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Abstract

This thesis presents the optimization and characterization of a magneto-optical trap (MOT)
setup for rubidium-87 atoms. The apparatus is designed to provide a source of cold atoms,
with temperatures around 100 µK, near the tip of a hollow-core photonic crystal fiber. The
ultimate goal is to load the cold atomic cloud into the fiber to explore the unique properties
of this hybrid system.
Since the number of captured atoms depends on the interplay between the magnetic field
and detuning, a detailed study was conducted to investigate the number of trapped atoms
as a function of different detuning values and magnetic field gradients. By comparing two
measurement methods, it was determined that the MOT is capable of trapping approximately
107 rubidium atoms. The optimal magnetic field gradient and laser detuning frequency were
found to be B′ = 9.32 G/cm and δ ≈ −13 MHz, respectively. Additionally, the number of
captured atoms was found to be strongly dependent on the background pressure inside the
MOT chamber. In this regard, it was observed that by closing the rubidium source valve, the
pressure can be reduced by up to 80% over a 24-hour period, and one possible way to measure
it could be through the background signal with the magnetic field gradient turned off. Then
we analyzed the trap lifetime τ , which is also inversely proportional to the partial pressure of
rubidium. Under optimal conditions, we obtained a trap lifetime of 0.31 s.
Furthermore, a temperature estimation of the atomic cloud was performed using the time-of-
flight (TOF) method. The velocity distribution along the x-axis, which lie in the imaging
plane, was captured with a CMOS camera and yielded temperature of Tx = (252 ± 20)µK.
These results provide essential insights into the optimization of the MOT parameters and lay
the foundation for future studies involving the loading of cold atoms into hollow-core photonic
crystal fibers.
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Introduction

Quantum mechanics has revolutionized our understanding of nature, opening the door to
entirely new domains of physics. This transformation necessitated the development of
innovative experimental tools capable of probing and manipulating quantum systems with
unprecedented precision. Among these advancements, laser cooling has played a fundamental
role.

The concept of laser cooling was first proposed in 1975 by Hänsch and Schawlow [1] and
by Wineland and Dehmelt [2], and later realized experimentally by Steven Chu, Claude
Cohen-Tannoudji, and William D. Phillips. Their pioneering work on laser cooling techniques
earned them the 1997 Nobel Prize in Physics [3]. As a result, laser-cooled atoms have become
a powerful tool in fundamental research and applications, such as quantum sensors [4], atomic
clocks [5], interferometry [6], and quantum simulation [7]. Notable developments include
optical lattices[8], and studies of new quantum phases such as the Bose-Einstein condensate[9]
and the supersolidity [10].
While laser cooling significantly reduced atomic motion, additional techniques were needed to
confine atoms in specific regions of space. This leads to the realization of the Magneto-Optical
Trap (MOT). First demonstrated in 1987 at AT&T Bell Labs, the MOT combined laser cooling
with magnetic field gradients to confine neutral atoms, enabling controlled manipulation of
atomic ensembles and opening new frontiers in quantum optics and precision measurements.

The focus of this thesis is the characterization of a Magneto-Optical Trap (MOT). In Chapter 1,
fundamental concepts of atomic physics are reviewed, including the Hamiltonian of the atom-
light interaction, with particular focus on the two-level Rabi model, as well as the principles
underlying optical molasses and magneto-optical trapping. The Chapter 2 describes the
experimental setup and provides a comprehensive overview of all the components used in the
experiment. Finally, Chapter 3 presents and analyzes the obtained results, primarily focusing
on the number of trapped atoms and the temperature of the atomic cloud. Additionally,
considerations about background pressure are discussed, along with the study of the atomic
trap lifetime.
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1
Magneto-Optical trap theory

The interaction between atoms and light plays a fundamental role in atomic physics, serving
as the basis for techniques such as laser cooling, trapping, and quantum state manipulation.
Among these techniques, Magneto-Optical Traps (MOTs) have become the standard tool
for cooling and trapping neutral atoms, particularly rubidium (Rb). The technology behind
MOTs has advanced significantly, to the point where compact, chip-scale devices have been
developed.

To fully grasp the principles behind atom trapping, it is essential to analyze how atoms
interact with light. This requires a detailed examination of the system’s Hamiltonian and the
fundamental physical processes governing these interactions, namely absorption, spontaneous
emission, and stimulated emission. In particular, the behavior of a quasi-two-level atomic
system in the presence of an external electric field is explored. While this approach does not
fully describe all physical processes (most notably, spontaneous emission is initially neglected)
it provides a solid foundation for understanding the underlying physics of atom trapping.

This theoretical framework allows for the manipulation of both the internal and external
degrees of freedom of an atom using photons. For our purposes, we focus on optical pumping
as a means of controlling the internal degrees of freedom. By exploiting the resonance of
circularly polarized light, it is possible to selectively populate specific hyperfine sublevels.
Regarding external degrees of freedom, we primarily consider dispersive forces, which arise
from the exchange of linear momentum between an incident photon and the atom during a
resonant scattering process. However, for a more comprehensive description, other processes
such as the light shift (AC Stark shift) for internal degrees of freedom manipulation and
dissipative forces (dipole force) for external degrees of freedom must also be considered

With these concepts established, we proceed to a detailed discussion of Doppler cooling, a
mechanism used to slow down atoms, along with its fundamental limitations. Finally, we
introduce the Magneto-Optical Trap (MOT) as a method for confining atoms within a specific
spatial region.

1.1 Emission and absorption of radiation by atoms

In this section, the Hamiltonian describing the atom-radiation system, fundamental for studies
on laser cooling, will be introduced. The interaction will be considered with a monochromatic
light field of frequency ωL and a two-level atomic system for simplicity.

The atom consists of a ground state and an excited state, separated by an energy difference
Ee −Eg = ℏωA The approximation of the laser as a classical driving force can be made because
the laser field contains a large number of photons. However, by making this approximation, an
important phenomenon remains unexplained: spontaneous emission, which occurs when the
radiation is treated as a quantum mechanical field, a fully quantum mechanical phenomenon
[11]. Hence, introducing the vacuum field, which must be treated quantum mechanically,
resolves this problem.
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1.1.1 Hamiltonian system

Building upon the previous considerations, the total Hamiltonian of the system is described.
The atomic medium is assumed to be very dilute, so that atom-atom interactions can be
neglected.

Figure 1.1. The interacting systems: light field (L), atom system (A),
vacuum system (V ), and the various couplings VAL and VAV .

The interacting components are shown in Fig. 1.1, where L is the light system, A the atom
system and V the vacuum system. VAL and VAV are the respective couplings. Hence the total
Hamiltonian is:

Ĥ = ĤA + ĤV + V̂AL + V̂AV (1.1)

Where:

• ĤA = Ĥext + Ĥ int = P⃗

2M + ℏωA |e⟩ ⟨e|

• ĤV =
∑

j

ℏωj

(
âj â

+
j + 1

2

)

• V̂AL = − ˆ⃗
d · E⃗L(R⃗, t)

• V̂AV = − ˆ⃗
d · E⃗(r⃗ )

Here P⃗ and M are the momentum and mass of the center of mass, âj , â+
j are annihilation

and creation operators of the vacuum electromagnetic modes E(r⃗ ) = i
∑

j Ejajϵje
ik⃗j ·r⃗ + h.c.,

ˆ⃗
d = dϵ⃗z(|e⟩ ⟨g| + |g⟩ ⟨e|) is the dipole operator and E⃗L(r⃗, t) = E⃗0 cos(ωLt+ ϕ(r⃗ )) is the laser
field.
Since V represents a large system with an infinite number of degrees of freedom, VAV introduces
fluctuations in the evolution of A. The evolution of A is influenced by these fluctuations,
leading to two distinct regimes. When the interaction time satisfies t ≪ 1/Γ, spontaneous
emission can be neglected, and the evolution of the system A+L is described by the Schrödinger
equation. Conversely, for t ≫ 1/Γ, multiple spontaneous emission processes occur, which are
best described by a master equation or a Langevin equation [12].
The semiclassical picture is now analyzed in the interaction regime t ≪ 1/Γ, where spontaneous
emission can be neglected. Consequently, the vacuum field in Eq. (1.1) can be ignored, and a
near-resonant classical field is considered. This system is described by the Rabi model.



1.1.2 Rabi model

In this section the coherent evolution of the amplitudes of a two-level atom in strong near-
resonant classical field is introduced, the so-called Rabi Model. To visualize the internal
dynamics and how the population of each level is affected, the new Hamiltonian, excluding
the vacuum field, is recalled:

Ĥtot = ĤA + V̂AL (1.2)

ĤA =
[
Eg 0
0 Ee

]
=
[
0 0
0 ℏωA

]
(1.3)

Using the dipole approximation, the spatial phase factor of the electric field E⃗L, which
appears in the cosine term, can be neglected [11]. Consequently, the perturbation term
H⃗AL = − ˆ⃗

d · E⃗L(r⃗, t) takes the form:
d̂ = dϵ⃗z

(
|e⟩ ⟨g| + |g⟩ ⟨e|

)
= dϵ⃗z(σ+ + σ−)

E⃗L = ϵ⃗(r⃗ )E0(r⃗ ) cos
(
ωLt

)
= 1

2 ϵ⃗ (r⃗ )E0(r⃗ )
[
ei
(

ωLt
)

+ e−i
(

ωLt
)] (1.4)

Using the rotating wave approximation [11], is possible to write in matrix form:

Ĥtot = ℏ
2

[
0 Ω(r⃗ )eiωLt

Ω(r⃗ )e−iωLt 2ωA

]
(1.5)

where Ω(r⃗ ) = −dE0(r⃗ )⃗ϵz · ϵ⃗(r⃗ )/ℏ is the Rabi frequency at resonance, and for the simplest
case, i.e. of a laser plane wave, Ω(r⃗ ) = Ω since the amplitude and polarization of the laser
electric field don’t depend on r⃗. Let’s apply a rotating frame of reference to the dynamics at
the same frequency as the driving field ωL:

Ĥtot = ℏ
2

[
ωL Ω
Ω 2ωA − ωL

]
(1.6)

Now let’s see the dynamics of the system through the time-dependent Schrödinger equation
assuming the atom to be in the state |g⟩ at t=0.

iℏ
∂ |ψ(t)⟩
∂t

= Ĥ(t) |ψ(t)⟩ (1.7)

whose eigenvalues read: 
E+ = ℏ

2
[
ωA +

√
δ2 + Ω2

]
E− = ℏ

2
[
ωA −

√
δ2 + Ω2

] (1.8)

with δ = ωA − ωL.



The corresponding eigenstates are
|ψ+⟩ = e−iϕ/2 cos

(
θ

2

)
|g⟩ + e+iϕ/2 sin

(
θ

2

)
|e⟩

|ψ−⟩ = −e−iϕ/2 sin
(
θ

2

)
|g⟩ + e+iϕ/2 cos

(
θ

2

)
|e⟩

(1.9)

with

θ = tan−1
(

2ℏΩ
Eg − Ee

)
(1.10)

Subtracting |ψ+⟩ and |ψ−⟩ the new superposition initial state can be obtained |ψ(t = 0)⟩ = |g⟩
and then applying the usual time dependence it’s possible to find the evolution state of
|ψ(t = 0)⟩ as:

|ψ(t)⟩ = e+iϕ/2
[
e−iE+t/ℏ cos

(
θ

2

)
|ψ+⟩ − e−iE−t/ℏ sin

(
θ

2

)
|ψ−⟩

]
(1.11)

So the probability of finding the system in the state |e⟩ at time t, after some easy algebra, is:

Pe(t) = | ⟨e|ψ(t)⟩ |2 = sin2 θ sin2
(
E+ − E−

2ℏ t

)
= Ω2

δ2 + Ω2 sin2
(√

δ2 + Ω2

2 t

)
. (1.12)

Hence if the laser is on resonance ωL = ωA then the electron oscillates with maximum
amplitude between |g⟩ and |e⟩, otherwise the population is not fully transmitted to the excited
level. This behavior can be observed in Fig. 1.2:

Figure 1.2. Rabi frequency on ωL = ωA and off-resonance ωL ̸= ωA.



As previously mentioned, due to the presence of a classical field in this dynamics, the
phenomenon of spontaneous emission is ignored. However, this can be introduced through
the Jaynes-Cummings model, the fully quantum counterpart of the Rabi model. Unlike
the semiclassical approach, this leads to conclusions with no classical analog, such as the
occurrence of Rabi oscillations even in the absence of photons; these are known as vacuum-field
Rabi oscillations [11].
However, this result holds for a single-mode field, where the emission, reabsorption, and
re-emission of a photon create a reversible spontaneous emission process. In contrast, as
discussed in Section 1.1.1, we are dealing with multiple modes of the vacuum field.

1.1.3 Spontaneous and stimulated emission

Experimentally, it is observed that an excited atom undergoes a transition to a lower state
and eventually reaches the ground state, but it does not oscillate back and forth indefinitely
(as seen in Section 1.1.2). In physical reality, the single-mode field model is often insufficient,
as in many cases, a continuum of modes must be considered, corresponding to a quantization
cavity that extends infinitely. Hence spontaneous emission is a complex phenomenon and it is
described by Weisskopf-Wigner theory[13] as an irreversible decay process.
The atom decays in a characteristic lifetime which, according to the uncertainty principle,
limits the precision with which we can measure the energy. Specifically, the longest time
during which energy measurements can be made is approximately the atomic lifetime τ , and
hence the energy difference of the levels is uncertain by the amount [14]:

∆E = ℏ
τ

(1.13)

This relation implies that the spontaneously emitted radiation is not perfectly monochromatic,
but instead has a frequency spectrum with a width inversely proportional to τ .
For a multi-mode field, this produces a band of shifted frequencies, which, in the simple
two-level atom case, follows a Lorentzian profile [14] in the emission spectrum of an atom.
Thus, even in the absence of interaction with an external light field, the atom still exhibits a
non-zero linewidth, known as the natural linewidth. This linewidth is given by:

Γ = 1
τ

(1.14)

which is why the natural linewidth is also referred to as the decay width or decay rate. This
linewidth, however, can be broadened by additional mechanisms such as the Doppler effect
and power broadening, which will be discussed in Section 1.1.4.
A final consideration can be made regarding stimulated emission. All of these processes
(absorption, stimulated emission, and spontaneous emission) were already studied by Einstein
[15]. Revisiting his analysis, for a natural source such as the Sun, which can be approximated
as a black body with a surface temperature of T ≈ 6000 K, the ratio between spontaneous and
stimulated emission’s coefficients is approximately 400 for λ = 400 nm and 30 for λ = 700 nm
[16]. Thus, at both ends of the visible spectrum, spontaneous emission dominates stimulated
emission.



In the visible range, stimulated emission surpasses spontaneous emission only in "unnatural"
sources, where a population inversion occurs) i.e., where more atoms are in the excited state
than in the ground state. This is the case in lasers, where stimulated emission becomes the
dominant process.

