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Abstract

Questa tesi ha come scopo quello di fornire una introduzione al test di pri-
malità probabilistico di Solovay-Strassen, che negli anni 60 è stato un punto di
partenza fondamentale per gli algoritmi di primalità usati tutt’oggi, e studiarne
la connessione con l’ipotesi estesa di Riemann. Il primo capitolo si concentrerà
sul fornire al lettore alcuni strumenti fondamentali nello studio della teoria dei
numeri, come i simboli di Legendre e i caratteri di Dirichlet. Questi ultimi ver-
ranno ripresi nel secondo capitolo, al fine di introdurre una definizione formale
dell’ipotesi di Riemann e della sua generalizzazione che useremo per il resto
della tesi. Il terzo capitolo si occuperà del test di primalità di Solovay-Strassen,
mostrandone l’utilizzo e le limitazioni, e introdurrà le modifiche proposte per
renderlo deterministico. Il quarto e ultimo capitolo dimostrerà che l’ipotesi
estesa di Riemann rende deterministico la nuova versione del test, e stabilirà
dei maggioranti per il numero di prove da eseguire.
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Introduction

The Riemann Zeta function can be said to be, with no exaggeration, one of the most,
if not the most, important functions in pure mathematics, and certainly the most
studied one. The distribution of its zeroes is widely considered to be the greatest
unsolved problem in math, with ramifications across many fields of study.
The function ζ(s) was originally defined over the real plane by Euler, who discovered
that every negative even integer was a zero for it (these zeroes are called trivial
zeroes). Later on, in a seminal 1859 article (the transcription of which you can
find at [15]), the function’s domain was extended to C \ {1} by Bernhard Riemann.
Riemann had defined, in the very same article, another function π(x), that allowed
him to model the distribution of prime numbers over the real line. The use of π(x)
required calculating the zeroes of the Zeta function, which quickly became the sub-
ject of Riemann’s interest.

Further work proved that every nontrivial zero could be found in {s ∈ C, s : 0 ≤
Re(s) ≤ 1}, often referred to as the critical strip. After calculating some of the
first nontrivial zeroes, Riemann noticed a pattern in their distribution and came up
with his famous hypothesis: that every nontrivial zero had 1/2 as its real part. If
the Riemann Hypothesis were to be conclusively proven to be true or false, it would
have a profound impact on the world of math, particularly in the fields of number
theory, cryptography, and complex analysis.
Despite numerous attempts, the problem remains unsolved to this day, and crack-
ing it, or even making significant progress, would probably net you a Fields medal.
Nevertheless, many brilliant mathematicians have taken their turn at expanding and
building upon the original work, focusing, in particular, on the problem of general-
izing the Riemann Hypothesis for entire classes of functions, similar to ζ. The two
best known of such generalizations are the Generalized Riemann Hypothesis, which
concerns itself with the class of Dirichlet L-functions, and the Extended Riemann
Hypothesis, which was built upon Hecke L-functions.

This thesis will be focusing on the Extended Riemann Hypothesis, as it has some fas-
cinating implications for the Solovay-Strassen primality test, which we are interested
in. In 1977, Robert M. Solovay and Volker Strassen took inspiration from previ-
ous ideas of M.M. Artjuhov [3] to devise an algorithm able to discern if a number
is composite or ”probably prime” [17]. The Solovay-Strassen test is a probabilistic
test, that is, a test which gives a result paired with the probability of that result
being correct. In other words, it can give fairly accurate approximations but it can’t

4



efficiently prove if a number is prime, only if it’s not. This dissertation will focus
on a modified deterministic version of the Solovay-Strassen test, and highlight why
the Extended Riemann Hypothesis is required for it to work. Furthermore, it will
examine an upper bound of 2 log2m for the minimum number of trials required to
have a deterministic result. This upper bound was first computed by Eric Bach,
albeit for different purposes [4].

The thesis will be organized as such: the first section will introduce the concept
of Legendre and Jacobi Symbols, along with Dirichlet characters and their proper-
ties. The second section will discuss the Riemann Hypothesis itself, and introduce
its two most commonly used generalizations. The third section will give an overview
of the Solovay-Strassen test, with some example uses and observations on its limit,
contrasting it with the proposed newer test. Lastly, the fourth section will intro-
duce several results regarding nontrivial subgroups of Z/(m)∗ under the assumption
of ERH, compute the aforementioned upper bound, and prove that the new test is
deterministic if the number of trials is higher than the bound. The main sources for
this thesis are: an Eric Bach article based on his PhD work [4], the Keith Conrad
paper on the Solovay-Strassen test [7], the Keith Conrad paper on the Miller-Rabin
test [6], and the Pete L. Clark textbook on number theory [5].
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1 Basic Concepts and Notation

This section aims to go over some basic definitions that are commonly used in number
theory, along with specifying some quirks of the notation that will be used henceforth.
Throughout this thesis, Z, Q, R,and C will denote, respectively, the integers, the
rational numbers, the real numbers, and the complex numbers. We’ll use the notation
Z+ to mean every non negative integer (including 0).
The reader might remember that, if a = k + np for some integers k, p, n, then we
define a mod p = k. k is called a residue and, if a mod p = b mod p, we say that
a and b are congruent.

1.1 Legendre and Jacobi Symbols

As a general reminder, a ∈ Z is said to be a perfect square if there exist b ∈ Z
such that b2 = a. Similarly, a is said to be a perfect square modulo p if there
exist b ∈ Z such that b2 mod p ≡ a.

Definition 1.1 (Quadratic residue modulo p).
Let a be a positive integer and let p be an odd prime. We say that a is a quadratic
residue modulo p if a is congruent to a perfect square modulo p.

Keep in mind that a perfect square modulo p is not necessarily a perfect square.

Example 1.2.
For example, 3 and 5 are not perfect squares, but they are perfect squares modulo 11,
because 3 = 52 mod 11 and 5 = 72 mod 11 = 42 mod 11.

This example also shows that perfect squares modulo p can be the square of more
than one integer.

Example 1.3.
The following table shows the residues for all a, p ≤ 15, the bolded cells represent the
quadratic residues.
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a a(mod 3) a(mod 5) a(mod 7) a(mod 11) a(mod 13)
2 2 2 2 2 2
3 0 3 3 3 3
4 1 4 4 4 4
5 2 0 5 5 5
6 0 1 6 6 6
7 1 2 0 7 7
8 2 3 1 8 8
9 0 4 2 9 9
10 1 0 3 10 10
11 2 1 4 0 11
12 0 2 5 1 12
13 1 3 6 2 0
14 2 4 0 3 1
15 3 0 1 4 2

As recounted by Gauss [10], Legendre was working on modular arithmetics towards
the end of the 18th century, when he conjectured what became known as the law of
quadratic reciprocity. While attempting to prove it, he brought forth his own no-
tation, the so-called Legendre symbols. This particular notation proved to be quite
appropriate not only for the problem at hand, but for the broader field, and was thus
widely adopted.

Definition 1.4 (Legendre Symbols).
Let a be positive integer and p be an odd prime, Legendre symbols are functions
with values in {0, 1,−1} defined as:

(
a

p

)
=


1 if a is a quadratic residue modulo p and a ̸≡ 0 mod p

−1 if a is not a quadratic residue modulo p

0 if a ≡ 0 mod p

.

