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Abstract

The complex network framework has been successfully applied across various fields, from
biochemistry to artificial intelligence. This dissertation studies an information-theoretic
approach to complex networks based on quantum information.

We define a network entropy using the von Neumann entropy, where the density
matrix is proportional to the exponential of the Laplacian matrix, scaled by a parameter
β. This formulation provides a novel perspective on network dynamics, enabling the
characterization of structural complexity.

Furthermore, we establish a connection between this density matrix approach and the
evolution of quantum walks in the presence of thermal noise. Specifically, we show that
the stationary distribution of a quantum walk on a network in contact with a thermal
bath at temperature T = 1/β leads to the same formulation. The interactions with the
bath are analyzed through the Lindblad master equation. The temperature T regulates
the contribution of the possible routes where the information can take as it travels across
the network: at lower temperatures, eigenstates with high eigenvalue are suppressed,
influencing the system’s relaxation dynamics. However, the quantum walk requires that
the Laplacian is Hermitian. Thus, the analogy holds only for networks that satisfy the
detailed balance condition.

Finally, we introduce Kullback-Leibler and Jensen-Shannon divergences based on
network entropy, which define a distance between networks according to their relaxation
behavior. However, these measures rely solely on the network spectrum and thus cannot
distinguish between different networks with the same spectral properties.

These findings provide a deeper understanding of network complexity and open new
avenues for applying quantum information tools to the study of complex systems.
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Introduction

Traffic congestion in the morning, airport scheduling, and even the functioning of the
brain are all systems that can be naturally analyzed through complex networks. In such
networks, vertices represent elements, and links define their interactions: airports and
neurons serve as vertices, while flights and synapses act as links.

The foundations of graph theory trace back to 1736, when Euler introduced his famous
problem about the Seven Bridges of Königsberg [1]. The challenge was to find a route, if
it existed, that crossed all the seven bridges connecting the two islands on the Pregel
river to the rest of the city exactly once. Euler solved the problem by eliminating all the
irrelevant details and focusing just on the sequence of the bridges. In other words, he
reformulated the problem considering the islands and the riverbanks as nodes and the
bridges as links. Graph theory was begun. One of its successes was the proof of the five
color problem. It declared that given a plane divided into regions, such as a political
map, those regions could always be colored using no more than five different colors, such
that two neighboring regions did not share the same color [2, 3].

With the spread of the graph theory through different fields and the complexity of
the networks grew, the necessity to reproduce reliable artificial networks using basic
algorithm became crucial. The first answer was given by Erdős and Rényi [4, 5] with their
random graphs. This model has been extensively studied and served as a foundational
framework for decades. However, due to the increasing of the data and computational
power, the Erdős-Rényi model started failing to capture the behavior of the real network
like Internet. In fact, real networks present strong hubs and short distances, features that
this model did not have. To answer the new question, in the last 40 years many model
has been proposed and studied, each with their unique properties [6, 7]. The network
theory was born.

Real-world network problems are inherently dynamic, necessitating the integration of
dynamical models. The simplest dynamical process we can consider is the random walk,
a single particle wandering across the network. Despite its simplicity, the random walk
on network has proven to be a powerful tool, forming the basis of various algorithms [8,
9, 10].

With the progresses in quantum computing, many point of contact between quantum
information and network theory arose. One of the most important connection is the
quantum walk model. It is the quantum equivalent of the classical random walk on
network. Due the quantum effects, its behavior differs substantially from its classical
counterpart [11]. There are two different way to deal with time in quantum walks. We
can consider a discrete time and the motion is ruled by a quantum coin tossed at each
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INTRODUCTION

timestep [12]. Otherwise, we consider the time as continuous and the evolution is ruled
by the Schrödinger equation with the Laplacian of the network as Hamiltonian [13]. This
dissertation focuses on the latter.

However, despite the progress in network theory, a unified theoretical framework,
particularly concerning information theory and entropy, is still lacking. In the literature,
various attempts have been made to formulate entropy for networks. A notable contribu-
tion was made by Bianconi [14, 15], who considered an ensemble of all possible graphs
with specific properties However, this approach neglected the dynamical aspects of the
system. Another attempt was made by De Domenico [16] who starting from the Estrada
communicability matrix [17], he defined the network entropy as Tr[ρ ln ρ] where ρ = e−βL

is density matrix and L as the Laplacian matrix. This formulation of entropy not only
captured the topological features of the network but also its dynamical behavior. In
fact, the entropy held the property of the relaxation of a random walk. Starting from
there, we expanded the information related quantities introducing The Kullback Leibler
divergence and the Jensen Shannon divergence. This two quantities could be employed
to distinguish between different networks [18].

The density matrix introduced by De Domenico is reminiscent of the density matrix
of a quantum canonical ensemble, with the Laplacian as Hamiltonian. This observation
suggests a deep connection between network entropy and continuous time quantum
walks. In this dissertation, we explore the continuous time quantum walks on a network
with noise, modeled as a thermal bath in contact with the quantum particle. The open
quantum system is studied using the Lindblad master equation. Through this analogy, we
aim to explain the behavior of the entropy and the meaning of the parameter β. These
results have applications in several fields: from the study of the interaction between the
amino acids in proteins, to the management of the urban traffic, passing through the
social interaction on the Internet.

The dissertation is structured as follows. The Chapter 1 provides an introduction to
the Network theory. There we explain the foundation of network, the classic random
walk and the quantum version. The Chapter 2 focuses on the network’s entropy. Starting
from the Estrada communicability matrix, then, defining the density matrix for network,
the network’s entropy and their applications. Before entering the last argument, in the
Chapter 3 there is an introduction to the Markovian open quantum system and the
Gorini-Kossakowski-Sudarshan-Lindblad master equation. The last Chapter 4 explains
the connection between the quantum walk with thermal noise and the network entropy.

The theoretical calculations come with numerical simulations made in python.
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Chapter 1

Introduction to Network Theory

From social interactions and transportation systems to the intricate connections within
biological organisms and the internet, networks provide a powerful framework to under-
stand complex systems. Graph theory, the mathematical foundation of network theory,
offers the tools needed to analyze these interconnected structures.

In this chapter, we introduce the fundamental concepts of network and graph theory,
along with various types of random graphs. Then, we focus on random walks and diffusion
processes on networks, considering both classical and quantum cases, which play a crucial
role in modeling real-world phenomena such as information spread, epidemic modeling,
and quantum transport.

1.1 Introduction to Graph Theory

A graph is defined by an ordinate couple (V,E) where V = {1, 2, 3, ..., n} is the set of
nodes or vertices and E = {(i, j) : i, j ∈ V ; i is linked to j} is the set of links or edges.
Usually, a general graph is denoted as G = (N,M) where N and M are the cardinality
of V and E respectively.

A graph can be described with a N × N matrix called Adjacency matrix which is
defined as

Aij =

{
+1 if j is linked to i

0 otherwise
. (1.1)

The degree di of a node i is the number of nodes to which it is connected. We can
introduce the degree matrix D as Dij = diδij It can be computed from the adjacency
matrix as

di =
∑
j

Aij. (1.2)

Graphs can be grouped mainly into two type: undirected and directed graph. In
the first one if the node i is linked to j then j is linked to i, namely (i, j) = (i, j); its
adjacency matrix is symmetric. In contrast, in the second one, if the node i is linked to j
not necessary j is linked to i, namely (i, j) ̸= (i, j); its adjacency matrix is not symmetric.

An important concept in graph theory is the study of connections between nodes that
are not directly linked by an edge. As a matter of fact, two nodes can be connected

3



CHAPTER 1. INTRODUCTION TO NETWORK THEORY

by passing through multiple other nodes. A walk of length k from node i to node j is
a sequence of nodes (x0, x1, ..., xk) such that x0 = i, xk = j and (xl, xl+1) ∈ E for all
l ∈ {0, ..., k − 1}. A node can be crossed multiple times. If a walk visits each node only
once, it is called a path. A particularly important concept is the shortest path or geodesic
that is the path that crosses the minimum number of nodes. The number of walks Nij(k)
of length k from node i to node j can be computed using the adjacency matrix as

Nij(k) = (Ak)ij. (1.3)

A undirected graph is said to be connected if, for each pair of distinct nodes i and j,
there exists a walk that connects them.

We can defined G′ = (V ′, E ′) a subgraph of G = (V,E) if V ′ ⊆ V and E ′ ⊆ E. A
component of a graph G = (V,E) is a connected subgraph G′ = (V ′, E ′) meaning that
not connected to any external node of the graph, that is (i, j) /∈ E for each i ∈ V ′ and
j ∈ V \ V ′. A important concept is the giant component : a connected subgraph that has
approximately the same number of nodes of the total graph.

A directed graph is said to be weakly connected if replacing all its links with undirected
ones it produces a connected graph. It is said to be unilaterally connected if there exists
a walk from node i to j or a walk from node j to i for each pair of vertex i and j. It is
said to be strongly connected if there exists a walk from node i to j and a walk from node
j to i each pair of nodes i and j. A strongly connected graph is irreducible, its adjacency
matrix is not similar by permutation to a block upper triangular matrix. In other word,
that exchanging two or more raws the adjacency matrix such that the it can be written
in the form

A =


A11 A12 · · · A1N

0 A22 · · · A2N
...

...
. . .

...
0 0 · ANN

 . (1.4)

Some systems present interactions with different strength between the elements. Thus,
the binary representation, the link exist or not, is no more sufficient. To model this kind
of system we introduce the weight graphs G(V,E,W ), where W is the set of real weights
attached to the links. It can be described with the N ×N weight matrix which entries
are the weight wij of each link. If there is no link between two nodes wij = 0. The weight
matrix is not necessary symmetric.

Figure 1.1 shows three examples for undirected, directed and weight networks.

1.2 Random Networks

In network theory, random networks play a crucial role in understanding the structure
and behavior of complex systems. These networks are often used to model real-world
networks, such as the Internet and social networks. There are several methods to generate
random networks, each with its own specific focus, such as the degree distribution, the
average path length, or the presence of particular structural properties. In this section,
we will explore some of the most important models used to generate random networks,
highlighting their characteristics and differences.

4



1.2. RANDOM NETWORKS

Figure 1.1: Examples of undirected (a), directed (b), weight (c) networks with N = 7
and M = 12. The arrows indicates the direction of each link. In the weight graph the
thickness of the links represents its weight.

1.2.1 Erdős-Rényi Random Graph

The Erdős-Rényi (E-R) random graph G(N,M), where N and M are the number of
nodes and links respectively, is one of the first attempts to generate a random network [4,
5]. The network is built by randomly choosingM links from all the possible ones. Usually,
is used the variation proposed by Gilbert G(N, p) [19] , where p is the probability that
two distinct node are connected. The two formulations converge in the thermodynamic
limit N → ∞ and they are interchangeable. This type of random graph has peculiar
properties, such as the degree distribution of the nodes P (k) is binomial

P (k) =

(
n− 1

k

)
pk(1− p)n−1−k (1.5)

Additionally, if p > 1
N

then is almost sure that the network presents a giant component.
In this work we use the second formation G(N, p). Figure 1.2 shows two examples of E-R
random graph, one below and one above the giant component threshold.

However, the E-R algorithm does not reproduce networks similar to those found in
nature, which tend to be more clustered and to have hubs (nodes with very high degree).
To simulate these properties, new algorithms have been proposed like the Barabábi-Albert
scale-free network and the Watts-Strogatz small-world network.

1.2.2 Barabábi-Albert Scale-Free Network

Barabábi and Albert (B-A) proposed a scale-free network G(N,m), where N is the
number of nodes and m is a parameter, that mimics the behavior of real graph like the
Internet [6]. This type of graph exhibits some preferential nodes with a degree order of
magnitude higher than the average and it presents a power law as degree distribution.

The model works by preferential attachment: we begin from a small network and
connect other nodes such that is more likely that a new nodes are connected to nodes
with a high degree.
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CHAPTER 1. INTRODUCTION TO NETWORK THEORY

Figure 1.2: Two examples of Erdős-Rényi random graphs with 100 nodes: on the left, it
has p = 0.01; on the right, it has p = 0.02. Overcoming the threshold p > 0.01 can be
seen the formation of the giant component.

The algorithm is defined as follow:

1. A complete graph of m0 > m node is created, in this work m0 = m+ 1;

2. The other nodes are connected to this graph: for each new node, it is connected to
m nodes with probability pi =

ki∑
i ki

, where ki is the degree of the i node.

Figure 1.3 shows two examples of B-A networks.

Figure 1.3: Two example of Barabábi-Albert scale-free networks: on the left, it has 100
nodes and m = 1; on the right, it has 100 nodes and m = 2.

1.2.3 Watts-Strogatz Small World Network

The Watts-Strogatz small-world network G(N,K, p), where N is the number of nodes,
K is the average degree (it must be even) and p is the rewiring probability, is a model
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1.3. RANDOM WALK ON NETWORKS

that exhibits high clustering and short average path lengths [7]. The degree distribution
follows a power law and the network is homogeneous, meaning that all nodes have similar
degree.

