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Abstract

The TOF (Time-of-Flight) readout system of the ALICE experiment at the
LHC is based on a TDC Readout Module (TRM) hosting a TDC produced by
CERN in the early 2000s. This thesis is part of the TRM2 project, producing a
new card based on the newly produced PicoTDC.

This thesis describes the firmware and software development for readout, control
and configuration of a test board hosting a PolarFire FPGA and two PicoTDC
ASICs and the configuration of two LIROC ASICs, integrated in two mezzanine
cards plugged on the board, through an USB Super-Speed interface.

Both firmware and software were built considering the IPBus protocol already
developed by CERN and adapted to the new USB interface. The IPBus implements
a master-slave structure in which each slave is identified by a 32-bit address and
communicates with the master through a 32-bit data bus.

The DAQ chain was then tested at CERN in June 2024 in a test beam to
test its stability and the performance. During the operation at the test beam,
the system proved to be fast and reliable over the long run. A set of six data
acquisition runs were then used to get a preliminary result on the time resolution
of an LGAD-LIROC-PicoTDC DAQ chain obtaining σ = 42.83± 0.18 ps.
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Introduction

The Run 3 phase of LHC (Large Hadron Collider) at CERN started in July
2022, reaching new records center of mass energy for proton-proton, proton-ion, and
ion-ion collisions. This new data-taking phase concludes three years of updating
and maintenance work for the collider and the 4 experiments, located along the
accelerator. The ALICE (A Large Ion Collider Experiment) experiment was built
to study particles’ strong interaction and the QGP (Quark-Gluon Plasma). To cope
with the higher luminosity and interaction rate, the ALICE upgrade considered
some sub-detectors overhaul and the restyling of the readout system to supply a
continuous readout.

The ALICE Time-Of-Flight (TOF) detector was built to perform particle
identification within an intermediate momentum range. During LHC Run 3, only
the TOF detector electronic readout system was modified to follow the continuous
readout direction of the whole experiment. Such an upgrade was completed while
keeping the main readout board used in previous LHC Runs: the TRM (TDC
Readout Module).

In detail, the TRM is a VME slave card, which hosts 30 HPTDC (High-
Performance TDC) ASICs able to perform time digitization of the front-end signals,
related to a particle crossing an MRPC (Multi-gap Resistive Plate Chamber). The
board uses an FPGA to manage the readout workflow and the VME interface.
Since the TRM components described are out of production and their maintenance
is increasingly problematic, a project for a new TRM2 card started. This project
is based on a newly developed TDC by CERN: the PicoTDC. As an intermediate
step a PicoTDC Board was designed by the INFN electronics laboratory together
with the ALICE-TOF collaboration of Bologna.

This thesis objective was the development of a new USB Super-Speed interface
for the PicoTDC board to allow fast communication with the integrated PolarFire
FPGA and data readout of the two PicoTDC ASICs hosted on board. My work
consisted in the development of the firmware architecture for the USB interface
through an FTDI FT601 chip, the development of the back-end libraries and
software tools to adapt an already developed software suite for the configuration
and readout of the two integrated ASICs. Furthermore, some modifications of the
already existent FPGA SoC were made for the control of two LIROC ASICs that
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acted as front-end electronics for the sensors connected to the board. The following
chapters describe the work done during the development of this new interface for
the PicoTDC board. Specifically the first chapter provides an overview of the
board features with a special focus on the PicoTDC ASICs characteristics, the
different interface integrated on the board and an introduction on the IPBus SoC
and its protocol. The second and third chapters focus on the firmware and software
development for the new USB interface and the LIROC ASICs control. Finally,
the last chapter provides a brief description of the test made during a test beam in
June 2024 at CERN to evaluate the entire DAQ chain performance and the timing
resolution achieved by the LGAD sensors tested using the PicoTDC Board and the
LIROC front-end ASIC.
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Chapter 1

The PicoTDC board, IPbus protocol and
communication interfaces

The PicoTDC board is an evaluation board developed by the ALICE-TOF
collaboration to test new interfaces and communication protocols for the control
and readout of a PicoTDC ASIC which is the main element of the new TRM2.
The board is equipped with a Microchip PolarFire FPGA to implement the logic
to control two PicoTDC ASICs and multiple interfaces that can be used to com-
municate directly with the on-board FPGA.

In this chapter will be provided a detailed description of the PicoTDC ASIC
together with the board design made by the electronics workshop of INFN Bologna
and the main features of the multiple communication interfaces. Successively the
IPBus System-on-Chip and its protocol will be described since it represents the
backbone of the board system.
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1.1 PicoTDC overview

The PicoTDC is an ASIC designed by CERN which provides 64-channels for
high-resolution time measurements. Similar devices are now used, particularly in
HEP experiments, to build PID systems, TOF detectors and tracking systems
undergoing high particle rates[1].
Since it was designed to support multipurpose applications and R&D activities, it
does not include any analog front-end nor discrimination circuits, given that they
need to be optimized for each specific sensor type used. Furthermore, this ASIC
features a 65 nm CMOS technology and an architecture similar to the HPTDC.

As a new generation chip, the PicoTDC provides a better resolution and higher
channel multiplicity with respect to the older HPTDC that was developed in the
early 2000s for LHC applications andhas been widely used in HEP experiments.

1.1.1 PicoTDC architecture

The PicoTDC ASIC can manage both leading and trailing edges of an input
digital signal, providing the arrival time or the direct measure of the Time over
Threshold (ToT) of the signal.

The architecture is divided in two distinct sections: the Timing Unit and the
Data Processing Unit. The former takes the differential input signals coming from
the sensors front-end circuit of each channel and perform the decoding of the hit
time value, while the latter collects and stores them into a built-in FIFO memory,
waiting to be read[2].

In order to reach the best resolution performance, the Timing Unit relies on a
precise time reference given by an external differential 40 MHz clock which is fed
to an on-chip PLL; such PLL performs the clock multiplication process generating
a range of frequencies from 40 MHz up to 1.28 GHz. All clocks used by the TDC
come from this PLL in order to reach synchronisation between the various clock
domains and reducing the jitter[2].

As shown in Figure 1.1, the 64 differential input channels are divided in four
groups with the same scheme which ends in the related readout FIFO and can be
read by the DAQ electronics via four 8-bit differential parallel ports or via a single
8-bit differential port common to all four groups.

The time base for the TDC measurements is provided via a Delay Locked Loop
(DLL) with 64 delay elements resulting in a 12.2 ps bin size, the PLL feedback
divider and a synchronous clock counter. The 64 delay taps can be further divided
into 256 time taps by an interpolator, reaching a 3.05 ps bin size.

The hit measurements is performed by sampling the input signal for each time
tap every clock cycle and detecting a leading or trailing edge of the signal. The fine
time value is then stored if a hit has been detected; this enables the architecture of
the PicoTDC to detect one edge per channel per 1.28 GHz clock cycle. Because of
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Figure 1.1: PicoTDC internal architecture scheme with the Timing unit on the left
(blue square) and the Data Processing unit on the right.

this, a minimum separation of 781 ps is required between two edges or the resulting
data might be corrupted[2].

Each channel can store up to 4 measurements in a local derandomizer until
they are written into a 512-words deep memory buffer at a frequency of 320 MHz.
The measurements can then be transferred into the 512-words deep FIFO shared
by each group directly or by performing a trigger matching function to select only
the events related to an external trigger signal. In the latter, the trigger time tag,
the event ID and the bunchcounter ID can be stored temporarily into a 512-words
deep trigger FIFO for each channel group and a window of programmable size is
available to the trigger matching function to manage the spread of the hits related
to the same event.

The PicoTDC is also provided with an I2C interface to access its internal
registers with a 16-bit addressing. This interface can be used by an external I2C
master to configure the functional parameters and control the TDC status.
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1.1.2 Phase Locked Loop (PLL)

As introduced in section 1.1 the component responsible for the clock multiplica-
tion of the various parts of the architecture is the PLL. The block diagram of the
circuit is shown in Figure 1.2 and is designed to compare the frequencies provided
by the clk in input and the adjustable feedback provided by the divider. When a
match in phase and frequency is achieved, a steady stage has been reached and the
PLL is locked onto the desired frequency and phase with respect to the reference
input.

Figure 1.2: Block diagram of the PicoTDC PLL.

The Voltage Controlled Oscillator (VCO) generates a symmetrical clock signal,
which is divided by the divider and then compared with the reference clock. If a
discrepancy in phase or frequency is detected by the Phase-Frequency Detector
(PFD), the control voltage of the VCO is adjusted via a charge pump and a
filter circuit. Furthermore, the PLL is provided with an AFC1 logic block in
order to perform the calibration of the VCO switchable capacitor to ensure good
performances of the PLL when sudden changes in temperature, voltage and/or
power happen[1].

In particular, the PLL of the PicoTDC is designed using the Triple Modular
Redundancy technique (TMR). This technique is often used for ASICs designed to
work in critical conditions, such as in a high radiation environment, in order to
reach high reliability of the electronic circuits[2].

1Automatic Frequency Calibration
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1.1.3 Delay Locked Loop (DLL) and interpolation lines

The Delay Locked Loop is the first step of the hit decoding process done by
the TDC’s Timing Unit. The base functioning of a DLL is determined by a Phase
Detector followed by a charge pump that controls the voltage of the delay gates
of the loop. Specifically, this circuit constrains the total delay to be equal to one
period of the external reference clock and allows the prevention of metastability of
the delay line that can be caused by voltage or temperature variation.

In the case of the PicoTDC, shown in Figure 1.3, the DLL acting as the first
step of the decoding works sinchronously with the 1.28GHz provided by the PLL
and in its first stage reaches a resolution of 12.2 ps exploiting the 64-taps delay
line.

Figure 1.3: Scheme of the DLL and fine interpolation stage for the PicoTDC hit
decoding.

Each delay line of the PicoTDC’s DLL then feeds a second interpolation stage
that arranges four resistive time taps to the next delay step. The total number of
delay taps then becomes 256 with a resolution of 3.05 ps. In the final stage, each
resulting delay line is fed to a built-in phase adjustment feature with a resolution
of 0.6 ps to correct possible mismatches[1]. This adjustment is done directly on the
resulting output of the two stages and used in the fine resolution mode (i.e. when
the 3.05 ps binning is used), this requires an individual calibration for every TDC.

By dividing the channels in two, a 2570-bit register of the TDC can determine
all the adjustments tap values for each half independently.
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To get the DLL and the hit decoding stage to work properly, it must be
initialized after the PLL has reached the steady state and it’s locked onto the
correct frequency and phase, which takes about ≈ 10 ms from the ASIC.

1.1.4 Data Processing

As mentioned in the previous subsections, the Data Processing Unit of the
PicoTDC is built to implement data buffering and trigger matching for each
channel group and works synchronously with the 320 MHz clock provided by the
PLL. In particular, each channel buffer takes out the oldest hit from the related
derandomizer and repeats the process until the 512-words deep FIFO fills up.

At this stage, depending on the TDC configuration, the data can be extracted
in the following ways[2]:

• Single Measurement Mode: In this configuration, the TDC performs time
measurements on one or both edges of the hit signal. The bit width of the
time measurement is determined by the working mode of the TDC, so it will
be 24 bits for the coarse mode and 26 bits for the fine mode. To convert the
TDC data to the time value in seconds it’s sufficient to multiply the 26 bit
value by the smallest bin size (3.05 ps) and due to the bits alignment this
works for both coarse and fine mode. Each detected edge is stored in the
channel buffer using a 32-bits word in which are encoded the informations as
follows:

– word type (bit 31)

– channel number (bits [30:27])

– edge type (bit 26)

– time measurement (bits [25:0])

• Paired Measurement Mode: In this configuration, also called TOT mode,
the TDC performs TOT measurements. In this case, the leading and trailing
edge informations are combined into a single 32-bit word. To convert the
leading edge and TOT values into seconds, they must be multiplied each
by their respective bin size, whose values are defined by the values of the
tot startbit and tot leadingstartbit registers. The data word format is the
following:

– word type (bit 31)

– channel number (bits [30:27])

– leading edge time (bits [26:11] or [26:8])

– pulse width (bits [10:0] or [7:0]).
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1.1.5 Trigger interface

The trigger matching function, which is implemented for each group, reads the
time measurements at random access from the related channel buffers. In particular,
as shown in Figure 1.4, for each input trigger signal a time tag is associated and its
value is determined by the difference between the arrival time and the configured
latency width value. The trigger time tag is decoded using the 40 MHz coarse
counter and can be subtracted from the hits time value to get only the time interval
from an event of interest.

Figure 1.4: Scheme of the trigger matching process. The function considers ”Pro-
cessed” (P) only the hits inside the matching window, otherwise they are tagged as
”Failed” (F) and ignored.

