should be treated as noise or outliers. These include measures

of central tendency, which measure the location of the middle or centre of a data distri-

bution (mean, median, mode, and midrange), and measures of data dispersion (range,

quartiles, interquartile range, variance, and standard deviation) [15].

A statistical analysis was performed to understand the characteristics of the data. In

addition, a bivariate analysis of the distribution was conducted to identify the patterns

and relationships associated with the three classes.

To visually represent these statistical measures, boxplots were used. A boxplot (or

box-and-whisker plot) shows the distribution of quantitative data in a way that facilitates

comparisons between variables or across levels of a categorical variable. The boxplot is

a graphical representation that summarizes the distribution of a dataset through five

key statistics: the minimum, first quartile (Q1), median (Q2), third quartile (Q3), and

maximum [16].

In addition, scatterplots were used to explore the correlation between features. A

scatter plot is one of the most effective graphical methods for determining if there appears

to be a relationship, pattern, or trend between two numeric attributes. It shows the

joint distribution of two variables using a cloud of points, where each point represents an

observation in the dataset. This depiction allows the eye to infer a substantial amount

of information about whether there is any meaningful relationship between them [17].

The results of the analysis on some of the most important features of the dataset are

presented below.

Feature No of Alternations

Figure 3.1 shows the boxplots for the No of Alternations data with respect to the

three different classes (considering Label 80).

The boxplots reveal that the distribution of values for the No of Alternations feature

is quite similar between the three classes, with overlapping value ranges. This suggests

that there is no clear separation between the categories based on this parameter alone.
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Figure 3.1: Distribution of No of Alternations per Label 80.

The median values and interquartile ranges show only slight variations, with most

data points falling within a range of 10 to 30 alternations. However, some subjects

recorded a higher number of alternations, reaching up to 50. These values are marked as

outliers in the boxplot, so it is important to check if they are potential errors or simply

atypical but valid performances. To ensure data reliability, an analysis is done to check

the number of alternations by examining the sequence of visited arms.

Features No Entries Tot and Distance

Figure 3.2 shows the boxplots for the No Entries Tot data and the Distance data with

respect to the three different classes (considering Label 80).

(a) Boxplot for No Entries Tot. (b) Boxplot for Distance. (c) Scatterplot for correlation.

Figure 3.2: Distribution of No Entries Tot and Distance per Label 80.

As observed previously, the value ranges are very similar across the three groups. The

mean and median values present only little variations. However, both features exhibit a

slightly lower range for the Unimpaired group, an intermediate range for the Mid group,
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and a slightly higher and broader range for the Impaired group. This pattern suggests

that the two features are correlated, which makes sense given their meaning. A higher

number of entries into the arms of the maze naturally implies a greater total distance

travelled. This positive correlation is also illustrated in the scatterplot (Figure 3.2c),

which shows the relationship between the two variables.

In addition, the boxplots suggest the presence of some outliers, but their values

remain relatively close to the interquartile range. This suggests that they are likely valid

data points rather than errors, representing natural variations in subject performance.

Feature % of Correct Alternations

Figure 3.3 shows the boxplots for the % of Correct Alternations data with respect to

the classes, for the three probability levels (considering Label 80, Label 90, Label 100).

(a) Boxplot for Label 80. (b) Boxplot for Label 90. (c) Boxplot for Label 100.

Figure 3.3: Distribution of % of Correct Alternations per different labels.

In this case, it is possible to note how the value ranges are completely non-overlapping

across the three classes, indicating a clear separation between groups. As the probability

level increases, the balance of IQRs across the three categories shifts, and in Label 100

the more restrictive thresholds result in the exclusion of the Impaired category from this

dataset. Furthermore, for each of the three labels, the ranges assumed by the three

groups of subjects reflect the thresholds set on the % of Correct Alternations parameter

(reported in Table 3.2). These results highlight the consistency of the labelling process,

as the observed distributions align with the expected trends derived from the classifica-

tion thresholds. As expected, it can be concluded that the % of Correct Alternations

parameter is highly correlated with the label.
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3.2.3 Feature distributions

Data distribution by Label

Since supervised machine learning models will be trained using the dataset, it is

essential to first analyse the distribution of subjects across the assigned labels. This

analysis is important to understand whether the dataset is balanced.

Table 3.3 presents the number of subjects in each category for the three probability

levels (80-90%, 90-100%, and 100%), highlighting how the classification changes as the

confidence level increases.

Label IMPAIRED MID UNIMPAIRED NaN

Label 80 116 85 179 8

Label 90 61 180 139 8

Label 100 0 353 27 8

Table 3.3: Distribution of subjects by Label.

As the probability threshold increases from 80% to 100%, the distribution of subjects

across the three categories changes significantly. At the 80% threshold, a relatively high

number of subjects are classified as Impaired (116) and Unimpaired (179), while fewer

fall into the Mid (85) category. However, as the threshold becomes more stringent (90%

and 100%), the number of subjects in the Impaired and Unimpaired categories decreases,

while the Mid category increases substantially (from 85 at 80% to 353 at 100%). This

reflects greater uncertainty at higher confidence levels, as more subjects fail to meet

the stricter criteria for clear classification as either Impaired or Unimpaired. Notably,

at 100% confidence no subjects are classified as Impaired, reinforcing the challenge of

achieving absolute certainty in impairment detection within this dataset.

Additionally, 8 subjects did not receive any label due to their No Entries Tot being fewer

than 10. This low number of entries suggests an unreliable test performance, making

it impossible to determine their cognitive status. Consequently, these subjects will be

excluded from the analysis.
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Data distribution by Strain and Age

To better understand the dataset, an analysis was conducted to examine the distri-

bution of data with respect to Strain and Age. Given their potential influence on the

outcome, it is crucial to assess whether the dataset is well-balanced in terms of these

characteristics. A balanced distribution ensures that the analysis captures a diverse

range of subject profiles without being skewed toward specific age groups or genotypes.

Age Tg2576 WT

3 44 54

4 41 56

5 11 21

6 19 28

7 6 14

9 2 28

12 - 20

18 - 20

24 12 12

tot 135 253

Table 3.4: Distribution of subjects by Age and Strain.

Table 3.4 highlights a significant imbalance in data distribution between age groups,

likely due to the fact that only a small number of subjects reach older ages. This trend

is particularly evident in the Tg2576 group, where no samples are available beyond

9 months, apart from a small subset of 12 subjects at 24 months. Notably, Tg2576

subjects typically begin to exhibit clear signs of cognitive decline around 9 months of

age, making the scarcity of samples in this critical period a potential limitation. The lack

of data on older Tg2576 mice could lead to biases in subsequent analyses, particularly

when comparing age-related trends between Tg2576 and WT subjects. Furthermore,

the substantial difference in total sample size between the two strains introduces an

additional source of imbalance that could affect the robustness of statistical comparisons.
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3.3 Data visualization

Data visualization aims to communicate data clearly and effectively through a graphi-

cal representation. There are many alternative techniques for graphically visualizing

data, each suited for different types of analysis.

To obtain a 2D visualization of high-dimensional data, it is necessary to apply di-

mensionality reduction techniques. These techniques allow to represent data with fewer

components, aiming to learn relationships between features and create a sparse latent

structure. By reducing the dimensionality in a way that preserves as much of the data’s

structure as possible, it is possible to obtain a visualizable representation that reveals

patterns and relationships within the data, providing an initial intuition about its un-

derlying structure.

Uniform Manifold Approximation and Projection (UMAP) is an algorithm for dimen-

sion reduction based on manifold learning techniques and ideas from topological data

analysis. It works by assuming that the data lie on a manifold, or a lower-dimensional

space, embedded in a higher-dimensional space. UMAP first constructs a fuzzy topo-

logical representation of the data in its original high-dimensional space, capturing both

the local and global structure. It then optimizes the layout of the data points in the

lower-dimensional space to preserve as much of this structure as possible. This is done

by minimizing a cost function that balances between local neighbourhood relationships

and the broader structure of the data. The result is a lower dimensional representation

of the data that retains the essential features, allowing for intuitive visual exploration

and analysis [18].

To achieve a comprehensive 2D visualization of the dataset, the UMAP technique was

applied, reducing the high-dimensional data into two dimensions. This transformation

allows the data to be effectively visualized using a scatterplot, providing an overview of

the dataset’s structure.

As shown in Figure 3.4a, a small cluster of data points appears to be separated from

the rest of the dataset. Understanding why the data points in the projection are grouped

into distinct clusters is crucial, as it may reveal underlying patterns or substructures

within the original high-dimensional space. The presence of well-defined clusters suggests
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that certain observations share common characteristics that differentiate them from the

rest of the dataset. To determine the factors responsible for this separation, a correlation

analysis was performed to identify which features are most closely associated with cluster

formation.

(a) UMAP projection. (b) UMAP projection by Study.

Figure 3.4: Data visualization with UMAP.

Surprisingly, the feature Study was found to be the most influential variable distin-

guishing the separated cluster from the rest of the dataset in the UMAP projection. As

illustrated in Figure 3.4b, where the data points are coloured according to the study of

origin, the isolated cluster consists exclusively of samples from Study “46-16 B”. This

finding is unexpected, as the feature Study merely represents the name of the study from

which the data were collected and should not directly influence the dataset’s outcomes.

Therefore, it is essential to examine why the data from this particular study differ from

the others.

To investigate this issue, the distributions of several features with respect to the

Study attribute were analysed using swarmplots. Swarmplots are particularly useful for

visualizing data distributions, as they display individual data points clearly, ensuring that
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they do not overlap and are spatially arranged according to their values [19]. Colouring

the points of the swarmplot according to the Study allows a clear visual comparison of

how the values of a feature are distributed within and between study groups.

The analysis revealed anomalies in certain features. As shown in Figure 3.5, data

points from Study “46-16 B” (represented in blue) exhibit a different distribution from

other data in six specific features (A/B/C: time getting closer to zone; A/B/C: time

getting further from zone).

Figure 3.5: Distributions of selected features by Study.

This observation suggests that these specific features may have contributed to the se-

paration seen in the 2D projection. To further validate this hypothesis, these anomalous

features were removed from the dataset, and the UMAP reduction and data visualiza-

tion were regenerated (see Figure 3.6). As anticipated, the previously isolated cluster

disappeared, confirming that the separation was driven by these particular features.
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Figure 3.6: Refined data visualization with UMAP.

One possible explanation for the different distribution of the data from the Study

“46-16 B” in those features is that the values were altered. Errors in the data can be

caused by several factors and may result from the software that generated them or from

unintentional mishandling of the data by operators. Furthermore, it is possible that the

Study “46-16 B” was conducted under different experimental conditions than the other

studies, that influenced these values.

This analysis, therefore, highlighted potential issues in the dataset and provided

essential tips for the preprocessing phase. It is important to handle these anomalies to

obtain a consistent and reliable dataset for further analysis.
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Chapter 4

Data Preprocessing

Low-quality data will lead to low-quality mining results. Data preprocessing is es-

sential to obtain accurate, consistent, and complete data. Data processing techniques,

when applied before mining, can substantially improve the overall quality of the results

obtained.

4.1 Data cleaning

Data are of high quality if they meet the requirements of their intended use. There

are many factors comprising data quality, including accuracy, completeness, consistency,

timeliness, believability, and interpretability.

Real-world data are typically inaccurate or noisy (containing errors or values that

deviate from the expected), incomplete (lacking attribute values or certain attributes of

interest), and inconsistent (containing discrepancies or different copies of the same data).

There are many possible reasons for inaccurate data: the data collection instruments

used may be faulty; there may have been human or computer errors occurring at data

entry; users may purposely submit incorrect data values; errors in data transmission

can occur; incorrect data may also result from inconsistencies in naming conventions

or inconsistent formats for input fields. Data can be incomplete for different reasons:

attributes of interest may not always be available; relevant data may not be recorded;

data that were inconsistent with other recorded data may have been deleted. Inconsistent
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data can occur for several problems: software errors may occur at data entry; data

manipulation by humans may be incorrect; integration of data from different sources

may be incompatible.

Data cleaning is the first major step involved in data preprocessing. This phase work

to “clean” the data by filling in missing values, smoothing noisy data, identifying or

removing outliers, and resolving inconsistencies [20].

4.1.1 Iterative cleaning of raw data

The raw data we received presented numerous quality problems, including inconsist-

encies, missing values, duplicates, and ambiguous coding. To address these issues, an

iterative cleaning process was applied, involving error detection, error resolution, and

discussion with domain experts. Interactions with domain experts were particularly im-

portant for understanding the meaning attributed to codes in the data, defining the

acceptable values of each attribute, and ensuring the validity of the transformations or

corrections performed.

Figure 4.1: Data cleaning process.

Figure 4.1 illustrates the iterative cleaning process applied to obtain complete, ac-

curate, and consistent data.
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The cleaning process performed is characterised by four steps:

1. Data Knowledge: First, it is essential to obtain and analyse information about the

data. This information is partly related to the meaning of the data (domain-specific

knowledge) and partly derived from the preliminary exploratory data analysis (data

types, value ranges, potential outliers, etc.).

2. Discrepancy Detection: Using the acquired knowledge on the data, identify in-

consistencies and anomalies within the dataset.

3. Data Cleaning: Application of data cleaning techniques to correct the detected

discrepancies, resulting in a new version of the dataset.

4. Domain Expert Interaction: Confrontation with domain experts, showing the

changes made, to ensure that the transformations are correct. Based on the feedback

received, repeat the process until no more anomalies are detected.

The raw dataset presented several quality issues that were addressed as follows:

• Inconsistent labels in the Strain and Study features: In the Strain column,

the dataset contained multiple variants of labels of the same genotype, such as TG,

TG2576, Tg2576, WT, and wt control. Since these labels actually referred to only

two genotypes, they were standardized to Tg2576 and WT to ensure consistency.

The same problem occurred in the Study column.

• Noisy values in % of Correct Alternations: The expected range of values for

this feature is [0, 100]. However, some entries contained values outside this range.

To obtain data integrity, rows with alternations exceeding 100% were removed.

• Duplicated rows (entity identification problem): In addition to the duplica-

tions founded with automated techniques, duplicate records were identified manually.

Specifically, some rows were identical except for the Study feature, indicating that

the same subject’s performance had been reported in multiple studies. These rows

were confirmed to be duplications (equivalent real-world entities from multiple data

sources) and removed accordingly.