The algorithm is defined as follows:

1. A ring network with N nodes is created, where each node is connected to the K/2
nearest neighbors on each side;

2. For each edge, with probability p the link is removed and a new one is created to
random node. There is no preferential attachments. The new link must be a not
existing one.

Figure 1.4 it shows two example of W-S networks.

Figure 1.4: Two example of Watts-Strogatz small world networks: on the left, it has 100
nodes, K = 2 and p = 0.1; on the right, it has 100 nodes, K = 4 and p = 0.3.

The B-A and W-S algorithms produce more realistic networks compared to the E-R
one, but both focus on their specific feature: the B-A networks fail to reproduce the high
clustering of real networks and the W-S ones fail to reproduce the hubs characteristic of
networks like Internet.

1.3 Random Walk on Networks

The study of random walks on networks is fundamental in understanding various dynamical
processes, such as diffusion, search algorithms, and transport phenomena. In this section,
we formalize the mathematical framework of random walks on networks and explore
their key properties, including stationary distributions, transition probabilities, and their
connection to the Laplacian matrix.

Consider a network G(N,M) where a particle moves randomly between the nodes
at each time step, with transition probability P∆t

ij to go to the node j starting from the
node i after a time interval ∆t. If the link between them does not exist then P∆t

ij = 0.
The dynamics of this system is a Markov chain: it has no memory of the past states and
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CHAPTER 1. INTRODUCTION TO NETWORK THEORY

the future state depends only on the current position. Let ρi(t) be the probability of
finding the particle at the node i at time t. The discrete time evolution of the system is
given by the law

ρi(n+∆t) =
∑
j

P∆t
ij ρj(n). (1.6)

In order to conserve the total probability the transition probability must be a stochastic
matrix, namely it must hold ∑

i

P∆t
ij = 1. (1.7)

We define a regular random walk when

P∆t
ij = πij∆t+ o(∆t) i ̸= j (1.8)

P∆t
jj = 1−

∑
k ̸=j

P∆t
kj (1.9)

where πij are the transition rates, namely the transition probability per units of time, we
set πii = 0. In un unweighted network, the transition rates can be identified with the
adjacency matrix as

πij =
Aij∑
j Aij

. (1.10)

In a weight network, the transition rate can be computed starting from the weights of
the links

πij =
wij∑
j wij

. (1.11)

Taking the continuum limit of the evolution (1.6) we obtain the master equation [8]

ρ̇i(t) =
∑
j

πijρj(t)− πjiρi(t) = −
∑
j

Lijρj(t), (1.12)

where
Lij =

∑
k

πkjδij − πij (1.13)

is the Laplacian matrix. The first term represents incoming transitions to node i, while
the second term accounts for outgoing transitions.

The Laplacian matrix has the property that Lij < 0 for i ̸= j and also it satisfies the
relation ∑

i

Lij = 0. (1.14)

The eigenvalues of the Laplacian matrix have always a not negative real part and its
spectrum contains at least one zero eigenvalue, therefore it is not invertible [20]. The
multiplicity of the zero eigenvalue is equal to the number of connected component of the
network: in fact that if the network is not connected the Laplacian should be a block
matrix, one block for each connected component, each component can be seen as an
independent network with its zero eigenvalue.
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1.3. RANDOM WALK ON NETWORKS

The solution of master equation (1.12) is

ρ(t) = e−tLρ(0). (1.15)

We can prove that

∑
i

ρ̇i(t) = −
∑
i

∑
j

Lijρj(t) = −
∑
j

(∑
i

Lij

)
ρj(t) = 0. (1.16)

This implies a first integral of motion∑
i

ρi(t) =
∑
i

ρi(0). (1.17)

If the network is irreducible the master equation (1.12) has a unique stationary solution
ρ∗ that satisfies ∑

j

(πijρ
∗
j − πjiρ

∗
i ) = −

∑
j

J∗
ij = 0 (1.18)

where we introduce the stationary density currents J∗
ij = πjiρ

∗
i − πijρ

∗
j .

Consider a system that hold the detailed balance condition

πijρ
∗
j = πjiρ

∗
i , (1.19)

in other word, where each stationary density current J∗
ij vanishes. In this case, the

Laplacian matrix can be reduced to a symmetric matrix

Sij =
1√
ρ∗i
Lij

√
ρ∗j , (1.20)

so that the eigenvalues are real and the eigenvectors are orthogonal. In particular the
master equation becomes

p̃i = −
∑
j

Sij p̃j (1.21)

where p̃i = pi
√
ρ∗i . For these systems we can introduce a vector field on the network as

vij = lnπij − lnπji, (1.22)

it admits a potential Vi such that

vij = Vj − Vi ∀ (i, j). (1.23)

The stationary distribution can be written in the form

ρ∗i ∝ exp(−Vi). (1.24)

such that ∑
j

Lijρ
∗
j = 0. (1.25)
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CHAPTER 1. INTRODUCTION TO NETWORK THEORY

Thus, the stationary distribution (1.24) is the eigenvector with eigenvalue 0 of the
Laplacian matrix. We have recovered the Boltzmann distribution.

Let us now assume the network satisfies the detailed balance condition (1.19), then
there exists a hyperplane Σ0 that is orthogonal to the stationary distribution and this
subspace is invariant under the dynamics. Let be w ∈ Σ0, this subspace is identify by the
relation ∑

i

wi = 0. (1.26)

Therefore, any probability vector can be decomposed as a direct sum of the stationary
state and a vector w(t) ∈ Σ0

ρ(t) = ρ∗ + w(t). (1.27)

Thus, all the eigenvectors with not zero eigenvalues belong to this subspace.
The uncertainty in the particle’s location can be captured by the Shannon entropy

S(t) = −
∑
i

ρi(t) ln ρi(t). (1.28)

It is a bounded function 0 ≥ S ≥ lnN .
The random walk process is irreversible, the entropy (1.28) increases by time. In fact,

the entropy’s derivative for the random walk is

Ṡ(t) = −
∑
i

ρ̇i(t) ln ρi(t) = −
∑
ij

Lijρj(t) ln ρi(t). (1.29)

We can diagonalize the Laplacian such that ρλ the probability to find the system in the
eigenstate of λ eigenvalue. The eigenvalues of the Laplacian are not negative. Thus, the
entropy’s derivative becomes

Ṡ = −
∑
λ

λρλ(t) ln ρλ(t) ≥ 0. (1.30)

It can been shown that the stationary distribution maximizes the Shannon entropy
S = lnN .

Figure 1.5 shows the Shannon entropy (1.28) as a function of time for a random walk
on different networks:1 a ring graph, a Erdős-Rényi (E-R) random graph, a Barabábi-
Albert (B-A) scale-free network, and a Watts-Strogatz (W-S) small world network. The
Shannon entropy is a monotonic increasing function and the stationary distribution has
maximal entropy.

1.4 Quantum Walk

We can extend the random walk model to quantum particles. They must follow the
Schrödinger equation with the Laplacian as Hamiltonian. However, the Schrödinger

1The python scripts can be found in the GitHub page of the author at the link: https://github.
com/ShqemzaMatteo/Master_thesis
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1.4. QUANTUM WALK

Figure 1.5: Plot of the Shannon entropy per node as a function of time t for a random
walk over different types of networks with 50 nodes: a ring graph (blue), a Erdős-Rényi
(E-R) random graph with connectivity probability 0.7 (orange), a Barabábi-Albert (B-A)
scale-free network with parameter m = 3 (green), and a Watts-Strogatz (W-S) small
world network with parameter K = 6 and rewire probability 0.2 (red). The x-axis has a
logarithmic scale. In every network the entropy is monotonically increasing. For large t
the entropy per node is equal to S/N = ln(50)/50 ≈ 0.0782.

equation requires that the Laplacian is hermitian; therefore, the network must hold the
detailed balance condition (1.19). This model is known as “continuos time quantum walk”
[13, 21]. This model is used to build quantum algorithms [22, 23].

Let G(N,M) ba a network. We introduce an Hilbert space H with an orthonormal
basis {|i⟩}i<N , where each element |i⟩ indicates their corresponding node i, satisfying
⟨i | j⟩ = δij . A general general state of the network can be encoded in the ket state |ψ⟩ is
define as

|ψ⟩ =
∑
i

√
ρi(t)|i⟩, (1.31)

in this way ρi = |⟨i |ψ⟩|2 is the projection of the state in the node i, in other words the
probability that the system can be measured in the node i. The norm of |ψ⟩ is normalize
to 1, therefore, the projections ρi satisfy the condition

∑
i ρi = 1. The Schrödinger

equation can be written as

d

dt
|ψ⟩ = −iL̂|ψ⟩. (1.32)

where

L̂ =
∑
ij

Lij|i⟩⟨j| (1.33)
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CHAPTER 1. INTRODUCTION TO NETWORK THEORY

is the Laplacian operator. If we apply a Wick rotation into the equation (1.32) we recover
the master equation of the classic random walk (1.12).

The solution of the equation (1.32) takes the form

|ψ(t)⟩ = Û(t, 0)|ψ(0)⟩ = e−iL̂t|ψ(0)⟩, (1.34)

where Û(t, t′) = e−iL̂(t−t′) is the evolution operator and it is unitary. It holds the following
property

Û(t, t′)Û(t′, t′′) = U(t, t′′). (1.35)

The quantum walk does not converge to a stationary distribution. However, it is
possible to define a limiting transition probability for a quantum walk as follow: suppose
the system starts at node |i⟩, we measure it after a time t, random variable uniformly
distributed over the interval t ∈ [0, T ] [21]. The transition probability from node i to j is
given by

ρi→j(T ) =
1

T

∫ T

0

|⟨i|e−itL̂|j⟩|2dt

=
1

T

∫ T

0

∑
λ,λ′

⟨i|eitL̂|λ⟩⟨λ | j⟩⟨j|e−itL̂|λ′⟩⟨λ′ | i⟩dt

=
∑
λ,λ′

⟨i |λ⟩⟨λ | j⟩⟨j |λ′⟩⟨λ′ | i⟩ 1
T

∫ T

0

e−i(λ−λ′)tdt

=
∑
λ

|⟨i |λ⟩⟨λ | j⟩|2 +
∑
λ ̸=λ′

⟨i |λ⟩⟨λ | j⟩⟨j |λ′⟩⟨λ′ | j⟩1− e−i(λ−λ′)T

i(λ− λ′)T
,

(1.36)

where |λ⟩ are the eigenstates of L̂ with eigenvalues λ. In the limit T → ∞ it tend to

ρi→j(T ) −−−→
T→∞

∑
λ

|⟨i |λ⟩⟨λ | j⟩|2. (1.37)

Let the system be in the state |ψ⟩, also called pure state, we can define the density
matrix as

ρ̂ = |ψ⟩⟨ψ| =
∑
ij

√
ρi
√
ρj|i⟩⟨j|, (1.38)

It is a self-adjoint operator and Tr[ρ̂] = 1 .
For a generic operator Ô(t) = Oij|i⟩⟨j|, the expectation value of the respective

observable can be found as [24] 〈
Ô
〉
= Tr

[
Ôρ̂
]
. (1.39)

The probability ρk to be in the node k can be express using the operator P̂k = |k⟩⟨k|
such that

Tr
[
P̂kρ̂(t)

]
= ρk. (1.40)
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1.4. QUANTUM WALK

In the Heisenberg picture, the density operator’s evolution can be found solving the
different equation called von Neumann equation

d

dt
ρ̂(t) = −i

[
L̂, ρ

]
(1.41)

where [·, ·] is the commutator. The solution of the differential equation is

ρ̂(t) = Û(t, 0)ρ̂(0)Û †(t, 0) = e−itL̂ρ̂ eitL̂. (1.42)

Using the cyclic property of the trace and the unity of the evolution operator, it can
be proved that the Tr[ρ̂] is time invariant.

If the initial distribution over the network is uncertain, we can introduce the density
matrix for mixed state. Let be {|ψk⟩}k<K∈R a set of different probability state that can
describe the system with probability pk, such that

∑K
k pk = 1, then the mixed density

matrix is define as

ρ̂ =
K∑
k=1

pkρ̂k ρ̂k = |ψk⟩⟨ψk|. (1.43)

The temporal evolution of the operator is defined as in eq. (1.41); the probability to
be at node a at time t is the same as in eq. (1.40). All the properties for the pure state
still holds; this can be easily proven using the linearity of the trace.

Using the mixed density matrix we can consider a system that does not start from a
defined distribution, but from an ensemble of possible distribution with their probability.

To study the mixed state we introduce the von Neumann entropy

S[ρ̂] = −Tr[ρ̂ ln ρ̂]. (1.44)

It is the quantum counterpart of the Shannon entropy for classical information theory.
The von Neumann entropy (1.44) is bounded 0 ≥ S[ρ̂] ≥ lnN . It vanishes for pure states.
The von Neumann entropy is a time invariance, thus, the evolution operator takes pure
state into pure state [24].