The buffered data is then matched to the relative trigger time tag using a
configurable time window. Hits that fall inside this window are recognized as
belonging to that specific trigger and written to the next FIFO together with one or
two header words and a trailer word. The information encoded in these two 32-bit
words can be modified by the internal TDC registers and can contain informations
like the Event ID, the Bunch ID, the trigger time and some status bits showing
the memory buffers status for the header word, and, for the trailer, the Event ID
and the number of valid hits received by that specific group.

The length of the latency and matching window are defined as a finite number
of 40 MHz clock cycles since the trigger time tag is decoded by the 40 MHz
coarse counter. The maximum length of the latency is by construction defined
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as half of the maximum coarse count which is 212 × 25 ns =102 µs; however, it is
recommended to set this value to half of the maximum, so, in terms of time, the
maximum recommended trigger latency equals to 51.2 µs[2].

In order for the matching function to work properly, the length of the trigger
latency must be larger than the length of the matching window to ensure that all
hits corresponding to a specific trigger signal are already present in the channel
buffers. Hits are removed from the channels buffers only if they are older than
the latest processed trigger (not within the matching window) or if they have
been found rejectable by a special function such that, when no trigger is found
in the trigger FIFO, hits that are older than the latency plus one clock cycle are
automatically rejected to prevent buffer overflows and to speed up the search time.
If the trigger FIFO is found full, then the successive triggers time tags are discarded,
but the Event ID counter is kept running to maintain synchronisation.

The next data read-out phase is managed by each group using a round-robin
read-out to ensure a fair bandwidth share between all the group channels. In this
way the output data are organized in a 512-words deep FIFO ready to be read
using an 8-bit parallel differential port running at frequencies up to 320 MHz. If a
read-out FIFO runs full, then there are two main options on how to handle this
situation[2]:

• Back propagation: In this case the trigger matching function will be
suspended until new space is available. This will bring to the channel
buffers to potentially store more data and if this situation is maintained
for extended periods will bring the channel buffers to overflow. The total
buffering capability of the TDC in this case amounts to 8704 measurements
for each channel group.

• Rejection: In this configuration as the read-out FIFO gets full, then all
event data will be rejected with the exception of header and trailer words. If
this happens for an extended period of time then the bandwidth might not
be shared fairly between the channels, but in some cases it is advantageous
to reject hits when large amount of data starts to accumulate in the read-out
buffers.

As mentioned before, data can then be extracted from the readout ports
following the process shown in Figure 1.5. In order to synchronize to the data an
additional differential sync signal is provided and can be configured to mark the
first byte of a data word or to provide a clock signal with half the data rate. The
first bit of the frame (bit 31 of the data word) determines if the frame is of data
type (0) or management type (1), so the type of the frame can be determined after
the reception of the first byte.
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When no data is available in the read-out FIFO then the read-out port value is
set to the constant value of 0xD0, which is a unique identifier for a management type
frame, creating an idle frame of value 0xD0D0D0D0. Other possible management
frame identifiers are: channel group separator (0xF), first header (0x8), second
header (0x9) and trailer (0xA)[2].

Figure 1.5: PicoTDC data readout process via an 8-bit differential parallel port.
When no data is available an idle frame (0xD0) is continuosly sent through the
port.
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1.2 PicoTDC board features

The PicoTDC board, shown in Figure 1.6 is an evaluation board designed by
the ALICE TOF collaboration at the Bologna section of INFN to test and evaluate
the performance of the PicoTDC designed by CERN as a possible upgrade for the
TDC module used in the ALICE-TOF. Furthermore, the board was also designed
to test various communication interfaces, with a particular interest on high-speed,
high bandwidth, communication protocols.

The board design can be divided in three main sections: the power supply, which
takes the input voltage and distribute the power needed by the various components,
the I/O section, which is equipped with various types of I/O interfaces, the core
section which includes the two PicoTDC ASICs and the Polarfire FPGA that
manages all the communications between the various components.

The 2 ASICs are connected to two FMC connectors using the sub-LVDS
standard, where other boards of front-end electronics and sensors can be plugged.
For the I/O section, the board has been equipped with different I/O solutions
such as an Ethernet link managed by a PHY chip or by exploiting an optical link,
two USB interfaces in the form of a USB 3.0 Micro-B SuperSpeed FTDI FT601Q
bridge chip and a USB 2.0 Type-B Cypress EZ-USB FX3 mezzanine; furthermore a
JTAG connector and other auxiliary I/O are provided for the FPGA programming
and reset. A block diagram of the whole system is shown in Figure 1.7
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Figure 1.6: Photo of the PicoTDC Board in which the PolarFire FPGA (blue),
the two PicoTDCs (red), the Ethernet connector subsystem (purple) and the USB
FTDI subsystem (yellow) are highlighted.
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Figure 1.7: Block diagram of the PicoTDC board. The scheme shows its main
components and their connections.
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1.2.1 Power distribution

In order to work properly, the board needs to be supplied with a voltage ranging
between 9 V and 14 V and boots automatically when powered on. As a control
interface, three voltage monitors are programmed to check the various voltage level
and current drain and can cut the power to the whole board whenever a high
current is detected.

After the power is provided, the current flows to switching converters generating
the correct voltage levels needed by the five independent power rails. The power
rails can then cascade into some LDOs that generate other voltage levels[3], needed
by the various electronics device mounted, and to reduce the noise caused by the
switching converters.

Figure 1.8: Schematic of the Power Rail circuit of the PicoTDC Board.

The schematic shown in Figure 1.8 represents how the power rail is built and
the components connected to the different voltages. In particular, taking a look at
the various components:

• PolarFire FPGA: The core of the whole system is connected to various power
rails ranging from 1.0 V to 3.3 V in order to power the banks, the transceivers,
the power interfaces and the FPGA core with the correct operating voltages.
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• PicoTDC ASICs: The power for these two important components of the
board is provided by the 1.8 Vline through two LDOs set to the 1.2 V level.

• Ethernet PHY chip: This chip is connected to the 3.3 V and the 5.0 V
power rails and uses the LDOs to generate 2.5 V,1.8 V and 1.0 V

• Cypress EZ-USB FX3 mezzanine: The power for the mezzanine, in
this case, is provided directly by the 5.0 V power rail to power the whole
mezzanine. The circuit to generate the working voltages for the mounted
electronics is already integrated on the mezzanine itself.

• FTDI FT601Q chip: This chip is connected to the 5.0 V power switch
through a 3.3 V LDO, to the 2.5 Vswitch through the 1.8 V LDO. Furthermore,
the FTDI chip features an integrated 1.0 V LDO which provides the correct
voltage to its core and PLL circuits.

One important observation regards the FPGA bank 7, in fact the PolarFire
FPGA I/O architecture is composed by only six banks. However, the PolarFire
power supply includes one more bank that needs to be powered with no I/O pins
available.

1.2.2 PolarFire FPGA

The component chosen to implement the logic functions and the hardware
control for this prototype is a Microchip Technology PolarFire MPF200T FCG784E
FPGA2. This choice was made for the properties of this particular component, in
fact, being the PolarFire a flash memory FPGA, it ensures low power consumption
and a reliable behaviour during radiation exposure due to its SEU3 immunity of
the configuration memory.

This FPGA includes a system controller, security encryption features, many user-
programmable I/O pins, a logic fabric and a 16-lane transceiver which communicates
with it[4].

The logic fabric is composed by 192K logic elements, each composed by four
LUTs4 and one FFD, 588 mathematical units which features 18x18 MACC5 to
implement digital filters. The FPGA also integrates four kinds of memory blocks:

• µPROM: A non-volatile memory writable at programming time and readable
at runtime. The construction of this memory block is designed to be SEU-
immune and therefore useful to store data about parametric and initialization
data.

2Field Progammable Gate Array
3Single Event Upset
4Look-Up Table
5Multiply-ACCumulate
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• LSRAM: A volatile memory made of interleaving cells of 20 KB static RAM
and provided with SECDED6 features.

• µRAM: A smaller RAM unit of 64x12 Bytes implemented using latches and
with a SEU immunity feature.

• sNVM: 56 KB of non-volatile memory readable and writable at runtime by
user service calls made through the csystem controller. Main utility of this
memory block is to initialize LSRAM and µRAM with secure data.

The FPGA provides a global network to route clocks and controls signals within
large sections with low skew and regional networks which takes the clock signals
only to limited domains of the FPGA hardware. Furthermore, it’s provided with
eight DLLs and eight PLLs for clock signals management excluding the PLLs of
the transceiver lanes.

Taking a look at the I/O section of the FPGA, this is organized in six I/O
banks which can host user defined I/Os, sharing the same VDD power and reference
voltage. In total, up to 368 I/O pins support both single-ended and differential
standards. For the digital logic I/O to the fabric, the FPGA is equipped with I/O
delay chains, registers and control logic for the various modes[5].

The FPGA I/O banks, shown in Figure 1.9 are organized as follows:

• Bank 0: Provides connections to the Ethernet PHY chip and to the FTDI
FT601Q chip through HSIO7. Furthermore, this bank is connected to the I2C
lines for the configuration of both PicoTDCs through a voltage translator to
reach the voltage level of 1.2 V needed by the ASICs.

• Bank 1: Provides HSIO pins to manage the connection with the Cypress
EZ-USB FX3 mezzanine.

• Bank 2: Provides GPIO8 pins for the connection of control and data read-out
with the PicoTDC A together with some Ethernet signals.

• Bank 3: Provides pin connection for the FPGA programming via JTAG/SPI
standard and for the global resets of the FPGA features.

• Bank 4: Similarly to Bank 2 provides pin connections to the PicoTDC B for
control and data read-out, but it also connected to the on-board differential
40 MHz clock, some LEDs and switches.

6Single Error Correction and Double Error Detection
7High-Speed Input Output
8General Purpose Input Output
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Figure 1.9: Scheme of the banks locations of the PolarFire FPGA mounted on the
PicoTDC board together with the relative connections with the various components.

• Bank 5: Provides some GPIO pins for external clock and reset signals, some
pin connnections wich are routed to both the FMCs connectors and two JVS
strips used for firmware debugging.

The FPGA system controller is based on the Cortex M3 ARM processor to
ensure the correct power-up procedure, functioning and correct responses to the
system service calls. The system service allows the user to check the informations
of the FPGA state and to call some specific system controller actions.

As for the programming features of the PolarFire FPGA, there are two possible
working modes. The first, in which the FPGA acts as slave, the device flash memory
is programmed via the JTAG connector or an external SPI master, while in the
latter the FPGA acts as master and checks for an external SPI flash memory to
update or reboot the firmware[4].

The decision to use this kind of FPGA over the SRAM type comes from various
aspects like their immunity to SEUs in the configuration bits that can be caused
by the radiation to which the electronics is exposed and due to the low power
consumption performance using CMOS technology.
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1.2.3 Ethernet interface

For the Ethernet communication interface the PicoTDC board is equipped
with a VSC8541-05 PHY chip, providing a 1 Gbps Ethernet connection with the
external PC and it’s configured to allow a physical connection through a twisted
pair Ethernet cable.

Within the framework of a node, the PHY chip communicates its information
through a sub-layer called MAC9 that manages the data transmission going in and
out of the PHY chip. The MAC can be implemented inside the FPGA firmware
with the help of some specific modules. A firmware containing the procedures for
the MAC/PHY interface has been already developed and it features a full-duplex
data 1 Gbps Ethernet connection[6].

The PHY chip mounted on the board implements an RGMII10 interface, which
provides DDR11 data communication over four lines using a 125 MHz clock[7]. The
VSC8541-05 is, on one end directly connected to the PolarFire FPGA, while on
the other is connected to an RJ-45 connector through a transformer to modulate
I/O voltage levels.

Furthermore, the PHY device can be configured by hardware strapping or by
writing the internal registers via a SMI12 interface. By using the first method some
care must be taken in account since this method associates configurations instruc-
tions to some pull-up/pull-down logic values that get sampled on the deassertion
of the NRESET signal, so any device must not be driving the related pins signals
until the configuration is completed[8].

1.2.4 Cypress EZ-USB FX3 interface

The Cypress EZ-USB FX3 mezzanine card, developed by Infineon, provides one
of the two possible SuperSpeed USB interfaces of the PicoTDC board. As shown
in Figure 1.10 this mezzanine card features[9]:

• USB integration: the mezzanine card is provided with USB 3.2 Gen1 and
USB 2.0 peripherals, both compliant with USB 3.2 Specification, a 5 Gbps
SuperSpeed PHY chip compliant with the USB 3.2 Gen1 peripheral and 32
physical USB endpoints.

• General Programmable Interface (GPIF II): A programmable interface
working at a frequency of 100 MHz which enables connectivity with a wide
range of external devices through an 8-,26-,24-,32-bit data bus and up to 16
control signals.

9Medium Access Control
10Reduced Gigabit Media Independent Interface
11Double Data Rate
12Serial Management Interface
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Figure 1.10: Cypress EZ-USB FX3 mezzanine card logic block diagram.

• 32-bit CPU: An ARM based CPU with an ARM926EJ core with 200 MHz
operations and 256 or 512 KB of embedded SRAM.

