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Introduction

The aim of this thesis is to use notions from analysis on metric measure spaces to

develop an effective and realistic model for the geometry of connections occurring in

the primary visual cortex (V1). Building on this foundation, this work is inspired by the

PhD thesis of Montobbio [2], which provides a metric framework to describe the func-

tional architecture of V1. In particular, we present a reformulation of some key ideas

using the mathematical tools at our disposal, aiming to synthesize the main results in a

concise and accessible manner.

V1 is particularly interesting because it is the first area of the visual cortex respon-

sible for processing visual information collected by the retina and the lateral geniculate

nucleus (LGN).

In the 1960s, D.H. Hubel and T.N. Wiesel described the geometry of V1 [1], basing

their studies on two main types of neurons: simple cells and complex cells. They also

introduced the concept of receptive profiles (RPs) of these cells to describe how they

respond to light stimuli. In facts, Huber and Wiesel discovered that the cortical neurons

showed distinct selectivity to a larger number of different features, including orienta-

tion, colour, shapes and movement. The action of RPs is approximately linear, so that

they are generally modelled as a family {ψp}p∈G ⊆ L2(R2) of linear filters, where G
represents the feature space, which encompasses the specific characteristics of the set

we are considering. The response of a RP to an image I is then described by the integral:

Op(I) =

∫
D

I(x, y)ψp(x, y) dx dy, p ∈ G.
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ii INTRODUCTION

Simple cells RPs are well approximated by a specific set of filters known as Gabor fil-

ters, whose feature space is G = R2 × S1, highlighting the sensibility of the cells to

their spatial position and orientation. Gabor filters’ feature space is a well-known group

and we can use its characteristics to underline some invariance in the structure we will

define.

We will define a distance function d : G × G → R, such that

d(p, p0) := ∥ψp − ψp0∥L2(R2)

and a kernel K : G × G → R, defined as

K(p, p0) := Re⟨ψp, ψp0⟩L2(R2).

With the assumption ∥ψp∥2L2(R2) = ∥ψp0∥2L2(R2) = t, ∀ψp ∈ {ψp}p∈G,with t ∈ R, we

obtain that d2(p, p0) = 2(t−K(p, p0)).

Since the kernel K(p, p0) is defined as the inner product of the RPs ψp and ψp0 , it quan-

tifies the similarity between their responses and it can be interpreted as a measure of

correlation between the neurons indexed by p, p0 ∈ G. In this way, this model accounts

for horizontal connections, which involve interactions of neurons within the same layer.

In the final part of our discussion, we will focus on neural networks, in particular

on convolutional neural networks (CNNs), to outline the differences and similarities

between these networks and the architecture of the human brain. We will also try to

bridge the gap between the two, incorporating the biologically inspired structures we

have defined in the first chapters into models.
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Chapter 1

Neurophysiology and Visual
Information Processing

In this first chapter, we provide a brief overview of the functionality of the visual

cortex. These concepts, and in particular the structure of receptive fields and the con-

nectivity feature, will be essential to develop a metric for the primary visual cortex.

1.1 The visual pathway

We start by outlining how the visual information is spread to the brain.

The visual pathway is a complex network responsible for processing visual information

from outside [3]. It begins in the retina, which captures light with its photoreceptors and

converts it into electrical signals. Then these signals are transmitted through a pathway

of neurons from the eye to the brain. A schematic representation of this pathway is

shown in Figure 1.1, which illustrates its main components and how they are connected.

Specifically, the visual pathway is composed by:

• the retina: the innermost layer of the eye, contains neurons that are sensitive to

light;

• optic nerve: it is a paired cranial nerves, made of retinal ganglion cell axons and

1



2 1. Neurophysiology and Visual Information Processing

glial cells;

• optic chiasma: the point where the optic nerves from both eyes partially cross,

allowing signals from the inner halves of each retina to switch sides and reach the

opposite hemisphere of the brain;

• optic tracts: contains retinal information from both eyes;

• lateral geniculate nucleus (LGN): it is the link between the retina and the cortex,

works like a processing station of the visual information, mediating vision and

visual perception;

• primary visual cortex (V1): the first area of the visual cortex to receive the sensory

input from the LGN

Figure 1.1: The visual pathway

The primary visual cortex

The visual cortex is the part of the cortical mantle of the brain that receives, inte-

grates and processes visual information relayed from the retina and LGN. It is catego-

rized into several functionally distinct areas, typically labeled as V1, V2, V3, V4, V5,
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V6. Among these, V1 is the first cortical region to receive and process visual informa-

tion, and it is also the best-understood one.

There are two main types of neurons in V1, which were first discovered by D.H. Hubel

and T.N. Wiesel [1]: simple cells and complex cells. Simple cells show orientation se-

lectivity, i.e. they respond to specific stimuli, such as edges and lines with a particular

orientation. Complex cells, responsive to these and other features, integrate inputs from

many simple cells.

In our discussion we mainly focus on simple cells, with complex ones treated as a gen-

eralization.