1.4.1 1-D Quantum Random Walk

Consider a toy model: the quantum random walk over a discrete line [13]. The probability
of moving left or right is 1

2
. To analyze this model, it is useful to introduce the momentum

state |p⟩ such that ⟨j | p⟩ = eijp, where −π < p < π.
In line the Laplacian is defined as

L̂|j⟩ = |j⟩ − 1

2
|j − 1⟩ − 1

2
|j + 1⟩. (1.45)

Therefore, applying this to the momentum state

⟨j|L̂|p⟩ = ⟨j | p⟩ − 1

2
⟨j − 1 | p⟩ − 1

2
⟨j + 1 | p⟩

= eijp − 1

2
ei(j−1)p − 1

2
ei(j+1)p

= eijp(cos(p)− 1) = (cos(p)− 1)⟨j | p⟩

(1.46)
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CHAPTER 1. INTRODUCTION TO NETWORK THEORY

Thus, the amplitude of the walk can be computed as the integral over all the momenta,
leading to

⟨j|e−itL̂|k⟩ = 1

2π

∫ π

−π

e−it(cos(p)−1)⟨j | p⟩⟨p | k⟩dp

=
1

2π

∫ π

−π

e−ip(j−k)−it(cos(p)−1)

= eit(−i)k−jJk−j (t) ,

(1.47)

where Jn(x) is the Bessel function of the first kind of order n.
Applying the Wick rotation we obtain∣∣∣⟨j|e−itL̂|k⟩

∣∣∣2 = e−t (Ik−j (t))
2 , (1.48)

where In(x) = inJn(ix) is the modified Bessel function of the first kind. In the limit t≫ 1
it tends to a gaussian centered in the origin and variance

√
t, in accordance with the

classical model [25].

1.4.2 Double Tree Network

Another important toy model is the quantum walk on a network consisting of two binary
trees of depth n with the ending connected as shown in figure 1.6. We start from one
root and analyze the probability to reach the other one [21]. Classically, the probability
of crossing the network scales exponentially as 2−n, and it is not computable for big n.
However, using the quantum version it remains computable.

Figure 1.6: The picture of a glued double tree network.

To simplify the analysis, we can introduce a new basis |col j⟩j<2n that indicates a
column and not the single node, except at the two root nodes where they coincide. This

14



1.4. QUANTUM WALK

basis is defined as

|col j⟩ = 1√
Nj

∑
a∈column

|a⟩, (1.49)

where the renormalization factor Nj is

Nj =

{
2j 0 ≤ j ≤ n

22n−j n ≤ j ≤ 2n
. (1.50)

In this basis, the Laplacian act as

⟨col j|L̂|col j⟩ = 1

⟨col j ± 1|L̂|col j⟩ =


√
2

2
j = 0, n, 2,

√
2

3
otherwise

(1.51)

Thus, the dynamics along the network reduces to a 1-D quantum walk which has a
known computable solution (1.48)

⟨0|eitL̂|2n⟩ = e−tI2n (t) , (1.52)

where In(x) = inJn(ix) is the modified Bessel function of the first kind.
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Chapter 2

Density Matrix and Entropy for
Networks

In many complex systems, one element can be influenced by others with which does not
directly interact. For instance, considering the city mobility, the road forms a network,
closing one road may create traffic in other roads that do not intersect the closed one.
To study the correlations between the nodes of a network the communicability matrix
was introduced [17]. This matrix captures the way the information spreads across the
network. Thus, it should depend on the dynamical aspects of the network. We call it
communicability because correlation as a different meaning in social science, where it
typically describes interactions.

Interestingly, this matrix behave as quantum density matrix, making it is a possible
candidate to the role of network’s density matrix. As a consequence, we can introduce an
entropy function analogous to the von Neumann entropy found in quantum many body
and quantum computing, opening a connection between the network theory and quantum
realm.

2.1 Communicability Matrix

Most studies on complex networks focus on the spread of information following the shorter
path, namely the shortest sequence of links that connects two different nodes. However,
this is not the only way the information can flow, there are plenty of other more long
route that are also available, and the shorter path description ignores completely the
complexity of the network. To overcome that we introduce the communicability matrix,
defined to accounts for all possible paths, not just the shortest ones [26]. this matrix
considers the influence of all the path that cross the chosen node, weighted by their
length.

Let G = (V,E) be an undirected graph composed of N nodes and E links and let A
be the adjacency matrix of the graph. We can define the communicability matrix as

G(A) =
∞∑
k=0

ckA
k. (2.1)
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CHAPTER 2. DENSITY MATRIX AND ENTROPY FOR NETWORKS

The communicability from node i to node j is given by Gij. The power of the adjacency
matrix (Ak)ij give us the number of path of length k starting from node i ending in node
j. The coefficients ck indicates the weight of the paths, with longer paths being penalized.
This is made to give more relevance to the short ones respect to the long ones. These
coefficients must be chosen such that the series is convergent. For weight network the
adjacency matrix A can be substitute by the weight matrix W .

An convenient choice for the coefficients is ck = 1
k!
, which transforms the communica-

bility into an exponential function [17]

GE(A) =
∞∑
k=0

Ak

k!
= eA. (2.2)

We can generalize it adding a constant term β to further penalize the longer paths

GE(A) =
∞∑
k=0

βkAk

k!
= eβA, (2.3)

which resembles to the Boltzmann distribution with Hamiltonian A and temperature
T = 1

β
.

Alternatively, we can choose ck = αk with α < 1
λN

, where λN is the largest eigenvalue
of the adjacency matrix [27]. In this case, it becomes a geometrical series yielding

GR(A) =
∞∑
k=0

αkAk = (I − αA)−1. (2.4)

In the limit α → 1
λN

and λN − λN−1 large, the two formulations for the communicability

matrix GE(A) and GR(A) converge leading to the same communicability for the network
[28].

From this, we can introduce a global index for the network that considers the commu-
nication between the different nodes as

EE(A) = Tr
[
eβA
]
. (2.5)

In the literature, it is called Estrada index [17] and can be interpreted as the sum of all
the self-communication, which the sum of the paths that start and end in the same node.
This index resembles the partition function from statistical mechanics.

However, the communicability matrices (2.2) and (2.4) focus only on the network’s
topology and they ignore the presence of a dynamics over the network that may change
how information spreads. Consider the simplest dynamics, the random walk, the infor-
mation’s flow is governed by the Laplacian matrix L. Therefore, we define the dynamical
communicability matrices for random walk as follow [26]

GE(L) =
∞∑
k=0

βkLk

k!
= eβL,

GR(L) =
∞∑
k=0

αkLk = (I − αL)−1,

(2.6)
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with α < 1
λN

, where λN is the largest eigenvalue of the Laplacian matrix.
Lastly, the Laplacian Estrada index is define as

EE(L) = Tr
[
eβL
]
. (2.7)

The exponential communicability matrix resembles the Boltzmann density matrix
with the Laplacian Estrada index as partition function. In fact, in the following section
we demonstrate how this matrix is a suitable candidate for representing the network’s
density matrix. With this framework, we can define an entropy function and introduce
an information theory for networks.

2.1.1 Analogy with Hamiltonian Systems

The formulae (2.6) can be motivated by studying a classical and quantum harmonic
oscillator on a network under specific conditions. Consider a set of N harmonic oscillators
with a coupling matrix K proportional to the symmetric adjacency matrix A of the
network. In this framework, the nodes are treated as particle of mass m = 1 connected
by springs with elastic constant Aij/di. The network should not have self interacting
nodes, thus Aii = 0. The system is submerged in a thermal bath at the temperature T .
We assume there is no damping or external forces acting on the system aside the thermal
fluctuation. Let us introduce a set of coordinates qi that indicates the displacement of the
i particle from the equilibrium position. The elastic elastic potential can be defined as

V (q) =
1

4

∑
i ̸=j

Kij(qi − qj)
2 =

1

2

∑
j

Kjjq
2
j −

1

2

∑
i ̸=j

Kijqiqj, (2.8)

where

Kjj =
∑
j ̸=i

Kij. (2.9)

We define the matrix Hij = Kjjδij −Kij, allowing us to express the potential as

V (q) =
1

2

∑
i,j

Hijqiqj. (2.10)

The matrix H is a laplacian matrix and it is equal to the Laplacian of the network (1.13).
It holds the property

∑
j Hij = 0, which implies that it has not negative eigenvalues and

one must be equal to zero. The presence of zero eigenvalue ensures us that the motion of
the center of mass is conserved.

We can write the Lagrangian of the system as

L =
1

2

∑
ij

q̇iq̇j −
1

2

∑
ij

qiHijqj. (2.11)

The equations of motion are

q̈i = −Hijqj. (2.12)
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The eigenmodes of the system are defined by the solution of the equation

ω2ϕi = Hijϕj. (2.13)

Rewriting it in matrices form yields

|Ω2 −H| = 0. (2.14)

Therefore, the spectral signature of the matrix H = L is the same as that of the
harmonic oscillator. This establishes a connection between the harmonic oscillator and
the master equation of a network and vice versa. Since M is diagonal, H and L have
the same support, eigenvectors and eigenvalues, leading to E = ω2 = λ, which creates a
natural ranking among the eigenvectors.

However, in order to achieve the analogy with the communicability matrix (2.6), we
should impose a constrain on the system: each particle is connected by a spring with
elastic constant K ′ to the ground. The elastic constant must be larger than the largest
eigenvalue of the Laplacian. Thus, the Hamiltonian of the system is given by

HL =
∑
i

p2i
2

+
∑
ij

1

2
H ′

ijqiqj, (2.15)

where

H ′
ij = K ′δij − Lij. (2.16)

With the constrain, the potential is no more singular. We will study this system in both
classic and quantum cases.

2.1.2 Network of Classical Harmonic Oscillators

Let consider a hamiltonian system with Hamiltonian (2.15) in contact with a thermal
bath using the Langevin equation

q̇i = pi;

ṗi = −H ′
ijqj − γpi +

√
2Tγξi(t),

(2.17)

where γ is the friction coefficient, T is the temperature (with Boltzmann constantKB = 1).
The term ξi(t) represents white noise defined as

⟨ξi(t)⟩ = 0 ⟨ξ2i (t)⟩ = 1 (2.18)

The white noises must hold the condition
∑

i ξi = 0, that leaves invariant the motion of
system’s center of mass but ξi(t) are no more independent. As a matter of fact, the total
momentum P =

∑
i pi is an integral of motion

d

dt

∑
i

ṗi = −γ
∑
i

pi +
��������√

2Tγ
∑
i

ξi(t) = 0. (2.19)
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The condition over the white noises
∑

i ξi = 0 breaks the independence between them
and it adds correlation. We can rewriting the noise using i.i.d. white noise wi(t) as

ξi(t) = wi(t) +
1

N

∑
k

wk(t). (2.20)

The covariance matrix of ξi(t) yields

⟨ξi(t)ξj(s)⟩ = [δij − 1ij] δ(t− s) (2.21)

The distribution ρ(q, p, t) is a Gaussian and satisfies the Fokker-Planck equation [29]

∂ρ

∂t
= −

∑
i

pi
∂ρ

∂qi
+
∑
ij

H ′
ijqj

∂ρ

∂pi
+ γ

∑
i

[
∂

∂pi
piρ+ T

∂2ρ

∂p2i

]
. (2.22)

The dynamics converges to a stationary distribution, with the time scale depending on
the eigenvalues of the Laplacian matrix. The solution at equilibrium is give by

ρ(q, p) = Z(β)−1 exp

[
−β

(∑
j

p2j +
∑
ij

1

2
qiH

′
ijqj

)]
, (2.23)

where β = 1
T
and Z(β) is the partition function defined as

Z(β) =

∫ ∏
i

dpidqi exp

[
−β

(∑
j

p2j +
∑
ij

qiH
′
ijqj

)]
. (2.24)

The marginal distribution over the coordinates is a Boltzmann distribution

ρ(q) = Z(β)−1e−β(
∑

ij qiHijqj). (2.25)

If H ′ is symmetric, namely the detailed balance condition (1.19) holds, we can diagonalize
the marginal distribution obtaining the motion of independent oscillators in the same
thermal bath. Therefore, changing the basis from qi to Qλ eigenvectors with λ eigenvalue
of the Hamiltonian H ′, the marginal distribution becomes

ρ(q) = Z(β)−1e−β(
∑

λ̸=0 QλλQλ), (2.26)

with the partition function

Z(β) =

∫ ∏
λ ̸=0

dQλe
−β(

∑
λ̸=0 λQ

2
λ). (2.27)

The thermal distribution does not involve the center of mass motion since the thermal
bath does not interact with it. Thus, we can project the system into an invariant subspace
orthogonal to the stationary distribution. The oscillator modes Qλ remain the same of
the unperturbed case. This is a consequence of the condition

∑
i ξi = 0. The distribution

has mean ⟨Qλ⟩ = 0 and the covariance matrix is diagonal with entries ⟨Q2
λ⟩ = 1

βλ
.
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The variance can be expressed as

Cov(Q) =
1

β
H−1, (2.28)

where H−1 =
∑N

i=2
1
λi
vTi vi is the Moore-Penrose generalized inverse of the Hamiltonian.

Here, λ are the eigenvalues ordered from the smallest to the biggest such that λ1 < λ2 <
... < λN , and vi are the respective eigenvectors of the Hamiltonian matrix [30].