• Selectable clock input: The working clock can be provided by a 19.2 MHz
crystal or provided externally. The supported frequencies are 19.2, 26, 38.4,
and 52 MHz.

• Additional connectivity: Multiple interfaces for different standars are
provided; in particular the card features an SPI master up to 33 MHz, UART
support up to 4 Mbps, I2C master controller at 1 MHz and an I2S master
transmitter at various frequencies.

One example of the firmware architecture that might have been implemented
in order to create an USB interface for the PicoTDC board is shown in figure 1.11.
In this case the PolarFire FPGA would have taken the role of the external master
and managed the data exchange between the board and the mezzanine on-chip
memory buffers which would have been read or written by the external USB Host.
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Figure 1.11: Example of a possible firmware architecture to implement a USB
interface through the Cypress card.

1.2.5 FTDI FT601Q USB interface

The other possible USB interface is given by a FT601Q SuperSpeed USB to
FIFO bridge produced by FTDI13 Ltd. Figure 1.12 shows the block diagram of the
chip.

Looking at the chip block diagram in Figure 1.12 it is equipped with the
following features[10]:

• USB 3.0 and USB 2.0 PHY chips: Through those chipsets, the FT601Q
can support USB 3.0 SuperSpeed (5 Gbps), USB 2.0 HighSpeed (480 Mbps) or
FullSpeed (12 Mbps) transfer through a USB 3.0 Micro-B port. Furthermore,
it can handle Control, Interrupt or Bulk USB transfer types through 8
configurable endpoints.

• Two FIFO bus protocols: Two different protocols for the 32-bit parallel
interface with a burst data rate up to 3.2 Gbps.

• Configurable GPIO and USB descriptors: Two GPIO pins and a NVM
can be used to set the working mode and the internal configuration of the
FT601Q chip.

• Selectable clock: The clock input of the FTDI chip is fed by a 30 MHz
crystal and through a PLL the working frequency of the FIFO bus can be

13Future Technology Devices International
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Figure 1.12: Block diagram of the FT601Q USB 3.0 to FIFO bridge chip.

selected. The supported frequencies are 33, 50, 66, or 100 MHz.

• Built-in memory, wake-up and reset: A 16 KB RAM is used as data
buffer between the FIFO bus and the USB controller. Furthermore, the chip
is provided with remote wake-up and reset capabilities.
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1.3 IPBus project

1.3.1 µHAL and IPbus project

The IPbus is a communication protocol developed in 2009 by J. Mans et al.
and used to control different hardware features of an electronic board by the
exploitation of logic modules in the firmware of an FPGA. The original project
features a complete suite of firmware and software to control a large network of
devices connected to different endpoints through a UDP/IP layered model over the
Ethernet protocol[11].

The UDP14 is a connectionless protocol which provides basic information for
the transport layer, such as the source and the destination port addresses. This
particular choice was made to ensure a simple and fast communication but at the
cost of less reliability; in fact, if an error occurs the data packet it’s dropped or the
connection might get closed in case of congestion.

At software level, µHAL provides a Hardware Access Library which acts as
end-user Python/C++ API to implement IPbus transactions between applications
and target. In order to have multiple µHAL designed programs to communicate
properly, the Control Hub application acts as arbiter between the various processes;
in particular it communicates with each application using the TCP15 protocol to
ensure a reliable connection from and to the target device.

1.3.2 Bus on-chip architecture

The firmware implementation of the on-chip IPbus is based on the Wishbone
SoC16 bus, which provides a common interface between various IP cores[12]. This
standard was developed to improve reusability and compatibility and to solve
integration problems and limitation in the development of the SoC.

The architecture of this standard is designed using a master-slave architecture
in which the master can address the slave for data transfer, in particular the
width of both data and address buses are variable between 0 and 64 bits. The
communication between master and slave is synchronous with the bus clock and
controlled by an handshaking logic featured by specific and optional signals. In
particular, two signals, strobe and ack, are respectively asserted by the master to
signal a valid data transfer and by the slave to end the transaction[13].

As shown in Figure 1.13, the IPbus features a hierarchical topology design
in which a single bus master is connected to multiple slaves via a bus fabric
selector that manages the address decoding and selects the correct slave bus to
connect to the master. The bus architecture is designed to have a point-to-point
A32/D32 structure and features two separate buses for the data transfer protocol, a

14User Datagram Protocol
15Transmission Control Protocol
16System on Chip
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Figure 1.13: Block diagram of an example IPbus on-chip firmware architecture.

Bus
Type

Direction Signal
Width
(bits)

Description

ipb in Master to Slave

ipb addr 32 Address Bus

ipb wdata 32
Data to be written to the
slave

ipb write 1
Takes value 1 for a write cycle
and 0 for a read cycle

ipb strobe 1

Asserted when valid data and
address are set on the respec-
tive lines and marks the start
of cycle

ipb out Slave to Master
ipb rdata 32 Data read from slave

ipb ack 1
Acknowledge signal asserted
to end the transaction

ipb err 1
Error flag asserted to end
transaction in case of error

Table 1.1: IPbus signals description.

breakdown of the bus structure is given in Table 1.1. On the ipb in bus the master
manages the transaction type, the slave address, the input data to the slaves and
starts the transactions, while on the ipb out bus the slave sends the response to
the master.

The on-chip bus is fully synchronous with a single system clock signal, and
there are theoretically no constraints on the relationship occuring between the
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transport layer interface clock and the bus clock. For slaves that do not require
wait states, the 32-bit data bus width allows for a full usage of a Gigabit Ethernet
interface as long as the bus clock is set to frequencies ≥ 31.25 MHz, which is one
fourth of the Gigabit Ethernet standard clock (i.e. 125 MHz).

1.3.3 IPBus communication protocol

As described in the previous section, the bus cycle is initiated by the bus master
when a valid command is received through the Ethernet interface; in particular
there are two main transfer types: the write cycle and the read cycle. Keeping in
mind the signal description in Table 1.1, the master initiates the transaction by
asserting the ipb strobe signal and then waits for the assertion of the ipb ack or
the ipb err signals by the slave to end the transaction.

Figure 1.14: Time diagram of an IPbus write cycle (cycle 0) followed by a read
transaction (cycle 1).

In Figure 1.14 a scheme of the IPbus protocol for a write operation followed
by a read operation. A bus cycle starts with the master driving the address and
the write bit in the bus, along with the possibile data to be written in case of a
write transaction, and asserts the strobe signal. The cycle ends when the ack or err
signal is asserted by the addressed slave; the assertion of the handshaking signals
can happen on the same cycle of the assertion of the strobe in case of a zero-wait
slave or can be delayed by one or more clock cycles with respect to the strobe
signal being asserted. The master register the data upon ack signal assertion[13].

After the cycle has been terminated by the reception of the ack/err signal, the
master can either deassert the strobe or load another address and/or data on the
bus keeping the strobe signal high to signal a new cycle immediatly after the one
that has just terminated.

Even though the IPbus protocol is based on the Wishbone SoC standard, there
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are two important differences given by the fact that the master is not required to
deassert the strobe signals between different cycle, but it is, however, guaranteed to
deassert the strobe or begin a new cycle on the clock cycle after the ack reception.
Furthermore, the slaves are not allowed to tie the ack signal high and must deassert
it on the same clock cycle in which the strobe signal is deasserted, but it is possible
to tie the ack to the strobe if a zero-wait state is possible.

1.3.4 IPBus packet structure

Let us now take a look at the structure of an IPbus control packet going from a
µHAL-based software client to a hardware target. Looking at the example shown in
Figure 1.15 the IPbus-specific information is contained into the payload of a UDP
packet which is itself wrapped inside an IP17 packet inside an Ethernet packet[14].

Figure 1.15: Example of an Ethernet packet sent from the software client to the
target hardware.

Regarding the IPbus packet content: there is a first IPbus packet header followed
by one or more IPbus transaction headers and their body containing the relevant
informations for the specific transaction. The bit fields of the header words are
shown in Figure 1.16.

The request and the reply of an IPbus packet always begin with a 32-bit header.
This header has been introduced in version 2.0 to support reliability features, in
fact, if a IPbus target receives an invalid packet header it silently drops the packet.

17Internet Protocol
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The combination of the Protocol Version and the Byte-order Qualifier fields
provide a simple system to determine the byte ordering of the 32-bit word (i.e. its
endianness) from the header word. The target firmware is capable of handling both
big and little endian requests and replies with the same endianness; this feature
allows the client software to communicate with the target hardware using its native
endianness optimizing CPU usage of the control computers[14].

The Packet ID field has the purpose to provide a reliable communication while
using an unreliable transport protocol like UDP.

For the study case the most important packet header is the Control Packet
(defined by the Packet Type value of 0x0) which is the one followed by IPbus
transactions.

Figure 1.16: Bit fields of the 32-bit words of the IPbus packet header and transaction
header.

A Control Packet is the concatenation of its header and one or more IPbus
transactions. Each transaction is composed by an IPbus transaction header and
a body containing the address of the on-chip slave and the optional data to be
written. The format of the transaction header is the following:

• Protocol Version (bits 31 to 28): Define the protocol version of the packet
header, in this case it must be set to 0x2.

• Transaction ID (bits 27 to 16): This field contains the information of the
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transaction identifier to allow the client/target to track each transaction
within a given packet.

• Words (bits 15 to 8): Contains the information of the number of words
within the addressable memory of the bus to be processed. In case of block
reads/writes defines the read/write size. Since this information is coded by
an 8-bit word, transactions of size greater than 255 words must be split in
multiple transactions.

• Type ID (bits 7 to 4): Define the type of the transaction (i.e. read(0x2) or
write(0x3)).

• Info Code (bits 3 to 0): This field contains the information on the direction
and error state of a transaction request or response. Every request made by
the client software to the target must set this field to the value of 0xf. An
Info code different from 0x0 in the transaction response header indicates a
non-successful transaction by the target.

After a request transaction header the Control Packet continues with the 32-bit
word containing the address of the intended slave and, in the case of a write
transaction, the 32-bit word containing the data to be written.

The response control packet is then composed by the target and sent back to
the requesting client. This packet is composed by the response header with the
appropriate Info code (Table 1.2) and followed by one or more 32-bit words in the
case of a read/read block transaction.

Packet Type Value Direction Meaning
0x0 Response Request handled successfully
0x1 Response Bad Header
0x4 Response Bus error on Read Transaction
0x5 Response Bus error on Write Transaction
0x6 Response Bus timeout on Read Transaction
0x7 Response Bus timeout on Write Transaction
0xf Request Outbound request

Table 1.2: List of the possible Info Codes of the IPbus transaction headers and
their meaning.





Chapter 2

Firmware and Software adaptation for the
USB interface

During the making of the work for this thesis, the firmware adaptation for the
FT601Q USB FIFO bridge interface was developed to test the usage of a different
interface from the original Ethernet one.

The change in the interface and in the protocol of the transport layer allowed
the simplification of the protocol both at software and firmware level, providing
a more direct communication between the on-board IPbus infrastructure and the
external control computer.

Since the USB connection provides point-to-point connection between the
different endpoints, the need of a complex packet structure was overcome sending
only the transaction packets directly to the proper USB interface without the need
to decode and encode the request and the response packets respectively.

The solutions adopted during the development of the firmware and software
will be explained in this chapter.

2.1 FTDI FT601Q FIFO Mode Protocols

As mentioned in Section 1.2.5, the chip provides two different working modes
to communicate with the bus master through the 32-bit wide data bus. By design
the bus clock is provided by the slave to the master.

The first working mode, called FT600, is capable of multichannel connectivity
up to 4 bidirectional channels corresponding each to 1 USB IN and 1 USB OUT
endpoints with a bus clock frequency of 33MHz or 50MHz, while the second
one, called FT245, provides high speed single channel communication with clock
frequency of 66 or 100 MHz. It is important to notice that both protocols are
synchronous to the falling edge of the bus clock[10].

When the chip is configured to work in the FT245 mode or in the 1 channel
FT600 the FIFO buffer is configured as 4 KB * 2 (double buffered) each on the
RX and TX channels. When the number of channels increase to 2 or 4 the FIFO
buffer is split in the same way with 2 KB * 2 or 1 KB * 2 respectively.

33
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The other signals used in the two different communication protocols are:

• TXE N: Active low Slave to Master signal indicating Transmit FIFO Empty
in the FT245 mode or Status Valid in the FT600 mode.

• RXF N: Active low Slave to Master signal indicating Receive FIFO Full in
the FT245 mode or Data Receive Acknowledge in the FT600 mode.

• WR N: Active low Master to Slave signal acting as Write Enable in the
FT245 mode or Data Transaction Request in the FT600 mode.

• RD N: Active low Master to Slave signal acting as Read Enable in the FT245
mode.

• OE N: Active low Master to Slave signal acting as Data Output Enable in
the FT245 mode.