1.2 Receptive fields and profiles

We call receptive field (RF) of a neuron the region of the retina that, when stimu-

lated, affects its activity [4]. The RF of a cell is a specific area of the visual field, and

since each point in this field is projected onto the retina R , we can consider D ⊆ R and

refer to retinal coordinates.

We introduce the receptive profile (RP) of a cell as a function ψ : D → R, which

describes the response of the neuron to light stimuli (in an excitatory or in an inhibitory

way). We can assume that simple cells respond linearly to visual stimuli, so that, in gen-

eral, to simplify our approach, we assume that visual stimuli satisfy I ∈ L2(R) whereR

denotes the retina (the metric on R will be defined later). We also assume by simplicity

that I is real-valued, and represents grayscale stimuli.

Since we assumed that the response of visual neurons to a light signal is close to a

linear function, we can model the local response of a single cell like:

Op(I) =

∫
D

I(x, y)ψp(x, y) dx dy, p ∈ G,

where D is the RF, ψp is the RP of a specific cell and I is the visual stimulus.
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Physiological studies indicate that each point (x, y) ∈ R on the retina transmits

information to multiple groups of cells, each with a distinct functional role. For this

reason, we consider sets of RPs of groups of cells {ψp}p∈G , where the feature space G
is a set of indexes representing different features. Each p ∈ G corresponds to a spe-

cific feature to which the receptive profile ψp has the strongest response. Consequently,

p ∈ G can be defined like p = (x, y, f), where (x, y) ∈ R2 is a couple of coordinates on

the retina R and f is the encoded feature.

The shape of a cell’s RF gives valuable insight on the functionality of the cell and

neurons in different areas can act quite differently. For example, RFs of retinal ganglion

cells and LGN neurons, sensible to scalar features, are concentric and compact, whereas

neurons in V1, sensible to a vector feature, have elongated RF and directional RP.

Indeed, RFs become progressively more complex as information moves up the hierarchy

of visual areas [4]. This hierarchical organization is achieved through a process known

as pooling, where information from smaller receptive fields is combined to form more

sophisticated and abstract representations of visual stimuli. As a result, different areas

of the visual cortex specialize in processing distinct aspects of the visual input: V1 is

sensible for orientation, V2 for complex contours and patterns, V3 detects the shapes of

moving objects, V4 is specific for colors and V5 for movements and depth.

We can model the simultaneous response of each RP as the convolution between

the stimulus and the filter:

Op(I) =

∫
R

I(x, y)ψp(x, y) dx dy = (I ∗ ψp)(x, y), p ∈ G.
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Lateral connections

Visual signals are propagated through the visual pathway, following a specific hier-

archy of regions, each involving progressively more complex features. Actually, neural

responses are influenced by feedback signals from higher-level areas and intra-area con-

nections, referred to as horizontal connections, which are commonly found in V1 [2].

Horizontal (or lateral) connections link neurons across different hypercolumns, which

are groups of neurons sensitive to approximately the same retinal position but respon-

sive to all possible orientations; thus, these relations associate neurons with different

RFs and orientation specificity. In the last chapter of this discussion, we will explore

how this neural hierarchy play a fundamental role in building biological inspired neural

networks.

1.3 Retinotopy

The retina captures a two-dimensional representation of the visual field. When

visual information is transmitted in V1, a point-by-point correspondence is maintained

between adjacent regions of the visual field, creating a projection of the retinal struc-

tures. This phenomenon of mapping visual input from the retina to the cortex is known

as retinotopy [4]. Clearly, during this process, the signal encounters a deformation d,

which, near the center of the visual field can be well-approximated by the complex

logarithmic function:

da,k(z) = k · ln(z + a)

where a, k are parameters that depends on the species being studied, and z ∈ C.

As a result, the visual field is represented topographically.
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Figure 1.2: The visual stimulus used to estimate the retino-cortical mapping (on the left)
and the flattened visual cortex of a macaque with the corresponding activated regions
(on the right).

Figure 1.3: Model of retinotopy.



Chapter 2

From receptive profiles to cortical
distances

2.1 Metric measure spaces

In this section, we recall some key concepts related to distances, length spaces, and

measures [2]. We will discuss the fundamental notions underlying these topics, present-

ing the necessary definitions, propositions and theorems to understand the discussion

that follows.

Definition 2.1 Given an arbitrary set X , the function d : X × X → R ∪ {+∞} is a

distance on X if:

(i) d(p, q) > 0 ∀ p, q ∈ X , with p ̸= q, and d(p, p) = 0

(ii) d(p, q) = d(q, p) ∀ p, q ∈ X

(iii) d(p, q) ≤ d(p, s) + d(s, q) ∀ p, s, q ∈ X

The space (X, d) is called a metric space.

Definition 2.2 A continuous map γ : [a, b]→ X is called a path.

