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Abstract

Idiomatic expressions (IEs) are a fundamental aspect of language, tradition-
ally defined as expressions whose meanings cannot be inferred from their
individual components. However, modern linguistic theories propose a more
complex definition of idiomaticity, which is now understood as a continuum
where IEs can be placed depending on multiple factors. This complexity
poses challenges for natural language processing (NLP) applications, where
effective handling of IEs can improve performance in various tasks, includ-
ing sentiment analysis, question answering, text summarisation, and machine
translation. This thesis contributes to the study of IEs in NLP by instruction
fine-tuning LLaMA 3.2 1B on two tasks: sentence disambiguation and idiom
identification. To this end, a multilingual instruction-formatted dataset was
created, incorporating English, Italian, and Portuguese as both instruction
and input languages. This enabled to investigate the interaction between the
instruction and input language and examine the model’s performance when
they match and when they differ. The findings showed that aligning instruc-
tion and input languages does not always improve performance, highlighting
complex cross-linguistic interactions. However, while fine-tuning enhanced
idiom identification, it led to slight declines in sentence disambiguation, pos-
sibly due to dataset limitations and lack of hyperparameter tuning. Future
work could expand language diversity, refine fine-tuning strategies, and ex-
plore other LLM architectures for better performance.
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Chapter 1

Introduction

Idiomatic expressions (IEs) are a large and fundamental part of language.
Due to their heterogenous nature, they resist clear and shared categorisa-
tion. Traditionally, IEs were defined as expressions whose meaning cannot
be entirely derived from the meanings of their subparts (e.g. Chomsky, 1980;
Fraser, 1970). Over time, the conceptualisation of IEs evolved from a static,
monolithic definition to a multi-faceted scalar conception. Idiomaticity is
no longer seen as an all-or-nothing characteristic, but as a continuum where
various factors come into play (Wulff, 2008). These factors pertain to linguis-
tic levels, such as semantics and syntax. For instance, consider to kick the
bucket, which conveys the idiomatic meaning ‘to die’; while this expression
is relatively fixed, other idioms, such as to spill the beans, license greater
syntactic variation (e.g., the passive the beans were spilled).

Given such complexity, natural language processing (NLP) applications
struggle to deal with IEs. Yet, developing methods to grasp idiomaticity
allows for the creation of systems that have a more nuanced understanding
of language. This can benefit downstream tasks, such as sentiment analy-
sis, question answering, text summarisation, and machine translation (Tay-
yar Madabushi et al., 2021; Tedeschi et al., 2022).

Recent approaches mainly rely on encoder-based models, like BERT (De-
vlin et al., 2019) and its variants. Despite the significant progress, studies
are limited due to idiom diversity and variability. They also tend to focus
on English, leaving multilingual idiom processing largely unexplored. Addi-
tionally, such models lack robust generalisation and do not perform well on
unseen IEs.

Recently, studies have started exploring the use of large language models

13



14 CHAPTER 1. INTRODUCTION

Instruction Input Output
Determine if the sen-
tence has an idiomatic
or literal meaning.

Unni, the stylist, is on cloud
nine after having an oppor-
tunity to style the beard of
his favourite star.

Idiomatic

Table 1.1: An example of an instruction-formatted instance.

(LLMs) for idiom processing, particularly LLaMA (Touvron et al., 2023),
an open-source collection of models pre-trained on publicly available data.
These studies show that LLMs generally underperform in idiom-related tasks,
compared to encoder-based and encoder-decoder models.

However, research on LLMs for idiomaticity remains sparse and fails to
provide such models with a fine-tuning specific to IEs. For example, these
large-scale models could benefit from instruction fine-tuning, which involves
adapting LLMs using instruction-output pairs (Zhao et al., 2023). As shown
in 1.1, the instruction provides a task description in natural language, while
the output represents the desired result. An input may also be included, for
instance, in the form of the target sentence to classify as idiomatic or literal.

This approach enhances LLMs’ generalisation and controllability, en-
abling better performance on unseen tasks and more predictable behaviour.
Instructions can be either LLM-oriented (more aligned with the pre-training
objective of LLMs) or human-oriented (more descriptive). Additionally, they
can be expressed in different languages, but results on the role of the instruc-
tion language are inconsistent. According to Zhang et al. (2023), instructions
designed in English generally lead to satisfactory results. On the other hand,
in their study focused on automatic idiom processing, Phelps et al. (2024)
suggest that translating the instruction into the target language can boost
the model’s performance. Given that most instruction datasets are predom-
inantly in English, there is a clear need for a more multilingual approach to
instruction fine-tuning ((Lou et al., 2024; Peng et al., 2023, ;).

To address these gaps, this study aims to develop an instruction finetuned
version of LLaMA 3.2, tailored specifically for the tasks of sentence disam-
biguation and idiom identification in three language, English, Italian, and
Portuguese. To achieve our objective, we attempt to answer the following
research questions:

Research Question 1 : when the instruction language and the
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input language are the same, does the model’s performance im-
prove, as opposed to when they differ?

Research Question 2 : are there specific language combina-
tions that facilitate cross-lingual transfer learning?

To answer the research questions, I construct two separate instruction
datasets based on the instruction type: LLM-oriented and human-oriented.
Each dataset is further split into three subsets according to the instruction
language, which can be English, Italian, or Portuguese, while including inputs
from all three languages. I extract IEs and the input sentences in which they
occur from already annotated corpora. Once I have created the datasets, I
instruction fine-tune LLaMA 3.2 1B for sentence disambiguation and idiom
identification. Within the scope of this thesis, I focus on fine-tuning LLaMA
on the LLM-oriented instruction data. I then carry out the evaluation phase.
Specifically, I examine the F1 scores resulting from each combination of in-
struction language and input language and attempt to answer the research
questions. Evaluation is conducted in a zero-shot setting to investigate the
performance of the model on unseen IEs.

This thesis seeks to deepen our understanding of how decoder-based mod-
els handle IEs, particularly within a multilingual context and with different
types of expressions. I present a targeted fine-tuning approach designed to
enhance LLaMA 3.2’s ability to interpret idioms. Additionally, this thesis
makes a significant contribution by constructing a multilingual instruction
fine-tuning dataset in English, Italian, and Portuguese, specific to IEs. Fi-
nally, one of the byproducts of this research is the publication of the fol-
lowing scientific article, to be presented at the 2025 Annual Conference of
the Nations of the Americas Chapter of the Association for Computational
Linguistics (NAACL):

Uliana Sentsova, Debora Ciminari, Cristina España-Bonet, and
Josef van Genabith. MultiCoPie: A multilingual corpus of po-
tentially idiomatic ex- pressions for cross-lingual pie disambigua-
tion. In Proceedings of the 2025 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics
(NAACL), June 2025. To appear.

The remaining part proceeds as follows.
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Chapter 2 provides the theoretical framework on which this study hinges.
First, I delve into IEs and shed light on the complexity of defining such ex-
pressions, presenting the various linguistic approaches that have contributed
to our understanding of IEs. I then provide an overview of LLMs, address-
ing their main characteristics and types, and I present the LLaMA’s model
family. Finally, I describe LLMs’ learning paradigm, focusing on instruction
fine-tuning.

Chapter 3 describes the process of creating the instruction-formatted
instances in English, Italian, and Portuguese. Specifically, I first present the
extraction of the annotated sentences from pre-existing corpora, along with
the IEs they include. Then, I outline the steps to construct the different
subsets of the dataset, based on the instruction language and the instruction
type (LLM-oriented and human-oriented).

Chapter 4 is dedicated to the experiment I conducted. First, I de-
scribe the experiment’s details, including QLoRa (Dettmers et al., 2023), a
parameter-efficient technique. I then report the results of the finetuning in
terms of precision, recall, and F1 score, and attempt to answer the research
questions.

Chapter 5 draws conclusions and proposes some future steps.



Chapter 2

Background

This chapter describes the theoretical foundations underpinning this study.
In particular, Section 2.1 discusses idiomatic expressions (IEs) from a linguis-
tic perspective, providing an overview of the different definitions and classi-
fications developed over time. Section 2.2 is concerned with the description
of LLMs and illustrates their characteristics, types, and fine-tuning methods,
with particular emphasis on instruction tuning. Finally, Section 2.3 reviews
previous studies on automatic idiom processing, highlighting their benefits
and limitations.

2.1 Idiomatic Expressions

IEs are an important component of natural language, and multiple approaches
have been adopted to analyse them. However, a precise definition has proved
elusive, and there is little consensus about what an IE actually constitutes.
The following sections illustrate the evolution of the conceptualisation of IEs
and underscore the complex aspects that challenge their categorisation.

2.1.1 The Non-Compositionality View

One of the most influential contemporary linguistic theories, i.e. generative
grammar, equates idiomaticity with non-compositionality and provides the
canonical definition of an IE, i.e. an expression whose meaning cannot be
deduced from the meanings of its component words (e.g. Chomsky, 1980;
Fraser, 1970). The IE typically used to exemplify non-compositionality is

17



18 CHAPTER 2. BACKGROUND

to kick the bucket, whose meaning (‘to die’) cannot be inferred from kick,
the, or bucket. According to Cacciari (1993, p. 33), such a definition is
supported by three arguments. First, she examines the verb to break in two
different occurrences: to break a cup and to break the ice: while the semantic
interpretation of the former only requires the knowledge of the meaning of
each word, the interpretation of the latter (assumed a figurative meaning) is
possible only by retrieving the expression from the lexicon memory. Second,
since IEs are included in figurative language (which also comprises metaphor,
irony, and metonymy, among others), non-compositionality is considered the
only factor that makes it possible to draw a distinction between IEs and
metaphors. According to such a view, while the meanings of the component
words are exploited by metaphors, they do not contribute to the meaning
of IEs. This opposition is also mirrored in the creativity associated with
metaphors and the frozenness associated with IEs. This fixedness also serves
as the third point on which the non-compositionality hypothesis hinges, since
any internal modification would entail a shift in the meaning of the IE.