To understand why Legendre symbols became commonplace notation in this field,
let’s take a look at some of their first uses. Consider this famous Euler result, which
we won’t prove:
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Theorem 1.5 (Euler’s Criterion).
Let p > 2 be prime and a be an integer coprime to p. Then:

a(p−1)/2 ≡

{
1 mod p if there is an integer k such that k2 ≡ a mod p

−1 mod p otherwise
.

This theorem is extremely useful because it gives us a way to verify whether an
integer a is a quadratic residue modulo p. However, this formulation is a bit clunky,
as the condition to be examined is not clear at a first glance. But thanks to Legendre
symbols, we can express the previous theorem in a more compact and elegant manner:

Theorem 1.6 (Criterion with Legendre symbols).
Let p > 2 be prime and a be an integer coprime to p. Then:(

a

p

)
≡ a(n−1)/2 mod p.

For similar reasons the law of quadratic reciprocity is most commonly expressed
through Legendre symbols. In this thesis we won’t provide a proof for it, but it’s
interesting to note that the earliest known one is found in Gauss’s Disqvisitiones
arithmeticae [9]. This shows how, at the dawn of the 19th century, number the-
ory, and more specifically the study of number fields, had a central role in math
discussions.

Theorem 1.7 (Law of quadratic reciprocity).
Let p, q be distinct odd primes, then:(

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

As useful as Legendre symbols are, they can only be properly defined under a strict
condition: that p has to be prime! Unfortunately, in the context of prime testing,
the primality of p is impossible to assure (after all, that’s what we are testing for).
Therefore, in this thesis, we’ll be using a generalization by Jacobi [12], which does

not have such a restriction. For the next definition,

(
a

pi

)ai

is to be interpreted as

the standard Legendre Symbol

Definition 1.8 (Jacobi Symbols).
Let a and n be positive integers and n = pa11 p

a2
2 . . . pann be the prime factorization of

n. Then we define the Jacobi Symbol as:(
a

n

)
=

(
a

p1

)a1( a

p2

)a2

. . .

(
a

pn

)an

.
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It’s easy to verify that, if n is prime, the previous definition is equivalent to the
standard Legendre symbol. Legendre and Jacobi symbols aren’t completely inter-
changeable, but they do share many common properties. In this thesis we’ll refer to
the following 5:

1. a ≡ b mod n =⇒
(
a

n

)
=

(
b

n

)
,

2.

(
ab

n

)
=

(
a

n

)(
b

n

)
,

3.

(
−1

n

)
= (−1)(n−1)/2,

4.

(
2

n

)
= (−1)(n

2−1)/8,

5.

(
n

m

)
=

(
m

n

)
(−1)((m−1)/2)∗((n−1)/2).

1.2 Notation and Auxiliary Functions

We’ll start this subsection with the introduction of some of the notation. In general,
K will indicate an algebraic number field with degree n, and r1, r2 will denote its
embedding in R, and half of its embedding in C, respectively (so that n=r1 + 2r2).
The symbol ∆ will denote the absolute value of K’s discriminant.
We’ll use the letter O for the ring of integers of K, and U to indicate an ideal of
O. For each nonzero ideal U, NU is to be interpreted as the order of the quotient
ring O/U, that is, the number of cosets in O/U. Moreover, we’ll make use of some
important auxiliary functions for the purpose of computation. Henceforth Λ(n) will
denote a function equal to log p if n can be expressed as a power of a certain prime
p, and 0 otherwise. The Gamma function Γ is the most widely used extension of the
factorial function on C and was first derived by Bernoulli in the 18th century.
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Definition 1.9 (Gamma function). Let z ∈ C be such that Re(z) > 0, the gamma
function is defined as the analytic continuation of the following integral:

Γ(z) =

∫ ∞

0

tz−1e−t.

Exactly as we expect, we have that the Gamma function follows the same recursive
property of the standard factorial: for all positive integers z, Γ(z) = (z− 1)!. Lastly,
this thesis will use the Digamma function (also known as the psi function):

Definition 1.10 (Digamma function).
We define the digamma function ψ as the logarithmic derivative of the Gamma
function:

ψ(z) =
Γ

′

Γ
(z).

The function ψ has several remarkable properties [2]. We’ll use some of the following:

1. ψ follows the recurrence relation ψ(z) = ψ(z + 1)− 1/z,

2. ψ satisfies the duplication formula ψ(z/2) + ψ((z + 1)/2) = 2(ψ(z)− log 2),

3. Over the range (0,∞), ψ has derivatives that alternate in sign. Thus ψ is
increasing, ψ

′
is decreasing, and in general all derivatives are monotone,

4. As a consequence of the first property, the first derivative of ψ follows the
relation ψ

′
(z) = ψ

′
(z + 1) + 1/z2.

In anticipation of the functions we’ll be using later on, let’s refresh our memory on
some specific function classes. For most of this section, we’ll mostly be using the
definitions provided in chapter 16 of Pete Clark’s ”Number Theory: A Contemporary
Introduction” [5]. As a reminder, an arithmetic function is a function whose domain
is Z and whose range is included in C.

Definition 1.11 (Completely multiplicative function).
Let f : Z+ −→ C be an arithmetic function, f is said to be completely multiplicative
if f(1) ̸= 0 and for all a, b ∈ Z, f(ab) = f(a)f(b).

Definition 1.12 (Periodic function).
For N ∈ Z+, a function is called N-periodic if for all n ∈ Z+, f(n + N) = f(n).
An arithmetic function is periodic if it’s N-periodic for some N ∈ Z+.
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Most people will be familiar with periodicity in the context of sine and cosine. How-
ever, while those functions are often referred to as periodic, going by the above
definition, they aren’t, since their period is 2π which is not an integer. So let’s
examine what some of our periodic functions actually look like:

Example 1.13.
The parity function is defined as:

f(n) =

{
0 if n is even

1 if n is odd
.

In this case, f(n) is 2-periodic, as n always has the same parity as n+2. Moreover,
f(n) is also completely multiplicative, since the product of two even numbers is still
even and the product of two odd numbers is still odd.

Example 1.14.
The sawtooth wave is a periodic function:

x(t) = 2

(
t

p
−
⌊
1

2
+
t

p

⌋)
.

Given p, we have that

x(t+ p) = 2

(
t+ p

p
−

⌊
1

2
+
t+ p

p

⌋)
= 2

(
t

p
+ 1−

⌊
1

2
+
t

p

⌋
− 1

)
= x(t).

This function is therefore p-periodic!

Counterintuitively, a function can have more than one period. An intriguing example
of this is :

Example 1.15.
This is the famous Dirichlet function, a very poorly behaved function often used in
textbook counterexamples:

1Q(x) =

{
1 if x ∈ Q
0 if x ̸∈ Q

.

It just so happens that for any y ∈ Z, 1Q(x+ y) = 1Q(x), and thus the function can
be said to be y-periodic.
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1.3 Dirichlet Characters

As we saw with the parity example, being periodic and being completely multiplica-
tive are not mutually exclusive properties! In fact, during this dissertation, we’ll be
mostly discussing functions that belong to both classes. As a lot of the groundwork
regarding them was done by Dirichlet, these special functions take after his name:

Definition 1.16 (Dirichlet character).
A N-periodic arithmetic function χ that is also completely multiplicative is called a
Dirichlet character of modulus N . The character χ1 = 1 is referred to as the
trivial Dirichlet character. Every other χ is said to be nontrivial.