Substituting the equation (2.16) into the correlation (2.28) we obtain

Cov(Q) =
1

β
(K ′I− Lij)

−1
=

1

βK ′

(
I−K ′−1Lij

)−1
(2.29)

where I is the identity matrix. This is proportional to the Communicability matrix GR(L)
(2.6) when K ′ = 1/α.

2.1.3 Network of Quantum Harmonic Oscillators

If we consider a system as quantum in place of a classic one, the covariance matrix
changes and becomes similar to the exponential communicability matrix. In the quantum
case, the quantities H ′

L, qi and pj are promoted to operators Ĥ ′
L, q̂i and p̂j and they

satisfy the commutator relation [q̂i, p̂j] = iδij (ℏ = 1). Thus, the Hamiltonian becomes

Ĥ ′
L =

∑
i

(
p̂2i
2

+
K ′

2
q̂2i

)
+
∑
ij

1

2
Lij q̂iq̂j. (2.30)

We introduce the creation and annihilation operators as

âi =
1√
2

(√
Ωq̂i +

i√
Ω
p̂i

)
â†i =

1√
2

(√
Ωq̂i −

i√
Ω
p̂i

)
, (2.31)

and their inverses as

q̂i =

√
1

2Ω

(
âi + â†i

)
p̂i = i

√
Ω

2

(
âi − â†i

)
, (2.32)

where Ω =
√
K ′. They satisfy the commutation relation[

âi, â
†
j

]
= δij. (2.33)

The Hamiltonian can be written as

ĤL =
∑
i

Ω

(
âiâ

†
i +

1

2

)
+

1

4Ω

∑
ij

(
âi + â†i

)
Lij

(
âi + â†i

)
. (2.34)

Assuming the network satisfies the detailed balance condition (1.19), L is symmetric
and, therefore, we can diagonalize it. The diagonalized Laplacian is written in the form
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Λ = OLOT , where O is an orthogonal matrix. This generates a new pair of creation and
annihilation operators with respect to the eigenvalue µ of the Laplacian

bµ =
∑
j

ajOµj b̂†µ =
∑
j

a†jO
T
µj. (2.35)

Thus, the new Hamiltonian becomes a sum of independent Hamiltonians

ĤL =
∑
µ

Ĥµ, (2.36)

with

Ĥµ = Ω

(
b̂µb̂

†
µ +

1

2

)
+

1

4Ω
µ
(
b̂µ + b̂†µ

)2
. (2.37)

With some algebra, it reduces to

Ĥµ = Ω

[
1 +

1

2Ω
µ

](
b̂µb̂

†
µ +

1

2

)
+

1

4Ω
µ

[(
b̂µ

)2
+
(
b̂†µ

)2]
. (2.38)

We now consider the system as fermionic, so the modes do not excite beyond the first
excitation state. As a consequence, we can restrict the Hilbert space to the span of the
ground state |g⟩ and the first excited state |eµ⟩ = b†µ|g⟩. Therefore, the second term in
the Hamiltonian cancel out.

Now, we can compute the thermal Green function or Matsubara Green function for
fermions. This quantity describes the probability amplitude for the particle to travel
from one state to another in a given time τ (more details in the Appendix A). In the
Heisenberg picture, the annihilation and creation operators depend on time [31] as

b̂µ(τ) = e−µt b̂µ b̂†µ(τ) = eµt b̂†µ (2.39)

For τ > 0 it is

GL
ij(β, τ > 0) =

Tr
[
e−βĤL âi(τ)â

†
j

]
Tr
[
e−βĤL

] =
∑
µν

Oµi

Tr
[
e−βĤL b̂µ(τ)b̂

†
ν

]
Tr
[
e−βĤL

] Ojν (2.40)

The equation (2.40), more details in the Appendix A, reduces to

GL
ij(β, τ > 0) =

∑
µ

Oiµ

{
−e−µτ

[
1− f

(
Ω +

1

2Ω2
µ

)]}
Ojµ, (2.41)

where f(ϵ) is the Fermi-Dirac distribution

f(ϵ) =
1

eβϵ + 1
. (2.42)
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With some algebra, we obtain

GL
ij(β, τ > 0) =

∑
µ

Oiµ

{
e−µτ

e−β[Ω+ 1
2Ω2 µ] + 1

}
Ojµ (2.43)

In the limit τ → 0+ and Ω large enough, it tend to

GL(β) =
∑
µ

Oiµe
β[Ω+ 1

2Ω2 µ]Oµi, (2.44)

which can also be written as
GL

ij(β) = eβΩe
β
2Ω

L. (2.45)

The equation (2.45) is related to equation (2.6)

GE(L) = e−βΩGL

(
β

2Ω

)
. (2.46)

In fact, the thermal Green function of the quantum harmonic oscillators is proportional
at the exponential communicability matrix with parameter β′ = β

2Ω
.

In the high temperature limit, β → 0, the correlation of the quantum system (2.44)
converges to the correlation of the classic one (2.28). This is well known, as in the high
temperature limit the quantum effects should be negligible.

2.2 Density Matrix and Entropy for Networks

The communicability matrix defined above possesses peculiar properties that make it
suitable for use as a density matrix. Moreover, the presence of the Laplacian matrix
ensures that it consider not only the topological features of the network but also its
dynamics. Taking the exponential communicability matrix as a reference, we can define
a density matrix as

ρ̂(β) =
1

Z
e−βL̂ with Z(β) = Tr[e−βL̂], (2.47)

where Z is the partition function, which is equal to the Laplacian Estrada index of the
network (2.7). The density matrix ρ̂(β) is a Hermitian and positive definite matrix with
trace equal to unity. the density matrix e−βL is similar to the propagator of the master
equation (1.15) considering time t = β.

From this, we can define the network’s entropy as the von Neumann entropy

S(ρ̂) = −Tr[ρ̂ ln ρ̂]. (2.48)

The entropy is not negative and equal to zero if and only if the ρ̂ is a pure state. It
has a upper bound give by S ≤ ln(N), [24]. The entropy satisfies the sub-additivity
property [16]: Let ρ̂, τ̂ and σ̂ be density matrices corresponding to the networks G,
H, I respectively. If the networks H and I are subgraphs of the network G such that
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G = H + I. If the sub-additivity is satisfied we have that S(ρ̂) ≤ S(τ̂) + S(σ̂), the
equivalence is obtain if the two subgraphs do not have nodes from the same component
of G. A mathematical proof can be found in appendix B.

Figure 2.1 shows the entropy (2.48) for different types of networks1: a ring graph,
an Erdős-Rényi (E-R) random graph, a Barabási-Albert (B-A) scale-free graph, and a
Watts-Strogatz (W-S) small-sworld graph.

Figure 2.1: Plot of the network’s entropy per node as a function of β for different network
types with 50 nodes: a ring graph (blue), a Erdős-Rényi (E-R) random graph with
connectivity probability 0.7 (orange), a Barabási-Albert (B-A) scale-free graph with
parameter m = 3 (green), and a Watts-Strogatz (W-S) small world graph with parameter
K = 3 and rewire probability 0.2 (red). The x-axis is on logarithmic scale. For large β,
the entropy tends to zero for all the networks.

The parameter β in the network’s entropy suppresses the spread of information along
eigenvector with high eigenvalue. In fact, increasing β, more eigenvalues are suppressed
until only the zero eigenvector remains. Figure 2.2 shows the eigenvalues of the same
networks we have studied in figure 2.1. In the ER and BA networks the eigenvalues are
clustered around 1, consequently, their entropy drops rapidly because, when β is high
enough, their eigenvector are suppressed simultaneously. In contrast, in the ring and WS
network the eigenvalues are closer to zero, thus the suppressed of their eigenvectors is
slower.

A possible interpretation of this density matrix is given by De Domenico [32]. Consider
a network G(N,M), represented by the adjacency matrix A. In this network, a classic

1The Python scripts can be found on the author’s GitHub page at the following link: https:

//github.com/ShqemzaMatteo/Master_thesis
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Figure 2.2: The figure shows the eigenvalue of the Laplacian matrix for different networks
with 50 nodes: the top left graph is for a ring network, the top right one is for a Erdős-
Rényi (E-R) random graph with connectivity probability 0.7, the bottom left one is for
a Barabási-Albert (B-A) scale-free graph with parameter m = 3, the bottom right one
shows a Watts-Strogatz (W-S) small world graph with parameter K = 3 and rewire
probability 0.2. In the ring and WS networks the eigenvalues are clustered close to
zero and near the value 2. In contrast, in the ER and BA networks the eigenvalues are
clustered around the value 1.

particle performs a random walk. The network can be described using the Dirac notation.
Let be |ψ⟩ =

∑
i ρi|i⟩ the state of the system, where |i⟩ is the canonical vector identifying

node i and ρi is the probability of finding the particle on top of node i. Thus, the scalar
product ⟨i |ψ⟩ = ρi is already an observable. The set {|i⟩}Ni=0 forms an orthogonal basis,
satisfying ⟨i | j⟩ = δij, where δij is the Kronecker delta. The evolution of the dynamics is

governed by the Laplacian operator L̂ = Lij|i⟩⟨j| following the equation

∂t|ψ(t)⟩ = −L̂|ψ(t)⟩, (2.49)

with the solution

|ψ(t)⟩ = Ĝ(t, 0)|ψ(0)⟩ (2.50)

where Ĝ(t, 0) = e−tL̂ is the propagator and |ψ(0)⟩ is the initial state.
If the detailed balance condition (1.19) holds, L̂ is Hermitian. Therefore, the propa-

gator can be diagonalized in the orthogonal basis {|vλ⟩}λ of eigenvectors of the control
operator as

Ĝ(t, 0) =
∑
λ

e−tλ|vλ⟩⟨vλ| =
∑
λ

e−tλσ̂λ, (2.51)
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where σ̂λ = |vλ⟩⟨vλ| is the projector into the left and right eigenvectors with the λ
eigenvalue. The operators do not depend on time; they are constant throughout the
process, only the coefficients change. The system relaxes to a stationary state |ψ0⟩
corresponding to the zero eigenvector.

We consider the system in the initial state |ψ⟩ = |ψ0⟩+ |∆ψ⟩, where |∆ψ⟩ is a small
perturbation relative to the stationary state. The initial perturbation can be decomposed
between the different nodes as |∆ψ0⟩ =

∑
i ∆i|i⟩. The time evolution of the initial state

becomes
|ψ(t)⟩ = G(t, 0)|ψ(0)⟩ = |ψ0⟩+G(t, 0)|∆ψ⟩ = |ψ0⟩+ |∆ψ(t)⟩ (2.52)

with |∆ψ(t)⟩ = e−tL̂|∆ψ⟩.
Since the stationary component is constant in time, we focus on the evolution of the

perturbation |∆ψ0⟩. The value of the perturbation on top of node j at time t is

⟨j |∆ψ(t)⟩ = ⟨j|e−tL̂|∆ψ⟩ =
∑
λ

⟨j|e−tλσ̂λ|∆ψ⟩ =
∑
i

∑
λ

∆ie
−tλ⟨j|σ̂λ|i⟩. (2.53)

We have used equation (2.51) and the definition of the perturbation. This equation shows
that the perturbation can travel through N different streams, one for each projector σλ,
with stream’s size ∆ie

−tλ. If ∆ie
−tλ > 0 the stream is active; if ∆ie

−tλ = 0 it is inactive.
Negative stream coefficients imply an inverted flux from j to i. Now, we assume that
there is maximal uncertainty in the perturbation, therefore ∆i = ∆. The dynamics can
trap part of the perturbation in a specific node. The size of the trapped perturbation
can be compute as

T =
∑
i

∑
λ

∆e−tλ⟨i|σ̂λ|i⟩ = ∆Tr[Ĝ(t, 0)] (2.54)

We can introduce a density matrix defined as

ρ̂(t) =
1

Z

∑
λ

e−tλσ̂λ =
1

Z
e−tL̂, (2.55)

where Z = Tr[e−tL̂] is the partition function. Thus, the evolution of the perturbation
yields

⟨j |∆ψ(t)⟩ =
∑
i

∆Z⟨j|ρ̂(t)|i⟩ =
∑
i

T ⟨j|ρ̂(t)|i⟩. (2.56)

The size of the streams is proportional to the trapped field. The density matrix can be
interpreted as the probability that the perturbation will flow through a specific stream σ̂l
at time t in the ensemble of all the possible streams [32]. We have recovered the density
matrix (2.47) considering the time t as the parameter β.

The complexity of information streams can be quantified by the von Neumann entropy.
When the information dynamics is described by a single information stream, entropy
vanishes: the density matrix is a pure state. In contrast, as the information dynamics
becomes more complex and diverse, the number of information streams increases, resulting
in higher entropy: the density matrix becomes a mixed state.