7



8 2. From receptive profiles to cortical distances

Definition 2.3 Given a topological space X , (A(X), L) is a length structure, if A(X) is

a set of paths on X , which is closed for restrictions, concatenations and linear reparam-

eterizations of paths, and L : A(X)→ R is a function such that:

(i) L(γ) ≥ 0 for all γ ∈ A(X)

(ii) L(γ|[a,b]) = L(γ|[a,c]) + L(γ|[c,b]) for all c ∈ [a, b]

(iii) The function t 7−→ L(γ|[a,t]) is continuous on [a, b]

(iv) L(γ ◦ φ) = L(γ) for all φ linear homeomorphism

(v) inf{L(γ) | γ(a) = p, γ(b) ∈ X \ Up} > 0 ∀ p ∈ X and for all neighborhoods

Up ⊆ X of p

A path γ ∈ A(X) is called admissible, and L(γ) is the length of γ.

Definition 2.4 Given (A(X), L), for all p, q ∈ X we define:

dL(p, q) := inf{L(γ) | γ : [a, b]→ X, γ ∈ A(X), γ(a) = p, γ(b) = q}

Definition 2.5 A length structure (A(X), L) is complete if ∀ p, q ∈ X, ∃ γ ∈ A(X)

joining p and q such that L(γ) = dL(p, q). In this case, the distance dL is called strictly

intrinsic.

The metric space (X, d) is called a length space if there exists a length structure (A(X), L)

such that d coincides with the distance dL.

The metric space (X, d) is a geodesic space if dL is strictly intrinsic.

Definition 2.6 Given a set X , A is a σ-algebra on X , where A = {Ai}i∈I , Ai ⊆ X , if:

(i) ∅, X ∈ A

(ii) if A,B ∈ A ⇒ A \B ∈ A

(iii) if {Ai}i∈I ⊆ A is a finite or countable collection ⇒
⋃
i∈I
Ai ⊆ A

(iv) if {Ai}i∈I ⊆ A⇒
+∞⋂
i=1

Ai ⊆ A
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Given G = {Xi}i∈I , Xi ⊆ X , there exists a unique minimal A σ-algebra such that

G ⊆ A, which is called the σ-algebra generated by G.

Definition 2.7 The function µ : A → R+ ∪ {+∞} is a measure on the σ-algebra A on

X if:

(i) µ(∅) = 0

(ii) if {Ai}i∈I ⊆ A is a finite or countable collection of subsets of X , where Ai ∩

Aj = ∅ ∀i, j ∈ I such that i ̸= j ⇒ µ

(⋃
i∈I
Ai

)
=
∑
i∈I
µ(Ai).

Properties of a measure µ on A :

1. if A,B ⊆ A such that A ⊆ B ⇒ µ(A) ≤ µ(B)

2. if A,B ⊆ A such that A ⊆ B ⇒ µ(B \ A) = µ(B)− µ(A)

A ⊆ X is measurable if A ∈ A.

Definition 2.8 Given a topological space X , the σ-algebra generated by the set of all its

open sets is called the Borel σ-algebra of X . A measure defined on the Borel σ-algebra

is called a Borel measure over X .

(X, d, µ) is a metric space, where X is a set, d is a distance on X and µ is a measure on

the Borel σ-algebra of (X, d).

Definition 2.9 Given a Hausdorff (T2) topological space X , a measure µ on the Borel

σ-algebra of X is called a Radon-measure if:

(i) ∀A ⊆ X open set, µ(A) = sup{µ(K) | K ⊆ A, K is compact} (inner-regularity

of µ)

(ii) ∀B ⊆ B, where B is a Borel set, µ(B) = inf{µ(A) | B ⊆ A, A is open} (outer-

regularity of µ)

(iii) ∀x ∈ X , ∃U ⊆ X a neighborhood of x, such that µ(U) < +∞ ( µ is locally

finite)
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2.2 RPs generated metric

In this section, we start describing the model presented in [2] by defining a metric

space based on the receptive profiles (RPs) of simple cells. Drawing on biological struc-

tures from the retina to V1 we use filters (RPs) to link points within the visual pathway.

However, to establish connections between points within V1 itself and to extend this

construction iteratively across subsequent brain layers, we introduce a distance function

to serve as a kernel on V1. To construct this kernel on the group R2 × S1, we employ a

specific family of filters known as Gabor filters.

Definition 2.15 Given a family {ψp}p∈G , where ψp : R2 → R (or C ), ψp ∈ L2(R2)

∀ p ∈ G, we call G the feature space associated with the family {ψp}.

We define d : G × G → R as a distance function such that:

d(p, p0) := ∥ψp − ψp0∥L2(R2),

and a generating kernel K : G × G → R such that:

K(p, p0) := Re⟨ψp, ψp0⟩L2(R2).

Since d is defined as a restriction of the L2 distance function, it is itself a distance on G.

Observe that:

d2(p, p0) = ∥ψp∥2L2(R2) + ∥ψp0∥2L2(R2) − 2Re⟨ψp, ψp0⟩L2(R2).