Example 1.17 (Principal character).
The simplest possible nontrivial Dirichlet Character is called the principal character
and exists for all moduli m:

χ0(a) =

{
0 if gcd(a,m)>1

1 if gcd(a,m)=1
.

It’s not always easy to imagine what a nontrivial nonprincipal Dirichlet character
looks like from the definition alone. Luckily, we have already introduced one such
function previously: the Legendre symbol.

Proposition 1.18 (Legendre Symbols are characters).
For any odd prime p, the transformation that associates the Legendre symbol to a

number n, Lp : Z+ −→ C, defined as Lp(n) =

(
n

p

)
, is a nonprincipal nontrivial

Dirichlet character of modulus p.
Proof
For any n, m ∈ Z, we can use the second property of 1.4 to infer that

Lp(nm) =

(
nm

p

)
=

(
n

p

)(
m

p

)
= Lp(n)Lp(m),

which proves that Lp(n) is indeed completely multiplicative.
Furthermore, by definition Lp(n + p) = Lp(n) and thus Lp(n) is also p-periodic.
Lastly, we notice that Lp(n) = 0 if and only if gcd(n, p) > 1. However, since the
image of Legendre symbols includes -1, we know for a fact that Lp is a distinct
character from χ0 and is thus nonprincipal (and obviously also nontrivial).
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1.4 Conductors and Primitive Characters

In discussing the subject of Dirichlet characters, one more distinction is needed:
whether a character is primitive or not. To explain what that means, we introduce
the concept of quasiperiod:

Definition 1.19 (Quasiperiod and Conductors).
Let χ be a Dirichlet Character of modulus k, we say that χ has a quasiperiod of
d if χ(m) = χ(n) for all m, n coprime to k such that m ≡ n mod d. The smallest
possible integer for which χ is quasiperiodic is called the conductor of χ.

As a reminder, if we take K = Q as the number field and Z as the ring of integers,
every ideal will be generated by an integer r, and denoted with (r), in which case we
have Nr = r, where Nr is to once again be interpreted as the size of the quotient ring
Z/(r). Recalling that ∆ indicates the absolute value of the discriminant of K, if χ
a primitive character with conductor r, we’ll thus use the notation Aχ = Nr∆ = r∆.

Example 1.20. Let’s consider the principal character of modulus 2:

χ0,2(a) =

{
0 if a is even

1 if a is odd.
.

When considering the integers modulo 2, 1 is the only odd number, and thus χ0,2(a)
trivially has a quasiperiod of 1, which is also the conductor. However, note that the
period of χ0,2(a) is actually 2!

Example 1.21. Consider instead the following characters of modulus 16:

χ16,3(a) =



1 if a=1 mod 16 or a=7 mod 16

−i if a=3 mod 16 or a=5 mod 16.

i if a=11 mod 16 or a=13 mod 16.

−1 if a=9 mod 16 or a=5 mod 15.

0 otherwise

,
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and

χ16,9(a) =


1 if a=k mod 16 with k in {1,7,9,15}
−1 if a=k mod 16 with k in {3,5,11,13}
0 otherwise

.

We find out that the conductor of χ16,3 is 16, and so is its period, while the conductor
of χ16,9 is 8.

Definition 1.22 (Primitive Characters).
A character χ of modulus m is said to be primitive if its conductor is equal to m.
Otherwise, it is said to be imprimitive [8].

Example 1.23.
As we saw above, χ0,2 is imprimitive because it has a quasiperiod lower than 2,and
so is χ16,9, since it has a quasiperiod lower than 16. However, χ16,3’s conductor is
indeed the same as its period and thus χ16,3 is a primitive character.

Lastly, we’ll use the letter β to measure how much a character ”depends on signs”.
To understand what that means, first consider that if χ(m) is a character with
conductor f , there exists numbers a1 ∈ {0, 1}, with 1 ≤ i ≤ r1, such that for any
n ≡ 1 mod f, χ(m) =

∏
(sign mi)

ai . We define β as the number of 1’s that are
present in the list a1,a2, . . . , ar1 and α as r1 − β. By construction, we have that
0 ≤ α, β ≤ n. That being said, most of the results of this thesis are pertinent
to Q, which greatly simplify our work. In fact, in that number field, we have that
r1 = 1, β = 0, and thus α = 1. To understand why Dirichlet characters are so
important to the subject of this thesis we need to familiarize ourselves with the
Riemann Hypothesis. The next section will discuss a formal definition of it, along
with some of the its generalizations.
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2 Dirichlet series and generalizations of RH

As this thesis revolves around the Extended Riemann hypothesis it’s necessary to
introduce some of the concepts upon which the hypothesis is built. We’ll start by
reintroducing the Riemann Zeta function as a special case of a generic Dirichlet Series.
We’ll then follow it with the introduction of the standard Riemann Hypothesis and
its first generalization; the aptly named Generalized Riemann Hypothesis. This will
serve as a contrast for the second part of the section, following the same structure,
but providing a different way of generalizing RH, involving Hecke L-functions. The
final section contains a formal definition of the Extended Riemann Hypothesis, which
will be the one used in the rest of this thesis.

2.1 The Standard Riemann Hypothesis and the Generalized
Riemann Hypothesis

Definition 2.1 (Dirichlet series).
Let f : Z+ −→ C be an aritmetic function and let s ∈ C. We define the Dirichlet
series of f as:

D(f, s) =
∞∑
n=1

f(n)

ns
.

Dirichlet series are of fundamental importance in number theory, providing a crucial
analytic interpretation of certain problems. Most notably, the Riemann Zeta function
is, in fact, a special case of a Dirichlet series:

Definition 2.2 (Riemann Zeta function).
The Riemann Zeta function is the Dirichlet series of the constant unit function. In
other words, let s ∈ C \ {1} and let u(n) = 1 for every n, we define ζR(s) : C −→ C
as:

ζR(s) =
∞∑
n=1

u(n)

ns
=

∞∑
n=1

1

ns
.

The line of {s ∈ C \ {1} : Re(s) = 1/2} is called the critical line. During his work,
Riemann started suspecting this to be the line where all nontrivial zeroes resided,
and thus formulated:

Conjecture 2.3 (Riemann Hypothesis).
Let s ∈ C \ {1} be a nontrivial zero of ζ, then Re(s) = 1

2
.
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As we’ve discussed, the Riemann Zeta function can be seen as a particular case of a
Dirichlet series. Could Dirichlet series based on other functions also share the same
properties? And what kind of functions would even produce interesting results? Well,
it just so happens that the function u(n) is actually the trivial Dirichlet character χ0!
It thus becomes worthwhile to study what happens to other characters when they are
transformed into Dirichlet series. The character’s particular properties make them
uniquely suitable for a specific transformation:

Definition 2.4 (Dirichlet L-Series).
A Dirichlet L-series is the Dirichlet series associated to a Dirichlet character:

LD(χ, s) = D(χ, s) =
∞∑
n=1

χ(n)

ns
.