33



• Integration errors: Some group of rows represented the same subject’s performance

within the same study but contained missing values in several attributes while sharing

identical values in others. These rows were merged into a single comprehensive entry.

• Labelling errors: Discrepancies were found in the assigned labels (Label 80, La-

bel 90, Label 100), which did not always match the defined thresholds on the % of

Correct Alternations parameter. After applying the necessary corrections, the label

assignments were made consistent with the established threshold criteria (Figure 4.2).

(a) Swarmplot for Label 80. (b) Swarmplot for Label 90. (c) Swarmplot for Label 100.

Figure 4.2: Label assignment after threshold-based correction.

In addition, during this cleaning process, anomalous features detected during the ex-

ploratory analysis were dropped and an analysis was performed to check whether poten-

tial outliers were valid or not. Through this mechanism of error detection and continuous

interaction with domain experts, a correct and consistent dataset was obtained.

4.1.2 Integration process

As described in Section 3.1.2, the data were provided in two distinct collections, so

an integration step was necessary to obtain a comprehensive dataset.

There are a number of issues to consider during data integration. Schema integration

and object matching can be tricky. Some attributes representing a given concept may

have different names in different datasets, causing inconsistencies and redundancies. In

addition, when matching attributes from one dataset to another during integration,
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special attention must be paid to the structure of the data. This is done to ensure that

any attribute functional dependencies and referential constraints in the source system

match those in the target system. Data integration also involves the detection and

resolution of data value conflicts. For example, for the same real-world entity, attribute

values from different sources may differ. This may be due to differences in representation,

scaling, or encoding [20].

The main challenges faced during the integration phase concern with:

• Attribute name mismatches: The corresponding attributes in the two datasets

were sometimes labelled differently. For example, the attribute for the subject identi-

fication is referred to as “Animal ID” in Dataset 1 and “Animal” in Dataset 2. Also,

in the first dataset there are the attributes “Visited arms”, “No Entries Tot”, “% of

Correct Alternations”, while in the second dataset the same attributes are named

“Visited zones”, “Total Arm Entries”, “% Alternations”.

• Label inconsistencies in Strain and Study features: The same categories were

represented with different labels in the two datasets.

• Data format discrepancies: The two dataset presented variations in data formats,

such as numerical precision or units of measurement.

Redundancy is a significant issue in data integration that can be caused by different

factors (not only from attribute name mismatch). For example, conceptual redundancies

were identified in the dataset. Specifically, the First Zone Entered feature expresses the

same information of A: was 1st zone, B: was 1st zone, and C: was 1st zone, which

were consequently removed. Similar cases were also detected, leading to the removal of

additional redundant features.

An attribute may be redundant if it can be “derived” from another attribute or

set of attributes. These redundancies can be detected by correlation analysis. Given

two attributes, such analysis can measure how strongly one attribute implies the other,

based on the available data. For numeric attributes, it is possible to evaluate the (linear)

correlation between two attributes, A and B, by computing the Pearson correlation

coefficient. It is essentially a normalized measurement of the covariance, such that the
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result always has a value between -1 and 1. If the result is greater than 0, then A and

B are positively correlated, meaning that the values of A increase as the values of B

increase. The higher the value, the stronger the correlation (i.e., the more each attribute

implies the other). Hence, a higher value may indicate that A (or B) can be removed

as redundancy. If the resulting value is equal to 0, then A and B are independent and

there is no correlation between them. If the resulting value is less than 0, then A and

B are negatively correlated, as the values of one attribute increase as the values of the

other attribute decrease [20].

An analysis was conducted to identify any highly correlated attributes to be removed,

computing the Pearson correlation coefficient between pairs of features. The results are

reported in a heatmap, which is useful because it allows quick identification of attribute

pairs with high correlation through an intuitive graphical representation [21].

Figure 4.3: Correlation between features.
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In Figure 4.3, the correlation between the main characteristics of the dataset is shown.

First, it is possible to note that the Distance feature is completely positively correlated

with the Mean Speed feature: this is because the Mean Speed is computed by dividing

the Distance by the Duration of the test, which remains constant for each tuple. As a

result, Mean Speed does not provide any additional information to the dataset and was

removed to avoid redundancy. Additionally, it can be observed that No Entries Tot is

highly correlated with the features that represent the number of entries in each arm (No

Entries A, No Entries B, No Entries C). This correlation is not strange, as these features

describe the same concept. However, No Entries A/B/C express additional information

beyond the aggregate feature. For this reason, it was initially decided not to remove

these features and to evaluate which ones to maintain in the feature selection phase.

Also, the No Entries Tot feature is highly correlated with Distance, as demonstrated in

Section 3.2.2. In general, the features relating to the number of entries, distance, and

number of alternations exhibit strong correlations with each other, despite the different

concepts expressed. Therefore, automated feature selection techniques will be used to

identify the most relevant features.

Those reported in Figure 4.3 are the most critical features with regard to correlation

analysis. The other features, i.e. those specific to individual arms and sequences, did

not show potential redundancies.

4.1.3 Handling missing data

Often in data there are many tuples with no recorded value for several attributes.

Managing missing values is important to obtain a complete dataset and to have data in

a format that can be processed by algorithms.

There are different approaches to handle missing values: ignore the tuples, fill in the

missing values manually, use a global constant to fill in the missing values, use a measure

of central tendency for the attribute (e.g., the mean or median) to fill in the missing

values, use the attribute mean or median for all samples belonging to the same class as

the given tuple, use the most probable value to fill in the missing values.

Table 4.1 shows the count of NaN values in the dataset. The table summarizes the

impact of different missing data handling strategies on the dataset. Initially, the dataset
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contained 165 rows and 34 columns with missing values (NaN). Since the total number of

samples is 388, these 165 rows represent approximately 43% of the data. Removing all of

them would have significantly reduced the size of the dataset and its representativeness.

Scenario Rows with NaN Col. with NaN Col. removed

Initial 165 (∼ 43%) 34 -

10% threshold 84 (∼ 22%) 14 20

5% threshold 14 (∼ 4%) 4 30

Table 4.1: Impact of missing data handling on rows and columns.

To minimize data loss, an approach was first applied to remove columns with the

highest number of missing values before eliminating any remaining rows. By setting

a maximum threshold of 5% of accepted missing values per column, 30 columns were

removed, reducing the number of rows with missing values to 14 (only 4% of the total

dataset). If the threshold had been increased to 10%, only 20 columns would have

been removed instead of 30, increasing the remaining rows with NaN to 84 (that is

more than the 20% of the dataset). Given that the removed columns mainly contained

information related to the analysis of specific sequences, which had minimal impact on the

determination of the label, they were considered secondary and less relevant. Therefore,

column removal was preferred over row removal to preserve as many samples as possible.

This approach ensured a balance between preserving valuable data and maintaining a

clean, analysable dataset.

4.2 Feature engineering and transformation

After the cleaning phase, additional data preprocessing steps are applied to obtain

high-quality data that can be processed by machine learning algorithms. Various trans-

formations must be performed on the dataset before it can be processed effectively by ML

models. First, since machine learning models can only handle numerical data, categorical

attributes must be transformed into a proper configuration. In addition, lots of these
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algorithms rely on distance-based analysis of samples. Since distances are very sensitive

to the order of magnitude of the features, it is necessary to apply data normalization

techniques before the training of models. Moreover, machine learning models perform

well if the dataset is well-balanced in terms of the number of samples and attributes. A

larger number of features requires a higher number of samples for proper representation.

To address this issue, dimensionality reduction techniques or feature selection methods

can be used to optimize model performance.

These preprocessing steps can dramatically affect the model training phase. If they

are not performed properly, the results of the models will be unreliable. However, there is

no standard rule for applying these techniques, as the best approach depends on both the

dataset characteristics and the models being used. It is important to have an overview

of the available techniques and to determine the most suitable ones for each case. The

selection of these techniques is made by analysing and comparing different approaches

to identify the most effective transformations for each model.

This section outlines the preprocessing techniques explored and compared during data

preparation. In the following chapters, which focus on the modelling phase, the specific

techniques chosen for each trained model will be detailed, and the results obtained will

be presented.

4.2.1 Feature encoding

Encoding categorical features is essential to convert them to numerical features that

can be used with machine learning estimators. One possibility is to convert categories

into integer codes. However, such integer representation is not properly if the categorical

feature is not ordinal because most models would interpret them as being ordered. An-

other most useful possibility to convert categorical features is to use a one-hot or dummy

encoding. This type of encoding transforms each categorical feature with n categories

possible values into n categories binary features, with one of them 1, and all others 0.

The one-hot-encoder [22] technique was selected to transform categorical features,

such as Gender and Strain. Since there are only a few categorical features in the dataset,

and these features have a small number of unique values, there were no problems with the
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number of columns exploding. Table 4.2 shows how one-hot-encoding works for the Strain

feature transformation. Since the feature Strain has only two possible values (Tg2576 and

WT), it is converted into two binary columns (Strain Tg2576 and Strain WT). Each row

in the transformed dataset has the value 1 in the column corresponding to its category

and 0 in the other.

Strain Strain Tg2576 Strain WT

sample 1 Tg2576 1 0

sample 2 WT 0 1

Table 4.2: Feature encoding with one-hot-encoding.

In addition, the label column is a categorical feature. For this specific attribute, the

label encoder [23] method was used. It encodes target labels with values between 0

and n classes - 1. This transformation is specifically intended for the encoding of target

features. Table 4.3 shows the encoding of the label (considering Label 80). It is possible

to understand the mapping between the original classes and the assigned integer value.

Label 80 Label 80

sample 1 IMPAIRED 0

sample 2 MID 1

sample 3 UNIMPAIRED 2

Table 4.3: Feature target encoding with label encoding.

4.2.2 Normalization

Normalization of datasets is a common requirement for many machine learning es-

timators. The value range of an attribute is directly related to the measurement unit

used and can affect the data analysis. In general, attributes with initially large ranges

tend to outweigh attributes with initially smaller ranges, meaning that they may have a

greater effect on the analysis. To help avoid dependence on the choice of measurement

units, the data should be normalized or standardized. This involves transforming the
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data to fall within a smaller or common range such as [-1, 1] or [0, 1]. Data normalization

attempts to give all attributes equal weight.

There are many methods for data normalization. Normalization techniques that were

compared and applied for data preparation in the project are described below [20].

• Z-score normalization: Z-score normalization standardizes features by removing

the mean and scaling to unit variance. Supposing to have an attribute A, a value, vi,

of A is normalized to v′i by computing

v′i =
vi − Ā

σA

(4.1)

where Ā and σA are the mean and standard deviation, respectively, of attribute A.

• Min-max normalization: Min-max normalization performs a linear transformation

on the original data. It transforms numerical features by scaling each feature to a

given range (e.g. [0.0, 1.0]), preserving the relationship among the original data

values. Supposing that minA and maxA are the minimum and maximum values

of an attribute A, min-max scaling maps a value, vi, of A to v′i in the new range

[new minA, new maxA] by computing

v′i =
vi −minA

maxA −minA

(new maxA − new minA) + new minA. (4.2)

• L1 / L2 normalization: L1 and L2 normalization normalize samples individually to

unit norm. Each sample is rescaled independently of other samples so that its norm

(L1 or L2) equals one. L1 normalization, also known as Manhattan Norm, involves

transforming the data such that the sum of the absolute values of the vector (a column

in a dataset) is equal to 1. L2 normalization, or Euclidean Norm, transforms each

sample so that the sum of the squares of its elements is equal to 1. Supposing that

vi is a value of an attribute A, mathematical formulae to compute L1 (4.3) and L2

(4.4) normalization are:

v′i =
vi∑
j |vj|

(4.3) and v′i =
vi√∑
j vj

2
. (4.4)
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It is not possible to determine in advance the best normalization technique to apply.

The most effective approach is to test different methods and identify the one that yields

the highest performance for each model.

4.2.3 Dimensionality reduction

The “curse of dimensionality” refers to the problems associated with multivariate

data analysis, as dimensionality increases. Dimensionality reduction is the process of

reducing the number of variables under consideration by applying a transformation to

the dataset to obtain a reduced or “compressed” representation of the original data.

Unlike feature selection, which reduces the attribute set size by retaining a subset of the

initial set of attributes, these approaches combine the essence of attributes by creating

an alternative, smaller set of variables.

Different dimensionality reduction techniques were analysed. In particular, Principal

Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were tested.

• Principal Component Analysis (PCA): PCA reduces the number of dimensions

in large datasets to “principal components” that retain most of the original informa-

tion, by transforming potentially correlated variables into a smaller set of variables.

These components are linear combinations of the original attributes that have the

maximum variance compared to other linear combinations. This technique trans-

forms the original dataset into a new coordinate system that is structured by the

principal components (axes of the new space). The original data are thus projected

onto a much smaller space, resulting in dimensionality reduction [24].

• Linear Discriminant Analysis (LDA): LDA is a supervised method that sepa-

rates multiple classes with multiple features through data dimensionality reduction.

It works by identifying a linear combination of features that separates or character-

izes two or more classes of objects. This maximizes the between-class variance and

minimizes the within-class variance. LDA does this by projecting data with two or

more dimensions into one dimension so that it can be more easily classified [25].

These techniques may be useful to improve model performance, but they affect the

ability to analyse the impact of original features on results.
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4.2.4 Feature selection

Datasets may contain hundreds of attributes, many of which may be irrelevant to the

mining task or redundant. Leaving out relevant attributes or keeping irrelevant attributes

may be detrimental, causing confusion for the mining algorithm used. The goal of

feature selection is to find a minimum set of attributes such that the resulting probability

distribution of the data classes is as close as possible to the original distribution obtained

using all attributes. Since determining which attributes are useful can be a difficult and

time-consuming task, automated feature selection techniques can be employed.

The feature selection algorithms that were analysed are described below.

• Recursive Feature Elimination (RFE): Given an external estimator that assigns

weights to features (e.g., the coefficients of a linear model), the goal of RFE is to

select features by recursively considering smaller and smaller sets of features. First,

the estimator (e.g., Logistic Regression) is trained on the initial set of features, and

the importance of each feature is obtained. Then, the least important features are

pruned from current set of features. That procedure is recursively repeated on the

pruned set until the desired number of features to select is eventually reached [26].