1.1.4 Bloch equation and total scattering rate

The spontaneous decay of the excited states, resulting from the interaction with the vacuum
field, has so far been omitted, while only the purely oscillatory behavior of the atomic states
has been considered. This phenomenon, however, is not straightforward to analyze. A common
approach in quantum mechanics involves introducing the density matrix ρ, which allows the
description of atomic excitation in terms of populations and coherences rather than state
amplitudes [17]. Starting from the equation:

iℏ
dρ

dt
=
[
ρ,Htot

]
(1.15)

The damping terms due to spontaneous emission can be found after some considerations [12]:

(
dρee

dt

)
sp

= −
(
dρgg

dt

)
sp

= −Γρee (1.16)

describing the transition of the atom from |e⟩ to |g⟩ by spontaneous emission with rate Γ(
dρeg

dt

)
sp

= −Γ
2 ρeg (1.17)

is the damping of optical coherences with a rate Γ/2. These are called the optical Bloch
equations, where the steady-state solution for w = ρgg − ρee is [17]:

w = 1
1 + s

(1.18)

with the saturation parameter s given by

s ≡ |Ω|2

2|(Γ/2 − iδ)|2 = |Ω|2/2
δ2 + Γ2/4 = s0

1 + (2δ/Γ)2 (1.19)

where the last step defines the on-resonance saturation parameter:

s0 ≡ 2|Ω|2

Γ2 = I

Is
(1.20)

in terms of saturation intensity

Is ≡ πhc

3λ3τ
(1.21)



Moreover, for s ≪ 1, the population is mostly in the ground state (w ≃ 1) and ρee reads:

ρee = 1
2(1 − w) = 1

2
s0

1 + s0 + (2δ/Γ)2 (1.22)

When s ≫ 1 the population is equally distributed between the ground and excited state
(w = 0) then is ρee = 1/2. Now we discuss the total scattering rate [17]:

Rsc = Γρee =
[

s0
1 + s0

] [ Γ/2
1 + (2δ/Γ′)2

]
(1.23)

where Γ′ = Γ
√

1 + s0 is called the power-broadened linewidth of the transition. From Fig. 1.3,
it is clear that, at large s0, the excited state population is nearly half for δ = 0 but decreases
for |δ| ≫ γ.

Figure 1.3. Excitation rate Rsc, in units of Γ, as a function
of the detuning δ. Here Rsc and Γ are denoted as γp and γ,
respectively. Credits: [17].

It is useful to note that other broadening mechanisms, such as the Doppler effect, have been
left out of this discussion. In fact, considering the D2 transition of 87Rb at a temperature of
T = 1 mK, the Doppler broadening is estimated as:

ωD = ω0

√
2kBT

Mc2 ≃ 2π × 560 kHz (1.24)

with ω0 = 2π × 384 THz and M = 1.41 × 10−25 kg [18]. This value is significantly smaller
than the power-broadened linewidth, which is Γ′ ≈ 2π × 20 MHz for s0 = 10 and still
Γ′ ≈ 2π × 6.3 MHz even for a low intensity of s0 = 0.1. Since Γ′ ≫ ωD in both cases, Doppler



broadening is negligible compared to power broadening and can be safely ignored in this
analysis.

1.2 Manipulating atoms with photons

The interaction between light and matter represents a cornerstone of atomic physics, influencing
both the internal states and external motion of atoms. Light is not only a source of information
about atomic structure but also a versatile tool for manipulating atomic behavior through
carefully controlled interactions. Before examining these interactions in detail, it is essential
to introduce two key physical processes that form their foundation: dissipative and reactive
processes.

1.2.1 Dissipative and reactive processes

Consider a light beam with frequency ωL propagating through a medium composed of atoms
with a resonance frequency ωA. Two principal processes can occur: the incident photons
may be absorbed and subsequently scattered in all directions, while the propagation speed
of light is altered. As a result of this interaction, atoms experience both dissipative and
reactive effects. These effects manifest as a broadening and a shift of the atomic energy levels,
respectively [19]. Hence:

• Dissipative (Absorptive) processes: These involve energy exchange between the
atom and the radiation field, primarily due to photon absorption and spontaneous
emission.

• Reactive (Dispersive) processes: These correspond to coherent interactions where
the phase of the light field is modified without direct energy absorption by the atom.

It is possible to explain these two phenomena from a classical description of the interaction
between light and atoms, introducing the refractive index of atomic vapors. This is a good
approximation when there are weak atomic excitations and there are many photons since the
field can be treated as a set of harmonic oscillators. The atom can be described by [20]:

mẍ(+) +mΓẋ(+) +mω2
Ax

(+) = −eεE(+)
0 e−iωLt (1.25)

Where the first term is the inertial force, the second is the damping force describing the loss
of energy due to radiation emission, the third term is the restoring force (electron oscillating
on an external electrical field) and finally in the right-hand side there is the external driving
force. Here x represents the average position of the electron, since, quantum mechanically,
the electron is not localized, and ωA is the resonant frequency of the harmonic potential.
From few calculations [20] the phase index and absorption coefficient can be derived, which
are the real and imaginary part of refractive index(ñ) respectively:

n(ωL) := Re[ñ(ωL)] = n(ωL) ≈ 1 + Ne2

2mε0

(ωA − ωL)/2ωL

(ωA − ωL)2 + (Γ/2)2 (1.26)

a(ωL) := 2k0Im[ñ(ωL)] = a(ωL) ≈ Ne2

mε0cΓ
(Γ/2)2

(ωA − ωL)2 + (Γ/2)2 (1.27)



The dissipative process, related to the imaginary part of the refractive index, Im(ñ), is
responsible for photon absorption [19]. The variation of Im(ñ) with the detuning:

δ = ωL − ωA

follows a Lorentzian curve, indicating the resonance behavior of the atomic transition, or that
the corresponding attenuation of the light beam is maximum at resonance. Physically, this
process leads to the broadening of atomic energy levels, which is quantified by the natural
linewidth Γ. This broadening, as previously mentioned, corresponds to spontaneous emission
and defines the timescale for atomic relaxation.
The reactive process is related to real part of the refractive index, Re(n). As light
propagates through an atomic ensemble, the phase velocity of light is altered due to the
refractive index. The dispersion follows a Lorentzian curve, where the change in refractive
index relative to vacuum, n− 1, depends on detuning δ. The real and imaginary part of n(ω)
are shown in Fig. 1.4.

Figure 1.4. Lorentzian absorption profile and dispersive phase index.



1.2.2 Manipulation of internal and external degrees of freedom

An atom possesses multiple degrees of freedom, categorized into internal and external degrees
of freedom [19]. Internal degrees of freedom include electronic configuration, which describes
the energy levels occupied by electrons, and spin polarization, related to the orientation of
electron and nuclear spins. Their manipulation is achieved through optical pumping.
External degrees of freedom describe the motion and spatial orientation of the atom, particu-
larly its center-of-mass motion. Manipulating these degrees of freedom relies on two primary
forces: dissipative forces and reactive (dispersive) forces.

Manipulation of internal degrees of freedom

The internal degrees of freedom of an atom can be manipulated using light in two key ways:

• Optical pumping: This technique relies on resonant excitation of atoms by circularly
polarized light to transfer angular momentum from photons to atoms. By selectively
driving transitions between specific atomic sublevels and it is used for different objectives
e.g. populate specific Zeeman or hyperfine sublevels.

• Light shifts (AC Stark shift): This process occurs due to the interaction between an
atom and an off-resonant laser field, which induces a shift in the atomic energy levels.
The resulting energy shift at high detuning depends on the light intensity and detuning:

∆E ∝ I

δ
(1.28)

where I is the laser intensity and δ = ωL − ωA is the detuning. Light shifts allows the
creation of optical potentials in optical lattices and dipole traps.

Manipulation of external degrees of freedom

To manipulate an atom’s center-of-mass motion, two fundamental types of radiative forces
can be employed, which originate from light-matter interactions:

• Dissipative forces (radiation pressure force): These forces arise from the exchange
of linear momentum between an incident photon and the atom during a resonant
scattering process. Each absorbed photon transfers momentum ℏk, and spontaneous
emission occurs in a random direction, leading to a force given by (details in Section 1.3.2):

Frad = ℏkΓ
2

s0
1 + s0 + (2δ/Γ)2 , (1.29)

where Γ is the natural linewidth, s0 is the saturation parameter, and δ is the detuning.
This force enables Doppler cooling and the mechanism behind the Magneto-Optical
trap.

• Dispersive forces (dipole force): Unlike radiation pressure, the dipole force is a
conservative force that arises from spatially varying light intensities.



The dipole potential of an oscillating field E⃗ = E⃗0 cos(ωLt) interacting with a two-level
atom reads [21]:

Ûdip = −1
2⟨ ˆ⃗
d · E⃗⟩ (1.30)

where ˆ⃗
d is the atomic dipole moment induced by the oscillating field. Since ˆ⃗

d ∝ E⃗, and
based on certain considerations [22]:

Ûdip ∝ I Γ
δ

(1.31)

where I is the beam intensity.

Given the upcoming discussion on laser cooling and magneto-optical traps, it is useful to
clarify that the focus will be primarily on radiation pressure and optical pumping, while
excluding the treatment of light shift and dipole forces. This focus is justified by the condition
δ/Γ ≪ 1 and intensity beam I ≫ 1 W/m2 , under which radiation pressure becomes the
dominant effect. Additionally, although there is a coupling between internal and external
variables, the adiabatic approximation allows for the elimination of the fast internal variables,
as discussed in [12, 20], a process that will be analyzed in the following sections.

1.2.3 Characteristic times

Recalling the system in Fig. 1.1, the characteristic times are examined to integrate previously
separate notions into a unified understanding of its dynamics. This discussion follows [12].
The shortest characteristic time in this context is the correlation time τc of the vacuum field.
Vacuum fluctuations exhibit a broad frequency spectrum J(ω), which varies only slightly
around the atomic resonance frequency ωA. The vacuum correlation time is approximately
[12]:

τc ≃ 1
ωA

(1.32)

Moving to the internal degrees of freedom, the most prominent characteristic time is the
radiative lifetime τR of the excited state e:

τR = 1
Γ

where Γ is the natural linewidth of the excited state, directly related to the spontaneous
emission rate. The relation Γ ≪ ωA implies:

τR ≫ τc

In atoms with multiple Zeeman sublevels, additional internal timescales emerge due to optical
pumping. Absorption followed by spontaneous emission can redistribute the atomic population
among different Zeeman sublevels. The characteristic timescale for these cycles is given by
the optical pumping time τP :

τP = 1
Γ′



where Γ′ is the optical pumping rate, which depends linearly on the laser intensity IL. At low
intensities:

τP ≫ τR

In multi-level atoms, this optical pumping time plays a crucial role. In contrast, for simple
two-level atoms, the primary relaxation mechanism remains spontaneous emission, and the
internal dynamics can be fully characterized by τR.
Turning to the external degrees of freedom, an important characteristic time is the velocity
damping time, which describes how quickly the atom’s translational motion is affected by
photon recoil. This timescale is:

Text = ℏ
ER

where

ER = ℏ2k2
L

2M

is the recoil energy imparted to the atom when it absorbs or emits a single photon. Here,
kL = ωL/c is the wavevector of the light field.
For most optical transitions used in atomic manipulation:

ℏΓ ≫ ER

which implies:

Text ≫ Tint

This clear separation of timescales greatly simplifies the description of atomic motion. In
particular, the fast internal dynamics can be adiabatically eliminated, leaving a reduced set of
equations that describe the atomic motion alone [12, 20].

1.3 Magneto-Optical trap

Having established the fundamental physical processes involved, this section will focus on
the principles behind atomic cooling and trapping. The discussion will follow a semiclassical
approach, leaving out the complexities of the full quantum treatment while highlighting the
key mechanisms that enable these techniques.

1.3.1 Transfer of momentum

Building on the behavior of a two-level atom interacting with a light field, the focus now
shifts to the fundamental instruments required to implement a magneto-optical trap. In this
framework, the atom is once again modeled as a two-level system irradiated by a resonant
photon beam. As previously discussed, this interaction results in a continuous cycle of
absorption and emission.



The absorption of a single photon, due to the momentum conservation alters the velocity of
the atom by recoil velocity vrec = ℏk/M ≃ 0.6 cm/s for Rb. The spontaneous emission follows
the absorption with a natural lifetime τ = 1/Γ of the excited state, where, again, Γ is its
decay rate (or width).
Since the spontaneous emission is isotropic, the recoil of the atom associated with this process
is in a random direction, thus there is no net change of momentum on average.
Hence, after N absorption-spontaneous emission cycles, the momentum transfer is [21]:

∆p⃗N = Nℏk⃗L + ℏ
N∑

i=0
k⃗i,sp (1.33)

with k⃗i,sp being the wavevector associated with the spontaneously emitted photon in the ith
cycle and as it has been said before, ∑N

i=0 k⃗i,sp ≃ 0 due its isotropic nature. Noticing that, if
the laser intensity is high, stimulated emission plays a crucial role, resulting in the emission of
photons in the same direction as the laser beam. However, cycles of absorption and stimulated
emission don’t change the momentum p⃗. In Fig. 1.5 is shown the whole process.

Figure 1.5. A simplified depiction of the light pressure acting on the
two-level atom. Photon absorption a) and its consequent exchange of
momentum b) and emission in c). Credits: [23].



Since there is a momentum variation, there is also a force applied on the atom F⃗ = dp⃗/dt
directed along the laser beam itself. The force can be calculated:

F⃗ = M · a⃗ = ℏk⃗L
∆N
∆t = ℏk⃗LRsc = ℏk⃗LΓρee (1.34)

where ∆N is the number of photon absorbed and Rsc = Γρee is the absorption rate or photon
scattering rate as already seen. F⃗ has the same dependence of ρee on δ = ωL − ωA detuning
Eq. (1.22), hence plotting F⃗ as function of δ it varies as a Lorentzian absorption curve centered
about δ = 0, as expected for a dissipative process.

1.3.2 Doppler cooling and optical molasses

In the reference frame of an atom moving with velocity v⃗, the frequency ωL of a laser beam
with wavevector k⃗ is Doppler shifted to:

ω′ = ωL − k⃗ · v⃗ (1.35)

When ωL is tuned below the atomic resonance frequency ωA (ωL < ωA), ω′ gets closer to
resonance if the atom moves against the laser beam (k⃗ · v⃗ < 0); conversely, if the atom moves
along the direction of the laser beam (k⃗ · v⃗ > 0), the detuning increases, shifting the atom
further from resonance. As a result, atoms moving opposite to the laser direction experience
stronger interactions, forming the basis of Doppler cooling.

This occurs because they perceive the laser beam at a frequency closer to resonance, allowing
them to absorb photons. Since the momentum exchange follows the direction of the beam’s
propagation, the atoms are gradually slowed down.