These L-Series are a great generalization for functions that behave somewhat sim-
ilarly to the Riemann Zeta function. The question of where their zeroes lie thus
becomes relevant when discussing the original RH. In 1884, this realization led Adolf
Plitz to first formulate the Generalized Riemann Hypothesis [14]; an extension of
Riemann’s standard conjecture:

Conjecture 2.5 (GRH).
For every Dirichlet character χ and for every s ∈ C, such that LD(χ, s) = 0, if s is
not a real negative number then Re(s) = 1/2.

Note that choosing the trivial Dirichlet Character χ0 = 1 yields the ordinary Riemann
hypothesis. The Generalized Riemann Hypothesis is a powerful result that already
allows us to find the bounds for the specific case of K=Q. However, as this thesis
will establish several results that are generally true for all number fields, we need a
even more general result.

2.2 Hecke L-functions and the Extended Riemann Hypoth-
esis

The Dirichlet L-series are not the only possible transformations that are compatible
with Dirichlet characters! The one we’ll mostly use during this thesis is actually the
following:
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Definition 2.6 (Hecke L-function).
A Hecke L-function associated with a character χ is:

L(s, χ) =
∑
U

χ(U)

(NU)s
.

We can then derive the equivalent of the Riemann Zeta function by choosing the
trivial character once again:

Example 2.7 (Dedekind Zeta function).
The Dedekind Zeta function of K is the special case in which we take the Hecke
L-function associated with the trivial character χ = 0:

ζ(s) =
∑
U

1

(NU)s
.

In general, Hecke L-functions are analytic on the whole plane, except for the ones
associated with principal characters, which have a simple pole at s=1. They also
have infinitely many zeroes in the critical strip as well as extra zeroes at specific
non negative integers. We’ll use the notation ρ to indicate the zeroes that lie in
the critical strip. This leads us to yet another possible generalization of RH, the
Extended Riemann hypothesis:

Conjecture 2.8 (ERH).
If s is a nontrivial zero of ζ, then Re(s) = 1

2
.

Note that the ordinary Riemann Hypothesis follows from ERH if we take K = Q
as the number field, and O = Z as the ring of ideals. Due to the way we defined
the Dedekind Zeta function, ERH is a conjecture compatible with a generic field K,
unlike GRH. This is the reason we chose to use ERH over GRH.

2.3 Properties of the Dedekind Zeta function and Hecke L-
functions in general

Before we start using ERH, let’s take a look at some properties of the functions we
discussed so far. We begin with some absolutely convergent representations of their
logarithmic derivatives in the half plane Re(s) > 1:

ζ
′

ζ
(s) = −

∑
U

Λ(U)

(NU)s
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and
L

′

L
(s) = −

∑
U

Λ(U)χ(U)

(NU)s

.
As before, Λ(U) = logNp if U is a power of a prime ideal p, and 0 otherwise.
We’ll also use the notation

ψζ(s) =
r1 + r2

2
ψ
(s
2

)
+
r2
2
ψ

(
s+ 1

2

)
− nlogπ

2

,

ψL(s) =
r2 + α

2
ψ
(s
2

)
+
r2 + β

2
ψ

(
s+ 1

2

)
− nlogπ

2
.

With this in mind, for any s we have that:

ζ
′

ζ
(s) = B +

∑
ρ

(
1

s− ρ
+

1

ρ

)
− 1

2
log∆− 1

s
− 1

s− 1
− ψζ(s).

Moreover, if we choose χ to be a generic primitive nonprincipal character, we can
also generalize it into:

L
′

L
(s) = Bχ +

∑
ρ

(
1

s− ρ
+

1

ρ

)
− 1

2
logAχ − ψL(s).

You can find the proof of the latter on page 433 of [13]. Note that due to the
structures of ζ and L, taking the sum in a symmetric order will result in having
B +

∑
ρ−1 = Bχ +

∑
ρ−1 = 0. Therefore there’s no need for a specific estimation

of B or Bχ.
Having familiarized ourselves with ERH, it’s now time to discuss primality tests,
specifically the one that this thesis is discussing: The Solovay-Strassen primality
test.
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3 Euler Witnesses and Solovay-Strassen

In the first section we had introduced the famous Euler Criterion while discussing
some uses for Legendre symbols. Following that, we highlighted one of their main
limitations, that being the requirement for p to be prime, and argued in favour of
using Jacobi’s symbols instead. However, we have never considered if the criterion
was one of the properties that the two types of symbols shared.

3.1 A first look at the test

It turns out that Euler’s formula doesn’t hold if we generalize p to be composite.
This might seem disappointing, but it’s actually the key fact that was used by Solo-
vay and Strassen to develop their 5 steps test, which is done as follows:

Let n be the number whose primality we are interested in finding out.

1. Choose a number t ≥ 1 to be the number of trials to be done during the test.

2. Randomly select t integers ranging from 2 to n− 2.

3. For each randomly selected integer, check the Euler Criterion (this is called a
trial).

4. If the Euler Criterion does not hold for at least one integer thus chosen, the
test confirms that n is composite.

5. Otherwise the test gives us the following result: ”n is prime with probability
P”.

We’ll discuss the various values that P can take later. For now, let’s focus on step
4: on what basis does that passage hold? As discussed before, the criterion doesn’t
hold for nonprime p, and more specifically, for odd composite numbers, the congru-
ence tends to have a lot of counterexamples. We call those counterexamples Euler
Witnesses and we define them more formally as follows:

Definition 3.1 (Euler Witnesses).
Let n > 1 be an odd integer and let a be such that 1 < a < n− 1.
We say that a is a Euler Witness if either of the following conditions hold:
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1. gcd(a, n) > 1,

2. gcd(a, n) = 1 and

(
a

n

)
̸≡ a(n−1)/2 mod n.

We say that a is a Euler Nonwitness otherwise.

Observe that calculating

(
a

n

)
is enough to check for both conditions at the same

time, as the first condition is equivalent to

(
a

n

)
= 0, due to the properties we

discussed in section one.

Example 3.2.
Let n=8073, we quickly find out that 24036 mod 8037 = 2473 ̸= ±1.
Thus 2 is a Euler Witness for 8073 and we can conclude that 8073 is composite.

Note that 2 is not a factor of 8073, proving that the test does not give any information
on the factorization of the number, only on its primality.

Example 3.3.
Let n=2011

a a(2010)/2 (mod 2011)

(
a

2011

)
2 -1 -1
3 -1 -1
4 1 1
5 1 1
6 1 1

We have not found any Euler Witness, giving us a certain degree of confidence in the
primality of 2011 (Which is indeed prime). However, with no further information,we
would still have to check every a up to

√
2011 to be absolutely certain.

Euler’s criterion only assures us that finding an Euler witness for n confirms that n
is not prime, but seemingly says nothing about situations where we don’t find any
witnesses. That’s where Solovay and Strassen come in! By retracing the steps the
pair originally took, in their groundbreaking 1977 article [17], we arrive at a very
powerful result: that every composite integer MUST have at least one Euler witness.
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Theorem 3.4 (Solovay-Strassen).
Let n be an odd composite positive integer. Then there exists an integer a such that

1 < a < n− 1, gcd(a, n) = 1 , and

(
a

n

)
̸≡ a(n−1)/2 mod n.