Considering the analogy with the quantum mechanics, in the following chapters we
propose an alternative way to obtain the density matrix (2.47) starting from the quantum
walk instead of the classical one. The new description, based on open quantum systems,
adds new meaning to the network’s entropy (2.48).
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2.2.1 Kullback-Leibler and Jensen-Shannon Divergences

Starting from the concept of entropy, we can introduce the Kullback-Leibler (KL) diver-
gence or relative entropy [33] as

DKL(ρ̂||σ̂) = Tr

[
ρ̂ ln

(
σ̂

ρ̂

)]
. (2.57)

It measures how closely the distribution σ̂ reproduces an event to real distribution ρ̂. The
KL divergence is always non negative and it equals zero when ρ̂ = σ̂. It is not symmetric
and unbounded [34].

The KL divergence can be used to make comparisons between networks. Moreover,
this concept can be applied to the reconstruction of networks starting from real data using
the maximum likelihood estimation: it consists of finding the best model that reproduces
the experimental data by minimizing the Kullback-Leibler divergence between a chosen
network model and the dataset [16]. This opens the door to the application of machine
learning techniques in network theory.

However the Kullback-Leibler divergence is not symmetric, therefore it cannot be use
as a metric. But, we can symmetrize introducing the Jensen-Shannon (JS) divergence
[34] defined as

DJS(ρ̂||σ̂) =
1

2
DKL(ρ̂||µ̂) +

1

2
DKL(σ̂||µ̂) = S(µ̂)− 1

2
[S(ρ̂) + S(σ̂)] , (2.58)

where µ̂ = 1
2
(ρ̂+ σ̂).

The JS divergence is a bounded function [34]

0 ≥ DJS(ρ̂||σ̂) ≥ 1. (2.59)

The quantity (DJS)
1
2 defines a metric: it is symmetric, positive definite, and it satisfies

the triangle inequality [35].
Figure 2.3 shows the Jensen-Shannon divergence between an Erdős-Rényi (E-R)

random graph, a Barabási-Albert (B-A) scale-free graph and a Watts-Strogatz (W-S)
small-sworld graph 2.

The JS divergence has been use successfully used to measure the distance between
the layers of a multiplex network. In some systems, the elements can interacts through
different type of interaction. To models them, we create a set of networks with the same
number of nodes but different links, one for each interaction’s type. Each network forms
a layer in a multiplex. For example, the mobility within a city can be mapped into a
multiplex, one layer for each means of transport. Multiplex with many layers are difficult
to handle; in order to simplify the model we can use the JS divergence to aggregate the
redundant layers [18].

However, both the KL and JS divergences study only the spectral properties of the
system. Thus, they do not distinguish between different networks with same spectrum
but different eigenvectors.

2TThe Python scripts can be found on the author’s GitHub page at the following link: https:

//github.com/ShqemzaMatteo/Master_thesis
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Figure 2.3: Plot of the KL divergence as a function of β between different network types
with 50 nodes: a Erdős-Rényi (E-R) random graph with connectivity probability 0.7 and a
Barabási-Albert (B-A) scale-free graph with parameter m = 3 (blue); a Erdős-Rényi (E-R)
random graph with connectivity probability 0.7 and Watts-Strogatz (W-S) small world
graph with parameter K = 3 and rewire probability 0.2 (orange); a Barabási-Albert (B-A)
scale-free graph with parameter m = 3 and a Watts-Strogatz (W-S) small world graph
with parameter K = 3 and rewire probability 0.2 (green). The x-axis is on logarithmic
scale. The ER and BA networks are closer in terms of KL divergence compared to the
WS network. Notably, the divergence reaches its maximum around β = 10.
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Chapter 3

Lindblad Master Equation

Before exploring the following chapter, it is useful to introduce the Lindblad master
equation, also called Gorini-Kossakowski-Sudarshan-Lindblad equation [36, 37]. This
equation was introduced to describe the behavior of an open quantum system, namely
a quantum system in contact with the environment. This is important because the
Schrödinger equation applies only to closed systems, which are idealized and not realistic:
all the quantum experiments we can build are influenced to the external environment.

The model investigates the evolution of a quantum system coupled to a Markovian
environment, the interaction has no memory of the past. The Schrödinger equation
requires a unitary time operator that does not permit energy dissipation. In contrast,
the time operator of Lindblad master equation allows the system to exchange energy
with its surroundings. Despite this, the Lindblad dynamics remains trace preserving and
completely positive.

3.1 Derivation of the Formula

We show the derivation of the Lindblad equation following [38, 39]. First, let HT be the
Hilbert space of the system and the environment combined, which can be divided into
the Hilbert space H of the proper system and HE of the environment. The combined
system is a closed quantum system and evolves following the von Neumann equation

∂tρ̂T (t) = −i[ĤT , ρ̂T (t)], (3.1)

where ĤT is the Hamiltonian of the total universe. Since we are only interesting in the
system’s dynamics without the environment, we can trace out the degrees of freedom
associated with it, obtaining ρ̂(t) = TrE[ρ̂T ]. The total Hamiltonian can be separated as

HT = H ⊗ IE + IS ⊗HE + αHI , (3.2)

where H is the Hamiltonian of the system, HE the Hamiltonian of the environment
and HI is the interaction Hamiltonian, α measure the strength of the interaction. Tha
Hamiltonians H and HE commutes. It is useful to work in the interaction picture, where
the operators becomes

Õ(T ) = ei(Ĥ+ĤE)tÔe−i(Ĥ+ĤE)t, (3.3)
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and the von Neumann equation reduces to

dρ̃T (t)

dt
= −iα

[
H̃I(t), ρ̃T (t)

]
. (3.4)

The solution to (3.4) is

ρ̃T (t) = ρ̃T (0)− iα

∫ t

0

ds
[
H̃I(s), ρ̃T (s)

]
. (3.5)

Even though the equation (3.5) has an exact solution, it is complicated to compute.
To simplify the calculation, a perturbative approach is useful. We apply the equation
(3.5) into the equation (3.4) yielding

dρ̃T (t)

dt
= −iα

[
H̃I(t), ρ̃T (0)

]
− α2

∫ t

0

ds
[
H̃I(t),

[
H̃I(s), ρ̃T (s)

]]
(3.6)

Applying this method again, we obtain

dρ̃T (t)

dt
= −iα

[
H̃I(T ), ρ̃T (0)

]
− α2

∫ t

0

ds
[
H̃I(t),

[
H̃I(s), ρ̃T (t)

]]
+O(α3) (3.7)

Now, we make an approximation: we consider the strength of the interaction α to be
weak, allowing us to neglect the last term. Then, we can trace out the environment,
obtaining

dρ̃

dt
= −iαTrE

[
H̃I(T ), ρ̃T (0)

]
− α2

∫ t

0

dsTrE

[
H̃I(t),

[
H̃I(s), ρ̃T (t)

]]
. (3.8)

However, the equation (3.8) still depends on the total density matrix. To proceed, we
make two more assumptions. First, we consider the initial state of the universe to be a
separable state ρ̂T (0) = ρ̂(0)⊗ ρ̂E(0). This holds if the system has just been put in contact
with the environment or if the correlation between the system and the environment is
short-lived. This is called Born approximation. Second, we consider the environment as
a thermal reservoir, which is in a thermal state

ρ̂E(0) =
e−ĤE/T

Tr
[
e−ĤE/T

] , (3.9)

where T is the temperature (the Boltzmann constant kB = 1). Moreover, without loss of
generality, we can write the interaction Hamiltonian in the form

ĤI(t) =
∑
i

Ŝi ⊗ Êi, (3.10)

where Ŝi is an operator acting on H (it is not a spin operator) and Êi is an operator
acting on HE. After making this assumption, the equation (3.8) becomes

dρ̃

dt
=− iα

∑
i

(
S̃i(t)ρ̃(0)TrE

[
Ẽi(t)ρ̃E(0)

]
− ρ̃(0)S̃i(t) TrE

[
ρ̃E(0)Ẽi(t)

])
− α2

∫ t

0

dsTrE

[
H̃I(t),

[
H̃I(s), ρ̃(t)⊗ ρ̃E(t)

]]
.

(3.11)
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The first term on the r.h.s. vanishes because TrE

[
Ẽi(t)ρ̃E(0)

]
= ⟨Ei(t)⟩ can be

considered to be zero. It may seem strange, however, if it does not vanish, we can always
redefine the environmental Hamiltonian as Ê ′

i = Êi−⟨Ei(t)⟩. The extra term is a constant
and does not modify the von Neumann equation. The second term requires a stronger
assumption: since α is small, the system and the environment should remain uncorrelated
throughout the evolution, meaning that the timescale of the correlation should be much
shorter than the timescale of the system. Thus, we can consider that the total density
matrix is always separable, with the environment in the thermal state. Nevertheless, the
equation is still not markovian, since it still depends on a specific initial time t = 0. To
add this property, we can extend the lower limit of the integration to infinity with no
real change in the outcome; this is valid when the integrand disappears sufficiently fast
[39]. Then, changing the integration variable to t− s, we arrive at

dρ̃(t)

dt
= −α2

∫ ∞

0

dsTrE

[
H̃I(t),

[
H̃I(t− s), ρ̃(t)⊗ ρ̃E(t)

]]
. (3.12)

This is called Redfield equation [40]. This is the Markov approximation, which is justified
if the timescale over which the state of the system varies appreciably is large compared to
the timescale over which the reservoir correlation functions decay. The approximations
made before are called Born-Markov approximation [39].

Now, we perform the last approximation known as rapid wave approximation, which
involves averaging over the rapid oscillating term. To do it, we consider the interaction
Hamiltonian (3.10) and decompose it into eigenoperators if the the system Hamiltonian
H. These eigenoperators generate a complete basis of the space {Ŝi(ω)} of the bounded
operators acting on the Hilbert H, they satisfy the conditions[

H, Ŝi(ω)
]
= −ωŜi(ω)

[
H, Ŝ†

i (ω)
]
= ωŜ†

i (ω). (3.13)

Here, ω indicates the energy difference after the operator Âi(ω) has acted. The eigenop-
erators Ŝi(ω) satisfy the relations

eiĤStÂ(ω)e−iĤSt = e−iωt

eiĤStÂ†(ω)e−iĤSt = eiωt
(3.14)

We can decompose the operators Si as Ŝi =
∑

ω Ŝi(ω). To apply this decomposition in
(3.12), we need to go back to the Schrödinger picture for the Hamiltonian acting on the

proper system. Using S̃i(ω) = eiĤtŜi(ω)e
−iĤt, we obtain the Hamiltonian

H̃i(t) =
∑
i,ω

e−iĤtŜi(ω)⊗ Ẽi(t) =
∑
i,ω

eiĤtŜ†
i (ω)⊗ Ẽi(t) (3.15)

We insert the equation (3.15) into (3.12). After expanding the commutators, we
substitute the decomposition for Ŝi(ω). Using the cyclic property of the trace and the
fact that Tr[Ĥe, ρ̂E(0)] = 0, we arrive at the result

dρ̃(t)

dt
=
∑

ω,ω′,i,j

ei(ω−ω′)tΓij

[
Ŝj(ω)ρ̃(t), Ŝ

†
i (ω

′)
]
+ e−i(ω−ω′)tΓ†

ji

[
Ŝj(ω), ρ̃(t)Ŝ

†
i (ω

′)
]
, (3.16)
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where Γkl(ω) contains the effect of the environment and it is defined as

Γij(ω) =

∫ ∞

0

dseiωsTr
[
Ẽ†

i (t)Ẽj(t− s)ρ̂E(0)
]
. (3.17)

Here, the operator Ẽj(t) = eiĤEtÊje
−iĤEt is in the interaction picture. It does not depend

on time since the environment is in a stationary state and the correlation function of the
environment decay extremely fast.

Now, we make the final assumption: we consider the system in the rotating wave
approximation. The terms proportional to |ω − ω′| ≫ α2 will oscillate much faster
than the timescale of the system; thus, they do not contribute to its evolution. In the
low-coupling regime, α → 0, we can consider that only the resonant terms, ω = ω′,
contribute to the dynamics and remove all the others. Therefore, the equation (3.16)
reduces to

dρ̃(t)

dt
=
∑
ω,i,j

Γij

[
Ŝj(ω)ρ̃(t), Ŝ

†
i (ω)

]
+ Γ†

ji

[
Ŝj(ω), ρ̃(t)Ŝ

†
i (ω)

]
. (3.18)

The operators Γij(ω) are not necessarily Hermitian. Thus, we divide them into the
Hermitian and not Hermitian parts, such that Γij(ω) =

1
2
γij(ω) + iπij(ω). They yields

respectively

γij(ω) = Γij(ω) + Γ†
ij(ω) =

∫ ∞

−∞
dseiωsTr

[{
Ẽ†

i (t), Ẽj(t− s)
}
ρ̂E(0)

]
πij(ω) =

−i
2

(
Γij(ω)− Γ†

ij(ω)
)
=

∫ ∞

−∞
dseiωsTr

[[
Ẽ†

i (t), Ẽj(t− s)
]
ρ̂E(0)

] (3.19)

Inserting them into the equation (3.18) and returning to the Schrödinger picture, we
obtain

d

dt
ρ̂ = −i

[
Ĥ + ĤLS, ρ̂

]
+
∑
i,j,ω

γij(ω)

(
Ŝi(ω)ρ̂Ŝ

†
j (ω)−

1

2

{
Ŝ†
i (ω)Ŝj(ω), ρ̂

})
, (3.20)

where ĤLS =
∑

ω,i,j πij(ω)Ŝ
†
i (ω)Ŝj(ω) is called Lamb shift Hamiltonian. It adjusts the

energy levels due to the interaction with the environment. The equation (3.20) is the
general version of the Markovian master equation. The matrix γ(ω) must be positive
definite, although the trace preservation of the dynamics is not guaranteed.