In optical molasses (OM), red-detuned lasers are typically used to create a viscous medium
where atoms experience a resistive force. In a one-dimensional model (as shown in Fig. 1.6),
the laser frequency in the atom’s reference frame is given by ω′

L = ωL ± kLv, where the sign
depends on the direction of the atom’s motion relative to the beam.

Figure 1.6. Moving atom in the laboratory reference frame.

Now let’s consider two counter-propagating beams weak enough so that their effects taken
separately are additive (namely s0 ≪ 1). Then the total light pressure force :

FOM = F+ + F− (1.36)

where F+ is the force applied on the atom from the left laser beam and F− is the force applied
on the atom from the right laser beam:




F+ = ℏkLΓρee = ℏkLΓ s0

1 + s0 + (2(δ − |kL|v)/Γ)2

F− = −ℏkLΓρee = −ℏkLΓ s0
1 + s0 + (2(δ + |kL|v)/Γ)2

(1.37)

where the total force described in Eq. (1.36) is represented in Fig. 1.7.

Figure 1.7. F⃗+, F⃗− and FOM are shown in red, green and blue
trace respectively (they are calculated for detuning δ = −1.3Γ
and saturation s0 = 3. Here the absorption rate is γ. Credits: [23].

Assuming that atoms are slow, the force can be approximated in:

FOM ≃ 8ℏk2δs0v

Γ[1 + s0 + (2δ/Γ)2]2 = −α(δ)v (1.38)

where α is the damping constant, positive for δ < 0. For slow atoms FOM is proportional to
the velocity and it resembles the viscous damping. By using three intersecting orthogonal
pairs of counter-propagating laser beams, the above elucidated slowing effect can be extended
to 3D

F⃗OM ≃ −α(δ)v⃗ (1.39)

Cooling is possible only for negative values of δ, in the opposite case heating occurs and the
atom gains energy. It should be noted that the resonance radiation pressure force of the type
in Eq. (1.36) alone is not able to provide stable trapping of atoms.



1.3.3 Doppler cooling limit

Laser cooling has been introduced in which atoms are slowed down through interactions with
resonant photons, exploiting the momentum exchange that occurs during absorption and
spontaneous emission processes. When an atom absorbs a photon, it experiences a recoil in
the direction of the incoming photon, while spontaneous emission, being isotropic, introduces
a random recoil.
It could seem that in the end the initially moving atoms will decelerate rapidily to zero
velocity but this is not possible due to intrinsic limitations: the interplay between these
processes results in a nonzero equilibrium velocity, which can be understood as a random
walk in momentum space with steps of size ℏk (in Fig. 1.8). The temperature of the atomic
ensemble arises from the balance between two competing effects:

• Cooling, induced by the radiation pressure force, which is obtained through an
ensemble average and leads to a reduction in the atomic velocity.

• Heating, caused by fluctuations in the cooling force, which result in an increase in
atomic energy.

Figure 1.8. Representation of the random walk of atomic momentum due to photon recoil
during absorption and spontaneous emission. The blue trajectory illustrates the stochastic
diffusion process, while the red arrows indicate the average force that drives the atom’s motion.

The cooling process can be analyzed starting from the velocity distribution’s variance [20]:

d

dt
⟨v2⟩ = 2

〈
v⃗ · dv⃗

dt

〉
= 2
M

〈
v⃗ · dp⃗

dt

〉
= 2
M

⟨v⃗ · F⃗OM ⟩ (1.40)

where M is the atomic mass, and the angle brackets denote an ensemble average.



Recalling Eq. (1.38) in the low-velocity regime, the equation of motion can be rewritten as:

d

dt
⟨v2⟩

∣∣∣∣
cooling

= 16ℏk2δ

M Γ · s0[
1 + s0 +

(
2δ
Γ

)2
]2 · ⟨v2⟩ (1.41)

Therefore, from this equation, we see that the velocity decreases to zero for δ < 0.
For the heating process, a more rigorous treatment can be performed using quantum mechanics
to account for fluctuations [20]. However, here we limit ourselves to an heuristic approach.
During the scattering of a photon from one of the laser beams, an absorption event occurs,
followed by an emission event. Each absorption event imparts a momentum "kick" of magnitude
ℏk in a well-defined direction, while the subsequent emission occurs in a random direction,
leading to a second momentum kick of the same magnitude.
Thus, each scattering event effectively corresponds to two steps in a random walk in velocity
space, where the step size is ℏk/M . To further justify this, let us focus on the atomic
momentum changes occurring in each cycle (j = 1, ..., N cycles):

p⃗j = ℏq⃗j − ℏk⃗j (1.42)

where q⃗j is the wavevector corresponding to one of the six laser beams, and k⃗j is the wavevector
of the spontaneously emitted photon. The total momentum change is given by:

p⃗tot =
N∑

j=1
p⃗j = 0 (1.43)

Now, considering the variance:

⟨p⃗ 2
tot⟩ = ℏ2∑

ij

〈(
q⃗i − k⃗i

)
·
(
q⃗j − k⃗j

)〉
= ℏ2∑

ij

(
q⃗ 2

i δij + k⃗ 2
i δij

)
= 2ℏ2k⃗ 2N (1.44)

which, since dN/dt = Rsc leads to:

d

dt
⟨v⃗ 2⟩

∣∣∣∣
heating

= d

dt

〈
p⃗ 2

tot

M2

〉
= 2

(ℏk
M

)2
Rsc (1.45)

Summing Eq. (1.41) and Eq. (1.45), we obtain:

d

dt
⟨v⃗ 2⟩ = d

dt
⟨v⃗ 2⟩

∣∣∣∣
heating

+ d

dt
⟨v⃗ 2⟩

∣∣∣∣
cooling

= 2
(ℏk
M

)2
· 6Γ

2
s0[

1 + s0 +
(

2δ
Γ

)2
]2 + 16ℏk2δ

MΓ · s0[
1 + s0 +

(
2δ
Γ

)2
]2 · ⟨v2⟩ (1.46)

where we have taken into account that, in the MOT, there are 6 beams, hence Rsc is six times
larger than for a single beam.



From above , at low intensity s ≪ 1, the steady-state solution is:

⟨v2⟩ = −3
8
ℏΓ2

Mδ
·
[
1 +

(2δ
Γ

)2]
(1.47)

This is an expression for the equilibrium kinetic energy, which we can convert to a temperature

1
2M⟨v2⟩ = 3

2kBT (1.48)

The temperature is minimized for the detuning δ = −Γ/2, giving the Doppler temperature:

kBT = ℏΓ
2 (1.49)

Hence, laser cooling in optical molasses reaches an equilibrium temperature determined by
the balance between photon recoil heating and velocity-dependent cooling forces. For example
taking into account a rubidium atom, this limit is found to be:

TD = ℏΓ
2kB

≃ 140 µK (1.50)

with Γ ≃ 2π×6 MHz. It has been demonstrated that considering a multilevel atomic structure
leads to significantly stronger cooling forces for slow atoms. This effect explains the observation
of atoms cooled in optical molasses to temperatures an order of magnitude below the Doppler
limit [24], a phenomenon not predicted by the simplified two-level atom model, where the role
of polarization gradients is neglected.

1.3.4 1D model of the MOT
To trap atoms, it is necessary not only to cool them but also to confine them using a position-
dependent force. This confinement is achieved by applying a magnetic field. For simplicity,
let us consider a 1D model of the Magneto-Optical Trap (MOT). The setup consists of two
counter-propagating laser beams along the z-axis with opposite circular polarizations, denoted
as σ+ and σ−. Additionally, the system includes a coaxial, inhomogeneous magnetic field B⃗
with a quadrupole symmetry.

Figure 1.9. Schematic 1D MOT configuration, with two counter-
propagating beams and a magnetic field of quadrupole symmetry.



The analysis proceeds as follows: first, the hyperfine structure is introduced, followed by the
effect of the magnetic field, and finally, a discussion of the resulting behavior.
Real Atoms and Hyperfine Structure
The hyperfine structure results from the interaction between the electronic angular momentum
J⃗ and the nuclear angular momentum I⃗. The corresponding Hamiltonian is:

ĤHF = AI⃗ · J⃗ (1.51)

Here, A is the hyperfine coupling constant. Defining the total angular momentum as:

F⃗ = I⃗ + J⃗

the interaction can be expressed as:

I⃗ · J⃗ = 1
2
[
F⃗ 2 − J⃗2 − I⃗2

]
(1.52)

The hyperfine Hamiltonian is diagonal in the |F, Fz⟩ basis:

⟨F, Fz|HHF

∣∣F ′, F ′
z

〉
= δF F ′δFzF ′

z
A

1
2
[
F (F + 1) − J(J + 1) − I(I + 1)

]
(1.53)

When a small magnetic field is applied, we choose the z-axis along the B⃗ field and the
degeneracy over Fz is lifted due to the Zeeman effect, whose shifts are ∝ B. In particular:

Ĥtot = Ĥ0 + Ĥz (1.54)

where the interaction is represented by Ĥz = −µ⃗ · B⃗, where µ⃗ is the magnetic moment of the
atom. Using perturbation theory at first order, the Zeeman shift of the sublevel is proportional
to its magnetic quantum number mF or ⟨Fz⟩ and to the B field:

∆E(F, Fz) = ⟨F, Fz|Hz |F, Fz⟩ = gFµBBz⟨Fz⟩ (1.55)

Where gF is the Landé factor that is given by :

gF = gJ
1
2

[
F (F + 1) + J(J + 1) − I(I + 1)

F (F + 1)

]
, (1.56)

which can be derived using the Wigner-Eckart theorem [20]. The factor gJ in the equation for
gF is the Landé factor associated with the total electronic angular momentum J , given by:

gJ = 3
2 + S(S + 1) − L(L+ 1)

2J(J + 1) . (1.57)

For our purposes, we consider the hyperfine structure of the ground state of 87Rb, characterized
by the quantum numbers L = 0, S = 1/2, J = 1/2, and I = 3/2. This results in two possible
total angular momentum states:

F = |I − J |, . . . , |I + J | = 1, 2. (1.58)

Thus, the ground state of 87Rb exhibits two hyperfine levels.



When a small magnetic field is applied, the Wigner-Eckart theorem allows us to determine the
Landé factors for these levels, yielding gF =2 = 1

2 and gF =1 = −1
2 , which leads to the splitting

of the hyperfine states in Fig. 1.10.All hyperfine splittings for 87Rb and 85Rb D2 transitions
can be found in Appendix A.5.

Figure 1.10. The Zeeman splitting of hyperfine energy levels occurs in the presence
of a magnetic field Bz. The energy levels, identified by the quantum numbers F and
Fz, shift proportionally to the applied field due to the Zeeman effect. For a magnetic
field of approximately B ∼ 1 G, the resulting splitting between magnetic sublevels is
on the order of MHz, while the hyperfine structure itself lies on the order of GHz.

Hyperfine structure and selective absorption of the circularly polarized light

The selection rules dictate which transitions are excited by the counter-propagating beams
(Fig. 1.11): {

σ+ → ∆mF = 1
σ− → ∆mF = −1

(1.59)

where the electric field of the circularly polarized light can be written as:

E⃗ = E0

(
x̂± iŷ√

2

)
e−iωLt + c.c.



Figure 1.11. Selective absorption of the circularly polarized light.

Applying an inhomogenoeus magnetic field

A magnetic field with a constant gradient ∂zB is applied along the z-axis, resulting in a
position-dependent energy shift of the atomic sublevels. As an atom moves away from the
trap center, these shifts bring it closer to resonance with the laser beam that exerts a restoring
force directed toward the trap center.
To illustrate this, consider an atom at rest positioned to the left of the reference frame (see
Fig. 1.12). In this region, the magnetic field B is negative. The beam traveling from the left
toward the trap center is σ+-polarized. Due to the red detuning of the lasers relative to the
zero-field atomic resonance, the transitions from F = 0 to F ′ = 1 are predominantly driven
by the σ+ light, resulting in a momentum transfer that pushes the atom toward the center.
Meanwhile, the counter-propagating σ−-polarized beam is shifted further out of resonance due
to Zeeman effect. Consequently, the momentum transfer from this beam, which would push
the atom away from the trap center, is significantly weaker. As a result, the atom experiences
a net force directing it toward the B = 0 region.
On the right side of the trap, the situation is reversed. In this region, the σ− beam becomes
more resonant, while the σ+ beam is shifted out of resonance. The atom again receives a net
force directing it back toward the center.
Thus, the combined effect of the two laser beams and the position-dependent magnetic field
ensures that atoms are always pushed toward the trap center, where the total force vanishes.
Allowing for the B field in an OM Eq. (1.36) modifies it. It assumes the form [23]:

Fz = ±ℏkΓ
2

s0
1 + s0 + [2(δ ∓ |kL|v ∓ µ′B/ℏ)/Γ]2 , (1.60)

where µ′ = (geme − ggmg)µB the effective magnetic moment for the cooling transition, gg

(e.g. ge) Lande factor of the excited (ground) state, me (mg) magnetic number of the excited
(ground) state, |ωD| = |kL|v the Doppler shift: |ωz| = µ′B/ℏ in the Zeeman shift.



Figure 1.12. Schematic representation of the Zeeman shift for a simple atomic structure
with F = 0 and F ′ = 1 in a one-dimensional MOT. The magnetic field gradient ∂zB causes
a splitting of the magnetic sublevels, with σ+ and σ− polarized laser beams interacting
differently with the atoms depending on their position along the z-axis. The solid arrows
indicate the laser frequencies, red-detuned from resonance, while the dotted arrows represent
the Doppler-shifted frequencies experienced by the moving atoms. Credits: [23]

Assuming that both |ωz| and |ωD| are small as compared to δ:

Fz ≈ −αv − ξz. (1.61)

where can be found [23]:

ξ = ∂B

∂z

µ′α

ℏk
(1.62)

The 3D generalization of the 1D model is rather natural. There are three pairs of counter-
propagating beams and a quadrupole magnetic field that follows the anti-Helmholtz configu-
ration. In a real MOT, a field gradient ∂zB of the order of 10 to 20 G/cm is typically used
along the axial direction. Due to the condition ∇ · B = 0, the radial gradient must be half of
the axial one, i.e., ∂rB = 1

2∂zB.



2
Materials and methods

In order to reproduce the MOT described in the previous Chapter 1 it has been employed for
this experiment rubidium 87 atoms (87Rb), which is the workhorse of atom cooling. In this
chapter we’re going to introduce the experimental setup and the methodology used to trap
and study the Rb atoms behavior. It is important to mention that the aim of this experiment
is to transport the rubidium atoms in the hollow core fiber through the implementation of a
dipole trap.