Proof
We’ll divide the proof in two cases, depending on whether or not n has a repeated
prime factor:
1) If n does not have a repeated prime factor then n = p1p2 . . . pk with k > 2 and
p1 . . . pk distinct odd primes. Considering p1, it is always possible to find a integer
b that is not a square modulo p1. Therefore there’s always at least one b ∈ Z such

that

(
b

p1

)
= −1. By the Chinese Remainder Theorem, this implies that, for each i

in {2,. . . ,n-1}, there exists an a ∈ {2,. . . ,n-1} such that

a ≡ b mod p1 and a ≡ 1 mod pi

. Note that a is such that gcd(a, n) = 1 and(
a

n

)
=

(
a

p1

)
. . .

(
a

pk

)
= −1 · 1 · · · · · 1 = −1, since

(
a

p1

)
=

(
b

p1

)
= −1

. Moreover, since b ̸≡ 1 mod p1, it follows that a ̸= 1. Suppose

(
a

n

)
≡ a(n−1)/2

mod n , then we would have that a(n−1)/2 = −1 mod n.
Due to the fact that p2 divides n, we can reduce the equation to modulo p2, keeping in
mind that by definition a(n−1)/2 = 1 mod p2, to obtain that 1 = −1 mod p2. This is
a contradiction since p2 is a odd prime and thus p2 > 2. From this we can conclude

that a is such that

(
a

n

)
̸≡ a(n−1)/2 mod n and gcd(a, n) = 1, and thus a is a Euler

Witness.
2) If n has a repeated prime factor, for example p, then we can write n as n = pkm
with k ≥ 2 and gcd(p,m) = 1. By the chinese remainder theorem there exists an
a ∈ {1, . . . , n− 1} such that

a ≡ (1 + p) mod p2 and a ≡ 1 mod m

.

Note that a ≡ 1 mod m implies that a ̸= 1. Once again we suppose that

(
a

n

)
≡

a(n−1)/2 mod n holds and we square both sides, thus obtaining that 1 ≡ a(n−1)
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mod n. Since p2 divides n we can reduce the equation modulo p2: 1 ≡ a(n−1) mod p2.
But a ≡ (1 + p) mod p2 and thus 1 ≡ (1 + p)(n−1) mod p2. The binomial theorem
tells us that

(1 + p)(n−1) = 1 + (n− 1)p mod p2 and thus 1 + (n− 1)p = 1 mod p2.

This implies that (n − 1)p = 0 mod p2 and therefore (n − 1) = 0 mod p . Since p
divides n by construction, p can’t divide n-1, so we have a contradiction.

It must then be that a is such that

(
a

n

)
̸≡ a(n−1)/2 mod n and gcd(a, n) = 1, and

thus a is a Euler Witness.

The obvious corollary is that a number without witnesses is prime. This theorem is
the basis upon which the Solovay-Strassen test is built! Together with the original
criterion, it highlights a 1 to 1 correspondence between primes and numbers without
witnesses. This means that checking for Euler witnesses for an integer n is indeed
equivalent to checking its primality.

3.2 What does it mean to be a probabilistic primality test?

Having now established that the test does indeed work, we are now presented with
the issue of efficacy. When thinking about that a question comes to mind: ”How
many of such witnesses are there? And how are they distributed?”.
If it were the case that the witnesses are rare and far apart, then the test, while still
technically accurate, would be computationally inefficient, as you’d have to check a
vast quantity of numbers. Luckily for us, the next result tells us that these witnesses
are rather abundant! In this thesis, if A is a set, |A| will denote its cardinality.

Theorem 3.5 (Ratio of Euler Witnesses).
Let n > 1 be an odd composite number. Then:∣∣∣∣1 ≤ a ≤ n− 1 : (a, n) = 1 and a(n−1)/2 ≡

(
a

n

)
mod n

∣∣∣∣
n− 1

<
1

2
.

In other words, given n, more than 50% of the numbers in {1, 2, . . . , n−1} are Euler
Witnesses.
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Proof
We divide the numbers between 1 and n-1 in three disjoint non empty sets as follows:
Let 1 ≤ a ≤ n− 1,

A = {a : (a, n) = 1 and

(
a

n

)
≡ a(n−1)/2 mod n}

= {a : a is Euler Nonwitness},

B = {a : (a, n) = 1 and

(
a

n

)
̸≡ a(n−1)/2 mod n}

= {a : a is Euler Witness with gcd(a,n)=1},

C = {a : (a, n) > 1} = {a : a is not relatively prime to n}.

Since n is composite, C is nonempty. Moreover, due to the previous theorem, B is
also nonempty. Finally, we notice that A contains 1 and n-1. What we are trying
to prove is equivalent to proving that |A| < (n− 1)/2. Let b0 be a number in B, and
consider the set Ab0 = {ab0 mod n : a ∈ A}. Our goal will be to prove that Ab0 is
actually a subset of B.
We do this by observing that ab0 is relatively prime to n and that:

(ab0)
(n−1)/2 = a(n−1)/2b

(n−1)/2
0 ≡

(
a

n

)
b
(n−1)/2
0 mod n.

By construction, gcd(ab0, n) = 1. If it were that ab0 mod n ∈ A then we would have
that:

(ab0)
(n−1)/2 ≡

(
ab0
n

)
mod n ≡

(
a

n

)(
b0
n

)
mod n.

So it would follow from the previous equations:(
a

n

)(
b0
n

)
mod n ≡ (ab0)

(n−1)/2 ≡
(
a

n

)
b
(n−1)/2
0 mod n.

Furthermore gcd(a, n) = 1 implies that

(
a

n

)
= ±1, allowing us to cancel the

(
a

n

)
on both sides, to obtain that

(
b0
n

)
mod n ≡ (ab0)

(n−1)/2 and therefore b0 ∈ A.

We arrive at a contradiction, since we chose b0 in B, which is disjoint from A. It
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must then be that, for any given b0 ∈ B, ab0 ∈ B, which implies Ab0 ⊂ B, which
is what we originally wanted to prove. The number of elements in Ab0 is |A|, which
implies that |A| = |Ab0| ≤ |B|. Therefore:

n−1 = |A|+ |B|+ |C| ≥ |A|+ |A|+1 = 2 |A|+1 > 2 |A| , and thus |A| < (n−1)/2.

Now that we have shown that the test is both accurate and somewhat efficient,
it’s time to discuss what results we get from it. We are specifically interested in
elaborating on what exactly the statement ”n is prime with probability P” means.
After all, as previously discussed, with a sufficiently large amount of trials (t > n/2),
we are able to know whether n is prime or not with absolute certainty. As we’ll see
later on with some explicit calculations, the problem is that that amount of trials
is so computationally expensive, relative to even the most naive of prime tests, to
not be worth it. However, this is where the Solovay-Strassen test shines, as knowing
that a number is ”almost certaintly” prime is good enough for a variety of uses. In
other words, there is a delicate game being played here: to find the lowest t such that
the probability P (t) of n being prime is acceptable. The problem of calculating the
precise value of P(t) is a complex one, but a good estimation by K. Conrad [7] (p.
10) gives us the result of P (t) > 1 − logn

2t
, with an appropriate choice of 2t > log n.