• Recursive Feature Elimination with Cross-Validation (RFE-CV): RFECV

performs RFE in a cross-validation loop to find the optimal number of features. The

number of features selected is automatically tuned by fitting an RFE selector on the

different cross-validation splits. The performance of the RFE selector is evaluated

using a scorer for different numbers of selected features and aggregated together.

Finally, the scores are averaged across folds and the number of features selected is

set to the number of features that maximize the cross-validation score [27].

• SelectKBest: SelectKBest is a feature selection method that selects the top K

features based on statistical tests. It evaluates each feature individually by measuring

its relevance to the target variable using a scoring function, such as ANOVA F-score.

The method ranks the features according to their scores and retains only the K

highest-scoring ones [28].
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• SelectFromModel: SelectFromModel is a meta-transformer that can be used along-

side any estimator that assigns importance to each feature. Characteristics are con-

sidered irrelevant and removed if the corresponding importance is lower than the

threshold parameter provided. [29].

These different techniques were compared in order to analyse which one provided the

best feature selection, thereby improving model performance.

4.3 Additional steps for supervised learning

In supervised machine learning, data splitting and class balancing are crucial prepro-

cessing steps that directly impact model performance and fairness. Specifically, the goal

of a classifier is to predict the class of previously unseen instances. To achieve this, the

model is trained on a given subset of the dataset, the training set, which includes both

feature values and corresponding class labels. Once trained, the classifier is applied to

unseen data, the test set, to predict class labels. The performance of the estimator is

evaluated by comparing the predicted labels with the true labels of the test instances.

Achieving high performance is not solely dependent on the quantity of training data,

but also on its quality and representativeness. In particular, ensuring that all classes are

adequately represented in the training set is essential for building a model that performs

fairly and accurately across different categories.

4.3.1 Data splitting

To build and evaluate a supervised model is necessary the data splitting preprocessing

step, which splits the dataset into two sets, the training and test sets. These two sets

should be independent of each other to ensure that the induced model can accurately

predict the class labels of instances it has never seen before. Typically, 80% of the initial

dataset is assigned to the training set, while the remaining 20% is used as the test set.

This proportion is chosen because machine learning models generally require a large

amount of data to learn meaningful patterns and generalize well to new data. A larger

training set helps the model capture complex relationships within the data, reducing the
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risk of underfitting. At the same time, a sufficiently large test set is needed to provide a

reliable evaluation of the model’s performance on unseen data. In addition, the dataset

should be split while maintaining the class distribution across both sets. A stratified

split ensures that both the training and test sets contain a representative proportion of

each class.

Data splitting, with attention to the distribution of classes, was applied to obtain

training and test sets for the classification task of the project. This step was performed

on the dataset after data cleaning, using the train test split [30] function from scikit-

learn, with the stratify parameter to ensure that the class distribution is preserved in

both the training and test sets.

IMP. MID UNIMP. Tot % of Tot

Dataset cleaned 113 82 174 369 100%

Training Set 90 66 139 295 80%

Test Set 23 16 35 74 20%

Table 4.4: Dataset split into training and test sets.

Table 4.4 shows the split of the dataset into training and test sets, considering La-

bel 80 as target label. It is possible to note that the distribution of classes in the two

sets is consistent with the distribution of classes in the original cleaned dataset.

4.3.2 Class balancing

Handling class imbalance is not only relevant during the data splitting phase. Data

balancing represents an additional preprocessing step that must be applied to the training

set before the modelling. A training set is imbalanced when the distribution of instances

among the classes is significantly uneven, meaning that some classes have lots of samples

while others are underrepresented. This can lead to biased models that perform well on

the majority class but poorly on the minority class. The training set should be balanced

to ensure that the model learns to correctly predict all classes.
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There are different techniques available for data balancing, each with different ad-

vantages and weaknesses:

• Upsampling: Upsampling, or oversampling, increases the number of instances in

minority classes by duplicating existing samples until all classes are of equal size.

The main advantages of this technique are the absence of information loss and the

ability to increase the size of the dataset at low cost. Upsampling also has some

disadvantages, including a higher risk of overfitting, the potential introduction of

noise, and increased computational complexity during model training [31].

• Downsampling: Downsampling, or undersampling, decreases the number of in-

stances in majority class by removing data such that it matches the size of the

minority class. Downsampling offers several advantages, including lower storage re-

quirements, faster training times, and a reduced risk of overfitting. It also has some

disadvantages, such as the potential loss of information and the introduction of bias

in the training data [32].

• SMOTE: The Synthetic Minority Oversampling Technique, or SMOTE, is an up-

sampling technique that synthesizes new data points from the existing points in the

minority class, by interpolating between existing instances and their nearest neigh-

bours in the feature space. SMOTE counters the problem of overfitting in random

oversampling by adding previously unseen new data to the dataset rather than simply

duplicating pre-existing data. However, SMOTE’s artificial data point generation

adds extra noise to the dataset, potentially making the classifier more unstable [33].

• Class weighting: Class weighting is a different technique of data balancing, it

addresses class imbalance without altering the size of the dataset. When using class

weighting, the algorithm is informed to give more importance to certain classes during

training by adjusting the loss function. This is done by assigning a higher weight to

underrepresented classes, so that errors on these classes have a greater impact on the

optimization process of the model [34].

As shown in Table 4.4, the training set is imbalanced, with the Unimpaired class
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that is overrepresented with respect to the other classes. For this reason, data balan-

cing methods were compared during the preprocessing phase, and the best balancing

technique for each model was selected and applied to the training set.

The results of the different methods were quite similar, with SMOTE and class weight-

ing being the most effective. Undersampling was excluded because the dataset already

has a limited number of samples, and oversampling could lead to overfitting due to the

significant imbalance. In the end, class weighting was selected as the best balancing

method, as it does not change the dataset by adding or removing samples. This tech-

nique was then applied to all models.

4.4 Preprocessing pipeline

All the preprocessing steps described are essential to prepare the dataset for pro-

cessing by machine learning algorithms. Data cleaning is performed first to ensure that

the subsequent steps can be applied effectively. After this initial step, the transformation

phases can be structured within a pipeline. Pipelines are particularly useful because data

processing often follows a fixed sequence of steps.

In the project, pipelines were used to manage preprocessing, for both the classification

task and the unsupervised exploratory analysis.

4.4.1 Preprocessing technique selection via cross-validation

For each transformation step (described in Section 4.2), different techniques were

evaluated to determine the most effective for each model. For example, various nor-

malization techniques, such as z-score normalization and min-max normalization, were

tested to identify the best approach for each model.

To select the optimal technique for each preprocessing step, cross-validation (CV)

was applied, ensuring a robust evaluation of different methods. Cross-validation is par-

ticularly important because, when comparing different techniques for a specific model, it

is essential to partition the dataset into distinct parts. One part, the training set, is used

to train the model, while the other part, the validation set, is used to assess its perform-

ance. However, splitting the available training data into two sets can significantly reduce
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the number of samples that can be used to learn the model and can lead to results that

depend on a particular random split of the dataset. Using cross-validation, the valida-

tion set is no longer needed. In k-fold CV, the training set is split into k smaller sets

(also called “folds”). The model is trained on k-1 folds and evaluated on the remaining

fold. This process is repeated k times, with each fold serving as the validation set once.

The final performance metric is obtained by averaging the results across all iterations,

providing a more reliable estimate of the performance of the model [35]. In this pro-

ject, stratified k-fold cross-validation was applied, ensuring that each fold contained

approximately the same percentage of samples of each target class as the complete set.

Using cross-validation, different transformation techniques were compared, ensuring

that the most effective approach was chosen. Once the best technique for each trans-

formation step had been identified, it was incorporated into the pipeline.

Figure 4.4: Transformation technique selection via cross-validation.

4.4.2 Pipeline for the classification task

The primary objective of the project is to develop a classifier capable of detecting

cognitive impairment. To this end, different supervised machine learning models have

been compared in order to identify the most accurate estimator.

This section describes the pipeline implemented for the classification task, which
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manages the preprocessing steps as well as the final model selection. The pipeline inte-

grates all necessary preprocessing steps to prepare the dataset and the application of a

final estimator.

Before applying the pipeline, the dataset is first cleaned and then partitioned into

training and test sets. The pipeline is subsequently fitted on the training set during model

selection and applied to the test set during performance evaluation. The preprocessing

pipeline was implemented using scikit-learn’s Pipeline [36] and ColumnTransformer

[37] classes and is composed of the following main steps:

1. Encoding and Normalization: Categorical features are encoded using OneHotEn-

coder. Numerical features are standardized using the normalization technique selec-

ted (e.g., StandardScaler or MinMaxScaler).

2a. Dimensionality Reduction (if enabled): A dimensionality reduction method (e.g.,

PCA or LDA) can be applied to reduce feature space complexity while retaining the

most informative components.

2b. Feature Selection (if specified): Alternatively, a feature selection strategy (e.g.,

RFE or RFECV) may be used instead of dimensionality reduction.

3. Model: The final step of the pipeline includes the supervised model (e.g., Logistic

Regression) for classification. The model includes built-in handling of class imbalance

via class weight=“balanced”.

Figure 4.5: Data preprocessing workflow for the classification task.

The implementation of the described pipeline can be found in Appendix B. Figure 4.5

illustrates the complete preprocessing workflow implemented for the classification task,
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including all mandatory (categorical feature encoding and numerical feature normaliza-

tion) and optional (dimensionality reduction and feature selection) preprocessing steps

in the pipeline.

4.4.3 Pipeline for the unsupervised analysis

The unsupervised exploratory analysis of the project aims to identify patterns in

the data and explore potential predictive factors of cognitive impairment, by applying

clustering techniques. Since the goal is to analyse the characteristics of the clusters and

interpret their meaning, there is no need to split the dataset into training and test sets.

Labels are not used, and no performance evaluation is conducted for these unsupervised

models.

For this reason, the preprocessing for the unsupervised analysis is managed through

a ColumnTransformer, rather than a full pipeline. The ColumnTransformer is used to

handle the encoding of categorical features and the normalization of numerical features,

which are applied to the entire dataset. Initially, dimensionality reduction and feature

selection are excluded from the pipeline to ensure a comprehensive exploration of the

data. Details on their potential application are provided in Chapter 7.

Figure 4.6 shows the complete preprocessing workflow implemented for the unsuper-

vised analysis.

Figure 4.6: Data preprocessing workflow for the unsupervised analysis.

Once the transformer is applied, the dataset is fully preprocessed and ready to be

passed to the unsupervised models.
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Chapter 5

Overview on Machine Learning

Models

Machine learning models can automatically learn to recognise complex patterns and

make intelligent decisions based on data. Their potential lies in their adaptability and

scalability, allowing them to be applied to address several tasks across a wide range of

domains.

5.1 Supervised learning

Supervised learning is a machine learning technique that uses labelled datasets to

train models to identify the underlying patterns and relationships between input features

and class labels. Specifically, a supervised model is created using a given set of data,

the training set, which contains attribute values as well as class labels for each instance.

Once trained, the model is applied to new data, the test set, to predict class labels. The

performance of the estimator is evaluated by comparing the predicted labels with the

true labels of the test instances. The goal of the learning process is to create a model that

can predict correct outputs on previously unseen data. Therefore, supervised learning is

basically a synonym for classification.

In this study, supervised learning algorithms are employed to build a model, or clas-

sifier, capable of detecting cognitive impairment.
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The following sections present different classification algorithms applied to the classi-

fication task of the project. Each machine learning model is based on different concepts

and mechanisms, which may make it more or less suitable for the specific use case.

5.1.1 Logistic Regression

Logistic Regression (LR) [38] is a supervised machine learning algorithm widely used

for classification tasks, such as diagnosing diseases by assessing the presence or absence

of specific conditions based on test results from subjects. It estimates the probability

that a given input belongs to a particular category.

In its standard form, Logistic Regression is designed for binary classification, where

the dependent variable has only two possible outcomes. The LR model uses the logistic

(or sigmoid) function to transform a linear combination of input features into a prob-

ability value in the range [0, 1]. This probability represents the likelihood that a given

input corresponds to one of the two predefined classes. The logistic function is defined

as:

P (x) =
1

1 + e−t
(5.1)

where t is a linear combination of the input variables:

t = β0 + β1x1 + β2x2 + . . .+ βkxk. (5.2)

Each coefficient βi represents the influence of the corresponding feature xi on the log-

odds of the outcome. Higher positive or negative values indicate a stronger impact on the

classification decision. The model parameters (coefficients) are estimated by maximizing

the likelihood of observing the training data, which is equivalent to minimizing the

negative log-likelihood loss function:

L = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (5.3)

where N is the total number of samples in the dataset, yi is the true label for sample i,

and ŷi is the predicted probability that sample i belongs to class 1.
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The Binary Logistic Regression model can be extended to handle multiclass classifi-

cation problems, where the target variable has more than two categories. This extension

is known as Multinomial Logistic Regression. In the multinomial case with K classes, the

model estimates K probability scores (one for each class), using the softmax function

to ensure that all predicted probabilities are in the range [0, 1] and sum to 1:

P (y = k | x) = etk∑K
j=1 e

tj
, for k = 1, . . . , K (5.4)

where each tk = βk0 + βk1x1 + βk2x2 + . . . + βknxn is a linear combination of the input

features for class k.

5.1.2 Support Vector Machine

Support Vector Machine (SVM) [39] is a supervised algorithm commonly used in

classification problems. SVM classifies data by finding an optimal line or hyperplane

that maximizes the distance between each class in an n-dimensional space.

The number of features in the input data determines whether the hyperplane is a

line in a 2-D space or a plane in an n-dimensional space. Since multiple hyperplanes

can be found to differentiate classes, maximizing the margin between points enables the

algorithm to find the best “decision boundary” between classes (i.e., the maximum

marginal hyperplane). Lines adjacent to the optimal hyperplane are known as “sup-

port vectors”, as these vectors run through the data points that determine the maximal

margin. Mathematically, this separating hyperplane can be represented as:

wx+ b = 0 (5.5)

where w is the weight vector, x is the input vector, and b is the bias term. Thus, the

weights can be adjusted so that the support vectors defining the “sides” of the margin

satisfy the formula:

(wxi + b)yi ≥ a. (5.6)

Support Vector Machine can handle both linear and non-linear classification tasks.

