
Department of Computer Science and Engineering

Master Degree in Artificial Intelligence

A Comparison between LLMs and
SLMs for Document Processing in the

Insurance Sector

Supervisor:
Prof. Paolo Torroni

Co-supervisors:
Lorenzo Caimi
Ludovico Granata

Defended by:
Alice Turrini

Graduation Session: March 2025
Academic Year 2023/2024

2

Abstract

This thesis provides a comparison over feasibility and performance between state-
of-the-art large language models (LLMs) and smaller language models (SLMs), for
the task of document classification and data extraction of a real-world case sce-
nario. The research focuses on the development of a robust document processing
pipeline. Starting from the raw PDF and encompassing all the necessary steps
to obtain a structured format suitable for classification and subsequent metadata
extraction.
Modern techniques are integrated throughout the pipeline to ensure efficiency
and scalability. The project leverages a dataset of over 8,000 documents, in-
cluding both labeled and pseudo-labeled data, in the medical and administrative
domains. Specifically, the study compares the use of advanced LLMs, particularly
GPT-4o, against smaller language models, BERT and LLaMA 3.2, for document
classification and key metadata extraction. Key challenges addressed include the
efficient extraction of meaningful information from complex domain documents,
optimization of model performance for both classification and extraction tasks,
and scalability of the proposed methods.
A central focus of this research is identifying the optimal balance between model
size and performance. This is explored through fine-tuning smaller models, apply-
ing techniques such as knowledge distillation and model quantization, and com-
paring their results to those of larger models.
Results suggest that finetuning small language models for specific tasks can achieve
performance comparable to, or in some cases surpass, LLMs, especially when con-
sidering model size and computational efficiency. These findings provide valuable
insights for the modern topic of choosing between solutions based on LLMs or
SLMs, taking into consideration various aspects such as performances, deploy-
ment, privacy, personalization, and cost.

3

4

To myself (yes, we did it!)
and to all those who stood by me,

near or far.

5

6

Contents

Abstract 3

1 Introduction 1
1.1 Motivation . 1
1.2 GenAI . 2
1.3 Real-world IDP . 4

2 Background 7
2.1 IDP pipeline and technology used 7

2.1.1 Optical Character Recognition (OCR) 8
2.2 Language Models . 9

2.2.1 LLMs . 9
2.2.2 SLMs . 12
2.2.3 Differences . 18

2.3 Thesis’s objective . 24
2.4 Models used in the project . 25

2.4.1 BERT . 25
2.4.2 GPT . 27
2.4.3 LLaMA . 30

3 Data 35
3.1 Challenges . 40
3.2 Dataset exploration . 42
3.3 Data preprocessing pipeline . 43

4 Classification 45
4.1 Classification model with BERT . 46

4.1.1 BERT For Long Texts . 48
4.1.2 Performance metrics . 51

4.2 Prompting with GPT . 54
4.2.1 Different prompt strategies 55
4.2.2 Performance metrics . 60

4.3 Comparison and Discussion . 61

5 Extraction 65
5.1 Evaluation criteria . 65
5.2 LLM . 69

5.2.1 Performances . 71

7

5.3 SLMs . 72
5.3.1 Knowledge Distillation . 73
5.3.2 QLoRA . 74
5.3.3 Data augmentation . 76
5.3.4 Performances . 78

5.4 Comparison and Discussion . 79

6 Conclusion 83
6.1 Addressing the initial questions . 83

6.1.1 Implications for Real-World Pipelines 84
6.2 Future Research . 85

A Document examples 87

93

Bibliography 93

8 CONTENTS

Chapter 1

Introduction

1.1 Motivation

The transition to digital documents has changed how we store and handle informa-

tion, leading to the adoption of various software tools for managing digital versions

of physical paperwork. As the volume of digitalized documents has grown expo-

nentially in recent years, the demand for efficient and accurate document manage-

ment systems has become increasingly evident. Automated document processing

addresses this need by utilizing intelligent systems to interpret and handle docu-

ments autonomously.

Intelligent Document Processing (IDP) integrates optical character recogni-

tion (OCR)[1], artificial intelligence (AI), and robotic process automation (RPA),

allowing machines to understand and interpret information similarly to human

cognitive processes. By leveraging these technologies, IDP automates data entry,

extraction, and validation workflows, decreasing the need for manual input and

enhancing overall efficiency.

The increasing volume and variety of digital documents present significant chal-

lenges for businesses and organizations worldwide. Traditional manual document

processing is time-consuming, error-prone, and inefficient, often leading to wasted

resources and reduced productivity. Studies [2] have shown that 83% of workers

spend 1-3 hours daily reading and fixing errors in files, and 73% spend a similar

amount of time simply searching for information in specific documents.

The inefficiencies associated with manual data handling are compounded by

1

the risk of human error and the repetitive nature of these tasks, which are neither

engaging nor the best use of human cognitive abilities. These issues underscore the

need for automated solutions that can handle large volumes of data with greater

speed and accuracy.

Automated document processing, indeed, offers several advantages, includ-

ing higher reading speed, increased productivity and scalability. By eliminating

labour-intensive data entry tasks, organizations can reallocate human resources

to higher-value activities. As a result, businesses in industries such as finance,

healthcare, insurance, and real estate, which all have to deal with a huge amount

of documents, can enhance their operational efficiency.

Despite these benefits, automated document processing has various challenges.

Current models, while powerful, can still introduce errors and are often highly

specialized for specific tasks and datasets. Generalizing automation remains a

complex issue, requiring ongoing research and development to create more flexible

and adaptable systems.

1.2 GenAI

Generative Artificial Intelligence (GenAI) includes all AI systems that can gen-

erate original content such as texts, images, videos, audio, or even code. These

systems are trained on huge amounts of various data, and thanks to deep learning

and innovative technologies, such as the transformer architecture and the attention

mechanism, they try to mirror human creativity.

Historically, businesses have primarily worked with structured data, such as

well-organized information like databases, which constitutes only about 10% of

the total available data. However, the remaining 90% of the data is unstruc-

tured, consisting of formats such as videos, images, pdf documents, chat, emails,

reviews, etc. GenAI represents a transformative shift in the way organizations

approach data, it opened up the potential to process and leverage this vast pool

of unstructured data, enabling deeper insights and more intelligent automation.

With the emergence of GenAI, the focus on data has intensified, compelling

companies to transition toward fully data-driven organizations. This shift is not

merely technological but strategic, pushing businesses to reevaluate their processes

2 CHAPTER 1. INTRODUCTION

and decision-making frameworks. By leveraging GenAI techniques, companies can

automate workflows and increase productivity across different levels. Despite its

potential, this technology also brings several challenges, including data quality

management, model interpretability, and the need for robust governance to miti-

gate biases and ethical concerns.

At this point, it is clear that organizations that successfully integrate GenAI

into their operations gain a significant competitive advantage. In recent years, a

historical, technological transition has started, in which the use of GenAI inside

companies’ businesses will become the new standard. The main characters will be

intelligent agents, which can handle repetitive, rule-based tasks while also address-

ing more complex activities that require contextual understanding and specialized

learning. This capability allows businesses to scale their operations quickly, reduce

costs, and empower employees to focus on higher-value work.

Certain features become essential when choosing automation tools to ensure

reliability, efficiency, and speed. Solutions should include built-in monitoring to

manage large-scale automated tasks without disruption and human-in-the-loop

validation to improve accuracy. Flexibility and personalization of intelligent sys-

tems is also important, to adapt them for different needs. These capabilities align

closely with the objectives of this research, which aims to explore the role of

advanced AI techniques in document processing and metadata extraction. This

research aims to explore GenAI’s capabilities to establish a basis for building ef-

fective, scalable, and intelligent document processing workflows.

Within the broader domain of GenAI, one of the most influential technologies

nowadays is large language models (LLMs). These models, typically trained

on massive text datasets from diverse sources, leverage deep learning architectures

to understand, generate, and manipulate human language. They demonstrate ex-

ceptional fluency and contextual awareness and achieve performances in many

tasks almost comparable to humans. LLMs are made of hundreds of billions of

parameters, which enable them to capture complex patterns and deep relationships

in language. Their huge scale empowers them to perform a wide, diverse range of

natural language tasks. The popularity of LLMs arises from their versatility and

state-of-the-art performance. They are trained on vast corpora, creating a large

CHAPTER 1. INTRODUCTION 3

background knowledge, and then they can be fine-tuned on specific datasets. Their

ability to comprehend nuanced language and generate human-like responses has

made them already very useful in many applications. However, the enormous size

and computational demands of LLMs introduce several practical challenges.

Their deployment requires significant hardware resources, which increases their

operational costs and energy consumption. The significant infrastructure require-

ments imply that not every organisation can afford to deploy and maintain them.

Their studies and deployment are limited to the private entities, which then gen-

erally allow others to utilise their models through various payment methods. In

addition, the size and complexity of these models can complicate real-time appli-

cations.

Despite their high performances and almost as humans, all these limitations moti-

vated many researchers to explore Small Language Models (SLMs), a class of

language models with fewer parameters. SLMs aim to balance performance and

efficiency, offering many of the capabilities of their larger counterparts while being

more accessible, easier to deploy, and cost-effective.

This thesis will compare LLMs and SLMs in the context of automated doc-

ument classification and metadata extraction. By evaluating their performance,

efficiency, and applicability in real-world scenarios, it seeks to determine the fea-

sibility of adopting smaller models without compromising on accuracy.

1.3 Real-world IDP

This study originated during an internship at a consulting company collaborating

with a client in the insurance sector. The project is grounded in a real-world use

case, where the client provided the input documents, specified the requirements,

and outlined the expected outputs. The formulation of the core methodological

approach, however, was independently designed by our team.

The methodology adopted for this project follows a structured pipeline. The

first step involved collecting all the data supplied by the client, ensuring the pres-

ence of labeled data necessary for supervised learning and enabling the validation

of model performance through appropriate metrics. Then, the data underwent

preprocessing to create a coherent and uniform dataset. This phase included split-

4 CHAPTER 1. INTRODUCTION

ting multi-page documents into individual pages, saving each page as an image,

and extracting the textual content from these images to build natural language

processing models. Following the preprocessing phase, a multi-class classification

model was developed to classify each document. The final stage involved an ex-

traction model capable of retrieving metadata, specific for each class, from a given

document’s page in the format of text. Each model implemented underwent a

rigorous validation process, with specific metrics and results that were critically

assessed.

The overall objective of the project was to compare the performance of large

language models and small language models in the two principal stages of the doc-

ument processing pipeline: the classification and the metadata extraction. Figure

1.1 provides a high-level overview of the document processing pipeline. The objec-

tive is to extract specific metadata from documents. The pipeline consists of two

main phases: a classification step followed by a metadata extraction step, in each

stage a comparative analysis between LLMs and SLMs techniques is performed.

Figure 1.1: A high-level schema of the thesis’s document processing pipeline,
illustrating the document classification followed by the extraction of class-specific
metadata. The focus of the project is the comparison between LLMs and SLMs
techniques in these key steps.

In both phases, the LLM utilized was GPT-4o, an OpenAI state-of-the-art

model, known for its exceptional performance across numerous NLP tasks. For

the classification task, it was compared with BERT [3], a way smaller language

model developed by Google. And for the extraction task, GPT-4o was evaluated

against LLaMA 3.2 [4], a model from the LLaMA family developed by Meta [5].

Later in the background chapter 2.4 more specific details about the specific models

used will be given.

CHAPTER 1. INTRODUCTION 5

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 IDP pipeline and technology used

Intelligent Document Processing (IDP) combines multiple AI technologies to au-

tomate the extraction, validation, and integration of data from various types of

documents. By leveraging optical character recognition (OCR), machine learning,

and robotic process automation (RPA), an IDP pipeline typically follows these

key steps:

Uniformation: The strong aspect of IDP is the flexibility of the input format

that it can process. And so, the first step is to uniform all the possible formats

into one, usually an image that will be later transformed into text.

Preprocessing: The quality and accuracy of the images are enhanced through

techniques such as noise reduction and image cropping. These methods improve

the readability and interpretability of documents, ensuring better downstream

processing.

Text Reconstruction: Leveraging OCR, the text of the document is extracted

and transformed into a readable format.

Classification: Documents are categorized based on their format, structure, and

content. This step enables the later data extraction and helps the processing

pipeline for specific document types.

Data Extraction: Thanks to advanced AI models, metadata, such as names,

dates, numbers, or even more complex concepts, are identified and extracted from

the documents.

7

Validation: It is important to cross-check extracted data to ensure accuracy and

consistency. Any flagged inconsistencies can be routed for human review.

Human-in-the-Loop Validation: Despite advanced automation, human over-

sight remains crucial for quality evaluation. Human feedback is used to refine

AI models over time, enhancing their accuracy and adaptability. As powerful

as automation technologies have become, there are still many scenarios in which

human expertise is indispensable. Human-in-the-loop validation ensures that au-

tomated systems maintain high accuracy by incorporating human feedback into

the pipeline. In IDP, this validation plays a critical role when dealing with highly

variable documents, complex data structures, or low-quality inputs.

Integration: Once validated, the extracted data is seamlessly transferred into

the business systems or databases through APIs, enabling automated workflows.

2.1.1 Optical Character Recognition (OCR)

Optical character recognition (OCR) [1] is a technology that digitalises printed

texts into electronic format. It is a foundational technology in IDP and serves as

the bridge between raw data and textual data. OCR systems analyse a document’s

visual structure and interpret individual characters, transforming them into a

digital format that can be processed by downstream applications. Modern OCRs

are now capable of producing accurate results from various types of inputs, such

as scanned paper documents, handwritten PDFs, or images.

The underlying technology first cleans the images, classifying at pixel level

darker areas as text and lighter areas as backgrounds. With this information, ear-

lier versions analysed the classified image and identified each character, called a

glyph, performing pattern matching or extracting symbolic characteristics. Mod-

ern OCR technologies, instead, leverage deep learning techniques and ICR (In-

telligent Character Recognition), a neural network that mimics human reading of

images to improve recognition accuracy, particularly when dealing with complex

handwritten text. In this way, modern OCR models achieve high performance in

text extraction, even from unstructured or noisy sources.

OCR technologies vary widely based on software and providers, with AWS

Textract [6] standing out in the real-world document processing landscape. Un-

8 CHAPTER 2. BACKGROUND

like traditional OCR, Textract excels at extracting not only text but also rela-

tionships and structures within documents, forms, and tables. Its pricing model

is usage-based, meaning it depends upon the complexity of the text being ana-

lyzed—ranging from simple plain text or signatures to more intricate tables and

forms. For users, this translates to a competitive cost of approximately $15 for

processing a million pages within a month, making it a practical solution for var-

ious document processing needs.

2.2 Language Models

2.2.1 LLMs

Language models are neural network architectures designed to process and gener-

ate natural language text. The underlying architecture is the well-known trans-

former with the attention mechanisms, concepts that made the revolution in

AI in 2017 with ”Attention Is All You Need” [7]. Unlike earlier recurrent neu-

ral networks (RNN) that sequentially process inputs, transformers process entire

sequences. This allows the use of GPUs during the training process, which signifi-

cantly reduces the training time, and allows these models to be trained on massive

datasets containing billions of words from different contexts. Through this exten-

sive training and the huge number of trainable parameters that these models have,

they understand the complexity of language.

Due to their high performance in many NLP tasks and their almost human-like

understanding of text during the last five years, they have been one of the most

trending topics for research and development of AI. In Figure 2.1 it is shown a

timeline with the most popular models released in the recent years, giving the idea

of the saturation of this field of studies.

Historically, traditional language models, such as n-grams and statistical mod-

els, relied on probabilistic approaches with limited contextual understanding. In

contrast, modern language models interpret long contexts of words and capture

semantic meanings in a way that mimics human-like understanding. Their abil-

ity to generalize from limited labeled data makes them foundational for many

contemporary AI-driven document processing systems.

CHAPTER 2. BACKGROUND 9

Figure 2.1: The schema comes from the paper ”A Survey of Large Language
models”[8], and it illustrates the timeline of existing LLMs in recent years. It was
established mainly according to the release date (submission date to arXiv) of the
technical paper for a model, or in case if there was no corresponding paper, it is
reported the date of a model as the earliest time of its public announcement.

A key factor behind the effectiveness of these models lies in how they rep-

resent words. Early machine learning approaches like Bag-of-Words, Word2Vec,

and GloVe represented words through static numerical tables, which failed to cap-

ture contextual relationships between words. This limitation was overcome by the

advent of word embeddings, multi-dimensional vectors that position semanti-

cally similar words closer to each other in the vector space. By leveraging these

embeddings, transformers pre-process text as numerical representations through

the encoder and interpret the contextual meaning of words and phrases, includ-

ing grammatical roles and semantic relationships. The decoder then applies this

learned knowledge to generate coherent and contextually appropriate output.

Large pre-trained transformer models have demonstrated impressive capabili-

ties in performing tasks for which they were not explicitly trained. However, task-

specific performance can often be enhanced through techniques like in-context

learning, fine-tuning and Prompt engineering.

In-context learning (ICL) refers to the capacity of pre-trained large language

models to perform new tasks by leveraging information provided within the con-

text window, without explicit parameter updates. Instead of adjusting weights

via gradient descent, the model adapts its behavior based on examples or instruc-

10 CHAPTER 2. BACKGROUND

tions provided in the prompt. This technique allows LLMs to generalize across a

wide range of tasks using natural language interactions. Few-shot prompting, for

instance, involves providing examples in the context window to help the model

infer task structure and apply it to new inputs.

Fine-tuning, on the other hand, involves updating the weights of a pre-trained

LLM by training it on task-specific datasets. Techniques like supervised fine-

tuning (SFT), reinforcement learning with human feedback (RLHF) [9], and parameter-

efficient fine-tuning (PEFT) [10] are among the most common approaches to adapt

LLMs for specialized tasks.