Let’s use this to see how the probability changes as the number of trials rises:

Example 3.6. For example, let n = 75913. A test run with t = 10 yields P = 98.9%,
as shown below:

a a(75912)/2 mod 75913

(
a

75913

)
2 1 1
3 1 1
4 1 1
5 -1 -1
6 1 1
7 -1 -1
8 1 1
9 1 1
10 -1 -1

If we further evaluate up to t = 15, we will get P = 99, 96%:
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a a(75912)/2 mod 75913

(
a

75913

)
11 -1 -1
12 1 1
13 -1 -1
14 -1 -1
15 -1 -1

This approximation of P gives us a strong degree of certainty in the results of the
test, especially with the choice of a large t, but it is by no means perfect. Due to us
not knowing the precise distribution of Euler Witnesses, only checking at least half
of the numbers from 1 to n would guarantee that the result is accurate.
As an example of how inefficient that would be, let’s compare it to the most naive
form of primality testing, checking whether or not every number up to

√
n is a divisor

of n:

Example 3.7. Referring to the previous example, if we wanted to use Solovay-
Strassen to be completely sure that 75913 is prime, we’d need 37957 trials. The
naive prime testing would only require 276 divisions.

3.3 Proposing a Deterministic Alternative

This limitation means that, in the current form, the Solovay-Strassen test can only
be a probabilistic primality test. Luckily for us, an important result in this field
was since proven [7] (p. 6):

Theorem 3.8 (Deterministic version of the test). [ERH]
Assuming the truth of the Extended Riemann Hypothesis, the Solovay-Strassen test
becomes a deterministic primality test, under the condition t > C log2 n for some
constant C, and a slight modification in the integer selection process.

More specifically, the new version of the test doesn’t require random selection, but
will instead use with integers from 2 to t in order. This makes the test not only
deterministic but also efficient since it would mean that it runs in polynomial time.
An excellent upper bound of C < 2 follows from the work of Eric Bach in his 1985
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Ph.D. thesis, part of which later was incorporated in an article that can be found
here [4]. How does this upper bound affect our computations?

Example 3.9.
This theorem tells us that, assuming the truth of ERH, in the n = 75913 example we
would only need to check integers up to 2 log2(75913) ≈ 253 to be sure of its primality.

The significance of this bound might not be immediately apparent to the reader: after
all, with only 15 trials, we had already obtained a 99% accurate result! In these cases,
it would do us well to remember that probabilistic tests, while incredibly useful in
some fields, can’t be used in rigorous math, which requires results that are certain.
Moreover, while computing up to t = 253 is a cumbersome and time-consuming
task for a human, it poses little challenge to a modern computer. And, while in the
example given the naive method seems to be at least somewhat competitive, it has a
cost of O(

√
n), scaling up significantly faster than O(2 log2 n) as n becomes larger and

larger. But why do we even need ERH in the first place? The relation between the
Riemann Hypothesis, its generalizations, and this result, is absolutely not obvious
at a first glance. With this next section, we aim to clarify that connection and make
some of the rather hostile passages more approachable.
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4 In Search of a Bound

As mentioned in previous sections, we are aiming to find the smallest possible x
such that any t > x, where t is the number of trials to be done, makes the test
deterministic. We’ll start off this section with some seemingly unrelated estimates,
in the forms of lemmas. This will mostly be calculations, but it’s important to
remember that the even marginal improvements to the bounds, such as the ones we
are about to establish, make a world of difference. This section is heavily based on
Eric Bach’s work [4] and, as such, each result will be labeled with the respective
number in that paper, making cross referencing easier for the reader.

4.1 Some Necessary Approximations

We’ll being this subsection by taking one of the fundamental results in the paper and
examining the more specific case of K = Q. For this section, we’ll use the notation:

I0 = (β − 1)
1

a2
+

log x

xa

(
ζ

′

ζ
− L

′

L

)
(−a) + 1

xa

(
ζ

′

ζ
− L

′

L

)′

(−a)− β
1

x(a− 1)2
,

and

I− = β
∞∑
k=2

(−1)k

(a− k)2xk
.

With that in mind:

Lemma 4.1 (4.4).
Let χ be a nonprincipal primitive character. and let n be a positive integer. Then, if
0 < a < 1:

x

(a+ 1)2
=

∑
ρ

xρ

(ρ+ a)2
+ I0 + I−,

where the ± sign is to be interpreted as + for the roots of ζ(s) and - for the roots of
L(s, χ).
Proof
This can be proved in a similar manner to Theorem 28 in [11], using estimates for
L
′

L
that can be found in (5.6),(6.2) and (6.3) of [13].
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To get an actual upper bound on x, we need to get some further estimates on the
maximum value of the right side. These estimates are generally true even for number
fields that are not Q. We’ll start with I−:

Lemma 4.2 (5.1).
Let I− be defined like in the previous lemma. Then:

I− ≤ β

(a− 2)2x2
= O(n).

Proof
As k, x ≥ 1 and 0 < a < 1, it follows that (a− (k + 1))2 > (a− k)2, which implies

xk+1(a− (k + 1))2 > xk(a− (k + 1))2 > xk(a− k)2.

Thus if we take the reciprocals of both sides of the previous equation we get:

1

xk+1(a− (k + 1))2
<

1

xk(a− k)2
.

In other words for i ≥ 1, each pair of consecutive numbers in the sum is such that

1

x2i+2(a− (2i+ 2))2
− 1

x2i+1(a− (2i+ 1))2
≤ 0.

We can then split the sum as:

β
∞∑
k=2

(−1)k

(a− k)2xk
=

β

(a− 2)2x2
+

∞∑
i=1

1

x2i+2(a− (2i+ 2))2
− 1

x2i+1(a− (2i+ 1))2

≤ β

(a− 2)2x2
.

The task of estimating I0 proves to be slightly more difficult. We’ll express I0 as a
sum and then estimate each part of it. The next result follows from the properties
we discussed for the logarithmic derivatives of ζ and L, and won’t be proven:
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Lemma 4.3 (5.2).
Let χ be a primitive character. Then, with the usual convention that ± is to be inter-
preted as + for roots of ζ and as - for roots of L(s, χ), the following representations
are valid for all s:(

ζ
′

ζ
− L

′

L

)
(s) =

∑
ρ

±
(

1

s− ρ
− 1

2− ρ

)
− 1

s
− 1

s− 1
−

−β
2

[
ψ
(s
2

)
− ψ

(
s+ 1

2

)
− ψ(1) + ψ

(
3

2

)]
+

(
ζ

′

ζ
− L

′

L

)
(2) +

3

2
.

and(
ζ

′

ζ
− L

′

L

)′

(s) =
∑
ρ

∓ 1

(s− ρ)2
+

1

s2
+

1

(s− 1)2
− β

4

[
ψ

′
(s
2

)
− ψ

′
(
s+ 1

2

)]
.

4.2 Using ERH to find bounds

It’s now finally time to reintroduce ERH into the mix. First and foremost, knowing
the real part of the zeroes of ζ and L allows us to properly compare their norm,
which we will denote with ∥·∥. In the next lemma, we’ll make use of this fact to
conclude the following:

Lemma 4.4 (5.4). [ERH]
Let I0 be defined like in lemma 4.4. Then, for 0 < a < 1 and x ≥ 1:

I0 ≤ max

(
0,
β − 1

a2

)
+

log x

xa

[∑
ρ

a+ 2

∥ρ+ a∥2
+

5

2

]
+

1

xa

[∑
ρ

1

∥ρ+ a∥2
+ 1

]
.