If the matrix γ(ω) can be diagonalized, namely exist a diagonal matrix D = Ôγ(ω)Ô†

with Ô being a unitary operator, we can write the Lindblad-Gorini-Kossakowski-Sudarshan
master equation as

d

dt
ρ̂ = L [ρ̂] = −i

[
Ĥ + ĤLS, ρ̂

]
+
∑
k

γk(ω)

(
Ĵk(ω)ρ̂Ĵ

†
k(ω)−

1

2

{
Ĵ†
k(ω)Ĵk(ω), ρ̂

})
.

(3.21)
The operators Ĵk(ω) =

∑
iOkiŜi(ω) are called jump operators, the superoperator L is

called Lindblad superoperator and γi(ω) are the damping rates. In the limit γk(ω) = 0
the von Neumann equation is recovered with the Hamiltonian Ĥ + ĤLS.
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3.2 Time Evolution

In this section, we present a solution for the Lindblad master equation [41]. First, we
vectorize the density matrix: let introduce an Hilbert space with dimension N2 such that
a vector is |ρ⟩⟩ = (ρ00, ρ01, ..., ρNN−1, ρNN)

T and the scalar product is ⟨⟨ϕ | ρ⟩⟩ = Tr[ϕ̂†ρ̂].
This is known as the Fock-Liouville space [38].

The follow operation can be vectorize as

Âρ̂B̂ → (Â⊗ B̂)|ρ⟩⟩ Âρ̂+ ρ̂B̂ →
(
Â⊗ I+ I⊗ B̂

)
|ρ⟩⟩, (3.22)

where I is the identity matrix, Â and B̂ are two generic operator. The symbol ⊗ denotes
the tensorial product which generates a N2 ×N2 matrix defined as

Â⊗ B̂ =

A11B̂ · · · A1N B̂
...

. . .
...

An1B̂ · · · ANN B̂

 . (3.23)

Further details can be found in the Appendix C.
In this space the Lindblad equation (3.21) becomes

d

dt
|ρ(t)⟩⟩ = L̃|ρ(t)⟩⟩, (3.24)

where L̃ is the operator

L̃ = −i
[
Ĥ ⊗ I− I⊗ Ĥ

]
+
∑
k

γk

[
Ĵk ⊗ Ĵ†

k + Ĵ†
kĴk ⊗ I+ I⊗ Ĵ†

kĴk

]
. (3.25)

The solution to the equation (3.24) can be written as

|ρ(t)⟩⟩ = Û(t, 0)|ρ(0)⟩⟩, (3.26)

where U(t, 0) is the evolution operator

Û(t, 0) = exp

{
−it

(
Ĥ ⊗ I− I⊗ Ĥ

)
+ t

∑
k

γk

[
Ĵk ⊗ Ĵ†

k −
1

2
ĴkĴ

†
k ⊗ I− 1

2
I⊗ ĴkĴ

†
k

]} (3.27)

The evolution operator is not unitary.
Depending on the choice of the jump operators and of the damping rates, the density

matrix can converge to a stationary distribution. Some cases are discussed in [39] where
the stationary distribution corresponds to the Boltzmann distribution. In other scenarios,
some stationary currents between the states may persist leading to a not equilibrium
stationary solution, or the system may not converge altogether.
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3.3 Properties of the Lindblad Equation

The Lindblad master equation satisfies some important properties.
It defines a set of dynamical maps ϕt (ρ̂) = eLtρ̂(0) on the space of density matrices,

such that
ρ̂(t) = ϕt (ρ̂(0)) . (3.28)

These maps have the semigroup property, that is

ϕs (ϕt (ρ̂(0))) = ϕt+s (ρ̂(0)) (3.29)

The Lindblad master equation is the most general form for the generator of a quantum
dynamical semigroup. As a matter of fact, the Lindblad equation can also be derived
from this assumption [39].

The Lindblad master equation is invariant under the following transformations [39]:

• Unitary transformation of the Lindblad operator:

√
γiĴi →

√
γ′iĴ

′
i =

∑
j

uij
√
γjĴj (3.30)

where uij is an unitary matrix.

• Inhomogeneous transformation:

Ĵi → Ĵ ′
i = Ĵi + aiI

ĤI → Ĥ ′ = Ĥ +
1

2i

∑
j

γj

(
a∗j Ĵj − ajĴ

†
j

)
+ bI (3.31)

where ai ∈ C and b ∈ R, I is the identity matrix.

The latter transformation allows us to always choose a traceless jump operator.
Lastly, we can prove that the dynamics (3.32) conserve the trace of the density matrix.

As a matter of fact, its time derivative is given by

d

dt
Tr[ρ̂] = Tr

[
−i
(
Ĥρ̂− ρ̂Ĥ

)
+ Ĵkρ̂Ĵ

†
k −

1

2

(
Ĥρ̂+ ρ̂Ĥ

)]
= 0, (3.32)

we have use the cyclic property of the trace. However, it is important to note that the
Lindblad master equation does not conserve the purity Tr [ρ̂2] that decreases [38].

3.4 Entropy Production and Second Law of Thermo-

dynamics

In thermodynamics, the irreversibility of a process is encoded in the entropy function: a
process is reversible if and only if it does not produce entropy, otherwise it is irreversible.
Thus, the entropy of the universe should be conserved, namely the entropy produce by
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the process is ∆ST = 0. This is the second law of the thermodynamics, which assures
that the of the universe can not decrease, i.e. ∆ST ≥ 0. The Lindblad equation should
satisfy this requirement.

In fact, considering the derivative of the von Neumann entropy

Ṡ (ρ̂(t)) = −Tr

[
dρ̂

dt
ln ρ̂

]
+ Tr

[
dρ̂

dt

]
. (3.33)

Knowing that the dynamics is trace preserving, Tr
[
dρ̂
dt

]
= 0. the equation (3.33) reduces

to

Ṡ (ρ̂(t)) = −Tr

[
dρ̂

dt
ln ρ̂

]
. (3.34)

To prove that the Lindblad dynamics (3.21) satisfies the second law, we can substitute it
into (3.34). The von Neumann dynamical part does not produce entropy, thus, we can
only consider the dissipative one. We reach the equation

Ṡ(ρ̂) = −Tr

[∑
k

γk

[
Ĵkρ̂Ĵ

†
k −

1

2

{
Ĵ†
kĴk, ρ̂

}]
ln ρ̂

]
. (3.35)

We expand the commutator obtaining

Ṡ(ρ̂) = −
∑
k

γk Tr

[
Ĵkρ̂Ĵ

†
k ln ρ̂−

1

2
Ĵ†
kĴkρ̂ ln ρ̂−

1

2
ρ̂Ĵ†

kĴk ln ρ̂

]
. (3.36)

Since ln ρ̂ and ρ̂ commute, the second and third terms can be summed.

Ṡ(ρ̂) = −
∑
k

γk

(
Tr
[
Ĵkρ̂Ĵ

†
k ln ρ̂

]
− Tr

[
Ĵ†
kĴkρ̂ ln ρ̂

])
. (3.37)

We can reduce the two traces. First, we diagonalize the density matrix. Let |λ⟩ be the
eigenstate with eigenvalue λ, the density matrix can be written as

ρ̂ =
∑
λ

ρλ|λ⟩⟨λ|. (3.38)

We also transform the jump operator in this basis Ĵk = ÔĴkÔ
†. The first one with some

algebra can be reduces to

Tr
[
Ĵkρ̂Ĵ

†
k ln ρ̂

]
=
∑
λµ

Tr
[
Ĵkρλ|λ⟩⟨λ|Ĵ †

k ln ρµ|µ⟩⟨µ|
]

=
∑
λµ

ρλ ln ρµTr
[
|⟨µ|Ĵk|λ⟩|2

]
= N

∑
λµ

ρλ ln ρµx
(k)
λµ .

(3.39)

where x
(k)
λµ = |⟨µ|Ĵk|λ⟩|2 is a non negative scalar. It is symmetric respect the change

λ↔ µ.
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The other term becomes

Tr
[
Ĵ†
kĴkρ̂ ln ρ̂

]
=
∑
λµ

Tr
[
Ĵ †

k Ĵkρλ|λ⟩⟨λ| ln ρµ|µ⟩⟨µ|
]

=
∑
λµ

ρλ ln ρλ Tr
[
⟨µ|Ĵ †

k Ĵk|λ⟩⟨λ |µ⟩
]

=
∑
λ

ρλ ln ρλ Tr
[
⟨λ|Ĵ †

k Ĵk|λ⟩
]
.

(3.40)

The second braket in the trace is simply a Kronecker delta. Using the completeness
relation I =

∑
µ|µ⟩⟨µ| we obtain

Tr
[
Ĵ†
kĴkρ̂ ln ρ̂

]
=
∑
λµ

ρλ ln ρλ Tr
[
⟨λ|Ĵ †

k |µ⟩⟨µ|Ĵk|λ⟩
]

= N
∑
λµ

ρλ ln ρλx
(ij)
λµ .

(3.41)

The the deivative of the system’s entropy (3.37) yields

Ṡ(ρ̂) = −N
∑
λµ

γλµρλ ln ρµx
(k)
λµ +N

∑
λµ

γλµρλ ln ρλx
(k)
λµ . (3.42)

We can add and subtract the term ln γλµ such that the equation (3.42) becomes

Ṡ(ρ̂) = −
∑
λµ

γλµρλx
(k)
λµ (ln (ρµγλµ)− ln γλµ) +

∑
λµ

γλµρλx
(k)
λµ (ln (ρλγµλ)− ln γµλ) . (3.43)

Rearrange the terms, we reach

Ṡ(ρ̂) = −
∑
λµ

γλµρλx
(k)
λµ (ln (ρµγλµ)− ln (ρλγµλ)) +

∑
λµ

γλµρλx
(k)
λµ (ln γλµ − ln γµλ) . (3.44)

Here, the first term represent the entropy of the universe, in contrast, the second one
represents the work done by the environment to the system. Thus, in order to satisfy the
second law of thermodynamics the entropy of the universe must not decrease, meaning∑

λµ

γλµρλx
(k)
λµ ln (ρµγλµ) ≤

∑
λµ

γλµρλx
(k)
λµ ln (ρλγµλ) . (3.45)

We can rearrange the term in the two sum as∑
λ

∑
µ<λ

(γλµρλ ln (γλµρµ) + γµλρµ ln (γµλρλ))x
(k)
λµ +

∑
λ

γλλρλ ln (γλλρλ)x
(k)
λλ ≤∑

λ

∑
µ<λ

(γλµρλ ln (γµλρλ) + γµλρµ ln (γλµρµ))x
(k)
λµ +

∑
λ

γλλρλ ln (γλλρλ)x
(k)
λλ .

(3.46)

Therefore, it is sufficient that the following equation is satisfied

γλµρλ ln (γλµρµ) + γµλρµ ln (γµλρλ) ≤ γλµρλ ln (γµλρλ) + γµλρµ ln (γλµρµ) (3.47)
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Moving all the term in the right hand side and collecting the terms, we reach

(γλµρλ − γµλρµ) ln

(
γλµρµ
γµλρλ

)
≤ 0, (3.48)

which is always satisfied. The equality is satisfied for the reversible processes. The last
result tell us that the dynamics increases the entropy of the universe, thus, the Lindblad
master equation (3.21) is in accordance with the second law of thermodynamics. However,
the entropy of the system can decrease.
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Chapter 4

Quantum Network Master Equation

In Chapter 2 we introduced the concept of the density matrix for a network, derived from
the communicability matrix. This quantity captures the correlations between the nodes
in a random walk dynamics.

In this chapter, we aim to unify the two concept taken from the quantum realm we
have introduced: the quantum walk and the network’s density matrix. Specifically, we
analyze a quantum walk process subjected to thermal noise, from which we derive a
stationary distribution which coincides with the network’s density matrix. The interaction
between the quantum system and the thermal noise are treated as Markovian, meaning
they do not depend on the past, thus, we study them using the Lindblad master equation.

4.1 Quantum Stochastic Random Walk

One of the early approaches to an Open Quantum Walk on networks was proposed by
Whitfield, Rodŕıguez-Rosario and Aspuru-Guzik. [42]. They defined a quantum walk on
a network in contact with a thermal bath with the dynamics described by a Lindblad
master equation. In this framework, the jump operators are proportional to the adjacency
matrix Aij of the network. The thermal bath introduces noise into the dynamics, causing
a different motion respect to the von Neumann equation (1.41). The system dissipation
is reminiscent of the classic random walk.