In facts, just making some basic calculations, we obtain:

d2(p, p0) = ∥ψp − ψp0∥2L2(R2)

= ⟨ψp − ψp0 , ψp − ψp0⟩L2(R2)

= ⟨ψp, ψp⟩L2(R2) − ⟨ψp, ψp0⟩L2(R2) − ⟨ψp0 , ψp⟩L2(R2) + ⟨ψp0 , ψp0⟩L2(R2)

= ∥ψp∥2L2(R2) + ∥ψp0∥2L2(R2) − 2Re⟨ψp, ψp0⟩L2(R2).
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With the assumption ∥ψp∥2L2(R2) = ∥ψp0∥2L2(R2) = t,∀ψp ∈ {ψp}p∈G,with t ∈ R, we

get that:

d2(p, p0) = 2t− 2Re⟨ψp, ψp0⟩L2(R2) = 2(t−K(p, p0)).

This means that the kernelK can be thought as a measure of correlation between p, p0 ∈
G: K(p, p0) increases as they get "closer" (according to the distance d ).

Now we want to add details on how the filters interact with each other in determining the

geometry of the space. We need to define, around each p0 ∈ G, a local patch P(p0) ⊆ G
and to restrict the definition of d to these elements. Then, the focus will be to see if it

will be possible to "glue" all these distances together to obtain a global distance on the

feature space G.

Definition 2.16 ∀ p, p0 ∈ G, if ∃ {qj}j=1,...,n a sequence such that q0 = p0, qn =

p and qj ∈ P(qj−1)∀ j = 1, ..., n, then we can define:

d̃(p, p0) : G × G → R,

d̃(p, p0) := inf{
n∑

j=1

d(qj−1, qj) | n ∈ N, q0 = p0, qn = p and qj ∈ P(qj−1)∀j}

Otherwise, d̃(p, p0) := +∞.

Notice that, in general, the existence of such a sequence {qj}j=1,...,n it is not guar-

anteed ∀ p, p0 ∈ G, but this case could be not considered because this would mean

having isolated points or regions of G, corresponding to neurons whose activations are

independent.

Proposition 2.1 Given a set G, if we can define a patch P(p0) ⊆ G such that ∀ p0 ∈ G,

∃ ϵ > 0 s.t. Bϵ(p0) := {p ∈ G | d(p, p0) < ϵ} ⊆ P(p0) then the function d̃(p, p0) :

G × G → R already defined satisfies:
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(i) d̃(p, q) ≥ 0, ∀ p, q ∈ G

(ii) d̃(p, q) ≤ d̃(p, s) + d̃(s, q), ∀ p, s, q ∈ G

(iii) ∀ p, q ∈ G, d̃(p, q) = 0⇔ p = q

Proof. Firstly, we want to prove that the function d̃ is well-defined, which means veri-

fying that local distance functions coincide on overlapping patches, but this occurs by

construction, since d(p, p0) := ∥ψp − ψp0∥L2(R2).

Now we can prove the other properties:

(i) : d̃ is obviously ≥ 0 (since it is defined as a sum of positive elements).

(ii) :

d̃(p, s) + d̃(s, q) = inf

{
n∑

j=1

d̃(qj−1, qj)

∣∣∣∣∣ n ∈ N, q0 = s, qn = p, qj ∈ P(qj−1)∀j

}

+ inf

{
n∑

j=1

d̃(qj−1, qj)

∣∣∣∣∣ n ∈ N, q0 = q, qn = s, qj ∈ P(qj−1)∀j

}

= inf

{
n∑

j=1

d̃(qj−1, qj)

∣∣∣∣∣ n ∈ N, q0 = q, qn = p, qj ∈ P(qj−1)∀j, ∃ j s.t. qj = s

}

≥ inf

{
n∑

j=1

d̃(qj−1, qj)

∣∣∣∣∣ n ∈ N, q0 = p0, qn = p, qj ∈ P(qj−1)∀j

}
= d̃(p, q)

(iii) : We suppose p ̸= p0, for hypothesis ∃ ϵ > 0 s.t. Bϵ(p0) ⊆ P(p0), so:

• if p /∈ P(p0)⇒ p /∈ Bϵ(p0)⇒ d̃(p, p0) ̸= 0

• if p ∈ P(p0)⇒ d̃(p, p0) ̸= 0 because d is a distance on P(p0).
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Note that the condition qj ∈ P(qj−1) does not mean that qj−1 ∈ P(qj). In facts,

in general, the definition of d̃ makes it a quasimetric distance (similar concept to asym-

metric). This means that getting from p to p0 may be "harder" than following the op-

posite path (we are saying that d̃(p, p0) ≥ d̃(p0, p) ), for example we can see it like

walking between two points on a mountain: in this vision p0 in uphill with respect to

p. In this particular case, we are defining a distance which should model the lateral

connectivity in V1, and we know that horizontal connections are reciprocal, so it is log-

ical to model it through a symmetric distance. For this reason we are requiring that:

p ∈ P(q)⇔ q ∈ P(p).

In other words, we can think at the kernel distance we have defined as a local object

by restricting it to suitable patches around every p ∈ G. With the Proposition already

proved, we are stating that, under reasonable conditions on the choice of the patches,

we obtain a well-defined global distance on G.

Figure 2.1: Schematic representation of the cortical metric

2.3 Gabor filters

As previously discussed, simple cells in the visual cortex respond strongly to lines

or edges with specific orientations. To model their receptive profiles (RPs) while pre-
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serving this orientation sensitivity, Gabor filters are commonly used [3]. These lin-

ear filters are effective for analyzing specific frequency content and directional features

within an image.

