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Abstract

Artificial Intelligence has revolutionized drug discovery, significantly accel-

erating the process of identifying new therapeutics. Large Language Models

(LLMs) can also play a crucial role in this process, but they are prone to hal-

lucinations, generating inaccurate or misleading content. In this thesis, AI

techniques such as Fine-Tuning and Retrieval-Augmented Generation (RAG)

are employed in order to overcome this issue. Through the integration of RAG

and other tools, an LLMAgent system is designed to retrieve information from

external sources and generate an automatic target dossier in the context of

pancreatic cancer. This system can significantly assist researchers by provid-

ing precise information on specific targets. The results show that fine-tuning

and RAG enhance the LLM’s expertise in the biomedical domain, resulting

in more accurate and comprehensive responses. The Agent successfully gen-

erates an automatic target dossier with precise and relevant information in a

minimal amount of time, showing its potential to streamline the drug discov-

ery process. The integration of additional tools and models, along with the

application of multimodal machine learning, might further improve the sys-

tem, enabling it to generate a more informative and complete target dossier.
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Chapter 1

Introduction

Drug discovery is the process of identifying and developing new medications.

It consists of identifying, evaluating, and optimizing compounds with activ-

ity against a specified target. Drug Discovery includes different procedures

such as target identification, target validation and optimization, and finally,

the selection of a target for further development [83]. Drug discovery is a

very long and expensive process, often taking up to 15 years and requiring

approximately 2 billion dollars [8, 36]. The advent of Large Language Mod-

els (LLM) brought a paradigm shift to drug discovery, introducing innovative

approaches to understanding disease mechanisms, accelerating discovery and

enhancing clinical trial optimization [100].

The aim of this thesis is to develop an AI system in order to reduce hal-

lucinations in drug discovery-related tasks. To this end, different adaptation

techniques are considered, namely fine-tuning and RAG, highlighting their

differences and limitations. After evaluating fine-tuning and RAG, we imple-

mented an LLM-based agent system that generates an automatic target dossier

to support the target validation phase of the drug discovery process. A target

dossier is an important tool in drug discovery and is used to assess the poten-

tial of a gene target for developing a compound that modulates its activity.

The target dossier should contain all the relevant information to support the

decision-making process of the experts. This includes general information
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about the target, its implications in a disease, therapeutic opportunities, and

potential competitors. The construction of a target dossier demands consider-

able time to gather and analyze data about a target from various sources and

databases [27]. In this thesis, we demonstrate how it is possible to use an LLM

Agent to create an automatic target dossier. Our focus is on pancreatic cancer,

which, due to its lethality and malignancy, urgently requires the discovery of

new biological targets and therapeutic opportunities.

Our system employs agents in combination with RAG. The agent has dif-

ferent tools at its disposal, allowing it to perform complex tasks and actions

such as connecting to external databases, executing Python code, and retriev-

ing images. The system, given an input gene, generates an automatic target

dossier in the context of pancreatic cancer, producing a PDF document and a

PowerPoint presentation. It retrieves up-to-date information from more than

fifteen sources, annotating them in order to allow the verification and cross-

checking of the content. The purpose of this system is to support the experts

in evaluating a target, a process that requires weeks due to the need to collect

all the relevant and reliable information.

Overall, this thesis demonstrates how AI systems can be leveraged to op-

timize and accelerate the drug discovery process, enabling a quicker develop-

ment of innovative life-saving therapies.

This thesis is structured as follows:

• Chapter 2: Background and Related Work. This chapter explores

the complexities and challenges of pancreatic cancer and drug discov-

ery, highlighting the potential of AI to optimize drug discovery tasks. It

also covers the rise of Large Language Models, starting with the Trans-

formers architecture and their applications in the medical domain, ad-

dressing their limitations and strategies to overcome these challenges.

• Chapter 3: Materials andMethods. This chapter introduces the databases,

sources, and tools used in this thesis. It provides an overview of themain
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techniques employed, specifically Fine-Tuning, RAG, andAgents. More-

over, it lists the key technical requirements essential for the successful

implementation of these methods.

• Chapter 4: Objectives. This chapter discusses the core objective of the

thesis, i.e. the development of an AI system to support the drug discov-

ery process. Furthermore, it details the subgoals required to accomplish

it.

• Chapter 5: Results. This chapter presents the results of the thesis. The

choice of the LLM is discussed, and the methods of Fine-Tuning and

RAG are evaluated. Finally, the target dossier produced by the system

is presented, showing examples of the Agent process to generate some

PDF pages and PowerPoint slides.

• Chapter 6: Discussion. This chapter summarizes the key findings of

the thesis and offers insights into how the Agent system could be im-

proved through the integration of additional tools or the adoption of

multimodal machine learning.



Chapter 2

Background and Related Work

2.1 AI need for Drug Discovery

2.1.1 Pancreatic Ductal Adenocarcinoma

Pancreatic ductal adenocarcinoma (PDAC), the most frequent subset of pan-

creatic cancer, is a highly lethal gastrointestinal tumor. It occurs when abnor-

mal DNA mutations in the pancreatic ductal cells lead to uncontrolled growth

and division, resulting in the formation of tumors [52]. PDAC is a leading

cause of cancer-related mortality, with a poor overall prognosis that has shown

no significant improvement for many decades [55]. According to the National

Cancer Institute, in 2024, pancreatic cancer was the 10th most common can-

cer based on estimated new cases in the United States, but ranked 3rd as the

deadliest cancer, with over 50,000 fatalities. The deadliness of PDAC is also

reflected by the 5-year survival rate, which fluctuates between 12% and 13%.

Figure 2.1 shows the age-standardised incidence and death rates of pancreatic

cancer. It can be observed that most of the people diagnosed with the disease

do not survive.

Its prevention and early diagnosis are challenging. Indeed, the majority of

patients with pancreatic cancer remain asymptomatic until the disease has pro-

gressed to an advanced stage, and there is no established standard screening
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Figure 2.1: PDAC age-standardised incidence and death rates. From [73].

program for individuals at high risk of PDAC [53]. To this day, surgical resec-

tion of the tumor is regarded as the only treatment option with the potential to

cure pancreatic cancer [80]. Over the past decade, two new combination regi-

mens have become the standard first-line treatment in patients with advanced

pancreatic cancer. The first one, known as FOLFIRINOX, is a combination

of 5-fluorouracil (5-FU), leucovorin, irinotecan, and oxaliplatin. The second

regimen combines gemcitabine with an albumin nanoparticle conjugate of pa-

clitaxel [33]. In a clinical trial [17] it was discovered that patients treated with

FOLFIRINOX have a higher overall median survival compared to patients

treated with gemcitabine. However, the overall median survival remains very

low (around 11%), highlighting the need for new therapeutic solutions.

The key driver genes in pancreatic cancers include KRAS, CDKN2A,

TP53, and SMAD4/DPC4, with KRAS mutations found in more than 90% of

PDAC patients. These genes undergo mutations at various stages of precursor

lesions, and their dysregulation facilitates the differentiation and proliferation
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of pancreatic cancer cells [39]. However, some of these genes are hardly drug-

gable, while others are commonly resistant to inhibitors [22]. For instance,

KRAS, the most commonly mutated gene in pancreatic cancer, is considered

”undruggable” [94], a term that refers to target proteins with flat functional

interfaces that lack defined pockets for ligand interaction, presenting a signif-

icant challenge for rational drug design. KRAS is considered undruggable be-

cause therapeutic molecules cannot bind effectively to its small binding pock-

ets, combined with a highly competitive GTP concentration, which makes the

development of a KRAS inhibitor challenging [30]. PDAC therapeutic op-

tions are limited, and advancements in drug development are hindered due to

the genomic, epigenetic, and metabolic complexities of most pancreatic can-

cers [55]. For these reasons, it is crucial to identify new therapeutic targets, a

process that is achieved through drug discovery.

2.1.2 The Drug Discovery Process

Drug discovery is the process of identifying and developing new medications.