Lastly, Prompt engineering represents another powerful method to optimize

LLM performance without altering the model’s internal structure. By carefully

crafting prompts, consisting of the model’s input, inference, and completion—users

can maximize output quality for diverse tasks, from simple queries to complex

problem-solving. In-context learning complements prompt engineering by provid-

ing illustrative examples within the context window:

• Zero-shot inference: no examples provided.

• One-shot inference: one example provided.

• Few-shot inference: multiple examples provided.

The ability of a model to learn and generalise from new data, is proportional to

its size, which is determined by the number of parameters it possesses. The bigger

the model is, the more data it can process and learn from, and indeed, the higher

the performance on many linguistic tasks. Year after year, the dimension of the

language models deployed has always increased, and the trend is growing expo-

nentially. However, the increasing size and complexity of LLMs have made them

resource-intensive, restricting their accessibility to organizations with substantial

computational infrastructure. This underscores the intent of this thesis of explor-

ing efficient alternatives, such as smaller models, which balance performance and

resource efficiency. SLMs offer promising solutions for democratizing AI adoption

across industries by reducing the costs and energy demands associated with LLM

deployment.

CHAPTER 2. BACKGROUND 11

2.2.2 SLMs

The term SLMs lacks a precise definition, it is used to denote language models that

have a smaller number of parameters, typically fewer than 10 billion, highlighting

their distinction from larger models containing hundreds of billions or even trillions

of parameters.

Figure 2.2 presents some of the most used SLMs released over the past five years.

As shown, the number of smaller models has increased in recent years, reflecting a

growing interest in more efficient and accessible alternatives to large-scale models.

Figure 2.2: An overview timeline of SLMs. The information is taken from [11], in
which they set 5B as the upper limit of the size of SLMs, but of course it changes.

Despite their reduced size, SLMs retain much of the capability of their larger

counterparts thanks to sophisticated optimization techniques, including:

• Pruning: Removing redundant model parameters to reduce size and com-

plexity.

• Quantization: Lowering numerical precision (e.g., from 32-bit to 8-bit) to

decrease memory footprint and improve inference speed.

• Low-rank factorization: Decomposing weight matrices into lower-dimensional

components to optimize efficiency.

• Knowledge distillation: Transferring knowledge from a large, pre-trained

“teacher” model to a smaller “student” model, preserving essential capabil-

ities while reducing complexity.

These techniques ensure that SLMs maintain high efficiency without compro-

mising too heavily on accuracy.

12 CHAPTER 2. BACKGROUND

Knowledge Distillation

LLMs present significant deployment challenges due to their enormous compu-

tational requirements. Traditional approaches to addressing this challenge have

followed two primary paradigms: fine-tuning and standard distillation.

Fine-tuning involves updating pre-trained smaller models using labelled data spe-

cific to downstream tasks. While effective, this approach requires extensive human-

generated labels, which are expensive and time-consuming to produce.

The idea of knowledge distillation [12] is instead to train smaller models using

labels generated by larger models. It still requires large quantities of unlabeled

data that can be challenging to collect in sufficient volumes [13]. This approach is

based on the idea of transferring the final output distributions from teacher to stu-

dent models, avoiding for the smaller model to learn all the intermediate reasoning

processes that lead to those outputs. In this way, small models struggle to reach

the reasoning capabilities that large models possess. This limitation becomes par-

ticularly pronounced when training data is scarce, as smaller models lack all the

necessary supervision to develop robust reasoning pathways independently.

Despite these efforts, both approaches typically demand substantial amounts

of training data to achieve performance comparable to few-shot prompted LLMs,

presenting an unfortunate trade-off between model size and data collection costs.

Step-by-Step Knowledge Distillation [14] represents a revolutionary approach in

the field of knowledge distillation for language model optimization. It enabled sig-

nificantly smaller models to outperform their much larger counterparts while re-

quiring substantially less training data. This innovative methodology, introduced

in the groundbreaking paper ”Distilling Step-by-Step! Outperforming Larger Lan-

guage Models with Less Training Data and Smaller Model Sizes,” demonstrated

that a 770M parameter T5 model can surpass the performance of the 540B pa-

rameter PaLM model, achieving a remarkable 700x reduction in model size while

using only 80% of the available training data. The core innovation of this method

lies in exploiting LLM as intelligent reasoning agents and making them extract

informative natural language rationales [15], which represents the intermediate

reasoning steps. These rationales are used as additional, richer supervision in

the training phase of the smaller models. These rationales contain valuable task

CHAPTER 2. BACKGROUND 13

knowledge that would typically require extensive training data for small models to

acquire independently. These reasons essentially teach them how to think through

complex problems rather than just what answer to produce.

Figure 2.3: The Figure shows an overview of the Distilling step-by-step and it is
taken from the original paper [14]. They first utilized CoT (Chain Of Thoughts)
prompting to extract rationales from an LLM, on the top left. Then they used
the generated rationales to train small task-specific models. They prepend task
prefixes to the input examples, as shown in the bottom, and trained the model to
output differently based on the given task prefix.

The conceptual framework builds upon Chain-of-Thought (CoT) prompt-

ing techniques, which have demonstrated LLMs’ capacity for explicit step-by-

step reasoning. This process involves preparing exemplars for the LLM input

prompt, where each example contains a triplet of input, rationale, and output.

The LLM then generalizes from these examples to generate rationales for new

inputs through in-context learning.

There are multiple ways to incorporate the rationale into the training pro-

cess, one of which is to input it into the small model. But this implies that at

inference time the model needs the rational, and this is a big disadvantage be-

cause at inference time a LLM is needed. To overcome this problem, Step-by-Step

Knowledge Distillation, instead imposes the small model to output the reasons

f(xi) → (ŷi, r̂i), and it implements a multi-task learning approach that trains

smaller models simultaneously on two related objectives.

The first objective is the standard label prediction task, while the second is a novel

14 CHAPTER 2. BACKGROUND

rationale generation task that teaches models to produce intermediate reasoning

steps. This dual-objective framework is formalized mathematically through this

composite loss function that balances between accurate prediction and faithful

rationale reproduction L = Llabel + λLrationale.

The approach leverages two task prefixes [label] and [rationale] to differentiate

between the two tasks during training, allowing the model to learn both capabili-

ties in parallel, and easily delete [rationale] during the inference phase [16].

In conclusion, distilling step-by-step reduces the training dataset required to

curate task-specific smaller models, and it also reduces the model size required to

achieve, and even surpass, bigger models’ performance.

QLoRa

An alternative optimization method is QLoRA [17], or Quantized LoRA, which

minimizes GPU memory consumption during the training process. This approach

is efficient for fine-tuning as it sufficiently decreases memory requirements, en-

abling the fine-tuning of a large language model on a single GPU, while maintain-

ing the full performance of 16-bit fine-tuning tasks. QLoRA builds upon Low-Rank

Adaptation (LoRA) [18] by introducing quantization to further optimize the fine-

tuning process. The standard LoRA technique focuses on low-rank adaptation,

which, during the fine-tuning, freezes the original model’s parameters while train-

ing an external low-rank matrix that adapts those parameters. This technique

significantly reduces the number of trainable parameters and memory footprint,

making fine-tuning more efficient.

The innovative techniques used by QLoRA [17] to achieve these performance gains

include:

• 4-bit NormalFloat (NF4): a new data type that is information theoret-

ically optimal for normally distributed weights. Unlike traditional quanti-

zation formats, NF4 better preserves the distribution characteristics of the

original weights, leading to minimal performance degradation despite the

lower precision.

• Double Quantization: a method that quantizes the quantization con-

stants, reducing the average memory footprint. A small block size is required

CHAPTER 2. BACKGROUND 15

for precise 4-bit quantization [19], but this also has a considerable memory

overhead. Double quantization mitigates this by treating the quantization

constants cFP32 from the first quantization as inputs to a second quantization

step, yielding the final quantized quantization constants cFP8. This two-step

quantization process significantly reduces memory usage while maintaining

high precision.

• Paged Optimizers: to manage memory spikes laveraging the CPU. It uses

the NVIDIA unified memory [20] feature which does automatic page-to-page

transfers between the CPU and GPU. This approach ensures error-free GPU

processing even in scenarios where the GPU occasionally runs out of memory,

improving the stability and efficiency of the fine-tuning process.

Figure 2.4: The figure shows different fine-tuning methods and their memory re-
quirements, taken from the original [17]. QLoRA improves over LoRA by quantiz-
ing the transformer model to 4-bit precision and using paged optimizers to handle
memory spikes.

Regarding hyperparameters, the most critical factor is the number of LoRA

adapters used. It is also essential to apply LoRA to all linear transformer block

layers to match the performance of full fine-tuning.

Interestingly, accordingly to the official paper [17], other LoRA hyperparameters

such as the projection dimension r, have minimal impact on performance.

Mathematically, LoRA operates on the principle that for a pre-trained weight

matrix W0 ∈ Rd×k, instead of fine-tuning all parameters, we can approximate the

16 CHAPTER 2. BACKGROUND

weight update with a low-rank decomposition:

W = W0 + ∆W = W0 + BA (2.1)

where B ∈ Rd×r and A ∈ Rr×k are low-rank matrices with rank r ≪ min(d, k),

and the update is scaled by α
r

during training.

This technique significantly reduces the number of trainable parameters from d×k

to r × (d + k) and memory footprint, making fine-tuning more efficient.

QLoRA extends the LoRA approach with weight quantization, which reduces nu-

merical precision to 4-bit values, creating a dual optimization strategy that bal-

ances memory efficiency and model performance.

The forward pass in QLoRA can be expressed as:

YBF16 = XBF16doubleDequant(cFP321 , ck-bit2 ,WNF4) + XBF16LBF16
1 LBF16

2 , (5)

where doubleDequant(·) is defined as:

doubleDequant(cFP321 , ck-bit2 ,Wk-bit) = dequant(dequant(cFP321 , ck-bit2),W4bit) = WBF16

(6)

where XBF16 is the input, Wk−bit is the quantized pre-trained weight matrix, cFP321

and ck−bit
2 are the quantization constants, and BBF16 and ABF16 are the trainable

LoRA adapters in BFloat16 precision. By combining low-rank adaptation and 4-

bit quantization, QLoRA achieves substantial memory savings without sacrificing

the quality of the fine-tuning outcomes.

It is fascinating that QLoRA’s 4-bit quantization with the NF4 data type matches

the performance of 16-bit full fine-tuning and 16-bit LoRA fine-tuning. Indeed,

QLoRA is the first fine-tuning method that enables the fine-tuning of 33B-parameter

models on a single consumer GPU and 65B-parameter models on a single profes-

sional GPU, without any degradation in performance relative to a full fine-tuning

baseline. This remarkable efficiency and scalability make QLoRA a groundbreak-

ing advancement in the field of efficient model fine-tuning, and worth implementing

in the experiment of this project.

CHAPTER 2. BACKGROUND 17

2.2.3 Differences

The comparison between Large Language Models and Small Language Models can

be made across several dimensions, reflecting their different capabilities, resource

requirements, and suitability for specific use cases. This section provides an in-

depth analysis of these aspects, highlighting both the strengths and limitations of

each approach.

Model Size The most fundamental distinction between LLMs and SLMs is the

number of parameters, by definition. LLMs possess billions to trillions of pa-

rameters, enabling them to capture intricate language structures and extensive

general knowledge. LLMs can even exceed the trillion-parameter threshold and

demonstrate remarkable linguistic capabilities across diverse domains. This mas-

sive parameter count allows LLMs to maintain contextual understanding across

lengthy inputs and generate nuanced, contextually appropriate responses.

In contrast, SLMs operate with significantly fewer parameters, generally falling

below the 10 billion parameter threshold. This substantial reduction in model

size creates a cascade of differences that affect nearly every aspect of model per-

formance, deployment, and practical application. The parameter count distinc-

tion represents not just a technical classification but fundamentally shapes the

models’ capabilities and limitations. Indeed, the smaller architecture of SLMs

necessarily constrains their ability to maintain complex contextual relationships

but simultaneously enables advantages in computational efficiency and specialized

applications.

Resource Requirements and Energy Consumption for Training Train-

ing an LLM is an exceptionally resource-intensive process, with substantial impli-

cations for accessibility and environmental sustainability. LLM training demands

massive datasets and distributed high-performance computing infrastructure, typ-

ically requiring hundreds of GPUs or TPUs operating continuously for months.

This extraordinary computational demand translates directly into significant fi-

nancial costs, as high-performance computing hardware has high prices in both

purchase and operational dimensions.

The environmental impact of LLM training and usage has become a topic of

18 CHAPTER 2. BACKGROUND

increasing concern in the AI community. Major AI research organizations like

Google and OpenAI have acknowledged that running their largest models can

consume energy equivalent to several hundred households. This substantial car-

bon footprint raises important questions about the sustainability of increasingly

large language models, particularly as deployment scales.

SLMs, on the other hand, require a fraction of these resources, making them

more accessible for researchers and organizations with limited computational bud-

gets, and of course more environment friendly. This accessibility democratizes

AI development, enabling smaller research teams and organizations to participate

meaningfully in language model advancement.

Inference Speed and Latency Reduction Due to their smaller size, SLMs

offer significantly reduced inference times. They often achieve response faster

than LLMs, which is crucial for real-time applications. This speed advantage

is particularly beneficial in latency-sensitive environments. Applications such as

interactive conversational agents, real-time document processing, or embedded

systems benefit substantially from the reduced computational overhead of smaller

models.

Request Efficiency Beyond single-request performance, SLMs excel in man-

aging concurrent requests due to their lower per-instance resource requirements.

This efficiency translates directly into improved scalability in production environ-

ments. Organizations can serve more simultaneous users with equivalent hardware

resources, reducing infrastructure costs while maintaining responsive performance.

The scalability advantage becomes particularly significant in high-volume applica-

tions, where resource constraints might otherwise force service degradation. The

scalability advantage is particularly relevant in high-volume applications, where

the ability to efficiently process large request loads can determine the feasibility

of real-time document classification and metadata extraction systems.

On the other hand, LLMs often rely on API-based access, which imposes inher-

ent constraints on parallelization. Each request is processed sequentially through

the external service, limiting the possibility to batch requests or execute them

concurrently. This dependency not only introduces potential bottlenecks but

CHAPTER 2. BACKGROUND 19

also increases operational costs. Additionally, API-driven architectures introduce

latency variations due to network dependency, making them less predictable in

performance-sensitive environments.

Fine-Tuning Ease and Cost For LLMs, fine-tuning presents a significant chal-

lenge due to their immense computational and memory demands. Training or

adapting these models typically requires high-end GPUs or specialized cloud in-

frastructure, making the process both very expensive and time-consuming. The

cost of fine-tuning an LLM is further amplified by the need for extensive datasets

and long training durations, often making it impractical for organizations with

limited resources.

In contrast, one of the most significant practical advantages of SLMs lies in their

superior adaptability through fine-tuning processes. While both model categories

can theoretically be adapted to specific domains, the resource requirements for

fine-tuning LLMs often prove prohibitive for many organizations. SMLs can be

fine-tuned quickly and cost-effectively, enabling easy adaptation to specialized do-

mains without extensive computational infrastructure. This accessibility democ-

ratizes the development of domain-specific language models, allowing a broader

range of organizations to benefit from customized AI capabilities.

Advanced techniques have further enhanced the fine-tuning efficiency for SLMs.

Methods like Low-Rank Adaptation (LoRA), adapters and quantization signifi-

cantly streamline the fine-tuning process, reducing computational requirements

while maintaining performance.

The domain adaptation capabilities of SLMs have proven surprisingly effec-

tive, with studies indicating that properly fine-tuned smaller models can retain

approximately 90% of LLM performance in domain-specific applications. This

finding challenges the assumption that larger models are always superior, suggest-

ing that for many specialized use cases, the performance gap may be minimal while

the resource difference remains substantial. Organizations can achieve comparable

functional results within their specific domain while avoiding the significant costs

associated with larger models.

20 CHAPTER 2. BACKGROUND

Task Adaptability LLMs excel in handling complex, general-purpose tasks

which require extensive prior knowledge and contextual understanding. They

maintain coherence over long passages and generate detailed responses.

SLMs, instead, have less understanding of the language, and indeed, they are less

adept at managing intricate language structures. However, they perform well in

specialized domains with targeted optimizations. Studies show that SLMs retain

approximately 90% of LLM performance in domain-specific applications, thanks

to the easy fine-tuning process explained before.

Open-Source Availability Many leading LLMs remain closed-source propri-

etary technologies, as organizations that invest millions in their development un-

derstandably protect their competitive advantages. This restricted access con-

centrates advanced AI capabilities among well-resourced technology companies,

raising concerns about AI democratization.

In contrast, the SLM ecosystem is more open-source, enabling widespread ex-

perimentation and adaptation. This openness fosters a more diverse development

community and enables innovations from researchers and organizations that would

otherwise lack access to cutting-edge language model technology. The collabo-

rative nature of open-source development further accelerates improvement and

specialization of these models across diverse applications.

Deployment Deployment architectures represent another critical dimension of

difference between these model categories. LLMs typically require cloud deploy-

ment and centralizing processing in data centers with abundant resources, due

to their substantial computational demands. This cloud dependency introduces

several challenging considerations, including network latency, continuous connec-

tivity requirements, and potential data privacy concerns as information travels to

and from remote servers.

SLMs offer more flexible deployment options, including local installation on edge

devices or organizational servers. This approach eliminates network transmission

delays, resulting in faster response times. It also enhances data security by keep-

ing sensitive information within internal systems and proves particularly valuable

in environments with limited or unreliable connectivity.