A bank of Gabor filters {ψx,y,θ}x,y,θ is indexed by G = R2×S1, where (x, y) ∈ R2

give information on the position of the center of the filter, and θ ∈ S1 express its pre-

ferred orientation.

In particular, R2 × S1 is a group representing the translations and rotations of a

given p = (x, y, θ): each Ax,y,θ ∈ R2 × S1 can be represented like:

Ax,y,θ

(
u

v

)
= Tx,y ◦Rθ

(
u

v

)
= Rθ

(
u+ x

v + y

)
,

where Rθ =

(
cos θ − sin θ

sin θ cos θ

)
.

We can easily define the inverse of a generic Ax,y,θ = Tx,y ◦Rθ as:

A−1
x,y,θ

(
u

v

)
= T−1

x,y ◦R−1
θ

(
u

v

)
= T−x,−y ◦R−θ

(
u

v

)
.

The composition law is:

Ax1,y1,θ1 ◦ Ax2,y2,θ2

(
u

v

)
= Ax1,y1,θ1

[(
x2

y2

)
+Rθ2

(
u

v

)]

=

(
x1

y1

)
+Rθ1

[(
x2

y2

)
+Rθ2

(
u

v

)]

=

(
x1

y1

)
+Rθ1

(
x2

y2

)
+Rθ1Rθ2

(
u

v

)
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=

((
x1

y1

)
+Rθ1

(
x2

y2

))
+Rθ1+θ2

(
u

v

)
= Ax3,y3,θ3 ,

where

(
x3

y3

)
=

(
x1

y1

)
+Rθ1

((
x2

y2

))
,

and θ3 = θ1 + θ2.

So each bank of Gabor filters {ψx,y,θ}x,y,θ, is obtained from a mother filter

ψ0,0,0(u, v) = exp

(
2πiu

λ

)
exp

(
−u

2 + v2

2σ2

)
as:

ψx,y,θ(u, v) = ψ0,0,0

(
T−1
(x,y)R

−1
θ (u, v)

)
.

In other words, each filter ψx,y,θ(u, v) = ψ0,0,θ((u, v)− (x, y)) .

According to the notations used for describing general filters, the RP ψx,y,θ acts on

the stimulus I (taken in V1) for convolution:

Ox,y,θ(I) =

∫
I(u, v)ψx,y,θ(u, v) du dv =

∫
I(u, v)ψθ((u, v)−(x, y)) du dv = (I∗ψ)(u, v).

The case of Gabor filters is effective because, by defining G = R2×S1, we explic-

itly frame the problem within a group structure rather than just a metric space. To get

an idea, on the retina G = R2 and we know how to define a distance (and consequently

a convolution) on the group R2; in V1, where G = R2 × S1, we have demonstrated that

this structure forms a group. We now show that the kernel associated with the distance

d defined above exhibits certain invariances on R2 × S1.

Given ψp, ψp0 ∈ {ψx,y,θ}x,y,θ, where p = (x, y, θ), p0 = (x0, y0, θ0) and p, p0 ∈ G =

R2 × S1, expressing ψp = ψ1p + iψ2p, ψp0 = ψ1p0 + iψ2p0 we can explicitly compute
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the kernel (using a change of variable):

K(p, p0) = Re ⟨ψp, ψp0⟩L2(R2)

=

∫
R2

ψ1p(u, v)ψ1p0(u, v) du dv

=

∫
R2

ψ(0,0,0)

(
T−1
(x,y)R

−1
θ (u, v)

)
ψ(0,0,0)

(
T−1
(x0,y0)

R−1
θ0
(u, v)

)
du dv

=

∫
R2

ψ(0,0,0)

(
T−1
(x,y)R

−1
θ Rθ0T(x0,y0)(s, t)

)
ψ(0,0,0)(s, t) ds dt

= Re ⟨ψp−1p0 , ψe⟩L2(R2)
= K(p−1p0, e).

In this way, it is possible to estimate the output similarly to the method in Section 1.2:

given Op0(I) the output ( in R ) of a p0 ∈ G

O′(Op0) :=

∫
K(p, p0)Op0 dp0 =

∫
K(p−1p0, e)Op0 dp0.

Now that we understand how the kernel K in R2×S1 operates between two points

in V1, we can extend this approach to the next layer by applying filters according to the

group law of R2×S1. The construction on subsequent layers then follows as an iterative

application of this process.



Chapter 3

Bridging Biological and Artificial
Neural Network

In this final chapter, we will focus on the distinctions and similarities between con-

volutional neural networks (CNNs) and the biological structures discussed in Chapter

1. Specifically, our aim is to report on results which introduce improvements and op-

timizations in CNNs by applying the properties of neurons in the visual system. We

will understand how to bridge the gap between artificial intelligence and biological pro-

cesses, however, there will still be differences that need to be addressed.

In particular, we will exhibit the similarities between the structure defined in Section 2

and neural networks, showing how CNN operate like filters.