2.1 General description

In order to achieve a stable Magneto-Optical Trap (MOT), the entire experimental setup
requires a vacuum chamber under Ultra-High Vacuum (UHV) conditions, a quadrupole
magnetic field, a laser control system, and an imaging system. The apparatus is fully fiber-
coupled using standard solid-core fibers, ensuring no light propagates in free space except for
the MOT beams near the vacuum chamber. This design makes the setup far more stable
against temperature fluctuations and eliminates the need for periodic realignment, thus making
it significantly more user-friendly compared to traditional systems. Moreover, because there
is no stray light, the risk of health hazards to operators is greatly reduced.

The use of widespread, telecom-grade, and highly reliable components ensures easy replacement,
repair, and upgrades when needed. Furthermore, all fibers used in this experiment are
polarization-maintaining (PM) to preserve and control the light polarization.

Since wavelength stability and precision are critical for MOT operation, the Cooler and
Repumper lasers are frequency-locked to a Master laser, which is itself locked to a hyperfine
transition of rubidium (Rb). Notably, the Master laser setup is the only free-space optical
system in the experiment.

2.2 Vacuum chamber

The vacuum chamber is essential in this experiment as it provides the environment to host
the Rb atom cloud. The vacuum chamber is positioned at the center of an optical breadboard
and consists of various components attached to different subsystems: optical components for
lasers, a pair of magnetic coils, three pairs of compensating coils, and an HCPCF port.

The chamber is supported by a clamping structure designed to provide mechanical stability,
ensuring structural integrity and secure attachment to the optical breadboard. This structure
also helps minimize mechanical vibrations, thereby improving the reproducibility of the
experiments and protecting the system from accidental impacts.

The chamber contains the fundamental components required for the MOT construction,
namely laser beams and magnetic coils. To create a 3D MOT, three pairs of laser beams are
employed.
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Figure 2.1. The vacuum chamber setup with all its components: the vacuum
chamber is painted purple, the MOT optical system in red, the MOT coils
in orange, the ionic pump in black, the Rb source on the left side in dark
orange, and the HCPCF port in green, located behind the coils. Finally, on
the west side, there is a glass viewport for the CMOS camera. In the text
the top-bottom direction is referred to as zenith-nadir. Credits: [25]

Although only two pairs of beams are visible in Fig. 2.1, the third pair is positioned along
the north-south axis, with one beam directed towards the chamber from the front (south)
and the other from behind (north). The viewports for these beams are equipped with 780
nm anti-reflective coatings to reduce light reflections at the trap wavelength, which enhances
trapping efficiency.
For simplicity, the setup uses only three beams—one per axis—instead of six. Each beam
is reflected back by mirrors to create the counter-propagating beams required for the MOT.
This configuration is feasible since the power imbalance caused by the MOT’s absorption of
the reflected beams is expected to be negligible.
Collimators are placed along each beam path to maintain a non-diverging beam with the
desired beam waist. The mirrors, with a 25 mm diameter, are coated for near-infrared
wavelengths using a dielectric layer. Additionally, a λ/4 waveplate is positioned before each
mirror to ensure the correct polarization after reflection, as the MOT requires σ+ and σ−

polarizations.
In addition to the laser beams, the MOT requires a magnetic field gradient. This is achieved
using a pair of coils connected in an anti-Helmholtz configuration, where the coils generate
magnetic fields with the same direction but opposite orientations. This configuration ensures a
zero magnetic field at the center of the chamber and a non-zero field gradient in all directions.
In this experiment, the MOT gradient is measured to be 1.332 G·cm−1/A in the axial direction,
and the atom dynamics are investigated using coil currents ranging from 4 A to 11 A [26].



Since it is crucial for the experiment to rapidly switch the magnetic field on and off, this task is
performed using a MOSFET controlled by a TTL signal generated by the Field-Programmable
Gate Array (FPGA). The magnetic field was measured with a Hall probe [Appendix A.1],
with the measurement displayed on the oscilloscope. A trigger signal is sent to the oscilloscope
simultaneously with the TTL signal that switches the MOSFET on and off, revealing switching
times on the order of a few milliseconds (Fig. 2.2).

Figure 2.2. Signal of the Hall prove switching off (left) and on (right) the magnetic field.

Although the compensation coils are not visible in the figure above Fig. 2.1, it is important to
introduce their role. In this experiment, it is crucial to achieve a zero magnetic field at the
center of the trap, precisely where the six laser beams intersect. However, external magnetic
fields (such as the Earth’s) can interfere with this condition, making it difficult to reach a
perfectly field-free region.
To address this, the setup includes three pairs of compensation coils arranged in a cubic
configuration. Each pair is oriented along a different axis: North-South, East-West, and
Top-Bottom (Zenith-Nadir). These coils are arranged with parallel currents and can operate
within a current range of ±1 A, which allows each pair to generate a magnetic field of
approximately ≈ ±1 G at the center of the main chamber.
The vacuum in this chamber was obtained in two steps: first, using an external pump that
achieved a pressure of approximately ∼ 10−7 mbar, and then with an internal pump attached
to the chamber that reached a pressure of approximately ∼ 10−10 mbar.
The external pumping system consists of a diaphragm pump, which acts as both a roughing
and backing pump, and a turbo pump. Once the diaphragm pump brought the pressure
down to approximately ∼ mbar, as measured by the Pirani pressure sensor, a turbo pump
was activated. At that stage, the diaphragm pump served as the backing pump, expelling the
remaining gases.
The internal pump is composed of an ion pump and a passive non-evaporable getter (NEG),
which is a passive component that absorbs residual gases. It can be reactivated, but no more
than 100 times; otherwise, it will deteriorate [27]. This setup allowed the system to achieve a
pressure of approximately 10−10 mbar.



After this procedure, opening the rubidium source increased the pressure to approximately
10−8 mbar, as measured by the Pirani sensor connected to the internal ion pump, which
remained active as a pressure monitor. This pressure level is employed during the experiment,
as a low background gas pressure is crucial for achieving a stable and reproducible MOT.
The Rb atoms to be trapped in the MOT and loaded into the HCPCF [Appendix A.2] are
provided by a source connected to a vacuum valve on the chamber. A glass vial contained 1 g
of pure 87Rb, and by heating the bellow, the Rb sublimates and enter into the chamber. The
heating process is achieved using a heating band wrapped around the bellow, powered by a
variac.

2.3 Laser system
As mentioned in the previous Section 1.3.4, it is essential to consider the hyperfine structure,
defined by the total angular momentum quantum number F = I + J . For the Rb atoms,
the 52S1/2 → 52P3/2 and 52S1/2 → 52P1/2 transitions are the components of a fine-structure
doublet [18], and each of these transitions have hyperfine structure.
For cooling D2 transition 52S1/2 → 52P3/2 is chosen and occurs at a wavelength of approxi-
mately 780 nm. In the D2 transition, the ground state splits into two hyperfine levels, F = 1
and F = 2, with I = 3/2 and J = 1/2, as shown in Fig. 2.3. The atoms can decay into either
of these hyperfine levels, with the probabilities determined by the Clebsch-Gordan coefficients
[18, 28].

Figure 2.3. D2 transition, the reference for the Master laser in
orange, for the Cooler in red and for the Repumper in blue.



The cooling (and trapping) transition is chosen to be F = 2 → F ′ = 3, most atoms decay back
into their initial states since this is a cyclic transition. This allows the atoms to interact with
the trapping beams for many consecutive cycles. However, a small fraction of the atoms may
be off-resonantly excited to the F ′ = 2 and then decay into the dark state F = 1, which is not
addressed by the trapping laser. These atoms experience no trapping forces and eventually
escape the trap.
To prevent atom loss, a second field, known as the repumping field, is introduced. This field
excites the atoms in the dark state from F = 1 to F ′ = 2, allowing them to decay back into
F = 2, where they can be cooled and trapped again. To lock this repumping frequency, an
additional Master laser that has the frequency of another hyperfine level has been introduced,
which will be discussed later.

2.3.1 Cooler and Repumper

Let’s start with the Cooler and Repumper laser system, referring to Fig. 2.4. We will go
through the different stages involved: amplification, SHG, AOM, and beat note locking.

Figure 2.4. Laser system of the Cooler and Repumper lasers. The different stages of
amplification, SHG and beat note locking are shown.

The laser sources consist of two 1560 ∼ nm laser diodes from Eblana Photonics (EP1562).
These diodes are fiber-coupled and combined into a single fiber, which is then directed into
an Erbium-Doped Fiber Amplifier (EDFA). Although EDFAs can typically deliver up to 5 W,
in our setup it is currently operated at 200 mW.
The fiber-coupled output of the EDFA is sent to a nonlinear crystal for second harmonic
generation (SHG), which converts the input wavelength from 1560 nm to 780 nm. Since the
EDFA output contains two frequencies (the Cooler frequency νC and the Repumper frequency
νR) the nonlinear crystal, in addition to performing SHG for both, also generates light through
sum-frequency generation (SFG). This results in an additional frequency component equal to
νC + νR, which lies halfway between the two SHG frequencies 2νC and 2νR.
After the SHG stage, a beam splitter splits 90% of the laser beam to the MOT apparatus via
an optical fiber, while the remaining 10% is sent to the locking system in a separate rack.



Before describing the locking system, it is essential for our experiment to have the capability
to switch the MOT beams on and off rapidly. To achieve this, an AOM (Acousto-Optic
Modulator) is placed after the beam splitter 90/10 on the 90% port. Specifically, we use an
AOM from Aerodiode with a driving frequency of RF = 100 MHz and a DDS (Direct Digital
Synthesizer) control. The frequency and amplitude are modulated in real time by the FPGA,
ensuring fast and efficient laser switching of the order of few µs (in Fig. 2.5).

Figure 2.5. The fluorescence of background rubidium
gas was acquired on the oscilloscope, switching on and
off AOM through the DDS monitored by FPGA.

However, the insertion of the AOM introduces some power losses, reducing the beam power
delivered through the fiber from P = 13 mW to approximately P ≃ 8 mW. Additionally
introducing the AOM, a frequency shift of 100 MHz is applied to both the Cooler and
Repumper frequencies.
In this experiment, the AOM is utilized solely for the estimation of the MOT temperature.
However, the discussion will continue while considering the presence of the AOM. As previously
mentioned, the remaining 10% of the beam is used for laser locking.
The system responsible for controlling the Cooler and Repumper laser frequencies uses a
technique called frequency offset locking, or "beat note locking", which references the Master
laser as the primary frequency standard, ensuring a highly stable and precise reference against
which the other laser frequencies are measured and locked. The Master laser is locked to
the frequency corresponding to the 85Rb D2 crossover resonance, specifically the crossover
between F = 3 → F ′ = 3/4.
The beat notes generated by the relative frequency differences (Fig. 2.6) are used as feedback
signals to stabilize the frequencies of the Cooler and Repumper lasers. The monitoring of the
Cooler and Repumper beat notes requires the identification of all the peaks present in the
power spectrum of the signal generated by the fast photodiode.



Figure 2.6. Scheme of the positions of cooling and repumping transition frequencies
with relative to Master frequency.

In order to lock the frequencies, a reference signal is generated by a DDS (Direct Digital
Synthesizer) which generates 10 MHz reference signal and it is monitored by the FPGA. The
goal is to maintain the relationship 10 MHz · m = flocking constant, where m is a constant
determined when the frequencies of the Cooler and Repumper lasers are individually locked.
By adjusting the DDS frequency in real time, it is possible to achieve rapid frequency changes,
which are crucial for the experiment. As shown in Fig. 2.4, after the fast photodiode, the
signal can be visualized on the spectrum analyzer. Additionally, part of the signal is sent
through an RF multiplexer, which separates the beat notes of the Cooler and Repumper
frequencies. These separated signals are then compared with the 10 MHz reference, and, if
necessary, corrections are applied to the laser diodes of the respective lasers.
It is worth mentioning that the laser frequencies can be controlled using dedicated electronic
boards, such as Laser Diode Drivers (LDDs) and Temperature Controllers (TCs). Fine-tuning
the diode laser’s supply current or temperature results in slight wavelength adjustments, which
are essential to accurately lock the lasers to the desired frequencies.

2.3.2 Master laser

As mentioned earlier, the Master laser provides the reference for locking the Cooler and
Repumper lasers. Since it is convenient for the Master laser frequency to lie midway between
these two, the chosen transition is F = 3 → F ′ = 3/4 of the 85Rb D2 line.
To identify the correct hyperfine transition and lock the laser, a saturated absorption spec-
troscopy is used, as described in Appendix A.4. The laser operates at 780 nm and is generated
by a Distributed Feedback (DFB) laser diode. Similar to the Cooler and Repumper lasers, it
is current-driven and temperature-stabilized using external electronics.
Initially (Fig. 2.7), a beam splitter (Thorlabs BSX11) reflects 90% of the Master laser light,
while the remaining 10% is transmitted and labeled as the probe beam, which is used for
spectroscopy measurements. The reflected portion is directed toward a second beam splitter
(Thorlabs BSN11), which reflects 10% of the light to form the pump beam, responsible for
optically pumping the rubidium atoms during the saturated absorption spectroscopy. The
remaining 90% of the transmitted light serves as a reference for frequency-locking the Cooler
and Repumper lasers. The pump beam is then reflected by a pair of mirrors, which allow for
fine adjustments in beam position and direction.
Next, the beam reaches a polarizing beam-splitter (PBS) cube, oriented so that 100% of the
light is reflected toward the rubidium cell. The probe beam, on the other hand, travels a
longer path along the perimeter of the optical box.



After being reflected by a pair of mirrors, the probe beam passes through an AOM, which
modulates its frequency as required for the locking protocol. Just before entering the cell, a
λ/2 waveplate rotates the beam’s polarization, allowing it to pass through the aforementioned
PBS and impinge on the photodiode, which is equipped with two SMA output ports: a
slow port and a fast port. The slow output is connected to an oscilloscope, which enables
real-time monitoring of the light absorption and reveals the hyperfine structure of the 85Rb
D2 transition. The fast output is connected to the DDS board, mentioned earlier, which
demodulates the spectroscopy signal and extracts its derivative. This derivative serves as an
error signal for locking the laser frequency.
This method is particularly effective because the Master laser frequency is locked to a saturation
peak, which has an even symmetry with respect to its center. The derivative, being an odd
function, naturally provides a convenient error signal for the feedback control loop. To achieve
this, the photodiode signal is sent to the same DDS that modulates the laser beam. After
demodulation, the signal passes through a PID controller, which regulates the current driver
of the Master laser to maintain the desired frequency lock.

Figure 2.7. Master laser setup schematics.

2.4 Photo-detector

In this setup, the PDA100A(-EC) photodetector, in conjunction with a converging lens with
focal length f = 100 mm and diameter 4 cm, is placed approximately 430 mm away from the
atoms, mounted on a breadboard positioned behind the northern side of the chamber. The
converging lens is used to direct more photons onto the sensor. This device is an amplified,
switchable-gain silicon (Si) detector designed to detect light signals in the range of 340 nm to
1100 nm[29]. Figure 2.8 shows the main components of the photodetector system.
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Figure 2.8. The photodetector system circuit with a transimpedance amplifier (TIA).