CHAPTER 2. BACKGROUND 21

Data Privacy and Security The data security and privacy implications of

deployment architecture have become increasingly important as language models

process more sensitive information. A widespread concern about LLM is the risk

of exposing sensitive personal data when information is transmitted to external

servers, or that the providers of the services could memorize the data to use it for

the training process. Ensuring compliance with data protection regulations like

GDPR is crucial in the European regions. As this topic has become more impor-

tant due to the wide usage of the LLM from individuals or businesses, adopting

techniques such as data minimization and anonymization to safeguard privacy, and

specific subscription in specific regions are now available for most of the models.

SLMs enhance privacy protection through on-device processing capabilities, re-

ducing or eliminating the need to transmit potentially sensitive data to external

servers. This capability proves particularly valuable in regulated industries like

healthcare and finance, where data protection requirements impose strict limita-

tions on information handling.

Cost-Effectiveness The economic considerations encompass the entire lifecy-

cle, including training, deployment, operation, and adaptation. SLMs present

substantially lower hardware and operational costs compared to LLMs, making

AI language capabilities more accessible to organizations with limited technology

budgets. This accessibility enables smaller organizations to leverage advanced lan-

guage processing without prohibitive infrastructure investments.

The pricing models for cloud-based large language model services typically oper-

ate on a per-token basis for both input and output, creating direct relationships

between usage volume and cost. The token-based pricing structure varies signifi-

cantly between models, Table 2.1 shows the pricing of two large language models

and a small language model to have a concrete idea of the costs. Inside the same

GPT-4o GPT-4o-mini Claude Sonnet 3.5

Cost 1M input token 2.75 $ 0.165 $ 3 $
Cost 1M output token 11 $ 0.66 $ 15 $

Table 2.1: The Table shows the price in $ for one million input and output tokens.
For the GPT-4o model, the referred version is the 2024-08-06.

22 CHAPTER 2. BACKGROUND

family and payment method, the small version of the GPT-4o model has approx-

imately a 94% cost reduction.

Considering in more detail the use case of this project of document processing,

these pricing differentials become particularly significant when processing substan-

tial document volumes. The input given to the language models is the instruc-

tion prompt and the input page of the document, either as text or as image. A

text-heavy page typically corresponds to approximately 3200 tokens for text-only

processing or 3500 tokens for the image data. With output responses averaging

around 100 tokens, depending on the quantity of metadata to extract. At scale,

these differences in token consumption lead to significant cost disparities between

model categories. Organizations processing thousands of documents per month

can achieve substantial operational savings by adopting SLMs. It is crucial to

strike the right balance between performance and requirements to maximize effi-

ciency while maintaining accuracy. Beyond direct service costs, the reduced com-

putational requirements of SLMs translate into lower infrastructure investments

for organizations deploying models locally. The hardware specifications needed

to run SLMs remain substantially more modest than those required for LLMs,

including energy consumption, cooling requirements, and maintenance expenses.

Table 2.5 provides an overview of the pricing for the most famous and recent

LLMs, offering insight into the scale of the costs involved. The two models on

the right, which have the highest pricing, are OpenAI’s most recent releases. This

reflects the recent trend in AI industry: the development of increasingly larger

and more advanced models, inevitably accompanied by rising operational costs.

Model Performance LLMs have the ability of maintaining context over long

passages and generating coherent, contextually rich responses. SLMs, with their

limited amount of parameters, struggle with long-term context retention and deep

language understanding. While LLMs generally outperform SLMs in terms of

linguistic comprehension and contextual awareness, the performance gap narrows

through domain-specific fine-tuning, with properly optimized SLMs achieving ap-

proximately 90% of LLM performance in specialized applications while requiring

significantly fewer resources. This finding challenges simplistic ”bigger is better”

[22] approaches to model selection and highlights the importance of contextual

CHAPTER 2. BACKGROUND 23

Figure 2.5: The Figure shows different models’ pricing, from the left to the most
expensive on the right. The prices are USD per 1M tokens. The plot has been
taken from [21] in which it is performed a wide comparison over different topics.

evaluation. Organizations should consider not only raw capability metrics but

also operational requirements, budget constraints, and specific performance needs

within their domain.

2.3 Thesis’s objective

The comparative analysis of LLMs and SLMs reveals a landscape where optimal

model selection depends on specific use cases, resource constraints, deployment re-

quirements and reliability needed. While LLMs demonstrate superior capabilities

in general knowledge tasks and complex reasoning scenarios, SLMs offer com-

pelling advantages in specialized domains, particularly when considering resource

efficiency, deployment flexibility, and economic factors.

The evolving landscape of language model development suggests several impor-

tant future directions. Research into efficient training methods, parameter opti-

mization, and specialized architectures may further reduce the performance gap

between these model categories while maintaining the efficiency advantages of

smaller models.

Hybrid approaches leveraging fine-tuned SLMs for domain-specific tasks, sup-

ported by LLMs only in cases requiring extensive reasoning or broad general-

ization, may define a practical middle ground for many real-world applications.

24 CHAPTER 2. BACKGROUND

As language models continue integrating into critical business processes and con-

sumer applications, responsible selection must consider not only technical and

economic factors but also broader implications, including environmental impact,

accessibility, and data privacy. The comparative analysis of SLMs in these dimen-

sions suggests they may play an increasingly important role in future AI applica-

tions.

This thesis investigates these differences in language models, and its objective is

to understand the feasibility of SLMs as an efficient and adaptable alternative for

specific tasks. The tasks in this case are document classification and metadata

extraction. The objective is to analyze the capability of both LLMs and SLMs

in delivering reliable solutions, quantify the performance gap between them, and

assess the associated computational costs.

2.4 Models used in the project

This section provides a detailed examination of the models selected for this study,

focusing on the comparison between LLMs and SLMs. Given the vast landscape

of available models, the selection process aimed to include a highly capable, state-

of-the-art LLM, potentially one of the largest currently available, and contrast

it with a smaller model specifically optimized for the given task. This approach

allows for a comprehensive evaluation of the trade-offs between scale, performance,

and efficiency in this real-world application.

2.4.1 BERT

BERT, the Bidirectional Encoder Representations from Transformers (BERT),

introduced by Google AI in 2018, marked a paradigm shift in natural language

understanding and established a new standard for pre-trained language models

[3].

It is based on the idea that the major limitation of standard language models was

their unidirectional nature, which restricts the choice of architectures that can be

employed during pre-training. BERT’s architecture relies solely on the transformer

encoder, in contrast to the decoder-only architecture (as GPT). A key innovation

CHAPTER 2. BACKGROUND 25

of BERT lies in its bidirectional training approach, which enables the model to

consider both left and right contexts simultaneously when processing text. This

feature contrasts with the autoregressive framework of GPT.

BERT is available in two primary variants: BERT-Base, with 110 million pa-

rameters, and BERT-Large, with 340 million parameters. They are indeed Small

Language Models, as their parameter count is significantly lower compared to the

vast scale of models. Despite this, BERT’s efficiency and effectiveness have made

it a cornerstone in natural language processing, especially due to its unsupervised

feature-based approaches. The model is trained using two primary objectives: the

Masked Language Model (MLM) and Next Sentence Prediction (NSP). In

the MLM task, BERT randomly masks tokens in the input and learns to predict

them based on surrounding context, enabling bidirectional language modelling. In

the NSP task, the model learns to determine if two sentences are logically con-

nected, improving its performance on sentence-pair classification tasks.

A key characteristic of BERT is that it can be easily fine-tuned for various tasks,

resulting in a powerful, task-specific model. As Figure 2.6 shows, for fine-tuning

the BERT model is first initialized with the pre-trained parameters, and all pa-

rameters are fine-tuned using labeled data from the downstream task.

Figure 2.6: The schema shows the two phases of training a model with BERT,
the first is a pre-training phase and the second a fine-tuning on a specific dataset
for a specific task. This Figure is taken from the official ”BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding” [3].

The impact of BERT on NLP research and applications has been significant. At

the time of its release, it achieved state-of-the-art results on numerous benchmark

datasets, including the General Language Understanding Evaluation (GLUE) and

26 CHAPTER 2. BACKGROUND

the Stanford Question Answering Dataset (SQuAD). It reached a GLUE score of

80.5% and F1 of 93.2 on the SQuAD test, demonstrating exceptional performance

on tasks such as text classification, sentiment analysis, named entity recognition,

and question answering [23, 24]. The model size of BERT is exactly the same as

that of the OpenAI GPT model from that year, GPT-1. The paper indicated that

BERT achieved better performance overall. Its success has inspired the develop-

ment of numerous variants and fine-tuned models tailored for specific languages,

domains, and tasks.

One of BERT’s most notable advantages is its open-source availability, which has

fostered widespread adoption and extensive research. This transparency enables

developers and researchers to fine-tune the pre-trained model on domain-specific

data, extending its applicability while maintaining high performance with rela-

tively modest computational resources compared to larger language models. This

contrasts with the OpenAI approach, which has increasingly leaned toward pro-

prietary models with restricted access, limiting opportunities for customization

and independent evaluation.

Thanks to its moderate size, the model can be deployed directly in private en-

vironments. This allows organisations to fine-tune it, implement other tools or

pipelines over it, and ensure compliance with data privacy standards. BERT’s ef-

ficiency, accessibility, and robust performance in certain tasks make it an optimal

choice for real-world applications where data is available to fine-tune the model

for enhanced performance, and computational constraints are critical. BERT has

demonstrated that rich, unsupervised pre-training enables even low-resource tasks

to benefit from deep unidirectional architectures, especially thanks to its deep

bidirectional architecture.

2.4.2 GPT

Generative Pre-trained Transformers (GPT) form a family of state-of-the-art lan-

guage models developed by OpenAI [25]. These models are based on a decoder-

only transformer architecture and operate under an autoregressive framework,

meaning they generate predictions one token at a time, conditioned on the pre-

vious context. Specifically, the model generates a probabilistic distribution over

CHAPTER 2. BACKGROUND 27

possible next tokens, and a decoding algorithm selects the actual output token,

which can be mathematically expressed as P (wt|w0, . . . , wt−1). A fundamental

feature of this architecture is the use of masked multi-head self-attention, which

ensures that each token attends only to its preceding tokens, preventing informa-

tion leakage from future tokens.

The first GPT model, released in 2018, marked a significant advancement in

natural language processing and established OpenAI as a pioneer in this field.

Since then, the GPT series has evolved through successive iterations, GPT-2,

GPT-3, GPT-3.5, GPT-4, GPT-4o, GPT o1 and the most recent GPT 4.5, intro-

ducing increasingly sophisticated learning techniques and architectural improve-

ments. While OpenAI has not disclosed the exact number of parameters in these

models, they are estimated to operate on scales reaching hundreds of billions of

parameters, with each iteration enhancing the model’s capacity for contextual un-

derstanding, reasoning, and coherent language generation.

Figure 2.7 illustrates the evolution of the GPT-series models over the years.

Figure 2.7: The evolution of the GPT-series models over time. This schema draws
inspiration from the one in the paper ”A Survey of Large Language Models” [26].
The information is based primarily on research papers, blog articles, and official
OpenAI documentation. Dashed lines represent the models currently integrated
into ChatGPT, while dotted lines refer to earlier versions as they were at the initial
deployment in 2022. In the model size, B stands for Billions and T for Trillions.

All GPT models are deployed through OpenAI’s centralized cloud infrastructure,

which enforces strict data access and usage policies. However, this architecture

raises inherent concerns regarding data sovereignty and the potential exposure of

sensitive and private information.

GPT models employ a self-supervised learning approach, where the training ob-

jective involves predicting the next token in a sequence, enabling the discovery

28 CHAPTER 2. BACKGROUND

of intricate patterns inherent in language data. Training occurs in two stages:

first, the model is pre-trained on vast Internet datasets, learning general linguistic

structures, and then, from GPT-3 onward, models are fine-tuned using reinforce-

ment learning from human feedback (RLHF). This aligns the models with their

outputs to human-preferred responses and improving practical usability [?].

Released in 2023, GPT-4 marked a significant advancement in language model per-

formance, demonstrating notable improvements in reasoning, knowledge retention,

and coding capabilities compared to its predecessors. Although it is still far from

achieving human-level capabilities in many real-world scenarios, GPT-4 attains

near-human performance on several professional and academic benchmarks.

Despite these advances, GPT-4 models are not entirely reliable and remain

prone to hallucinations, reasoning errors, and the possibility of generating harm-

ful or inaccurate information. To mitigate these issues, GPT-4 incorporates an

additional safety reward signal during RLHF training, reducing the likelihood of

unsafe outputs while maintaining generative fluency and versatility. OpenAI in-

vested six months in iteratively aligning the model through adversarial testing,

which enhanced safety, factual accuracy, and steerability. These efforts show an

82% reduction in the model’s tendency to respond to disallowed content compared

to GPT-3.5 and a 29% improvement in compliance with OpenAI’s safety policies

when addressing sensitive queries.

GPT-4o, also known as the ”Omni Model”, is an advancement over the GPT-4

model. It is designed to unify various AI capabilities into a single, end-to-end

framework capable of seamlessly processing and generating text, interpreting im-

ages, analyzing audio, and even handling video inputs. Compared to GPT-4’s

context window of 8192 tokens, GPT-4o significantly extends this capacity to

128k tokens, making it far more adept at handling lengthy and complex text.

A distinctive feature of GPT-4o is its multimodal architecture, where a single

neural network processes inputs and outputs across different modalities. This

innovation fosters a more natural and fluid human-computer interaction, marking

an initial step toward more comprehensive AI systems.

Following the path set by its predecessors, GPT-4o incorporates safety-by-

design principles across all modalities. Techniques such as filtering training data,

CHAPTER 2. BACKGROUND 29

post-training behavioral refinement, and the implementation of robust guardrails

ensure responsible deployment and mitigate risks associated with generative AI.

All these characteristics make GPT-4o particularly suitable for industrial ap-

plications where diverse input types and high performance are paramount. Its

ability to integrate and process multimodal data efficiently underscores its po-

tential as a foundational tool for advanced document classification and metadata

extraction tasks.

2.4.3 LLaMA

LLaMA, Large Language Model Meta AI, represents a family of advanced lan-

guage models [27] developed by Meta AI, designed to balance state-of-the-art per-

formance with computational efficiency and accessibility [28]. Unlike proprietary

models such as GPT-4, LLaMA models are released as open weights, enabling

broad experimentation and customization. This approach aligns with Meta’s vi-

sion of democratizing access to powerful language models for both research and

industry. However, LLaMA’s license enforces an acceptable use policy that pro-

hibits its application for certain purposes, Meta’s description of LLaMA as ”open

source” has been disputed by the Open Source Initiative, which maintains the

official Open Source Definition.

Since the beginning, Meta has consistently released powerful models of varying

sizes, but in general, often much smaller than competing models. For example,

GPT-4, released the same year as LLaMA’s first model, has approximately 1.7

trillion parameters while LLaMA has a maximum of 65 billion. These differing

approaches reflect a broader and modern discourse on the trade-off between model

size and efficiency, which will be further explored in the following section on LLMs

versus SLMs.

Also LLaMA models are based on the transformer architecture, specifically follow-

ing a decoder-only configuration similar to GPT, and they employ an autoregres-

sive framework. However, there are some key differences that distinguish LLaMA

from other models:

• SwiGLU [29] activation function instead of GeLU.

• Rotary positional embeddings (RoPE) [30] instead of absolute positional

30 CHAPTER 2. BACKGROUND

embeddings.

• RMSNorm [31] instead of traditional layer normalization.

In particular, Figure 2.8 illustrates a comparison between the GPT and LLaMA

architecture, both based on the transformer [7] but with some important differ-

ences..

Figure 2.8: A comparison between the architectures of GPT and LLaMA.

A defining characteristic of the LLaMA family is its availability through plat-

forms like Hugging Face [4], underscoring Meta’s commitment to fostering an open

AI ecosystem. Hugging Face’s comprehensive integration of LLaMA models has

made them widely accessible and easily deployable for various NLP applications.

Meta began releasing the LLaMA family of models in 2023, which currently in-

cludes LLaMA 1, LLaMA 2, and LLaMA 3. Each iteration introduced models

of varying sizes, providing flexibility in terms of computational requirements and

performance. The table 2.2 shows the LLaMA models released during the past two

years and their available sizes. Since its inception, Meta has consistently released

powerful models of varying sizes, often favoring a smaller scale compared to com-

peting models. For instance, GPT-4, released the same year as LLaMA 1, contains

approximately 1.7 trillion parameters, whereas LLaMA 1’s largest model at the

CHAPTER 2. BACKGROUND 31

Model Name Release date Parameters

LLaMA 1 02/2023 6.7B, 13B, 32.5B, 65.2B

LLaMA 2 07/2023 6.7B, 13B, 69B

LLaMA 3 04/2024 8B, 70.6B

LLaMA 3.1 07/2024 8B, 70.6B, 405B

LLaMA 3.2 09/2024 1B, 3B, 11B, 90B

LLaMA 3.2 Vision 09/2024 (no UE) 11B, 90B

Table 2.2: The tables show the models of the LLaMA series, with each corre-
sponding release date and the different released model parameters sizes.

time had 65 billion. These differing approaches reflect two distinct philosophies

in AI development: one prioritizing vast scale to achieve maximum performance,

and the other focusing on efficiency and accessibility while maintaining competi-

tive capabilities.

LLaMA models consistently demonstrated competitive results compared to

larger proprietary model, starting with the 13B parameter LLaMA 1 model which

outperformed the much larger GPT-3 model (175B parameters) on several NLP

benchmarks, while the 65B model achieve the performances of state-of-the-art

models like PaLM [32] and Chinchilla [33].

Later, in July 2023, Meta, in partnership with Microsoft, announced LLaMA 2 [5].

Although its architecture remained largely unchanged from LLaMA 1, it benefited

from a 40% increase in training data volume, leading to improved performance and

generalization capabilities.