It consists of identifying, evaluating, and optimizing compounds with activity

against a specified target. The process [82, 86] typically starts by focusing

on a disease and identifying potential targets, generally gene products, that

can be affected by small compounds. These compounds are intended to either

interfere with or prevent the disease or, at the very least, slow the progres-

sion of symptoms. There are many techniques to identify therapeutic targets,

including cellular assays, genomic studies, and proteomic studies. The ini-

tial identification of candidate compounds typically relies on high-throughput

screening of a wide variety of small molecule collections or structurally se-

lected compounds that are either known to have activity against a target or

are predicted to do so. Promising compounds are tested on the basis of many

criteria, including specificity, toxicity, pharmacology, and biopharmaceutical

properties. Then, some of them are evaluated in animal models or in vitro
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models. Meanwhile, studies on absorption, distribution, and elimination are

conducted. After several years of research, a handful of compounds may be

considered safe and effective enough to advance to patient trials to assess the

safety and efficacy of the drugs in patients. The studies are then submitted

to regulatory agencies, which evaluate the documents and determine whether

the compound should be approved for the market. If the review is favorable,

it is possible to release the drug to the market and prescribe it to patients. Af-

ter approval, monitoring is conducted to track any potential side effects that

may arise over time from the new treatment. The Drug Discovery process is

illustrated in Figure 2.2.

Figure 2.2: The Drug Discovery pipeline. From [10].

The development of a new drug must progress through multiple stages to

ensure it is safe, effective, and meets all regulatory requirements [19]. Drug

discovery is a very long and expensive process, requiring up to 15 years and

approximately 2 billion dollars [8, 36]. Moreover, most of the compounds

fail the tests. On average, for every 5,000 to 10,000 tested compounds, only

one is approved [25]. Compounds can fail for a variety of reasons. Among

them, toxicity is a leading cause of failure, accounting for 30% of all failures.

Another key cause of failure is a lack of efficacy, which also has a percentage
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rate equal to 30% [69].

2.1.3 AI in Drug Discovery

Recently, Artificial Intelligence techniques have gained significant attention

in the drug discovery pipeline due to their potential to accelerate the process

by efficiently analyzing large amounts of data [11]. As Deep Learning (DL)

technology continues to advance and drug-related data expands, approaches

based on deep learning are increasingly being applied across all stages of

drug development [4]. The potential of AI in drug discovery has been exten-

sively demonstrated through various studies. In [103], a deep learning-based

efficacy prediction system (DLEPS) was developed to identify drug candi-

dates by using changes in gene expression profiles associated with the dis-

eased state. DLEPS was proven to be capable of providing valuable insights

into pathogenic mechanisms. Another application of AI in drug discovery is

demonstrated in [23], where DL was used to extract informative features from

genome-scale omics data and to train classifiers to predict the effectiveness of

drugs in cancer cell lines.

Due to the high failure rate in the drug discovery process, particularly be-

cause of target toxicity and low efficacy, tools to reduce this risk are needed.

Collecting information about the target can be very helpful as it allows for an

analysis of the relevance of the target in a specific disease, as well as the iden-

tification of possible toxicity-related risks. This may save time and resources

needed. A tool that collects all the relevant information about a target is the

target dossier. The target dossier is an important instrument in drug discovery

as it is used to assess the suitability of a target that has already been identi-

fied. The target dossier should contain all the relevant information to support

the decision-making process of the experts. This includes general information
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about the target, its role in a disease, therapeutic potential, and potential com-

petitors. The construction of a target dossier requires significant time to col-

lect and analyze data about a target from different sources and databases [27].

Automating the target dossier using AI would save the experts a significant

amount of time and would therefore facilitate the process of drug discovery.

Despite the increasing number of AI applications in the drug discovery do-

main, to our knowledge there is currently no system that creates an automatic

target dossier.

2.2 Large Language Models in Medicine

2.2.1 Transformers

Large Language Models could help in the automation of the target dossier

since they are able to analyze, process, and generate textual data.

LLMs are built upon the transformer architecture, introduced in 2017 in

the paper “Attention Is All You Need” [85]. Transformers leverage several

key features that contribute to their remarkable effectiveness. In Natural Lan-

guage Processing (NLP) tasks, raw text cannot be processed by amodel. Thus,

it undergoes the process of tokenization, which converts human-readable text

into a sequence of distinct tokens (word subdivision) [79]. Tokens can be

generated at different levels of granularity, such as characters, subwords, or

entire words. Typically, models that use character-level tokenization tend to

perform worse as capturing semantic relationships becomes more challeng-

ing, making tokenization at the subword level a more common choice [76].

Moreover, subword-level tokenization solves the issue of out-of-vocabulary

(OOV) words. This term refers to words that are not seen at training time by

the model, which is therefore unable to deal with them. Historically, rare

words that were not present in the vocabulary were replaced by the UNK

(unknown) token. However, this token is unacceptable in tasks like natural
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language generation [64]. With subword-level tokenization, the OOV rate is

zero [65], since rare words can be obtained by combining known subwords.

Subwords are then encoded into token ids [76], as models are unable to op-

erate on text and can only process numerical data. Tokens are mapped into

high-dimensional vectors called embeddings, which encode syntactic and se-

mantic information, capturing the tokens’ meaning and relationships inside a

sentence [3]. Before passing the token embeddings to the Transformer model,

additional information is required: the positions of the tokens in the input se-

quence. This is because, unlike recurrent neural networks (RNNs) or Long

Short-Term Memory networks (LSTMs), Transformers do not process the in-

put sequentially; they are permutation equivariant [14]. This information is

provided by positional encodings. The token embeddings, enriched with po-

sitional information, are then passed as input to the Transformer model. At

the core of the Transformer architecture is the concept of Attention (derived

from the human equivalent, it is meant to assign higher weight to more impor-

tant words in a context). The self-attention mechanism determines the level

of attention assigned to other words when encoding the word at the current

position [34]. This enables the model to capture long-range dependencies and

represent the interactions among all the tokens in the sequence [2]. The Trans-

former architecture employs a Multi-Head Self-Attention mechanism com-

posed of multiple parallel self-attention heads, allowing the model to capture

and learn different relationships within the sequence. The Transformer ar-

chitecture typically has an encoder-decoder structure. It is illustrated in Fig-

ure 2.3. The scope of the encoder is to analyze the contextual information of

the input, while the decoder generates the output by using the encoder’s out-

put and masked multi-head attention [44]. The encoder consists of multiple

blocks, each containing two fundamental layers: the Multi-Head Attention

Layer and Feed-Forward Layer. The latter layer comprises two linear trans-

formations and a non-linear rectified linear unit (ReLU) activation function,

which is applied independently to each position. This enables the model to
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learn the complex transformations of the data at each position [77]. In ad-

dition, the encoder block integrates residual connections around both layers,

together with layer normalization [44]. The purpose of residual connections

is to address the vanishing gradient problem by allowing the gradient to flow

more easily through the network [81]. In addition, layer normalization nor-

malizes activations of intermediate layers, enabling smoother gradients, faster

training, and better generalization accuracy [95]. The decoder has a structure

similar to the encoder, but it adds a third sub-layer that applies Multi-Head

Attention over the output of the encoder. Moreover, the first Multi-Head At-

tention layer is masked. This masking restricts positions from attending to

subsequent positions in the sequence [85].

2.2.2 Large Language Models

LLMs are based on the Transformer architecture but go beyond it by substan-

tially increasing both the model size and the amount of data that are used for

training. For instance, they can contain hundreds of billions of parameters and

are trained on a vast collection of textual data [99]. The evolution of language

models, from statistical language models to LLMs, is illustrated in Figure 2.4.