The Photodetector (PIN Photodiode) is reverse-biased and converts incoming light
(optical power) into a photocurrent. Its responsivity depends on the wavelength of the incident
light power and is defined as:

η = IP D

Plight
(2.1)

where IP D is the generated photocurrent and Plight is the incident light power. For our
detector, the responsivity is η = 0.52 ± 0.2 A/W (see the User’s Guide [29], sec. 6.1 at 780
nm).
The Transimpedance Amplifier (TIA) is implemented using an operational amplifier
(op-amp), which converts the photocurrent into a voltage output. The feedback resistor,
chosen from an eight-position rotary switch that allows the gain to be varied in 10 dB steps,
determines the trans-impedance gain. In this experiment, we selected a gain of G = 4.75 × 106

V/A ±5%.
The Voltage Output is measured on a digital oscilloscope with a 1 MΩ termination chosen
to maximize the output voltage. Since the voltage output is determined solely by the
transimpedance gain and the responsivity, the final output voltage is given by:

Vout = η ·G · Pin (2.2)

2.4.1 Number of atoms estimation

The number of atoms trapped by the MOT can be found from the fluorescence of the atom
cloud. In particular, we start from the power emitted by a single atom:

P0 = Ep ·Rsc (2.3)

where Ep = hc/λ is the energy of a single photon with λ = 780 nm and

Rsc = Γ
2

s0
1 + s0 + (2δ/Γ)2 (2.4)

is the scattering rate considering s ≪ 1.



Hence, the power emitted by N independent atoms is

Pn = P0 ·Natoms (2.5)

and, since the photodiode measures the photons that reach the lens, the fractional solid angle
must be considered σ = D2/(16d2) = 0.98 · 10−3, since the collection lens has a diameter
D = 50 mm and is placed at distance d = 400 mm from the atoms. The power detected by
the photodetector is:

P = Pn · σ (2.6)

Now, from Eq. (2.2), it is possible to obtain the output voltage of the photodetector:

Vout = η ·G · P = η ·G · σ ·Natoms · Ep ·Rsc (2.7)

from which finally, it is possible to obtain the number of atoms in the MOT:

Natoms = Vout

η ·G
1

σ · EpRsc
. (2.8)

To apply this equation, it is necessary to determine s0.
Since in this part of the experiment the AOM was bypassed, the total power delivered by
the fiber is P = 13 mW. The power of the Cooler beam corresponds to 25% of the total
power, as measured using a Fabry-Pérot interferometer. By retro-reflecting each beam, the
total power output from the three collimators is effectively doubled, resulting in Pc = 6.5 mW.
Considering the saturation intensity Is = 1.67 mW/cm2 [18]:

s0 = I

Is
= 2Pc

πw2Is
≈ 1.75 (2.9)

According to Townsend et al. [30], when considering multi-level effects, the effective saturation
parameter is given by s0,eff = s0 · 0.73 = 1.28. However, the number of atoms in the MOT
also depends on other factors, such as the strength of the magnetic field gradient, trapping
laser’s beam diameter, intensity and detuning [31]. In the next chapter, we will analyze its
behavior under a selection of these parameters (Section 3.1).

2.4.2 Trap lifetime estimation

The number of atoms contained in a trap is determined by the balance between the capture
rate into the trap and the loss rate from the trap. When the loss rates due to non-rubidium
background gas collisions and intra-trap atomic collisions are negligible [32], the loading
dynamics of a MOT can be described by:

dN

dt
= R− N

τ
. (2.10)

The number of atoms entering the trap per second is represented by R, while the loss rate
due to collisions with hot rubidium atoms in the background is characterized by 1/τ , where τ
it the trap lifetime.



The loading rate R is given by [33]:

R = 0.5nV 2/3 v4
c

(
M

2kT

)3/2
(2.11)

where n is the density of the Rb atoms, M is the mass, T is the temperature, V is the trapping
volume. The parameter vc defines the maximum velocity of rubidium atoms that can be
captured by the trap. The loss rate, given by 1/τ , is described by:

1
τ

= nσ

(3kT
M

)1/2
(2.12)

where σ represents the cross-section for a vapor-phase atom to collide with, and eject, a
trapped atom. The solution of Eq. (2.10), taking an initial condition of N(t = 0) = 0, reads

N(t) = Ns(1 − e−t/τ ) (2.13)

where the steady-state number of trapped atoms is given by Ns = Rτ . Since the number of
atoms is proportional to the fluorescence signal Section 2.4.1, τ can be determined as a fit
parameter. Additionally, Ns depends on the background pressure through τ [32], as well as
on the trapping laser’s beam diameter, intensity, detuning, and the magnetic field gradient of
the trap [31].

2.5 Imaging system
To observe atoms in the vacuum chamber, a Complementary Metal-Oxide-Semiconductor
(CMOS) camera has been placed on the western side of the chamber (Fig. 1.9). A CMOS
sensor consists of an array of coupled transistors that convert incoming photons into electrical
charges. The efficiency of this conversion is determined by the quantum efficiency of the
device, which depends on the wavelength of the detected photons. The camera used is the
BFS-U3-04S2M-CS, a model from the Blackfly S series, manufactured by Teledyne FLIR. It
is a USB 3.1 monochrome camera, designed for machine vision applications. The camera is
equipped with a Sony IMX287 sensor, featuring a 720 × 540 pixel resolution with a pixel size
of 6.9 µm. FLIR provides a Software Development Kit (Spinnaker SDK) for camera control,
image acquisition, and data processing. In particular, Python support is enabled through the
PySpin library, which in this experiment allows for the configuration of an external trigger
and the adjustment of the exposure time to texp = 0.1 ms. The external trigger signal is sent
from the FPGA to one of the 6-pin GPIO connectors on the camera.

2.5.1 Temperature estimation

The temperature of a gas is defined by its kinetic energy. An atom moving in a three-
dimensional space with v⃗ = vxe⃗x + vy e⃗y + vz e⃗z can be described by the Maxwell-Boltzmann
distribution, which is a probability density function:

f(v) =
(

M

2πkBT

)3/2
4π e− Mv2

2kBT v2 (2.14)



where kB is the Boltzmann constant, T is the atomic temperature, and M is the mass
of a rubidium-87 atom. Fig. 2.9 shows the Maxwell-Boltzmann distributions at different
temperatures. We observe that as the temperature decreases, the distribution narrows (the
standard deviation decreases) and the mean velocity decreases.

Figure 2.9. Maxwell-Boltzmann probability distribution of speeds for
T = 100 K (blue), T = 200 K (orange), T = 300 K (green).

The second moment of this distribution (i.e., the mean of the squared velocity), is:

⟨v2⟩ = 3kBT

M
(2.15)

which shows that the mean squared velocity is directly proportional to the temperature.
Hence, the quadratic velocity can be expressed as a function of T . When the atoms are cooled,
the mean speed approaches zero and the distribution becomes narrower.
In this part of the experiment, the AOM was reintroduced to control the laser beams used for
imaging the atomic cloud. Figure 2.10 illustrates the timing sequence employed (not to scale)
to measure the Time-of-Flight (TOF) of the atomic cloud. This method involves capturing
images at different time intervals after switching off both the cooling laser and the magnetic
field. By analyzing the expansion of the cloud in the absence of external forces, the velocity
distribution of the atoms can be determined.
This sequence is controlled by an FPGA that manages the DDS for both the cooler reference
and the AOM, as well as the MOSFET and the trigger signal. Initially, during the MOT
loading phase, the frequency is set to the optimal 1140 MHz. The AOM is then adjusted to an
amplitude that allows the laser to pass through the chamber, after which the magnetic field is
activated. After 5 seconds, both the magnetic field and the AOM are turned off. At this stage,
the cooler reference frequency is shifted to resonance at 1127 MHz, enabling fluorescence from
the atomic cloud to be captured. A variable delay is introduced before the trigger signal
is activated, allowing the cloud to expand over time; this expansion is used to extract the
velocity distribution. Finally, an image frame is acquired, marking the end of the cycle.



Figure 2.10. Time sequence of a single photo MOT.





3
Results and discussion

3.1 Number of atoms estimation

The Eq. (2.8) provides the equation used to determine the number of atoms trapped in the
vacuum chamber. There are two methods to achieve this measurement:

• The MOT is loaded to its maximum, and then the frequency is switched at a certain
detuning δ/Γ.

• The MOT is loaded at a specific detuning δ/Γ, and then the frequency is switched to
resonance and the atoms fluorescence is recorded.

In the first method, the number of atoms is determined by averaging the peaks and dips
observed during the sweep. This approach also provides information about the Lorentzian
broadening and the beat note of the cooler corresponding to resonance.
In the second method, the fluorescence signal directly yields the number of atoms in the cloud,
although it does not provide additional information.
It is important to note that when referring to the cooler frequencies and the magnetic field
gradient, we are addressing the parameters that can be directly controlled. Specifically, we
refer to the beat note between the master and the cooler, which, as mentioned in Section 2.3.1,
is negative; however, here we consider its absolute value. Similarly, for the magnetic field
gradient, we also sometimes report the values corresponding to the coil current, using the
conversion factor α = 1.332 G/(cm A). For the compensation coils, the conversion between
the controlled current and the resulting magnetic field is approximately 1.4 G/A for each
individual coil.

3.1.1 First method

First, the dynamics of the atom capture were recorded using an oscilloscope and a photodiode
with gain G = (4.75±0.02) ·106 V/A. This measurement allowed us to determine the beat note
corresponding to resonance; therefore, a wide range of detuning was scanned. The gradient
of the magnetic field was studied in the range of 6.66 G/cm to 10.66 G/cm, by varying the
current from 5 A to 8 A. The cooler beat note (in absolute value), |BNphoto|, was scanned
from 1023 MHz to 1050 MHz (see Fig. 3.1 and Appendix A.6). To load the MOT, we must
operate at a negative detuning:

δ = −|BNload| + |BNresonance| < 0 (3.1)

which implies that |BNload| > |BNresonance|. Before selecting the optimal loading frequency
(i.e., the cooler beat note at which we achieve the maximum signal and, consequently, the
highest number of trapped atoms) a scan over different frequencies was performed. It was
determined that the optimal loading beat note for the cooler is |BNload| = 1036 MHz for all
studied magnetic field gradients, except for 10.66 G/cm that is |BNload| = 1042 MHz. The
master laser was locked to the 3′ → 4′ crossover.
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Figure 3.1. Capture dynamics of the MOT photoemission for B′ = 9.32 G/cm value
of the magnetic field gradient, as recorded on the oscilloscope for various beat-note
frequencies (see Appendix A.6 for other results).

Zooming then on the peaks:

Figure 3.2. Close-up view of the MOT photoemission near the peaks, showing how
the signal evolves over time for different beat-note frequencies |BNphoto|.



From the figure above, it is evident that the signal exhibits several peaks and dips. When
the frequencies are below the loading frequency—that is, when |BNphoto| < |BNload| (with
|BNload| equal to 1036 MHz or 1042 MHz for B’= 10.66 G/cm) —we observe peaks that
increase in amplitude as they approach resonance in absolute value (the precise resonance
value will be determined later).
Conversely, when |BNphoto| > |BNload|, the signal drops. However, we aim to analyze the
photoemission following Eq. (2.7). To do this, we identify the peaks and drops in the signal by
locating the points where its derivative reaches a maximum or minimum. Then, we compute
the average signal value over a short interval (≃ 0.15 ms) immediately following these extrema
Fig. 3.2. This mean value is taken as the photoemission corresponding to that particular
measurement.
The errors are estimated by combining the standard deviation of the initial background (which
is subtracted from the signal to zero the offset) with the standard deviation computed over
the interval used to determine the peak. Finally a fit is performed using the following function
and assuming s0 = 1.28:

V0 · 1(
1 + 4

( |BNphoto|−|BN0|
∆f

)2
) + y0 (3.2)

where the fit parameters are the amplitude V0, the width ∆f , the beat-note at resonance
BN0 and the offset y0 as shown in Fig. 3.3 (and in Appendix A.6).

Figure 3.3. Lorentzian fit for B′ = 9.32 G/cm (see A.6 for other results)

From the amplitude we obtain the number of atoms:

Natoms = V0
(η ·G · σ · Ep · Γ) · s0 + 1

s0
(3.3)



We observe that ∆f remains approximately 14 MHz even at higher magnetic field gradients,
within the margin of error, as reported in Table 3.1. This result has been further investigated:
while an increasing magnetic field gradient would typically cause more atoms to experience a
wider range of Zeeman shifts (leading to a broadening of the Lorentzian profile) the strong
gradient could also confine the MOT more tightly around the zero-field point.
As a result, the effective volume of the MOT may be reduced, minimizing variations in the
magnetic field gradient experienced by the atoms. However, if ∆f were primarily due to
power broadening, replacing ∆f with

Γ′

2π = Γ
2π

√
1 + s0

would yield s0 = 9, which differs significantly from our estimated value of 1.75. This
discrepancy suggests that further measurements should be performed in the absence of the
magnetic field. Furthermore, for each magnetic field gradient, the number of atoms can be
determined by substituting the fitted value into V0 in Eq. (3.3). The corresponding values are
reported in Table 3.1. The associated errors are obtained by propagating the uncertainties in
the fit parameter ∆V0, the gain ∆G, the responsivity ∆η, and the fractional solid angle ∆σ.

Magnetic field gradient (G/cm) 6.66 7.99 9.32 10.66
∆f (MHz) 14.6 ± 1.3 17.5 ± 8.1 13.7 ± 0.6 16.6 ± 7.7

Number of atoms (106) 8.35 ± 2.09 7.06 ± 1.77 6.52 ± 1.63 11.43 ± 2.86

Table 3.1. Number of trapped atoms and the width ∆f (MHz) for different magnetic field
gradient values.

It can be observed from Table 3.1 that the number of trapped atoms varies significantly between
the first three values (obtained for B′ = 6.66, 7.99, 9.32 G/cm) and B′ = 10.66 G/cm. These
differences are primarily due to the choice of |BNload|. In particular, for B′ = 9.32 G/cm, the
number of trapped atoms deviates significantly from its optimal |BNload|, as will be discussed
in the following section. As a result, it does not reach the maximum atom number that could
be captured with its optimal value.
We can anticipate that, with the optimal |BNload|, the number of trapped atoms would
increase by 40%, making it comparable to the value obtained for B′ = 10.66 G/cm, which is
confirmed in the following section.

3.1.2 Second method

In this part of the experiment, we employed various values of |BNload| and then switched
to the resonance frequency previously determined as |BN0| = 1027 MHz. In this method,
the beat note for each loading is chosen between 1032 MHz and 1048 MHz, while different
magnetic field gradients ranging from 5.33 G/cm to 14.65 G/cm are investigated by varying
the coils current from 4 A to 11 A in steps of 1 A. The dynamics observed on the oscilloscope
are shown in Fig. 3.4 and in Appendix A.6 for four selected magnetic field gradient.