• BE[3:0]: Active high bidirectional signals acting as byte enable for the 4
byte wide parallel bus.

• GPIO[1:0]: General Purpose I/O signals used, in this case to set the working
mode of the FTDI chip.

• F DBUS[31:0]: 32-bit wide data bus for data transmission between the
FPGA (Bus master) and the FTDI chip.

2.1.1 FT600 Multi-Channel Protocol

As mentioned before, the FT600 Multi-Channel mode provides connectivity
with up to 4 channels each mapped to USB IN and OUT endpoints. For the sake
of clarity in the protocol explanation we will refer to FIFO IN or FIFO OUT which
correspond respectively to the USB OUT and USB IN endpoints. The FIFO OUT
is for data transmitted from the USB Host to the device (USB IN) and the FIFO
IN is for data transmitted from the device to the USB Host(USB OUT).

This protocol makes mainly usage of the WR N, RXF N, BE[3:0], DATA[31:0]
data bus and optionally the TXE N signals to manage the communication between
the FPGA, that acts as master, and the FTDI chip. In particular when the bus is
in the idle state DATA[31:16], DATA[7:0] and BE[3:0] are driven to logic ”1” by the
bus master, and DATA[15:8] is driven by the bus slave to provide the FIFO status
to the bus master. The upper nibble (DATA[15:12]) provides the 4 OUT channels
FIFO status, while the lower nibble (DATA[11:8]) provides the 4 IN channels FIFO
status. They are all active low.

The bus master starts a transfer cycle by asserting the WR N signal based
on the FIFO status followed by the command phase at the next clock cycle and
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the data phase when RXF N is asserted. At command phase, the master will
send the channel number which it intends to transfer data with on DATA[7:0] and
a Read/Write command on BE[3:0]. The channels are mapped 1 to 4 with the
corresponding hexadecimal values 0x01 to 0x04, while for the command value 0x0
corresponds to a Master Read transaction and 0x1 to a Master Write transaction.
There may also be a required turn-around phase for DATA[31:0] and BE[3:0] after
the command phase and at the end of the data phase[10].

Examples of a Master Read and Master Write transactions waveform are shown
in Figure 2.1 and in Figure 2.2 respectively.

Figure 2.1: Waveform of a Master Read transaction for the FT600 Multi-Channel
mode.

Figure 2.2: Waveform of a Master Write transaction for the FT600 Multi-Channel
mode.
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2.1.2 FT245 Synchronous Protocol

The FT245 Synchronous mode, contrary to the previous mode, uses only one
IN and one OUT FIFO channel but supports higher clock frequencies, resulting in
a theoretically higher bandwith.

The signals used in the protocol for this mode are TXE N, RXF N, OE N,
RD N, WR N together with the DATA[31:0] data bus and the BE[3:0] signals. In
this mode, the slave (FTDI chip) signals its status to the master (FPGA) through
the RXF N and TXE N signals, instead of using the data bus bits as in the previous
mode. Since only one channel is available and these two signals are used to signal
to the master to start a Master Read or Master Write transaction, the need for the
command phase is removed making the protocol more intuitive.

When the USB Host writes data to the device, the FTDI chip asserts the
RXF N signal; the master then starts the read cycle by asserting first the OE N
signal and the RD N in the next clock cycle. On the same cycle of the assertion
of the RD N signal, the slave drives the DATA bus and the BE valid byte to the
correct values. On the other hand, when the USB Host request to read a certain
number of bytes from the device, the TXE N signal is instead asserted, signaling
the master to start a Master Write transaction. In this case, the master asserts the
WR N signal while driving the DATA bus and the BE valid byte to the correct
values. Normally all the 4 bytes should be valid in a bus transaction with the
exception of the last word when the data transaction length is not aligned[10].

Examples of a Master Read and Master Write transactions waveform are shown
in Figure 2.3 and in Figure 2.4 respectively. Both transactions are terminated by
the slave with the deassertion of the TXE N or RXF N after the requested number
of bytes have been transferred.

Figure 2.3: Waveform of a Master Read transaction for the FT245 Synchronous
mode.
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Figure 2.4: Waveform of a Master Write transaction for the FT245 Synchronous
mode.

2.2 Firmware adaptation

Examining the needs of the board application, the FT245 Synchronous mode
was chosen to build the fastest possible interface. Considering also that the IPBus
is built around a single master, there was no need to utilize more than one channel
to communicate with the board.

The working principle behind the board interface operations follows a precise
sequence of steps involving operations made by the USB Host, the FTDI bus master
and the IPBus master. The procedure is shown in Figure 2.5.

Figure 2.5: Communication procedure used to perform board control and readout
operations.

In order to integrate this new interface with the previous IPBus SoC, several
changes were made at firmware level that will be further explained in this section.
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2.2.1 FTDI Control Interface

The control interface firmware implementation provides I/O ports to communi-
cate with both the FTDI bus and the IPBus SoC and contains two Finite States
Machines, two FIFO memory buffers and a process which manages the reset logic
for both the IPBus SoC and the control interface. A block diagram of the control
interface is provided in Figure 2.6.

Figure 2.6: Block Diagram of the control interface firmware. Blue and red thin
arrows are related to the two clock domains (FTDI side and IPBus side respectively),
magenta arrows represents data lines, cyan arrows represent FTDI control signals,
green arrows are related to the reset logic and black arrows represent memory
management signals.

Following the data flow, the first block involved is the one that manages the
communication protocol with the FTDI USB chip (FT245 Master Logic FSM),
it receives signals and data from the chip and writes the received data into the
first 1024 words x 32 bits deep FIFO memory buffer (InBuff) while monitoring the
FULL flag.
After data has been written onto the InBuff buffer the EMPTY flag is deasserted
signaling to the IPBus master (IPBus Transactor FSM) that one or more command
packets are ready to be read; this condition makes the Transactor initiate the
reading, decoding and execution of the received commands on the IPBus side and
writes the resulting data into the second 65536 words x 32 bits deep FIFO memory
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buffer (OutBuff).
Then, upon request from the FTDI chip, the FT245 Master starts to read data
from the OutBuff memory and writes it onto the chip memory buffers from where
they are then sent to the external USB Host.

Since the FTDI FT245 protocol and the IPBus protocol work at different clock
frequencies, 100 MHz and 40 MHz respectively, and are synchronous to different
clock edges, the two FIFO memory buffers needed to have Dual Clock capabilities
in order to match the two clock domains, performing operations on the falling edge
of the 100 MHz clock for the FTDI side and on the rising edge of the 40 MHz clock
for the IPBus side. Furthermore, the InBuff memory is set to work into First Word
Fall Through mode, providing the first word as soon the EMPTY flag signal is
deasserted, while the OutBuff memory is set to work in Prefetch mode allowing
single clock cycle reading for the first word[15].
To optimize the FPGA memory usage the InBuff is set to have a much smaller
depth, with regard to the OutBuff, since the command packets contains only 2 to
3 words per command, whereas the data size coming from the PicoTDC readout
procedure can contain thousands of words at the time.

2.2.2 FT245 Master Logic

The FT245 Master Logic FSM provides the FPGA with the necessary informa-
tion to achieve communication with the FTDI chip using the FT245 protocol and
implements some fail-safe procedures. The State Machine is divided in two logic
loops starting both from the idle state where it waits for the FTDI chip to request
for a Read/Write transaction. A logic scheme of the state machine is shown in
Figure 2.7.

Starting by the Master Write loop, it begins when the FTDI chip asserts
the TXE N; at this point if the OutBuff memory buffer is not empty the FPGA
starts the corresponding procedure to write data to the FTDI chip by asserting
simultaneously the WR N and the OUTBUFF RDEN signals and latching the
FTDI data bus to the data output signals of the memory buffer. The cycle then
ends correctly by the deassertion of the TXE N by the FTDI chip or ends in a
timeout error if there were less data words in the memory buffer than there were
requested by the USB Host to the FTDI chip. A waveform example is shown in
Figure 2.8

On the other hand the Master Read loop starts with the assertion of the RXF N
signals by the FTDI chip. After that the FPGA state machine switches to a
turn-around phase in which it asserts the OE N signal while latching the FTDI
data bus to the input data of the InBuff memory and sets the FTDI data bus to
high impedence to let the FTDI chip drive the bus. In the next clock cycle the
INBUFF WREN and the RD N are asserted starting the data reading phase. This
phase can be ended by the FTDI chip with the deassertion of the RXF N signal
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Figure 2.7: Logic scheme of the Finite State Machine that implements master logic
for the FT245 Synchronous protocol.

Figure 2.8: Waveform simulation of the Master Write protocol managed by the
FT245 Master Logic FSM.
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upon data transmission completion, or by the FPGA master in the case the InBuff
memory becomes full causing a timeout error. A simulation of a Master Read cycle
is shown in Figure 2.9.

Figure 2.9: Waveform simulation of the Master Read protocol managed by the
FT245 Master Logic FSM.

The VHDL code of the state machine which contains the output signals as-
signements is reported in Figure 2.10. It is visible that both InBuff Write Enable
(doutbuf wr in the code) and OutBuff Read Enable (dinbuff rd in the code) are
asserted conditionally to the state of the state machine and to the input signals
coming from the FTDI chip in order to prevent an incorrect data transfer. In
fact these two signals are deasserted immediately if the FTDI chip terminates the
transfer or the buffer flags get asserted.

Figure 2.10: VHDL code containing the main signals assignements of the FT245
Master Logic FSM.
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2.2.3 IPBus Transactor

Looking at the IPBus side of the control infrastracture, the IPBus communi-
cation with the on-chip slaves is managed by the IPBus transactor FSM block
containing the informations necessary to perform IPBus transactions and the inter-
face with the system transport layer[13]. A waveform example of the functioning
of the IPBus transactor is shown in Figure 2.11.

Figure 2.11: Waveform simulation for an IPBus transaction made by the Transactor
state machine.

At first the state machine waits in the idle state for the start condition to trigger
the transaction; the start signal is given by the transition of the rx ready input
signal from a logic 0 to a logic 1 which is related to the deassertion of the InBuff
EMPTY flag.
When this signal is received by the state machine, the FSM transitions to the
header state where the rx next signal is asserted enabling the reading of the
InBuff FIFO memory in which the command packet is contained; once the IPBus
transaction header is received by the Transactor it gets decoded in its fields setting
the internal variables of the state machine (i.e. trans type, write bit, etc...) and
the state machine switches to the address phase where the IPBus slave address and
sub-address are read from the FIFO memory.

Once the relevant informations of the IPBus transactions are retrieved by
the transactor, it starts the IPBus bus cycle accordingly to the protocol and the
transaction requested. If a write operation has to be made the Transactor asks the
FIFO for one more word that contains the data that has to be written into the
addressed slave register. If a read operation has been requested then upon receiving
the acknowledge signal from the slave, it asserts the tx we signal and put the read
data onto the tx data bus that is then written onto the OutBuff FIFO memory.
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After the IPBus transaction has ended the Transactor returns to the header
state where the transaction status header is written onto the OutBuff memory.
During this final header state the Transactor tries to read another word from the
InBuff FIFO memory since it does not know how many transactions have been
queued in the transport layer. If the word retrieved is not a valid transaction
header it asserts an error signal and returns to the idle state; if a valid transaction
header is found instead, the process repeats until all the queued operations are
done[16].

By taking a closer look to the waveform in Figure 2.11, during the first header
phase at the beginning, a junk status header is written onto the OutBuff FIFO
memory. This word is written only during this first phase but does not appear
during the processing of the following transaction requests if more than one are
queued and it gets removed at software level after the data gets retrieved by the
USB Host.

2.2.4 Reset Logic

The reset logic process, whose code is shown in Figure 2.12, manages the reset
signal going simultaneously to the interface blocks and to the IPBus slaves.

The IPBus side of the system can be reset in two ways: the first by pressing a
button connected to the sys rstn signal, and the second by setting to a logic 1 a
certain bit of an IPBus slave register to assert the soft rst signal. The interface is
instead reset by pressing the onboard reset button or by setting another bit to 1 in
the corresponding IPBus slave register.

In particular when a reset signal is received by this process, it starts one or
both 5-bits reset counters, keeping the reset signals asserted until their values roll
over to 0. This ensures that every component has enough time to reset properly.
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Figure 2.12: VHDL code of the process which manages the reset signals.
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2.3 Software adaptation

As mentioned in Section 1.3.1 the IPBus project already comes with some pieces
of software and the libraries which provide many functions to communicate with
the Ethernet interface of the IPBus SoC; furthermore some other programs were
already developed by the ALICE-TOF collaboration to construct the board control
and DAQ software needed to manage the board operations[17].

Specifically there were three main programs that needed to be adapted:

• PicoTOF: A program that manages the configuration and start-up procedure
of the picoTDCs.

• PicoRead: A program responsible for the PicoTDCs’ data readout.

• PicoLiroc: A program that provides the interface to configure the LIROC
chipsets mounted onto the two mezzanine cards connected to the PicoTDCs,
which will be discussed in detail later.