Proof
We’ll only treat the case β = 0, as we are working in Q and that’s the one where the
ERH is necessary.
Taking s=-a in lemma 5.2 we obtain:

I0 = −
[
1

a2
− log x

axa
− 1

a2xa

]
+

log x

xa

[∑
+

1

a+ 1
+

(
ζ

′

ζ
− L

′

L

)
(2) +

3

2

]
29



+
1

xa

[∑′

+
1

(a+ 1)2

]
,

where ∑
=

∑
ρ

±
(

1

−a− ρ
− 1

2− ρ

)
, and

∑′

=
∑
ρ

∓ 1

(ρ+ a)2
.

Now: ∥∥∥∑∥∥∥ =

∥∥∥∥∥∑
ρ

±
(

1

−a− ρ
− 1

2− ρ

)∥∥∥∥∥ ≤
∑
ρ

∥∥∥∥ 1

−a− ρ
− 1

2− ρ

∥∥∥∥
=

∑
ρ

∥∥∥∥ 1

+a+ ρ
+

1

2− ρ

∥∥∥∥ .
In turn we have that:∑

ρ

∥∥∥∥ 1

+a+ ρ
+

1

2− ρ

∥∥∥∥ ≤
∑
ρ

2 + a

∥(ρ+ a)(ρ− 2)∥
=

∑
ρ

2 + a

∥ρ+ a∥ ∥ρ− 2∥
.

If ERH holds, then Re(ρ) ≥ 1
2
and, because a < 1, we have that ∥ρ− 2∥ > ∥ρ+ a∥.

Thus: ∥∥∥∑∥∥∥ ≤
∑
ρ

2 + a

∥ρ+ a∥ ∥ρ− 2∥
≤

∑
ρ

2 + a

∥ρ+ a∥2
.

Keeping in mind the fact that
(

ζ
′

ζ
− L

′

L

)
(2) < 0, we then conclude:

∑
+

1

a+ 1
+

(
ζ

′

ζ
− L

′

L

)
(2) +

3

2
≤

∑
+

1

1 + 1
+

3

2
≤

∑
ρ

a+ 2

∥ρ+ a∥2
+

5

2

Estimating
∑′

in a similar manner and using the fact that 1
(1+a)2

< 1 we obtain:[∑′

+
1

∥a+ 1∥2

]
≤

[∑
ρ

1

∥ρ+ a∥2
+ 1

]
.

Lastly, some analytic manipulation yields:[
1

a2
− log x

axa
− 1

a2xa

]
> 0.

Adding together these estimates leads us to the desired result.
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It is important to note that the use of ERH is fundamental for the proof. If, hypo-
thetically, there was a zero with real part above 1, the inequality required to estimate∑

would be flipped! This lemma and the following one are the reason why the as-
sumption of ERH has profound implications on the Solovay-Strassen test and on
primality tests in general. Referring back to lemma 4.4, we are now left with one
last function to estimate. Once again we require the help of ERH:

Lemma 4.5 (5.6). [ERH]
If χ is primitive, then:∑

ρ

1

|ρ+ a|2
=

1

2a+ 1

[
log

∆Aχ

π2n
+ 2

(
1

a+ 1
+

1

a

)
+ (n+ α)ψ

(
a+ 1

2

)

+(n− α)ψ

(
a+ 2

2

)
+ 2

ζ
′

ζ
(1 + a) + 2Re

L
′

L
(1 + a)

]
≤

≤ 1

2a+ 1

[
log(∆Aχ) + 2n(ψ(a+ 1)− log(2π)) + 2

(
1

a
+

1

a+ 1

)]
,

where the sum is over ρ roots of ζ and L (with multiplicities).
Proof
Let σ > 0, consider the representation discussed in the first section, and subsitute
s = σ to get

ζ
′

ζ
(σ) = B +

∑
ρ

(
1

σ − ρ
+

1

ρ

)
− 1

2
log∆− 1

σ
− 1

σ − 1
− ψζ(σ)

and
L

′

L
(σ) = Bχ +

∑
ρ

(
1

σ − ρ
+

1

ρ

)
− 1

2
logAχ − ψL(σ).

Remember that for these equation we have that:

B +
∑
ρ

1

ρ
= 0 and Bχ +

∑
ρ

1

ρ
= 0.

Thus, with some rearrangement, we can rewrite them like this:

∑
ρ

1

σ − ρ
=
ζ

′

ζ
(σ) +

1

2
log∆ +

1

σ
+

1

σ − 1
+ ψζ(σ)
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∑
ρ

1

σ − ρ
=
L

′

L
(σ) +

1

2
logAχ + ψL(σ).

Now we conjugate both sides to get :∑
ρ

1

σ − ρ̄
=
ζ

′

ζ
(σ) +

1

2
log∆ +

1

σ
+

1

σ − 1
+ ψζ(σ)

∑
ρ

1

σ − ρ̄
=
L′

L
(σ) +

1

2
logAχ + ψL(σ).

We then sum both pairs together and we obtain this formula:∑
ρ

(
1

σ − ρ
+

1

σ − ρ̄

)
= log∆Aχ + 2

(
1

σ
+

1

σ − 1

)

+ 2(ψζ(σ) + ψL(σ)) + 2
ζ

′

ζ
(σ) + 2Re

L
′

L
(σ).

Now, assuming ERH (and thus that ρ = 1
2
+ iω) gives us the following algebraic

identity:
1

∥ρ+ σ − 1∥2
=

1

2σ − 1

(
1

ρ− σ
+

1

σ − ρ̄

)
.

Using it with the substitution σ = a+ 1 yields:

(2a+ 1)
∑
ρ

1

∥ρ+ a∥2
= log∆Aχ + 2

(
1

a+ 1
+

1

a

)

+ 2(ψζ(a+ 1) + ψL(a+ 1)) + 2
ζ

′

ζ
(a+ 1) + 2Re

L
′

L
(a+ 1).

Lastly, we refer back to the properties previously discussed to express 2(ψζ(a + 1) +
ψL(a+ 1)) and we divide both sides by (2a+1):∑

ρ

1

∥ρ+ σ − 1∥2
=

1

2a+ 1

[
log

∆Aχ

π2n
+ 2

(
1

a+ 1
+

1

a

)
+ (n+ α)ψ

(
a+ 1

2

)
+

+(n− α)ψ

(
a+ 2

2
+ 2

ζ
′

ζ
(a+ 1) + 2Re

L
′

L
(a+ 1)

)]
.

This proves the first part of the theorem. From this, the upper bound is obtained by

estimating ζ
′

ζ
(a + 1) + Re(L

′

L
(a + 1)) < 0, and using the monotonicity of ψ together

with the duplication formula.
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4.3 Bounds for the Rational Field

Now that we have obtained a generally true estimate, we can go back to focus on
the specific K = Q case. As a reminder, we are trying to estimate where Euler
Nonwitnesses lie on the real number line. To do that, we’ll use the next two lemmas
to pinpoint a specific property of subgroups of Z/(m)∗. You can find a proof of these
in pages 16-17 of [4].

Lemma 4.6 (6.1).
Let χ be a nonprincipal character on Z/(m)∗ with χ(n) = 1 for all positive n < x.
Then, for 0 < a < 1, we define:

r(x) =
(a+ 2) log x+ 1

xa+1/2
,

s(x) =
5
2
log x+ 1

xa+1/2
+

β

(a− 2)2x5/2
,

and

t(x) = − log π+ψ

(
α + β + 1

2

)
+ (2a+1)(γ +2 log(4π)) + 2

ζ
′

ζ
(1 + a) + 4

∑
n≥x

Λ(n)

n1+a
.