Figure 3.4. Time traces of the MOT fluorescence for different cooler beat-note
frequencies (from 1032 MHz to 1044 MHz) and for a magnetic field gradient of B′ =
9.32 G/cm. These oscilloscope measurements illustrate how the loading dynamics
vary with detuning and magnetic field gradient (see Appendix A.6), allowing us to
identify the conditions that maximize the number of trapped atoms.

This methodology enables us to determine the detuning and the magnetic field gradient that
maximize the number of captured atoms.
The peaks, Vmax, indicate which loading detuning captures the most atoms, as the highest
peak value corresponds to the maximum fluorescence, which is proportional to the number of
atoms (essentially serving as a "photo"). See Fig. 3.5 and Fig. 3.7 .
It is also noticeable that the signal is significantly smaller compared to the previous experiment,
likely due to a vacuum leak on the hollow-core fiber that was discovered later, which led to an
increased background pressure.
To determine whether the issue is caused by a vacuum problem, one can estimate the ratio
between the voltage at which the MOT signal stabilizes after switching on the magnetic field
gradient, Vload, and the trap lifetime constant τ . This ratio should remain constant across
different experiments if all other parameters are unchanged [34, 35]. However, in Fig. 3.5 is
shown the voltage peak values for a magnetic field gradient of B′ = 9.32 G/cm (see A.6 for
other results).
Moreover, the background signal Vbkg, along with Vload as previously defined, is shown for only
one magnetic field gradient value in Fig. 3.6. Given that the background signal originates from
hot atoms, i do not expect it to depend on the cooler frequency over a range of approximately
10 MHz, as the Doppler width is 520 MHz, as mentioned in Appendix A.4.
Once again, using Eq. (2.7), we can determine the number of captured atoms (Fig. 3.7 and
Appendix A.6). In this case, since we are on resonance, no beat note is involved in the
scattering rate. Therefore, the scattering rate is given by

Rsc = Γ
2

s0
1 + s0

and the corresponding errors are calculated using the same method as before, yielding ∆Na.



Figure 3.5. Measured peak voltages for B′ = 9.32 G/cm as a function of the cooler beat-note
frequency, with error bars representing the standard deviation of the background subtracted
to set the offset (see A.6 for others).

Figure 3.6. Above: Background signals. Below: Stabilized voltage measurements. Both
corresponding to a specific magnetic field gradient value (B′ = 9.32 G/cm), plotted against
the cooler beat-note frequency. The error bars represent the standard deviations of the
background, subtracted to set the offset.



Figure 3.7. Number of trapped atoms as a function of the cooler beat-note frequency for a
magnetic field gradient value of B′ = 9.32 G/cm. The error bars indicate the uncertainties in
the atom number measurements (see A.6 for other results).

In Table 3.2 we report the maximum number of atoms in the MOT and the corresponding
optimal detuning, for each magnetic field gradient.

B′ (G/cm) δ/Γ Na (106) B′ (G/cm) δ/Γ Na (106)
5.33 −1.5 5.82 ± 1.80 10.66 −2.2 8.53 ± 2.50
6.66 −1.8 7.82 ± 2.23 11.99 −2.5 8.01 ± 2.16
7.99 −1.8 8.60 ± 2.61 13.32 −2.5 7.51 ± 2.13
9.32 −2.2 8.75 ± 2.36 14.65 −2.8 6.55 ± 1.82

Table 3.2. Optimal detuning in terms of δ/Γ and corresponding atom numbers (Na) for
different magnetic field gradients B′.

It can be observed that increasing the current supplying the MOT coils, i.e. increasing the
magnetic field gradient, leads to a higher optimal detuning. This is because as the magnetic
field gradient increases, the Zeeman shift becomes larger, necessitating a greater detuning to
compensate.
From these two methodologies for measuring the number of captured atoms, it can be confirmed
that the MOT traps approximately 107 atoms under optimal detuning and magnetic field
gradient conditions. Furthermore, as shown in Fig. 3.7, the number of trapped atoms can vary
significantly depending on the cooler beat-note frequency. In particular, for B′ = 9.32 G/cm,
the atom number increases by approximately 40% when shifting from a beat-note frequency of
1036 MHz to the optimal value of 1040 MHz, confirming the findings of the previous section.



3.2 Optimal Magnetic Field gradient
Once the optimal detuning value is obtained, we can determine the optimal magnetic field
gradient at which the maximum number of atoms is captured. In our experiment, this occurs
for B′ = 9.32 G/cm.

Figure 3.8. Comparison of the measured optimal voltage peak (Vmax) and the corresponding
number of trapped atoms as functions of the magnetic field gradient.

This behavior is consistent with the findings of [31]. For the magnetic field gradient value
that captures the largest number of atoms, namely B′ = 9.32 G/cm, we carried out a more
precise study of the optimal detuning. However, considering an uncertainty of 1 MHz per
laser, we set the optimal detuning for B′ = 9.32 G/cm to 1040 MHz.

Figure 3.9. MOT fluorescence at B′ = 9.32 G/cm as a function of the cooler beat-
note frequency, illustrating the approach to the optimal detuning near 1040 MHz.



3.3 Studying Pressure
Since the signal was low, we investigated the vacuum chamber pressure. Since there is no
pressure gauge in the main chamber, an estimate of the pressure is only obtained by the
ion pump current. To compare, we decided to have an independent estimate by analyzing
the background voltage, i.e. the photodetector signal while illuminating the chamber at the
loading frequency BNload with no current supplying the MOT coils (see Table 3.3). This
background signal is proportional to the atomic density, which is in turn proportional to the
pressure, assuming the pressure is primarily due to rubidium.
We performed this study under different conditions. As shown in Fig. 3.10, in the morning the
rubidium source was left on, and we measured the background signal (blue point). Later, with
the rubidium valve open, the pressure rose, and by the afternoon the background signal was
higher (light red point). After these measurements, we closed the rubidium source; 20 minutes
later, we took a new measurement that showed a lower background signal (indicating lower
pressure). The following day, with the valve still closed, we recorded another measurement
(purple curve). We then opened the valve and took measurements every 30 minutes, observing
a gradual increase in pressure (shown by the yellow and dark red curves, respectively).
The Fig. 3.11 presents all measurements taken under various experimental conditions, with
colors corresponding to the description above. It also includes data at different beat-note
cooler frequencies, as these measurements were part of the experiment described earlier, where
the number of atoms was compared at different frequencies. They are retained here as they
provide additional context for analyzing and comparing background signals.

Figure 3.10. Evolution of the background voltage (Vbkg) over time, showing how the pressure
in the vacuum chamber changes under different operating conditions (e.g., valve open or closed).
The color-coded points indicate individual measurements with their respective uncertainties,
illustrating how the rubidium source and valve states affect the measured voltage (and thus
the chamber pressure).



From Fig. 3.10, it can be observed that over a 24-hour period, the background signal, which
provides information about the pressure, decreased from 0.051 V to 0.008 V, corresponding
to a reduction of approximately 80%. Consequently, the pressure is expected to decrease by
the same proportion. However, this is not an efficient method, as achieving a higher or lower
pressure requires manually adjusting the rubidium source valve and subsequently analyzing
the background signal. A more reliable approach would be to control the pressure in real
time by monitoring the ion pump current. Ideally, a more sensitive measurement would be
preferable, as Table 3.3 shows that the current reading is not highly sensitive.

Figure 3.11. Background voltage (Vbkg) measured at various cooler beat-note frequencies,
illustrating how the chamber pressure (inferred from the background signal) changes under
different conditions. The color-coded points represent measurements taken at different times
or valve states.

Ion pump current (µA) 1 2 2 0.9 0.9 0.9
Vbkg (mV) 51 ± 1 55 ± 1 30 ± 1 8 ± 1 22 ± 1 29 ± 1

Table 3.3. Ion pump currents compared to the background voltage. Both follows from left
to right the temporal sequence in Fig. 3.10.

As seen in Fig. 3.10, the currents, which should be on the order of nA, are significantly higher,
indicating that vacuum issue had already begun to arise. However, it is evident that measuring
the background voltage Vbkg provides a more accurate and sensitive assessment than the ion
currents, as previously discussed.



3.4 Trap lifetime estimation

In this section, we study the trap lifetime using Eq. (2.13) and its dependence on detuning,
magnetic field gradient, and pressure. From the oscilloscope data, I decided to remove the spike
caused by electronic fluctuations when the magnetic field is switched on, as these fluctuations
could affect the fitting of the parameter τ of the fit. In Fig. 3.12 we present both the original
data and the data with the spike removed, while in Fig. 3.13, we show the corresponding fit
obtained for a specific detuning and magnetic field gradient value.

Figure 3.12. Example of the MOT loading curve at B′ = 9.32 G/cm with a cooler beat-note
of 1040 MHz. The original and smoothed fluorescence signals over time, showing the removal
of a spike.

Figure 3.13. Example of the MOT loading curve at B′ = 9.32 G/cm with a cooler beat-note
of 1040 MHz. A fit to the data without the spike for determining the lifetime τ , with the
best-fit value indicated in the legend.



From Fig. 3.13, it is evident that the error on τ is significantly underestimated. As a result,
the χ2 value is notably large. To obtain a more accurate estimation of the error, I performed
fits on seven values of the magnetic field gradient at B′ = 9.32 G/cm at |BNload| = 1040
MHz, obtaining the values reported in Table 3.4. From the weighted average, we obtain
τ = 0.356 ± 0.008 s.

τ (s)
0.37178 ± 0.00045 0.37013 ± 0.00037 0.35366 ± 0.00042

τ (s)
0.36202 ± 0.00040 0.31372 ± 0.00035 0.34624 ± 0.00037 0.34143 ± 0.00041

Table 3.4. Values of τ obtained from the fit of seven independent measurements with a
magnetic field gradient of B′ = 9.32 G/cm at |BNload| = 1040 MHz.

This analysis should be conducted for each value of detuning and magnetic field gradient
to achieve a more precise study and to clarify the trend shown in the following figures.
Nevertheless, this extended analysis could not be performed. To provide insight into the
behavior, the values of τ are still reported with the uncertainties given solely by the fits.
We first studied the behavior of τ for different detunings at a fixed magnetic field gradient.
Then, for the optimal detuning at each magnetic field gradient, we examined how τ varies
with the magnetic field gradient. See Fig. 3.14.

Figure 3.14. (Left) trap lifetime τ as a function of the cooler beat-note frequency at a fixed
magnetic field gradient( B′ = 9.32 G/cm). (Right) τ values at the optimal detuning for each
magnetic field gradient, illustrating how the trap lifetime depends on both detuning and field
strength.



This behavior is not straightforward to model. In Section 2.4.2, we ignored inelastic intra-trap
collisions (characterized by a rate constant β) and did not delve into the details of losses due
to collisions with the hot background (τ). The complete solution can be written, following
[34], as

Nst = R

Γ
(
1 − e−Γt), (3.4)

where now

Γ = γ + β n̄, (3.5)

n̄ is the mean density of the trapped atoms, and γ = τ−1 can generally be expressed as

γ =
∑

i

ni ⟨σi vi⟩, (3.6)

where the sum runs over the different gas species i, with density ni, speed vi, and collision
cross section σi. Through further calculations (see [34]), one finds

γi ∝ Pi U
− 1

6
trap, (3.7)

where Utrap represents the trap depth, which depends on the experimental parameters and
Pi is the partial pressure. Typically, Utrap/kB ∼1 K, making γ only weakly dependent on
Utrap. However, for shallower traps, Gensemer et al. [36] showed that the loss rate varies
significantly with Utrap. The behavior observed in the figures can therefore be explained by
noting that trap losses follow the “strength” of the trap potential, which is more effective at
suitable detunings and magnetic field gradients.
Regarding intra-trap collisions, at low laser intensities the trap is sufficiently weak that
inelastic ground-state hyperfine-changing (∆F ) collisions can eject both colliding atoms from
the trap [36]. Since the laser intensity is low, this factor also contributes to the losses.
Anyway, we once again neglect intra-trap collisions, as our goal is to study the dependence of
the trap lifetime on pressure, and this simplification allows for a more straightforward analysis.
From Eq. (3.7), and considering that γ = 1/τ , we can express the inverse trap lifetime (trap
loss rate) as:

1
τ

= αPRb + ηPnon−Rb (3.8)

Thus, by plotting 1/τ as a function of the rubidium pressure, which, based on the analysis in
Section 3.3, corresponds to Vbkg, we observe a linear trend.
However, as shown in Fig. 3.15, despite this linear behavior, obtaining a reliable linear fit of
the form y = ax+ b is challenging. This difficulty might arises primarily from vacuum-related
issues, which cause fluctuations in the value of b from one measurement to another, introducing
uncertainties that affect the accuracy of the fit. Additionally, the limitations of measuring
pressure through the background voltage, an approach that might not be inherently optimal
for this type of measurement, further contribute to this challenge.



Figure 3.15. Variation of the trap loss rate τ−1 with the measured background
pressure, illustrating the relationship τ−1 ∝ P discussed in Section 3.3

3.5 Temperature estimation

Before proceeding with the analysis of the atomic cloud expansion, a study was conducted by
positioning the camera at the top (zenith) window of the vacuum chamber to investigate the
potential effects of external magnetic fields (e.g., the Earth’s magnetic field) on its expansion.
The procedure followed was the same as that described in Section 2.5.1.

It was observed that when compensation magnetic fields were added along the North-West
plane (the one visible from the camera positioned at the zenith), the MOT shifted significantly
from its center (as identified in the photo by the HCPCF located beneath the MOT), and during
the expansion its center of mass was notably displaced. We examined various configurations
for the West-East and North-South magnetic fields, but the best performance and expansion
were achieved when no compensation fields were applied along these axes. In Fig. 3.16, we
show a photo obtained from this camera with no compensation field applied.

Then, the camera was positioned on the West side of the vacuum chamber, and the field
compensation along the Zenith-Nadir axis was studied in two configurations: one with the
compensation coils active (using a current of −1A, corresponding to 1.5 G) and one with no
compensation Fig. 3.17.



Figure 3.16. Camera at the Zenith side of the vacuum
chamber, and a exposure time of the camera texp = 0.2 ms

Figure 3.17. Camera at the West side. Left image: Compensation coils acting on Zenith-
Nadir axis, Right image: no compensation field applied.

These results show a slight difference in both the position and shape of the cloud. For the
expansion study, we chose to analyze the case without any compensation because it exhibits a
more spherical shape, making it easier to determine the center of mass. It should be noted that
the magnetic field of the ion pump also has an effect, but it is more difficult to compensate
for.
Hence, we studied the expansion of the MOT without any compensation field. We acquired
images over a time range from 1 ms to 20 ms, in 1 ms increments, starting from the moment
when both the laser and the magnetic field gradient were switched off. In Fig. 3.18 a subset
of these images is shown, clearly illustrating the expansion of the MOT cloud.