When data are not linearly separable, kernel functions are used to transform the data
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into a higher-dimensional space to allow linear separation. The choice of kernel function,

such as linear kernels, polynomial kernels, radial basis function (RBF) kernels, or sigmoid

kernels, depends on the data characteristics and the specific use case.

5.1.3 Random Forest

Random Forest (RF) [40] is a flexible machine learning model commonly used for

classification tasks that combines the outputs of multiple decision trees to obtain a single

result. The term “forest” refers to the ensemble of uncorrelated decision trees, which

are merged to reduce variance and increase accuracy.

Each decision tree in the forest is a hierarchical model composed of a root node,

internal decision nodes, branches, and leaf nodes. At each decision node, the input data

is split based on the value of a selected feature. The split aims to separate the data

in a way that maximizes a chosen criterion (e.g., information gain or Gini impurity).

The process is repeated until a stopping condition is met, and the leaf nodes represent

the final class predictions. Although decision trees are easy to interpret and train, they

tend to suffer from high variance and can easily overfit the training data. Random

Forest addresses these limitations by building an ensemble of trees and aggregating their

predictions to obtain more stable and accurate results.

Random Forests can be built using different ensemble methods, such as bagging

and boosting. In the first method, bagging, multiple classifiers are trained in parallel on

different random subsets of the training data, sampled with replacement. On the other

hand, boosting builds classifiers sequentially, where each new model focuses on the errors

made by the previous ones.

The Random Forest algorithm is essentially an extension of the bagging method, as

it uses both bagging and feature randomness to create an uncorrelated forest of decision

trees. During the training of each tree, not only are the training data sampled with

replacement, but at each split a random subset of features is considered instead of evalu-

ating all available features. This feature randomness ensures that the individual trees are

more diverse and less correlated, further improving the ensemble’s ability to generalize.
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5.1.4 K-Nearest Neighbors

K-Nearest Neighbors (KNN) [41] algorithm is a non-parametric, supervised learning

method commonly used for classification tasks. It makes predictions based on the prox-

imity of data points, assigning a label to an unknown instance by analysing the labels

of its closest neighbors in the training set.

KNN operates on the principle of learning by analogy: given a test instance, the

algorithm compares it with previously observed instances (training tuples) to determine

its class. Each training sample is represented as a point in an n-dimensional feature

space, where n is the number of input attributes. All training data are stored in this

multidimensional space without any model being explicitly trained. When given a new,

unlabelled instance, the classifier searches the pattern space for the k training tuples

that are closest to the unknown sample. These k points are the “nearest neighbors” of

the unknown tuple. The predicted class is then typically determined by majority vote

among the neighbors.

The choice of k, the number of nearest neighbors, is crucial for the model’s perfor-

mance: a small k may lead to overfitting and sensitivity to noise, while a large k can

cause underfitting. Typically, k is selected through cross-validation to balance bias and

variance.

The concept of “closeness” in K-Nearest Neighbors is defined in terms of a distance

metric, which quantifies how similar or dissimilar two data points are in the feature

space. The most commonly used distance functions include the Euclidean, Manhattan,

and Minkowski distances.

Euclidean distance represents the straight-line distance between two points in an n-

dimensional space. Given two points X1 = (x11, x12, ..., x1n) and X2 = (x21, x22, ..., x2n),

it is computed as:

dist(X1, X2) =

√√√√ n∑
i=1

(x1i − x2i)2. (5.7)

Manhattan distance measures the total absolute difference between the dimensions.

It is commonly displayed with a grid, illustrating how one might navigate from one point
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to another through the grid streets:

dist(X1, X2) =

(
n∑

i=1

|x1i − x2i|

)
. (5.8)

Minkowski distance is the generalized form of the Euclidean and Manhattan distances

through a parameter p, which controls the distance metric’s behaviour. When p = 2, it

reduces to the Euclidean distance; when p = 1, it becomes Manhattan distance:

dist(X1, X2) =

(
n∑

i=1

|x1i − x2i|

)1/p

. (5.9)

5.2 Unsupervised learning

Unsupervised learning is a machine learning technique that analyses unlabelled data.

Unlike in classification, the class label of each sample is not used. These algorithms

discover similarities and differences in data, finding hidden patterns or data groupings

without the need for human intervention. Unsupervised learning is the ideal solution for

exploratory data analysis.

A common unsupervised learning approach is clustering. Clustering is the process

of partitioning a set of data objects into subsets. Each subset is a cluster, such that

objects in a cluster are similar to one another, yet dissimilar to objects in other clusters.

Dissimilarities and similarities are assessed on the basis of the attribute values describing

the objects and often involve distance measures.

In this project, clustering techniques are employed to discover previously unknown

groups within the data and to uncover novel patterns, investigating possible predictive

factors of cognitive impairment.

Different clustering methods may generate different clusterings on the same dataset,

depending on their underlying algorithmic assumptions and strategies. To ensure a

thorough exploratory data analysis, multiple clustering techniques have been applied

and compared.
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5.2.1 K-Means

K-Means clustering [42] is a partitioning algorithm that split the dataset X into

k distinct clusters, C1, ..., Ck, such that Ci ⊂ X and Ci ∩ Cj = ∅ for (1 ≤ i, j ≤ k).

Each data point is assigned to exactly one cluster, with the goal of minimizing the

within-cluster variation.

K-Means is a centroid-based technique, meaning that each cluster is represented by

its centroid, which corresponds to the mean µj of the data points assigned to that

cluster. The algorithm attempts to form clusters of approximately equal variance by

minimizing the inertia, or within-cluster sum-of-squares, which measures how internally

coherent clusters are:
n∑

i=0

min
µj∈C

(∥xi − µj∥2). (5.10)

This objective function tries to make the resulting k clusters as compact and as

separate as possible.

The algorithm can basically be described as three steps. First, it randomly selects

k objects in X, each of which initially represents a cluster centre. For each of the

remaining objects, an object is assigned to the cluster to which it is most similar, based

on the Euclidean distance between the object and the cluster centre. Then, for each

cluster, it computes the new mean using the objects assigned to the cluster. All the

objects are then reassigned using the updated means as new centroids. These steps are

repeated until convergence—i.e., when the cluster assignments no longer change between

iterations.

A key limitation of K-Means is that the number of clusters k must be specified in

advance. To address this, several analytical techniques, such as the elbow method or the

silhouette score, can be employed to estimate an optimal value for k.

5.2.2 HDBSCAN

HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise)

[43] is an advanced density-based clustering algorithm that models clusters as dense

regions of objects in the data space, separated by sparse regions. Unlike partitioning
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methods such as K-Means, which assume spherical clusters and require the number of

clusters to be predefined, HDBSCAN can discover clusters of arbitrary shapes and vary-

ing densities, and automatically determine the number of clusters.

HDBSCAN is an extension of the DBSCAN algorithm. In DBSCAN, clusters are

formed around core points, defined as samples that have at least a minimum number

of neighbors (specified by the parameter min samples) within a given radius (parameter

eps). This density threshold (min samples) determines whether a point lies in a dense

region of the data space. A cluster is therefore a set of core points, each close to each

other, and a set of border points that are close to a core sample. Border points are

non-core samples, but lie within the eps-neighborhood of a core point. Points that do

not meet either condition—meaning they are not dense enough and are not reachable

from any core point—are labelled as outliers.

The algorithm works by examining each point in the dataset and counting how many

neighbors it has within its eps-radius, and consequently labelling it. This approach

allows DBSCAN to identify clusters based on density, without requiring the number of

clusters to be specified in advance.

HDBSCAN improves DBSCAN by eliminating the need to choose a specific eps value.

Instead, it performs DBSCAN clustering over a range of eps values, creating a hierarchy

of clusterings, and integrates the result to find a clustering that gives the best stability

over eps. This allows HDBSCAN to find clusters of varying densities and be more robust

to parameter selection.

5.2.3 Gaussian Mixture Model

Gaussian Mixture Model (GMM) [44] is a probability-based clustering method

that models the dataset as a combination (or mixture) of multiple Gaussian distri-

butions, each representing a different cluster. Unlike hard clustering methods such as

K-Means, which assign each data point to a single cluster, GMM performs soft clustering,

meaning that each point is assigned a probability of belonging to each cluster.

A Gaussian Mixture Model assumes that all data points are generated from a mix-

ture of a finite number of Gaussian distributions with unknown parameters (mean and

standard deviation), which are estimated during the clustering process. Given a dataset
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X and the desired number of clusters k, the goal is to find the set of k probabilistic

components that most likely explains the observed data. Formally, for each object xi,

the probability that it was generated from the j-th distribution is:

P (xi) =
k∑

j=1

πj · P (xi | θj) (5.11)

where πj is the mixing coefficient, θj = (µj, σj) are the parameters of the j-th Gaussian

distribution, and P (xi | θj) is the probability density of xi under the Gaussian with

parameters θj.

The overall task is therefore to estimate the parameters θ1, ..., θk of the Gaussians

such that the likelihood of the data P (X) is maximized.

To achieve this, the Expectation-Maximization (EM) algorithm is used. It starts

by assigning random values to the parameters and then iteratively applies the following

two steps until convergence. The Expectation (E) step computes the probability that

each data point belongs to each Gaussian component based on the current parameter

estimates:

P (θj | xi, θ) =
P (xi | θj)∑k
l=1 P (xi | θl)

(5.12)

The Maximization (M) step updates the parameters so that the expected log-likelihood

P (X) is maximized:

µj =
1

k

∑n
i=1 xiP (θj|xi, θ)∑n
i=1 P (θj|xi, θ)

, (5.13)

σj =

√∑n
i=1 P (θj|xi, θ)(xi − uj)2∑n

i=1 P (θj|xi, θ)
. (5.14)

Using probabilistic assignments, the Gaussian Mixture Model is capable of capturing

elliptical cluster shapes and overlapping clusters, offering a more flexible modelling of

the data compared to simpler clustering techniques.
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Chapter 6

Cognitive Impairment Detection

with Supervised Learning

Supervised machine learning techniques were used to predict cognitive impairment in

murine models. The modelling phase, along with a rigorous evaluation of performance

metrics, is crucial to ensure the development of generic models that perform well on

unseen data.

6.1 Classification task definition

The main objective of the project is the development of a classifier capable of detecting

cognitive impairment in murine subjects. Using the validated historical dataset derived

from the Y-Maze test, the goal is to train a supervised learning model that can accurately

assess cognitive decline based on behavioural features.

To this end, different machine learning algorithms were compared in order to identify

the most reliable and accurate estimator. The primary purpose of the model is to cor-

rectly predict the class of new, unseen instances. Furthermore, another important aspect

is to understand the contribution of each feature to the classification task. A classifier is

basically an abstract representation of the relationship between the input features and

the class label. Feature importance analysis plays a key role in this context, as it helps

identify which variables are most relevant to distinguish between classes and offers in-
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sights into the decision-making process of the model. This aspect is particularly crucial

in a medical setting, where achieving high predictive performance must be accompa-

nied by a clear understanding of the underlying reasons for each prediction, in order to

support transparency, interpretability, and clinical decision-making.

This task is a multiclass classification problem, as the target feature can assume one

of three categories—IMPAIRED, UNIMPAIRED, or MID—representing varying levels

of impairment severity. In the analysis, the focus is specifically on the use of Label 80 as

the target feature for model training and evaluation. This label represents the primary

classification objective. The additional labels, Label 90 and Label 100, will be used at a

later stage exclusively for validation purposes, in order to assess the generalizability and

robustness of the classifiers trained through similar but distinct labelling thresholds.

As described in Chapter 3, the set of input attributes includes characteristics of the

subject and behavioural performance metrics from the Y-Maze test. Since the class label

was determined based on thresholds set on the % of Correct Alternations parameter, this

attribute was excluded from the dataset because it is extremely correlated with the target

feature.

6.2 Model training

The training phase is the systematic approach to learning a classification model given

a training set. This process is known as induction and is also often described as “learning

a model” or “building a model”. In this study, several supervised learning algorithms

were trained and compared: Logistic Regression (LR), Support Vector Machine (SVM),

Random Forest (RF), and K-Nearest Neighbors (KNN). These models were selected for

their interpretability, robustness, and popularity in classification tasks.

The preprocessing steps heavily affect the modelling phase. As previously delineated

in Chapter 4, the training pipeline incorporates all necessary transformations prior to

the application of the learning models. For each preprocessing step, multiple techniques

were tested, and the most effective ones were selected based on the performance achieved

by each algorithm. Specifically, feature encoding was consistently performed using one-

hot-encoding for categorical variables across all models. For the normalization step, the

62



techniques discussed in Section 4.2.2 were evaluated. Moreover, feature selection was

preferred over dimensionality reduction, as it allows a more interpretable understanding

of the contribution of each feature to the classification process. Table 6.1 summarizes

the optimal combination of preprocessing operations adopted for each algorithm.

Model Normalization Feature Selection

LR Z-score RFE-CV (min 5)

SVM Z-score RFE-CV (min 5)

RF Z-score RFE-CV (min 2)

KNN Z-score RFE-CV (min 2)

Table 6.1: Preprocessing transformations selected for each model.

It can be seen that the same techniques were selected for each model, except for small

variations in the initial settings. Z-score normalization was implemented through the

scikit-learn’s StandardScaler function [45]. For feature selection, RFECV [27] proved

to be the most effective technique. This method was implemented using a LogisticRe-

gression model as the supervised learning estimator. To optimize performance, different

values of the min features to select parameter were tested. This parameter defines the

minimum number of features to be retained during the recursive elimination process and

plays a crucial role in balancing model complexity and predictive performance.

(a) All features evaluated. (b) Zoomed selection performance.

Figure 6.1: RFECV: impact of the number of selected features on accuracy.
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As shown in the plot produced by the RFECV process (Figure 6.1), setting the

min features to select parameter to 2 leads to the selection of exactly two features,

whereas setting it to 5 results in five selected features. The graph illustrates that in-

creasing the number of input features tends to reduce the overall accuracy. Despite

this general trend, model-specific performance varies: Logistic Regression and Support

Vector Machine achieve better results when the minimum number of selected features

is set to 5, suggesting a benefit from slightly richer input representations. In con-

trast, Random Forest and K-Nearest Neighbors perform better with just 2 features,

likely due to their sensitivity to irrelevant or redundant inputs. More specifically, when

min features to select is set to 2, the selected features are No Entries Tot and No of

Alternations. When the parameter is set to 5, the selected features are No Entries

Tot, No of Alternations, and the exit counts for arms A, B, and C (A/B/C: No

Exits).