Since the driver provided by the FTDI manifacturer did not permit multiple
processes to be simultaneously connected to the same device a server application
was developed to allow the contemporary board control and readout procedures.
The resulting architecture is shown in Figure 2.13

Figure 2.13: Simplified scheme of the final system architecture implemented at
software level.

This section will describe the implementation of the basic libraries to provide
communication with the board, using the API libraries provided by FTDI, and
some software tools developed to overcome some limitations of this new interface.
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2.3.1 The FTDI ipbusOperation library

The first piece of software that has been developed was the FTDI ipbusOperation
library which contains the implementation of the basic functions needed to com-
municate with the IPBus SoC through the USB connection. In Figure 2.14 the
declarations of the methods are shown.

Figure 2.14: Declarations of the FTDI ipbusOperation header methods together
with the definitions of some useful constants.

Since the IPBus works with 32-bits wide data words (i.e. uint32 t type), while
the API provided by FTDI uses a 1-byte wide (i.e. unsigned char type) structure,
two utility functions, CharToUint and UintToChar, were implemented to convert
4-bytes integer into an array of 4 unsigned char and viceversa providing a simple
translation method between the two data structures.

The remaining three functions implement the procedure to send specific com-
mand packets to the IPBus SoC and retrieve the corresponding data from the
device. The first two functions (wrnReg and rdnReg) implement the procedure to
send single word non-incremental Write/Read operations at the address specified
by the add value and return a status code indicating if an error has occurred
during the operations; the ReadBlock function implements instead the procedure
for multiple words non-incremental Read operation and is mainly used during the
PicoTDCs’ data readout. All of these three functions follows a similar procedure
shown in Figure 2.15.

Each function constructs the appropriate command packet by combining an
IPBus transaction header (as described in Section 1.3.4), an address and optionally
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Figure 2.15: Scheme of the functioning procedure of the basic software interface
functions.

the word to be written onto the slave register in case of a Write operation. For
the ReadBlock function in particular, if the number of words to be read is greater
than 255, the maximum size for a single IPBus transaction, the function builds
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automatically the minimum number of read commands to be sent to the device.
After the command packets are built, the PC sends them using the API function
FT WritePipeEX and if an error code is returned the function exits while printing
a message, otherwise proceeds to the next step. The function then asks to read the
expected amount of data bytes from the device and again if an error code is found
from the USB Read operation or an IPBus error header is found, the function exits
with a message, otherwise the data that has been read from the IPBus slave is
stored into the PC memory and the status of the IPBus transaction is returned.
The full source code of these function implementation is reported in appendix A.1.

2.3.2 USBSH Server implementation

The functions described in the previous section were then used to implement
a server application to manage the data I/O to and from the PicoTDC board
since the driver for the FTDI FT601Q chip does not allow multiple processes to
be connected simultaneously to the same device. Since the aim of this project is
to have full control over the board configuration parameters even during the data
acquisition phase, this was a major issue that had to addressed.

To overcome this limitation, a simple server-like application was written to
provide a single process which communicates directly with the PicoTDC board
and manages all the data flow between the main programs and the board itself. A
detailed scheme of the system architecture is shown in Figure 2.16.

In order to provide reliable access to the board on-chip system, multiple IPC1

tool were used:

• Message Queue: This interface allows Client processes to send messages to
the USBSH Server application asking the server to perform various operations.

• Shared Memory: A memory space, divided in channels, where the data
coming from the PicoTDC board is stored waiting to be read by the client
process that requested the operation.

• Named semaphores: One for each channel plus a general one, used to
make the client process wait until the requested operation is completed by
the server.

In Figure 2.17 are represented the data structures implemented for the server
functioning. In the messages are contained the informations about the message
type, the PID of the process which sent it, the command identifier and the values
needed to perform the IPBus operations. The shared memory channels contain
the data regarding the PID of the client process assigned to that channel, the
command identifier and the status code of the last operation requested, together

1Inter Process Communication



CHAPTER 2. FIRMWARE AND SOFTWARE ADAPTATION FOR THE USB
INTERFACE 49

Figure 2.16: Scheme of the server architecture implemented at software level.

with a memory buffer wide enough to store the resulting 32-bit words coming from
the PicoTDC board.

The working principle behind the server process is that, at first, a client submits
a message into the message queue containing its PID2 and the request to be
registered to a shared memory channel; the client process waits an answer from
the server waiting on the general semaphore. The server receives the message
from the queue and registers the received PID into the first free channel of the

2Process ID
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Figure 2.17: Scheme of the implemented data structures for the message queue and
the shared memory channels.

shared memory and posts to the general semaphore to signal the process that the
registration process is done; if no channel is available the server posts the general
semaphore creating then an error on the client side. After the client receives the
general semaphore post signal, it cycles through the shared memory channels until
it finds its own PID, memorizes the channel number for further accesses at runtime
and attaches to the corresponding channel semaphore.
Once this registration procedure is completed, the client is then free to send
messages to the server requesting Read/Write operations that have to be made
to the PicoTDC board and, in a similar way to the registration process, the
server receives the messages, performs the requested operation writing the resulting
data and status code onto the shared memory channel associated to the requesting
process and posts onto the channel semaphore to signal the client that the operation
has been done. Before the client process ends, it has to send a last message telling
the server to free the channel it was assigned to, setting the channel PID to 0. A
simple flowchart of the server working operation is provided in Figure 2.18.

It’s now important to notice that since the server is only responsible for managing
the data flow between the clients and the PicoTDC board, it does not have any
error handling procedure; if an error occurred during the USB operations or on the
on-chip IPBus side of the system the server simply transfers it to the requesting
process that handles the exception. The only error managed by the server is during
the opening of the connection to the FT601Q chip; if the connection between the
server and the physical chip cannot be established, the server ends its execution.
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As a failsafe measure to manage an abrupt ending of a client process that has
already been registered into one of the channels, a thread is detached from the
server when it starts. This thread executes a process checking function in the
”/proc/” system directory.
The function cycles on the registered PIDs channel by channel and checks the
system directory for the corresponding process directory; if no directory under that
specific PID is found it means that the specific client ended its execution without
sending the unregister message to the server, this condition triggers the process
checker function to send the unregister request to the server in place of the client
process that has already ended preventing the server channels saturation.



CHAPTER 2. FIRMWARE AND SOFTWARE ADAPTATION FOR THE USB
INTERFACE 52

Figure 2.18: Flowchart of the server functioning.
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2.3.3 The libUSBsh library

After the server application was made, the libraries containing the classes and
the functions used in the main programs needed to be adapted; in order to do so
the method implementing the communication process from the client processes to
the new USBSH server were made (full code implementation in Appendix A.2).

In this process five main functions were developed, two for the registering and
unregistering of the process in the server, called FTC Create and FTC Close, and
the other three that implement the Read/Write/ReadBlock operations requests and
the data retrieval process from the system shared memory, together with dummy
uhal classes and functions to keep software transparency between the two different
interfaces. Furthermore, some global variables were used to store informations
about the process assigned channel, the assigned semaphore and the addresses of
the message queue and the shared memory.

As the name suggests, the first two functions make the client process start or
end the communication with the USBSH server and make the software attach to
all the necessary IPC tools. In particular the FTC Create function first attaches
the process to the shared memory, the message queue and the general semaphore
before sending the register message to the server and retrieving all the information
about the channel number and semaphore after the registration process has been
completed by the server. If an error occured at any time, a non-null status code is
returned by the function causing the client process to exit; furthermore, whenever
the process attaches to a semaphore, it checks its value and in case it is non null
makes the correspondent amount of sem wait function calls to set the semaphore
value to 0.
On the other hand, in a similar way, the FTC Close function reverses this process
detaching the client process from the IPC tools after the server unregister it from
the assigned channel.

The FTC WriteReg, FTC ReadReg were substituted into the already existing
classes implementation to execute equivalent operations in the three main programs
using the newly implemented USB interface. In these functions, the client process
asks the server to perform the corresponding operation on the board and waits for
the server to store the data into the assigned shared memory channel word buffer.
In the FTC ReadBlock function, it’s however important to notice that the ”value”
field of the message is used to give the server the information on the number of
words that need to be read at the specified address.





Chapter 3

LIROC front-end card

As mentioned in Section 1.2 the PicoTDC board features two FMC connectors
where the front-end electronics can be plugged to process (tipically amplify and
discriminate) sensor signals and then send the output to the two PicoTDC ASICs.
During this work a custom card was developed by the ALICE-TOF collaboration
featuring an on-board LIROC ASIC for signal amplification and discrimination.
This front-end card, shown in Figure 3.1, features, together with the LIROC ASIC,
an FMC connector to plug the front-end card onto the PicoTDC Board, and various
SMA1 connectors to probe the ASIC output digital signals and to sample the ASIC
analogue probe signals.

In this chapter the characteristics of this ASIC together with the firmware
development to integrate the control and configuration protocols for this specific
ASIC into the IPBus SoC will be discussed.

1SubMiniature version A
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Figure 3.1: Photo of the custom LIROC card. The components highlighted are: the
LIROC ASIC (red), the FMC connector (green), Analog probe SMA connectors
(yellow) and digital probe SMA connectors (blue).
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3.1 LIROC ASIC overview

LIROC is a 64-channel front-end ASIC developed by Weeroc and designed to
readout SiPMs2; in particular, it provides low-voltage differential trigger output
for each channel with good time resolution (≤ 20 ps) and excellent double-peak
separation. It also allows to adjust the SiPMs high voltage by using a channel-by-
channel 6-bit DAC3 connected to the ASIC inputs together with channel-by-channel
calibration of the trigger threshold via 7-bit DACs. The output signal is produced
using an RF preamplifier with pole zero cancellation followed by a fast discriminator
and low swing LVDS fast drivers[18]. The ASIC features also a programmable
analog probe to test the input analog signals before discrimination and the threshold
value of the discriminator of each channel.

The internal parameters of the ASIC can be configured via I2C using a custom
protocol that does not follow the IEEE standard.

3.1.1 ASIC Architecture

As introduced before, LIROC is a fully analog 64-channel ASIC developed for
SiPMs readout and provides fast trigger output signals. The ASIC block diagram
is shown in Figure 3.2.

Figure 3.2: LIROC ASIC block diagram.

2Silicon Photo-Multipliers
3Digital to Analog Converter
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The main features of the ASIC include:

• 6-bit input DAC: individual input DAC for trimming SiPM overvoltage
for detector gain corrections.

• Adjustable preamplifier: High bandwidth preamplifier with adjustable
gain.

• Adjustable Discriminator: Fast discriminator with adjustable threshold
through a 10-bit general threshold and 7-bit individual threshold trimming.

• Differential outputs: Differential buffer for low-jitter trigger outputs sig-
nals.

Additionally, the user is able to perform time windowing for the trigger output
signals through an external signal together with output signal masking for each
individual channel.

3.1.2 LIROC I2C configuration

The LIROC ASIC includes an I2C interface through which a set of internal
registers can be configured to manage the internal working parameters of the ASIC.
The internal I2C slave core can be programmed using a custom I2C protocol. In
order to work properly the I2C slave core must receive a clock signal through a
port named clk sm i2c with a frequency 20 times higher than the clock sent by the
I2C master on the SCL line together with the request that these clock signals must
be synchronous.

The slave I2C interface features 68 main registers with two or three 8-bit sub-
registers each that are identified by an 11-bit address and a 5-bit sub-address. A
full list of these registers with their description is reported in Table A.4.

Addresses from 0 to 63 correspond to the 64 input channels parameters (i.e.
7-bit threshold adjustment, 6-bit input DAC value, etc...), while addresses from
64 to 67 contains parameters working for the whole ASIC (i.e. General threshold,
Polarity selection, etc...). The protocol to read and write one of these registers is
performed by sending three separate I2C frames of 16 bits each as described in
Figure 3.3 and 3.4.

In particular during the I2C addressing phase the master sends the 4-bit
chip ID sequence, which can be set externally by providing 1.2 V voltage to the
correspondent package pins, followed by a 3-bit sequence that identifies the frame
number. The first two frames have the Read/Write bit set to 0, indicating a write
operation, followed by the 8-bit sequence containing first the full address LSB4 and

4Least Significant Byte
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Figure 3.3: Simple Read/Write procedures for LIROC I2C slow control and config-
uration.

Figure 3.4: LIROC I2C internal register addressing.

second the full address MSB5. The third frame then contains the information of
the intended operation.

3.1.3 LIROC analog operation

As shown in Figure 3.5, the analog part of the LIROC ASIC is composed
by the dual polarity pre-amplifier followed by a discriminator for input signal
discrimination and triggering. The threshold of the discriminator is set via a 10-bit
DAC that sets a threshold value for the whole ASIC and that can be further
adjusted via a 7-bit trimmer available at channel level.

The pre-amplifier used in the ASIC is a transimpedance amplifier that converts
input current pulses into voltage signals through a resistor.