Let us consider a quantum walk on a network G(N,M), the system in contact with a
thermal bath. Let us introduce a Hilbert space H with an orthonormal basis {|i⟩}i<N ,
where each element |i⟩ corresponds to the node i, satisfying ⟨i | j⟩ = δij. The system is
described by a density matrix ρ̂ whose evolution follows the Lindblad master equation
(3.32). The Laplacian operator L̂, defined as in equation (1.33), serves as the Hamiltonian
Ĥ, while the jump operators {Ĵk}k<M represent the thermal jumps between two node
linked together. For convenience, we will denote the jump operator with two indices
referring to the starting node j and the ending node i of the jump. Therefore, the jump
operators are Ĵij = |i⟩⟨j|. The damping rates are given by γij = Aij/di, like the transition
rates in the classical random walk (1.10). The master equation can be expressed as
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follows:
d

dt
ρ̂ = − i

2

[
L̂, ρ̂

]
+
∑
ij

γij

[
Ĵij ρ̂Ĵ

†
ij −

1

2

{
Ĵ†
ijĴij, ρ̂

}]
, (4.1)

where [·, ·] and {·, ·} denote the commutator and the anticommutator respectively. The
equation (4.1) is composed of two distinct terms. The first term Lqm [ρ̂(t)] = −i [H, ρ̂],
called coherent dynamics, corresponds to the quantum walk dynamics. In contrast, the

second term Lcl [ρ̂(t)] =
∑

i γi

(
Ĵiρ̂Ĵ

†
i − 1

2

{
Ĵ†
i Ĵi, ρ̂

})
, denoted as decoherent dynamics,

encodes the dissipation. When γij = 0 we recover the von Neumann equation for the
quantum walk (1.41). L [ρ̂(t)] act as a superoperator in the space of the density matrix.

In the Fock-Liouville space, the quantum system evolves according to the equation

|ρ(t)⟩⟩ = U(t, 0)|ρ(0)⟩⟩ (4.2)

where the evolution operator is defined as [43]

Û(t, 0) = exp
{
−it

(
Ĥ ⊗ I− I⊗ Ĥ

)
+ t

∑
ij

γij

[
Ĵij ⊗ Ĵ†

ij −
1

2
ĴijĴ

†
ij ⊗ I− 1

2
I⊗ ĴijĴ

†
ij

]}
.

(4.3)

The master equation (4.1) contains both the quantum and classical aspects of a
random walk over a network. Thus, the particle can go through both quantum and
classical transitions. As a matter of fact, the classical random walk behavior emerges
when we consider the evolution of the diagonal elements of the density matrix under the
dissipative part alone. Let ρ = |k⟩⟨k| represent the density matrix of a system localized
at node k. Its evolution is given by

Lcl|k⟩⟨k| =
∑
ij

γij

[
Ĵij|k⟩⟨k|Ĵ†

ij −
1

2

{
Ĵ†
ijĴij, |k⟩⟨k|

}]
=
∑
i

[γik|i⟩⟨i| − γik|k⟩⟨k|]

=
∑
i

(γki − γikδki) |i⟩⟨i| = −
∑
i

Lki|i⟩⟨i|.

(4.4)

This expression recovers the dynamics of the classical random walk over the network.
Next, considering the off-diagonal terms, their evolution is described by

Lcl|k⟩⟨l| =
∑
ij

γij

[
Ĵij|k⟩⟨l|Ĵ†

ij −
1

2

{
Ĵ†
ijĴij, |k⟩⟨l|

}]
=
∑
j

[
−1

2
γjk|k⟩⟨l| −

1

2
γjl|k⟩⟨l|

]
= −|k⟩⟨l|.

(4.5)

The operator Lcl does not mix the diagonal terms with the off-diagonal ones, allowing
us to separate the superoperator into two blocks: one for the diagonal elements and
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the another for the off-diagonal ones. Thus, the superoperator Lcl has a diagonal form
with spectrum given by σcl = −(λ1, ..., λN , 1, ..., 1)), where λi are the eigenvalue of the
Laplacian matrix [44]. If the network satisfies the detailed balance condition (1.19), the
Laplacian matrix has a zero eigenvalue. Therefore, the superoperator Lcl will also have a
zero eigenvalue indicating the presence of a stationary distribution.

4.1.1 Stationary Distribution

As mention before, the master equation (4.1) has a stationary matrix ρ̂∗ for the quantum
stochastic walk. In order to find it, we first consider only the dissipative dynamics, which
decouples the diagonal and off-diagonal terms. The evolution of the diagonal elements is
described by:

d

dt
ρii =

∑
j

[γijρjj(t)− γjiρii(t)] , (4.6)

The stationary distribution must satisfy the detailed balance condition, namely

γijρjj(t) = γjiρii. (4.7)

Because the damping rates for this system are symmetric, the diagonal entries ρii must be
equal. In contrast, considering the vector |ρ⟩⟩, the block corresponding to the off-diagonal
part of L is already an eigenstate with eigenvalue 1. Thus, the off-diagonal terms must
be equal to zero. The stationary density matrix can then be expressed as

ρ̂∗ =
1

N

1 0
. . .

0 1

 . (4.8)

The stationary density matrix has maximal von Neumann entropy

S (ρ̂∗) = lnN. (4.9)

Because the density matrix (4.8) commutes with the Laplacian matrix, it is indeed
the stationary density matrix for the dynamics described by (4.1).

However, this framework do not introduce an temperature. Therefore, in order to
explain the network’s entropy we need another framework.

4.2 Quantum Network Master Equation

The previous description for the noise in the quantum walk lacks a parameter that, in
thermodynamics, correspond to the temperature. Thus, we propose another framework:
instead of considering the jump operator as a transition between the nodes, we consider
the thermal bath interaction in the energy states. Let us retake the standard Lindblad
equation (3.21) with Hamiltonian Ĥ = L̂. We introduce the basis {|λ⟩}λ such that
Ĥ =

∑
λ λ|λ⟩⟨λ| = L̂ is diagonal (the network must satisfy the detailed balance condition
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(1.19)). We define the jump operator Ĵλµ = |λ⟩⟨µ| as the jumps from the energy state
|µ⟩ to the energy state |λ⟩ obtaining the master equation

d

dt
ρ̂ = −i

[
L̂, ρ̂

]
+
∑
λµ

γλµ

(
Ĵλµρ̂Ĵ

†
λµ −

1

2

{
Ĵ†
λµĴλµ, ρ̂

})
, (4.10)

where the coefficients γλµ indicate the probability of taking their respective jumps.
We assume that the dynamics will tend to a stationary distribution in the form of

ρ̂∗ =
e−βL̂

Z
, (4.11)

with Z = Tr
[
e−βL̂

]
being the partition function. The master equation for the stationary

distribution (4.11) reduces to

0 = −i

[
Ĥ,

e−βL̂

Z

]
+
∑
λµ

γλµ

(
Ĵλµ

e−βL̂

Z
Ĵ†
λµ −

1

2

{
Ĵ†
λµĴλµ,

e−βĤ

Z

})
. (4.12)

The first term on the r.h.s. vanishes since the commutator is zero.
Now, we analyze the dissipation terms independently. The first one can be written as∑

λµ

γλµ|λ⟩⟨µ|
e−βL̂

Z
|µ⟩⟨λ| =

∑
λµ

γλµ
e−βϵµ

Z
|λ⟩⟨λ|. (4.13)

While the second becomes∑
λµ

γλµ

[
1

2
|µ⟩⟨λ |λ⟩⟨µ|e

−βL̂

Z
+

1

2

e−βL̂

Z
|µ⟩⟨λ |λ⟩⟨µ|

]
=
∑
λµ

γλµ

[
e−βϵµ

Z
|µ⟩⟨µ|

]
. (4.14)

Therefore, inserting the equations (4.13) and (4.14) into the master equation (4.12), we
obtain the condition ∑

λµ

[
γλµ

e−βµ

Z
− γµλ

e−βλ

Z

]
|λ⟩⟨λ| = 0. (4.15)

This is the Kirchhoff’s current law which says that the sum of all the currents must vanish.
The system should satisfy this condition in order to have the Boltzmann distribution.
However, for a fixed β, there are several possible choices for the coefficients γλµ such
that equation (4.15) holds. Each different choice generates a different path to reach the
stationary distribution (4.11). We are looking for a solution that is explicitly depends
on the parameter β. The simplest choice is that the damping rates satisfies teh detailed
balance condition

γλµ
e−βµ

Z
− γµλ

e−βλ

Z
= 0, (4.16)

which has the solution

γλµ = c e−
β
2
(λ−µ)

γµλ = c e
β
2
(λ−µ).

(4.17)

44



4.2. QUANTUM NETWORK MASTER EQUATION

The solution is not unique; there exist a set of possible solutions which differ by a constant
c.

The von Neumann entropy measure the mi
Taking the limit β → ∞, that is T → 0, the transition rates tend to

γλµ →


0 λ > µ

1 λ = µ

∞ λ < µ

. (4.18)

The transitions from lower to higher energy state are suppressed, while the opposite
one are extremely favorite. Thus, the system is led to the zero energy state that is the
stationary state

ρ̂∗ = |λ = 0⟩⟨λ = 0|. (4.19)

It is a pure state therefore the von Neumann entropy vanishes.
In the opposite limit β → 0, that is T → ∞, the transition rates become

γλµ → 1. (4.20)

We have the opposite effect, the particle can jump across the different energy state with
uniform probability. Thus, the stationary distribution is the maximal entropy state, i.e.
the uniform distribution

ρ̂∗ =
1

N

1 0
. . .

0 1

 . (4.21)

It is a maximal entropy state with S = lnN .

4.2.1 Return to node’s basis

We go back to the position basis {|i⟩}i<N , where |i⟩ indicates the particle in the node i.
The jump operators can be expressed as

Ĵλµ =
∑
ij

⟨i |λ⟩⟨µ | j⟩Ĵij (4.22)

Ĵ†
λµ =

∑
ij

⟨j |µ⟩⟨λ | i⟩Ĵ†
ij (4.23)

where Ĵij = |i⟩⟨j|. Thus, substituting these expressions into equation into the equation
(4.10) we obtain

d

dt
ρ̂ = −i

[
Ĥ, ρ̂

]
+
∑
ijkl

γij;kl

(
Ĵij ρ̂Ĵ

†
kl −

1

2

{
Ĵ†
klĴij, ρ̂

})
, (4.24)

where the damping coefficient are define as

γij;kl =
∑
λµ

γλµ⟨i |λ⟩⟨λ | k⟩⟨l |µ⟩⟨µ | j⟩. (4.25)
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Unlike the energy basis, the damping rates in the position basis are no longer diagonal,
making the master equation (4.24) appear more complex as in the the equation(3.20).
Using the detailed balance condition (4.17) in (4.25), we rewrite the damping rates as:.

γij;kl =
∑
λµ

e−
β
2
(ϵλ−ϵµ)⟨i |λ⟩⟨λ | k⟩⟨l |µ⟩⟨µ | j⟩. (4.26)

In the high temperature limit, β → 0, the damping rates are

γij;kl =
∑
λµ

1⟨i |λ⟩⟨λ | k⟩⟨l |µ⟩⟨µ | j⟩. (4.27)

Using the completeness relation, we obtain

γij;kl = 1δikδjl, (4.28)

where δik is the Kronecker delta. Thus, the particle travel always through the same link.
In this case the position quantum network master equation (4.24) acquires a “symmetric”
form

d

dt
ρ̂ = −i

[
Ĥ, ρ̂

]
+
∑
ij

(
Ĵij ρ̂Ĵ

†
ij −

1

2

{
Ĵ†
ijĴij, ρ̂

})
. (4.29)

Since the relation (4.17) can be modify by a constant factor, we recover the master
equation for the Quantum Stochastic Walk (4.1). The stationary distribution is

ρ̂∗ =
1

N

1 0
. . .

0 1

 . (4.30)

In contrast, in the low temperature limit, β → ∞, the stationary distribution (4.19)
for the node reduces to

ρ̂∗ =
∑
ij

⟨i |λ = 0⟩⟨λ = 0 | j⟩|i⟩⟨j| =
√
ρ∗i ρ

∗
j |i⟩⟨j| (4.31)

The von Neumann entropy vanishes, indicating a pure state.

4.2.2 Analogy with the Network’s Entropy

The equation (4.10) describes the evolution of a quantum walk in the presence of classical
noise. The temperature T determines the noise strength. Increasing the parameter β
suppresses the energy state with high eigenvalue, until just the zero eigenstate remains.
Thus, the parameter β allows us to analyze the information’s spread along paths of chosen
eigenstate. The von Neumann entropy measures the uncertainty over the state of the
particle.

This entropy behaves as the network’s entropy (2.48). The network’s entropy measures
the complexity of the spread of information across the network, which depends on the
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parameter β. In fact, for low values of β, all the possible channel are available, resulting
in a complex spread of information and, thus, high entropy. As β increases, the channels
with high eigenvalue are suppressed until only the zero eigenstate remains, thus, zero
entropy.