After defining the model-specific preprocessing pipeline, the next step involved hy-

perparameter tuning, a crucial phase to optimize the performance of the model.

Hyperparameter tuning refers to the process of identifying and selecting the optimal

configuration of hyperparameters of a machine learning model—parameters that are not

learned directly during the training process but significantly influence the final perfor-

mance of a model. To ensure optimal classification accuracy and model generalization,

a grid search optimization was performed for each algorithm. This method exhaustively

explores all possible combinations within the predefined hyperparameter space, evaluat-

ing each configuration through cross-validation. The tuning procedure was implemented

through a custom function that supports both grid and randomized search strategies,

although in this analysis the grid search approach was preferred for its exhaustive nature.

Finally, the best-performing parameter set, as identified by the search, was used to train

the final model instance.

The code for the hyperparameter tuning process can be found in Appendix B. The

appendix also includes an example of how the preprocessing and tuning functions were

applied in practice, specifically for the Support Vector Machine model.

At the end of this process, each algorithm yielded a trained model based on the

optimal preprocessing steps and hyperparameter configuration.
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6.3 Model evaluation and selection

The process of applying a classification model on unseen test instances to predict

their class labels is known as deduction. The performance of a classifier can be evaluated

by comparing the predicted labels with the true labels of the test instances. A model

that is able to accurately predict the class labels of instances it has never encountered

before has good generalization performance.

There are several metrics for assessing how good a classifier is at predicting class

labels [46]. A commonly used measure is the accuracy, which represents the percentage

of test set tuples correctly classified by the model. In the binary case, it is defined as:

Acc =
TP + TN

P +N
, (6.1)

where TP (true positives) and TN (true negatives) refer to correctly classified positive

and negative samples, respectively, and P and N are the total number of positive and

negative instances.

Accuracy is also referred to as the overall recognition rate, indicating the model’s

general ability to assign the correct label across all instances. However, in the presence

of imbalanced class distributions, accuracy alone may provide a misleading assessment of

model performance. In such scenarios, a classifier may achieve high accuracy by simply

predicting the majority class, while failing to correctly identify instances of the minority

class. To address this issue, the balanced accuracy metric is used. It computes the

average of recall values obtained for each class, thus giving equal weight to all classes

regardless of their frequency. In the binary setting, it is defined as the arithmetic mean

of sensitivity (true positive rate) and specificity (true negative rate):

B-Acc =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
=

1

2

(
TP

P
+

TN

N

)
, (6.2)

where FN and FP are false negatives and false positives, respectively.

An alternative measure to evaluate the model is the F1 score. The F1 score com-

bines precision (the ability to avoid false positives) and recall (the ability to detect all

true positives) into a single metric.
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The precision and recall measures are defined as follows:

precision =
TP

TP + FP
, (6.3) recall =

TP

TP + FN
=

TP

P
. (6.4)

The F1 score is defined as the harmonic mean of precision and recall:

F1 =
2× precision× recall

precision + recall
=

2× TP

2× TP + FP + FN
. (6.5)

This metric is especially useful when the goal is to balance precision and recall, rather

than prioritizing one over the other. It is well-suited for tasks where false negatives and

false positives are equally undesirable, as in many medical or diagnostic settings.

In this study, accuracy, balanced accuracy, and F1 score were used as primary eval-

uation metrics to compare the predictive performance of the trained models. These

metrics provide complementary perspectives and are particularly suitable for the multi-

class, unbalanced classification task. Table 6.2 reports the evaluation metrics obtained

by each trained model on the test set. It can be seen that the SVM achieved the best

performance in all metrics, with scores of 1.0, indicating a perfect classification on the

test set. The LR model also performed very well, with all three metrics close to 0.96. On

the other hand, RF and KNN exhibited slightly lower performance, especially in terms

of balanced accuracy, which is more sensitive to class imbalance.

Model Acc B-Acc F1

LR 0.96 0.96 0.96

SVM 1.0 1.0 1.0

RF 0.88 0.85 0.88

KNN 0.91 0.88 0.90

Table 6.2: Performance of trained models on test set.

In addition to metric-based evaluation, a confusion matrix was generated for each

model to gain deeper insight into the classification behaviour. The confusion matrix
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provides a detailed overview of the correct and incorrect predictions, showing how the

predicted labels deviate from the true labels for each class. This representation is parti-

cularly useful to understand the types of errors the model makes and can reveal potential

weaknesses that are not immediately apparent from summary metrics alone.

The confusion matrices of the trained models are shown in Figure 6.2. These matrices

must be interpreted considering the label encoding transformation applied to the target

variable, as summarised in Table 4.3, where the classes are encoded as follows: IM-

PAIRED = 0, MID = 1, and UNIMPAIRED = 2.

(a) Logistic Regression. (b) Support Vector Machine.

(c) Random Forest. (d) K-Nearest Neighbors.

Figure 6.2: Confusion matrices of trained models.

As expected, the matrix corresponding to the SVMmodel reveals perfect classification

performance: all predictions fall on the main diagonal, indicating that every instance was
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correctly assigned to its true class. This result is consistent with the previously reported

metrics for the SVM model, which all reached the maximum value of 1.0.

Regarding the LR model, the confusion matrix highlights a total of three misclas-

sifications. Specifically, the model incorrectly predicts the class MID for two instances

that actually belong to the IMPAIRED class, and for one instance that truly belongs

to the UNIMPAIRED class. These are probably samples with characteristics of both

impaired and unimpaired subjects, which the model struggles to classify with certainty,

opting instead for the intermediate MID label. Overall, the number of errors is very

limited, and the model does not make critical errors, confirming its solid and reliable

performance.

In contrast, the RF model makes a higher number of classification errors. Misclassifi-

cations involve the prediction of the MID class for instances that are actually IMPAIRED

or UNIMPAIRED, as well as incorrect assignments of IMPAIRED or UNIMPAIRED to

samples that truly belong to the MID class. These results suggest that the model has

difficulty in accurately distinguishing borderline cases, often oscillating between the MID

and the two extreme classes. However, the model never confuses IMPAIRED samples

with UNIMPAIRED ones and vice versa, a desirable behaviour in medical contexts,

where such misclassification could be critical.

A similar pattern can be observed in the KNN model, which also avoids directly

confusing the IMPAIRED and UNIMPAIRED classes. Although the distribution of

errors differs slightly, the majority of misclassifications still concern samples that are

close to the decision boundaries, leading to a tendency to mislabel them as MID.

Based on the results obtained through metric evaluation and confusion matrix ana-

lysis, the models selected as the most effective are Support Vector Machine and Logistic

Regression. The SVM model achieved perfect scores across all metrics and did not make

classification errors, demonstrating exceptional performance and reliability. Similarly,

the LR model showed high accuracy and balanced performance, with only a few minor

misclassifications and no critical errors. These results indicate that both models are

well-suited for the classification task, with SVM slightly outperforming LR. Therefore,

these two models were selected as the best and further analysis and specific evaluations

were subsequently carried out on them.
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6.3.1 Decision threshold tuning

In the specific context of the project, the objective of the classifier is the detection

of cognitive impairment. Therefore, it is particularly important to correctly detect sub-

jects belonging to the IMPAIRED class. This consists in minimising the number of

IMPAIRED subjects who are not correctly identified by the model, that is, reducing the

number of false negatives (considering IMPAIRED as the positive class). In this sense,

the recall for the IMPAIRED class becomes a key metric to consider during model

evaluation. An additional analysis was carried out to explore the possibility of further

improving the previously selected Logistic Regression model. The SVM model, having

already achieved perfect performance, was excluded from this step.

This analysis was conducted by examining two fundamental graphs for this type of

evaluation: the ROC curve and the Precision-Recall curve.

The ROC curve (Receiver Operating Characteristic curve) displays the trade-off

between the True Positive Rate (TPR), also known as sensitivity or recall, and the

False Positive Rate (FPR) across different decision thresholds. Specifically, TPR is the

proportion of positive samples that are correctly labelled by the model, FPR is the

proportion of negative tuples that are mislabelled as positive. A higher TPR and a

lower FPR indicate better model performance and the area under the ROC curve is a

measure of the accuracy of the model [46].

The Precision-Recall curve visualizes the trade-off between precision (the propor-

tion of correctly identified positive subjects among all those predicted as positive) and

recall (the proportion of correctly identified positive subjects among all actual positive

cases) [47].

Since this analysis involves a multiclass classification task, the ROC curve and the

PR curve were computed with the One-Vs-Rest scheme, specifically comparing the IM-

PAIRED class (the positive class of interest) against the other two classes (MID and

UNIMPAIRED combined). Figure 6.3 shows the two generated curves, expressing the

performance of the Logistic Regression model in distinguishing the IMPAIRED class

from the rest.
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(a) ROC curve. (b) Precision-Recall curve.

Figure 6.3: Discriminative performance of Logistic Regression.

The ROC curve bows towards the top-left corner of the plot, with an AUC (Area

Under the Curve) of 1.00, indicating that the LR model performs very well as a classifier.

Similarly, the Precision-Recall curve shows an average precision (AP) of 0.99, confirm-

ing that the model maintains high precision at various recall levels and significantly

outperforms the chance level (AP = 0.31).

Both plots reflect strong model performance in identifying the IMPAIRED class,

but also suggest that the recall could still be improved without compromising other

performance metrics. This could be achieved by adjusting the decision threshold used

for classification. In fact, both plots include a marker at the default threshold (0.5),

visually highlighting the current trade-off between precision, recall, and false positive

rate. These threshold indicators serve as valuable references for understanding how

performance may vary with different decision boundaries, offering insights into how to

further optimise the model’s behaviour depending on specific application needs.

To address this, the decision threshold was subsequently tuned with the specific goal

of maximising the recall metric. The selected threshold of 0.4 allowed the model to in-

crease the recall without compromising performance in other metrics (see Figure 6.4).

Reducing the threshold further would have totally eliminated the misclassification of IM-

PAIRED subjects as MID, but at the cost of introducing errors by incorrectly labelling

MID samples as IMPAIRED, more than those avoided by adjusting the threshold. There-

fore, a threshold of 0.4 was chosen as the best trade-off. It is important to note that
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the few remaining errors involve misclassifying individuals as MID, a class that reflects

clinical uncertainty and suggests the potential presence of cognitive decline. As such,

these cases are still identified as critical, ensuring that the model remains effective in its

primary objective of supporting early diagnosis.

(a) ROC curve. (b) Precision-Recall curve. (c) Confusion matrix.

Figure 6.4: Discriminative performance of customized Logistic Regression.

With this threshold adjustment, the Logistic Regression model achieved improved

overall performance. Specifically, it reached an accuracy and an F1-score of 0.97 and a

balanced accuracy of 0.98.

6.4 Model interpretation and comparative

evaluation

Model interpretation consists in understanding the model decision-making process.

This step is crucial to enable fairness, accountability, and transparency of a predictive

estimator, giving humans enough confidence to use that model in real cases. However,

there exists a typical trade-off between model performance and interpretability: simpler

models, which are more intuitive and interpretable, tend to reach lower performance,

especially in complex problems.

In this study, Logistic Regression and Support Vector Machine (with a linear kernel)

were identified as the best-performing models for the classification task. Since they
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are both linear algorithms that model the associations between features and the target

linearly, their interpretation is fairly straightforward.

To further support the interpretability of the trained models, a feature importance

analysis was carried out.

6.4.1 Feature importance assessment

Feature importance analysis is essential to understand the contribution of each in-

put feature to the classification task, identifying the most relevant variables in class

prediction.

In linear models, one way to evaluate the importance of features in the predictive

task consists in the analysis of the coefficients in the decision function. The coefficients

represent the influence of each input feature on the model’s output, assuming that all

other variables remain constant. This method provides clear insights in linear models,

but it is less applicable to non-linear models.

Another method to assess the feature importance in machine learning models is the

permutation importance technique. The intuition is to measure the decrease in model

performance when the values of a single feature are randomly shuffled, or permuted,

across the dataset. The more the model’s performance degrades after shuffling a fea-

ture, the more important that feature is considered to be. One key advantage of the

permutation feature importance is that it is model-agnostic, i.e. it can be applied to any

fitted estimator. Moreover, it can be calculated multiple times with different permuta-

tions of the feature, further providing a measure of the variance in the estimated feature

importances for the specific trained model [48].

Both of these methods were used to assess the feature importance for the Logistic

Regression and Support Vector Machine models.

Figure 6.5 shows the influence attributed to the input features by the estimators

based on the coefficient analysis. For both models, the most influential feature is No of

Alternations, with substantially higher relative importance compared to all other input

variables. This suggests that both the LR and the SVM rely heavily on this feature when
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making classification decisions. Following this, the remaining features exhibit lower and

relatively similar levels of importance. In particular, the SVM model attributes more

importance to the No Entries Tot feature, while the other three variables show almost

identical and minimal influence. Conversely, the LR model appears to rely more on the

feature B: No Exits (the number of exits from arm B performed), highlighting a slight

difference in how the two models weigh the supporting features in their predictions.

(a) Logistic Regression. (b) Support Vector Machine.

Figure 6.5: Feature importance assessment through coefficient analysis.

Figure 6.6 illustrates the importance attributed to each feature using the permutation

importance technique. For every feature, the plot reports an importance value along with

the corresponding standard deviation, obtained through repeated permutations. This

method confirms that No of Alternations remains the most influential feature for both

the SVM and LR models, followed by No Entries Tot. The remaining three features

are less relevant, with lower and similar importance values and overlapping ranges of

variance. It is possible to note that, for the LR model, the two most important features

differ between the two methods. This discrepancy can be attributed to the fact that

coefficient-based analysis reflects the direct, linear relationship between features and the

output, while permutation importance evaluates the actual impact of each feature on

model performance, capturing interactions, correlations, or effects of regularization.
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(a) Logistic Regression. (b) Support Vector Machine.

Figure 6.6: Feature importance assessment through permutation analysis.