Following, a year later, LLaMA 3 has been released with two model sizes. These

models were pre-trained on approximately 15 trillion tokens collected from pub-

licly available sources and enriched with over 10 million human-annotated exam-

ples. Compared to its predecessor, LLaMA 3 was trained on eight times more

data and featured a new tokenizer with an expanded vocabulary of 128,256 tokens

(four times more tokens than the previous version). With these internal evalu-

ations, Meta demonstrated that LLaMA 3 70B outperformed competing models

like Gemini Pro 1.5 and Claude 3 Sonnet on most benchmarks.

Among the LLaMA 3 models, LLaMA 3.2 stands out for its efficient inference

and reduced deployment costs, making it particularly attractive for real-world

applications where computational efficiency is crucial. This optimization is espe-

32 CHAPTER 2. BACKGROUND

cially beneficial for on-premises deployments, enabling organizations to maintain

data sovereignty and mitigate privacy concerns often associated with cloud-based

models.

Overall, LLaMA 3.2 exemplifies the evolving landscape of open-weight lan-

guage models, offering a powerful yet efficient alternative to more resource-intensive

models like GPT-4. Its combination of scalability, performance, and transparency

makes it a valuable tool for a wide range of natural language processing tasks.

In this project, LLaMA 3.2 will be fine-tuned for metadata extraction within

the document processing pipeline, and its performance will be compared with that

of GPT-4o.

CHAPTER 2. BACKGROUND 33

34 CHAPTER 2. BACKGROUND

Chapter 3

Data

This thesis focuses on the development of a document processing pipeline

designed for a real-world application, specifically aimed at the classification of

documents and the subsequent extraction of metadata. The ultimate goal of

this pipeline is to autonomously extract specific information from a given docu-

ment, where the type of data to be extracted depends on the document’s class.

Each class is associated with a distinct set of metadata, reflecting the particular

characteristics and informational needs of that class.

The documents considered in this study belong to the insurance sector, a do-

main characterized by a wide variety of documentation from different operational

contexts. For this project, the documents are primarily categorized into two sub-

sectors: the medical and the administrative. In this particular case, the dataset

includes six primary classes of documents: an employment certificate, leave cer-

tificate, death certificate, hospitalization certificate, generic medical certificate,

and medical record. Additionally, there exists a residual class, labeled ”others”,

which includes all documents that do not belong to any of the six predefined

classes. Each of these classes is described in more detail below:

• Employment: Belonging to the administrative subsector, this class includes

documents related to the hiring processes. They are usually emails, official

contracts or formal records of employment agreements and procedural com-

munications.

• Leave certificate: Also this one is part of the administrative subsector,

this category covers documentation associated with the revocation of vaca-

35

tion periods. Documents in this class may include formal letters, internal

company paperwork, and email correspondence.

• Hospitalization certificate: This class instead falls into the medical sub-

sector and consists of admission certificates issued when a patient is admitted

to the hospital, clinic, or emergency department. These documents formally

record the patient’s entry into the healthcare system.

• Generic medical certificate: Also situated in the medical subsector, this

class includes various forms of medical documentation, such as prescriptions

and sickness certificates. A notable feature of these documents is that they

are often handwritten by medical professionals and typically consist of a

single page.

• Medical record: Representing the most comprehensive category within the

medical subsector, this class includes the complete clinical history of a pa-

tient. Medical records often comprise multiple pages, detailing the patient’s

condition from admission through discharge, including diagnoses, medical

examinations, treatment plans, and results. These documents indeed are

very long.

• Death certificate: As indicated by its name, this class consists of official

documents certifying a person’s death. Typically limited to a single page,

these documents may describe the cause of death, including medical diag-

noses, the circumstances of the event, or legal information related to the

case.

The use of real-world documents in this study introduces several challenges,

primarily due to the organization of the classification schema. The division of doc-

ument classes was established based on business requirements and was not subject

to negotiation, despite some notable ambiguities. For example, certain medical

classes, such as the hospitalization certificate and the medical record, exhibit sub-

stantial overlap. The differences between them are sometimes very difficult to

discern. This overlap complicates the classification task and necessitates robust

methods of validation and error analysis.

Regarding the actual dataset, a total of 2079 documents were initially pro-

vided, with each document being either a PDF or an image in JPEG or PNG

36 CHAPTER 3. DATA

format. Specifically, the dataset comprises 482 images and 1597 PDF files, and

PDFs often contain multiple pages. Some documents are exceptionally large, the

average number of pages per PDF is approximately 9, though it is important to

highlight that there are a dozen documents exceeding 100 pages. This variability

in document length underscores the complexity of the dataset and the need for

efficient document handling and processing techniques. The dataset includes a di-

verse range of document types, such as scanned images, digitized documents, and

photographs of paper documents. The content within the documents is highly het-

erogeneous, often featuring textual components alongside frontispieces, symbols,

tables, forms, signatures, and handwritten sections. And in some cases, entire

pages consist solely of handwritten content, further complicating the task of in-

formation extraction.

A significant characteristic of the data is the potential for multiple classes to coex-

ist within a single document, a phenomenon prevalent in medical documentation.

For instance, medical records, which are typically very long, may contain a hospi-

talization certificate at the beginning and, in the event of a patient’s death, a death

certificate at the end. Another common scenario could involve scanned documents

that, due to human error, include pages originating from different original docu-

ments. To address this complexity, the classification process is conducted at

the individual page level. Each page is assigned to one of the seven defined

classes, which comprise the six primary categories and the ”others” class. Then,

pages belonging to the same class within a given document are grouped together

to form what is called a ”logical document.” This concept of logical documents

allows the organization of single physical documents which encompass multiple

distinct classes inside. Figure 3.1 illustrates this non-trivial concept, providing a

Figure 3.1: High-level schema of the logic documents inside one original document,
which are grouped into pages of the same document and classified as the same class.

CHAPTER 3. DATA 37

high-level representation of how logical documents are constructed from the pages

of an original document.

Following the classification of individual pages and the subsequent creation of log-

ical documents, the extraction phase is performed on these logical units,

it is important to note this different granularity. Figure 3.2 provides a broad view

of the entire pipeline, illustrating the sequence of steps required to transform an

input document into its corresponding extracted metadata.

Figure 3.2: The Figure shows a schema of this thesis overview, showing from
the input document the main steps to reach the output data. First, splitting each
document into its pages and classifying each page into one of the six classes. Then,
for each class a specific extraction is performed and gives the output wanted, the
metadata of that specific document.

Each document class is associated with a distinct set of metadata to extract. Ta-

ble 3.1 defines the specific metadata corresponding to each class, highlighting the

varying informational requirements across document types.

Class Metadata

employment emission date

leave cert emission date, revoked date start/end

death cert name, event date

hospitalization cert emission date, admission date, diagnosis

generic medical cert emission date, symptom onset date, diagnosis

medical record admission date/time, discharge date/time, diagnosis

Table 3.1: The table shows the corresponding metadata for each class. In the class
name cert stands for certificate.

38 CHAPTER 3. DATA

At the conclusion of this document processing pipeline, a list of metadata corre-

sponding to the information extracted from a given document is produced. The

length of this list reflects the number of logical documents identified within the

original document. To provide a clearer understanding of the data, Figure 3.3

presents a concrete example of a medical record from the dataset. Additional

examples for each class are available in Appendix A. It is important to note that

the documents in this dataset vary significantly in format, and while the most

representative types have been selected, they serve only as illustrative examples.

Figure 3.3: The image is an example of a document of the dataset, in particular,
the one shown is a medical record. The image has been anonymized as it contains
sensitive personal data.

CHAPTER 3. DATA 39

3.1 Challenges

Working with real-world data introduces the challenge of incomplete labeling,

and this is exactly the case for the classification task addressed in this study.

The only available labels were the outputs of a pre-existing classification model,

accompanied by their respective confidence scores. These labels could not be

treated as ground truth. As illustrated in Figure 3.4, an initial filtering step was

applied to select only those pages for which the previous model’s confidence score

was at least 0.99, and these were considered pseudo-labels.

Pseudo labelling relies on the model’s predictions for unlabeled data. If the

model is uncertain or makes incorrect predictions, it can introduce noise into the

training set, impacting overall performance. Pseudo labelling assumes that the

distribution of pseudo-labeled samples is similar to the original data, but shifts in

distribution may occur, leading to suboptimal model performance. This filtering

reduced the dataset from approximately 15,000 pages to around 8,000 pseudo-

labelled pages.

Figure 3.4: The figure shows the schema of the dataset creation, where the biggest
challenge was the missing labels. Starting from the original dataset, only the pages
with a 0.99 confidence score were selected with their pseudo-labels. In addition, a
strategic manual labelling of 200 documents was performed.

This constrained filtering process, while ensuring high-confidence data selection,

resulted in the document being fragmented. Indeed, many documents lost pages

due to the lower confidence scores of some sections. To mitigate this issue, and

improve the quality of the dataset with true labels, a manual labelling was

performed on 200 additional pages.

40 CHAPTER 3. DATA

An ad-hoc script was developed to efficiently assist in the manual labeling

process, minimizing the tedious effort and potential for human error.

Figure 3.5: The image is a screenshot of the output of running the labelling script.
It shows a concrete example of how simple the interface is, with the document and
the buttons. The image in this case has been anonymized as it contains sensitive
personal data.

This script automated several steps: it displayed each page image, allowed the

user to assign a label, recorded the label in an organized and persistent format,

and then automatically proceeded to the next file. The script facilitated label

assignment through simple buttons corresponding to the document classes. It

moved each labeled file to its respective class folder and simultaneously recorded

the label data in an Excel file for easy integration into the dataset. An example

of how the process looks is in Figure 3.5. To preserve the document-level concept,

the manual labeling focused on pages with low-confidence scores from documents

that already had a pseudo-label. During the labeling process, the pseudo-label

CHAPTER 3. DATA 41

was visible in case of indecision. Thanks to this approach and the efficiency of the

supporting script, it was possible to reconstruct 1,100 documents, corresponding

to approximately 8,200 pages with a combination of pseudo and true labels.

3.2 Dataset exploration

A dataset exploration of the 8200 page dataset was conducted, and an evident

imbalance in class distribution emerged. The majority of the pages belonged

to the medical record class. Figure 3.6 illustrates the class distribution across

the dataset. This imbalance is expected given the nature of the domain. Unlike

Figure 3.6: The Figure shows the class distribution over the final dataset of 8200
pages. There is a clear unbalanced situation towards the medical record class.

the other classes, which represent specific certificates, the medical record covers

a patient’s complete clinical history, often consisting of numerous pages. As a

result, this class overwhelmingly dominates the dataset.

This class imbalance poses a critical challenge in the subsequent phases of

model implementation, influencing the performance of both LLMs and SLMs in

distinct ways. For LLMs, which analyze one document at a time and generate re-

sponses only based on the provided prompt and their prior knowledge, the impact

of class imbalance may be alleviated. In contrast, SLMs undergo a training phase

on the entire dataset, making them more prone to the effects of imbalance. This

could result in biased predictions, where the model often favors the overrepresented

class, ultimately affecting performance and generalization capability.

42 CHAPTER 3. DATA

3.3 Data preprocessing pipeline

With the final dataset established, the document processing pipeline could start.

The primary objective of this initial stage was to extract the textual content

from the documents. Figure 3.7 provides an overview of the steps and tools em-

ployed for text extraction.

Figure 3.7: The Figure shows the pre-processing schema of a document, from an
input PDF to the contained text. illustrates all the steps and techniques used:
the pdf2image library, the Textract AWS OCR, and a text reconstructor tool.

To ensure consistency in data format, the first step was converting all PDF files

into images, so that every document was represented as individual page images.

This transformation was carried out using the Python library pdf2image [34],

which, given the path of a PDF, converts all its pages into a list of images. This

library is built on Poppler [35], an external tool essential for the conversion pro-

cess.

Once the documents were converted into images, they were passed through

Textract OCR [6], an Optical Character Recognition tool, previously detailed in

Chapter 2.1.1. Textract produces extensive output, including the recognized text,

positional data, and other image metadata. To extract the textual content, a

dedicated internal suite of services was used, specifically the Block Reconstructor

library. The Block Reconstructor plays a crucial role in converting the raw OCR

output into coherent, human-readable text by reorganizing detected text blocks

according to their spatial relationships on the page. This step ensures the preser-

vation of the original document’s structure and readability, facilitating subsequent

processing.

These steps marked the actual beginning of the document processing pipeline.

With the textual content successfully extracted, the data were prepared for the

first crucial phase: the classification of pages into the seven distinct classes.

CHAPTER 3. DATA 43

44 CHAPTER 3. DATA

Chapter 4

Classification

In this chapter, the implementation of the classification task is presented, with

a particular focus on the comparative analysis between the large language model

GPT-4o and the small language model BERT. The primary objective of this task

is to classify each page of the dataset into one of seven predefined categories: em-

ployment certificate, leave certificate, death certificate, hospitalization certificate,

generic medical certificate, medical record, and others. A detailed description of

these classes has been provided in Section 3.

After the preprocessing steps, the final dataset is of 8200 rows, each containing the

image file name and the corresponding text extracted from the document. This

textual data serves as the input for both classification approaches.

One of the principal challenges associated with this dataset is the pronounced im-

balance among the classes, as previously discussed in Section 3.2. Specifically, the

majority of the data belongs to the medical record category, leading to a skewed

class distribution. This imbalance impacts particularly the SLM because it has a

training phase during which it learns the structure of the documents, the relation-

ships between classes, and their respective frequencies. As a result, the imbalance

may lead to biased performance in the SLM, particularly if the model overfits the

dominant class.

The documents in this dataset are considerably complex, both in terms of lexical

content and document structure. Some pages contain handwritten text, and so

the text extract is more confused, while others include tables, images, and var-

ious formatting elements. The textual content is often characterized by highly

45

specialized terminology from the medical and legal domains. This heterogeneity

poses significant challenges for automated classification, particularly for models

not explicitly fine-tuned on such domain-specific data.

Another key challenge comes from the subtle distinctions between certain classes,

which lead to ambiguities even for human annotators. For instance, within the

medical document category, hospitalization certificates and medical records often

exhibit substantial overlap, because the hospitalization is frequently at the be-

ginning of a patient’s clinical history. This inherent ambiguity will be taken into

account when interpreting the final performance metrics of the models.

In addition, the documents of the dataset contain a high amount of information

per page, leading to very long textual content. As illustrated in Figure 4.1, the

distribution of words per page reveals an average length of approximately 500

words. This characteristic imposes an additional challenge, as models must pro-

cess and interpret long sequences of text while maintaining contextual coherence

and classification accuracy.

Figure 4.1: The Figure shows the distribution of textual length, counted as words
and special characters, of the dataset for each page.

4.1 Classification model with BERT

The implementation of the BERT model for multi-class text classification involved

a structured and systematic approach. BERT was used as a feature extractor of

the textual information in the pages, on top of that, a classification model was

46 CHAPTER 4. CLASSIFICATION

implemented and trained. As a preliminary step, categorical class labels were

numerically encoded to facilitate processing. The dataset was then stratified and

split into training (70%), validation (15%), and test (15%) subsets to preserve the

class distribution across splits [36].

Class Imbalance

To address class imbalance, class weights were calculated using inverse frequency

weighting [37]:

weightsc =
N

C · nc

(4.1)

where N is the total number of samples, C the number of classes, and nc the

number of samples in class c. The resulting weights were:

Class Revocation Cert. Death Cert. Medical Record Other Hospital Cert. Medical Cert. Employment

Weights 0.1084 0.1164 0.0075 0.1857 0.2328 0.2079 0.1413

Table 4.1: Class weights for the seven classes, highlighting the class imbalance,
particularly towards the medical record class.

These weights reflect class frequency, with the third class being the one over-

represented and indeed it has the lowest value (0.0075). Then a weighted cross-

entropy loss was used to train the model with the class imbalance:

L = WcBCE = −
C∑
c=1

Wcyc log(pc) (4.2)

Tokenization

BERT employs WordPiece [3], a subword tokenizer with a fixed vocabulary of

30,522 unique tokens. It includes specific special tokens: [CLS] (token ID 101)

indicating the start of a sentence, [SEP] (token ID 102) marking the end of a

sentence, and [UNK] (token ID 100) representing out-of-vocabulary words.

The tokenizer preprocesses textual data by managing punctuation, whitespace,

and non-ASCII characters. Initially, all spacing characters like tabs and newlines

are converted into a single whitespace. Basic punctuation symbols known to the

vocabulary are tokenized individually. The subword mechanism then breaks down

CHAPTER 4. CLASSIFICATION 47

words that are not present in the vocabulary: when a word is missing from the

vocabulary, it is split into the largest possible subword found in the vocabulary, and

is assigned a prefix with ## to indicate the subword status. If no valid subwords

are found, the entire word is assigned the [UNK] token.

For example: the tokenization of word outperform is out and ##perform.

4.1.1 BERT For Long Texts

After tokenizing the entire dataset, the next step was adapting BERT for long

text sequences. All BERT models [3] impose a maximum input length, but, as

shown in Figure 4.1, many pages in the dataset have a lot of content. Considering

that a single word can be represented with multiple tokens, the total number of

tokens per document is even larger, the average number of tokens per page in

the dataset is 708. Figure 4.2 illustrates the distribution of token lengths in the

dataset, clearly showing that many pages surpass the 512-token constraint.

Figure 4.2: Token length distribution of the training dataset.

This token limit is a well-known constraint of BERT, and over the years, alter-

native models with sparse attention mechanisms like BigBird [38] and Longformer

[39] have been developed to address it. However, these models are not modified

BERTs, but they have different architectures and they require either pretraining

48 CHAPTER 4. CLASSIFICATION

from scratch or downloading large pretrained weights, making them impractical in

many contexts, as in this case. This is why for this project the BELT (BERT for

Long Text) library [40] was employed. It is a Python implementation inspired by a

proposal from Jacob Devlin, co-author of the original BERT paper, in a comment

of a user asking about this topic (see the discussion here). The idea is to modify

the original tokenization procedure by splitting the long sequences into chunks,

and creating a mini-batch of chunks for each long text for faster computation.