LLMs exhibit enhanced language understanding and generation capabili-

ties, along with new emergent abilities [66]:

• In-context learning, which allows LLMs to learn new tasks given only

a few examples in the prompt as demonstrations [24],

• Instruction following, which refers to the ability of LLMs to follow nat-

ural language instructions, also known as zero-shot prompts [102], i.e.

to perform a task without the need for examples,

• Multi-step reasoning, the LLMs’ capability to generate intermediate

reasoning steps in order to solve complex problems, often referred to

as chain-of-thought [88].
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Figure 2.3: The Transformer Architecture. From [85].

Despite their remarkable capabilities, LLMs are subject to some limitations

that need to be addressed in order to fully leverage their potential. One of the

most important challenges is the issue of LLM hallucinations which result in

seemingly plausible yet factually incorrect content that appears highly con-

vincing and human-like [41]. This is mainly observed in domain-specific ap-

plications since LLMs are trained on a vast range of general data and may lack

subject-specific knowledge. Hallucinations in LLMs typically occur when the

model tries to fill in knowledge or context gaps, by making assumptions based

on patterns it has learned during training. This can result in incorrect or mis-

leading outputs, which can be problematic in sensitive applications [32]. Some



2.2 Large Language Models in Medicine 13

Statistical LM
Neural LM

Pre-trained LM
LLM

Task 
solving
capacity 

1990s 2013 2018 2020

Word2vec (NPLM)!NLPS
Static word representations
Neural context modeling 
Solve typical NLP tasks

n-gram models
Statistical methods  
Probability estimation 
Assist in specific tasks

ELMO!BERT!GPT-1/2
Context-aware representations
Pre-training + fine-tuning
Solve various NLP tasks

GPT-3/4!ChatGPT!Claude
Scaling language models
Prompt based completion
Solve various real-world tasks

General-purpose 
task solver

Specific task 
helper

Task-agnostic 
feature learner

Transferable 
NLP task solver

Figure 2.4: Evolution process of LM. From [99].

examples of hallucinations in LLMs are illustrated in Table 2.1.

Table 2.1: Hallucinations examples. Text highlighted in red indicates hallu-

cinations, while text highlighted in blue denotes user instructions or provided

context that contradicts the LLM hallucination. Table from [41].

Another major issue is that the knowledge of LLMs is limited to the data

used for training them, meaning they lack awareness of events and information

that surfaced after the training period. For instance, they are unable to access

real-time data.
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2.2.3 The Application of LLMs in Drug Discovery

The advent of LLMs such as GPT [75] and BERT [21] has increased inter-

est in leveraging LLMs in the biomedical field, including applications in drug

discovery [12, 100]. However, the above issues must be addressed with cau-

tion, particularly in sensitive fields such as healthcare, where an error may

have severe consequences. To mitigate these risks, significant efforts have

been made to adapt LLMs for the biomedical domain, in order to improve ac-

curacy in medical question-answering and minimize hallucinations. In [15],

the authors refined a series of LLMs based on the Llama-2 architecture to en-

hance medical knowledge retrieval, reasoning, and question-answering abil-

ities. The results show that refined models outperform their corresponding

base models across all medical benchmark datasets. To enhance the relia-

bility of LLMs in specialized domains, a widely adopted technique is Fine-

Tuning. This process involves taking a pre-trained LLM and further training it

on a smaller, domain-specific dataset. This approach transfers the pre-trained

model’s learned patterns and features to new tasks, improving performance on

specific tasks while reducing data and computational requirements [71]. Fine-

Tuning helps reduce hallucinations. However, like pre-trained LLMs, a fine-

tuned model lacks real-time knowledge. Keeping the model updated would

require frequent fine-tuning, which is impractical, particularly for LLMs with

tens of billions of parameters, due to the high computational costs. Moreover,

fine-tuning may lead to catastrophic forgetting, a phenomenon that refers to

the LLM’s tendency to lose previously acquired knowledge when learning

new data [40]. In addition, if the target domain for fine-tuning is too distant

from the original pre-training domain, the fine-tuning process can lead to a

substantial increase in hallucinations. An alternative approach to reduce hal-

lucinations is RAG [28], a solution that incorporates knowledge from exter-

nal databases. RAG consists of retrieving relevant documents from external
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knowledge databases through semantic similarity and providing these docu-

ments as context for the LLM to enhance the accuracy of the answer. The

documents contain relevant information for answering the user query or ques-

tion and help in reducing the possibility of producing incorrect answers. RAG

is more efficient than fine-tuning, since in order to integrate new information

it is only necessary to update the knowledge database, avoiding model training

[7]. However, like fine-tuning, RAG lacks real-time knowledge, as it requires

updating the database. A promising approach could be to combine RAG and

LLM Agents. Agents employ tools that allow them to perform more complex

actions, such as accessing online resources and querying different databases

via API [89], as well as processing and plotting data. The target dossier is

a crucial step in the drug discovery process, so it should contain reliable and

accurate information. Moreover, it must remain up-to-date with the latest ad-

vancements and discoveries, tracking newly published biomedical literature

and database updates. A RAG and Agent-based approach could be very ef-

fective and beneficial in this application.



Chapter 3

Materials and Methods

3.1 Data

As presented in Section 2.1, the target dossier is an important instrument in

drug discovery for assessing the suitability of a target in a specific disease. To

create it, several pieces of information to support the decision-making process

of the experts are needed. To gain a complete view of the target and allow the

LLM to engage in high-level reasoning, it is necessary to collect data from

various sources. One of the most important sources in biomedical sciences is

PubMed Central (PMC) [26], a free full-text archive of biomedical and life

sciences literature. PMC is used in this work as a data source to support the

RAG process, enabling the LLM to generate paragraphs about specific char-

acteristics of a target. Another crucial data source is UniProt [18], a compre-

hensive resource of protein sequences that contains information such as the

target function, subcellular location, and sequence. Fundamental details can

also be found in The Human Protein Atlas [5], an open-access resource con-

taining protein data such as RNA and cell-line expression in both healthy and

cancerous tissues. All the data sources and tools used in this work are listed

in Table 3.1.
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Source Description

UniProt A database offering high-quality and freely accessible

resource for protein sequence.

Human Protein

Atlas

A database focused on genome-wide analysis of human

proteins.

DrugBank An online database containing information on drugs

and drug targets.

Open Targets A database that uses human genetics and genomics data

for drug target identification and prioritization.

RCSB PDB An online database containing information on proteins.

cBioPortal A resource for the exploration of cancer genomics

datasets containing information such as mutation

frequencies.

TCGA Survival A website that provides analysis of mutations, copy

number alterations, etc., associated with cancer

outcome in TCGA.

OGEE An online database containing information about gene

essentiality.

STRING A database about protein-protein interactions including

both direct and indirect associations.

SIGNOR A repository of annotated causal relationships among

human proteins, chemicals of biological relevance,

stimuli and phenotypes.

ESMO The European Society for Medical Oncology provides

oncology information, including guidelines on cancer.

PubChem A database that contains information about molecules

such as chemical structures, chemical and physical

properties and biological activities.

Gene An NCBI database that integrates gene information

from different species.

PubMed An NCBI database comprising millions of citations and

abstracts about biomedical literature.

PMC An NCBI archive of biomedical and life sciences

journal literature.

SNP An NCBI databases containing information about

single nucleotide mutations.

BLAST A tool that finds the similarity between biological

sequences.

DeepTMHMM A Deep Learning Model for classification and

prediction of Transmembrane Topology.

GSEApy A Python package to perform Gene Set Enrichment

Analysis.

Table 3.1: List of the sources with a short description. Table adapted from

[27].



3.2 Model Fine-Tuning 18

The sources are also specified in the target dossier PDF and PowerPoint

generated by the agent. This allows the reader to trace back the sources that

have been used to obtain information about a specific section or slide. The

references are specified at the end of each section in the PDF and in the speaker

notes of each PowerPoint slide. For example, the paragraphs generated with

RAG include notes specifying the IDs of the PMC articles used as context for

generating them. When the information is collected from online databases, a

direct link to the information is added (when available).