In addition, we can apply a Wick rotation to the quantum dynamics (4.10) returning
to a special random walk of classical particle. This rotation connect the stationary
distribution at inverse temperature β (4.11) with the propagator at time t (1.15).

e−βL̂ → e−tL̂ (4.32)

Thus, cooling down the quantum system is analogous to the temporal evolution of the
classical one. In fact, the two limits β → ∞ and t→ ∞ converge to the same distribution:
the system will be entirely in the zero eigenstate of the Laplacian. Moreover, the density
distribution (4.11) is always in the maximal entropy state. As a consequence, also the
distribution for the classical random walk should cross state with maximal entropy.

The complexity of the possible paths is encoded in the von Neumann entropy as
explained in chapter 2. The entropy allows us to classify different networks based on the
dynamical properties of the network itself. We can achieve it introducing the Kullback-
Leibler divergence (2.57) and the Jensen-Shannon divergence (2.58). However, because
these quantities employ the trace of a Laplacian’s function, the entropy studies only the
spectral properties of the network. Therefore, networks with same spectrum but different
structures and eigenstates may be indistinguishable using these methods.

4.3 Generalization to other Dynamics

Until now, we have examined only the random walk on networks, but this framework can
be generalized to other, more complex dynamics on networks [45]. The dynamics should
be linear such that the evolution of the observable per node i is given by

d

dt
xi =

∑
j

Hijxj, (4.33)

where Hij controls the evolution of the system. For the continuous time random walk,
the control matrix coincides with the Laplacian. Let G(N,M) be a network. In order to
apply the Wick rotation and obtain the quantum version of the system, we introduce a
Hilbert space H with orthonormal basis {|i⟩}i<N , the state |ψ⟩ is defined as

|ψ⟩ =
∑
i

√
xi|i⟩ (4.34)

such that xi = |⟨i |ψ⟩|2. The evolution follows the Schrödinger equation

d

dt
|ψ(t)⟩ = −iĤ|ψ(t)⟩ (4.35)

where Ĥ =
∑

ij Hij|i⟩⟨j| is the control operator corresponding to the chosen dynamics.
To satisfy the Schrödinger equation the control operator must be hermitian. Now, we
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can add thermal noise arriving at quantum master equation (4.10) which has stationary
distribution

ρ̂∗H =
1

Z
e−βĤ (4.36)

with Z = Tr
[
e−βĤ

]
is the partition function. This density matrix corresponds to the

density matrix of the network.

Therefore, we can introduce the entropy for the network under the chosen dynamics
(4.33) as

SH(β) = −Tr [ρ̂∗H ln ρ̂∗H ] . (4.37)

Depending on the dynamics considered, the network will have a different value of entropy.

4.4 Non-Hermitian Laplacian

The quantum walk has a strict requirement that the Laplacian matrix must be Hermitian;
however, the majority of networks do not satisfy this condition. Thus, the analogy
between the network’s entropy and the quantum walk with thermal noise breaks down
for these networks.

To handle non-Hermitian Laplacian matrices, we propose two approaches. The first
approach that we describe is based on the Pseudo-Hermitian matrix [46]. A Pseudo-
Hermitian matrix has the property that it can be transformed into a Hermitian matrix
by the transformation

H ′ = e−ΩHeΩ (4.38)

The matrix Ω is proportional to the square root of the anti-Hermitian part of the
Laplacian. This procedure is equivalent to modify the scalar product by a factor e−Ω.
The Hamiltonian H ′ is, indeed, Hermitian and can be substituted into the equation (4.10)
restoring the analogy between the entropy’s network and the quantum walk thermal noise.
Thus, the analogy can be expanded to Pseudo-Hermitian Laplacians.

The second approach is again based on the Lindblad master equation (3.21). In
fact, the quantum walk on a network with a non-hermitian Hamiltonian has a evolution
operator that is not unitary. We can be divide the Hamiltonian into the Hermitian ĤS

and anti-Hermitian ĤA components, such that the evolution operator becomes

U(t, 0) = e−itĤS−tĤA (4.39)

with

ĤS =
1

2

(
Ĥ + Ĥ†

)
ĤA =

−i
2

(
Ĥ − Ĥ†

)
(4.40)

If the Hamiltonian Ĥ is positive definite, the second term of the equation (4.39)
dissipates energy. The system can be viewed as an open quantum system exchanging
energy with a thermal bath [47]. Thus, we can study it using the Lindblad master
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equation (3.21) in the form

d

dt
ρ̂ = −i

[
ĤS, ρ̂

]
+
∑
k

γk

(
Ĵ ′
kρ̂Ĵ

′†
k − 1

2

{
Ĵ ′†
k Ĵ

′
k, ρ̂
})

+
∑
l

γl

(
Ĵlρ̂Ĵ

†
l −

1

2

{
Ĵ†
l Ĵl, ρ̂

})
.

(4.41)

The equation (4.41) has two sets of jump operators with their respective damping rates.
The first set {Ĵ ′

k}k must reproduce the same dissipation as the anti-Hermitian operator
ĤA; while, the second set {Ĵl}l describes the interaction with the thermal bath, as
the Section (4.2). The damping coefficients may not satisfy the Kirchhoff’s law. As a
consequence, the system may not converge to a stationary state; some some stationary
density currents may persist or the system may not converge.

These approaches require further studies to understand the analogy in case of non-
Hermitian Laplacians.
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Conclusion

In this dissertation, we have explored a candidate for a density matrix and an entropy
for networks, based on the quantum density matrix and on the von Neumann entropy.
The density matrix is defined as the exponential of the Laplacian matrix of the network,
scaled by a parameter β. This entropy captures both the topological and dynamical
aspects of the networks.

The aim of this dissertation is to explore the connection between the network’s entropy
and the random walk, especially the quantum version. In fact, considering a quantum
walk on a network subjected to thermal noise tuned by the parameter β, the system
converges to the same density matrix we have previously discussed. This system has been
studied using the Lindblad master equation, where the effect of noise is encoded in the
jump operators. This analogy allows us to explain the role of the parameter β. In fact,
it suppresses the contribution of the eigenstates with high eigenvalues to the spread of
information.

The network’s entropy permits us to introduce an information-theoretic framework
for networks, including measures such as the Kullback-Leibler and Jensen-Shannon
divergences. These quantities can be used to measure the distance between networks,
facilitating network aggregation or the reconstruction of networks from real data. However,
since these divergences depend only on the spectrum of the Laplacian, they cannot
distinguish between networks that share the same spectrum but have different eigenvectors.

Nevertheless, the quantum walk requires the network to satisfy the detailed balance
condition. As a consequence, this analogy breaks down when this requirement is not met.
We have proposed some approaches to handle a non Hermitian Laplacian but further
studies are required.

The network’s entropy we have discussed in this work can be used to better understand
information dynamics in networks with applications in biochemistry, it can be used to
find the best network representation of a protein, in urban traffic management and in the
study of the social interactions on the Internet.

This work represents only a first step toward understanding the problem. Many
aspects of this model remain obscure and require further study.
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Appendix A

Matsubara Green Function

The Matsubara Green function introduces the effect of temperature to the Quantum
Field Theory formalism. It is based on the analogy of the Boltzmann weight in statistical
mechanics and the time evolution operator in quantum mechanics

p(β) =
e−βH

Z
U(t− t′) = e−i t−t′

ℏ Ĥ . (A.1)

Kubo observed that the finite temperature effects can be reformulated redefining the
time as τ = it

ℏ and the density matrix becomes [31]

ρ̂ ∝ e−βĤ = U(−iℏβ). (A.2)

Matsubara proposed that the thermal expectation value of an observable A is equal to

⟨A⟩ = Tr [U(−iℏβ)A]
Tr [U(−iℏβ)]

; (A.3)

This formulation resembles the Gell-Mann and Low formula for the QFT except that the
time evolution run over finite time τ ∈ [0,−iℏβ][31].

The Matsubara Green Function is defined as

G(β, t− t′) = −
〈
T̂ψ(t)ψ†(t′)

〉
= −

Tr
[
e−βĤψ(t)ψ†(t′)

]
Tr
[
e−βĤ

] (A.4)

For free bosons and fermions, we can compute Matsubara Green Function in the
momentum space as [31]

Gλ(β, τ) = −e−ϵλt [(1 + n(ϵλ))Θ(τ) + n(ϵλ)Θ(−τ)] bosons

Gλ(β, τ) = −e−ϵλt [(1− f(ϵλ))Θ(τ)− f(ϵλ)Θ(−τ)] fermion
(A.5)

where ϵλ is the energy level, n(ϵλ) and f(ϵλ) are the Bose-Einstein distribution and the
Fermi-Dirac distribution respectively

n(ϵλ) =
1

eβϵλ − 1
f(ϵλ) =

1

eβϵλ + 1
. (A.6)
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It can be shown that the Matsubara Green function is a periodic function with
T = [0, β] for bosons and t = [−β, β] for fermions. Indeed

G(β, β + τ) = −Tr
[
e−βĤψ(β + τ)ψ†(0)

]
= −Tr

[
e−βĤe−(β+τ)Ĥψ(0)e−(β+τ)Ĥψ†(0)

]
= −Tr

[
e−βĤeβĤeτĤψ(0)e−βĤe−τĤψ†(0)

]
= −Tr

[
e−βĤψ†(0)eτĤψ(0)e−τĤ

]
= −Tr

[
e−βĤψ†(0)ψ(τ)

]
= ζG(β, τ);

(A.7)

where ζ = ±1 for bosons or fermions.
As a consequence, the Green function can be expanded in a Fourier series, the

corresponding frequencies are called Matsubara frequencies. They are defined as

νn =2πnkBT bosons

ωn =π(2n+ 1)kBT fermions
(A.8)

The propagators for bosons and fermion in term of Matsubara frequencies are respec-
tively

Gλ(iνn) =
1

iνn − ϵλ
Gλ(iωn) =

1

iωn − ϵλ
. (A.9)
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Appendix B

Sub-additivity of the network’s
entropy

In Chapter 2 we have claimed that the network’s entropy satisfies the sub-additivity
property. Here, we provide the proof as in [16].

Let G, H and I be networks such that G = H+I and let ρ̂, σ̂ and ρ̂ be their respective
density matrix. Consider the KL divergence between G and H

D(ρ̂||σ̂) = −S(ρ̂)− Tr [ρ̂ ln σ̂]

= −S(ρ̂) + β Tr [LH ρ̂] + lnZH .
(B.1)

A similar expression holds for the KL divergence between G and I. Since both the
Laplacian and the density matrices are positive definite, the following inequality holds

β Tr [LH ρ̂] ≥ 0. (B.2)

Thus, the following equation consists of a summation of positive terms

D(ρ̂||σ̂) +D(ρ̂||τ̂) + β Tr [LH σ̂] + β Tr [LI τ̂ ] + lnZH + lnZI ≥ 0. (B.3)

Substituting equation (B.1) into (B.3), we obtain

−S(ρ̂) + β Tr [LH ρ̂] + lnZH − S(ρ̂) + β Tr [LI ρ̂] + lnZI

+β Tr [LH σ̂] + β Tr [LI τ̂ ] + lnZH + lnZI ≥ 0.
(B.4)

Rearranging and using the fact that S(ρ̂) = β Tr [Lρ̂] + lnZ and that LH + LI = LG we
obtain

S(σ̂) + S(τ̂)− S(ρ̂) ≥ 0, (B.5)

which is the sub-additivity property.
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Appendix C

Mathematical Method to Solve
Differential Equation from Matrix

In chapter 4.1 we study the time evolution of the density matrix by transforming it into
a vector. In this chapter we explain how this transformation works.

First, we start with a differential equation in the form

d

dt
X = AXB, (C.1)

where X, A and B are 2×2 matrix. We can solve the differential equation by transforming
the matrix X into a vector |X⟩⟩ = (x11, x12, x21, x22)

T , thus, the differential equation
becomes

d

dt
|X⟩⟩ = C|X⟩⟩, (C.2)

where the 4× 4 matrix C is a matrix derived from A and B.
As a matter of fact, considering the evolution of each element of X we obtain

dx11
dt

= a11x11b11 + a11x12b21 + a12x21b11 + a12x22b21

dx12
dt

= a11x11b12 + a11x12b22 + a12x21b12 + a12x22b22

dx21
dt

= a21x11b11 + a21x12b21 + a22x21b11 + a22x22b21

dx22
dt

= a21x11b12 + a21x12b22 + a22x21b12 + a22x22b22

(C.3)

We can rearrange these equations in a vectorial form

d

dt


x11
x12
x21
x22

 =


a11b11 a11b21 a12b11 a12b21
a11b12 a11b22 a12b12 a12b22
a21b11 a21b21 a22b11 a22b21
a21b12 a21b22 a22b12 a22b22



x11
x12
x21
x22

 = C|X⟩⟩ (C.4)

The matrix C in equation (C.4) is the tensorial product

C = A⊗BT =

(
A11B

T A12B
T

A21B
t A22B

T

)
. (C.5)
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where BT is the transpose of matrix B.
Using a similar procedure, we can vectorize also the differential equation

d

dt
X = AX +XB → d

dt
|X⟩⟩ =

(
A⊗ I+ I⊗BT

)
|X⟩⟩ (C.6)

where I is the identity matrix.
The generalization to a N ×N matrix and finite dimensional operator is straightfor-

ward.
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