2.1.2 Beyond Non-Compositionality

Psycholinguistic studies have challenged the strict non-compositional view of
IEs, arguing that variability is a property of idioms. These studies suggest
that idioms can sometimes be understood compositionally and that non-
compositionality does not always imply idiomaticity. IEs’ frozenness has
been contested on the grounds that they do exhibit some degree of syntactic
flexibility, and some preserve their meaning when subject to adjectival mod-
ification, quantification, topicalisation, and ellipsis (e.g., Wasow et al., 1983;
Cacciari, 1993; Titone and Connine, 1999; Nunberg et al., 1994). For ex-
ample, the IE to pull the strings (meaning ‘to use influence or connections’)
licenses quantification without changing its meanins, as in ‘She pulled some
strings to get the job’. The second argument against the non-compositional
approach runs counter to the assumption that the relationship between idiom
meanings and idiom parts is arbitrary. Some IEs are grounded in concep-
tual metaphors that connect the meaning of the expression to the meanings
of its parts (e.g., Nunberg et al., 1994). This relationship is the basis of
what has been termed ‘motivation’ (Gibbs and O’Brien, 1990; Gibbs, 1992).
Gibbs and his collaborators have found that speakers have intuitions about
the rationale of some IEs, which help them in idiom processing and compre-
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hension. The notion of motivation points towards the notions of ‘semantic
compositionality’ and ‘analysability’: the knowledge of components’ mean-
ings, coupled with the knowledge of the underlying metaphor, allows speak-
ers to understand an IE and to map the literal-local level of meaning to the
figurative-global one (Cacciari, 1993, p. 35).

Based on semantic compositionality, Gibbs and Nayak (1989) present
a threefold classification of idioms (see also Nunberg, 1978): normally de-
composable, abnormally decomposable, and non-decomposable. In normally
decomposable IEs, all component words refer to their own idiomatic refer-
ents; an example is to pop the question, where the noun question refers to
the marriage proposal, and the verb pop refers to the act of making it. On
the other hand, abnormally decomposable IEs are identified when no such
a relation can be established for all components, and idiom comprehension
stems from the knowledge of the conceptual metaphor underlying the expres-
sion. For example, the understanding of to carry a torch (‘to be in love’) is
based on torch being a conventional metaphor for warm feelings. Finally, IEs
whose meaning does not bear any sort of relation to its parts fall into the
third category of non-decomposable IEs.

According to Cacciari and Glucksberg (1991, p. 230), in both normally
and abnormally decomposable IEs, the idiom meaning establishes a rela-
tion with the idiom parts (quasi-literal and metaphorical, respectively), and
such a distinction has no bearing on idiom comprehension. In their func-
tional typology of IEs, they propose four categories that are determined by
the existence and nature of the functional relations between the IE’s ele-
ments and the IE’s meaning. Where there is no such a relation, idioms are
‘non-analysable’, while, if some relationships can be discerned, idioms are
analysable. Within this category, idioms can be:

1. analysable-opaque (the relations might be opaque, but the meaning of
the idiom parts can constrain interpretation and use, as in to kick the
bucket);

2. analysable-transparent (there is a clear correspondence between the
idiom’s elements and components of the idiom’s meaning that is usually
metaphorical, for instance to spill the beans);

3. quasi-metaphorical (the whole idiom meaning constitutes a metaphor
and can be associated with a literal referent, which serves as an ideal
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example of a certain concept, such as to give up the ship referring to
the act of surrendering).

The distinction between non-analysable and analysable translates, in Nun-
berg et al. (1994), into the distinction between idiomatic phrases (IPs) and
idiomatically combining expressions (ICEs). While these types differ for the
compositional nature, they share what Nunberg et al. (1994, p. 498) describes
as ‘conventionality’, which they define as

the discrepancy between the idiomatic phrasal meaning and the
meaning we would predict for the collocation if we were to consult
only the rules that determine the meanings of the constituents in
isolation, and the relevant operations of semantic composition.

Nunberg and his colleagues hold the view that, out of the many dimensions of
idiomaticity (including compositionality), conventionality represents a nec-
essary condition, since the meaning of an idiom cannot be predicted on the
basis of the conventions governing the individual words in isolation.

The typologies described above are one-dimensional and emphasise one
feature of IEs that is considered the prominent one. Other studies have
made the case for a different conception of idiomaticity, conceived of more
as a continuum.

2.1.3 Idiomaticity as a Continuum

Given the complexity associated with IEs, Barkema (1996) argues that ap-
proaches focusing on only one characteristic are limited, and that a multi-
dimensional model fits such complexity in a more comprehensive manner. In
his view, idiomaticity is conceived of as a scalar notion determined by three
factors, i.e., compositionality, flexibility, and collocability. Collocability is
defined as ‘the degree to which it is possible to substitute a lexical item from
an open class in a construction with alternatives from the same class: a verb
by other verbs, etc.’ (Barkema, 1996, p. 145). These factors are continua
themselves, and the endpoints and the middle section of each continuum are
identified through three categories. For instance, the flexibility continuum
features ‘fully flexible’, ‘semi-flexible’ and ‘flexible’ constructions.

Wulff (2008), on the other hand, posits that two different continua exist:
the idiomaticity continuum and the idiomatic variation continuum. The for-
mer represents what speakers construct by employing the information they
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deem salient about an expression and more helpful in positioning it along such
a continuum. The latter can be described as ‘the range of values that con-
structions can actually take on with respect to their semantic and syntactic
behaviour’ (Wulff, 2008, p. 5). In her corpus-driven study, Wulff highlights
that idiomaticity constitutes a scalar and multi-factorial notion where multi-
ple factors come into play in shaping how idiomatic an expression is. In this
way, she confirms that one-dimensional approaches are inadequate to grasp
the multifaceted phenomenon of IEs.

To conclude, IEs demonstrate the complexities of natural language. To
deal with such complexities, NLP has profited from the notable advances
made possible by large language models (LLMs).

2.2 Large Language Models

Over the last few years, LLMs have driven remarkable advancements in NLP.
At the core of this revolution lies language modelling (LM), which ‘aims to
model the generative likelihood of a word sequence, so as to predict the prob-
abilities of future (or missing) tokens’ (Zhao et al., 2023, p. 1).

Figure 2.1: The development stages of LM.

As shown in Figure 2.1, the evolution of language modelling was inaugu-
rated by statistical language models (SLMs), which adopt a statistical per-
spective. The rise of neural networks led to neural language models (NLMs),
which present several advantages over SLMs, such as the ability of deal-
ing with longer sequences. The next major development in LM was the
advent of pre-trained language models (PTLMs), which are developed us-
ing self-supervised learning on large-scale text datasets. Pre-training allows
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models to grasp fundamental patterns and structures of language and create
a generic representation that can be applied to a wide range of NLP tasks
(Naveed et al., 2023; Chu et al., 2024). The evolution then culminated in
the introduction of large language models (LLMs), whose model size, data
size, and training compute reach outstanding magnitude. This scaling has
given rise to the emergence of new abilities, which make LLMs more powerful
through reasoning, answering in zero-shot settings, instruction following, etc.
(Zhao et al., 2023; Naveed et al., 2023).

2.2.1 Architecture

The majority of LLMs are based on the Transformer architecture introduced
by Vaswani et al. (2017). This transduction model consists of two primary
components: the encoder, which processes the input sequence to generate
contextual representations, and the decoder, which uses the encoder’s rep-
resentations to produce the output sequence token by token. As illustrated
in Figure 2.2, the encoder is built from N identical layers, each containing a
multi-head self-attention mechanism and a dense feed-forward network. The
decoder includes the same components, but it incorporates an additional sub-
layer for masked multi-head self-attention to facilitate autoregressive gener-
ation.

Self-attention enables the model to prioritise the relevant parts of the
input sequence. Vaswani et al. (2017, p. 2) explain self-attention in terms of
query (Q), key (K ), and value (V ) matrices through the following equation:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.1)

where Q represents the word being attended to, K corresponds to all the
words in a given sequence, and V holds the information associated with each
word. The attention weights are obtained through the dot product between
Q and K, with

√
dk serving as the scaling factor (dk represents the dimension

of Q and K ). The weights are then normalised through the softmax function,
and the resulting matrix is multiplied by V to obtain the output. Models like
BERT draw on self-attention, whereas models like LLaMA rely on masked
self-attention, which prevents them from accessing to subsequent words when
predicting a given word. In order to gain a more nuanced representation,
multi-head self-attention is also deployed to compute attention in parallel
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Figure 2.2: An example of the transformer model. From Vaswani et al.
(2017).

across several independent heads, each attending to different patterns and
features of the input.

According to the architecture, Liu et al. (2024), Zhao et al. (2023), and
Naveed et al. (2023) categorise LLMs into the following types:

Encoder-decoder. It is based on the vanilla Transformer model and con-
sists of two stacks of Transformer blocks as the encoder, which encodes
the input and generates its representations, and the decoder, which
autoregressively generates the target sequence.

Decoder-only. It only uses the Decoder module of the Transformer. Two
sub-types can also be distinguished:

- Causal decoder. It performs unidirectional attention to ensure that
each input token can only attend to the past tokens and itself.
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- Prefix decoder. It performs bidirectional attention over the prefix
tokens and unidirectional attention on generated tokens only.