3.2 Model Fine-Tuning

Fine-tuning is the process of taking a pre-trained model and further training

it on a smaller and domain-specific dataset [71]. LLMs are trained on exten-

sive datasets with unsupervised learning objectives to learn general language

representations. However, their performance can be suboptimal when applied

to specific tasks, such as question answering, as they lack necessary domain

knowledge. Fine-tuning offers an effective solution to improve their perfor-

mance in these tasks [96]. However, LLMs are trained on huge datasets and

learn billions of parameters. Performing full fine-tuning, which updates the

weights of all layers, would require extensive time and resources. Instead,

Parameter-Efficient Fine-Tuning (PEFT) consists of freezing some of the lay-

ers of the pre-trained model and fine-tuning only some additional parameters,

which are tailored to the specific task [45]. The PEFT method used in this

work is Low Rank Adaptation (LoRA). LoRA enables the training of some

dense layers in a neural network indirectly. Instead of directly optimizing all

the weights of dense layers, LoRA adjusts their rank decomposition matrices,

which represent changes in the dense layers during fine-tuning [38]. Addi-

tionally, these LoRA low-rank matrices can be combined to enable cross-task

generalization, supporting multi-task learning, domain adaptation, and con-

tinual learning [63]. Moreover, big models are usually quantized to reduce
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the computational and memory requirements. Quantization consists of trans-

forming the model’s weights and activations from higher-precision formats,

such as 16-bit floating-point numbers, to lower-precision formats, such as 8-

bit or 4-bit, to preserve the model’s performance while substantially reducing

its memory footprint [56]. Figure 3.1 illustrates an example of quantization,

where a 32-bit floating-point vector is converted into int8 fixed-point numbers.

The values are mapped to the integer range [−128, 127], preserving relative

differences in magnitude.

Figure 3.1: Example of the quantization of a 32-bit floating-point vector into

int8 fixed-point numbers. From [51].

In this work, the LLM (Mistral-7B) was quantized to 8-bit and fine-tuned

using LoRA. The scopewas to enhanceMistral-7B’s knowledge for answering

pancreatic cancer-related questions. The fine-tuning dataset was composed

of abstracts of biomedical publications about pancreatic cancer coming from

PMC. Each observation in the dataset consisted of a pair of instructions and an

answer. We generated different possible tasks to train the model (in agreement

with the instruction-tuning approach). The aim was to create tasks that respect

the biological domain and the instruction-tuning format (question followed by

the answer). There were different possible instruction-answer options. The in-

struction could involve summarizing the abstract of an article, and in this case,

the answer would be its title (the rationale is that the title of the article could be

seen as a summary of its abstract). Another option for the instruction could be
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to extract the keywords from an abstract. The answer would be the keywords

of the article that can be found in the article’s metadata. Moreover, in order to

prevent overfitting to our data, 20% of the fine-tuning dataset consisted of a

random sample from Gath_baize [29], a dataset that contains instructions and

answers about a wide range of topics. In addition, adding general knowledge

prevents the model from catastrophic forgetting and too narrow adaptation

to the domain knowledge. In total, the fine-tuning dataset contained 12,000

observations. The fine-tuning process of Mistral-7B required approximately

eight hours.

However, as anticipated in Section 2.2, fine-tuning remains computation-

ally expensive and is impractical in applications that require frequent infor-

mation updates. Moreover, it may lead to catastrophic forgetting.

3.3 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) is an innovative approach designed

to overcome some of LLMs’ limitations. It integrates two key components:

a retrieval mechanism, which retrieves relevant documents from an external

knowledge base, and a generative model (the LLM), which processes this re-

trieved information to produce a reliable and coherent response [31]. The

RAG system consists of three main steps: indexing, retrieval, and generation

[28]. These three phases are clearly illustrated in Figure 3.2.

Indexing starts with the extraction of data, which is possibly converted

into textual data. Due to the limited context of LLMs (the maximum number

of tokens they can handle), text is divided into chunks. There are different

chunking techniques [98, 101]. The fixed-size strategy splits text into equal

segments but often neglects the inherent structure of the text. On the other

hand, the recursive strategy divides the text incrementally, using separators

like punctuation marks, to better adapt to the content. Another approach is

the contextual strategy, which segments the text based on its meaning and
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Figure 3.2: RAG: indexing, retrieval and generation. From [28].

structure to capture the meaning in context (semantic chunking). There are

also more advanced techniques, such as Parent Document Retrieval [58], that

use small chunks for retrieval while returning larger blocks for the genera-

tion phase. This is because embeddings of smaller texts are more effective

at capturing their semantic meaning, while longer texts help retain contextual

meaning and long dependencies during generation. An example of fixed-size

and semantic chunking is illustrated in Figure 3.3. The text in the example is

extracted from [68].

Fixed-size chunking divides the text into equal portions, truncating words

and overlapping sentences. On the other hand, semantic chunking divides the

text into structurally and semantically coherent segments. For this reason, the

latter technique is preferred and implemented in this work.

Chunks are then transformed into feature vectors using an embeddingmodel

and stored in a vector database. During the retrieval phase, the user query is

transformed into a vector using the same embedding model from the previ-

ous step. The system computes semantic similarity scores between the query

vector and the stored embeddings in the vector database. The top K chunks
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Pancreatic cancer is a highly fatal disease with
a 5-year survival rate of approximately 10% in
the USA, and it is becoming an increasingly
common cause of cancer mortality. Risk
factors for developing pancreatic cancer
include family history, obesity, type 2 diabetes,
and tobacco use. Patients typically present
with advanced disease due to lack of or vague
symptoms when the cancer is still localised. 

Pancreatic cancer is a highly fatal disease with
a 5-year survival rate of approximately 10% in
the USA, and it is becoming an increasi

Fixed-size
chunking

ngly common cause of cancer mortality. Risk
factors for developing pancreatic cancer
include family history, obesity, type 2 diabetes,

and tobacco use. Patients typically present
with advanced disease due to lack of or vague
symptoms when the cancer is still localised. 

Pancreatic cancer is a highly fatal disease with
a 5-year survival rate of approximately 10% in
the USA, and it is becoming an increasingly
common cause of cancer mortality. Risk
factors for developing pancreatic cancer
include family history, obesity, type 2 diabetes,
and tobacco use. Patients typically present
with advanced disease due to lack of or vague
symptoms when the cancer is still localised. 

Pancreatic cancer is a highly fatal disease with
a 5-year survival rate of approximately 10% in
the USA, and it is becoming an increasingly
common cause of cancer mortality.

Semantic
chunking

Risk factors for developing pancreatic cancer
include family history, obesity, type 2 diabetes,
and tobacco use.

Patients typically present with advanced
disease due to lack of or vague symptoms
when the cancer is still localised. 

Figure 3.3: Example of fixed-size and semantic chunking.

with the highest similarity score are retrieved and passed to the LLM as con-

text, which then produces a response (generation phase). This approach is

known as Naive RAG. The first simple RAG system that we implemented is

illustrated in Figure 3.4.

This naive RAG system is very simple, relying only on semantic search

and an embedding model. In medical applications, there are many specific

terms to refer to different pathologies, therapies, and biological concepts. For

this reason, during the RAG search phase, instead of considering only seman-

tic similarity, it could be worth performing a similarity search based on both

semantic meaning and keywords (hybrid search). An information retrieval al-

gorithm that implements keyword search is BM25, using the term frequency-

inverse document frequency (TF-IDF). It computes the similarity score of a

chunk based on how frequently a query term appears in that chunk, account-

ing for the document’s length and the frequency of the term in the corpus
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Embedding Model

...

Semantic search

Context
+

Query

LLMOutput

Chunked documents

Vector Database

User query

Context

Documents

Figure 3.4: Illustration of the Naive RAG System.