5Most Significant Byte
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Figure 3.5: LIROC analog section block diagram. The behaviour for both output
polarity is shown for the different input polarities.

Additionally, there is a 6-bit input DAC used for adjusting the SiPM voltage
non-uniformity for each channel. This value is accessible through Slow Control bits
7 to 2 at address 0-63 and sub-address 0. The values of the input DAC varies from
395 mV to 672 mV with an incrementing step of 4.4 mV.

To set the pre-amplifier pole zero cancellation, which is done through an RC
network with a fixed capacitor of 5 pF, the resistor value can be changed via bits 5
to 2 of address 64 and sub-address 0; these for 4 bits are associated to four different
resistor values of 16 kΩ, 8 kΩ, 4 kΩ, 2 kΩ going from the most significant bit to the
least significant one. The resulting resistor value is the parallel combination of the
enabled resistors.

The threshold value for the discriminator is provided first by the 10-bit general
threshold that can be set by modifying bits 1 to 0 at address 65 and sub-address 1
that represents bit 9 and 8 of the general threshold DAC together with bits 7 to
0 at sub-address 2 and same address. The value of the general threshold ranges
between 374.8 mV and 814.8 mV with an incrementing step of 0.43 mV.
Additionally, the threshold can be fine-tuned for each channel through the 7-bit
trimmer. The combination of the general threshold and the trimming value provides
the effective trigger threshold for the discriminator. The value of the trimmer is
accessible via bits 6 to 0 at address 0-63 and sub-address 1 with values ranging
from 0 mV to −152.4 mV with an incrementing step of −12 mV.

Looking now at the discriminator, the one embedded in the system is a 3-stage
discriminator designed for fast output response. A few settings for the discriminator
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are available for the user. The first one is the discriminator output polarity that can
be set through bit 5 at address 64 and sub-address 2 to either 0, meaning positive
polarity for negative input signals, or 1, meaning positive polarity for positive input
signals. The second is the channel output mask, which can be set through bit 7
at address 0-63 and sub-address 1 for each channel; this bit enables/disables the
channel output signal.

3.1.4 LIROC analog probe

The LIROC ASIC is furthermore equipped with two analog probing points for
the pre-amplifier signal and the threshold voltage value. These two probing points
are connected on the custom card to two SMA connectors that can be used to
monitor these signals with an oscilloscope. These probing points are accessible
through a 128-bit shift register that, depending on the position of a logic 1 bit,
enables one of the 128 probing points available.

Figure 3.6: LIROC analog probe setting procedure.

The procedure to enable one of the probing point is shown in Figure 3.6; the
first step is to reset the shift register by asserting a reset signal for at least 100 ns,
then the 128 bits must be inserted in the shift register providing a clock signal and
driving the srin probe port to the desired values in the correct order. The input
data of the shift register is sampled on the rising edge of the clock signal, while the
output data is toggled on the falling edge. After 128 clock cycles the shift register
is completely full, enabling the desired probing point.

The data contained in the shift register can be readout through srout probe
port after that the shift register has been filled by continuing to provide the clock
signals for another 128 cycles. To check that the desired bit is set to 1, one should
provide the input sequence two times in order to set the shift register the first time,
and read out its content while filling it again with the same values.
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3.2 Firmware implementation for LIROC operations

During the preparation of the new USB interface for the PicoTDC board, some
firmware modifications were developed in order to provide all necessary components
for the LIROC Slow Control and Analog Probe settings through the FMC connector.

In particular the IPBus I2C Master was integrated with additional registers
to provide the necessary signals for the LIROC I2C slave core to work and a new
IPBus slave was developed to manage the setting of the LIROC analog probes.

Furthermore, a 6-bit clock divider, which divides the IPBus 40 MHz clock, was
added at the firmware top level to provide the LIROC I2C slave core with a clock
of frequency lower than 1 MHz as required by the manifacturer specifications.

3.2.1 LIROC I2C Master

The IPBus I2C Master is already provided by CERN and implements an FSM
that manages the I2C protocol. This module connects directly to the SDA and
SCL lines connected to the LIROC I2C slave core through the FMC connector and
its structure is shown in Figure 3.7.

Figure 3.7: LIROC I2C master block diagram with all necessary signals for the
LIROC I2C Slow Control.

Starting from the left, the IPBus Interface module provides the necessary
procedures for the IPBus communication protocol to control a set of internal
registers containing some parameters needed to drive the I2C Master Logic FSM.
This submodule contains also two single clock FIFOs to store data that has been
read (RX FIFO) or will be written (TX FIFO) through the I2C protocol by the
I2C Master Logic FSM. The IPBus interface uses its internal registers, shown in
Table 3.1, to build the I2C transactions by using IPBus software commands. In



CHAPTER 3. LIROC FRONT-END CARD 63

particular for the LIROC master one more register was added (register address 0x7)
to control the reset and power-on signals needed by the LIROC I2C slave core.

To perform a general I2C transaction, the I2C Master Logic state machine
needs some parameters to be defined. First of all, by writing the prescaler register
through an IPBus write transaction, the SCL pulse length and the data setup time
need to be set. In particular the SCL pulse length (bits 15 to 0) is defined as the
number of clock cycles of the IPBus clock for both state 0 and state 1 of the SCL
line, while the data setup time (bits 31 to 16) defines the number of clock cycles
of the IPBus clock after which the SDA line commutes when the SCL is in the 0
state; for practicality the data setup time is set to half the SCL pulse length value.
After the prescaler register is set, it’s compulsory to set the device addr register
to the I2C slave address; this value is used then by the I2C Master Logic state
machine during the addressing phase of the I2C protocol to address the desired
slave. When this preliminary steps are done, the state machine has all the needed
parameters to start an I2C transaction; to trigger an I2C write the wr register is
written through an IPBus transaction causing the state machine to write a single
8-bit word that has been previously written into the TX FIFO through the IPBus,
while to trigger an I2C read transaction the rd register is written with the number
of 8-bit words that need to read from the I2C slave, these words are then written
into the RX FIFO memory ready to be read through an IPBus transaction.

Thanks to the generality of this state machine, it was possible to implement at
software level the I2C protocol needed by the LIROC I2C slave core represented in
Figure 3.3, since it is composed by three separated I2C frames of the proper kind
with different I2C addresses during the addressing phase.
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name Register addr bits [31:0] function
prescaler 0x0 [31:16] - [15:0] Sets the length of the SCL pulse

and the data setup, using the
IPbus clock cycle as step unit.

device addr 0x1 [6:0] Sets the slave 7-bit address
used in the transactions.

rd 0x2 [8:0] Triggers an I2C read cycle pro-
viding the total number of de-
sired bytes.

wr 0x3 [31:0] Triggers an I2C write cycle.
wr data 0x4 [7:0] Writes a byte inside the

Tx FIFO that will be used for
an I2C write.

rd data 0x5 [7:0] Reads a byte inside the
Rx FIFO, using an IPbus read.

status 0x6 [3:0] These are status and con-
trol outputs signals for the
I2C master interface.

pwr rst 0x7 [1:0] Sets LIROC Power On signal
[1] and LIROC reset signal [0].

Table 3.1: List of the internal registers of the IPbus interface module of the LIROC
I2C Master module.
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3.2.2 LIROC Analog Probe Setup

During the board operation, the possibility to monitor the analog signals internal
to the LIROC ASIC was useful to check its functioning. In order to program the
shift register, an ad-hoc IPBus slave was developed to provide the user with this
feature.

The basic idea behind this new module, whose block diagram is shown in Figure
3.8, is similar to the one of the I2C Master; two main components were needed:
one providing an interface for the IPbus protocol and the other implementing the
procedure for the shift register programming using the information received from
the IPBus. Using these two components, the new module called LIROC Analog
Setup was implemented to manage the procedure for both LIROC chip connected
through the two FMC connectors.

Figure 3.8: Block diagram of the LIROC Analog Setup slave with all necessary
signals for the LIROC Analog Probe programming.

As for the I2C Master, the IPBus interface provides the logic for the handling of
the IPBus transactions together with three total registers, one input register where
the information for the programming of analog probe is written and two output
ones where the shift registers readback data are stored to keep track of their current
values; the register structure is shown in detail in Table 3.2. The information of
the bit that has to be set to 1 in the shift register is encoded into two 7-bit sections
of the first register, one for each LIROC, together with two start bits that signal
to the state machine to start the analog probe programming procedure for the
correspondent LIROC.
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name Register addr bits function
LIROCAbit 0x0 [6:0] Position of the 1 bit for the

LIROC A shift register.
LIROCBbit 0x0 [14:8] Position of the 1 bit for the

LIROC B shift register.
LIROCAstart 0x0 [30] Start bit to trigger Analog

Setup FSM to start the proce-
dure for the LIROC A.

LIROCBstart 0x0 [31] Start bit to trigger Analog
Setup FSM to start the proce-
dure for the LIROC B.

LIROCAreadback 0x1 [6:0] LIROC A shift register read-
back value.

LIROCBreadback 0x2 [6:0] LIROC B shift register read-
back value.

Table 3.2: List of the internal registers of the IPbus interface module of the LIROC
Analog Setup module.

The state machine takes the data from the input register to get the position
of the bit that needs to be set to 1 in the shift register and if the correspondent
start bit is asserted the procedure starts. As from the ASIC specifications, the
clock fed as input to the shift register must have a frequency ≤ 1MHz, so a 6-bit
clock divider was implemented to reduce the frequency of the 40 MHz IPBus clock
before feeding it to the LIROC ASIC.

When the conditions for the start of the procedure are met, the state machine
starts by asserting the shift register reset signal for two clock cycles; after that,
contemporarily to the reset deassertion, it enables the output clock signal of the
LIROC specified by the start bits for the next 256 clock cycles necessary to complete
the programming and readback procedure. A counter keep track of the bit number
the state machine is providing to the shift register and sets the SRIN PROBE
signal to the correct value as specified by the register value. An example of this
first stage of the procedure is shown in Figure 3.9.
After the bit sequence is inserted in the shift register the first time (128 clock
cycles), the readback procedure starts to retrieve the bit position through the
SROUT PROBE line and write it into the readback register; in particular the value
of a counter is written into the readback register when a 1 bit is received. Due
to the nature of shift registers the input sequence must be repeated during the
readback procedure to keep the register set to the same values.
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Figure 3.9: Waveform simulation of the first stage of the LIROC Analog Probe
programming procedure for both LIROC A and LIROC B.

3.3 Software adaptation for LIROC configuration

As shown in Section 2.3, the program called PicoLiroc is responsible for the
configuration and control of the LIROC ASICs on the mezzanine cards. During the
development of this software, the libraries for the software control of the slaves I2C
Master and Analog Probe Setup modules of the FPGA were modified to implement
the required operations.

3.3.1 I2C library integration for LIROC

Since the I2C slave core mounted into the LIROC ASIC does not follow the
standard IEEE I2C protocol, a series of methods of the I2C library were created
to implement this custom protocol. Furthermore, the functions for the Analog
Probe settings were also integrated in this library to keep all the software together
into a single class. The method declarations are shown in Figure 3.10 and the full
implementation is reported in Appendix A.3.

Figure 3.10: Method declarations of the software integrated into the I2C library.

The first method that needs to be considered is the preset function; this function
takes as input the values of the LIROC power on and reset signals that are contained
in the register at address 0x7 of the LIROC I2C Master module. In order to get
the LIROC I2C slave core to work the power on signal must be set to a logic 1
together with the reset bit; if one whishes instead to reset the LIROC I2C slave
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core internal registers to the default values the power on value must be set to 1
while the reset is set to 0 since it works in negative logic.

The implementation for the LIROC I2C read and write operations are pro-
grammed to exploit the flexibility of the I2C Master Logic module to implement
the correct I2C protocol required. To reproduce the scheme of the protocol given
in Figures 3.3 and 3.4 the functions must follow a precise series of steps.

The Read Wslave liroc function manages the procedure to read the content of a
register of the LIROC I2C slave core starting by writing the LIROC chip ID, which
is known and set by 4 jumpers on the card, followed by the first 3-bit sequence
into the device address register of the I2C Master module; then the least significant
byte of the 16-bit address of the LIROC I2C slave core register, which is computed
at runtime by the LADD(a,sa) function, is written into the TX FIFO memory
and an I2C write is triggered by writing the correspondent register. This same
procedure is then repeated for the second I2C frame of the read protocol using
the second 3-bit sequence for the device address and the most significant byte of
the LIROC slave core register address. In the last step then, the device address
is modified by using the last 3-bit sequence and a read operation is triggered by
writing the rd register of the I2C Master module; after that the status of the I2C
Master is checked and if no error occurred the data word retrieved from the RX
FIFO memory by reading the correspondent IPBus register.