Naveed et al. (2023) and Zhao et al. (2023) include another category:
mixture-of-experts is an architecture where a subset of neural network weights
are sparsely active, allowing scaling of the previous models, while maintain-
ing the computational cost.

It is noteworthy that there is a lack of agreement on what should be
encompassed under the definition of LLMs. While some definitions exclude
encoder-only architectures, others, such as those proposed by Alammar and
Grootendorst (2024) and Chu et al. (2024), explicitly include them. In
particular, Alammar and Grootendorst (2024) draw a clear distinction be-
tween encoder-only models, which they also call ‘representation models’, and
decoder-only models, also termed ‘generative models’.

2.2.1.1 The LLaMA Model Family

An example of a causal decoder model is LLaMA (Touvron et al., 2023a),
a series of models released by Meta AI in 2023. They are available to the
research community upon request and are pre-trained on a large amount of
public data, including English CommonCrawl1, Project Gutenberg2, Github3

and ArXiv4.
As illustrated in Figure 2.3, LLaMA retains the decoder component of

the Transformer and introduces innovative aspects. For example, it employs
RMSNorm (Zhang and Sennrich, 2019) for pre-normalisation. RMSNorm is a
computationally efficient alternative to layer normalisation, since it does not
depend on the mean and the variance but is computed from the root mean
square of the input vector x. This allows for a higher training stability and
more computational efficiency. As opposed to the Transformer’s absolute po-
sitional embeddings, LLaMA uses rotary positional embeddings (RoPE) (Su
et al., 2021), which incorporate rotation operations into the process of posi-
tional encoding to enable the model to generate dynamic positional represen-
tation during training. Another major component is grouped-query attention
(Ainslie et al., 2023), where the query is divided into different group, each

1https://commoncrawl.org/
2https://www.gutenberg.org/
3https://github.com/
4https://arxiv.org/

https://commoncrawl.org/
https://www.gutenberg.org/
https://github.com/
https://arxiv.org/
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Figure 2.3: LLaMA’s architecture. From Jamil (2023).

associated with one set of keys and values. This allows for fewer computa-
tions and faster inference. Finally, LLaMA uses SwiGLU activation function
(Shazeer, 2020), which has proved to perform well on various benchmarks.

Given its success, two follow-up versions were released, with the latest
being LLaMA 3 (Dubey et al., 2024), a multilingual and multimodal variant.
Compared to the first version, small modifications have been applied to the
architecture. The key enhancements of the latest release lies in the higher
quality and diversity of pre-training data and the increase in the training
scale. Additionally, LLaMA 3 officially supports eight languages, including
Italian and Portuguese.
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2.2.2 A Two-Step Paradigm: Pre-Train and

Post-Train

As described by Alammar and Grootendorst (2024), the training paradigm of
LLMs is twofold. The first step is pre-training, where the model is trained on
a large amount of natural language data retrieved from a more or less diverse
mixture of datasets. These datasets can be more general, including webpages
and conversational text, or specialised, containing multilingual data5 or texts
belonging to specialised domains (Zhao et al., 2023). The pre-training data
undergo a multi-stage preprocessing that aims at obtaining high quality and
safety. Both the diversity and the quality of data constitute key factors in
shaping the model’s performance (Zhao et al., 2023; Liu et al., 2024).

Since the pre-training objective is mainly language modelling, pre-trained
LLMs can undergo a post-training through two main strategies, alignment
with human preferences and instruction fine-tuning (Zhao et al., 2023; Naveed
et al., 2023). The former aims to avert unintended behaviours that LLMs
might exhibit and that do not align to human values, such as helpfulness,
honesty, and harmlessness (Askell et al., 2021). On the other hand, remark-
able performance improvements are brought about by instruction fine-tuning.
In the following section, I provide an overview of instruction fine-tuning, with
a particular focus on instructions, which serve as the foundation for the cre-
ation of my dataset.

2.2.2.1 Instruction Tuning

Instruction tuning (IT), also referred to as supervised fine-tuning (SFT), con-
sists in fine-tuning LLMs on instruction-output pairs, where the instruction
is in the form of natural language and the output represents the desired out-
put obtained from following the instruction (Zhang et al., 2023, p. 1). IT is
a new supervision seeking paradigm that aims to boost LLMs’ generalisation
ability and controllability, allowing for a better performance on unseen tasks
and a more predictable behaviour. In doing so, IT qualifies as a more user-
oriented approach that attempts at bridging the gap between users’ needs
and the pre-training objective of next token prediction.

Studies diverge in defining instruction: Zhang et al. (2023) and Zhao et al.

5I here abide by Zhao et al. (2023) in their classification; however, I do not agree with
the inclusion of multilingual data as specialised data.
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(2023) make a distinction between instruction, input, and output, while Lou
et al. (2024) understands instructions as comprising:

Input X : the input, such as a piece of text. It is optional.

Output Y : the desired output.

Template T : a textual template explaining the task intent or the relation-
ship between X and Y.

The instruction data construction plays a crucial role and aims at creat-
ing an optimal dataset of instruction-formatted instances. Datasets can be
created either manually or synthetically. Human-crafted data are retrieved
from online sources or already annotated data and usually result in smaller
datasets. A less time-consuming method is the synthetic creation, which
leverages LLMs to generate datasets. While being more economic, they can
produce less diverse and heterogenous instruction-formatted instances, which
might hinder the models’ performance. Another categorisation is proposed
by Lou et al. (2024), where different instruction types are distinguished de-
pending on the combinations of X, Y, and T:

NLI-oriented instructions (I=T+Y) : they combine a template T with
a label Y to explain the task semantics. As exemplified in Table 2.1,
tasks are converted into natural language inference (NLI), where labels
are turned into hypotheses, whose truth has to be determined. This
approach preserves the task semantics and encode the relationship be-
tween input and output.

Task NLI premise (the input
text)

NLI hypothesis

Entity Typing [Donald Trump] ent served
as the 45th president of the
United States from 2017 to
2021.

Donald Trump is a politi-
cian.
Donald Trump is a jour-
nalist.

Table 2.1: Example of NLI-oriented instruction, where the hypothesis is used
to explain the labels (in bold). The label highlighted in green is correct. From
Lou et al. (2024).
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LLM-oriented Instructions (I=T+X) : this is the combination of tem-
plate T and input X and is usually employed in the form of prompts.
Table 2.2 illustrates two different: the prefix prompt, where the in-
put is prepended within the instruction, or cloze prompt, which takes
the form of a cloze-question template. These formats are designed to
adhere to two distinct pre-training objectives: prefix prompt fits the
autoregressive nature of decoder-based models, such as LLaMA, while
cloze prompt mirrors the masked language modelling of encoder-based
models, such as BERT (Liu et al., 2022). Being more LLM-orientend,
such a type lacks user-friendliness and requires knowledge that users
might not own; its structure is also short and simplistic and does not
lend itself to more elaborate tasks.

Task Input X Template Answer Output
Y

Sentiment
Analysis

I would like to buy
it again.

[X] The
product is .

Great
Wonderful
. . .

Positive

Entity
Tagging

[Donald Trump] ent

served as the 45th
president of the
United States from
2017 to 2021.

The entity in
[X] is a
class?

Politician
President
. . .

People

Table 2.2: Examples of LLM-oriented instructions. Adapted from Lou et al.
(2024).

Human-oriented Instructions (I=T+ optional {Xi, Yi}ki=1) : as shown
in Table 2.3, this type is more descriptive and human-readable and is
able to handle more complex tasks. Nevertheless, their encoding might
be challenging, due to their complex nature.

Data quality and diversity are the cornerstone of an effective IT. As Lou
et al. (2024) and Zhao et al. (2023) point out, a higher diversity in terms of
writing style and perspective can enhance the generalisation ability, even in
smaller models. Consistency in instruction type across training and test can
also benefit the performance.
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Task Input X Template Output Y
Sentiment
Analysis

I am extremely im-
pressed with its good
performance.

Task Definition:
In this task, you are given
a product review, and you
need to identify . . .
Test Instance:
Input: [X] Output:

Positive

Table 2.3: Example of human-oriented instructions. Adapted from Lou et al.
(2024).

Zhao et al. (2023) underscores the beneficial effects of IT on performance:
instruction fine-tuned models, even smaller ones, display improved abilities in
seen and unseen tasks and in zero-shot scenarios, since IT endows the models
with the ability of following human instructions, regardless of the use of
demonstrations. Multilingual scenarios can also benefit from IT, even though
further research is needed. In particular, the lack of parallel multilingual
instruction datasets prevents us from exploring the effects of IT in settings
with multiple languages. Besides, few studies investigate the impact of the
instruction language on the models’ performance and provide contradictory
results. Muennighoff et al. (2023) argues that English-only instructions can
produce satisfactory results on multilingual tasks. On the other hand, Phelps
et al. (2024) concentrate specifically on idiom processing and find that, if the
instruction language is the same as the input language, the models exhibit a
better performance.

In conclusion, IT can improve LLMs’ performance on various tasks and
in a multilingual setting. To fully unlock IT’s potential, it is essential to
design the instruction data creation process carefully. Instruction type and
language also need to be taken into account, even though the impact of the
instruction language remains unexplored.