[31]. Moreover, in the Naive RAG system, the embedding model must com-

pute the similarity score between the query and each chunk. Due to the usual

high number of chunks, the embedding model should be relatively small for

efficiency reasons, and its limited capacity could result in a non-optimal re-

trieval process. An alternative is to integrate a Reranking model [74] in the

system. In this new approach, the embedding model retrieves a higher num-

ber of chunks which are then reranked by the reranking model. The reranker

is usually a pre-trained transformer that has been fine-tuned for this specific

task. This allows the reranking model to be bigger and, therefore, more per-

formant than the embedding model: it only needs to process the chunks that

have already been retrieved. The top K most similar chunks are selected by
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the reranker and passed as context to the LLM. This new advanced RAG sys-

tem that integrates a hybrid search and a reranking step is illustrated in Figure

3.5.

Embedding Model

...

Hybrid search

Context
+

Query

LLMOutput

Chunked documents

Vector Database

User query

Documents

Context

1 2 3 4

Reranking
Model

1 2 3 4

Figure 3.5: Illustration of the Advanced RAG System.

In this work, we used LangChain Semantic Chunker [57] in order to split

documents based on semantic similarity. The chunks were then embedded us-

ing bge-base-en [42], a relatively small open-source embedding model, and

theywere stored in a temporary collection usingChroma [16]Vector Database.

For the reranking process, mxbai-rerank-large [43] was employed.

3.4 LLM Agents

Large Language Models have shown emergent reasoning abilities, enabling

them to perform multi-step reasoning to generate answers. However, this

“chain-of-thought” reasoning is a static black box, relying solely on the inter-

nal representations of the model to generate thoughts. Since it is not grounded
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in the external world, its ability to reason reactively or incorporate new knowl-

edge is limited [97]. To overcome these limitations, it is possible to employ

LLMs as the brain part of the system and integrate them with additional com-

ponents. The agent architecture is illustrated in Figure 3.6.

Ø Demographic Information

Ø Personality Information

Ø Social Information

Ø Handcrafting Method

Ø LLM-Generation Method

Ø Dataset Alignment Method

Profile ActionMemory Planning

Ø Task Completion
Ø Communication

Ø Memory Reading
Ø Memory Writing
Ø Memory Reflection

Ø Unified Memory
Ø Hybrid Memory

Ø Languages
Ø Embeddings 

Ø Environment Feedback
Ø Human Feedback
Ø Model Feedback

Ø Single-path Reasoning
Ø Multi-path Reasoning
Ø External Planner

Generation Strategy

Profile Contents

Memory Operation

Memory Structure

Memory Formats

Planning w/o Feedback

Planning w/ Feedback

Action Target

Action Production

Action Impact
Ø Tools

Ø Databases
Ø Lists

Ø Self-Knowledge

Ø Exploration

Ø Memory Recollection

Ø Environments
Ø Internal States

Action Space
Ø Plan Following

Ø New Actions

Figure 3.6: Agent architecture. From [89].

The essential components of an agent are [91]:

• Planning: At the center of planning, there is reasoning. Through rea-

soning, agents can decompose a complex problem into multiple man-

ageable sub-tasks, developing suitable plans for each one. As tasks

progress, agents can use introspection (the ability of the agent to eval-

uate its past actions) to adjust their plans, making sure they align better

with real-world circumstances and improving the final output [93].

• Memory: The memory module allows the agent to store information

perceived from the environment and use the stored memories to facili-

tate and guide future actions. The memory module can help the agent to

collect experiences, self-evolve, and act in a more consistent, rational,

and effective way [89]. Memory mechanisms allow the agent to recall

and implement previous strategies effectively when dealing with com-

plex problems. Moreover, these memory mechanisms allow the agent

to adapt to new environments by recalling past experiences [93].
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• Tools utilization: The utilization of external tools allows the agent to

expand its action space and perform tasks with higher quality [93]. The

Agent can invoke other models or use tools to handle specific sub-

tasks, particularly in areas where LLMs face challenges, such as calcu-

lations and real-time data retrieval [90]. Tools allow the agent to access

databases through APIs, run Python code, search for information on the

internet, and perform multiple other tasks. The prompt of the LLM in-

cludes the list of available tools, along with guidelines on when to use

each one.

Our Agent utilizes a prompt template based on ReAct [97] to incorporate ex-

plicit steps to guide the LLM’s thinking process. It includes three steps:

• Thought: the agent reasons about what to do.

• Action: the tool that the agent decides to use.

• Observation: the information retrieved using the tool.

Once the Agent arrives at the final answer to the user’s query, it returns the

response, and the process ends. Figure 3.7 illustrates an example of the Agent

workflow.

Due to their ability to perform complex actions and retrieve accurate infor-

mation, LLM Agents can be employed for the creation of an automatic target

dossier. In this work, we implemented a system that, given a target gene and a

type of cancer, creates a target dossier as a PDF and a PowerPoint presentation

with all the required information to assess the effectiveness of the target in that

specific cancer. In order to create the target dossier, the Agent has different

tools at its disposal that allow it to:

• Produce texts and summaries about the target and cancer characteristics

using the advanced RAG system presented in Section 3.3,

• Plot protein and molecule structures, as well as retrieve relevant images

from different databases,
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"Can you visualize the structure of myoglobin and aspirin?"

Thought: "I need to visualize the structures of myoglobin and aspirin. 
I will use the protein_structure tool for myoglobin and the molecular_structure tool for aspirin."

Action: action: "protein_structure" - action_input: "myoglobin"

Observation:

Thought: "I have displayed the structure of myoglobin.
Now I will visualize the structure of aspirin."

Action: action: "molecular_structure" - action_input: "aspirin"

Observation:

Thought: "I have displayed the structure of aspririn.
Now I have all the information I needed."

Final Answer: "The structures of myoglobin and aspirin have been displayed"

User

LLM Agent

Figure 3.7: Example of the Agent workflow.

• Run Python code to connect with APIs, retrieve and process data, and

produce plots and tables,

• Perform a final analysis in order to determine the suitability of a target

given the retrieved information.

Once the Agent has collected all the necessary information, the target dossier

PDF is generated, followed by a PowerPoint presentation, which is a sum-

marized version of the PDF. As stated in Section 3.1, each section and slide
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contains notes on the original data sources. The system is summarized in Fig-

ure 3.8.

User Query

LLM Agent

Tools

Target Dossier

LLM

RAG

Python code Retrieve images

Figure 3.8: Diagram of the LLM Agent system. From [27].

3.5 Technical Requirements

The main platforms and applications employed in this work are HuggingFace

[92], LangChain [13], and the Chroma database[16]. HuggingFace is a plat-

form that provides the Transformers library, focused on supporting Transformer-

based architectures and simplifying the distribution of open-source pre-trained
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models [92]. HuggingFace was used for loading and deploying all the models,

including LLMs, embedding models, and rerankers. LangChain is a frame-

work for developing applications powered by LLMs. LangChain played a

central role in this work since it provides many libraries that were used for dif-

ferent crucial implementations. Indeed, LangChain libraries were used to cre-

ate document chunks, support the RAG process, and develop the LLM Agent

together with its tools. Moreover, it enables an easy integration with Hug-

gingFace. Finally, Chroma was chosen as the vector database to store the

document embeddings and perform retrieval in the RAG process. Chroma is

easily integrable with LangChain, making it an excellent choice. This work

was developed in Jupyter Notebook, using version 3.11.5 of Python. The fine-

tuning andmodel deployments were carried out using eight Tesla V100GPUs,

each with 32 gigabytes of memory.
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Objectives

The main objective of this thesis is to develop an AI system to support and

accelerate the drug discovery and development process, using methods such

as Agents and RAG to reduce hallucinations and improve the quality and per-

formance of the system. For these reasons, we focused on a deadly cancer as

PDAC, which is in dire need of new therapeutic options. Moreover, we fo-

cused on the target dossier where the use of RAG and LLM agents can be ben-

eficial. To achieve this, multiple subgoals need to be defined and addressed.

They include:

• Selecting an open-source LLM to serve as brain component of the agent,

focusing the evaluation on the quality of the generated output and gen-

eration speed.