Each chunk produces a tensor of logits, and a mean pooling strategy aggregates

them creating the final prediction:

Final Logitsj =
1

N

N∑
i=1

Logitsij ∀classj (4.3)

where N is the number of chunks. A dedicated DataLoader was implemented to

manage this chunk-based tokenization and ensure the model received appropriately

formatted input.

The implementation of BELT required several key hyperparameters of the class

BertClassifierWithPooling [40]:

• maximal text length: Specifies the truncation limit for token sequences,

either None (no truncation) or an integer value. Standard BERT typically

uses 510 tokens, reserving 2 for the special tokens [CLS] and [SEP].

• chunk size: Defines the number of tokens per chunk, with a maximum of

510 to fit within BERT’s input constraints.

• stride: Controls the overlap between chunks, akin to the stride parameter

in 1D convolutional networks. As noted in a related discussion, it deter-

mines the sliding window step size, ensuring either contiguous or overlapping

chunks.

• minimal chunk length: Sets the minimum token count for a chunk; shorter

chunks are discarded.

• pooling strategy: Determines the method for aggregating chunk predic-

tions, typically using mean or max pooling.

An hyperparameter search was conducted to optimize model performance, and

these are values tried:

CHAPTER 4. CLASSIFICATION 49

https://github.com/google-research/bert/issues/27#issuecomment-435265194
https://github.com/google-research/bert/issues/27#issuecomment-435265194

Parameter All parameters tested

Model Architecture distilbert-base-uncased, bert-base-uncased
Epochs 3, 5, 7
Batch Size 4, 8, 16
Learning Rate 5 × 10−5, 1 × 10−5

Stride 510, 410, 310
Min chunk len 10, 200, 510
Max text len 510, 3000
Pooling strategy mean, max

Table 4.2: Hyperparameter search space of BERT’s parameters.

The final configuration employed distilbert-base-uncased [41] for its compu-

tational efficiency, achieving performance comparable to bert-base-uncased in a

quarter of the time.

Experimental results over the hyperparameter search space 4.2 indicated that in-

troducing the stride, of any length, resulted in a lowering of the performances,

so it was not considered for the final setup. Another interesting insight is about

the document structure, it was found out that relevant information is generally

concentrated at the beginning of the text, because truncation of the later sections

slightly improves the performance, and speeds up the computation. The final

configuration represents a practical and efficient approach for classification with

BERT managing long sequences of text.

Parameter Best parameters

Model Architecture distilbert-base-uncased

Epochs 5
Batch Size 8
Learning Rate 5 × 10−5

Stride 510
Min chunk len 10
Max text len 3000
Pooling strategy Mean

Table 4.3: Final best BERT’s hyperparameters.

The model was trained using the hyperparameters reported in Table 4.3, and the

evolution of training and validation losses throughout the training process is illus-

trated in Figure 4.3. The values reported in the plot were taken every 200 steps

50 CHAPTER 4. CLASSIFICATION

of the training during the 5 epochs. As shown in the figure, the training loss de-

creased more rapidly compared to the validation loss, which exhibited a consistent

downward trend in any case, indicating that the model continued to improve its

generalization capabilities over time. During the hyperparameters search, the best

number of epochs chosen was 5 because more than that, the model didn’t improve

its capabilities, but it started to overfit, especially due to the imbalanced dataset.

Figure 4.3: Training and Validation loss of the BERT classification model during
training.

4.1.2 Performance metrics

The performance of the classification task was evaluated using a set of compre-

hensive metrics: Accuracy, Precision, Recall, and F1-score. Given the imbalanced

nature of our dataset, these metrics are particularly important for assessing the

model’s ability to handle class disparities effectively.

• Accuracy measures the proportion of correctly classified instances out of

all instances in the dataset. However, in imbalanced datasets, it can be

misleading if the majority class dominates the metric.

• Precision quantifies the proportion of true positives among all predicted

positive instances, reflecting the model’s ability to avoid false positives.

• Recall measures the proportion of true positives among all actual positive

CHAPTER 4. CLASSIFICATION 51

instances, indicating the model’s ability to detect all instances of a particular

class.

• F1-score is the harmonic mean of Precision and Recall, offering a balanced

measure of both. It is especially useful in scenarios with imbalanced datasets,

as it provides a more nuanced evaluation than Accuracy alone by penaliz-

ing models that perform well on the majority class but poorly on minority

classes. The macro F1-score calculates the F1-score independently for

each class and then takes the average, treating all classes equally regardless

of their frequency. Since it gives equal weight to each class, it prevents the

model’s performance on majority classes from overshadowing its performance

on minority classes.

These metrics collectively allow for a thorough assessment of the model’s

strengths and weaknesses, especially in handling class imbalance, which is a com-

mon challenge in multi-class classification tasks.

Class Precision Recall F1-Score Accuracy

Leave cert 0.950 0.966 0.958 0.966

Death cert 1.000 0.955 0.977 0.955

Medical record 0.987 0.994 0.991 0.994

Other 0.762 0.762 0.762 0.762

Hospitalization cert 0.923 0.828 0.873 0.828

Medical cert 0.842 0.842 0.842 0.842

Employment 0.929 0.907 0.918 0.907

Table 4.4: BERT’s classification performance for each class, of the model with the
best hyperparameters in the test set.

The overall F1-score of the model with best combination of parameters is 0.903

and an accuracy of 0.971. The difference between these two metrics is due to the

class imbalance, because the accuracy does not make any differentiation between

classes, but it considers only the total number of correct predictions over all the

predictions, and in this case, many data come from the same class for which the

model is almost always right. It is important to check, especially in this case, that

the model does not simply learn to always predict the most frequent class and

never the other. In that case, the accuracy would stay high, but for sure the F1

52 CHAPTER 4. CLASSIFICATION

would be lower, because it is an average of the precision and recall over all classes

proportionally.

The results show strong overall performance for most classes, with particularly

high metrics values for “medical record” and “death certificate”, the first one be-

cause it is the most frequent one, and ”death certificate” because it is the simplest

and clearest document to identify. These results align with the confusion matrix,

where these classes show very few misclassifications.

Figure 4.4: Confusion matrices of the seven classes in the test set, of the model
with the best configuration of parameters.

On the other hand, the class “others” has lower performance across all metrics

(precision, recall, and F1-score at 0.762). This is reflected in the confusion matrix,

where there are more misclassifications for this class, indicating that it’s harder

for the model to distinguish. As expected, similarly, “hospitalization certificate”

also shows moderate performance, with some degree of confusion with especially

the “medical record” because these two classes sometimes overlap.

The confusion matrix confirms that most errors occur between semantically similar

classes, for example between the “hospitalization certificate” and “medical record”

or ”medical certificate”. These misclassifications suggest that further refinement

of features or model tuning might improve differentiation among these closely

related classes, or that business experts are needed to validate specific cases of

misclassification and in case adjust the labels.

CHAPTER 4. CLASSIFICATION 53

4.2 Prompting with GPT

LLMs are not traditionally employed for classification tasks, given that their pri-

mary strength lies in generating coherent text rather than assigning labels. But

their deep understanding of language enables them to interpret complex content

similarly to human reasoning, thus facilitating accurate document classification.

In this study, GPT-4o, deeply discussed at Chapter 2.4.2, was tested using two

distinct prompting methodologies to better analyze the capabilities of the LLM

and to understand how much contextual information helps the model generate

correct answers. GPT-4o did not undergo any fine-tuning or additional training

on labeled examples for this specific classification task, only background knowledge

and prompting techniques were used. Both methodologies were tested in a zero-

shot setting, meaning no examples were given in the prompt as reference to follow.

A one-shot prompting approach was also implemented by including an example

document and its corresponding class in the prompt. However, this approach did

not improve the task’s overall performance, instead it slightly biased the model

toward the provided example class in cases of uncertainty. Few-shot prompting

with one example for each class was also considered, but discarded due to the

prohibitive cost associated with lengthy prompts. It is worth remarking that

working with large language models like GPT-4o is expensive, especially when

prompts are very long. The longer the prompt, the higher the cost, as LLM

providers typically charge a cost based on the number of input and output tokens.

In this case, the average document length was approximately 900 tokens per page,

and the prompt itself ranged around 1000 tokens, depending on the approach, so

additional example pages would have increased the cost unnecessarily.

Another possible input format was to use document images instead of text.

However, this approach did not bring better results, likely because, for the classi-

fication task, the crucial information lies in the text rather than the document’s

visual structure.

The documents originated from an Italian company, so their content is in Ital-

ian. GPT-4o is a multilingual, meaning it is a model trained on diverse language

datasets, reflecting the remarkable versatility of large language models for different

tasks across different languages. As the primary language of GPT-4o’s training

54 CHAPTER 4. CLASSIFICATION

data is English, it is well-documented that English prompts often yield more accu-

rate results compared to those in other languages, such as Italian. This observation

was confirmed through experimentation in this study, by prompting in English

and Italian, the first one led to better results. To mitigate this language mismatch,

the most effective strategy was to structure the prompt in English while retaining

class names and keywords in Italian. This hybrid approach allowed the model

to leverage its English-language training for understanding task instructions while

drawing on its knowledge of Italian for domain-specific terminology.

To help the model deeply understand the classes and their differences, the

prompt included detailed descriptions of each class, along with relevant metadata

that can serve as distinguishing features. Some metadata are shared between

classes, for example, the ”emission date” or the ”diagnosis” are present in all the

medical documents. But there are other metadata which are unique to specific

classes, such as ”event date” for the ”death certificate”, or ”revoked date start/end”

for the ”leave certificate”. If one of these metadata is found in the text, the model

is sure to identify that specific class. This approach aligns with the subsequent

phase of data extraction from documents, providing the model with crucial con-

textual clues for classification. Although not every document page contains all

the expected metadata, their presence often strongly indicates a particular class,

making them a useful heuristic for classification.

This method leverages the multi-capability of LLMs, allowing them to transition

between different types of tasks, in this case, classification and metadata identifi-

cation.

4.2.1 Different prompt strategies

Single-Prompt Classification

In the first approach, the model was given a single, comprehensive prompt contain-

ing a detailed description of each class and its defining characteristics. The prompt

concluded with the raw text of the document page to be classified. GPT-4o was

then instructed to output a single class label based on its interpretation of the

provided text. This method exploits GPT-4o’s capacity for language comprehen-

sion, as the entire context—including class definitions and the textual content—is

CHAPTER 4. CLASSIFICATION 55

fed to the model in one prompt. Although this approach does not extensively

utilize the model’s generative abilities, its deep semantic understanding can yield

high accuracy in zero-shot classification, particularly when class descriptions and

metadata are well-structured and clearly differentiated.

Listing 4.1: GPT-4o Multiclass Classification Prompt

1 "system_prompt":

2 You are an AI assistant particularly skilled and meticulous in the classification of specific

documents given as a text, akin to how an experienced human operator would perform the task.

3 You are aware of the need to provide an **answer exactly in the requested format**, without

adding any additional information regarding the reasoning process.

4

5 "user_prompts":

6 "Task"

7 Your task is to classify the document and return the output in the requested format.

8 The classes to assign are: Documento di ricovero con cartella clinical, Certificato medico,

Certificato di ricovero, Certificato di more, Revoca ferie, Assunzione, and Altro

9 "Context":

10 The document to classify contains details related to the medical and work fields.

11 Document characteristics:

12 - Document structure may vary between the same type of document.

13 - Document of the same class contains very similar information.

14 - Document contains some specific information and a pattern that helps you to classify it.

15

16 "Explanation of the classes"

17 - "assunzione":

18 It is a document that certifies the hiring of a person.

19 Consider that inside it should be present the metadata: data emissione.

20 - "cert_morte":

21 It is a document that certifies and explains the death of a person.

22 Consider that inside it should be present the metadata: data decesso.

23 - "revoca_ferie":

24 It is a document that certifies the revocation of holidays with some explanation. It could

be written as an email or letter.

25 Consider that inside it should be present the metadata: data emissione, periodo revocato

start/end.

26 - "cert_medico":

27 It is a document that certifies the health condition of a person. It is usually written by

hand by the doctor, which could state the drugs to take.

28 Consider that inside it should be present the metadata: data emissione, data insorgenza

sintomi, diagnosi.

29 - "cert_ricovero":

30 It is a document that certifies the hospitalization of a person. It is quite a short

document with the main information about the hospitalization.

31 Consider that inside it should be present the metadata: data emissione, data ingresso,

diagnosi. Here there is no reference to the end of the hospitalization period, it is usually

written at the beginning.

56 CHAPTER 4. CLASSIFICATION

32 - "cart_clin":

33 It is a document that contains the clinical folder of a person together with the

information about the hospitalization and the exams conducted in the clinic.

34 It is a long document with all the information about the patient. It contains the clinical

history of the patient, and there is a reference to the end of the hospitalization period.

35 Consider that inside it should be present the metadata: data emissione, data ingresso/

uscita, ingresso/uscita orario, diagnosi.

36 - "altro":

37 These are all the documents that do not belong to the other classes and do not contain any

of the previous information.

38 They are blank pages, or images or documents that do not contain any specific information.

Indeed, the document does not have specific metadata to extract.

39 It is very important that you use this class as a specific category, and **not** when you

are not sure about the classification. Try to avoid using it too much.

40

41 "Output":

42 The output must be just the class of the document. Select the class that best fits the

document considering all the previous information.

43 Don’t report or extract any metadata; use those details only to help classify the document.

44 You will be provided with a document in text format, the text has been extracted in blocks

by an OCR.

45 Your task is to classify the document and return the expected output in the requested format

46 "placeholder__input_text"

Binary Classification in Cascading Prompts

The second approach involved decomposing the classification task into a series of

binary decisions. Specifically, six separate prompts were written, each correspond-

ing to a single class (e.g., leave certificate vs. not leave certificate, death certificate

vs. not death certificate, and so forth). A script sequentially used these prompts

in a cascading structure: the LLM was first asked whether the text belonged to

a certain class. If the response was positive, the cascade ended, if negative in-

stead, the next class-specific prompt was issued, continuing until one class was

confirmed. If none of the binary prompts returned a positive classification, the

text was assigned to the other class. This fallback mechanism was chosen to re-

duce misclassifications, as having a dedicated prompt for the other class led the

model to overpredict this category when uncertain.

This methodology effectively breaks down the multi-class task into a chain of

simpler yes-no queries, leveraging GPT-4o’s interpretative ability in each binary

decision. The order of the cascade was chosen carefully, because as soon as

CHAPTER 4. CLASSIFICATION 57

the model answered positively to a class, the loop was ended so the first classes

needed to be the most clear and simple one to be sure that the model got them

right at the beginning. The final order chosen was first the employment and leave

certificate, as they are not from the medical field, and then the death and generic

medical certificate, the hospitalization certificate, and finally the medical record.

Two variations of this approach were tested, differing in the amount of context

provided in each prompt. In one case (4.2), the prompt included only the defini-

tion and context related to the specific class being evaluated. In the other case

(4.3), the prompt described all possible classes in detail, even when the binary

classification focused on just one class. As expected, the latter method improved

the model’s awareness of alternative class possibilities, reducing the likelihood of

misclassification by clarifying distinctions between classes.

Here there are the two prompt variations implemented:

Listing 4.2: GPT-4o Single-class classification prompt with context of only that

specific class, as an example the revoca ferie class is shown

1 "system_prompt":

2 You are an AI assistant particularly skilled and meticulous in the "binary classification" of

specific documents given as a text, akin to how an experienced human operator would perform

the task.

3 You are aware of the need to provide an answer exactly in the requested format, without adding

any additional information regarding the reasoning process.

4 "user_prompts":

5 "Task"

6 Your task is to classify the document and return the output in the requested format.

7 You need to say if the document is of the class "revoca_ferie" or not.

8 "Context":

9 The document to classify contains details related to the medical and work fields.

10 "Document characteristics":

11 - Document structure may vary between the same type of document.

12 - Document of the same type contains very similar information.

13 - Document contains some specific information and a pattern that helps you to classify it.

14 "Explanation of the class"

15 Consider this information to have a better knowledge of the domain. At the end of the

reasoning, you need to decide if it is a Documento di ricovero con cartella clinica or not.

16 "revoca_ferie":

17 It is a document that certifies the revocation of holidays with some explanation. It could

be written as an email or letter. Consider that inside it should be present the metadata:

data emissione, periodo revocato start/end.

18 "Important":

19 - The document may contain some OCR errors.

20 - The document may contain some missing information.

58 CHAPTER 4. CLASSIFICATION

21 - Pay attention to not mistake the class cart_clin and cert_ricovero. The first one contains

the clinical folder of the patient, the second one is a short document with the main

information about the hospitalization.

22 - Pay attention to not mistake the class cert_medico and cart_clin. The first one is a

document that certifies the health condition of a person, and it is usually written by hand,

the second one contains the clinical folder of the patient.

23 "Output":

24 The output must be just a string: "TRUE" or "FALSE".

25 - TRUE: if the document is a "revoca_ferie".

26 - FALSE: if the document is "not a revoca_ferie".

27 Don’t report or extract any metadata, use that information just for reference to help classify

the document. You will be provided with a document in text format, the text has been

extracted in blocks by an OCR. Your task is to classify the document and return the expected

output in the requested format

28 "placeholder__input_text"

Listing 4.3: GPT-4o Single-class classification prompt with context of all classes,

as an example the cert ricovero class is shown

1 "system_prompt":

2 You are an AI assistant particularly skilled and meticulous in the "binary classification" of

specific documents given as a text, akin to how an experienced human operator would perform

the task.

3 You are aware of the need to provide an answer exactly in the requested format, without adding

any additional information regarding the reasoning process.