2.3 Related Work on Idiomaticity in
NLP

In the field of NLP, IEs are conceived of as MWEs, i.e. expressions that
cross word boundaries and have idiosyncratic interpretations (Sag et al.,
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2002; Villavicencio et al., 2005; Baldwin and Kim, 2010). MWEs pervade
language, and their presence in a speaker’s lexicon is comparable in mag-
nitude to that of single words (Jackendoff, 1997, p. 156). Such a presence
entails a high degree of complexity, which poses considerable challenges to
NLP, including what Sag et al. (2002, p. 2) terms ‘idiomaticity problem’.
The idiomaticity problem refers to the issues related to those MWEs whose
meaning is unrelated to the meanings of their component words. Baldwin
and Kim (2010, p. 269) extend idiomaticity to multiple levels of language
and define it as ‘markedness or deviation from the basic properties of the
component lexemes, [which] applies at the lexical, syntactic, semantic, prag-
matic, and/or statistical levels’. They also view idiomaticity as a necessary
feature of MWEs, which must exhibit some sort of deviation on at least one
level.

The above-mentioned studies agree on the fact that the size and het-
erogeneity of the MWEs class require ad hoc NLP techniques for a better
understanding of natural language and a more linguistically precise NLP.
Challenges posed by the presence of IEs have been identified across multi-
ple natural language understanding (NLU) tasks even with state-of-the-art
(SOTA) solutions, including sentiment analysis (Liu et al., 2017; Biddle et al.,
2020), paraphrase generation (Zhou et al., 2022), natural language inference
(Chakrabarty et al., 2021), dialog models (Jhamtani et al., 2021), and ma-
chine translation (Fadaee et al., 2018; Dankers et al., 2022; Liu et al., 2023).

One line of work employs encoder-based models, particularly BERT (De-
vlin et al., 2019) and its variants, to harness their capability for contextual
language representation. Previous work has found that contextual embedding
models fail to capture non-compositionality and struggle to distinguish be-
tween literal and idiomatic usages of MWEs (Garćıa et al., 2021; Hashempour
and Villavicencio, 2020; Nandakumar et al., 2019; Yu and Ettinger, 2020).
For instance, Yu and Ettinger (2020) explore the notion of semantic compo-
sitionality and take steps to examine how faithfully contextual embedding
models represent phrases and the individual words used in isolation. The au-
thors test five encoder-based models, including BERT, RoBERTa (Liu et al.,
2019), and DistilBERT (Sanh et al., 2020) and conclude that such models ex-
hibit weak sensitivity to composed meaning, heavily relying on word senses.

To capture both the semantic and syntactic properties of idioms, Zeng
and Bhat (2021) propose the iDentifier of Idiomatic expressions via Semantic
Compatibility (DISC). DISC leverages BERT to obtain the contextualised
representation of idioms and extract semantic information. Zeng and Bhat
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test their model on multiple state-of-the-art baselines and find that DISC
tends to outperform them, especially in zero-shot settings, where training
set and test set contain different idioms. The combination between syntactic
and semantic properties allows the model to get a sense of what an idiom
is and generalise well on unseen expressions. However, when tested on a
dataset different from the training one, DISC exhibits a performance drop
due to the change of the sentence source, showing poor cross-domain perfor-
mance. Moreover, DISC performs well on various idiom types with varying
degrees of variability, but it is trained on English data only.

Other approaches also address multilinguality. Tayyar Madabushi et al.
(2021) aim to investigate the performance of encoder-based PTLMs on id-
iomaticity detection and representation in a multilingual setting. They re-
lease AStitchinLanguageModels, a dataset in English and Portuguese, and
provide baselines by implementing BERT, XML-RoBERTA (Conneau et al.,
2020), and XLNET (Yang et al., 2020) models. Focusing on the idiomaticity
detection task, they conduct the experiments and explore how their perfor-
mance varies with:

- Different input features: the input might include context (the previous
and the next sentence), and the MWE can be included and marked by
the [SEP] token.

- Three setups: zero-shot, one-shot, and few-shot scenarios.

They find that context does not lead to significantly improved performance,
while the inclusion of the MWE is beneficial to the model performance. Fi-
nally, the experiments produce poor results in zero-shot setting, especially
in Portuguese, suggesting that the models might fail to generalise to unseen
expressions. As far as the languages are concerned, the results in English out-
perform those in Portuguese. The authors suggest that both the pre-training
data and their training set contain significantly less Portuguese data, and the
higher degree of inflection might also play a role. These findings highlight
the need, as Tayyar Madabushi and colleagues argue, to examine idiomatic-
ity from a multilingual perspective.

AStitchInLanguageModels is further extended with Galician data in the
SemEval-2022 Task 2 on multilingual idiomaticity detection and sentence em-
bedding (Tayyar Madabushi et al., 2022). The top teams succeeded in nar-
rowing the gap between zero-shot results and one-shot results, even though
the former are still outperformed. Among the top three best performing
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teams, Chu et al. (2022) use large-scale cross-lingual pre-trained language
models, i.e., multilingual BERT and XLM-RoBERTa. They attempt to im-
prove the results by incorporating data augmentation and contrastive learn-
ing. While data augmentation proves useful under zero-shot setting, con-
trastive learning leads to a performance drop in both scenarios. Yet this
study relies on the SemEval-2022 Task 2 dataset, which only comprises noun
compounds and lacks diversity in terms of idiom types.

A notable effort to explore idiom identification in multiple languages is
made by Tedeschi et al. (2022). They release ID10M, a framework consisting
of systems, training and validation data, and benchmarks for the identifi-
cation of idioms in 10 languages. Their findings confirm the discrepancy
between zero-shot and few-shot performance.

Other approaches implement encoder-decoder models to develop idiom-
aware systems. For instance, Zeng and Bhat (2022) point out that contextual
embedding models hinge on a compositional paradigm of representation and
struggle to capture non-compositionality. Consequently, they attempt to
build idiomaticity into the BART (Lewis et al., 2020) sequence-to-sequence
(seq2seq) model, which combines the encoder and the decoder and can cap-
ture contextual cues while also being able to generate text. The resulting
model, called Generation of Idiom Embedding with Adapter (GIEA), shows
an improved understanding of idiomaticity compared to BART base. Even
though they contribute to improving idiom representations, their work is
restricted to English data, and there is no attempt at improving GIEA’s
generalisation ability to idioms unseen during training.

In the FigLang2022 Shared Task6, Bigoulaeva et al. (2022) implement an-
other seq2seq model, specifically T5 (Raffel et al., 2020). FigLang2022 pro-
poses a NLI task that includes figurative-language hypothesis and requires
participants to generate a textual explanation. To tackle both, Bigoulaeva
and her collaborators leverage transfer learning and train the models on
eSNLI (Camburu et al., 2018), a dataset comprising NLI labels and their
relative explanations, and IMPLI (Stowe et al., 2022), a NLI dataset of figu-
rative language. While demonstrating the usefulness of transfer learning, this
work focuses exclusively on English and limits the examination of figurative
language to the context of the NLI task.

Recent studies have also investigated the capability of LLMs to handle
idiomatic expressions and conclude that LLMs are outperformed by other

6https://figlang2022sharedtask.github.io

https://figlang2022sharedtask.github.io
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methods, such as encoder-based models. Starting from data in English, Por-
tuguese, and Galician, He et al. (2024) compare their encoder-based model
to other methods, including LLaMA 2 (Touvron et al., 2023b), showing
that LLaMA 2 tends to perform worse. On the same languages, Phelps
et al. (2024) compare the performance of decoder-based models with that
of encoder-based ones and find that the latter outperform LLMs in idiom-
related tasks, with LLaMA 2 ranking last among LLMs. Finally, De Luca For-
naciari et al. (2024) employ fine-tuned LLMs, such as Llama-2-7b-chat, and
highlight how such models still struggle on idiom-related tasks.

We can conclude that while several studies have adopted encoder-based
models or encoder-decoder architectures to investigate idiomaticity, they of-
ten fall short in addressing the full spectrum of idiom types, their variability,
or the range of languages considered. Conversely, research on the perfor-
mance of LLMs in handling idiomatic expressions remains relatively sparse.
In cases where LLMs are examined, these studies lack a targeted fine-tuning
specifically designed to improve their idiom comprehension.

Consequently, this thesis contributes to bridging these gaps by improving
our understanding of how decoder-based models perform when dealing with
idiomatic expressions, particularly in a multilingual context where language
variability adds another layer of complexity. To achieve this, some of the
aforementioned datasets are used to construct the multilingual instruction
dataset for IEs. Specifically, AStitchInLanguageModels and ID10M are em-
ployed to extract IEs and sentences in English and Portuguese. Additionally,
a third annotated corpus, MultiCoPIE (Sentsova et al., 2025), is combined
with ID10M to retrieve IEs and sentence samples in Italian. Based on the fi-
nal instruction dataset, this thesis introduces a focused fine-tuning approach
aimed at equipping these models with enhanced capabilities to interpret id-
ioms effectively, providing a more comprehensive and nuanced evaluation of
their potential in this domain.
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Chapter 3

Instruction Dataset
Construction

Chapter 3 is concerned with the creation of the instruction dataset1., i.e. a
dataset comprising examples in the form of instructions. Section 3.1 describes
the source annotated datasets from which multi-word expressions (MWEs)
and sentences containing them were extracted. Section 3.2 details the cre-
ation of instruction-formatted templates and the subsequent compilation of
the final dataset.

3.1 Source Datasets

This section describes AStitchInLanguageModels (Tayyar Madabushi et al.,
2021), ID10M (Tedeschi et al., 2022), and MultiCoPIE (Sentsova et al., 2025),
the three source annotated datasets used for the extraction of input sentences
and the corresponding MWEs. The description of each dataset focuses on
three main aspects relevant to this study: the covered languages, the types
of MWEs included, and the annotation scheme employed.