That being said, the following is then true:

√
x

(a+ 1)2
≤ 1

2a+ 1
(1 + r(x)) [logm+ t(x)] + s(x).

And for a more accurate estimate:

Lemma 4.7 (6.3).
Let µ(x) =

∑
n≤x Λ(n), and choose A, B > 0 so that µ(t) ≤ At for all positive t, and

µ(x) > x−B
√
x. Then:∑

n≥x

Λ(n)

n1+a
≤

(
A
(a+ 1)

a
− 1 +

B√
x

)
1

xa
.
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In particular, for x < 108, we’ll use the explicit values A=1.038 and B=2.052, found
in [16]. Applying those values to the previous estimates, gives us the central theorem
of this thesis, a very powerful result in group theory:

Theorem 4.8 (Bound on nontrivial subgroups).
Let G be a nontrivial subgroup of Z/(m)∗, such that n ∈ G for all positive n < x.
Then x < 2 log2m .
Proof
This proof will assume, without loss of generality, that G is maximal. Therefore there
is a nonprincipal character χ whose Kernel contains G. We can assume that χ(n)
=1 for every positive n < x. We now split the proof in two cases, based on the value
of m: 1) Firstly we consider m < 1000. If m < 3, the theorem is vacuously true, as
there are no nontrivial subgroups of Z/(m)∗. If m ≥ 3 and m is a prime, then m
must have a primitive root < 1.7 log2m [1].
Lastly, if m ≥ 3 and m is a composite number, then it must have a divisor that is
≤

√
m, but a convexity argument shows that, for 6 ≤ m ≤ 1000, we have

√
m ≤

2 log2m.
2) If instead we take m ≥ 1000, and pick a = 1/2 we can use lemma 6.3 to

approximate

4
∑
n≥x

Λ(n)

n3/2
≤ 4

(
−0.23 +

2.05√
x

)
1√
x
.

Note that for x > 2 (the nontrivial cases), we have the upper bound

4
∑
n≥x

Λ(n)

n3/2
≤ 5.

We now use the approximations 2 ζ
′

ζ
(3/2) ≈ −3 [18], and ψ(3/4) = −γ+ π

2
− log 8 ≈

−1.085 , which give us:

logm+ t(x) ≈ log− log π − γ +
π

2
− log 8 + 2γ + 4− 2 log 4π − 3 + 4

∑
n≥x

Λ(n)

n1+a
≈

≈ logm− 5.28 + 4
∑
n≥x

Λ(n)

n1+a
≤ logm− 5.28 + 5 ≤ logm.

Furthermore, for m > 1000, logm > 6.9, so 0 ≤ logm + t(x) ≤ logm. Therefore by
lemma 6.1 we have that:

√
x

9/8
≤ 1

2
(1 + r(x)) (logm+ t(x)) + s(x) ≤ logm

2
(1 + r(x)) + s(x) =
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=
logm

2

(
1 + r(x) +

2s(x)

logm

)
≤ logm

(
1 + r(x) +

2s(x)

logm

)
Finally we multiply both sides by 9

8
:

√
x ≤ 9

8
logm

(
1 + r(x) +

2s(x)

logm

)
≤ 9

8
logm

(
1 + r(x) +

2s(x)

log 1000

)
With a = 1/2 and β = 0, given a sufficiently large x, such as x ≥ 56, we have that:

9

8

(
1 + r(x) +

2s(x)

log 1000

)
<

√
2

Applying this to the right portion of the previous equation results in:

9

8
logm

(
1 + r(x) +

2s(x)

log 1000

)
≤

√
2 logm and thus x ≤ 2 log2m,

which is the desired bound.
Since m > 1000, the case x < 56 is trivial, as x < 56 < 95 < 2 log2 1000.

The above result is of an algebraic nature, but following the same process and with
the help of modern computers, we can actually refine the case m > 1000 for better
bounds, such as taking x ≥ 83.3, which gives us a bound of x < 1.783 log2m < 85.
With the same idea, even for the case m ≤ 1000, a computational approach yields
x < 1.78 log2m.

4.4 Applying the bounds to Solovay-Strassen

But what does this important result have to do with the original question? Well, it
turns out that the set of Euler Nonwitnesses for a certain number has the structure
of a nontrivial subgroup!

Proposition 4.9 (Nature of Euler Nonwitnesses).
Let G be the set of Euler Nonwitnesses for an integer n, then G is a nontrivial
subgroup of Z/(n)∗.
Proof
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Let a be a Euler Nonwitnesses, by definition gcd(a, n) = 1 and thus a ∈ Z/(n)∗. Let
a, b ∈ G, then(

ab

n

)
=

(
a

n

)(
b

n

)
≡ a(n−1)/2b(n−1)/2 mod n ≡ (ab)(n−1)/2 mod n.

Thus we have that ab ∈ G. Moreover, the Euler criterion is always true for 1, which
implies that 1∈G. Lastly, since G is a subset of Z/(n)∗, it inherits its associative
property.
Therefore G is a nontrivial subgroup with standard multiplication as its binary oper-
ation.

This theorem establishes that G has the structure we need to use the bounds we
calculated for generic subgroups of Z/(n)∗. In other words, it gives us an upper
bound for the maximum value of x, below which we are certain to find at least one
Euler witness, if n is composite. We thus arrive at the following conclusion:

Theorem 4.10 (Location of the first Euler witness).
The Extended Riemann Hypothesis implies that any composite positive integer n has
an Euler witness that is at most 2 log2 n.
Proof
Let n be a composite integer and let G be the set of Euler nonwitnesses of n. Due to
n not being prime, the previous theorem tells us that G is a nontrivial subgroup of
Z/(n)∗. Let e0 be the smallest Euler witness, by definition G is such that for every
n < e0, n ∈ G. Therefore theorem 4.8 can be applied to G, and we conclude that
e0 < 2 log2 n

This proves that the proposed new version of the Solovay-Strassen test is indeed
deterministic if we accept ERH, and gives a specific bound for the number of trials
that are required.

Final remarks

Some more informed readers might be aware of the fact that the Solovay-Strassen
test, even in its hypothetical deterministic form, has computational costs higher than
similar primality tests, such as the Miller-Rabin test [6]. Nevertheless, we made the
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conscious choice of focusing on the Solovay-Strassen test for the following reasons:
first and foremost, a not insignificant amount of the newer, more optimal, primality
tests that are available, such as the aforementioned one by Miller and Rabin, are
somewhat derivative of the work of Solovay and Strassen, and share most of the
ideas. As such, while this thesis didn’t delve into it too deeply, it’s possible to
compute similar bounds for these tests, also dependant on the Extended Riemann
Hypothesis. In addition to that, some other procedures, like the one used in the
Baillie–PSW primality test, are partly based on Fermat’s little theorem and, as such,
can struggle when confronted with some numbers that are known to be problematic
for it (Carmicheal numbers are the most well known). Due to the risk of running
into false positives, these tests usually rely on an additional small test to check
for accuracy. The historic importance of the Solovay-Strassen test thus can’t be
understated, and its study still proves useful to mathematicians to this day.
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