These findings highlight the consistency of No of Alternations as the dominant

predictive feature in both models and evaluation methods, confirming its central role

in distinguishing between classes. This feature, combined with variables expressing the

total number of entries performed and the number of entries in each arm of the maze,

provides a consistent instrument for the detection of cognitive impairment.

The observed alignment between LR and SVM suggests that the classification task

is being solved consistently. Overall, these analyses offer valuable insights into how the

models operate and which variables drive their decisions, supporting model transparency

and potentially guiding future feature engineering.

6.4.2 Label-based performance comparison

The modelling phase was initially carried out using Label 80 as the target feature,

guiding the selection and tuning of the Logistic Regression and Support Vector Ma-

chine models. The additional labels present in the dataset, Label 90 and Label 100,

were subsequently used. New models were trained following the same procedures and

hyperparameter optimization strategies previously specified, using the different target

variables. This analysis aims to assess whether the LR and SVM models, developed

under the original labelling scheme, maintain high performance when trained with dif-

ferent label definitions. This evaluation provides insights into the stability of the selected
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modelling approach across different interpretations of the classification task.

The performance of the Logistic Regression and Support Vector Machine models

trained with the different target labels is reported in Table 6.3.

Acc B-Acc F1

LR 0.97 0.98 0.97

SVM 1.00 1.00 1.00

(a) Label 80

Acc B-Acc F1

LR 0.93 0.95 0.93

SVM 0.95 0.96 0.95

(b) Label 90

Acc B-Acc F1

LR 0.91 0.95 0.92

SVM 0.85 0.92 0.88

(c) Label 100

Table 6.3: Performance comparison of LR and SVM across different label thresholds.

It is evident that model performance tends to decrease as the probability threshold

used to define the target labels increases (from Label 80 to Label 100). A gradual decline

in performance is observed for both models, more prominently for SVM. Specifically,

for Label 90 both classifiers maintain strong predictive power, while with Label 100 the

SVM model shows a more substantial drop, and the LR model maintains relatively stable

performance.

This drop in performance may be partially attributed to the fact that both prepro-

cessing strategies and modelling techniques were specifically optimized for the classifi-

cation task using Label 80. However, the main limiting factor lies in the increasing class

imbalance introduced by Label 90 and, even more so, by Label 100 (as shown in Table

3.3). As these alternative labels adopt stricter thresholds in defining the target class, the

distribution of samples becomes increasingly skewed, resulting in a much smaller propor-

tion of IMPAIRED class instances (total absent for Label 100). This imbalance makes it

more difficult for models to effectively learn the distinguishing features of the minority

class, even when balancing techniques such as class weighting are applied. Consequently,

the classifiers tend to exhibit reduced performance under these conditions.

Despite the observed decrease in performance with these other target labels, the

Logistic Regression and Support Vector Machine models still achieve consistently high

results even when trained on Label 90 and Label 100. This suggests that the over-

all modelling pipeline—including encoding, normalization, feature selection, and hyper-
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parameter tuning—is robust and well-suited to the task. The ability of both models

to maintain strong performance across different label configurations indicates that the

modelling strategies adopted are generalizable and effective, even under more challenging

conditions such as increased class imbalance or stricter labelling criteria.

6.5 Robustness evaluation of model performance

Model evaluation is the process of assessing how well a machine learning model per-

forms its task on previously unseen data. Typically, the original dataset is split into

two subsets: a training set, used to learn the model, and a test set, used to evaluate its

performance. However, relying on a single train/test split may lead to biased or overly

optimistic performance estimates, especially if the split favours certain patterns in the

data. To address this, it is crucial to assess the robustness of the model by evaluating

its performance across multiple data partitions. This analysis aims to evaluate how con-

sistently the model performs when trained and tested on different subsets of the data.

Robustness evaluation provides insights into the model’s ability to generalize beyond the

specific conditions of a single experimental setup, reducing the risk of overestimating its

effectiveness due to favourable data sampling.

To perform this robustness analysis on the selected classifiers, Logistic Regression and

Support Vector Machine models, the cross-validation technique was used. The process

repeatedly split the original dataset into multiple independent training and test sets.

Specifically, the Stratified Shuffle Split method was employed to generate a specified

number of random splits (10 splits) while preserving the original class distribution within

each split. For each split, the models are trained on the training set and evaluated on the

test set, which is a predefined fraction (20%) of the entire dataset. This process yields a

distribution of accuracy scores, balanced accuracy scores, and f1 scores, reflecting the

variability of the performance of each of the two models across different data partitions.

Based on this approach, the mean value for each metric across the different splits

was calculated to provide a comprehensive summary of the models’ overall performance.

In addition, a 95% confidence interval was computed around each mean value to

quantify the uncertainty associated with these performance estimates.
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The confidence interval represents a range of values within which the true model’s

performance is expected to be with a certain level of confidence (commonly 95%). This

means that if the cross-validation procedure is repeated multiple times on different

samples, the true accuracy would fall within this interval in approximately 95% of the

cases. Calculating the confidence interval is crucial because it gives insight into the sta-

bility and reliability of the model’s performance. A narrow confidence interval indicates

consistent performance across different data splits, suggesting that the model generalizes

well and its accuracy estimate is robust. In contrast, a wide confidence interval suggests

a high variability of performance, which may indicate that the model is sensitive to the

specific data used for training and testing, and therefore less reliable.

The results of the cross-validation analysis for the Logistic Regression model indicate

a mean accuracy score of 0.89, with a 95% confidence interval of [0.86, 0.92]. In terms

of balanced accuracy, the model achieved a mean score of 0.87, with a corresponding

confidence interval of [0.83, 0.91]. The mean F1 score was 0.89, with a 95% confidence

interval of [0.86, 0.92].

These values were notably lower than the performance observed in the initial single

train/test split, where the accuracy, balanced accuracy, and F1 score were 0.97, 0.98,

and 0.97, respectively. This suggests that the initial results may have overestimated the

model’s true generalization performance.

Figure 6.7: LR performance with 95% confidence interval.
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The Support Vector Machine model consistently outperformed Logistic Regression

across all metrics. The mean accuracy obtained through cross-validation was 0.95,

with a 95% confidence interval of [0.93, 0.97]. The mean balanced accuracy reached

0.95 with a confidence interval of [0.93, 0.97], and the mean F1 score was also 0.95,

with the same confidence bounds.

As the Logistic Regression model, these scores were slightly lower than those obtained

from the initial single split evaluation, where accuracy, balanced accuracy, and F1 score

were all equal to 1.0. This again reflects the tendency of single-split evaluations to

produce overly optimistic performance estimates.

Figure 6.8: SVM performance with 95% confidence interval.

The results of the cross-validation analysis differ notably from the initial scores ob-

tained from a single train/test split, for both the two models. The initial scores were

likely overly optimistic, as they reflected performance on a single, specific partition of the

data that may have favoured the models. Another possible reason for the higher initial

performance values is that the hyperparameter tuning for each model was performed

specifically on the initial training set used in the single train/test split. In contrast,

the cross-validation approach provides a more realistic and robust estimate by averaging

performance across multiple splits.

By comparing the two models, the Support Vector Machine demonstrated higher and

more stable performance across all evaluation metrics. Although both models showed a
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drop in performance when evaluated using cross-validation rather than a single split, the

drop was less pronounced for the SVM, suggesting better generalizability.

Moreover, the confidence intervals across all three metrics—accuracy, balanced accu-

racy, and F1 score—reveal the variability in model performance. For the Support Vector

Machine, the consistently narrower intervals indicate greater stability and less variability

across different data partitions. In contrast, the Logistic Regression model shows wider

confidence intervals, reflecting more fluctuation in its performance. This suggests that

SVM not only achieves higher average scores, but also generalizes more reliably across

different subsets of data for all evaluation metrics considered.

Overall, these results reinforce the importance of evaluating model performance

through multiple splits and considering confidence intervals, rather than relying on a

single train/test split, to better understand the true predictive capability and robustness

of machine learning models.

Despite the lower metrics estimates obtained through cross-validation, both models

continue to demonstrate excellent performance in different data partitions, confirming

their reliability and suitability as effective predictive tools for cognitive impairment.
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Chapter 7

Exploratory Analysis with

Unsupervised Techniques

Cluster analysis was performed to explore the partitioning of the dataset into groups

of similar data. The characteristics of the clusters were compared with those of the

predefined target categories, trying to uncover novel patterns and identify alternative

factors of cognitive impairment.

7.1 Unsupervised analysis objectives

In this project, the goal of the unsupervised analysis is to uncover predictive factors of

cognitive impairment without relying on the predefined labelling approach. The current

labelling method focuses on detecting cognitive decline in murine models through the

parameter % of Correct Alternations of the Y-Maze test. However, the dataset contains

a wide range of other parameters that have not yet been used in the classification of

subjects. This unsupervised analysis aims to explore these additional features, poten-

tially uncovering new factors or relationships that could improve the understanding of

cognitive impairment.

By employing clustering methods, the aim is to identify groups of data that share

similar characteristics and are dissimilar to those of other groups. Using these automated

algorithms, partitioning can lead to the discovery of previously unknown groups within
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the data and even reveal hidden structures that extend beyond traditional cognitive

impairment detection techniques. The use of an unsupervised approach provides the

advantage of exploring relationships in the data without being constrained by predefined

labels, allowing for an exploration of the data’s inherent structure.

Specifically, the analysis focuses on comparing the clusters identified by the unsuper-

vised models with the predefined target categories, aiming to understand the distinctive

characteristics of each group. By examining the correlation between clusters and pre-

defined classes, the study seeks to discover meaningful patterns and novel predictive

factors of cognitive impairment.

As this is an unsupervised task, the target labels (Label 80, Label 90, and Label 100)

were excluded from the analysis, allowing the clustering methods to operate solely on the

available input features. All other parameters within the dataset were retained without

any selection.

7.2 Implementation of clustering methods

Cluster analysis is the process of partitioning a set of data objects into subsets, called

clusters, such that data objects within the same cluster are more similar to each other

than to those in different clusters. Since clustering algorithms adopt different strategies

and assumptions to group data, they may produce varying results even when applied

to the same dataset. For this reason, multiple clustering techniques were employed in

this study: K-Means, HDBSCAN, and Gaussian Mixture Model (GMM). The results

of these methods were compared to evaluate the consistency and interpretability of the

resulting clusters.

Some preprocessing steps are essential to ensure meaningful and reliable clustering

results. As described in Chapter 4, the preprocessing pipeline for the unsupervised

analysis includes the encoding of categorical features and the normalization of numerical

variables. These transformations are fundamental for allowing clustering algorithms

to operate effectively and to prevent the results from being biased by differences in

the value ranges of features. Similarly to the approach used in the supervised analysis,

categorical variables were encoded using one-hot-encoding, while numerical features were
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standardized using scikit-learn’s StandardScaler, ensuring that all variables contribute

equally to distance-based computations.

Moreover, each clustering algorithm requires a specific modelling approach, with

careful tuning of key parameters that can significantly influence the quality and structure

of the resulting clusters. For this reason, a dedicated analysis was conducted for each

method to define the most suitable parameter settings, taking into account both the

nature of the data and the algorithm-specific assumptions. These preliminary steps

were essential to ensure that each model could produce meaningful and interpretable

groupings.

Among the clustering techniques considered, K-Means was the first to be applied.

As described in Section 5.2.1, it is a centroid-based technique that assigns an object to a

cluster based on the Euclidean distance between the object itself and the centroid of the

cluster. Since the clustering results may depend on the initial random selection of cluster

centres, it is good practice to run the algorithm multiple times with different initializa-

tions. To address this aspect, the init hyperparameter of the scikit-learn’s KMeans class

[42] was set to “k-means++”, which selects initial cluster centroids improving conver-

gence, and the n init hyperparameter was set to 10, ensuring that the algorithm runs

with different centroid seeds.

A central aspect of the K-Means algorithm is that the user has to specify the number

of clusters k in advance. Determining the “right” number of clusters in the dataset is

essential, but it is a difficult task. To identify the optimal value of k, two well-established

techniques were employed: the Elbow Method and the Silhouette Analysis.

The Elbow Method involves plotting the inertia (i.e., the within-cluster variance)

for a range of k values and identifying the point where the rate of decrease slows down

considerably. This turning point in the curve, which looks like an “elbow” in the plot,

is considered a good estimate of the optimal number of clusters [49].

The Silhouette Analysis evaluates how well each data point fits within its assigned

cluster compared to other clusters. It provides a silhouette coefficient ranging from -1

to 1, with higher values indicating better-defined and more distinct clusters. A good

value of k have all clusters with scores above the dataset’s average, and their sizes are

balanced [50].
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Figure 7.1 displays the results obtained from both the Elbow Method and the Silhou-

ette Analysis. The Elbow Method suggests k=3 as a potential optimal value. However,

the absence of a clear inflection point in the plot limits the strength of this indication. In

contrast, the Silhouette Analysis shows a progressive decrease in the average Silhouette

score as the number of clusters increases. The most balanced configuration appears to be

at k=2, where both the average Silhouette score and the consistency across clusters are

more favourable. At k=3, although cluster sizes remain relatively balanced, one of the

clusters exhibits a high number of samples with negative Silhouette scores, suggesting

poor assignment. Further increasing the number of clusters results in highly imbalanced

groupings and a general drop in clustering quality, as reflected by lower Silhouette scores

across many samples.

(a) Elbow Method. (b) Silhouette Analysis.

Figure 7.1: Methods to identify the optimal value of k in K-Means clustering.

Thus, both k=2 and k=3 were tested in K-Means Clustering. The results obtained

are presented in the following section.

Another clustering technique used is HDBSCAN. Unlike K-Means, HDBSCAN is a

density-based method that automatically determines the number of clusters, discovering

clusters of arbitrary shapes and varying densities. However, also this algorithm has

some hyperparameters that need to be properly tuned. Specifically, it is important to

focus on the min samples hyperparameter, which refers to the number of samples in a

neighbourhood for a point to be considered as a core point, and on the min cluster size
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hyperparameter, that is the minimum number of samples in a group for that group to be

considered a cluster. The tuning of these hyperparameters must be performed with the

aim of minimizing the number of outliers, obtaining a coherent number of clusters with

a high probability of sample assignment to clusters, and avoiding unbalanced clusters.

The results obtained from the tuning are reported in Table 7.1.

min cluster size min samples Clusters Outliers Cluster sizes Min prob.