1For clarification, ‘examples’ and ‘samples’ refer to the individual data points within
the dataset that are in the form of instructions, while ‘template’ denotes the structured
format of instruction-based examples, as described in Section 2.2.2.1

35
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3.1.1 AStitchInLanguageModels

AStitchInLanguageModels (Tayyar Madabushi et al., 2021) is an annotated
dataset of idiomatic MWE usage in English and Portuguese. It consists of
examples that contain potentially idiomatic expressions (PIEs) in the form of
noun compounds and that are annotated according to two different schemes.
In the first one, the examples featuring the MWEs are labelled with ei-
ther 0 (for idiomatic usage) or 1 (for literal usage). In contrast, the second,
more fine-grained annotation framework includes a paraphrase of the MWE’s
meaning and classifies each example into one of five categories: ‘literal,’ ‘id-
iomatic,’ ‘non-idiomatic,’ ‘proper noun,’ or ‘meta usage’.

This thesis employs data labelled with the first annotation scheme and
designed for a zero-shot scenario, where the training set does not share any
PIEs with the development and test sets. Table 3.1 illustrates four English
examples, where ‘Sentence1’ refers to the sentence containing the IE, ‘Sen-
tence2’ represents the MWE, and ‘Label’ indicates whether the meaning of
the sentence is idiomatic (0) or literal (1).

Label Sentence1 Sentence2
0 Turns out that these people were speaking

double Dutch.
double
dutch

0 She casts herself as an honorable champion of
conservative thinking against the ‘intolerant
liberal views’ of the Ivory Tower.

ivory tower

1 Michigan has a lot of fresh water lakes. fresh water
1 In reality, he would probably use a silver

spoon to pot a plant.
silver
spoon

Table 3.1: English examples from the AStitchInLanguageModels dataset.

As shown in Table 3.2, the English subset is well-balanced, with 51% of
the examples classified as literal and 49% as idiomatic. In contrast, Table
3.3 indicates that the Portuguese dataset is skewed towards idiomatic usage,
which accounts for 64% of the total examples. Additionally, AStitchInLan-
guageModels presents certain limitations, particularly in terms of idiom type,
restricted to noun compounds, and dataset size, both in terms of the number
of MWEs (223 for English and 113 for Portuguese) and the total number of
examples (4,276 for English and 1,716 for Portuguese). Despite these con-
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Set MWEs Literal
Examples

Idiomatic
Examples

Total
Examples

train 163 1,565 1,762 3,327
dev 30 284 182 466
test 30 334 149 483
total 223 2,183 2,093 4,276

Table 3.2: Statistics of the English subset of AStitchInLanguageModels.

Set MWEs Literal
Examples

Idiomatic
Examples

Total
Examples

train 73 391 773 1,164
dev 20 119 154 273
test 20 114 165 279
total 113 624 1,092 1,716

Table 3.3: Statistics of the Portuguese subset of AStitchInLanguageModels.

straints, this dataset represents the first significant attempt to address idiom
processing from a multilingual perspective, and it provides a benchmark for a
language other from English, thereby enabling further examination of idiom
processing and multilinguality.

3.1.2 ID10M

ID10M (Tedeschi et al., 2022) is a framework that proposes a multilingual
Transformer-based architecture for sentence disambiguation and idiom iden-
tification and introduces annotated datasets in multiple languages. In par-
ticular, it presents gold-standard data, i.e. a manually annotated dataset, in
English, German, Italian, and Spanish, and silver-standard data, which are
automatically annotated in 10 languages (Chinese, Dutch, English, French,
German, Italian, Japanese, Polish, Portuguese, and Spanish). MWEs were
extracted using Wiktionary2, and instances containing MWEs were collected
from WikiMatrix (Schwenk et al., 2021), a multilingual corpus in 83 lan-
guages consisting of parallel sentences retrieved from Wikipedia3. The gold-
standard data were curated by mother-tongue professional annotators who

2https://pypi.org/project/wiktextract/
3https://github.com/facebookresearch/LASER/tree/main/tasks/WikiMatrix

https://pypi.org/project/wiktextract/
https://github.com/facebookresearch/LASER/tree/main/tasks/WikiMatrix
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were tasked with tagging MWE-sentence pairs as ‘idiomatic’ or ‘literal’. The
silver-standard data, on the other hand, were automatically annotated on the
basis of the Wiktionary entry of MWEs: when marked as idiomatic, all oc-
currences of the MWEs were tagged as idiomatic, and vice versa. Since these
annotations do not necessarily reflect the idiomatic or literal meaning of the
MWE in context, Tedeschi and his collaborators introduce a dual-encoder
architecture to further refine silver-standard data.

Token Label
The O
test O
was O
a O

piece B-IDIOM
of I

cake I
! O

Table 3.4: Example of the BIO scheme.

Building on this binary annotation
system, they incorporate a BIO tag-
ging scheme, a token-level tagging
scheme identifying the tokens be-
longing to the MWE. As exempli-
fied in Table 3.4, B designates the
first token of a span, I is associated
with the intermediate token(s), and
O signals the tokens out of the
span.

In constructing the instruction
dataset, this study uses silver-
standard data for English, Italian,
and Portuguese, alongside gold-standard data for English and Italian. As
shown in Table 3.5, there is an imbalance in the distribution of MWEs across
the languages included in the dataset, and the datasets contain significantly
more literal examples than idiomatic ones, despite the primary focus being
on idiomaticity. Nevertheless, ID10M provides a considerable amount of an-
notated data across a diverse set of languages, is not restricted to specific
idiom types, and incorporates linguistic variations.

To compensate for this imbalance, MultiCoPIE is incorporated, which, in
contrast, exhibits an imbalance towards the idiomatic class and enables the
inclusion of additional idiomatic examples.

3.1.3 MultiCoPIE

MultiCoPIE (Sentsova et al., 2025) is a dataset annotated for sentence dis-
ambiguation and idiom identification in Russian, Italian, and Catalan. Since
I contributed to the construction of the Italian dataset (which is also used in
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Language Set MWEs Literal Idiomatic Total
EN train + dev 4,568 27,408 10,501 37,919

test 142 41 159 200
total 4,609 27,449 10,670 38,119

PT train + dev 559 24,816 10,670 30,492
test / / / /
total 559 24,816 10,670 30,942

IT train + dev 452 20,506 9,107 29,523
test 78 48 152 200
total 530 20,554 9,259 29,813

Table 3.5: Statistics of the English, Portuguese, and Italian subsets of ID10M.

this thesis), the following description focuses on this particular dataset.
To build this subset, I compilted a list of PIEs from online resources,

including the Dizionario italiano De Mauro4 and the Dizionario dei Modi
di Dire5. Efforts were made at including PIEs with varying characteristics.
Specifically, PIEs with different parts of speech as heads were incorporated.
For instance, appeso a un filo (‘hung by a thread’) is headed by the adjective
appeso(‘hung’), while con l’acqua alla gola (literally ‘with water up to the
throat’, meaning ‘to be in serious difficulty’) is headed by the preposition
con(‘with’). The dataset also covers PIEs with varying degrees of semantic
compositionality. PIEs with a higher level of compositionality comprise at
least one component serving as a cue to the meaning of the expression. An
example is ammazzare il tempo(‘to kill time’), where the word tempo(‘time’)
aids in interpreting the expression as ‘to spend time trying not to get bored’.
On the other hand, essere al settimo cielo(‘to be on cloud nine’) is more
opaque since it does not comprise any hints to the meaning ‘to be at the
peak of happiness’. A distinction is also made between PIEs and IEs: the
former refer to expressions which can acquire both a literal and an idiomatic
meaning, while the latter exclusively occur in an idiomatic sense.

Finally, two further categories are included for each expression: whether
there is a partially or entirely equivalent English expression, and the possible
variations in which the PIE can occur. This categorisation is illustrated in
Table 3.6. The feature ‘Ambiguity’ indicates whether a MWE has the po-

4https://dizionario.internazionale.it/
5https://dizionari.corriere.it/dizionario-modi-di-dire/

https://dizionario.internazionale.it/
https://dizionari.corriere.it/dizionario-modi-di-dire/
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Idiom Head
Pos

Sem.
Comp.

Variation Ambiguity Equ.

rompere il ghiac-
chio
(‘to break the
ice’)

Verb True
Idiom

/ True Identical

chiedere la luna
(‘to ask for the
moon’, meaning
‘to want or ask
for something
impossible’)

Verb Weak
Idiom

volere la
luna

False /

gallina dalle
uova d’oro
(‘golden goose’)

Noun True Id-
iom

/ False Similar

Table 3.6: Examples of the annotations related to PIEs in MUltiCoPIE.

tential to be interpreted literally (‘True’) or not (‘False’), while the labels
‘Identical’ and ‘Similar’ denote the presence of an equivalent English expres-
sion, with the former indicating a direct match and the latter suggesting
minor formal variations. Table 3.7 reports some statistics related to such
categories. The majority of MWEs extracted have a verb as head. Besides,
most MWEs are true idiom, and their meaning is opaque in terms of seman-
tic compositionality. Regarding variation, 68% are also used with variations,
such as the example chiedere la luna in Table 3.6. As far as ambiguity is
concerned, 68% of the extracted MWEs can be categorised as PIEs (the id-
iomatic or literal usage depends on the context, while the remaining 32%
qualify as IEs, used only in the idiomatic sense. Finally, there is a balance
between MWEs having an English equivalent (either identical or similari)
and MWEs without an English equivalent.