Figure 3.18. A subset of images illustrating the MOT expansion at various times (1, 3, 4,
5, 7, 9, 10, 11, 12, 14, 16, 18 ms) after the laser and magnetic field are switched off. The
sequence clearly shows the gradual spread of the atomic cloud once the confining forces are
removed.

Before proceeding with the temperature analysis, it is necessary to determine the magnification
of the camera. This can be achieved by considering that when the compensation coils are
activated, the MOT is displaced. The magnification can be expressed as

M = ∆xCMOS
∆xMOT

, (3.9)

where ∆xCMOS is the displacement of the center-of-mass observed on the camera (taking into
account the pixel size of 0.0069 mm), and ∆xMOT is the actual displacement of the MOT. The
latter can be determined from the fact that the zero of the magnetic field shifts according to

0 = ∂Bx

∂x
· ∆xMOT +B0 =⇒ ∆xMOT = −B0

(
∂Bx

∂x

)−1
(3.10)

With ∂xB = 1.332 G/(cm · A) × 7 A = 9.32 G/cm, B0 = 2 A × 1.4 G/A, representing the field
generated by the compensation coils, the resulting displacement is ∆xMOT ≃ 3.0 mm.
To measure the corresponding displacement captured by the camera, two configurations were
studied, with coil currents set to 2 A and −2 A in north-south axis. Due to image saturation
and interference from background noise, the center of mass was not accurately calculated. To
address this issue, the strategy employed was to remove the background (Fig. 3.19).



Figure 3.19. Comparison of the center of mass (red dot) without background in the MOT
images for coil currents of +2A (left) and −2A (right).

Hence from this we’ve obtained a displacement of

∆xCMOS = 1.05 mm
2 = 0.53 mm

and hence

M = ∆xCMOS

∆xMOT
= 0.53 mm

3.0 mm = 0.18

For the temperature estimation, we use the second moment of the position distribution of
Fig. 3.18:

σ2
x =

∑
j nj x

2
j

N
− x2

c , (3.11)

which represents the variance of the atomic cloud along the x-axis.
Here, nj is the intensity (or number of counts) of the j-th pixel, xj is its coordinate, N is
the total intensity (or total number of counts), and xc is the center of mass along x. By
observing how σ2

x evolves over time (after switching off the confining fields in a time-of-flight
experiment), one can fit the resulting data to extract the second moment of the velocity
distribution through ⟨x2⟩(t) = ⟨x2⟩(0) + ⟨v2

x⟩t2. From this, the temperature can be estimated
using a relation of the form

T = M⟨v2
x⟩

kB

where M is the (atomic) mass and kB is the Boltzmann constant. The same procedure applies
along the y-axis, thereby providing a full characterization of the cloud’s temperature in two
dimensions.



Figure 3.20. (Left) Evolution of the center-of-mass coordinates (x,y) as a function of the
time-of-flight (tof). (Right) Second moments of the atom cloud’s position distribution (σ2

x, σ
2
y)

plotted against tof2. These measurements illustrate both the shifting center of mass and the
expanding spatial width of the atomic cloud over time. Note that x and y coordinates refer to
the plane captured by the camera positioned on the west side of the chamber.

Figure 3.21. Second moments of the atomic cloud’s position distribution plotted against
tof2 along with the corresponding fits. (Left) Data processed by selecting a region of interest
(ROI). (Right) Data processed by applying a threshold set to three times the background
level, setting all pixel values below this threshold to zero.

Fig. 3.20 presents the obtained temperatures, Tx = (299 ± 17)µK and Ty = (150 ± 7)µK.
Recalling Eq. (1.47) and Eq. (1.48), and considering δ ≃ −2Γ, Doppler theory predicts
T = 2.1 × 140µK, which is consistent with Tx but deviates from Ty. However, the fact that
the temperature along the y-axis was higher than that along the x-axis raised concerns about
the reliability of these results, especially since the images showed an evident elongation along
the y-axis. Hence, we found that the calculation of the second moments of the atomic cloud’s
position distribution is particularly sensitive to background noise. In particular, the higher
temperature along the x-axis compared to the y-axis may be influenced by the discrepancy in



the number of pixels along the two axes (720 pixels in x vs. 540 pixels in y). To mitigate
background effects, I tested two different approaches: applying a threshold to filter out noise
and selecting a region of interest (ROI) Fig. 3.21. However, the results varied depending on
the chosen threshold or ROI, making the temperature estimates somewhat dependent on these
selections. To reduce this dependence, we instead fitted the one-dimensional projections of
the atomic distribution (row and column sums) with a sum of two Gaussians.

In Fig. 3.22, we present the results. This approach is particularly useful when the atomic
cloud cannot be adequately described by a single temperature or a uniform spatial component.
Instead, it may consist of a colder, denser core surrounded by a broader, warmer ’halo’ or
residual background [30]. By performing a double-Gaussian fit, we can better capture these
distinct components than with a single-Gaussian model.

In Fig. 3.22, we plot the squared widths σ2
x and σ2

y of the narrower Gaussian as a function of
tof2. Tracking how these widths evolve over time allows us to extract the temperature of the
main cloud using the same procedure as before. The temperature obtained for Ty deviate
significantly from those previously determined and even after excluding the last four data
points, Ty appears to have a higher value. The significant discrepancy between Tx and Ty

is likely influenced by the camera not fully capturing the cloud along the y-axis. This effect
is particularly pronounced in the last four data points, which have therefore been excluded.
When fitting a double Gaussian to the integrated profiles along x and y, the estimation
of σy appears to be more sensitive to distortions in the cloud’s shape. If the cloud is not
entirely captured along the y-axis, the fit may return an artificially inflated width, leading to
an overestimated temperature. However, given the limitations of the previous method, this
approach for determining the temperature is more reliable for our analysis, although it would
be preferable to acquire images where the cloud is more centered.

Figure 3.22. squared widths σ2
x and σ2

y of the narrower Gaussian compo-
nent, plotted as a function of tof2.



3.6 Conclusions

In this work, we have characterized the performance of a magneto-optical trap (MOT) by
investigating the dependence of the number of trapped atoms on the laser detuning and the
magnetic field gradient. Through a comparative analysis of two measurement methods, we
have determined that the MOT is capable of trapping approximately 107 rubidium atoms. The
optimal trapping conditions were found to be B′ = 9.32 G/cm and δ = −2.2 Γ. Additionally,
we observed a strong dependence of the number of trapped atoms on the background pressure
inside the MOT chamber. To further investigate this behavior, we found that closing the
rubidium source valve can reduce the pressure by up to 80% over a 24-hour period. However,
since this method does not allow for measurement and precise control, we leveraged these
observations to demonstrate that measuring the background voltage with the magnetic field
gradient turned off can help provide an estimate of the pressure. Furthermore, we analyzed
the trap lifetime τ , which is also inversely proportional to the partial pressure of rubidium.
Under optimal conditions, we obtained a trap lifetime of 0.31 s.
A temperature estimation of the atomic cloud was performed using the time-of-flight (TOF)
method. The velocity distributions along the x and y axes yielded temperatures of Tx =
(288±17)µK and Ty = (150±7)µK, respectively. However, we realized that these temperature
estimates are unreliable due to the influence of background noise, which affects the second
moments of the distribution. To further investigate the temperature, we applied a double-
Gaussian fit to the atomic cloud profile and extracted the temperature from the width of
the narrower Gaussian component. While the temperature along the x-axis, Tx = (252.09 ±
19.96)µK, remained consistent with the previous estimate, the temperature along the y-axis,
Ty = (645.22 ± 26.20)µK, deviated significantly. This discrepancy, which also departs from
the Doppler theory prediction of 2.1 × 140µK, is likely due to the camera failing to fully
capture the atomic expansion along the y-axis. A more accurate estimation of Ty would
require acquiring images with the cloud more centered in the field of view.
These findings provide key insights into the optimization of MOT parameters and serve as a
foundation for future studies involving the transfer of cold atoms into hollow-core photonic
crystal fibers.
One of the main challenges encountered in these experiments was the difficulty in accurately
determining the background pressure, on which the number of atoms strongly depends. In
our setup, pressure is estimated from the ion pump current, but this method has proven to
be unreliable due to the complex relationship between current and pressure, which strongly
depends on the specific pump design [34]. A more reliable alternative is to use the trap lifetime
τ as an indirect measure of the vacuum pressure [34]. However, this approach presents several
challenges, as τ can be affected by additional factors, particularly if the trap depth Utrap is
relatively low and requires further optimization. Moreover, this method does not provide
direct information on the rubidium partial pressure.
Further improvements to the setup could be achieved by increasing the trapping laser intensity
to enhance the confinement of the atoms. However, this is currently limited by the second-
harmonic generation (SHG) system, which could be damaged under high-power beams.
Another crucial adjustment involves optimizing the compensation coils to precisely align
the magnetic field zero with the laser beams above the fiber. This would facilitate the
implementation of the dipole trap and improve the overall efficiency of atom loading into the
hollow-core fiber.



A
Appendix

A.1 Hall probe

The Hall effect sensors exploit the Hall effect. Consider a conductor (as shown in Fig. A.1)
carrying a current Ix along the x-axis in the presence of a magnetic field Bz along the z-axis.

Figure A.1. Schematic representation of the Hall effect in a rectangular conductor. A
current I flows from left to right, a magnetic field B is applied upward, and the resulting
Lorentz force deflects the charge carriers to one side, generating the Hall voltage VH .

The moving charge carriers (electrons) experience a Lorentz force given by

F⃗L = q v⃗ × B⃗, (A.1)

which deflects the electrons toward the y-axis. Simultaneously, the corresponding holes (or
positive charge carriers) are deflected in the opposite direction. This separation of charge
creates an electric field Ey across the y-axis, which, in turn, establishes a Hall voltage VH .
In steady state, the net force on the charge carriers is zero, so

F⃗ = q
[
E⃗ + v⃗ × B⃗

]
= q (Ey − vxBz) = 0, (A.2)

which implies

Ey = vxBz. (A.3)

The Hall voltage is related to the electric field by

VH = Ey W, (A.4)

where W is the width of the conductor (i.e., the distance between the voltage-sensing contacts).
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The drift velocity vx can be expressed as

vx = Ix

nqWd
, (A.5)

where n is the charge carrier density, q is the elementary charge, and d is the thickness of the
conductor. Substituting this expression for vx into the equation for Ey, we obtain

VH = Ey W = vxBz W = IxBz

nq d
. (A.6)

Thus, the Hall voltage VH is proportional to the product of the current Ix and the magnetic
field Bz, and inversely proportional to the charge carrier density n and the conductor’s
thickness d.
We employed an A3508 linear bipolar Hall-effect sensor Fig. A.2, whose output is proportional
to the magnetic flux density. The sensor’s output voltage ranges between 0 and Vcc, the single
rail supply voltage, with a nominal sensitivity of 2.5 mV/G for Vcc = 5 V. In the absence of a
magnetic field, the sensor’s quiescent voltage is given by VQ = Vcc/2. Each monolithic circuit
integrates several key components: a quadratic Hall element, temperature compensation
circuitry to reduce the intrinsic sensitivity drift of the Hall element, a small-signal high-gain
amplifier, and a rail-to-rail, low-impedance output stage. This ensures that the sensor delivers
a clean, stable signal that accurately reflects changes in the magnetic field [37].

Figure A.2. Simplified block diagram of a linear Hall-effect sensor, showing the Hall element
(X), the internal amplifier, and the three pins (supply, ground, and output).



A.2 Hollow-core photonic crystal fiber
In different applications, there is a need for fibers capable of transporting not only light but
also physical objects, such as nanoparticles, within their core. These fibers are known as
Hollow-Core Photonic-Crystal Fibers (HCPCFs). This is not possible with standard optical
fibers, which typically contain a solid glass core, preventing the insertion of physical objects.
To better understand the principles behind Hollow-Core Photonic-Crystal Fibers, a brief
discussion on Optical Fibers and Polarization-Maintaining Fibers will be introduced. In
particular, the latter played a crucial role in our experiment.

A.2.1 Optical fiber

Regular solid-core optical fibers are cylindrical dielectric waveguides, usually made of silica
glass (SiO2). The absorption spectrum of this material has a minimum at approximately
1550 nm, which is, in fact, the standard telecommunications wavelength [38]. These fibers
consist of a central core with a refractive index n1, where light is guided, surrounded by a
cladding layer with a refractive index n2, and finally protected by a polymeric coating, as
illustrated in Fig. A.3.
The fundamental principle that allows optical fibers to function is total internal reflection.
When the incidence angle θi at an interface between refractive indices n1 and n2 exceeds
the critical angle θc (Fig. A.3), the ray is confined within the fiber. Otherwise, it will be
transmitted into the cladding. The critical angle can be determined using Snell’s Law [39],
yielding :

θc = arcsin
(
n2
n1

)
. (A.7)

As of now, we have considered light as a ray, but a more accurate approach involves treating
light propagation in optical fibers as an electromagnetic wave phenomenon. This requires
solving Maxwell’s equations along with the boundary conditions imposed by the cylindrical
dielectric core and cladding. The special solutions of these equations, known as modes, each
have distinct propagation constants, characteristic field distributions in the transverse plane,
and independent polarization states that remain unchanged as the mode propagates through
the fiber. An optical fiber can be considered as a dielectric medium with a refractive index
n(r). In the simplest case of a step-index fiber ( Fig. A.3), the refractive index is defined as:

n(r) =
{
n1, r < a (core)
n2, r > a (cladding)

(A.8)

where the outer cladding radius is assumed to be much larger than the core radius (b ≫ a),
allowing it to be considered infinite. Each component of the monochromatic electric and
magnetic fields in the fiber satisfies the Helmholtz equation:[

∇2 + n2(r)k2
0

]
U = 0 (A.9)

where U represents the electromagnetic potential, and the vacuum wavenumber is k0 = 2π/λ0.



To solve the Helmholtz equation in an optical fiber, we exploit the cylindrical coordinates
(r, ϕ, z) and we assume a solution of the form [40]:

u(r, ϕ, z) = R(r)eilϕeiβz, (A.10)

where l is an integer representing the angular dependence, and β is the propagation constant
along the z-direction. This leads to a differential equation for R(r) ( see Chapter 9 of [40])
whose solutions are:

R(r) =
{
AJl(k1r), r < a (core)
BKl(k2r), r > a (cladding)

(A.11)

where Jl(k1r) is the Bessel function of the first kind and order l, and Kl(k2r) is the modified
Bessel function of the second kind of order l and:

k2
1 = n2

1k
2
0 − β2, k2

2 = β2 − n2
2k

2
0. (A.12)

Eq. (A.11) gives the radial distribution of the possible bound modes in a step-index optical
fiber with core diameter a. The boundary conditions at the core-cladding interface for the
electric and magnetic fields determine that β has to obey for each mode. In particular, for any
azimuthal index l, there exists multiple solutions to the boundary conditions with discrete
values βlm, m = 1, 2, 3... each representing a different mode. Depending on the properties of
the fibre, a different number of modes can actually propagate through it.