4 "user_prompts":

5 "Task"

6 Your task is to classify the document and return the output in the requested format.

7 You need to say if the document is of the class "cert_ricovero" or not.

8 "Context": The document to classify contains details related to the medical and work fields.

9 "Document characteristics":

10 - Document structure may vary between the same type of document.

11 - Document of the same type contains very similar information.

12 - Document contains some specific information and a pattern that helps you to classify it.

13 "Explanation of all the class"

14 Consider this information to have a better knowledge of the domain. At the end of the

reasoning, you need to decide if it is a Documento di ricovero con cartella clinica or not.

15 "assunzione":

16 It is a document that certifies the hiring of a person. Consider that inside it should be

present the metadata: data emissions.

17 "cert_morte":

18 It is a document that certifies and explains the death of a person. Consider that inside it

should be present the metadata: data decesso.

19 "revoca_ferie":

20 It is a document that certifies the revocation of holidays with some explanation. It could be

written as an email or letter. Consider that inside it should be present the metadata: data

emissione, periodo revocato start/end.

21 "cert_medico":

22 It is a document that certifies the health condition of a person. It is usually written by

CHAPTER 4. CLASSIFICATION 59

hand by the doctor, which could state the drugs to take. Consider that inside it should be

present the metadata: data emissione, data insorgenza sintomi, diagnosi.

23 "cert_ricovero":

24 It is a document that certifies the hospitalization of a person. It is quite a short document

with the main information about the hospitalization. Consider that inside it should be

present the metadata: data emissione, data ingresso, diagnosi. Here there is no reference to

the end of the hospitalization period, it is usually written at the beginning.

25 "cart_clin":

26 It is a document that contains the clinical folder of a person together with the information

about the hospitalization and the exams conducted in the clinic. It is a long document with

all the information about the patient. It contains the clinical history of the patient, and

there is a reference to the end of the hospitalization period.

27 Consider that inside it should be present the metadata: data emissione, data ingresso/uscita,

ingresso/uscita orario, diagnosi.

28 "altro":

29 These are all the documents that do not belong to the other classes and do not contain any of

the previous information. Indeed, the document does not have specific metadata to extract.

Use this as a specific category, not when you are not sure about the classification.

30 "Important":

31 - The document may contain some OCR errors.

32 - The document may contain some missing information.

33 - Pay attention to not mistake the class cart_clin and cert_ricovero. The first one contains

the clinical folder of the patient, the second one is a short document with the main

information about the hospitalization.

34 - Pay attention to not mistake the class cert_medico and cart_clin. The first one is a

document that certifies the health condition of a person, and it is usually written by hand,

the second one contains the clinical folder of the patient.

35 "Output":

36 The output must be just a string: TRUE or FALSE.

37 - TRUE: if the document is a "cert_ricovero".

38 - FALSE: if the document is "not a cert_ricovero".

39 Don’t report or extract any metadata, use that information just for reference to help classify

the document. You will be provided with a document in text format, the text has been

extracted in blocks by an OCR. Your task is to classify the document and return the expected

output in the requested format

40 "placeholder__input_text"

4.2.2 Performance metrics

The performance results presented in Tables 4.6 and 4.5 provide insights about

the two approaches, the multiclass classification versus the cascading binary clas-

sification method. The overall performances are presented in Table 4.5.

The multiclass prompt method achieves slightly better overall performance,

with an overall F1-score of 71%, and in comparison, the binary classification

approach achieves just 67%. These results suggest that the additional context

60 CHAPTER 4. CLASSIFICATION

Accuracy Precision Recall F1 Score

Multiclass 0.749 0.766 0.770 0.709

Binary 0.628 0.790 0.725 0.668

Table 4.5: GPT-4o overall performances of the multiclass and binary classification
approaches, in the test set. In bold are highlighted the best values of the compar-
ison.

provided in the multiclass prompt likely helps the decision-making process by en-

abling the model to consider multiple class-specific cues simultaneously. With this

experiment, we understood that for GPT-4o it is better to have a comprehensive

understanding of all the possible classes, so it can infer from its background knowl-

edge, to choose more carefully which class to assign the input document.

Interesting is that the binary model, which decomposes the problem into a series

of simpler yes-no decisions, has a slightly higher precision than the multiclass,

indicating a better ability to identify correctly positive instances, even if some

classes remain difficult to distinguish due to overlapping definitions and ambigu-

ous metadata. The method simplifies the task by decomposing it into a series of

simpler yes-no decisions, its lower recall suggests that the model tends to answer

negatively to a higher number of relevant instances. Possibly because the cas-

cade process imposes the model to be either very sure and answer positively to

the correct class or make a mistake because it was not so sure, and at the end

of the cascade process, another class will be assigned wrongly. This reasoning is

confirmed with a higher precision, when the model is sure it answers correctly,

and when the document is complex, it makes more mistakes than the multiclass

because it can’t choose the correct class directly, but there is the cascade mecha-

nism.

Overall, the results indicate that while the classification task appears a straightfor-

ward task, the model struggled with distinguishing between certain classes, likely

due to overlapping definitions and the complexity of the textual content.

4.3 Comparison and Discussion

Prompting is essential when working with LLMs, and the results of this study

underscore the importance of context-rich, well-structured prompts. The combi-

CHAPTER 4. CLASSIFICATION 61

Precision Recall F1 score

multiclass binary multiclass binary multiclass binary

Medical record 0,986 0,982 0,728 0,578 0,837 0,727

Leave cert 1 1 0,920 0,893 0,958 0,944

Employment 1 1 0,615 0,654 0,762 0,791

Hospitalization cert 0,684 1 0,520 0,320 0,591 0,485

Other 0,027 0,018 0,727 0,727 0,051 0,034

Death cert 0,947 0,877 0,986 0,986 0,966 0,928

Medical cert 0,717 0,654 0,892 0,919 0,795 0,764

Table 4.6: GPT-4o performance over all classes in the test. The table shows
the comparison between multiclass and binary classifier approaches. In bold are
highlighted the best values of the comparison.

Figure 4.5: Comparison of the two confusion matrices, on the left the binary
classifier and on the right the multiclass classifier. It shows the True Label and
Predicted values of each of the seven classes in the test set.

nation of zero-shot learning, careful prompt engineering, and the strategic use of

metadata enabled GPT-4o to achieve high precision in certain classes, without

task-specific training, thereby demonstrating its potential for document classifi-

cation in multilingual and domain-specific settings. However, as illustrated in

Table 4.7, the final comparison reveals notable differences between the GPT-4o

and BERT approaches, with BERT achieving the best performances overall.

Overall, the BERT-based classifier consistently had higher recall and F1-scores

across nearly all document categories. This suggests that the SLM, benefiting

from robust word representations and a fine-tuned classification head, is more ef-

62 CHAPTER 4. CLASSIFICATION

Precision Recall F1 score

GPT-4o BERT GPT-4o BERT GPT-4o BERT

Medical Record 0,986 0,987 0,728 0,994 0,837 0,991

Leave Cert 1 0,950 0,920 0,967 0,958 0,959

Employment 1 0,857 0,615 0,837 0,762 0,847

Hospitalization Cert 0,684 0,871 0,520 0,931 0,591 0,901

Other 0,027 0,762 0,727 0,762 0,051 0,762

Death Cert 0,947 1 0,986 0,955 0,966 0,977

Medical Cert 0,717 0,842 0,892 0,842 0,795 0,842

Table 4.7: Performance comparison between GPT-4o and BERT classifiers over
all classes in the test.

fective at capturing relevant instances in these complex documents. For instance,

GPT-4o demonstrates high precision for well-defined classes such as Employment

and Leave Certificate, likely because the prompt 4.1 provides clear definitions and

context that allow the model to leverage its extensive background knowledge.

However, GPT-4o exhibits significantly lower recall in most classes and strug-

gles particularly with the Other class (4.7 shows a precision of 0.027 and an F1-

score of 0.051). This low performance in the Other class is attributed to its role as

a default assignment when the model is not sufficiently confident about any other

category, which leads to a high rate of misclassification in ambiguous cases.

In contrast, the BERT-based approach, with its targeted classification training

on a large number of documents, achieves a more balanced and effective classifica-

tion outcome. Its success highlights the fact that, for a relatively straightforward

task like this one, where the output is a fixed label and the generative capabilities

of LLMs are not fully exploited, a well-tuned SLM can outperform even the most

powerful LLM.

Additionally, the cost implications are significant: the GPT-4o method incurs

a per-document expense based on token usage, with the multiclass prompt alone

consuming approximately 1400 tokens, in addition to an average of 900 tokens for

the input document. This results in a cost of roughly 0.7 cents per document.

In contrast, the BERT-based approach operates at a fixed, much lower computa-

tional cost, enabling local deployment on affordable hardware, a 16GB T4 GPU

CHAPTER 4. CLASSIFICATION 63

was used for this project.

This raises important questions regarding the practical deployment of large-scale

LLMs versus solution based on smaller models, maybe it is not always true that

they are perfect for all tasks and with their knowledge, they can answer to all the

queries and prompts. In this case, a lower-cost, easier-to-deploy, with higher per-

formance solution was found implementing a classification model based on BERT,

a much smaller model.

This thesis further investigates this topic, analysing the more complex task of data

extraction, aiming to determine whether SLMs can match or even exceed the per-

formance of LLMs while significantly reducing resource demands and operational

costs.

64 CHAPTER 4. CLASSIFICATION

Chapter 5

Extraction

The next step of the document processing pipeline, as shown in 1.1 is the extraction

of the metadata based on the classification outputs, each class has its own specific

data to extract, which are shown in Table 3.1.

The classification and extraction tasks operate at different levels of granularity:

classification is performed at the page level, whereas extraction is conducted

over logical documents, which group pages of the same class within a single

document (as detailed in Chapter 3). Following the structure illustrated in Figure

3.2, the first step of this stage is to create the actual logical documents, and pro-

cessing only those associated with one of the six meaningful classes and discarding

all pages labeled as Other.

The goal of this chapter is double. First, to evaluate the performance of state-

of-the-art models on the metadata extraction task, assessing the reliability of

LLM in a real-world pipeline and how trustworthy their responses are. Second, to

adapt and fine-tune a smaller language model for this task and analyze its results,

evaluating the feasibility of using SLMs in real-world, task-specific scenarios. For

this comparison, GPT-4o was used as the LLM and LLaMA 3.2 as the SLM.

5.1 Evaluation criteria

For this task, the availability of labelled metadata across all metadata of the six

classes enabled an extensive evaluation, supported by some performance metrics

and various iteration runs.

65

The performance of the extraction task was evaluated using a comprehensive set

of metrics: Accuracy, Precision, Recall, and F1-score. Given the increased com-

plexity of extraction compared to classification, it is crucial to clearly redefine each

metric and their specific interpretation in this context. Some data are relatively

simple to identify and retrieve, while others require more complex reasoning and

advanced consideration. For each metadata field of each class, a separate metric

was computed, revealing significant performance variation both between classes

and, within individual classes, across different metadata fields.

Firstly, it is essential to precisely define the concepts of true positives (TP), true

negatives (TN), false positives (FP), and false negatives (FN). A true positive

(TP) occurs when the model extracts the correct value. A false positive (FP)

arises when the model extracts a value, but it is incorrect. A true negative (TN)

is when there is no data to extract, and the model correctly returns no output.

Finally, a false negative (FN) occurs when the model should not extract anything

but instead it returns a value.

Table 5.1 provides concrete examples to illustrate these definitions:

True Label Extracted Value Interpretation

1 1 TP
1 2 FP
1 - FN
- - TN
- 1 FP

Table 5.1: Interpretation of true positives, true negatives, false positives, and false
negatives based on model predictions and true labels. The values reported are just
an example of possible numbers extracted, and the ”-” means no data.

When dealing with metadata, it is necessary to account for the variability in data

types, which are not always in simple numerical formats. In this specific scenario,

the metadata fields consist of dates, times, and textual strings. The definition of

equality for these data types must be rigorously established to ensure consistency

and coherence in the later evaluation.

For date fields, all dates are formatted uniformly as dd/mm/yyyy, and two dates

are considered equal only if they match exactly.

For textual fields, the evaluation criteria differ based on their semantic nature.

66 CHAPTER 5. EXTRACTION

Two primary types are distinguished, and the evaluation is customized based on

their characteristics:

• diagnosis descriptions: these are typically long, complex strings contain-

ing domain-specific terminology. These strings allow minor variations due to

potential rephrasing or summarization without altering the meaning. There-

fore, a more flexible similarity threshold is applied.

• personal names: these simply consist of a first and last name. These

strings indeed require stricter matching, given their shorter length and the

higher importance of exact identity.

Both types of text fields undergo preprocessing, including lowercasing, removal of

punctuation and special characters, and trimming of leading or trailing spaces.

After preprocessing, string similarity is assessed using multiple techniques:

• Levenshtein ratio measures the minimum number of single-character edits

(insertions, deletions, or substitutions) required to transform one string into

another, normalized by the string length.

• Jaro-Winkler similarity emphasizes common prefixes and adjusts the sim-

ilarity score based on the number of matching characters and their positions.

• Jaccard similarity measures the intersection over the union of character

bigrams or word sets, reflecting the proportion of shared elements.

For the diagnosis strings, equality is confirmed if the Levenshtein ratio is >0.75.

Instead, two names are considered equals if the maximum similarity score among

the three (Levenshtein, Jaro-Winkler, and Jaccard similarities) exceeds 0.85. The

string evaluation process can be summarized in the following pseudocode:

function is_equal(str1, str2, metadata_type):

str1, str2 = preprocess(str1), preprocess(str2)

if str1 == str2:

return True

if metadata_type == ’diagnosis’:

return levenshtein_ratio(str1, str2) > 0.75

if metadata_type == ’name’:

max_score = max(

levenshtein_ratio(str1, str2),

CHAPTER 5. EXTRACTION 67

jaro_winkler_similarity(str1, str2),

jaccard_similarity(str1, str2)

)

return max_score > 0.85

return False

Given these considerations, the performance metrics are defined as follows:

• Accuracy measures the proportion of correctly classified instances out of

all instances in the dataset, providing an overall measure of correctness.

Accuracy =
TP + TN

TP + TN + FP + FN

• Precision quantifies the proportion of true positives among all predicted

positive instances, reflecting the model’s certainty and the trustworthiness

of its extractions.

Precision =
TP

TP + FP

High Precision indicates a low rate of false positive predictions, which is

crucial in real-world scenarios for trustworthy extractions.

• Recall measures the proportion of true positives among all actual positive

instances, indicating the model’s ability to detect all relevant instances of a

particular class.

Recall =
TP

TP + FN

High Recall ensures that the model captures most of the relevant data, it is

a form of coverage of the metadata extraction, even at the risk of increasing

false positives.

• F1-score, being the harmonic mean of Precision and Recall, offers a bal-

anced measure of both metrics. It is especially useful for providing an overall

assessment of the model’s performance on metadata extraction.

F1-score = 2 · Precision · Recall

Precision + Recall

A high F1-score indicates a good balance between Precision and Recall,

making it an essential metric for evaluating overall performance.

68 CHAPTER 5. EXTRACTION

Achieving high performance across these metrics is of course the ultimate goal.

Evaluating them together is crucial, as they each highlight distinct aspects of the

model’s behavior. For instance, given the same F1-score, the trade-off between

higher Recall and higher Precision can lead to very different real-world implica-

tions. The prioritization of one metric over the other often depends on business

requirements. For example, in scenarios with a modest number of documents, and

a possibly human-in-the-loop validation, high Precision is preferable, as missing

values due to lower Recall can be manually addressed. Conversely, when dealing

with large-scale data for statistical analyses, higher Recall becomes more valuable

to ensure comprehensive data collection.

5.2 LLM

The large language model GPT-4o was employed for metadata extraction, lever-

aging its extensive general-purpose capabilities refined through careful prompt

engineering. As established in the previous Classification chapter 4, the quality

and specificity of prompts are crucial for guiding the model’s performance. LLMs

possess remarkable adaptability across various tasks but require clear and precise

instructions to produce accurate results.

For each document class, a distinct prompt was crafted to instruct the model

on extracting its specific metadata. These prompts provided detailed contextual

information based on each document type, enhancing the model’s comprehension

of the specific domain. An extensive fine-tuning of these prompts was conducted

to identify configurations yielding optimal performance.

Due to their length, it is infeasible to report all prompts in this paper, however,

key insights from the tuning process are discussed here. First significant obser-

vation was that including examples of actual documents within the prompts sub-

stantially improved the model’s accuracy and contextual understanding of what

to extract. The number of examples varied by document class, optimized as a

hyperparameter to achieve effective few-shot prompting.

A delicate balance was required: using only one example proved insufficient,

while too many examples were confusing and increased the token count too much.

Prompts which are too long and with numerous examples often caused the model

CHAPTER 5. EXTRACTION 69

to mistakenly return metadata from the examples rather than extract them from

the input text, leading to noise and reduced precision. This effect was even worse

in this case, by the dense and lengthy nature of the documents, for which each

example added approximately 1000 tokens.

Table 5.2 presents a statistical analysis of the final versions of the six prompts

used for metadata extraction. It highlights the number of examples, token count,

and associated costs, reflecting the varying complexity and verbosity of each doc-

ument class.

Empl. LeaveCert Hospit.Cert Med.Cert Med.Record DeathCert

Num. examples 3 3 4 3 4 2

Words 2620 1490 2160 1750 6520 1020

Input Tokens 3670 2080 3020 2450 9120 1430

Cost input (cent) 1.01 0.57 0.83 0.67 2.51 0.39

Output Tokens 35 70 80 35 80 25

Cost output (cent) 0.036 0.036 0.029 0.087 0.080 0.087

Total Cost (cent) 1.05 0.61 0.86 0.76 2.59 0.48

Table 5.2: Statistical analysis of the final version of the six prompts used by GPT-
4o to extract the metadata.