3 default 4 264 81, 15, 3, 3 0.93

5 default 2 265 88, 13 0.85

6 default 2 286 74, 6 0.87

7 default 0 366 - -

5 2 4 327 96, 23, 5, 5 0.91

5 3 2 243 108, 15 0.82

5 4 2 277 80, 9 0.86

5 15 0 366 - -

Table 7.1: HDBSCAN hyperparameter tuning results.

The results highlight some limitations in the direct application of HDBSCAN to the

original dataset. Although the algorithm shows a high minimum probability of assign-

ing samples to clusters, indicating good confidence in its predictions, most samples are

classified as outliers. Additionally, the identified clusters tend to be heavily unbalanced

in size, with a large cluster and several very small ones.

While HDBSCAN did a great job on the data it could cluster, it did a poor job of

actually managing to cluster the data. The problem is that, as a density-based clustering

algorithm, HDBSCAN tends to suffer from the curse of dimensionality: high-dimensional

data require more observed samples to produce much density.

To address this, a dimensionality reduction step was introduced prior to clustering.

While PCA is a common technique, its linear nature makes it less effective in preserving

the complex, non-linear relationships that may exist in the data. Instead, UMAP was
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used to reduce the dimensionality while preserving both global and local structures.

The application of HDBSCAN after reducing the dimensionality with UMAP led to a

significant improvement in clustering performance. In particular, the number of detected

outliers decreased notably in several configurations, and the silhouette scores increased,

indicating better-defined cluster boundaries. However, despite these improvements, the

clustering results still suffered from a high number of small and fragmented clusters,

and the cluster assignments often lacked interpretability and coherence from a domain-

specific perspective.

Given these results, a further preprocessing step was introduced: manual feature se-

lection, retaining only the “general” features of the Y-maze test. The complete prepro-

cessing pipeline thus included: manual feature selection, feature encoding, normalization,

and UMAP-based dimensionality reduction. This refined pipeline aimed to improve both

the stability and interpretability of the final clustering outcomes.

The best parameter configuration identified is presented in Table 7.2. While the

clusters are slightly unbalanced, they are nonetheless well-separated, as indicated by the

silhouette score (0.52), and the minimum assignment probability confirms a generally

confident assignment of samples to clusters.

min cluster size min samples Clusters Outliers Cluster sizes Min prob.

10 15 3 48 172, 140, 20 0.77

Table 7.2: HDBSCAN final configuration.

The interpretation of the clusters identified by HDBSCAN is provided in the following

section, as for the analysis of the results of the other clustering methods.

The last clustering technique employed is Gaussian Mixture Model. To imple-

ment this probability-based method, a grid search was performed to identify the optimal

configuration of the hyperparameters. Specifically, the number of mixture components

n components and the covariance type covariance type were tuned. The Bayesian In-

formation Criterion (BIC) was employed as the scoring metric, aiming to minimize model

complexity while ensuring a good fit.
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The best configuration identified for the Gaussian Mixture Model through grid search

optimization has n components=3 and covariance type=“spherical”. The choice of three

components suggests that the underlying structure of the data can be effectively de-

scribed by three distinct probabilistic distributions, which means that the model at-

tempts to identify three clusters. The use of spherical covariance indicates that the

clusters are assumed to be isotropic, i.e., having the same variance in all directions,

while still allowing each cluster to have its own overall variance.

7.3 Clustering results and interpretation

The analysis of the clustering results focused on identifying the distinctive characte-

ristics of the groups found, with the aim of attributing meaningful interpretations to

each cluster.

In the context of the Y-Maze test data, each data point represents a mouse’s beha-

vioural profile across multiple features, and the clustering process groups together mice

with similar patterns of performance. Here, similarity is defined in terms of distance in

the multidimensional feature space: mice whose feature vectors are closer together are

considered behaviourally more similar, while greater distances indicate more divergent

behavioural profiles.

To investigate the factors driving this separation, the distributions of individual fea-

tures across clusters were examined using both visual and statistical tools. Feature dis-

tribution plots provided an initial insight into which variables differed the most between

clusters, while the statistical t-test was used to identify features whose mean values

differed significantly between groups. This combination allowed for a rigorous interpreta-

tion of the dimensions that contribute to the clustering structure.

Furthermore, the results of the clustering methods were compared with the predefined

target categories to assess the alignment between data-driven groupings and established

classification criteria (the original labelling method). This comparison involved analysing

whether the distinctive features of the clusters corresponded to those characterizing the

predefined classes, as well as visually comparing the spatial distribution of clusters and

original labels through graphical representations. For this purpose, cluster visualization
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was carried out by applying UMAP for dimensionality reduction, projecting the data

into a two-dimensional space suitable for plotting.

The analysis starts with the exploration of K-Means results. Initially, K-Means

clustering was performed setting the number of clusters to k=2.

As can be found in Figure 7.2, the two clusters identified by the algorithm differ

primarily in the following features: No of Alternations, No Entries Tot, Distance, and

Mean Speed. Cluster 0 includes data points with lower values for these features, while

Cluster 1 shows consistently higher values. It is almost possible to find a threshold value

for these characteristics, which distinguishes the two clusters.

Figure 7.2: Distributions of selected features by K-Means clusters.

These features are commonly associated with general locomotor activity and explora-

tory behaviour. Mice in Cluster 1, exhibiting higher movement and entry rates, could

be interpreted as displaying increased exploratory drive or hyperactivity, while those in

Cluster 0 might reflect reduced activity levels, potentially due to apathy, motor impair-

ments, or cognitive decline-related disengagement.
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In addition to the primary features, additional variables—such as those related to

entries into individual arms or specific movement sequences—also showed significant

differences between clusters, as highlighted by the results of the t-test analysis. However,

the clusters do not show significant separation with respect to the parameter % of Correct

Alternations, the main indicator used in the literature to assess the presence of cognitive

impairment.

In Figure 7.3, the distribution of the key features is shown with respect to the original

Label 80 classification. The most distinctive feature that separates these predefined

classes is the % of Correct Alternations. In contrast, features such as the number of

alternations, total entries, distance travelled, and mean speed—that mainly define the

K-Means clusters—do not show any notable differentiation between the original labels.

Figure 7.3: Distributions of selected features by predefined classes.

This discrepancy reveals a fundamental difference in what the two approaches (un-

supervised clustering vs. predefined labelling) are capturing. The clusters found reflect

behavioural patterns related to locomotor activity and exploration, but do not differ in

cognitive performance as typically measured by alternation accuracy. This first result
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highlights a discrepancy between the discovered clusters and the original class labels.

Subsequently, the spatial distribution of the clusters was compared to that of the

original classes.

(a) K-Means clustering (k=2). (b) K-Means clustering (k=3).

(c) Predefined classes (Label 80).

Figure 7.4: UMAP data visualization: K-Means clustering.
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As shown in Figure 7.4a, the two clusters identified by K-Means appear well sepa-

rated in space, indicating a successful partition into distinct groups. In contrast, the

points associated with the original classes (Figure 7.4c) are more scattered and show

considerable overlap.

This visual evidence reinforces the notion that the clusters extracted through unsu-

pervised learning do not correspond to the predefined categories.

K-Means clustering was tested also setting k=3. The features that most differentiate

the clusters remain the same as before, with the clustering identifying a group with high

average values, one with low values, and one with intermediate values. However, the %

of Correct Alternations continues to be irrelevant in the separation of the clusters.

Furthermore, when comparing the plot of the clusters (Figure 7.4b) with those of the

original labels (Figure 7.4c), it becomes evident that the cluster distribution is organized

differently compared to the distribution of the predefined categories.

This further highlights a mismatch between the natural grouping suggested by K-

Means and the original class labels.

The clustering exploration continues with the analysis of the HDBSCAN results,

obtained from the selected configuration of the algorithm (as reported in Table 7.2).

Figure 7.5 shows the distribution of the analysed features with respect to the clusters

identified by HDBSCAN (Cluster -1 refers to the category of outliers).
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Figure 7.5: Distributions of selected features by HDBSCAN clusters.

Consistent with the findings from K-Means, HDBSCAN reveals a separation primarily

driven by activity-related features, such as the number of alternations, total entries,

distance travelled, and mean speed. Once again, the % of Correct Alternations does not

emerge as a distinguishing variable between the clusters, suggesting that the unsupervised

partitioning remains focused on behavioural rather than cognitive differentiation.

In Figure 7.6, the spatial distribution of the HDBSCAN clusters obtained and that

of the original categories can be seen. This 2D visualization shows a different spatial

projection of the data points compared to Figure 7.4, due to the additional feature

selection step performed during the HDBSCAN clustering process.
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(a) HDBSCAN clustering. (b) Predefined classes (Label 80).

Figure 7.6: UMAP data visualization: HDBSCAN clustering.

Once again, no clear correspondence can be observed between the clusters and the

original predefined classes. The clusters are composed of data points that are spatially

close to each other, forming compact and well-separated groupings in the low-dimensional

projection space. In contrast, the original classes appear more dispersed and overlapping,

lacking the internal cohesion that characterises the clusters.

This visual and structural discrepancy reinforces the idea that the clustering al-

gorithms are capturing patterns in the data that are not aligned with the predefined

classification scheme.

Lastly,GMM clustering results are reported. The outcomes are consistent with those

observed using the other clustering methods, emphasizing consistent differences between

the same core features. As with the previous methods, the % of Correct Alternations

continues to show limited discriminative power, reinforcing the observation that spon-

taneous clustering is not associated with traditional measures of cognitive performance

in the Y-Maze.
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Figure 7.7 shows the spatial representation of the clusters obtained using the Gaussian

Mixture Model clustering algorithm. In the plot, the ellipses represent the probability

distributions estimated by the GMM: each ellipse is centred at the mean of a cluster and

shaped according to its covariance matrix, which reflects the spread and orientation of

the data points around the centre. This graphical representation provides an intuitive

visualization of the structure and uncertainty within each cluster.

Notably, the figure also highlights a clear visual distinction between the GMM clusters

and the original predefined classes.

(a) GMM clustering. (b) Predefined classes (Label 80).

Figure 7.7: UMAP data visualization: GMM clustering.

The results obtained from the different clustering techniques (K-Means, HDBSCAN,

and GMM) show a high degree of consistency, which supports the robustness and reli-

ability of the identified groupings. This convergence across methods reinforces the idea

that the clusters reflect genuine structure within the data, rather than artefacts of a

particular algorithm.
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However, the unsupervised clusters do not correspond to the original predefined

classes, which are based on cognitive performance measures such as the % of Correct

Alternations. This discrepancy suggests that clustering methods are capturing beha-

vioural variability—particularly in locomotor activity and exploratory patterns—rather

than cognitive impairment as traditionally defined.

Therefore, it is not possible to use these clustering approaches to explore alternative

patterns or factors of cognitive impairment that align with the subject classification

method currently considered correct.

95





Chapter 8

Conclusions

The cognitive impairment classification models obtained are the first outcome of

the AI4ChemoBrain project. Their high performance makes them useful tools in the

subsequent stages of the research. From the specific historical dataset used, no alternative

factors of cognitive impairment emerged compared to those defined in the literature.

8.1 Discussion of results

This research is part of the AI4ChemoBrain project that aims to generate a tool

for clinical use to predict the onset of chemobrain, namely the cognitive impairment

experienced by patients treated with systemically administered anticancer therapies.

As in any study of human pathological conditions, it is necessary to validate potential

diagnostic or therapeutic tools using animal models.

Therefore, this study focused on the development of a predictive model of cognitive

impairment in murine models, based on a validated historical dataset containing behav-

ioural measures from the Y-Maze cognitive test. This classifier constitutes a first useful

tool in the overall context of the project.

As described in the previous chapters, different machine learning models were trained

for this task, with Logistic Regression and Support Vector Machine classifiers ultimately

selected as the best predictors. These models achieved high predictive performance,

highlighting the effectiveness of the preprocessing steps and the modelling process ap-
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plied. Specifically, both models exceeded 95% accuracy when trained and evaluated

using Label 80, which was adopted as the primary target label for model development.

Furthermore, they consistently achieved strong results even when applied to alternative

labelling strategies. Since model performance varies slightly depending on the label used,

both classifiers were retained as valid outcomes, allowing the most appropriate model to

be selected according to the specific labelling strategy or classification goal.

Both selected models are linear, which aligns with the relatively simple nature of the

data and the classification task. The models base their predictions on a limited set of

key features: No of Alternations, No Entries Tot, and A/B/C: No Exits. Specifically,

subjects exhibiting a high proportion of alternations relative to the total number of

entries are considered UNIMPAIRED, while a lower proportion indicates IMPAIRED

cognitive performance. It is important to note that these variables must be evaluated in

combination, as none of them alone provides a meaningful indicator of cognitive status.

The number of exits from each individual arm adds further information, providing insight

into the distribution of spatial exploration.

In the context of the supervised cognitive impairment detection task—defined ac-

cording to the predefined labels—additional more specific parameters available in the

dataset proved to be irrelevant for improving classification performance.

Basically, the classifiers developed are machine learning models that reproduce the

labelling strategy adopted by domain experts, using a combination of original features

obtained from the Y-Maze test. This alignment further supports the reliability and

interpretability of predictive systems.

In addition, the study has an exploratory component aimed at investigating whether

a larger set of behavioural features derived from the Y-Maze test could serve as a poten-

tial indicator of cognitive impairment. The dataset includes 196 attributes—quantitative

measures extracted from the Y-Maze test—which remain largely unexplored in the ex-

isting literature.

To this end, unsupervised learning algorithms were applied to evaluate the intrinsic

structure of the data and to assess whether meaningful groupings could emerge inde-

pendently of predefined labels.

Although clustering techniques were able to identify groups of subjects with similar
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behavioural profiles, these clusters did not align with the established cognitive impair-

ment categories. This discrepancy suggests that the additional features may not directly

correlate with the expert-defined labelling criteria. In fact, many of these parameters rep-

resent highly specific details of the animals’ movement patterns during the test—such

as fine-grained trajectory metrics—which may be too granular to provide additional

discriminative power. Moreover, these detailed attributes reflect behavioural patterns

already captured by the more general and informative parameters traditionally used in

cognitive assessment, such as alternation rates and total entries.