To write one of the LIROC I2C slave core registers the Write Wslave liroc
function is called instead. The procedure to perform this operation is almost the
same as the one illustrated for the Read Wslave liroc function; the only difference
stands into the last step where after that the device address register is written with
the last 7-bit sequence, the data word that will be written into the LIROC register
is written into the TX FIFO memory and then a write operation is triggered;
after that the status of the I2C Master module is checked to ensure no I2C errors
occurred.

In order to control the newly developed LIROC Analog Setup IPBus slave two
new mehods were implemented.
To set the Analog Probe shift register the Setup Analog Probe is called and it
takes in input the desired LIROC that need to be set through the two boolean
variables and their respective bit number that has to be set to 1. If a boolean value
is TRUE then the corresponding bit position is checked to control if it stays in
the correct range of values; if the values are accepted, the information of the bit
position is added, together to the corresponding start bit, into the corresponding
bits of the 32-bit word that will be written into the IPBus slave register; in the
other case the corresponding start bit and the bit position field are set to 0. This
process is performed for either one or both LIROCs at the same time since the
LIROC Analog Setup slaves can perform this operation for both contemporarily.
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To read the current bit position of the two LIROC shift registers the Read-
back Analog Probe function reads the specified values from the corresponding
IPBus registers. The user can read one or both register by specifying through the
boolean input values which registers are to be read.

3.3.2 LIROC server implementation

The methods explained in the previous section were used to implement a server
process to provide remote control for the LIROC operations. This program, called
lirocsrv, provides a standard socket TCP/IP interface through a port to allow the
reception of remote commands from another PC that uses a software developed
in LabVIEW. A screenshot of the LabVIEW interface for the LIROC control is
shown in Figure 3.11.

Figure 3.11: Screenshot of the LabVIEW interface for the LIROC configuration.

At the start of the program execution the lirocsrv process connects to the
USBSH server and configure the selected IPBus I2C master with the proper
prescaler parameters and start the LIROC initialization procedure. This procedure
starts by asserting the power on signal together with the reset signal, then the reset
is deasserted and a series of write commands contained in a configuration file are
sent to the board to configure the LIROC I2C slave core register with a custom
default configuration. If an error occurs at this stage the process is terminated
with an error code.

After the LIROC initialization procedure has been completed correctly, the
lirocsrv disconnects from the USBSH server and starts listening onto the assigned
port. At this point when a client connects to the port the process forks and the
child process is the one responsible for the interpretation and execution of the
received commands and reports the operation status code to the requesting client.
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To inform the client user of the operation status the lirocsrv sends back a string of
the form ”LSTS address sub-address value status”, i.e. ”LSTS 31 1 34 0” meaning
that a read/write operation has been done at address 31, sub-address 1 and value
0x34 was correctly read/written (status 0).

After a successful connection of a client, the child process establishes connection
with the USBSH server and starts waiting for a command to be received from
the client. Upon reception the command gets interpreted and executed by the
lirocsrv with the data provided by the client; if an error occurs during the command
reception or an invalid command is received the lirocsrv process sends an error
code to the client and closes automatically the connection with the client before
terminating. If a valid command is received, the server checks the validity of the
values provided by the client and if they fall into the correct range the correspondent
operation is executed, if the values are incorrect or an error occurs during the board
operation an error message is sent to the client together with the appropriate error
code. A list with the implemented commands, parameters and their description is
reported in Table 3.3.
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Command Parameters Description
save string filename Retrieve the current LIROC

configuration and writes it
into a file specified by the
value of filename.

init string filename Initialize the LIROC configu-
ration with the data contained
in the file specified by the
value of filename.

ping None Sends to the client a message
confirming that the connec-
tion is established.

quit None Close the connection to the
USBSH server, disconnects
the client from the lirocsrv
and terminates the lirocsrv
child process.

reset None Reset the LIROC registers to
the default values.

on None Assert the LIROC Power On
signal.

off None Deassert the LIROC
Power On signal.

rreg int addr, int sub addr Reads the register at the ad-
dress specified by addr and
sub-address sub addr then re-
turns the read value to the
client in the form ”LSTS addr
sub addr val status”.

wreg int addr, int sub addr,
uint32 t val

Writes the value specified by
val in the register at the ad-
dress specified by addr and
sub-address sub addr then re-
turns operation status to the
client in the form ”LSTS addr
sub addr val status”.

probe uint8 t bitPos Set to 1 the LIROC Analog
Probe shift register bit speci-
fied by the value of bitPos and
returns the operation status to
the client in the form ”LSTS
0 0 bitPos status”.

Table 3.3: List of the implemented lirocsrv commands with the necessary parameters
and description.





Chapter 4

Test beam data analysis

This chapter will report about a beam test ran at CERN T10 in June 2024 to
evaluate the timing performance of prototypes of Low Gain Avalanche Detectors
(LGADs) and Silicon Photo-Multipliers (SiPM) in the detection of charged particles.
The discrimination of both LGAD and SiPM signals was performed by a LIROC
card and the digitization by the PicoTDC board, which was fully integrated in the
data acquisition chain. The beam-test setup as well as the results, for a subset of
the LGAD sensors, are reported in the following sections.

4.1 Experimental setup

The study of the LGAD-LIROC-PicoTDC DAQ chain perfomance was done
at CERN T10 in June 2024 with a particle beam composed mainly by pions and
protons with a momentum of 10GeV/c and a beam intensity of ≈ 2× 106 particles
per spill over an area of few cm2 and a spill duration of ≈ 400 ms.

The experimental setup used was composed of five independently movable planes
on which the sensors could be mounted and aligned; a scheme of the telescope
is shown in Figure 4.1. The movement of the planes was performed through two
independent micropositioners in the x and y directions (those perpendicular to the
beam axis) for each plane with a precision of ≈10 µm. These positioners can be
driven remotely and were used during the alignment phase of the sensors in order to
maximize the number of output signals. Each plane was furthermore equipped with
a cooling system, composed of Peltier cells, to maintain the detectors’ temperature
constant around 20° C.

The sensors were then mounted into the planes and connected, through two
extension cables, to both the LIROC cards and the PicoTDC Board. In particular
an LGAD detector with a sensitive area of 1mm2, as the other LGADs used, was
placed on the nearest plane to the beam entrance point (Plane 0 in Figure 4.1)
and chosen to act as trigger for the PicoTDCs, thus defining the active area of the
particle beam.

The planes are then enclosed in a black box to prevent external light to hit the
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Figure 4.1: Scheme of the telescope used during the test beam.

detectors and to shield the telescope from the environmental noise.
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Figure 4.2: Photo of the beam-test setup. The PicoTDC Board is visible on the
table, with the LIROC cards mounted.
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4.1.1 Low Gain Avalanche Detectors

LGADs are an evolution of the n-on-p planar silicon sensors, optimized to
provide both good spatial resolution and high timing performance using an internal
low multiplication mechanism obtained via the implantation of an heavily doped
layer below the p-n juction. Figure 4.3 shows the typical base elements of an
LGAD.

Figure 4.3: LGAD design, with an additional p+ layer right below the n++ type
silicon.

The one that is reported is an n++/p+/p-/p++ junction, where the p+ zone
under the n++ electrode acts as gain layer and it’s where the ionization process
takes place. In particular the detectors are equipped with an additional virtual
Guard Ring and a Junction Termination Extension (JTE) at the pixel edges. These
elements are implanted to prevent premature breakdown at the pad borders and to
ensure the uniformity of the electric field [19]. The introdution of the p+ doped
layer creates an high electric field which accelerates the electrons enough to start
the multiplication process.

LGADs are especially used to detect charged particles; looking in particular at
MIPs, they create ≈ 70 electron-hole pairs per micrometer, providing a signal high
enough to allow for the usage of low gain (O(10)). This feature avoids the increase
in sensor noise together with difficulties in sensor segmentation and the high power
consumption after irradiation.

During the test beam a 25 µm thick PIN-LGAD [20] with an area of 1mm2

whose structure is shown if Figure 4.4 was placed on the fourth plane of the
telescope. Both the PIN and the LGAD share the same intrinsic structure with
the only difference that the PIN is not provided with the gain layer and both are
surrounded by five concentric guard rings where the inner one is the biasing ring.
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Figure 4.4: PIN-LGAD structure. The single LGAD on the left and the equivalent
PIN on the right. The PIN shares the same structure but without the gain layer.
Each pad is surrounded by five concentric guard rings.

The whole surface of the sensor is covered by metallization with the exception of
three 400µm2 windows. The PIN shares the same design of the LGAD but without
the gain layer.

Other LGAD sensors utilized during the data taking were two 50 µm thick
LGADs with an area of 1.3x1.3mm2 manifactured by Hamamatsu Photonics K.K.
One was placed on the plane 0 of the telescope and acted as a trigger for the TDC
time measurement, while the other was placed on the plane 1 to provide the first
time tag.
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4.1.2 SiPM matrices

Other sensors under study during the test beam were SiPM detectors. In
particular, the ones used consisted of matrices of 3x3 FBK NUV-HD-LFv2 SiPMs
with active area 1mm2 and pixel pitch of 40 µm. Every matrix is covered by a
standard silicone protection layer of 1, 1.5 and 3 mm thickness based on the sample
[21][22]. Each SiPM of the matrix was connected independently to one channel of
the LIROC card, from which the voltage supply was also provided.

SiPMs are single photon detectors based on an array of 102-104 SPADs1 with a
pitch of 10-100µm and can be modeled by the equivalent circuit shown in Figure
4.5 and composed by a resistance Rd of about 1 kΩ in parallel to a capacitance Cd

of about 10 fF which represents the junction depletion region.

Figure 4.5: Equivalent circuit of a SPAD.

During operation the SiPMs are supplied with a voltage higher than the break-
down voltage of the junction. This mode, known as Geiger mode, allows holes to
perform impact ionization and participate to the avalanche. The resulting signal is
not proportional to the charge released by the impinging particle and allows single
photon detection. The gain factor in this working mode is typically of the order of
106 in analog SPADs.

1Single Photon Avalanche Diodes
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In order to stop the avalanche, a series of quenching resistor Rq of the order of
10 kΩ-10MΩ in parallel to a capacitance Cq of the order of the fF is introduced for
each SPAD of the SiPM matrix. The passage of a particle closes the equivalent
circuit causing an exponential voltage drop in the node between Cd and Cq which
time constant corresponds to τd = Rd(Cq + Cd); the process ends when the current
passing through Rd reaches the threshold value given by Id ≈ Vov/(Rq +Rd) ≈
Vov/Rq where Vov = Vbias − Vbd is the overvoltage (i.e. the voltage above the
breakdown voltage value of the device) provided to the SiPM. When this condition
is reached, the avalanche is said to be ”quenched” and the SPAD recovers with a
recharge time costant τr = Rq(Cq + Cd).

The gain of the SPAD is defined to be G = (Vbias − Vbd)Cd/e where e is the
electron charge; usually this value, which is directly proportional to the product
of the overvoltage and of the capacitance associated to the detector producing a
single photon signal well over the electronic noise level.

4.2 Data Analysis

The detector was configured to have, going from plane 0 to plane 4, the trigger
LGAD (L0), one head LGAD (L1), two SiPM matrices, for which the results are
not reported in this thesis, and the final tail LGAD (L4). The main focus of the
analysis is to evaluate the timing performance for the two LGADs connected to
the PicoTDC board through the LIROC B card and evaluate the Time of Flight
(TOF) resolution of the sensors before and after the correction for the time slewing
of the output signals.

The PicoTDC was working in double edge mode to retrieve the information
of the Time Over Threshold (TOT) of the signals coming from the detectors that
will be used for the time slewing correction. The data was selected to contain only
events with a single rising edge and the corresponding falling edge of both LGADs
signals. The dataset used in this analysis contains the information of six different
runs each identified by a run number; the runs used are numbers 579, 582, 583,
584, 585 and 586.

4.2.1 Time slewing correction

For the measurement of the time resolution (of the LGAD sensors) a correction
for the time slewing is needed. The difference between the time measure of the
discriminated rising edges was correlated to the TOT of the two signals; the data
was then fitted with a polynomial function and the value of the function was
subtracted to the time difference.

The correction runs as in the following:

• The raw time differences were correlated to the TOT of the head LGAD
sensor (named L1) and the data was fitted with a 3rd grade polynomial
function.
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• For each time difference, the value of the function evaluated for the corre-
sponding L1 TOT was subtracted.

• These corrected time differences were correlated to the TOT of the tail LGAD
sensor (named L4) and was again fitted with a 3rd grade polynomial function.

• The same procedure of the second step is then repeated using the function
for the L4 TOT onto the already corrected data to correct the data for both
sensors’ time slewing.

• After the data was corrected for both sensors, each time difference was fitted
with a gaussian function to retrieve the measure of the time of flight resolution.

Figures 4.6 and 4.7 report the main quantities for run 582 among the data
acquisition runs considered. This correction removes the dependence of the time of
flight measurement from the TOT measure of the two LGADs signals, narrowing
the spread of the time of flight measurement and improving the resolution.