Another critical insight was the complexity of certain metadata fields, such

as diagnoses, which required the model to identify and select the most relevant

information from multiple possible candidates within the text. In these cases,

domain experts clarified some extraction rules, which were remarked in the prompt

to help the model distinguish between various possibilities in case of uncertainty.

Prompt reinforcement techniques were employed to mitigate the risk of losing

important instructions in longer prompts. Given the known tendency of LLMs to

prioritize information at the beginning and end of prompts while overlooking the

middle sections [42], key extraction guidelines were emphasized both at the start

and the conclusion of the prompts.

70 CHAPTER 5. EXTRACTION

5.2.1 Performances

At the fine-tuning process, conducted in collaboration with domain experts to

validate the model’s outputs, the final evaluation metrics were computed. Table

5.3 presents the performance results for each document class and their respective

metadata fields.

Classes Metadata Accuracy Precision Recall F1

hospital. cert

emission date 0.97 0.99 0.97 0.98

admission date 0.95 0.98 0.97 0.98

diagnosis 0.94 0.94 0.71 0.81

medical record

admission date 0.86 0.89 0.91 0.90

discharge date 0.83 0.87 0.88 0.87

admission time 0.90 0.82 0.86 0.84

discharge time 0.88 0.76 0.80 0.78

diagnosis 0.67 0.65 0.69 0.67

medical cert

emission date 0.83 0.86 0.83 0.85

symptom onset date 0.89 0.59 0.67 0.62

diagnosis 0.60 0.75 0.59 0.66

death cert
event date 0.97 0.97 0.97 0.97

name 0.92 0.95 0.92 0.96

leave cert

emission date 0.98 0.99 0.97 0.98

revoked date start 0.94 0.97 0.95 0.96

revoked date end 0.92 0.96 0.93 0.94

employment emission date 0.90 0.91 0.94 0.92

Table 5.3: Performance metrics of GPT-4o extraction of each metadata for each
document class.

The results reflect the model’s overall effectiveness, with high performance

across most metadata fields. They also reflect the varying levels of complexity

of the different metadata types. Highly structured data, such as emission dates,

achieved near-perfect performance across document classes. In contrast, fields

like diagnosis posed greater challenges, often requiring more context and careful

prompt design. These fields exhibited lower recall and F1 scores, underscoring the

complexity of selecting the correct information from multiple textual candidates.

CHAPTER 5. EXTRACTION 71

The cost analysis reported in Table 5.2 reveals the substantial expense associ-

ated with input token processing, particularly for longer documents like medical

records. This highlights a trade-off between prompt completeness and operational

costs, suggesting the need for other strategies.

These results confirm the ability of the LLM in tasks like this one, where a

complex text needs to be analysed and specific information needs to be extracted

following the specific instruction of the prompt. They also emphasize the im-

portance of custom and specific prompt engineering techniques to maximize the

model’s accuracy and reliability.

5.3 SLMs

The objective of this section is to assess whether Small Language Models can

achieve performance comparable to that of Large Language Models on a specific

metadata extraction task through effective fine-tuning. To address this challenge,

advanced techniques have been employed to enhance the fine-tuning process, such

as knowledge distillation, QLoRA, and data augmentation. These strate-

gies were fundamental in overcoming the limitations of SLMs, particularly in terms

of their reduced model size and capacity, by leveraging knowledge transfer, effi-

cient parameter optimization, and enriched training data.

To systematically explore and analyze the potential of SLMs, this section focused

on a single document class out of the six available. The selected class needed to

offer a combination of structural simplicity and straightforward nature metadata

to be extracted, leading to the choice of death certificates (see Figure A.4 for an

example). This class was ideal for experimentation due to its standard format and

its use of specific, well-defined legal or medical terminology. At the same time,

the metadata extraction task presents a non-trivial challenge: the need to identify

the deceased person’s name and the date of the event, as shown in Table 3.1. The

documents often contain multiple personal names—such as those of family mem-

bers, medical professionals, and legal representatives, and various dates, including

the date of the emission or printing of the document, which can lead to ambiguity.

The models must therefore demonstrate not only the ability to parse structured

information but also to accurately interpret context and resolve potential conflicts

72 CHAPTER 5. EXTRACTION

when extracting the correct information.

The SLM used for these experiments was LLaMA 3.2 [4], in its version with few

parameters.

5.3.1 Knowledge Distillation

To enhance the performance of SLMs, knowledge distillation was adopted, a well-

established technique for transferring the knowledge and reasoning capabilities of

a larger model (the teacher) to a smaller model (the student). Described in more

detail in the section 2.2.2. Following the ”Step-by-step distillation” methodology

[14], the LLM served as the teacher model, demonstrating high-level reasoning and

task-specific expertise. The SLM learns from the outputs of the LLM, acquiring

the ability to replicate its performance with significantly reduced computational

requirements and without the huge training done by the LLM, acquiring its rea-

soning capabilities.

A new prompt was written to instruct the LLM to extract both the metadata

of the death certificates and the reasoning behind each identified metadata. The

rationale for each extraction includes details on where, why, and how the model

found the specific information.

Through the prompt development process, it became clear that the order in

which the metadata and reasoning were asked to be returned was critical to the

model’s effectiveness. The less efficient approach was discovered to be the one

where the metadata was extracted first, followed by the reasoning. Instead, the

more effective structure was found by asking the model to provide the reasoning

immediately after extracting each individual piece of metadata. This change in the

output structure significantly improved the clarity and accuracy of the extractions.

The output section of the final prompt indeed looked like this:

Listing 5.1: Output section of the LLM prompt to extract also the reasonings

1 **Output:**

2 {"event_date": "dd/mm/yyyy", "reasoning_event_date": "I found the date in the phrase: ...",

3 "name": "name surname", "reasoning_name": "I found the name in the phrase ..."}

For example, the reasoning for a name and date appear as shown in the Table

5.4 below:

CHAPTER 5. EXTRACTION 73

Name Reasoning Name Date Reasoning Date

Ferrari
Giuseppe

I found the name in the phrase:
’FERRARI GIUSEPPE è
morto’ referring to the de-
ceased person.

09/06/2024 I found the date in the phrase:
’è morto il nove giugno
duemilaventiquattro’ which
translates to ’died on the
ninth of June two thousand
twenty-four’.

Pasquina
Montabelli

I found the name in the phrase:
’MONTEBELLI PASQUINA
Nata il’ referring to the de-
ceased person. Other names
are doctors or officials.

06/08/2021 I found the date in the phrase:
’É mortal il 06/08/2021’.

Table 5.4: Example of reasoning output by the LLM. The examples provided are
from the data augmentation process and are not real, ensuring the privacy of the
individuals involved.

These reasonings made through knowledge distillation contribute significantly

to the goal of enabling SLMs to handle complex metadata extraction tasks while

maintaining efficiency and accuracy, as Table 5.5 will better show.

5.3.2 QLoRA

To facilitate the efficient fine-tuning and deployment of larger SLMs on affordable

hardware, the Quantized Low-Rank Adaptation (QLoRA) [17] technique was em-

ployed. QLoRA is designed to optimize both memory usage and computational

efficiency by integrating low-rank adaptations (LoRA) [18] with quantization [43].

This hybrid approach allows the training of models that would typically require

multiple powerful GPUs, significantly reducing hardware requirements while main-

taining performance.

As an illustration of QLoRA’s efficiency, fine-tuning a model with 8 billion pa-

rameters would typically require 16 GB of memory for just the model parameters.

However, by leveraging QLoRA, only a quarter of this memory was necessary,

thanks to the introduction of low-rank matrices. The gradients and optimizers,

which would normally require an additional 16 GB and 32 GB of memory, respec-

tively, required only 120 MB and 240 MB with QLoRA due to the reduced number

of parameters from the adapter. In total, a full fine-tuning session would typically

demand 64 GB of GPU memory, whereas with QLoRA, the required memory was

74 CHAPTER 5. EXTRACTION

reduced to approximately 5 GB, demonstrating its remarkable efficiency.

For this experiment, the ml.g4dn.xlarge instance from AWS was utilized. This

machine is equipped with a single NVIDIA T4 Tensor Core GPU featuring 16 GB

of GPU memory, 16 GB of RAM, and 125 GB of SSD storage, which is well-suited

for fine-tuning pre-trained models, inference tasks, and prototyping deep learning

pipelines. Its balance of performance and cost-effectiveness made it an excellent

choice for lightweight training tasks and GPU-based experimentation.

Despite the hardware’s memory constraints, with a maximum of 16 GB GPU

memory, the use of QLoRA enabled the fine-tuning of the LLaMA 1B and LLaMA

8B models efficiently. Specifically, the LoRA technique was combined with 4-

bit quantization from the BitsAndBytes library. The quantization utilized the

NF4 (Normalized Float 4) data type, which strikes an optimal balance between

efficiency and precision. Furthermore, double quantization was applied to reduce

memory usage further by quantizing both the model weights and the quantization

constants. Computational operations were conducted in bfloat16 format, which

provides a good trade-off between memory efficiency and numerical stability.

In this setup, the LoRA configuration required careful tuning of two key pa-

rameters: α and r. The r is the parameter that defines the dimensionality of the

low-rank update matrices. While the α is a scaling parameter which controls the

impact of the low-rank updates on the model’s original weights, ensuring that the

adapted model retains meaningful task-specific information. As per best practices,

these parameters were set such that one was double the value of the other. The

final optimal configuration found was with a rank of r = 128, this choice ensured

efficient adaptation without imposing excessive memory overhead, and the scaling

parameter α = 256. To prevent overfitting, a dropout rate of 0.1 was applied to

the LoRA layers, promoting better generalization and robustness.

Based on the QLoRA paper, LoRA should be applied to all linear layers within

transformer blocks to match the full fine-tuning performance. This was achieved

by targeting the following linear layers: q proj, k proj, v proj, o proj, gate proj,

down proj, up proj, and lm head.

By applying this calibrated combination of quantization and low-rank adaptation,

it was possible to train the LLaMA models without exceeding the limited 16 GB

CHAPTER 5. EXTRACTION 75

GPU memory, while preserving performance, as the results will demonstrate. This

demonstrates the effectiveness of QLoRA in real-world applications with resource-

constrained environments,

5.3.3 Data augmentation

A significant challenge encountered during the fine-tuning was the limited size of

the available death certificate dataset, which comprised only 400 documents,

partitioned into 300 for training, 50 for validation, and 50 for testing. This scarcity

of training data was an obstacle for the model’s ability to generalize effectively,

as the small training set restricts its capacity to learn diverse representations.

To address this issue, data augmentation techniques were employed, utilizing the

GPT-4o LLM to generate synthetic training samples. The objective was to create

additional documents that closely mirrored the style, structure, and content of the

original data while maintaining the necessary diversity for robust learning. This

augmented dataset, now containing 700 documents, was generated solely from the

training set, with the validation and test sets left intact for unbiased evaluation.

Given the sensitive nature of the documents, which include legally and med-

ically relevant information, privacy remained a primary concern throughout the

project. The synthetic data generation process not only addressed the scarcity of

training data but also adhered to privacy principles by generating entirely ficti-

tious information. Thanks to its wide background general knowledge, the LLM

was capable of generating realistic Italian cities, hospital names, and even invent-

ing people’s names, thus performing a form of anonymization while preserving the

realism of the data.

These synthetic documents, created for fine-tuning the SLM model, required

labels. To achieve this, the model was configured to output both the generated

text and the metadata of that new document. This labeling process was crucial

for ensuring the quality and relevance of the synthetic data used in training.

A well-known challenge inherent in working with LLMs is their non-deterministic

nature, which affects precision and reproducibility. However, for this specific task

of dataset augmentation, the creativity of the LLMs was an advantage to gener-

ate a diverse set of documents that follow the structural guidelines while avoiding

76 CHAPTER 5. EXTRACTION

repetition. Initially indeed the model generated outputs with similar names and

locations, and the dates were often unrealistic, either too far in the past or future.

To control the degree of randomness in the model’s output, the temperature

parameter was adjusted. It influences how deterministic or creative the generated

text is, depending on the sampling from the model’s probability distribution over

potential next tokens.

• Low Temperature (0 - 0.5): Generates more deterministic outputs, selecting

the token with the highest probability. While this results in more stable and

reliable outputs, it can lead to rigidity and repetition.

• High temperature (1.0 or higher): Increases randomness and diversity by

reducing the preference for the most likely tokens, fostering more creative

outputs. However, this may come at the cost of generating less coherent and

off-topic responses.

During the iterative refinement of the prompt for this augmentation task, var-

ious temperature values were tested, ultimately setting the value to 0.8 to strike

a balance between creativity and adherence to the prompt.

For this specific task, where the model needed to replicate the structure of certifi-

cates, the few-shot prompting was crucial. The more documents the model saw

as examples, the better its understanding of the context, all while considering the

token cost. To explore all possibilities, both the number of examples and which

specific documents to input, were varied to optimize the diversity. Despite the

high temperature setting, the model tended to closely follow the structure of the

examples provided. To overcome this, the final prompt includes three texts as

examples, selected through a sliding window approach over the entire training

dataset. Additionally, the model was instructed, based on the three input exam-

ples, to generate six distinct outputs per prompt, with the remarked requirement

that the generated documents share a similar structure but contain different in-

formation. This approach led to great results of coherence in the structure, but

at the same time, both following the prompt instructions and seeing all the time

different documents, guaranteed that the outputs were always different.

The final prompt configuration is illustrated in Listing 5.2.

CHAPTER 5. EXTRACTION 77

Listing 5.2: Data Augmentation with GPT-4o of the class death certificate

1 "system_prompt":

2 You are a highly trained AI, exceptionally skilled in reproducing text and generating text from

given examples, as a human operator would do.

3 "user_prompts":

4 "Task":

5 Your task is to augment a dataset of documents. You have to read the given input texts and

generate new text that is similar to the input text. Understand the meaning of the input

texts, familiarize yourself with the context, and generate text that is coherent with the

input text.

6 "Input": You will receive the text of a scanned document, containing a series of information

. In particular, the document is a death certificate, which includes the name and the date of

death of a person.

7 "placeholder__example_text"

8 "Output": Be creative and imaginative when inventing names, dates, locations and situations.

Strive for variety and avoid repetition to ensure the generated texts are diverse.

9 "Important": Do not repeat yourself. Generate something new, especially changing dates,

names, and locations. Dates in the generated text can be written in textual form (e.g., "

August 6, 2020") or in the format DD/MM/YYYY.

10 Ensure dates are realistic, before February 2025. Occasionally write dates in textual form.

11 "Step-by-Step Instructions":

12 - Analyze the given input texts carefully.

13 - Identify commonalities and differences.

14 - Generate new text, changing especially dates, names, and locations.

15 - Ensure the output text is coherent with the input text.

16 - Do not repeat yourself; generate something new each time.

17 "Output format": Return a list of dictionaries containing the generated text, the name of

the deceased person, and the date of death. Each dictionary should follow this structure:

18 [{ "output_text": "output text 1",

19 "name": "name 1",

20 "event_date": "DD/MM/YYYY"

21 },

22 ...,

23 { "output_text": "output text 6",

24 "name": "name 6",

25 "event_date": "DD/MM/YYYY"

26 }]

5.3.4 Performances

The effectiveness of the techniques described above was rigorously evaluated by

measuring the performance of the fine-tuned SLMs on the metadata extraction

task. Table 5.5 presents a detailed comparison of precision, recall, and F1 scores

achieved by the LLaMA 1B model when employing data augmentation, knowledge

distillation, and their combination. QLoRA was used as a default to be able to

78 CHAPTER 5. EXTRACTION

run the model on the machine.

Name Event Date

Model Techniques Precision Recall F1 Precision Recall F1

LLaMA 1B

data augmented 0.853 1 0.921 0.971 1 0.985

KD 0.838 1 0.912 0.892 1 0.943

data augmented+KD 0.941 1 0.970 1 1 1

Table 5.5: Performance metrics for the LLaMA 1B model using data augmentation
and knowledge distillation (KD) techniques.

The combination of both techniques yields the highest F1 scores across both

metadata fields, with a perfect score of 100% for the event date values, which is

particularly remarkable. This outcome illustrates that even with the application

of QLoRA, the performance of the model is not compromised. These results

highlight the potential of these techniques to enhance the performance of small

models, enabling them to compete with larger models on specific tasks.

5.4 Comparison and Discussion

The primary objective of this project was to compare the performance of LLMs

and SLMs on a specific metadata extraction task. Table 5.6 presents the final com-

parison of precision, recall, and F1 scores for the LLM GPT-4o and two LLaMA

models (1B and 7B parameters), both of which employed QLoRA and Knowl-

edge Distillation techniques. As previously discussed, the combination of these

techniques significantly enhanced the performance of the LLaMA models, which,

thanks to QLoRA, were fine-tuned.

The results are impressive and surpass initial expectations. Even the small-

est model, LLaMA 1B, achieved the same performance as GPT-4o, and in some

cases, exceeded it. Specifically, the LLaMA 1B model achieved the highest F1

scores across both metadata fields, including a perfect score for all the metrics

for the ”Event Date”. This demonstrates that, even with a significantly smaller

parameter size, it can compete effectively with larger models like GPT-4o.

It is worth noting that the test set used for evaluation was relatively small, compris-

CHAPTER 5. EXTRACTION 79

Name Event Date

Model Precision Recall F1 Precision Recall F1

GPT-4o 0.941 0.972 0.959 0.974 1 0.987

LLaMA 1B 0.941 1 0.970 1 1 1

LLaMA 8B 1 1 1 0.971 1 0.985

Table 5.6: Comparison metrics between LLM GPT-4o and two SLMs, the LLaMA
1b and LLaMA 8b, for which both data augmentation and Knowledge Distillation
techniques were applied

ing only 50 documents. While this may limit the generalizability of the results,

the observed performance suggests that the combination of data augmentation,

Knowledge Distillation, and QLoRA can significantly enhance the abilities of small

models in specific tasks, potentially enabling them to rival larger models in terms

of performance.