Consequently, clustering approaches do not actually provide an effective means of

identifying alternative factors or latent dimensions of cognitive impairment consistent

with the current classification framework.

8.2 Statistical significance of classifier performance

The cognitive impairment classifiers are the main outcome of the study. To ensure

the reliability and validity of these models, it is essential to demonstrate that their

performance does not result from random chance, but rather reflects a meaningful and

generalizable relationship between input features and class labels.

To assess this, a statistical hypothesis testing framework was employed [51]. Hypo-

thesis testing is a statistical procedure used to evaluate whether the results of a study

provide sufficient evidence to reject a default hypothesis, also called the null hypothesis,

in favour of an alternative hypothesis.

In the specific context of validating the cognitive impairment classifiers, the goal of

the statistical test is to determine whether the performance of the classifiers on the test

set provides sufficient evidence to reject the null hypothesis—that the observed accuracy

could be explained by random chance alone—in favour of the alternative hypothesis,

which suggests that the classifiers capture a true, generalizable pattern in the data.

Formally, the null hypothesis (H0) is: “The classifier is not able to learn a general-

izable relationship between the input features and the class labels from the given training

set.” The alternative hypothesis (H1) is: “The classifier learns a generalizable rela-

tionship between the input features and the class labels from the training set.”
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The statistical testing process follows a well-defined series of steps:

1. Selection of the test statistic: To evaluate model performance on the test set, a

suitable test statistic is selected—in this case, the classification accuracy.

2. Estimation of the null distribution: To approximate the distribution of the test

statistic under the null hypothesis, a permutation-based approach is employed. This

involves generating synthetic training datasets by randomly shuffling the class labels

multiple times. A classifier is trained on each permuted dataset, and its accuracy on

the original test set is computed. This process yields a null distribution of accuracies,

representing the expected performance of the classifier under the assumption that

no true relationship exists between the input features and the class labels.

3. Assessment of statistical significance: The accuracy of the original model

(trained on true labels) is compared to the null distribution of accuracies obtained

from the permuted datasets. Statistical significance is assessed by computing a p-

value, defined as the proportion of models trained on permuted labels that achieve an

accuracy equal to or greater than that of the original model. A low p-value suggests

that such high performance is unlikely to occur by chance, thus providing evidence

against the null hypothesis. Statistical significance is evaluated with respect to a

predefined threshold, typically α = 0.05, which represents a 5% probability of ob-

serving such a result under the null hypothesis. A p-value lower than α indicates

that the result is statistically significant, implying that there is sufficient evidence

to reject the null hypothesis in favour of the alternative.

As previously reported, the Support Vector Machine (SVM) classifier achieved an

accuracy of 100%, while the Logistic Regression (LR) classifier achieved an accuracy of

97% on the test set. To determine whether these performances were significantly better

than what could be expected by chance, the described permutation-based statistical test

was conducted.

For each classifier, a null distribution of test accuracies was constructed by repeatedly

training models on versions of the training set where class labels were randomly per-

muted, thereby simulating the case where no true relationship exists between input

features and target labels.
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For the LR model, the mean accuracy under the null hypothesis was 0.34, and the

observed accuracy of 0.97 yielded a p-value of 0.0099. For the SVM model, the null

distribution had a mean of 0.35, and the perfect accuracy of 1.0 produced a p-value

of 0.0099.

In both cases, the p-value is below the predefined significance threshold of α = 0.05,

leading to the rejection of the null hypothesis. This is also evident in the histograms

in Figure 8.1, where the observed accuracies of both models lie far to the right of their

respective null distributions, indicating significantly better performance than would be

expected by random chance.

(a) LR: Accuracy vs. Null Distribution. (b) SVM: Accuracy vs. Null Distribution.

Figure 8.1: Permutation test for classifier performance.

These results provide strong evidence that both classifiers capture generalizable pat-

terns in the data, and that their predictive performance is not due to random chance.

The rejection of the null hypothesis, supported by statistically significant p-values and

large effect sizes (i.e., high observed accuracies compared to the null distributions), con-

firms the validity of the models’ outcomes. Consequently, it can be concluded that the

classifiers are not merely overfitting the training data, but rather learning meaningful

relationships that generalize well to unseen data. This finding is particularly important

in the context of this study, whose primary goal is to develop reliable tools for the early

detection of cognitive impairment in murine models.
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8.3 Limitations of the study

High-quality data are essential to correctly represent a specific phenomenon and to

ensure the development of reliable and generalizable predictive models. This concept

encompasses several dimensions, including accuracy, reliability, consistency, and com-

pleteness, all of which directly impact the effectiveness of machine learning models. In

the context of biomedical research, where subtle variations in the data can reflect mean-

ingful biological differences, data quality becomes even more critical.

In this study, extensive data cleaning was carried out supported by continuous inter-

actions with domain experts, aiming to resolve errors, remove inconsistencies, and ensure

reliability of the dataset. This process revealed several issues, including data entry er-

rors, duplicates, and internal inconsistencies, which led to the exclusion of a substantial

number of samples. Therefore, the final dataset comprises a relatively small number

of valid samples, which limits its representativeness of the real-world environment and

affects the learning capacity of machine learning models.

Furthermore, despite the data cleaning process, some limitations related to the in-

trinsic nature of the data may still persist, potentially compromising the results.

As discussed during the exploratory data analysis (Section 3.2.3), a particularly crit-

ical issue is the under-representation of older subjects, especially those belonging to

the Tg2576 genotype, which typically exhibits clear symptoms of cognitive impairment

around nine months of age.

This data gap may partially result from a higher incidence of noise and inconsistencies

in records related to older animals, which may have led to their exclusion during the

data cleaning phase. However, it is also likely influenced by factors inherent to the

experimental context. For instance, older mice may be less frequently available for

testing due to natural age-related mortality, or they may have undergone the Y-Maze

test but produced performance results considered invalid for the analysis, resulting in

further data loss.

The resulting lack of representation in this critical subgroup—likely to exhibit im-

paired cognitive behaviour—compromises the model’s capacity to learn discriminative
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patterns associated with cognitive decline and highlights the importance of collecting

more diverse and representative data in future studies.

Despite these limitations, the models developed in this study achieved very high

performance and demonstrated their validity as predictive tools within the specific ex-

perimental context considered. These results support the feasibility of using behavioural

test data for the early detection of cognitive impairment and constitute the first step for

further refinement and validation.

8.4 Future research directions

The cognitive impairment classifiers developed in this study represent the first out-

come of the AI4ChemoBrain project, based on the analysis of the historical dataset

collected over the last 15 years from preclinical models of cognitive decline. These pre-

liminary models serve as a foundational step toward the broader objective of developing

reliable predictive tools for chemobrain detection.

Future research will focus on testing the models using a new dataset specifically

generated within the course of the project, derived from an experimental preclinical

chemobrain model. This step is crucial to evaluate the models’ ability to generalize to

data that more directly reflect the targeted pathology.

The project will then validate the predictive models to ensure their robustness, ef-

fectiveness, and translatability in the clinical environment. This phase will use a dataset

derived from a second preclinical model of chemobrain in subjects with cognitive decline

(internal cohort) and a dataset derived from an external cohort.

The combination of the datasets will enable to study the contribution of each descrip-

tor with respect to the models’ predictive ability. Data augmentation, transfer learn-

ing, and fine-tuning techniques may be used to overcome any problems related to the

availability of large datasets in the context of the chemobrain in order to improve the

predictive capabilities of the ML/AI models.

The ultimate goal is the integration of these predictive systems into the clinical
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setting, where they could play a role in the early identification of cognitive side effects

in cancer patients. Such tools could support the design of targeted adjuvant therapies,

contribute to personalised treatment strategies, and ultimately empower patients by

enhancing their quality of life. Additionally, by enabling earlier interventions, these

models may help reduce the long-term cognitive burden and mitigate the economic and

social costs associated with chemotherapy-induced cognitive impairment.
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Appendix A

Dataset Features

Name Type

Identifier
Animal ID int

Study String

Subject-rel data

Strain String

Age int

Gender String

YM general data

No Entries Tot int

No of Alternations int

% of Correct Alternations int

Visited Arms String

No Entries A int

No Entries B int

No Entries C int

First Zone Entered String

Duration (s) int

Distance (m) float

Mean Speed (m/s) float

Max Speed (m/s) float

Rotations int

Clockwise Rotations int

Anti-clockwise Rotations int

Absolute Turn Angle (o) int

Path Efficiency float

Line Crossings int

Num Centre Positions int

YM arm-rel data:
A, B, C

No Entries int

No Exits int

Was 1st Zone Bool

Time (s) float
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Name Type

YM arm-rel data:
A, B, C

Distance (m) float

Distance to First Entry (m) float

Latency to First Entry (s) float

Latency to First Exit (s) float

Latency to Last Entry (s) float

Average Speed (m/s) float

Max Speed (m/s) float

Mean Visit (s) float

Max Visit (s) float

Min Visit (s) float

Visit Duration List String

Initial Distance (m) float

Mean Distance from (m) float

Max Distance from (m) float

Min Distance from (m) float

Cumulative Distance (m*s) float

Mean Distance to Border (m) float

Max Distance to Border (m) float

Min Distance to Border (m) float

Time Getting Closer to Zone (s) float

Time Getting Further from Zone (s) float

Initial Heading Error (o) int

Signed Initial Heading Error (o) int

Average Absolute Heading Error (o) int

Time Moving Towards (s) float

Time Moving Away from (s) float

In Zone Oriented Towards Centre (s) float

Absolute Turn Angle (o) int

Path Efficiency to Entry float

CIPL (m*s) float

Line Crossings int

YM sequence-rel data:
Abc, Bca, Cab, Acb,
Bac, Cba

Number int

Total Time (s) float

Latency to 1st Start (s) float

Latency to 1st End (s) float

Mean Duration (s) float

Max Duration (s) float

Min Duration (s) float

Total Distance (m) float

Mean Distance (m) float

Max Distance (m) float

Min Distance (m) float

Mean Speed (m/s) float

Label

Label 80 String

Label 90 String

Label 100 String
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Appendix B

Code Implementations

In this section, selected code snippets relevant to the implementation of the classi-

fication models are presented. The complete code developed for this project is available

upon request.

The code had been implemented in Python, using libraries for data analysis and

machine learning. In particular, the following packages had been used: pandas, numpy,

matplotlib, seaborn and scikit-learn.

Listing B.1: Pipeline for the classification task.

def preprocessing_pipeline(categorical_features , numerical_features , best_normalization ,

best_dim_red , apply_dim_red , feature_selection_method , min_features_to_select ,

model , seed =42):

# Preprocessing Step: Feature Encoding and Normalization

preprocessor = ColumnTransformer(

transformers =[

# Encoding for Categorical Features

("cat", OneHotEncoder (), categorical_features),

# Normalization for Numerical Features

("num", best_normalization , numerical_features)

],

)

# Pipeline Definition: base

pipeline = Pipeline(steps=[

("preprocessor", preprocessor), # encoding and normalization

("model", model) # modeling

])
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# Preprocessing Step: Dimensionality Reduction

if apply_dim_red:

pipeline = Pipeline(steps=[

("preprocessor", preprocessor),

("reduction", best_dim_red), # dimensionality reduction

("model", model)

])

# Return the pipeline

return pipeline

# Preprocessing Step: Feature Selection

selector = ""

match feature_selection_method:

case "RFE":

estimator = LogisticRegression(random_state=seed , max_iter =1000,

class_weight="balanced")

selector = RFE(estimator)

case "RFE -CV":

estimator = LogisticRegression(random_state=seed , max_iter =1000,

class_weight="balanced")

selector = RFECV(estimator , step=1, cv=StratifiedKFold (3, random_state=seed ,

shuffle=True), scoring="accuracy", min_features_to_select=

min_features_to_select , n_jobs =2)

case "SelectKBest":

selector = SelectKBest(score_func=f_classif , k=5)

case "SelectFromModel":

estimator = LogisticRegression(random_state=seed , max_iter =1000,

class_weight="balanced")

selector = SelectFromModel(estimator , threshold="mean")

case _:

# Return the pipeline

return pipeline

pipeline = Pipeline(steps=[

("preprocessor", preprocessor),

("selector", selector), # feature selection

("model", model)

])

# Return the pipeline

return pipeline

Listing B.2: Hyperparameter tuning for supervised models.

def hyperparameter_tuning(X_train , y_train , pipeline , param_grid , search_type="grid",

n_iter =50, scoring="f1_weighted", seed =42):

# Stratified K Fold cross -validation

skf = StratifiedKFold(n_splits=3, shuffle=True , random_state=seed)
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# Define the search type

if search_type == "grid":

search = GridSearchCV(pipeline , param_grid=param_grid , cv=skf , n_jobs=-1,

verbose=2, scoring=scoring)

elif search_type == "random":

search = RandomizedSearchCV(pipeline , param_distributions=param_grid , n_iter=

n_iter , cv=skf , random_state=seed , n_jobs=-1, verbose=2, scoring=scoring)

else:

raise ValueError("search_type must be ’grid’ or ’random ’")

# Fit on train set

search.fit(X_train , y_train)

best_model = search.best_estimator_

print("Best hyperparameters:", search.best_params_)

print("Best cross -validated accuracy:", search.best_score_)

# Return the model

return best_model

Listing B.3: Application of the preprocessing and tuning functions to the SVM model.

# hyperparameters

param_grid_svm = [

{"model__kernel": ["linear"], "model__C": [0.1, 1, 10]},

{"model__kernel": ["rbf"], "model__C": [0.1, 1, 10], "model__gamma": [0.1, 1]},

{"model__kernel": ["poly"], "model__C": [0.1, 1, 10], "model__gamma": [0.1, 1],

"model__degree": [2, 3, 4]}

]

# Define the Model

model = SVC(random_state=seed , class_weight="balanced")

# Preprocessing Pipeline

pipeline = preprocessing_pipeline(categorical_features , numerical_features ,

best_normalization , best_dim_red_svm , apply_dim_red , feature_selection_method ,

min_features_to_select , model)

# Hyperparameter Tuning

svm = hyperparameter_tuning(X_train , y_train , pipeline , param_grid_svm)

# the model automatically applies the pipeline defined in the tuning

print("Performance on Train Set:", svm.score(X_train , y_train))

print("Performance on Test Set:", svm.score(X_test , y_test))
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