After compiling a list of PIEs, examples were automatically extracted
from the OSCAR corpus6 (Ortiz Suárez et al., 2019), a multilingual corpus
generated from Common Crawl7, and subsequently refined through manual

6https://huggingface.co/oscar-corpus
7https://commoncrawl.org/

https://huggingface.co/oscar-corpus
https://commoncrawl.org/
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Head POS Sem. Transp. Variation Ambiguity Eng. equiv.
Adj 4 True Idiom 91 Yes 36 Yes 36 No 57
Adv 2 Weak Idiom 20 No 75 No 75 Identical 35
Conj 5 Similar 19
Noun 19
Prep 27
Verb 56

Table 3.7: Properties of idioms according to head part-of-speech, semantic
transparency, head part of speech.

selection. To maximise coverage, regular expressions were employed to cap-
ture a wide range of linguistic variations. Where available, the two surround-
ing sentences were included to provide context. The opening and closing tags
were also employed to precisely localise the lexicalised components of PIEs,
as illustrated in Table 3.8. The tags were used to identify not only the PIEs
under study, but all PIEs present in the target sentence and the preceding
and following sentences.

The final Italian subset comprises 2,245 total examples:1,887 (84%) in-
stances are labelled as idiomatic, while 358 (16%) are marked as literal.

Idiom Previous sent. Target Sent. Next sent. Label

tirare
la
cinghia

Sempre per i più
esperti è possi-
bile aggiunge più
lavoro ai muscoli
flessori...

<idiom2>Mano a
mano</idiom2>che
la posizione si scioglie
<idiom>stringere la
cinghia</idiom>.

È possibile pren-
dersi le mani in
Full Swan...

0

Table 3.8: Examples from the MultiCoPIE Italian data.

3.2 Creation of Instruction-Formatted
Instances

This section outlines the process of constructing the instruction dataset for
the fine-tuning of LLaMA 3.2. Specifically, I first describe the creation of
the templates structured into ‘instruction’, ‘input’ and ‘output’. Then, I
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illustrate the pipeline used to extract MWEs and sentences from the source
datasets and how these were integrated with the templates to form the final
dataset.

3.2.1 Creation of Templates

To create a dataset of instruction-formatted instances, I first designed in-
structions in English, Italian, and Portuguese. As shown in Figure 3.1, the
process began with the translation of a seed instruction written in English
into Italian and Portuguese by using LLaMA 3.2 3B8 via ollama9. Secondly,
by prompting the same model, I generated three paraphrased versions of
each instruction. The prompts used were tailored to produce varying writ-
ing styles and perspectives, ensuring a varied dataset and a higher linguistic
diversity.

Figure 3.1: Stages of template creation.

I implemented this pipeline for both human-oriented (H) instructions and
LLM-oriented (L) instructions (see Section 2.2.2.1). Within the human-
oriented category, I further classified the instructions into three subtypes:
I (the proper instruction), Y (positive response), and N (negative response).
For example, an instruction I would ask whether a sentence contains an id-
iomatic expression, while the corresponding response Y would confirm its
presence and specify the idiom, and the response N would indicate that no

8https://huggingface.co/meta-llama/Llama-3.2-3B
9https://ollama.dipintra.it/

https://huggingface.co/meta-llama/Llama-3.2-3B
https://ollama.dipintra.it/
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idiom is present. Such categorisation was not provided for the LLM-oriented
type since the response is the IE, when positive, or ‘None’, ‘Nessuna’, and
‘Nenhuma’, when negative. All the instructions were collected into a CSV
file, where each row represents a predefined instruction paired with its lan-
guage and category. Finally, I generated JSON templates based on this
CSV file. The starting point to construct such templates is the work by
(Taori et al., 2023), who a model fine-tuned from LLaMA 7B on instruction-
formatted demonstrations. They design a template in English used to create
the instruction-formatted examples to carry out the fine-tuning. Their tem-
plate serves as the starting point to craft multilingual templates that enable
the construction of LLM-oriented instructions. Table 3.9 illustrates the Al-
paca template and the multilingual templates designed in this thesis. First,
the template was translated into Italian and Portuguese, so that instruction-
formatted samples in these two languages could have a corresponding tem-
plate. Second, the ‘prompt no input’ option was discared since all my sam-
ples include an input (i.e. the input sentence). Finally, the structure of the
template was changed to match the LLM-oriented instruction type. While
the Alpaca template organises the instruction in “Instruction”, “Input”, and
“Response”, I changed the order so that the input is first presented, followed
by the instruction and the response. This order better fits the LLM-oriented
type, which features an empty slot at the end of the instruction that needs
to be filled by the LLM. This structure is matched by having the instruction
immediately followed by the response. The ‘input’ and ‘output’ keys are left
empty to be filled in the following step.
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Alpaca template
prompt input: Below is an instruction that de-
scribes a task, paired with an input that pro-
vides further context. Write a response that ap-
propriately completes the request. ###Instruc-
tion: {instruction} ###Input: {input} ###Re-
sponse:
prompt no input: Below is an instruction that
describes a task. Write a response that appro-
priately completes the request. ###Instruction:
{instruction} ###Response:
response split: ###Response:
Multilingual templates

EN template lang: en
prompt input: Below is an input sentence,
paired with an instruction that describes a task.
Write a response that appropriately completes the
request. ### Input: {input} ### Instruction:
{instruction} ### Response:
response split: ### Response:

IT template lang: it
prompt input: Di seguito si trova una frase
di input, associata a un’istruzione che de-
scrive una task. Scrivi una risposta che com-
pleti in modo appropriato la richiesta. ###
Istruzione: {instruction} ### Input: {input}
### Risposta:
response split: ### Risposta:

PT template lang: pt
prompt input: Abaixo está uma frase de
entrada, acompanhada de instruções que de-
screvem uma tarefa. Escreva uma resposta que
complete adequadamente a solicitação.### In-
strução: {instruction}### Input: {input}###
Resposta:
response split:### Resposta:

Table 3.9: Alpaca’s template and the multilingual templates used in this
thesis.
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3.2.2 Creation of the Final Instruction Dataset

Once the templates with instructions were available, I proceeded with the
creation of the final dataset, whose stages are summarised in Figure 3.2.

Figure 3.2: Stages of instruction dataset creation.

First, I extracted IEs and examples from the aforementioned datasets.
For English and Portuguese, I used ID10M and AStitchInLanguageModels,
while, for Italian, I employed ID10M and MultiCoPIE. I processed ID10M’s
files by reconstructing full sentences and identifying idiomatic spans. On the
other hand, the processing of the AStitchInLanguageModel mainly focused
on extracting the actual MWEs present in the sentences since the ‘Sentence2’
include the lemmatised version. Then, I created a training-development10

and test split combining data from both ID10M and AStitchInLanguage-
Models, while ensuring that no PIEs in the test set overlapped with those in
the training-development data. Finally, I applied text cleaning operations,
such as fixing contractions and punctuation spacing and exported two final
processed splits per language, train-dev and test.

10Here, ‘training-development’ is used to indicate the data extracted from each source
dataset. On the contrary, I use the term ‘training-validation’ set to specifically designate
the training and validation sets of the final dataset I constructed for this thesis.
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For the MultiCoPIE data, I extracted sentences and the relative PIEs en-
closed in annotation tags to obtain the non-lemmatised versions. Next, I com-
bined these data with ID10M’s Italian data and balanced the whole dataset
by undersampling literal instances and splitting into training-development
and test sets, while preventing PIEs overlap between them. Finally, text
cleaning is applied to improve consistency, and the train-dev and test sets
are saved. Once I extracted the IEs and the sentences for all three lan-
guages, I merged all sets into unified training-development and test datasets
containing instances from English, Italian, and Portuguese.

Figure 3.3: An overview of the dataset structure.

I then populated the JSON instruction templates with such examples.
As illustrated in Figure 3.3, the final dataset comprises six subsets differing
in instruction type and instruction language, while each containing English,
Italian, and Portuguese as input languages.

The statistics of each instruction subset are consistent across all subsets,
ensuring uniformity in the dataset. Table 3.10 provides an overview of the
distribution and characteristics of each instruction subset, showing that this
is well-balanced in terms of the number of the examples per class. An ex-
tract of the final dataset is shown in Appendix A, which illustrates instances
from the subset with English as instruction language and LLM-oriented as
instruction type.
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Language
of

Examples

Set Idioms Idiomatic
Examples

Literal
Examples

Total
Examples

EN train+val 4,294 10,523 10,553 21,076
test 840 1,892 1,862 3,754

IT train+val 1,498 9,661 9,350 19,011
test 275 1,338 1,649 2,987

PT train+val 577 5,848 5,481 11,329
test 120 600 967 1,567

Total train+val 6,369 26,032 25384 51,386
test 1,235 3,830 4,478 8,308

Table 3.10: Statistics of an instruction subset.
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Chapter 4

Experiments

In this chapter, I first provide definitions for the two tasks addressed in
this thesis: sentence disambiguation and idiom identification. Next, the
evaluation framework is outlined, detailing the metrics used to assess the
model’s performance. The experiment1 setting is then detailed by introduc-
ing QLoRA (Dettmers et al., 2023), a parameter-efficient technique used to
reduce computational cost and memory usage during the fine-tuning. Ad-
ditionally, the specific hyperparameters employed are reported. Finally, the
results are analysed and discussed to address the research questions outlined
in Chapter 1.

4.1 Task Definition

This thesis addresses two tasks, sentence disambiguation and idiom identifi-
cation, across three languages: English, Italian, and Portuguese.

Task 1: Sentence disambiguation: this task is framed as a binary text
classification problem aiming to classify a given sentence as either literal
(labelled as ‘0’) or idiomatic (labelled as ‘1’).