• Implementing and evaluating techniques to enhance the LLM’s knowl-

edge of drug discovery and reduce hallucinations, specifically fine-tuning

and RAG, through examples.

• Implementing an Agent system that incorporates the use of external

tools and RAG to generate an automatic target dossier, with the aim

of supporting the target validation step in the drug discovery process.
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Results

5.1 LLM comparison

The HuggingFace Transformers library supports the distribution and utiliza-

tion of various pre-trained models in a centralized model hub [92]. It contains

many open-source models that can be deployed and adapted to specific tasks.

Besides the quality of the answers generated by LLMs, a crucial aspect is their

efficiency, the speed at which tokens are generated. When creating an auto-

matic target dossier, the LLM needs to generate long texts, which can result in

thousands of tokens. For this reason, the LLM must be relatively fast. We fo-

cused our model choice on open-source models with a permissive license, and

with a middle range for parameters. Several LLMs were compared, including

Mistral-7B-instruct [46], Qwen-1.5-7B-Chat [6], Orca 13B [67], Gemma-7B-

instruct [84], Mixtral-8x7B-instruct [47]. These models range in size from 7

billion to 13 billion parameters, except Mixtral-8x7B-instruct, which has 46.7

billion parameters. The LLMs were evaluated on a predefined set of pancre-

atic cancer-related questions, considering both the quality of their responses

and their efficiency in token generation. All the models produced good an-

swers, with Mixtral-8x7B-instruct demonstrating exceptional performance in

this task. However, it was very slow, generating an average of 0.73 tokens per

second on our GPU setup. To create a 500-token paragraph, Mixtral would
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require approximately 11-12 minutes, leading to an excessively high compu-

tational time when generating multiple sections. An optimal balance between

effectiveness and efficiency was achieved by Mistral-7B-instruct [46], which

was approximately 13 times faster than Mixtral. For this reason, Mistral-7B-

Instruct was chosen as the base LLM for this work. Figure 5.1 shows the

average tokens generation per second of all the LLMs under evaluation.

Figure 5.1: LLM efficiency comparison. From [27].

5.2 Evaluation of Fine-Tuning in Drug Discovery

Mistral-7B was fine-tuned using the setup described in Section 3.2 to en-

hance its ability to answer questions related to pancreatic cancer. The base

Mistral-7B and its fine-tuned version were evaluated and compared on pan-

creatic cancer-related questions. Table 5.1 shows the answers of the models

to the question “What is PDAC?”, which is the acronym of Pancreatic Ductal

Adenocarcinoma.

The response generated by Mistral-7B is entirely incorrect as it fails to
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What is PDAC?

Mistral-7B PDAC stands for the Professional Development and

Accreditation Council. It is a national accrediting

agency in Canada that evaluates and accredits

post-secondary education programs in business and

technology. The agency’s primary goal is to ensure

that the education provided in these programs meets

the needs of the industry and prepares students for

success in their chosen fields...

Fine-Tuned

Mistral-7B

PDAC stands for Pancreatic Ductal

Adenocarcinoma, which is a type of cancer that

develops in the cells of the pancreas. It is the most

common type of pancreatic cancer and is

characterized by rapid growth and spread to other

parts of the body. Symptoms may include abdominal

pain, weight loss, and jaundice. Treatment options

include surgery, chemotherapy, and radiation

therapy.

Table 5.1: Answers of the base and fine-tuned Mistral-7B when asked “What

is PDAC?”.

recognize that pancreatic cancer is the subject of the question. Instead, it mis-

takenly interprets PDAC as referring to the Professional Development and

Accreditation Council, which is unrelated to the context of the question. In

contrast, the fine-tuned model provides a correct yet brief answer. Table 5.2

shows another example. When prompted with the question “Is RIPK2 a good

therapeutic target for PDAC?”, base Mistral-7B’s answer is not very specific

and lacks important information. In particular, it mentions that further re-

search is needed to assess the safety and effectiveness of RIPK2 without ad-

dressing potential challenges. In contrast, the fine-tuned model generates a

brief introduction about RIPK2, explains its implications in pancreatic can-

cer, and, most importantly, addresses the challenges in targeting it, delivering

a comprehensive overview of its potential and limitations.

Despite the good results achieved through fine-tuning, the process remains

computationally expensive and impractical in a domain like drug discovery,

which requires up-to-date information.
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Is RIPK2 a good therapeutic target for PDAC?

Mistral-7B RIPK2 is a promising therapeutic target for

pancreatic adenocarcinoma (PDAC). It is involved in

the regulation of cell death and inflammation, and

has been shown to be overexpressed in PDAC.

Inhibition of RIPK2 has been shown to reduce tumor

growth and improve survival in preclinical models of

PDAC. However, further research is needed to

determine the safety and efficacy of RIPK2

inhibitors in clinical trials.

Fine-Tuned

Mistral-7B
RIPK2 is a key regulator of the innate immune

response and has been implicated in the pathogenesis

of pancreatic adenocarcinoma (PDAC). RIPK2 is

overexpressed in PDAC and is associated with poor

prognosis. Therefore, targeting RIPK2 may be a

promising therapeutic strategy for PDAC. However,

there are several challenges to consider when

targeting RIPK2 in PDAC. First, RIPK2 is a key

regulator of the innate immune response and has a

role in the development of cancer. Therefore,

targeting RIPK2 may have unintended consequences

on the immune system. Second, RIPK2 is also

involved in other pathways beyond the innate

immune response, such as cell death and autophagy.

Therefore, targeting RIPK2 may have off-target

effects on other cellular processes. In conclusion,

while RIPK2 is a promising therapeutic target for

PDAC, further research is needed to determine the

safety and efficacy of targeting this protein in this

disease.

Table 5.2: Answers of the base and fine-tuned Mistral-7B when asked “Is

RIPK2 a good therapeutic target for PDAC?”.

5.3 Evaluation of RAG in Drug Discovery

In Section 3.3, two RAG models were presented: Naive RAG and Advanced

RAG, which integrates a hybrid search and a reranker. In this case as well,

the models’ responses to the same set of questions were compared. Table

5.3 shows the answers to an example question. Base (Naive) RAG is un-

able to answer the question because the documents retrieved by the system
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Are there any specific biomarkers for diagnosing of PDAC, and

if so, which ones?

Base RAG The context provides information about the current

clinical standard for diagnosing pancreatic ductal

adenocarcinoma (PDAC) and the need for less invasive

biomarkers that can be used in combination with current

strategies. However, it does not provide a specific

answer to the question about which biomarkers are

used for diagnosing PDAC.

New RAG The context provides information about the current

FDA-approved biomarker for PDAC diagnosis,

which is Carbohydrate antigen 19-9 (CA19-9).

However, the context also mentions that CA19-9 has

limitations, such as variable specificity and the inability

to express CA19-9 at all in some individuals. The

context also mentions that traditional imaging methods

have limited value for early diagnosis of PDAC

.Therefore, the context suggests that there is a need for

more effective biomarkers with higher sensitivity and

specificity for early stage PDAC.

The context also mentions that metabolomics is a

promising tool for discovering valuable diagnostic

biomarkers and understanding carcinogenesis. Several

studies have demonstrated the potential use of

metabolites as diagnostic biomarkers for PDAC.

The context also provides information about a

specific biomarker panel that has been identified as

potentially useful for diagnosing PDAC. This panel

includes proline, creatine, and palmitic acid. The

panel showed significant diagnostic performance in the

training and validation sets, with AUC values of 0.854

and 0.865, respectively, in the comparison of PDAC

and Ctr (control).

In summary, the context suggests that there are specific

biomarkers for diagnosing PDAC, including proline,

creatine, and palmitic acid, but more research is needed

to validate these biomarkers and develop a reliable

diagnostic panel for early stage PDAC.