Figure A.3. (a) Cross section of a typical step index optical fibre, highlighting its main
components. (b) Visual representation of Snell-Descartes law. (c) Schematic view of light
ray guiding in a step index fibre: the incoming light is refracted in the fibre core, if and if
its incidence angle at the core-cladding interface is greater than the critical value for total
internal reflection θc, then the ray can be guided by the fibre.



A.2.2 Polarisation Maintaining Fibres

In an optical fiber with a circular cross-section, each guided mode has two independent
polarization states with the same propagation constant. Ideally, no power exchange occurs
between them. However, imperfections, mechanical strains, and temperature variations
can induce random coupling, leading to the transformation of linearly polarized light into
elliptically polarized light at the output.
While this does not affect the total transmitted power and may not pose issues in some
applications, it can be problematic in our experiment and others where maintaining polarization
is crucial. Therefore, Polarization-Maintaining (PM) fibers are required. As shown in Fig. A.4,
none of these fibers exhibit circular symmetry, ensuring polarization preservation.

Figure A.4. Cross section images of various types of PM fibres. Credits:[41]

A.2.3 Hollow-Core Photonic Crystal fiber

Hollow-Core Photonic Crystal Fibers (HCPCFs) address the limitations of solid-core optical
fibers by utilizing photonic crystal structures in the cladding. These structures consist of
periodically varying optical nanostructures that modify the refractive index. Fibers that rely
on this approach are known as Photonic Crystal Fibers (PCFs). Moreover, a core defect is
introduced with a different geometrical shape or refractive index compared to the unit cell of
the cladding.
The Fig. A.5 schematically represents the core and cladding modal content for three distinct
types of hollow-core fibers at a fixed frequency: Total Internal Reflection (TIR), Photonic
BandGap (PBG), and Inhibited Coupling (IC).
The following discussion is based on the review by Debord et al. [42], which serves as the
main reference. As shown in Fig. A.5, the core and cladding modes are further illustrated
by the colored bands along the neff axis, where β = neffk. In the figure, cladding modes
are represented as orange rectangles, while the intensity profiles of the core modes are also
depicted.
In the case of TIR, the cladding is a uniform dielectric with a refractive index ng, allowing
modes to exist only within the continuum where neff ≤ ng. Consequently, the cladding does
not support propagating modes for neff > ng. However, introducing a core defect with a
higher refractive index ndg enables the guidance of discrete core modes within the range
ng < neff < ndg. These modes remain confined within the core, as the cladding prevents the
propagation of modes at their respective effective indices.



The PBG utilizes a structured cladding instead of a uniform refractive index and this can
overcome of an higher refractive index. This structure gives rise to bands, where cladding
modes exist, and gaps, where no cladding modes are allowed. The photonic bandgap effect
enables mode confinement even for neff ≤ nair = 1, thereby supporting guided modes in
hollow-core defects filled with gases.
A distinct guiding mechanism, known as Inhibited Coupling (IC), is illustrated. Unlike
TIR or PBG fibers, IC guidance does not require a higher-index core or a photonic bandgap
structure. Instead, core and cladding modes can coexist, maintaining the same (ω, neff) while
remaining isolated from each other without hybridization or leakage. This is possible because
modes with the same neff do not necessarily share the same wavevector. IC guidance has the
overlap between the core mode field |ϕcore⟩ and the cladding field |ϕclad⟩ significantly reduced.
Mathematically, this condition is expressed as:

⟨ϕclad| ∆n2 |ϕcore⟩ → 0, (A.13)

where ∆n represents the transverse refractive index profile function. This condition can be
achieved by either reducing the spatial overlap between core and cladding photonic states or
by introducing a strong mismatch in their transverse spatial phase.

Figure A.5. Modal content representation of the three different optical guiding fibres: (a)
Total Internal Reflection (TIR); (b) Photonic Band Gap (PBG); (c) Inhibited Coupling (IC).



A.3 Photodetector Gain
In order to study the photodiode’s response to the atomic cloud’s photoemission, a Thorlabs
Mounted Absorptive Neutral Density (ND) filter with a specified optical density (OD) was
installed above it. This setup simulates the few milliwatts of power that will impinge on
the photodiode, allowing us to determine the appropriate gain to employ. This ND has a
broadband antireflection coating for the 650 - 1050 nm range (near IR) deposited on both
surfaces. Optical density (OD) indicates the attenuation factor provided by an optical filter, i.e.
how much it reduces the optical power of an incident beam. OD is related to the transmission,
T , by the equation [43]:

OD = log10

( 1
T

)
(A.14)

where T is a value between 0 and 1. Choosing an ND filter with a higher optical density will
translate to lower transmission and greater absorption of the incident light. Sometimes the
measure in dB is useful, hence OD can be written also in this way:

ODdB = 10 log10

(
Pin

Pout

)
(A.15)

Using the Digital Power Analyzer, we measured the power levels before and after the ND filter
(Table A.2). We then examined the response of our photodiode to an input light source and
evaluated the effect of different gain levels. Table A.1 illustrates the relationship between the
photodiode gain (in dB) and the photodiode voltage (PD) at an OD setting of 34 dB. Multiple
ND filters were combined to simulate the low signal levels anticipated in MOT photoemission
measurements

Gain (dB) PD (mV )
0 18
10 32
20 55
30 125
40 348
50 1045
60 3380
70 10420

Table A.1. Photodiode gain (in dB) and the pho-
todiode voltage (PD) at an OD setting of 34 dB.

Pout (mW) OD (dB) Pin (mW)
0.62 5 1.60
0.58 6 1.60
0.28 10 1.60
0.12 13 1.60

0.0039 34 1.53

Table A.2. Power values before (P in)
and after (P out) applying the ND filter.

However, the polarizer positioned before the photodiode reduces the power reaching the
photodiode. Additionally, we measured the saturation voltage, Vsat = 10.890 V and VDark = 15
mV.



A.4 Saturated Absorption Spectroscopy

Rubidium (85Rb) atoms exhibit hyperfine splitting on the order of tens or even hundreds of
megahertz. In a simple absorption spectroscopy setup, it’s often not possible to resolve these
hyperfine components due to Doppler broadening. The Doppler width ∆ωD for an atomic
transition can be estimated using a Maxwell-Boltzmann velocity distribution at temperature
T :

∆ωD = ω0

√
8 kB T

mc2 , (A.16)

where ω0 = 2π × 384 THz [28] is the transition frequency in the rest frame of the atom, kB is
the Boltzmann constant, m ≃ 1.41 · 10−25 kg is the mass of the atom, c is the speed of light,
and T is the temperature of the atomic vapor, in this case ∆ωD ≃ 2π × 520 MHz. Hence
∆ωD becomes comparable to or larger than the hyperfine splittings.
Saturated absorption spectroscopy (often called Doppler-free spectroscopy) [20] is a technique
that overcomes Doppler broadening by exploiting velocity-selective saturation. The setup
typically involves two counter-propagating beams:

• A pump beam, which is intense enough to saturate the transition for a specific velocity
class of atoms.

• A probe beam, which is weaker and monitors the absorption at or near the same
frequency.

Figure A.6. Basic schematic of a saturated absorption setup, showing a strong pump beam
and a weaker probe beam counter-propagating around an atom moving with velocity v⃗ in the
lab reference frame. Here, Ω is the Rabi frequency, proportional to the laser intensity.

In the laboratory frame, an atom moving with velocity v⃗ experiences different Doppler shifts
for each beam:

ωprobe = ωL + kprobe · v, ωpump = ωL − kpump · v, (A.17)

where kprobe and kpump are the wavevectors of the probe and pump beams, respectively, with
the sign convention determined by Fig. A.6, and ωL is the laser frequency. An atom absorbs
a photon if its frequency matches the resonance frequency of a hyperfine atomic transition,
denoted ω0. Consequently, only those atoms with sufficiently small velocity components along
k⃗ can simultaneously interact with both beams at the unshifted, intrinsic transition frequency.
Because the pump beam is intense, it saturates the transition for those atoms, causing them to
spend a significant fraction of the time in the excited state and thus reducing their probability
of absorbing the probe beam. In effect, a “hole” is burned in the velocity distribution of
ground-state atoms that would otherwise absorb at the probe frequency. This phenomenon
appears as a narrow peak (or a dip in absorption) when scanning the laser frequency. In many
references, this feature is referred to as a Lamb dip or transparency peak [20].



Figure A.7. The saturation spectrum for a degenerate pump-probe pair, i.e. with the same
frequency. Without a pump ( Ω = 0), we simply get the Doppler-broadened line. As the
pump becomes stronger, the dip becomes more pronounced.

Fig. 2.7 shows a the basic arrangement for saturated absorption spectroscopy: a single laser
is split into pump and probe paths. The pump beam is sent through the vapor cell in
one direction, and the probe beam is sent in the opposite direction, then measured with a
photodiode. The resulting saturated absorption profile can exhibit very narrow features (well
below the Doppler width), allowing resolution of hyperfine components.

Figure A.8. Saturated absorption spectrum of a Rb vapor.

We have not yet discussed one of the key phenomena in saturated absorption spectroscopy:
the crossover resonance. In real, multi-level atoms, two additional features arise: the crossover
resonance and optical pumping, which are associated, respectively, with the presence of multiple
upper levels and multiple lower levels to which an excited level can decay.



If multiple transitions lie within the Doppler width, one would naturally expect the saturation
spectrum to exhibit a Lamb dip for each individual transition. However, crossover resonances
introduce additional, narrow absorption dips. Consider the following scenario, as illustrated
in Fig. A.9:

• We have two excited energy levels, labeled 1 and 2, with resonance frequencies to the
ground state (labeled 0) given by ν1 and ν2, respectively.

• The separation |ν1 − ν2| is smaller than the Doppler width, so without the pump beam
the net absorption profile is the sum of two Gaussian lines centered at ν1 and ν2, which
would appear as a single broadened absorption profile.

Figure A.9. Schematic of the crossover
resonance system.

Figure A.10. Saturated absorption spectrum of
a three-level atom.

When the pump beam is turned on, two “holes” are burned in the ground-state velocity
distribution at the velocities corresponding to resonance with ν1 and ν2. These velocity classes
depend on the laser frequency ωL. For instance, at ωL = ν1, the probe absorption involving
upper state 1 originates from atoms near v ≈ 0, while the probe absorption involving the
higher-energy state 2 comes from some nonzero, positive-velocity atoms. At this frequency,
the pump beam burns one hole in the ground state for v ≈ 0 atoms (due to upper state 1)
and another hole for some positive-velocity atoms (due to upper state 2).
As in a two-level system, the hole at v ≈ 0 reduces absorption to upper state 1 and yields
a saturated absorption dip at ωL = ν1. A similar argument shows there is also a saturated
absorption dip at ωL = ν2.
A third dip, the crossover resonance, arises at a frequency midway between ν12 = (ν1 + ν2)/2,
where the pump and probe beams become resonant with the same velocity group but on
different transitions. Atoms in this velocity group are resonantly excited to state 1 by the
probe and to state 2 by the pump:{

ν1 = ωL − kprobev

ν2 = ωL + kpumpv
⇒
{

2ωL = ν1 + ν2

2kpumpv = 2ν2 − ν1
(A.18)



Consequently, the pump beam burns a hole in the ground-state population at the above
velocity, and this hole affects the absorption of the probe beam, which is simultaneously
interacting with these same velocity. This leads to an additional, narrow dip in the absorption
profile precisely at the crossover of ν1 and ν2, giving rise to the characteristic crossover
resonance observed in saturated absorption spectroscopy.



A.5 87Rb and 85Rb D2 transition hyperfine structure
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1Figure A.11. 87Rb D2 transition hyperfine structure, with frequency splittings between
the hyperfine energy levels. Credits: [18]
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1Figure A.12. Rubidium 85 D2 transition hyperfine structure, with frequency splittings
between the hyperfine energy levels. Credits: [28]



A.6 Results

A.6.1 Number of atoms estimation-First method

Figure A.13. Capture dynamics of the MOT photoemission for B′ = 6.66 G/cm, as recorded
on the oscilloscope for various beat-note frequencies.

Figure A.14. Capture dynamics of the MOT photoemission for B′ = 7.99 G/cm, as recorded
on the oscilloscope for various beat-note frequencies.



Figure A.15. Capture dynamics of the MOT photoemission for B′ = 10.66 G/cm, as recorded
on the oscilloscope for various beat-note frequencies.

Figure A.16. Lorentzian fit for B′ = 6.66 G/cm.



Figure A.17. Lorentzian fit for B′ = 7.99 G/cm.

Figure A.18. Lorentzian fit for B′ = 10.66 G/cm.



A.6.2 Number of atoms estimation-Second method

Figure A.19. Time traces of the MOT fluorescence for different cooler beat-note frequencies
(from 1032 MHz to 1044 MHz) and magnetic fields gradient B′ = 6.66 G/cm.

Figure A.20. Time traces of the MOT fluorescence for different cooler beat-note frequencies
(from 1032 MHz to 1044 MHz) and magnetic fields gradient B′ = 11.99 G/cm.



Figure A.21. Time traces of the MOT fluorescence for different cooler beat-note frequencies
(from 1032 MHz to 1048 MHz) and magnetic fields gradient B′ = 14.65 G/cm.

Figure A.22. Measured peak voltages for B′ = 6.66 G/cm as a function of the cooler
beat-note frequency, with error bars representing the standard deviation of the background
subtracted to set the offset.



Figure A.23. Measured peak voltages for B′ = 7.99 G/cm as a function of the cooler
beat-note frequency, with error bars representing the standard deviation of the background
subtracted to set the offset.

Figure A.24. Measured peak voltages for B′ = 11.99 G/cm as a function of the cooler
beat-note frequency, with error bars representing the standard deviation of the background
subtracted to set the offset.



Figure A.25. Measured peak voltages for B′ = 14.65 G/cm as a function of the cooler
beat-note frequency, with error bars representing the standard deviation of the background
subtracted to set the offset.

Figure A.26. Number of trapped atoms as a function of the cooler beat-note frequency for
B’=6.66 G/cm.The error bars indicate the uncertainties in the atom number measurements.



Figure A.27. Number of trapped atoms as a function of the cooler beat-note for B′ =
7.99 G/cm frequency for four different magnetic field gradient values .The error bars indicate
the uncertainties in the atom number measurements.

Figure A.28. Number of trapped atoms as a function of the cooler beat-note frequency for
B′ = 11.99 G/cm.The error bars indicate the uncertainties in the atom number measurements.



Figure A.29. Number of trapped atoms as a function of the cooler beat-note frequency for
B′ = 14.65 G/cm. The error bars indicate the uncertainties in the atom number measurements.
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