Task 2: Idiom Identification: in this task, the objective is to identify the
IE contained in sentences labelled as ‘idiomatic’. This is framed as a
span identification problem, where the model is tasked with identifying

1The code is available at https://github.com/TinfFoil/MultIdiomLlama
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the sequence of characters that correspond to the IE. The approach re-
lies on character-level overlap between the predicted span and the gold
span corresponding to the IE. Partial matches are considered valid,
meaning that even if the model identifies part of the idiomatic expres-
sion, it is still credited with identifying the idiom correctly.

These tasks are distinct but strictly interconnected: once the model recog-
nises a sentence as idiomatic, it can identify the span constituting the IE.
Given their interdependence, the instruction-formatted data are designed to
address both tasks simultaneously. For example, in the sentence ‘She broke
the ice with a funny joke’, the model’s answer is expected to be ‘broke the
ice’, demonstrating that the model correctly identified the sentence as id-
iomatic and proceeded to detect the span where the potentially idiomatic
expression (PIE) occurs. To account for both tasks, I propose a two-fold
evaluation methodology that includes metrics to assess the model’s perfor-
mance on Task 1 and Task 2. This approach allows for a comprehensive
understanding of the model’s ability to handle both the classification and
identification challenges.

4.2 Evaluation Framework

This section outlines an evaluation framework designed to assess the model’s
performance on the sentence disambiguation and idiom identification tasks
across various language combinations.

4.2.1 Task 1: Sentence Disambiguation

For Task 1, I developed a labelling mechanism that considers multiple linguis-
tic markers. Such markers are used for both ground truths and predictions
to determine the label (0 or 1) to assign to each example. These keywords
are language-specific and are:

• Portuguese: ‘nenhuma’, ‘não’, ‘ausente’;

• Italian: ‘nessuna’, ‘non’;

• English: ‘none’, ‘no idiom’, ‘not contain’, ‘not’.
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The label assignment can be represented as follows:

label =

{
0 if keywords like ‘nenhuma’, ‘none’, ‘no’ are present

1 otherwise
(4.1)

According to the assigned labels, the binary classification metrics are
computed as follows.

Precision. It measures the proportion of correctly predicted positive in-
stances out of all instances predicted as positive. It indicates how
reliable the model is when it predicts a positive class.

Precision =
True Positives

True Positives + False Positives
(4.2)

Recall. It evaluates the proportion of correctly predicted positive instances
out of all actual positive instances in the dataset. This metric focuses
on how well the model identifies all the true positives, emphasising its
ability to avoid false negatives.

Recall =
True Positives

True Positives + False Negatives
(4.3)

F1 score. It is the harmonic mean of precision and recall and provides a
balance between these two metrics. It is particularly useful when there
is a class imbalance, as it considers both false positives and false nega-
tives. The F1 score ranges from 0 to 1, where a higher value indicates
better performance.

F1 Score = 2 · Precision · Recall
Precision + Recall

(4.4)

4.2.2 Task 2: Idiom Identification

For Task 2, the evaluation approach uses partial text span matching. The
methodology follows the approach proposed by Da San Martino et al. (2020),
who gives credit to partial matches of the identified spans, rather than re-
quiring an exact match between the predicted span and the ground truth.
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For instance, if the model correctly identifies a portion of the idiomatic ex-
pression but not the entire span, it will still be credited for the overlap. This
approach allows for a more flexible assessment of the model’s performance.

The span match is character-based and is computed through the Longest
Common Subsequence (LCS). The goal of LCS is to find the longest subse-
quence that two sequences have in common, without changing the order of
characters. LCS is thus order-sensitive and finds subsequences of characters
that retain the same order between two sequences. However, the characters
in the subsequence are not necessarily contiguous. This is significant because
IEs may contain lexicalised components that are spread across a span, while
particles (such as auxiliary verbs or personal pronouns) may appear within
the expression but do not need to be included in the span for the match to
be considered correct. In other words, LCS is flexible in terms of character
proximity, as it allows for gaps in the sequence but requires that the iden-
tified IE maintains the same order found in the ground truth span. This is
crucial since it enables to account for variations occurring within the IE, such
as quantification (an example is that provided in Section 2.1.2).

Based on LCS, character overlap is determined and used to calculate pre-
cision and recall. These metrics are computed following the method proposed
by Da San Martino et al. (2020) for the SemEval-2020 Task on the detection
of propaganda techniques in news articles. In the context of the span identi-
fication subtask, they introduce formulas for precision and recall to evaluate
the character overlap between the predicted span and the ground truth span:

P (S, T ) =
1

|S|
∑
d∈D

∑
s∈Sl,t∈Tl

|s ∩ t|
|t|

(4.5)

R(S, T ) =
1

|T |
∑
d∈D

∑
s∈Sl,t∈Tl

|s ∩ t|
|s|

(4.6)

Where:

• s is the predicted span;

• t is the ground truth span;

• S is the set of predicted spans;

• T is the set of gold standard spans;
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• d is a sample;

• D represents the dataset.

Based on the computed precision and recall, the F1 score is calculated as
their harmonic mean, as shown in Equation 4.4.

4.3 Instruction Fine-Tuning

The instruction fine-tuning was implemented on a subset of the dataset of
instructions oriented to large language models (LLMs), as described in Sec-
tion 4.3.2. This subset comprises 18,397 samples and retains the balance
of the instruction dataset. To optimise the fine-tuning, QLoRA (Dettmers
et al., 2023) was also employed: QLoRA is a technique combining 4-bit quan-
tization and Low-Rank Adaptation (LoRA) (Hu et al., 2021) and aiming to
reduce computational cost and memory usage.

4.3.1 QLoRA

In implementing the instruction fine-tuning, I employed QLoRA (Dettmers
et al., 2023), a technique combining quantization and LoRA (Hu et al., 2021)
designed to reduce the computational cost of fine-tuning a LLM. Quanti-
zation is a technique used to reduce the computational and memory costs
of running inference by converting the model’s weights and activations from
floating-point numbers (typically 32-bit floating-point) to lower-precision data
types like 16-bit floating-point. Reducing the number of bits means the re-
sulting model requires less memory storage. I opted for 4-bit quantization,
which is typically used for QLoRa and which represents weights and activa-
tions using 4 bits as opposed to 32 bits.

Besides 4-bit quantization, Low-Rank Adaptation (LoRA) was used as
well. LoRA is an efficient fine-tuning technique designed to adapt large
language models (LLMs) with reduced computational cost. Instead of mod-
ifying the entire set of model parameters, which can be expensive in terms
of memory and processing power, LoRA introduces small, trainable matrices
that are injected into specific layers of the model, typically in the attention
mechanism of transformers. By freezing the original model weights and only
training these additional low-rank matrices, LoRA significantly reduces the
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number of parameters that need updating, making fine-tuning much more
efficient. This makes it particularly useful for adapting massive pre-trained
models to specific tasks without requiring high-end hardware. Additionally,
LoRA adapters can be easily stored, shared, and swapped, enabling quick
adaptation to multiple tasks without retraining the full model.

4.3.2 Experimental Settings

The fine-tuning was implemented on a subset of the multilingual instruction
dataset due to computational constraints. This subset consists of 18,397
instruction-formatted examples, split into 12,407 examples for training, 3,000
for validation, and 2990 for the test. To ensure a representative distribution,
examples were randomly selected from the dataset, while maintaining bal-
ance in terms of samples per class, per input language and per instruction
language.

Moreover, a set of default hyperparameters was configured to implement
the fine-tuning of the LLaMA-3.2 1B model for the sentence disambiguation
and idiom identification tasks. The model was trained with a batch size of
32 across 2 epochs, using a cutoff length of 128 tokens for input sequences.
For parameter-efficient fine-tuning, LoRA was employed with a rank (r) of
8, alpha value of 16, and dropout rate of 0.05, specifically targeting the
query and key projection matrices. The implementation of LoRA enabled
to update only 851,968 out of more than 1 billion parameters. The optimi-
sation process used 4-bit quantization with NF4 format to reduce memory
requirements. The learning process was managed with a learning rate of 3e-
4, weight decay of 0.01, and a warmup ratio of 0.1, using the Paged AdamW
32-bit optimizer and cosine learning rate schedule with restarts. Gradient
accumulation was set to 2 steps with a maximum gradient norm of 1.0, and
gradient checkpointing was enabled to optimise memory usage. The training
uses mixed-precision computation (FP16) and employed early stopping.

4.4 Results and Discussion

This section reports the results of the instruction fine-tuned LLaMA 3.2. For
each input language, precision, recall and F1 scores are examined according
to the instruction language in the sentence disambiguation and idiom iden-
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tification tasks. These results are then analysed in the light of the research
questions outlined in Chapter 1.

4.4.1 Evaluation for Task 1

In this section, I report and discuss the results related to the sentence dis-
ambiguation task in terms of precision, recall and F1 scores.

Input Lang. Instruction Lang. Precision Recall
en 0.4979 0.9307

en it 0.4927 0.9564
pt 0.4898 0.8828
en 0.4248 0.9761

it it 0.4555 0.9557
pt 0.4624 0.9077
en 0.3447 0.9481

pt it 0.4075 0.8950
pt 0.4007 0.8467

Table 4.1: Precision and recall for Task 1.

Table 4.1 presents the precision and recall values for the different combi-
nations of the instruction language and the input language.

When the input language is English, precision remains consistent across
the different instruction languages, hinting at the model’s moderate precise-
ness in identifying the positive class (idiomatic usage). On the other hand,
recall stays high across the different instruction languages.