Figure 3.1: Parallel between a neuron and a neural network inspired by it

17
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3.1 General background

In this section, we aim to introduce essential notions associated with deep neural

networks (DNNs), with a particular focus on convolutional neural networks (CNNs).

Neural networks (NNs) are computational models inspired by biological neural systems,

designed to process information in a way that mimics the human brain. They are widely

used for tasks such as predicting information, recognizing patterns, and making deci-

sions, leveraging their ability to learn from data. Artificial neural networks consist of

graphs where the vertices, called nodes (or neurons), are connected by edges represent-

ing the synaptic links. These nodes can be grouped into layers, which are hierarchically

interconnected. Generally, a NN is composed by an input layer, some hidden layers and

an output layer [5]. During a phase called training, each node receives input data from

connected nodes, processes it by applying weights and the activation function (a non-

linear function) and then transmits the output to the next connected node; this process

is called forward.

3.2 DNNs

We examine a specific type of NN, constitute of multiple hidden layers: deep neu-

ral networks (DNNs). The simpler DNN structure is feedforward, where nodes in each

layer pass information only to the ones in the next layer. The network is called fully

connected if all the nodes of a layer are connected to all the nodes of the next one.

Now, we give a description of how DNNs are structured and how do they work.

A feedforward DNN defines an operator F , which is learned through a minimiza-

tion process to approximate a given operator:

Z : H0 → HL.

The function F is constructed as a composition of mappings, F0 ◦ · · · ◦ FL, where each
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map Fl : Hl → Hl+1 acts between appropriate functional spaces, representing the layers

of the network.

The operator F takes an initial function h0 : G0 → R (first layer) and gener-

ates an output hL : GL → R (last layer). For each l ∈ {0, ..., L}, the transformation

Fl : Hl → Hl+1 defines the operations occurring between consecutive layers, specifi-

cally between the l-th and the (l + 1)-th layers.

In particular, the activation of the (l + 1)-th layer, hl+1 : Gl+1 → R, is computed

from the activation of the previous layer. The transformation Fl first applies a linear

operation Al : Hl → Hl+1 to the input hl ∈ Hl, followed by a nonlinear activation

function sl+1 : Hl+1 → Hl+1. Explicitly:

hl+1 := Fl(hl) = sl+1(Alhl + bl),

where bl ∈ Hl+1 is an additional term known as bias.

We outline just two activation functions from the most commonly used:

• the sigmoid function: s(z) = 1
1+e−z , where s : R→ (0, 1);

• the Rectified Linear Unit (ReLU) function: s(z) = max(0, z), where s : R →
[0,∞).

In general, the Gl are considered as discrete sets and we usually write hl = {hl(i)}i∈Gl
.

In this case, at each layer the linear operator Al can be represented as a matrix whose

elements are the weights W := {wl(j, i)}j∈Gl+1,i∈Gl
, while the bias terms are vectors

bl = {bl(j)}j∈Gl+1
.

In a supervised learning framework, we are given a dataset, which is a finite subset

D ⊆ H0 along with corresponding target values defined by the operator Z. This dataset

consists of input-output pairs that guide the learning process.

There are two main tasks that neural networks can perform:
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• regression, where, from a set of inputs, the target is to learn a function that best

fits the relationship between inputs and outputs

• classification, where the target is to learn a function that assigns each input to one

of the possible classes.

To optimize the functionals Fl and ensure that F accurately approximates the target op-

erator Z, we define a loss function L, which quantifies the difference between the net-

work’s output or prediction hL and the expected result gL. The training process aims to

adjust the weights W and biases b to minimize this loss.

Common choices for L(hL, gL) are:

• mean-squared error, typically used for regression problems, is defined as:

LMSE =
1

|GL|
∑
i∈GL

(hL(i)− gL(i))2

• cross-entropy loss, used for classification problems, quantifies the difference be-

tween two probability distribution (the distribution from the model hL and the

true distribution gL ), is defined as:

LCE = −
∑
i∈GL

gL(i)ln(hL(i))

When training a DNN, an effective method to minimize the loss L is gradient

descent (GD), which works iteratively adjusting the parameters. In general, the gradient

of L with respect to the weights is a vector ∂L
∂wl(j,i)

that points in the direction of the

steepest increase of L, so it gives information on how much the loss would change if

we change the weights. In GD, in order to minimize the loss, we want to move in the

opposite direction of the gradient. In each epoch (iteration), the weights are updated

using:

wl(j, i)← wl(j, i)− α
∂L

∂wl(j, i)
,
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where α is the learning rate, a small positive value that controls the step size of the

update, so how big a step is taken in the direction of the GD. If α is too big, it is

possible to miss the minimum, if is too small, it could take too long to converge or get

stuck at the wrong minimum.

The same updates are applied to the biases:

bl(j)← bl(j)− α
∂L

∂bl(j)
.

These updates are applied iteratively over many epochs until the L converges to a mini-

mum, corresponding to an optimal solution for the given task.