Table 5.3: Comparison of the answers of Base and New RAG when asked

“Are there any specific biomarkers for diagnosing of PDAC, and if so, which

ones?”.
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through semantic search do not contain any relevant information. This is due

to the utilization of only a small embedding model, which is not very effec-

tive. Moreover, the lack of keyword searchmay be a limitation, as the question

contains specific terms like biomarkers and PDAC, which could help in docu-

ment retrieval. This limitation is overcome by Advanced (New) RAG, which

is capable of identifying different biomarkers, such as Carbohydrate antigen

19-9 (CA 19-9), which, as stated in [72], is a commonly used biomarker for

the diagnosis of pancreatic cancer. Another example is shown in Table 5.4.

Also, in this case, Base RAG cannot answer the question based on the re-

trieved documents. This again highlights the importance of a reranking model

and keyword search, especially in the biomedical field, which contains many

technical terms (like RIPK2 in this query). Advanced RAG is able to find

much information about the potential of RIPK2 as a target for pancreatic can-

cer, as supported by several studies [78, 48].

To assess the effectiveness of our RAG system, three different models

were compared: Mistral-7Bwithout RAG,Mistral-7BwithNaive (Base) RAG,

and Mistral-7B with Advanced (New) RAG. However, assessing the answers

generated by LLMs is not trivial. The evaluation was performed by GPT-4,

which was specifically prompted to assign a score to each question based on

five different metrics: faithfulness, relevance, quality, completeness, and cor-

rectness [27]. The results of the evaluation are summarized in the box plots

shown in Figure 5.2. The results show that Mistral-7B with New RAG outper-

forms the other models. Themedian score is equal to 5 out of 5 for eachmetric,

and 75% of the average scores are equal to or greater than 4, with the lowest

achieved score being 3. On the other hand, the median score of the other two

models is equal to 4, and they achieve a score of 1 out of 5 on some questions.

Overall, Mistral-7B with Base RAG outperforms Mistral-7B without RAG,

as 75% of its average scores are equal to or above 4, compared to the model

without RAG, which has a value of the first quartile (Q1) equal to 3. Table

5.5 shows the answers of the three models to a sample question. Similarly
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Is RIPK2 a good therapeutic target for PDAC?

Base RAG The provided context does not mention RIPK2 as a

potential therapeutic target for PDAC.

It discusses CDK1 expression as a potential

stratification factor for patient therapy, and the use of

CDK7 inhibition in combination with standard

chemotherapy as a possible novel treatment regimen for

overcoming PDAC chemoresistance.

New RAG Based on the provided context, RIPK2 has been

found to function as a crucial pro-tumor gene in

pancreatic cancer (PC) and can become a potential

intervention target in PC treatment.

The dysregulated RIPK2 expression in PC affects the

expression of other members of RIPKs, especially

RIPK1 and RIPK3, which can induce necroptosis to

drive pancreatic cancer progression. RIPK2 can also

activate the autophagy and suppress reactive oxygen

species (ROS) production, which is intimately linked to

the kinase activity of RIPK2 itself. RIPK2

self-assembled endosome or RIPosome provides a

signal of being eaten in the process of autophagy, which

may serve as a scavenger to eliminate ROS in cells.

Increased ROS production can trigger pancreatic cancer

cell apoptosis. RIPK2 knockout can suppress the

formation of autophagosomes, elevate ROS level and

promote PC cell apoptosis. RIPK2 interacts with

PRKCI, which also has a higher expression in PC

tissues than the normal, and a higher PRKCI expression

predicts a poorer survival of PC patients. PRKCI

activates NF-κB and JNK signaling to promote PC cell

growth, migration and invasion. RIPK2 enhances the

immune score, stromal score and ESTIMATE score in

PC. RIPK2 promotes a series of immune cell

infiltration, especially in KIRC, TGCT and THCA.

RIPK2 significantly enhanced the immune score,

stromal score and ESTIMATE score in PAAD, PCPG

and KICH. These findings suggest that RIPK2 is closely

related to tumor immune infiltration.

Table 5.4: Comparison of the answers of Base and New RAG when asked “Is

RIPK2 a good therapeutic target for PDAC?”.

to the question in Table 5.1, Mistral-7B is unable to recognize PDAC as the

subject of the question. Instead, it discusses the Pacific Data and Automation
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Figure 5.2: Box plots summarizing the scores assigned by GPT-4 to the an-

swers of the models. The median score for each metric is represented by the

horizontal red line. From [27].

Corporation escape mechanisms, mistakenly interpreting the acronym PDAC

in relation to our application. The answers of the two RAGmodels are similar,

as both identify two main escape mechanisms: the use of Gasdermin E (GS-

DME) [62] to form a barrier that prevents chymotrypsin-mediated destruction,

and the sequestration of Major Histocompatibility Complex class I (MHC-I)

[9] inside PDAC cells through autophagy. Additionally, the Advanced RAG

system identifies a third evasion factor, tumor-derived HLA-G [37].
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Can you describe the PDAC escape mechanisms?

Without

RAG

The PDAC (Pacific Data and Automation Corporation)

escape mechanisms are a set of security features designed to

prevent unauthorized access to the data stored on a PDAC

device.

These mechanisms include:...

Base

RAG

The provided context discusses two possible escape

mechanisms for Pancreatic ductal adenocarcinoma

(PDAC):

1. Gasdermin E (GSDME) and mucin expression: PDAC cells

use GSDME to form a barrier that prevents

chymotrypsin-mediated destruction. GSDME facilitates the

expression of mucin 1 and mucin 13, which form this barrier.

Inhibition or knockout of mucin 1 or mucin 13 abrogates

orthotopic PDAC growth in NOD-SCID mice.

2. Autophagy and Major Histocompatibility Complex class I

(MHC-I) sequestration: Autophagy was recently described as

a tumor-intrinsic immune escape process during tumor

development by sequestering MHC-I inside PDAC cells. This

discovery implies that autophagy may be a potential target for

limiting immune escape in patients and improving

immunotherapy efficiency.

It is important to note that the context does not provide enough

information to fully understand the PDAC escape mechanisms

or their implications for treatment. Further research and

studies are needed to fully understand and address these

mechanisms.

New

RAG

Based on the provided documents, it appears that

pancreatic ductal adenocarcinoma (PDAC) has several

escape mechanisms that allow it to evade the immune system

and survive in the pancreatic microenvironment. One such

mechanism involves the use of gasdermin E (GSDME) to form

a barrier that prevents chymotrypsin-mediated destruction.

GSDME facilitates the expression of mucin 1 and mucin 13,

which form this barrier. Inhibition or knockout of mucin 1 or

mucin 13 abrogates orthotopic PDAC growth in NOD-SCID

mice. Another mechanism involves the sequestration of Major

Histocompatibility Complex class I (MHC-I) inside PDAC

cells through autophagy. This process supports tumor

progression and may be a potential therapeutic target.

Additionally, tumor-derived HLA-G may indicate the

mechanism of immune escape and impaired PDAC clinical

outcome, especially in early-stage patients. Overall,

understanding these escape mechanisms is crucial for the

development of more effective immunotherapies for PDAC.

Table 5.5: Comparison of the answers of the three models when asked “Can

you describe the PDAC escape mechanisms?” Table adapted from [27].
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5.4 Automatic Target Dossier

The LLM Agent, which generates an automatic target dossier as described

in Section 3.4 and Figure 3.8, was tested using different genes in the con-

text of pancreatic cancer. To demonstrate the system’s capabilities, the au-

tomatic target dossier for KRAS (KRAS was chosen for this test as it is a

well-known target in PDAC) is presented. The target dossier is generated as

two different files: a PDF document and a PowerPoint presentation. Both files

contain the utilized data sources and the date on which the dossier was pro-

duced. Some PDF pages and PowerPoint slides are shown below. The com-

plete PDF and PowerPoint presentation are available here: https://github.

com/Oncodesign-Precision-Medicine/Automatic-Target-Dossier.