Another interesting aspect, apart from the performances, is the comparison of the

costs of the solution with the LLM and with the SLM. For the LLM, the cost

as already explained depends on the number of input and output tokens in the

prompt. So it depends on the length of the input documents. An average statistic

of how much does the GPT-4o cost per document, based always on the cost shown

at 2.1, is 0.5 cents.

The solution with the SLM instead depends on many factors:

• Type of instance: In this case, the ml.g4dn.xlarge instance was used, with a

pricing of 0.68€/h.

• Batch size: The larger the batch size, the less time is required for the machine

to process the documents. In this case, the maximum batch size that could

be set was 16.

• Model: The choice of model directly impacts the cost, as the best instance

type on AWS is selected based on the model’s requirements. Smaller models

are preferred to improve processing speed on the machine.

• Framework: This thesis utilized PyTorch, though other efficient frameworks

could potentially reduce costs.

• Document length: Longer documents may require more time to process,

affecting the overall cost.

So, the cost of the SLM doesn’t depend on the quantity of calls made to the model,

80 CHAPTER 5. EXTRACTION

but on the usage timing of the machine, the more data that can be fit into less

time, the less is the cost per document.

At parity of performances, for a few documents, the LLM solution is easier to

implement because the API is ready-to-use, and it is just writing the best prompt.

But in real-world cases with lots of documents to process, the SLM solution is

worth it. The Figure 5.1 shows exactly the trend of the cost for the SLM solution

varying the number of documents to process in one hour. The dotted line is the

division in which on the left the LLMs are preferred and on the right instead the

SLMs are cheaper.

Figure 5.1: Cost comparison for the SLM solution as the number of documents
processed per hour increases. The dotted line indicates the point where LLMs are
more cost-effective on the left, and SLMs are cheaper on the right.

To be considered also that these death certificates were short of just one page,

in cases of longer documents for the LLMs the cost increases. For the SLMs, it

increases the speed and difficulty in the training, but, hoping for still promising

results despite the length of the text, they are still parallelizable in batch, so the

cost would almost remain the same as now.

CHAPTER 5. EXTRACTION 81

82 CHAPTER 5. EXTRACTION

Chapter 6

Conclusion

6.1 Addressing the initial questions

This thesis was based on an internship project regarding the techniques for a

document processing pipeline, which includes the main steps of the classification

of documents and based on that, the metadata extraction of specific classes.

The primary objective of this thesis was to explore the potential of Small Lan-

guage Models in performing specific tasks, such as document classification and

metadata extraction tasks, traditionally dominated by Large Language Models.

This investigation was driven by the need to evaluate whether SLMs could match

the performance of LLMs on specific tasks while offering benefits in terms of cost,

computational efficiency, and deployment feasibility. Through the research, ad-

vanced techniques such as data augmentation, knowledge distillation, and QLoRA

were employed to enhance the performance of SLMs and mitigate their inherent

limitations.

The results unequivocally demonstrate that, with effective training or fine-

tuning, SLMs can indeed achieve and, in some cases, improve the performance of

LLMs on well-defined, specific tasks. In particular, the usage of a solution for a

classification model based on BERT achieved higher performances than the usage

of the LLM GPT-4o. The training over a labelled dataset helped the model to

learn specialized concepts and the relationship between classes and documents.

Then, by focusing on a single document class, the ability of SLMs to extract key

metadata such as the person’s names and dates, emerged with high precision and

83

recall. The combination of data augmentation and knowledge distillation played a

pivotal role in this success, allowing the smaller models to generalize well despite

their limited capacity.

SLMs approach not only reduced memory usage but also maintained high

performance, demonstrating that they can be adapted and optimized for deploy-

ment in resource-constrained environments. The successful implementation of

these techniques suggests that the perceived necessity of high-end computational

infrastructure for advanced NLP tasks can be reconsidered.

Moreover, the cost analysis highlights a significant advantage of SLMs over

LLMs when considering real-world deployment. The cost of using LLMs via API is

driven by the number of input and output tokens. In contrast, SLMs depend on the

cost of the GPU instance machine, or they can even run on local hardware. This

cost efficiency becomes even more pronounced when processing large document

batches, where the per-document savings accumulate rapidly.

In real-world applications, the choice between SLMs and LLMs ultimately

depends on a balance of performance, cost, and operational constraints. LLMs re-

main the preferable option when handling highly complex, multi-faceted tasks re-

quiring extensive generalization and broad linguistic capabilities. However, SLMs

offer a compelling alternative for domain-specific tasks, especially where privacy,

cost-efficiency, and deployment flexibility are paramount. This study provides a

robust foundation for adopting SLMs in scenarios where high performance must

be achieved with limited computational and financial resources.

6.1.1 Implications for Real-World Pipelines

The findings of this research hold significant implications for document processing

pipelines. Traditional approaches to document classification and metadata ex-

traction often rely on rule-based systems or require substantial human oversight.

While LLMs provide strong generalization capabilities, in the case of many doc-

uments to process, they remain computationally expensive and difficult to adapt

for domain-specific applications.

SLMs offer a more sustainable solution, particularly when integrated into struc-

tured document processing workflows. By training task-specific SLMs to handle

84 CHAPTER 6. CONCLUSION

classification, metadata extraction, and other key processing steps, it is possible to

build efficient pipelines that scale without excessive computational costs. More-

over, the ability to fine-tune SLMs locally allows for greater adaptability, enabling

organizations to continuously refine models without relying on proprietary API

services..

SLMs offer also greater deployment flexibility. Unlike LLMs, which often re-

quire access to cloud-based APIs with associated latency and dependency issues,

SLMs can be integrated directly into on-premises systems. This independence

from external services ensures consistent performance and reduces the risk of ser-

vice interruptions, changes in API pricing and availability, and eliminates the

need to transmit sensitive data to external servers, thus mitigating data exposure

risks. Additionally, the reduced computational footprint of SLMs allows for more

scalable and efficient processing pipelines. In scenarios in which the volume of

documents to process is very high, the ability to deploy multiple SLM instances in

parallel without incurring prohibitive costs or infrastructure demands can lead to

significant performance gains and operational efficiency. This is particularly rele-

vant in industries such as finance, healthcare, and legal services, where document

processing must be precise, secure and cost-effective.

6.2 Future Research

Building on the findings of this thesis, several future research directions can be

explored.

First, expanding the analysis of the metadata extraction to other document

classes would provide a broader validation of SLM capabilities across different

data types and task complexities. Investigating the performance of SLMs on doc-

uments with more varied structures, specific terminology, handwritten elements,

or embedded tables, could further assess their robustness and adaptability, or help

define their limitations.

Another interesting aspect to explore would be the multimodal approach, which

can often help the resolution of complex tasks for which there are documents in

which the visual component can help a lot. Many LLMs are multimodal, mean-

ing they can manage different input sources such as text, images, audio and even

CHAPTER 6. CONCLUSION 85

videos. Some SLMS are vision-language models like Qwen2.5 VL, LLaMA 3.2

11B-Vision, or DeepSeek-VL2, meaning they can process text and images. For the

document pipeline, this could address the limitations of OCR-based text extrac-

tion by directly interpreting document images. This approach has the potential to

enhance information extraction accuracy from complex document formats where

textual content alone may be insufficient.

Thinking even out of just the context of the document pipeline, another possibility

is the development of agent-based systems. This represents an innovative and

efficient architecture where the subjects are specialized SLMs, one for each distinct

task. By training individual SLMs on specific tasks and employing techniques like

QLoRA to create adaptable model components, it becomes possible to construct

a collaborative agent system. It is a shift towards the last trend of creating big

LLM trained on huge datasets and with a wide broader knowledge, towards a de-

composition of intelligence in SLM very specialized in specific subtasks that create

a powerful and robust intelligent system. This system could achieve LLM-level

performance across a diverse range of functions while maintaining the benefits and

modularity of SLMs.

In conclusion, this thesis underlines the potentiality of SLMs as a powerful alter-

native to LLMs for specific NLP tasks. Through strategic application of advanced

training techniques and careful consideration of deployment requirements, SLMs

deliver high performance with a greater operational flexibility. Future research

in this area is crucial to contrast the growing trend of developing increasingly

large models, which are often in the hands of a few organizations. The results of

this project demonstrate the valuable opportunities for further advancing SLMs,

promoting their broader use and impact across diverse real-world applications.

86 CHAPTER 6. CONCLUSION

Appendix A

Document examples

This appendix section reports one example per class of the dataset’s documents.

The images have been anonymized as they contain sensitive personal data.

87

Figure A.1: The image is an example of an employment document. The image
has been anonymized as it contains sensitive personal data.

88 APPENDIX A. DOCUMENT EXAMPLES

Figure A.2: The image is an example of a leave certificate. The image has been
anonymized as it contains sensitive personal data.

APPENDIX A. DOCUMENT EXAMPLES 89

Figure A.3: The image is an example of a generic medical certificate. The
image has been anonymized as it contains sensitive personal data.

90 APPENDIX A. DOCUMENT EXAMPLES

Figure A.4: The image is an example of an death certificate. The image has
been anonymized as it contains sensitive personal data.

APPENDIX A. DOCUMENT EXAMPLES 91

Figure A.5: The image is an example of an hospitalization certificate. The
image has been anonymized as it contains sensitive personal data.

92 APPENDIX A. DOCUMENT EXAMPLES

Bibliography

[1] AWS. What is ocr (optical character recognition)? https://aws.amazon.c

om/what-is/ocr/?nc1=h_ls.

[2] Zapier Editorial Team. Meetings aren’t killing productivity; data entry is,

2021. https://zapier.com/blog/report-how-office-workers-spend-t

ime/.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:

Pre-training of deep bidirectional transformers for language understanding,

2019.

[4] Huggingface. Llama on hugginface. https://huggingface.co/meta-llama.

[5] Huggingface. Llama on hugginface. https://ai.meta.com/blog/llama-3

-2-connect-2024-vision-edge-mobile-devices/.

[6] AWS. Amazon textract. https://aws.amazon.com/it/textract/.

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you

need. arXiv preprint arXiv:1706.03762, 2017. https://arxiv.org/abs/17

06.03762.

[8] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng

Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,

Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan

Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. A

survey of large language models, 2024. https://arxiv.org/abs/2303.182

23.

93

https://aws.amazon.com/what-is/ocr/?nc1=h_ls
https://aws.amazon.com/what-is/ocr/?nc1=h_ls
https://zapier.com/blog/report-how-office-workers-spend-time/
https://zapier.com/blog/report-how-office-workers-spend-time/
https://huggingface.co/meta-llama
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://aws.amazon.com/it/textract/
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223

[9] Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hüllermeier. A survey

of reinforcement learning from human feedback, 2024. https://arxiv.org/

abs/2312.14925.

[10] Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui Tao, and Fu Lee Wang.

Parameter-efficient fine-tuning methods for pretrained language models: A

critical review and assessment, 2023. https://arxiv.org/abs/2312.12148.

[11] Zhenyan Lu, Xiang Li, Dongqi Cai, Rongjie Yi, Fangming Liu, Xiwen Zhang,

Nicholas D. Lane, and Mengwei Xu. Small language models: Survey, mea-

surements, and insights, 2025. https://arxiv.org/abs/2409.15790.

[12] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a

neural network, 2015.

[13] Shuohang Wang, Yang Liu, Yichong Xu, Chenguang Zhu, and Michael Zeng.

Want to reduce labeling cost? gpt-3 can help, 2021.

[14] Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa

Fujii, Alexander Ratner, Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister.

Distilling step-by-step! outperforming larger language models with less train-

ing data and smaller model sizes, 2023. https://arxiv.org/abs/2305.023

01.

[15] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter,

Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. Chain-of-thought prompting

elicits reasoning in large language models, 2023.

[16] Kevin J Liang, Weituo Hao, Dinghan Shen, Yufan Zhou, Weizhu Chen,

Changyou Chen, and Lawrence Carin. Mixkd: Towards efficient distillation

of large-scale language models, 2021.

[17] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer.

Qlora: Efficient finetuning of quantized llms, 2023.

[18] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,

Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of

large language models, 2021.

94 BIBLIOGRAPHY

https://arxiv.org/abs/2312.14925
https://arxiv.org/abs/2312.14925
https://arxiv.org/abs/2312.12148
https://arxiv.org/abs/2409.15790
https://arxiv.org/abs/2305.02301
https://arxiv.org/abs/2305.02301

[19] Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit

inference scaling laws, 2023.

[20] NVIDIA. Cuda c++ programming guide. https://docs.nvidia.com/cuda

/cuda-c-programming-guide/.

[21] Artificial Analysis. Intelligence, performance & price analysis. https://ar

tificialanalysis.ai/models/grok-3.

[22] Aili McConnon IBM Tech Reporter. Are bigger language models always

better?, 2024. https://www.ibm.com/think/insights/are-bigger-langu

age-models-better.

[23] GLUE Benchmark. General language understanding evaluation. https:

//gluebenchmark.com/.

[24] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad:

100,000+ questions for machine comprehension of text, 2016. https://arxi

v.org/abs/1606.05250.

[25] Huggingface. Openai official site. https://openai.com/.

[26] Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard

Socher, Xavier Amatriain, and Jianfeng Gao. Large language models: A

survey, 2024. https://arxiv.org/abs/2402.06196.

[27] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-

Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Ham-

bro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and

Guillaume Lample. Llama: Open and efficient foundation language models,

2023. https://arxiv.org/abs/2302.13971.

[28] Meta. Llama. https://www.llama.com/.

[29] Noam Shazeer. Glu variants improve transformer, 2020. http://arxiv.or

g/abs/2002.05202v1.

BIBLIOGRAPHY 95

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://artificialanalysis.ai/models/grok-3
https://artificialanalysis.ai/models/grok-3
https://www.ibm.com/think/insights/are-bigger-language-models-better
https://www.ibm.com/think/insights/are-bigger-language-models-better
https://gluebenchmark.com/
https://gluebenchmark.com/
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1606.05250
https://openai.com/
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2302.13971
https://www.llama.com/
http://arxiv.org/abs/2002.05202v1
http://arxiv.org/abs/2002.05202v1

[30] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng

Liu. Roformer: Enhanced transformer with rotary position embedding, 2023.

https://arxiv.org/abs/2104.09864.

[31] Rico Sennrich Biao Zhang. Root mean square layer normalization. arXiv

arXiv:1910.07467, 16 October 2019. https://arxiv.org/abs/1910.07467.

[32] Sharan Narang and Software Engineers Google Research Aakanksha Chowd-

hery. Pathways language model (palm). https://research.google/blog

/pathways-language-model-palm-scaling-to-540-billion-parameter

s-for-breakthrough-performance/.

[33] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya,

Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks,

Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katie Millican,

George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero,

Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.

Training compute-optimal large language models, 2022. https://arxiv.or

g/abs/2203.15556.

[34] Edouard Belva. pdf2image 1.17.0, 2024. https://pypi.org/project/pdf

2image/.

[35] Poppler. https://poppler.freedesktop.org/.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:

Machine learning in Python. Journal of Machine Learning Research, 2011.

[37] Scikit-learn. compute class weight. https://scikit-learn.org/stable/

modules/generated/sklearn.utils.class_weight.compute_class_wei

ght.html.

[38] Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris

Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang,

96 BIBLIOGRAPHY

https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/1910.07467
https://research.google/blog/pathways-language-model-palm-scaling-to-540-billion-parameters-for-breakthrough-performance/
https://research.google/blog/pathways-language-model-palm-scaling-to-540-billion-parameters-for-breakthrough-performance/
https://research.google/blog/pathways-language-model-palm-scaling-to-540-billion-parameters-for-breakthrough-performance/
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://pypi.org/project/pdf2image/
https://pypi.org/project/pdf2image/
https://poppler.freedesktop.org/
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html

Li Yang, and Amr Ahmed. Big bird: Transformers for longer sequences,

2021. https://arxiv.org/abs/2007.14062.

[39] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-

document transformer, 2020. https://arxiv.org/abs/2004.05150.

[40] Marek Wachnicki Micha l Brzozowski. Belt (bert for longer text), 2023. https:

//github.com/mim-solutions/bert_for_longer_texts.

[41] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distil-

bert, a distilled version of bert: smaller, faster, cheaper and lighter, 2020.

https://arxiv.org/abs/1910.01108.

[42] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilac-

qua, Fabio Petroni, and Percy Liang. Lost in the middle: How language

models use long contexts, 2023. https://arxiv.org/abs/2307.03172l.

[43] Kazuki Egashira, Mark Vero, Robin Staab, Jingxuan He, and Martin Vechev.

Exploiting llm quantization, 2024.

BIBLIOGRAPHY 97

https://arxiv.org/abs/2007.14062
https://arxiv.org/abs/2004.05150
https://github.com/mim-solutions/bert_for_longer_texts
https://github.com/mim-solutions/bert_for_longer_texts
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/2307.03172l

	Abstract
	Introduction
	Motivation
	GenAI
	Real-world IDP

	Background
	IDP pipeline and technology used
	Optical Character Recognition (OCR)

	Language Models
	LLMs
	SLMs
	Differences

	Thesis's objective
	Models used in the project
	BERT
	GPT
	LLaMA

	Data
	Challenges
	Dataset exploration
	Data preprocessing pipeline

	Classification
	Classification model with BERT
	BERT For Long Texts
	Performance metrics

	Prompting with GPT
	Different prompt strategies
	Performance metrics

	Comparison and Discussion

	Extraction
	Evaluation criteria
	LLM
	Performances

	SLMs
	Knowledge Distillation
	QLoRA
	Data augmentation
	Performances

	Comparison and Discussion

	Conclusion
	Addressing the initial questions
	Implications for Real-World Pipelines

	Future Research

	Document examples
	
	Bibliography