Since the NN could have many layers, computing the gradients could be extremely

slow and inefficient, for this reason it is common to use an algorithm, called backprop-

agation. We can summarize how it works like:

• it computes the error at the output layer and then calculate the derivative of the

loss with respect to the output

• it propagates the error backward through the network, to calculate how much each

weight in the previous layers contributed to the overall error

• it updates the weights with GD

Actually, GD is not the most effective method that can be used, because the gradient

is calculated at each update step using the entire dataset. Obviously, for large datasets

and complex NNs, this could become computationally expensive and slow. Stochastic

Gradient Descent (SGD), on the other hand, introduces a practical solution by approx-

imating the gradient using only a single randomly selected sample or a small batch of

samples at each iteration.

A priori, the dataset D is split into three parts, each containing a subset of samples:

• Dtrain, the training set, used to determine A and b in the optimization process.
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• Dvalidation, the validation set, used to validate the model’s performance during train-

ing

• Dtest, the test set, containing data that was not used in training and is reserved for

evaluating the model’s performance on unseen examples.

In this way, D = Dtrain ∪Dvalidation ∪Dtest.

In particular, this splitting procedure is necessary to avoid overfitting, a common is-

sue where the model memorizes training data instead of learning general patterns. When

overfitting occurs, the function F performs well on Dtrain but generalizes poorly to new

data in Dtest. In deep learning, optimization landscapes are often highly non-convex,

meaning they contain multiple local minima, making training more challenging. Even

simple networks can exhibit an exponentially large number of such minima.

To mitigate overfitting, a common technique called early stopping is applied. The

idea is to stop training when the validation loss stops improving, ensuring that the model

does not continue learning noise from the training data.

3.3 CNNs

Image data

From this point forward, we will focus on a particular case of input data: image

datasets. According to the notions used above, an image is a structure data that can be

represented as a function, where each point corresponds to a pixel’s intensity or color

information. In a discrete setting, a grayscale image can be described as:

I : {1, ..., h} × {1, ..., w} → R,

where h is the height of the input image, w is its width, and I(x, y) is an intensity value

representing the brightness level (ranging from 0 to 255, from black to white).
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In general, if we are considering nc color channels, the domain of I is

{1, ..., h} × {1, ..., w} × {1, ..., nc},

for example for RGB images:

I : {1, ..., h} × {1, ..., w} × {1, 2, 3} → R.

Images are frequently represented as matrices, to enable efficient storage and process-

ing. Thus a grayscale image can be seen as a matrix I ∈ Rh×w, where each element Ii,j
holds the intensity value at pixel location (i, j).

We state also the definition of I in the continuous setting:

I : [a1, a2]× [b1, b2]→ R.

Sometimes these complex structures are ignored and images are treated as vectors

of numbers by flattening the matrices, not respecting the spatial relation between pixels.

For instance, an image I ∈ Rh×w could be converted into a vector I ∈ R(h+w)×1 by

concatenating the rows and columns, leading to a structure that does not retain any spa-

tial information. This method is convenient for fully connected networks, because they

are invariant to the order of features, thus they can give similar outcomes regardless if

the spatial arrangement is maintained or not.

Although, this procedure is very limiting, because it ignores the local correlation be-

tween adjacent pixels, which often share similar intensity values or colors. For example,

in a natural image, neighboring pixels could represent edges, textures, ... and treating

them as independent feature lead to lose the ability to capture these patterns.

In general, this type of data is essential for image classification, the primary task of

interest in our discussion.
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Convolutional Neural Networks

The properties that we have observed above are exploited fully by a particular class

of DNNs: Convolutional Neural Newtworks (CNNs). These networks are designed to

capture spatial hierarchies and patterns and are richly inspired by biological processes

as we will note later. The peculiarity of CNNs is that there are some layers that are not

fully connected and the application of local convolutional filters that slide over the spa-

tial domain. This design allows the network to maintain the relationships among nearby

pixels, but also enforces translation invariance, enabling the shared weights of the filters

to recognize features regardless of their position in the image.

In detail, given a set of filters {ψ1
k}k=1,...,n1 with a localized support, and an input

image I(u, v, c) where u and v are spatial coordinates and c ∈ {1, ..., n1} indexes the

color channels, the first convolutional layer produces an output feature map by comput-

ing the convolution:

A0I(u, v, k) := ψ0
k ∗ I(u, v)

=

∫
G0

ψ1
k(u

′, v′, c)I(u− u′, v − v′, c) du′ dv′ dc

=
∑

c∈{1,2,3}

∫ b2

b1

∫ a2

a1

ψ1
k(u

′, v′, c)I(u− u′, v − v′, c) du′ dv′
,

where A0 is a linear operator from the first layer to the second one, and

G0 := {1, ..., h} × {1, ..., w} × {1, ..., n0}.

Subsequent layers perform similar convolutions on the outputs of the previous layers:

∀ l ∈ {0, ..., L− 1}, Alhl(u, v, k) := ψl+1
k ∗ hl(u, v)

where hl is the feature map from the l-th layer and {ψl+1
k }k=1,...,nl+1

is the bank of filters

associated to the (l + 1)-th layer.
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In the discrete setting:

hl+1(i, j, k) = sl+1

∑
i′,j′,k′

ψl+1
k (i′, j′, k′) · hl(i− i′, j − j′, k′) + bl(k).