The histograms relative to the other runs considered can be found in Appendix
B.1
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(a) Time difference versus head LGAD detector (L1) TOT.

(b) Time difference versus head LGAD detector (L1) TOT after correction.

Figure 4.6: 2D histograms of the time of flight measure versus the L1 TOT values
before (a) and after (b) time slewing correction.
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(a) Time difference versus tail LGAD detector (L4) TOT after L1 correction.

(b) Time difference versus tail LGAD detector (L4) TOT after both corrections.

Figure 4.7: 2D histograms of the time of flight measure versus the L4 TOT values
before (a) and after (b) time slewing correction.
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4.2.2 Time resolution

After the time slewing correction, the resulting time differences of the two
LGADs were plotted and fitted with a gaussian function PDF2:

f(x) =
Const

σ
√
2π

e−
(x−µ)2

2σ2 (4.1)

in which the ”Const” factor represents the gaussian area, while the mean µ and
the standard deviation σ represents the measured time of flight and the estimated
resolution for the 2-channel time measurement. By using two channels and two
independent sensors the time resolution on difference of the two channels time
measurements are given by:

σTOF =
√

σ2
L1 + σ2

L4 (4.2)

An example of the time difference histograms before and after the correction
are reported in Figure 4.8. The histograms relative to the other run acquired are
reported in Appendix B.2.

The resulting time resolution is expressed in TDC counts, so to get the corre-
sponding time value in picoseconds must be multiplied by the PicoTDC LSB value
of 3.05 ps.

To estimate the time of flight resolution for the LGAD couple the measure were
averaged obtaining a value of σL1−L4 = 19.86±0.08 TDC counts which corresponds
to a time value of σL1−L4 = 60.57± 0.25 ps.

As a first approximation the time resolution of the two LGADs is similar, there-
fore one can deduce the time resolution of the individual sensor as σLGAD = σTOF/

√
2

which gives a resolution of σLGAD = 42.83± 0.18 ps. The time resolution results
for each run analyzed are reported in Table 4.1.

2Probability Density Function
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(a) Time difference distribution before time slewing correction.

(b) Time difference distribution after time slewing corrections.

Figure 4.8: Histograms of the Time Of Flight distribution before (a) and after (b)
time slewing corrections of run 582.
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Run
Number

σL1−L4 (TDC
counts) before
correction

σL1−L4 (TDC
counts) after
correction

σL1−L4 (ps) af-
ter correction

σL1(L4) (ps)

579 33.16± 0.08 20.00± 0.04 61.00± 0.12 43.13± 0.08
582 33.07± 0.14 20.00± 0.10 61.00± 0.31 43.13± 0.22
583 33.25± 0.10 19.79± 0.07 60.36± 0.21 42.68± 0.15
584 33.07± 0.13 19.72± 0.09 60.15± 0.27 42.53± 0.19
585 33.47± 0.16 19.98± 0.10 60.94± 0.31 43.09± 0.22
586 33.52± 0.14 19.65± 0.09 57.95± 0.27 40.98± 0.19

Table 4.1: Table with the time resolution results on the time difference distribution
histograms before and after the correction for time slewing.





Conclusion

In this thesis I described several aspects that I followed closely related to the
PicoTDC Board. This board was designed by the ALICE-TOF collaboration of
Bologna together with INFN electronics laboratory as a test environment for the
development of the new TDC Readout Module (TRM2) which will replace the
damaged TRM cards of the ALICE-TOF detector during LHC Run 3 and Run 4.
In particular:

• I described the newly developed USB Super-Speed interface through the FTDI
FT601 chip. I implemented a new firmware architecture to provide a fast and
reliable interface with the already existent IPBus SoC through the 5Gbps
USB Super-Speed interface integrated on board to perform configuration and
readout operations of the two PicoTDC ASICs. I also adapted the existing
software using Interprocess Communication mechanism to overcome some
limitations of the driver provided by the FTDI company.

• I worked on the LIROC front-end chip, establishing the I2C interface and
developing firmware modifications for its configuration to process the analog
signals coming from the sensors before sending them to the PicoTDCs.

• Finally, the DAQ chain was then tested at CERN in June 2024 during a
test beam to evaluate its stability and performance. The preliminary results
of the data analysis for a couple of LGAD sensors gave an estimate of the
Time of Flight resolution for the LGAD-LIROC-PicoTDC DAQ chain of
σ = 42.83± 0.18 ps.

In conclusion, the DAQ system has demonstrated to be reliable and a good tool for
test beams and laboratory analysis. Next steps will be to optimize the front-end
electronics configurable parameters of the LIROC to reach the maximum timing
performance with a given sensor.
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Appendix A

Library Source Code

A.1 FTDI ipbusOperation function definitions
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A.2 libUSBsh Source Code
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A.3 LIROC I2C library source code
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A.4 LIROC I2C register list

Address SubAdd Bit#
Default
value

Name Description

0-63
0

7-2 000000 DC PA[5:0]
Channel-by-channel input DC
level setting

1 0 Ctest
Injection capacitance connec-
tion switch. Default is switch
open(0).

0 0 NC Not Connected

1
7 0 Mask

Mask Trigger. Default is not
masked(0).

6-0 1000000 DAC local[6:0]
Channel-by-channel 7-bit thresh-
old adjustment

64
0

7 1 EN PA
Enable of Pre-Amp. Default is
enabled(1).

6 0 PP PA
Power pusling of Pre-Amp. De-
fault is not power pulsed(0).

5-2 1010 PA gain[3:0] Pre-Amp DC gain adjustment.
1-0 00 NC Not Connected.

1
7 1 EN 7b

Enable of 7-bit channle-by-
channel threshold. Default is en-
abled(1).

6 0 PP 7b
Power pulsing of 7-bit channel-
by-channel threshold. Default is
not power pulsed(0)

5-0 000000 NC Not Connected.

2

7 1 EN disc
Enable of discriminator. Default
is enabled(1)

6 0 PP disc
Power pulsing of discriminator.
Default is not power pulsed(0)

5 1 Polarity

Discriminator polarity selection.
Default is (1): negative trigger
out polarity for negative input
input charge.

4 0 Cmd hysteresis Discriminator hysteresis.
3-0 0000 NC Not Connected.

65
0

7 1 EN BG
Enable of bandgap. Default is
enabled(1)

6 0 PP BG
Power pulsing of bandgap. De-
fault is not power pulsed(0).

5-0 000000 NC Not Connected
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Address SubAdd Bit#
Default
value

Name Description

65

1

7 1 EN 10bDAC
Enable 10-bit threshold DAC.
Default is enabled(1).

6 0 PP 10bDAC
Power pulsing of 10-bit thresh-
old DAC. Default is not power
pulsed(0).

5-2 0000 NC Not Connected
1-0 01 DAC threshold[9:8] MSB DAC values. Default is 01

2 7-0 11011000 DAC threshold[7:0]
LSB DAC values. Default is
11011000.

66

0
7-4 0100 EN CLPS[0:3]

CLPS buffer size trimming. De-
fault value is 0100

3-0 0000 EN pE[0:3]
CLPS pre-emphasis trimming.
Default value is 0000

1
7-6 00 pE delay[0:1]

CLPS pre-emphasis delay trim-
ming. Default value is 00.

5-0 0 NC Not Connected.

2

7 1 EN RX
Enable LVDS of receiver for
ValEvt. Default is enabled(1)

6 0 PP RX
Power pulsing of LVDS receiver
for ValEvt. Default is not power
pulsed(0)

5 1 Forced ValEvt
Internal ValEvt. Bypass of ex-
ternal is effective when EN RX
= 0.

4-0 00000 NC NotConnected

67
0

7 1 EN probe
Enable of analogue probe. De-
fault is enabled(1).

6 0 PP probe
Power pulsing of analogue probe.
Default is not power pulsed(0).

5-3 000 NC Not Connected.

2-0 100 MillerComp[2:0]

Probe amplifier compensation
capacitance trimming. Default
is 100. Range : 0-700 fF. Step :
100 fF. Default : 400 fF.

1
7-6 10 Ibi probe[1:0]

Input bias of probe amplifier.
Default is 10. 00 = 20µA. 01 =
30 µA. 10 = 40 µA. 11 = 80 µA.

5-0 100000 Ib0 probe[5:0]

Output bias of probe amplifier.
Default is 100000. Range: 0-
38µA. Step : 0.6 µA. Default
: 20 µA.



Appendix B

Data analysis histograms

B.1 Time Slewing correction histograms

(a) Time difference versus head LGAD
detector (L1) TOT.

(b) Time difference versus head LGAD
detector (L1) TOT after correction.

Figure B.1: 2D histograms of the time of flight measure versus the L1 TOT values
before (a) and after (b) time slew correction.

(a) Time difference versus tail LGAD
detector (L4) TOT after L1 correction.

(b) Time difference versus tail LGAD
detector (L4) TOT after both corrections.

Figure B.2: 2D histograms of the time of flight measure versus the L4 TOT values
before (a) and after (b) time slewing correction.
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(a) Time difference versus head LGAD
detector (L1) TOT.

(b) Time difference versus head LGAD
detector (L1) TOT after correction.

Figure B.3: 2D histograms of the time of flight measure versus the L1 TOT values
before (a) and after (b) time slewing correction.

(a) Time difference versus tail LGAD
detector (L4) TOT after L1 correction.

(b) Time difference versus tail LGAD
detector (L4) TOT after both corrections.

Figure B.4: 2D histograms of the time of flight measure versus the L4 TOT values
before (a) and after (b) time slewing correction.
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(a) Time difference versus head LGAD
detector (L1) TOT.

(b) Time difference versus head LGAD
detector (L1) TOT after correction.

Figure B.5: 2D histograms of the time of flight measure versus the L1 TOT values
before (a) and after (b) time slewing correction.

(a) Time difference versus tail LGAD
detector (L4) TOT after L1 correction.

(b) Time difference versus tail LGAD
detector (L4) TOT after both corrections.

Figure B.6: 2D histograms of the time of flight measure versus the L4 TOT values
before (a) and after (b) time slewing correction.

(a) Time difference versus head LGAD
detector (L1) TOT.

(b) Time difference versus head LGAD
detector (L1) TOT after correction.

Figure B.7: 2D histograms of the time of flight measure versus the L1 TOT values
before (a) and after (b) time slewing correction.
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(a) Time difference versus tail LGAD
detector (L4) TOT after L1 correction.

(b) Time difference versus tail LGAD
detector (L4) TOT after both corrections.

Figure B.8: 2D histograms of the time of flight measure versus the L4 TOT values
before (a) and after (b) time slewing correction.

(a) Time difference versus head LGAD
detector (L1) TOT.

(b) Time difference versus head LGAD
detector (L1) TOT after correction.

Figure B.9: 2D histograms of the time of flight measure versus the L1 TOT values
before (a) and after (b) time slewing correction.

(a) Time difference versus tail LGAD
detector (L4) TOT after L1 correction.

(b) Time difference versus tail LGAD
detector (L4) TOT after both corrections.

Figure B.10: 2D histograms of the time of flight measure versus the L4 TOT values
before (a) and after (b) time slewing correction.
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(a) Time difference versus head LGAD
detector (L1) TOT.

(b) Time difference versus head LGAD
detector (L1) TOT after correction.

Figure B.11: 2D histograms of the time of flight measure versus the L1 TOT values
before (a) and after (b) time slewing correction.

(a) Time difference versus tail LGAD
detector (L4) TOT after L1 correction.

(b) Time difference versus tail LGAD
detector (L4) TOT after both corrections.

Figure B.12: 2D histograms of the time of flight measure versus the L4 TOT values
before (a) and after (b) time slewing correction.
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B.2 Time resolution histograms

(a) Time difference distribution before time
slewing correction.

(b) Time difference distribution after time
slewing corrections.

Figure B.13: Histograms of the Time Of Flight distribution before (a) and after (b)
time slewing corrections of run 579.

(a) Time difference distribution before time
slewing correction.

(b) Time difference distribution after time
slewing corrections.

Figure B.14: Histograms of the Time Of Flight distribution before (a) and after (b)
time slewing corrections of run 582.
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(a) Time difference distribution before time
slewing correction.

(b) Time difference distribution after time
slewing corrections.

Figure B.15: Histograms of the Time Of Flight distribution before (a) and after (b)
time slewing corrections of run 583.

(a) Time difference distribution before time
slewing correction.

(b) Time difference distribution after time
slewing corrections.

Figure B.16: Histograms of the Time Of Flight distribution before (a) and after (b)
time slewing corrections of run 584.

(a) Time difference distribution before time
slewing correction.

(b) Time difference distribution after time
slewing corrections.

Figure B.17: Histograms of the Time Of Flight distribution before (a) and after (b)
time slewing corrections of run 585.
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(a) Time difference distribution before time
slewing correction.

(b) Time difference distribution after time
slewing corrections.

Figure B.18: Histograms of the Time Of Flight distribution before (a) and after (b)
time slewing corrections of run 586.