When the input is in Italian, precision tends to remain consistent across
the different instruction languages, with the highest value (0.4624) achieved
when in combination with Portuguese instructions. Recall stays high, espe-
cially when the instruction language is English (0.9564).

Shifting to the Portuguese input, with English instructions, the precision
drops to 0.3447, while it is slightly higher with Italian and Portuguese instruc-
tions. This suggests that the model struggles the most when the instructions
are written in English, making more false positive predictions. Recall, how-
ever, remains relatively high, with values ranging from 0.8467 (Portuguese
instruction and input) to 0.9481 (English instruction, Portuguese input).
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Overall, these results indicate a trend where recall remains consistently
high across all instruction and input language combinations, while precision
stays moderate. This suggests that the model is effective at capturing the
majority of true positives, as evidenced by the high recall values. However,
the moderate precision indicates that the model may also generate a signifi-
cant number of false positives.

Instruction Lang Input Lang
en it pt

en 0.6487 0.5919 0.5056
it 0.6503 0.6169 0.5601
pt 0.6300 0.6127 0.5440

Table 4.2: F1 scores for Task 1.

As for the F1 scores shown in Table 4.2, some notable trends emerge when
different instruction languages are used.

For English as the input language, across different instruction languages,
the F1 score remains consistent, with a slight improvement when instructions
are written in Italian.

Even with the input in Italian, the F1 scores stay consistent across in-
structions written in English, Italian, and Portuguese, with the highest F1
score (0.6169) being achieved when the instructions are in Italian.

Finally, for Portuguese as the input language, the best performance is
achieved with Italian instructions (0.5601), followed closely by Portuguese,
and the lowest score occurs with English instructions (0.5056).

Regarding RQ1, these results suggest that, in general, instruction lan-
guage matching with input language does not necessarily lead to higher F1
scores. Turning to RQ2, it could be argued that the exact effect varies slightly
depending on the language pair. In this case, the Italian instructions appear
to benefit the model’s performance across all language combinations.

4.4.2 Evaluation for Task 2

For Task 2, Table 4.3 presents precision and recall scores across different in-
struction and input language combinations.
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Input Lang. Instruction Lang. Precision Recall
en 0.6797 0.2391

en it 0.6325 0.2112
pt 0.5766 0.2495
en 0.6949 0.2234

it it 0.7202 0.2203
pt 0.6094 0.2641
en 0.7034 0.1751

pt it 0.7133 0.1834
pt 0.6002 0.2353

Table 4.3: Precision and recall for Task 2.

With the input in English, the highest precision is achieved with English
instructions (0.6797), followed by Italian (0.6325) and Portuguese (0.5766).
Yet, recall is relatively low across all instruction languages, with the highest
recall seen when instructions are in Portuguese (0.2495).

When the input is written in Italian, the highest precision score is ob-
served when instructions are in Italian (0.7202), followed by English (0.6949),
while with Portuguese precision drops to 0.6094. Recall is highest with Por-
tuguese instructions (0.2641), slightly outperforming Italian (0.2203) and
English (0.2234).

Finally, for inputs in Portuguese, precision is highest when instructions
are in Italian (0.7133), followed closely by English (0.7034), whereas it dimin-
ishes with Portuguese (0.6002). Recall, however, is best when instructions
are in Portuguese (0.2353).

For the idiom identification task, an opposite trend can be observed, com-
pared to Task 1: the model exhibits, in general, a higher precision and a lower
recall, suggesting that it is accurate when predicting a character belonging
to an idiomatic expression, but it tends to miss many characters as well.

Instruction Lang Input Lang
en it pt

en 0.3538 0.3381 0.2804
it 0.3166 0.3374 0.2917
pt 0.3483 0.3685 0.3381

Table 4.4: F1 scores for Task 2.
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Shifting to Table 4.4, the analysis of the F1 scores reveal that in the
idiom identification task the model still struggles to identify the characters
belonging to an idiomatic expression, even after the instruction fine-tuning.

Examining the performance across the different language combinations,
with the input in English, the highest F1 score is achieved when instructions
are in English (0.3538), closely followed by Portuguese (0.3483), while Italian
instructions result in the lowest performance (0.3166).

For the Italian input, the best F1 score is obtained when the instructions
are in Portuguese (0.3685), while English and Italian instructions reach sim-
ilar scores, respectively 0.3381 and 0.3374.

In the case of the Portuguese input, the highest F1 score is achieved when
instructions are in Portuguese (0.3381), followed by Italian (0.2917) and En-
glish (0.2804).

Considering RQ1, these results indicate that for the idiom identification
task, the alignment between the instruction and the input language might
lead to an improved performance in some cases (e.g., Portuguese). Con-
sequently, as for RQ2, monolingual combinations (in this case, Portuguese
instruction and Portuguese input, and English instruction and English input)
might benefit the span identification task related to idioms.

4.4.3 Evaluation of Baseline vs. Fine-Tuned

Results

This section presents a comparison between baseline and fine-tuned model
performance. Table 4.5 shows differing effects of the fine-tuning across the

Task Language Baseline Fine-tuned Improvement
en 0.6141 0.6041 -0.01

Task 1 it 0.6320 0.6233 -0.0086
pt 0.6362 0.6084 -0.0278
en 0.2995 0.3387 +0.0392

Task 2 it 0.3199 0.3205 +0.0006
pt 0.3125 0.3536 +0.0412

Table 4.5: Comparison between baseline and fine-tuned in F1 scores.

two tasks. For Task 1, fine-tuning does not lead to an improvement in F1
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scores, and slight performance drops are observed across all three languages.
This suggests that the fine-tuning did not enhance the model’s ability to
distinguish between idiomatic and literal meanings.

In contrast, for Task 2, the instruction fine-tuning results in an overall im-
provement, with F1 score increases for English (+0.0392), Italian (+0.0006),
and Portuguese (+0.0412). The largest gains are observed in Portuguese and
English, while Italian shows a minimal but positive effect. These results sug-
gest that the fine-tuning had a more noticeable impact on the model’s ability
to identify IEs within sentences and that instruction fine-tuning helped more
with character-level span detection.

These findings suggest that, while idiom identification benefits from fine-
tuning, sentence disambiguation shows slight declines. The fine-tuning could
possibly lead to a more consistent improvement with a larger dataset or with
hyperparameter tuning, which could help mitigate these declines and opti-
mise performance.
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Chapter 5

Conclusions and Future Work

This thesis introduced a multilingual dataset consisting of instruction-formatted
examples, specifically designed for idiomatic expressions (IEs). Each exam-
ple comprises an input sentence, an instruction defining the task that the
model has to perform, and an expected output. This dataset allows for the
exploration of two tasks related to IEs: sentence disambiguation, a binary
classification task consisting in determining if a sentence contains an IE or
not; and idiom identification, a span identification task aimed at detecting
the span within the input sentence that corresponds to the IE. These tasks
were examined in a multilingual setting involving three languages, English,
Italian, and Portuguese, which were used as both instruction and input lan-
guages, covering all possible language combinations.

This thesis aimed to develop an instruction fine-tuned version of LLaMA
3.2 1B for these tasks and across the three languages. This fine-tuning pro-
vided insights into two research questions. Research question 1 investigates
if having the instruction and the input in the same language could lead to
an improved model’s performance, while research question 2 focuses on the
combinations of the instruction and input language yielding better results.

The findings suggest that when the instruction and the input language
coincide, the model does not necessarily perform better, compared to when
they differ. Instead, the interactions between languages appear to be more
complex, with certain language combinations proving beneficial in ways that
go beyond simple alignment. This suggests that cross-linguistic influences
might play a role, where one language may enhance performance on another,
rather than strict language matching being the primary driver of success.

However, this thesis was limited to three languages. Future work could
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expand the scope to other languages, even from different families, to gain a
deeper understanding of cross-linguistic interactions.

Additionally, a promising direction would be the creation of datasets that
annotate idiomaticity on a continuum rather than as a binary distinction,
aligning with recent linguistic theories that view idiomaticity as a scalar
phenomenon. From a methodological perspective, this thesis did not imple-
ment hyperparameter tuning, instead relying on default values, and limited
the fine-tuning to a small subset. This could explain the declines in the
model’s performance for Task 1, compared to the baseline.

Future research could explore optimised hyperparameters to improve per-
formance, as well as use a larger dataset for the instruction fine-tuning.
Moreover, other large language models (LLMs) beyond LLaMA could be
fine-tuned, not only to assess their performance but also to compare encoder-
based and encoder-decoder models on the same IE-related tasks.
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Type Inst.
Lang.

Input
Lang.

Example

L EN EN I: Can you spot the idiomatic expressions
lurking within this sentence? They are:
Input: Although the encounter was bathed
in sunshine, the match failed to reach
boiling point but that will be of little
concern to Gerard Houllier’s team.
Output: boiling point

H IT PT I: La frase è caratterizzata dalla presenza di
una o più espressioni idiomatiche?
Input: Nos últimos anos, muitas
universidades têm mostrado quadricópteros
realizando manobras aéreas.
Output: No, la frase non contiene alcuna
espressione idiomatica.

H IT IT I: La frase è caratterizzata dalla presenza di
una o più espressioni idiomatiche?
Input: Diplo ha definito la lunga attesa
della produzione vale la pena avere uno
show televisivo cos̀ı succinto per i nostri fan.
Output: S̀ı, l’analisi rivela che la frase
incorpora le seguenti espressioni
idiomatiche: vale la pena.

Table A.1: Examples from the instruction dataset. ‘L’ refers to the LLM-
oriented instruction type, and ‘H’ indicates the human-oriented instruction
type.
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