The activation of each convolutional layer is obtained by applying a non-linear function

sl+1 to the result of the convolution and adding a bias term bl+1:

hl+1(u, v, k) := sl+1(Alhl(u, v, k) + bl+1(k))

The final layers of the network are usually not convolutional but fully connected,

meaning every neuron in the last feature map layer hL connects to every neuron in the

subsequent layers. This is achieved by flattening hL into a vector and applying a linear

transformation, followed by a non-linear activation (such as ReLU). The last layer typi-

cally produces outputs of class probabilities using the softmax function.

Summarizing, convolutional layers use filters that scan over the input image. Each of

them is smaller than the image and is applied repeatedly across spatial dimensions. This

process involves:

• local connectivity: each filter connects only to a small region of the input (called

receptive field, like the biological features we have analyzed in Section 1), reduc-

ing the number of parameters;

• weight sharing: each filter has a set of weights that are shared across different

locations in the image, and the same weights are applied to all corresponding

regions.

In this way, CNNs are more efficient than standard DNNs for image classification, be-

cause require fewer parameters.
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Frequently, to simplify the output between convolutional layers, a pooling opera-

tion can be added, similar to the process described in Chapter 1. It is designed to reduce

dimensionality, to retain key features and to introduce invariance, i.e. providing a de-

gree of invariance to slight translations or distortions in the input, helping the model to

generalize better.

The most commonly used pooling approaches are:

• max pooling, which takes the maximum value in each region

• average pooling, which takes the average of all values in each region.

For example, given a 4× 4 input feature map:

[
1 3

2 4

]
by applying a 2× 2 max pooling

filter we obtain
[
4
]
, while applying an average pooling filter of the same dimension we

obtain
[
2.5
]
.

Pooling layers have a biologically inspired role in CNNs. In the visual system,

neurons that process visual information have small RFs, which are likely to grow to-

wards cortical layers. In a similar way, subsampling the feature map in a CNN broadens

the area each next filter covers. This sampling lets higher layers in the NN capture wider

patterns from the image, like the brain’s higher visual areas respond to larger structures.

3.4 Recurrent CNNs and Kernel CNNs

Since now, all the NN that we have examined are build respecting the hierarchical

transmission between layers, but they lack the lateral connectivity structures that we

have outlined when discussing the biological spreading of visual information in the pri-

mary visual cortex.

Recurrent CNNs (RecCNNs) are a modified version of CNNs where lateral con-

nections are added. This means that these NN include both feed-forward connections

between layers and recurrent connections within the same layer.
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Introducing a time parameter t, the activation of the l-th layer at t can be expressed like:

htl = sl(φ
l ∗ htl + ψl ∗ htl−1 + bl), ∀ t, l > 0,

where htl−1 is the output of the previous layer at the same t and {φl
k}k=1,...,nl

is a set on

convolutional filters defining the lateral connections.

This combination of lateral and feed-forward connections is particularly used for

tasks that require both spatial and temporal processing, such as video analysis, sequen-

tial image processing or, in general, situations where information across multiple frames

is needed.

Figure 3.2: Overview of a RecCNN

It is important to note that, with this construction, lateral connections are added

separately from the feedforward ones. This leads to an increase in the number of pa-

rameters and to the fact that the two types of connections are completely independent

from one another, seeming unrelated.

To address this issue, a new type of CNN has been introduced: Kernel CNNs (Ker-

CNNs), which can take care of this important relationship between lateral and feedfor-

ward connections. Essentially, the goal is to reinforce our model with the biologically

inspired concepts that we discussed in Chapter 2, thereby inducing that metric structure
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on the layers of the CNNs.

In summary, this approach involves adapting the loss function by applying a regulariza-

tion term and then using the kernel K(p, p0) to introduce lateral connections into the

network. In such manner, the recurrent kernels are obtained as functions of the feed-

forward connections, eliminating the need for additional parameters (see [2] for more

details on their structure).

Figure 3.3: Parallel between the biological construction of Chapter 2 and KerCNNs



Conclusions

In this thesis, we presented a metric model to interpret the connections between

neurons in the primary visual cortex (V1). We explored how neurons interact with each

other, starting from their hierarchical organization, where neurons in one layer transmit

information to those in the next. We then examined lateral (or horizontal) connections,

which occur between neurons within the same layer and play a fundamental role in pro-

cessing visual information.

To formalize these interactions, we introduced a distance function and a kernel that

directly depend on the spatial position of neurons, explicitly expressed as a scalar prod-

uct of two RPs. These functions allowed us to analyze the degree of correlation between

neurons and model how they influence each other based on their relative positions. In

this way, we were able to effectively describe how visual information propagates and is

transmitted in V1.

In addition, we draw a parallel between the biological brain architecture and the

architecture of artificial neural networks. In particular, we have described how these

concepts of correlation and spatial relationships among neurons could be integrated to

reinforce the CNNs structures.
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