5.4.1 PDF

Figure 5.3 shows the table of contents of the target dossier PDF. It is divided

into four different sections. The first section provides various information

about the target such as its expression, the mutations present in cancer patients

and healthy individuals, its essentiality, interactions, and role in pancreatic

cancer tumor progression. The second section is focused on the disease of in-

terest, pancreatic cancer, in this case. It presents different information which

includes a description of the disease, some statistics, and the ESMO guide-

lines to help decide the treatment for a patient with cancer. The third section

is about existing cancer therapies or drugs that act on the target of interest.

Finally, the last section contains a SWOT (Strengths, Weaknesses, Opportu-

nities, Threats) analysis and a conclusion to evaluate whether the target could

be a good candidate for pancreatic cancer treatment. Figure 5.4 shows the

target protein expression under wild-type conditions, i.e., the form in which

it is found in nature. The data on expression in different human organs are

retrieved by the Agent by connecting to the Human Protein Atlas database.

After the extraction, the data are plotted in Python to visualize expression as
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Figure 5.3: Table of contents of the automatic target dossier PDF. From [27].

colored human body images. In particular, the first image highlights in red the

human organs in which the target is highly expressed in both male and female

individuals. On the other hand, the second image shows the expression levels

in each organ. The darker the red highlighting an organ, the higher the tar-

get expression level. It is possible to notice that KRAS is highly expressed in

the digestive system, suggesting its relevance in pancreatic cancer. The page

contains indications about the meaning of the colors to help the reader inter-

pret the images. However, the data source is not visible, as it is provided on
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the following page at the end of the target expression subsection. Figure 5.5
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Figure 5.4: Target protein expression in human organs. From [27].

contains information about the role of the target in physiology and tumor pro-

gression, presented in two different paragraphs. The texts are generated using

the advanced RAG system explained in Section 3.3, with one RAG for each

subsection. The contexts gathered during the two retrieval processes consist of

chunks from PMC articles. The generated paragraphs provide comprehensive

and well-explained descriptions to help experts gain insights into the role of



5.4 Automatic Target Dossier 43

the target in physiology and tumor progression. In case of doubt or to double-

check the information, the source used is indicated below the paragraphs. It

points to the references page, which contains a list with the IDs of the PMC

articles that were used as context for generation.
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Figure 5.5: Target role in physiology and tumor progression. From [27].

5.4.2 PowerPoint Presentation

After the generation of the PDF, a PowerPoint presentation is automatically

created. The presentation can be seen as a summarized version of the PDF,
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designed to present the information clearly and concisely. Moreover, the pre-

sentation is easily editable, allowing for the correction of possible incorrect

or incomplete information. Figure 5.6 illustrates the slide containing some

characteristics of the target, namely the similarity between the target human

protein sequence and that of some animals, as well as the function of the pro-

tein. The sequence similarity is very important because it provides indications

of which organisms a drug could be tested on, i.e., organisms that have a pro-

tein sequence similar to the human one. The creation of this slide involves

different processes to extract and organize the information, involving the use

of APIs and external tools. First, the agent connects to the UniProt API and

searches for information about the target protein sequence. A separate search

is performed for each organism’s sequence. After the extraction of the pro-

tein sequences, the similarity between the human and animal sequences is cal-

culated using BLAST (Basic Local Alignment Search Tool). The output of

BLAST, along with the target protein function extracted from UniProt, is then

organized into a table for better visualization. The sources are listed at the bot-

tom left of the slide. The speaker notes contain a link pointing to the UniProt

page of the target. Figure 5.7 provides insights into the subcellular location of

Target characteristics

Target characteristics
Similarity with monkeys 97.01%
Similarity with mice 98.94%
Similarity with rabbits 98.94%
Similarity with dogs 98.94%
Similarity with Guinea pigs 100.0%
Protein function Ras proteins regulate cell proliferation by 

binding GDP/GTP and inducing TSG 
silencing in CRC cells through ZNF304.

Source: UniProt and BLAST

Figure 5.6: Target characteristics, including sequence similarity with animals

and protein function. From [27].
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the target. The Agent extracts the images of cell lines from the Human Protein

Atlas, adds the name of the corresponding cell line to the bottom right corner

of each picture, and concatenates the images horizontally. A legend indicating

the meaning of the colors is added. The target is represented in green, while

blue and red represent the nucleus and microtubules, respectively. Moreover,

the main location of the target (cytosol in the case of KRAS) and the antigen

used for the analysis are specified. The speaker notes on the slide contain a

direct link to the web page from which the data was retrieved.

Subcellular location

➢ Localized to the cytosol.
➢ Antigen: HPA072761

Source: Human Protein Atlas

Nucleus
Microtubules

KRAS

Figure 5.7: Subcellular location of the target. From [27].

Figure 5.8 provides details about the target mutations in patients with the

cancer of interest and the general population. This information is crucial be-

cause if the mutation rate in cancer patients is much higher than in healthy in-

dividuals, the target is very likely correlated with the disease. To collect data

on mutations, the agent connects to cBioPortal and retrieves the frequency and

location of mutations in cancer patients. Data on mutations in the general pop-

ulation are obtained from the National Center for Biotechnology Information

(NCBI) SNP database. The mutation frequencies and locations are organized

into a table in the PDF. However, tables can be very long and need to be sum-

marized in the PowerPoint presentation. This is achieved by the LLM, which
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is specifically prompted to generate a summary of themutations table, which is

converted into text. Besides the summary, a lollipop chart is plotted in Python

in order to provide a clear visual representation of the frequency and location

of mutations in cancer patients. The plot also includes the target domains. The

findings in this slide support the involvement of KRAS in pancreatic cancer.

Indeed, the KRASmutation frequency is very high, with mutations at location

12 occurring inmore than 86% of cancer patients. In contrast, mutations at this

position in the general population are very rare, with a percentage frequency

ranging between 0.0007% and 0.0014%.

Mutations frequency in pancreatic cancer

Source: cBioPortal

The KRAS gene in pancreatic cancer 
patients harbors various mutations, 
with the majority occurring at positions 
12 (86.04%) and 61 (5.68%). Specifically, 
at position 12, the most common 
mutations are G12D (37.91%), G12V 
(29.85%), and G12R (15.66%), while at 
position 61, the most frequent 
mutations are Q61H (4.31%) and Q61R 
(1.14%). The least frequent mutations 
were observed at positions 1, 11, 13, 18, 
23, and 146, with percentages ranging 
from 0.11% to 0.91%. In the general 
population, the three most frequent 
mutations, G12D, G12V, and G12R, have 
much lower frequencies (0.0014%-
0.0007%).

Figure 5.8: Target mutations in cancer patients and general population. From

[27].

Another important aspect when evaluating a target is its essentiality (Fig-

ure 5.9). Essential genes are those that are necessary for the survival of an

organism [49]. To collect this information, the Agent accesses the OGEE

database, which contains results from gene essentiality experiments. It uses

Python to generate a stacked bar chart representing the percentage of tested cell

lines in which the target is essential, specifying the reference dataset. More-

over, it generates another bar chart to illustrate gene essentiality in each organ,

adding a small paragraph that lists the organs in which the target is essential
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(using a threshold of 50%).

Gene essentiality

Source: OGEE

➢Organs in which KRAS is essential (KRAS is essential in 
more than 50% of the tested cell lines, Avana 
dataset): pancreas

Figure 5.9: Gene essentiality in human organs. From [27].

An overview of the competitive landscape is presented in two slides, as il-

lustrated in Figure 5.10, which provides insights into existing drugs acting on

the target of interest. In the first slide, the Agent produces a concentric plot to

indicate the current phase of development for existing drugs, using data from

Open Targets. A table with details about the drugs, namely their name, type,

action type, and phase, is placed next to it. The slide contains data only about

drugs that target the gene in a specific disease (pancreatic cancer, in this case).

On the other hand, the target dossier PDF provides information on all existing

drugs acting on the target, considering various types of cancers. There are

only two drugs targeting KRAS for pancreatic cancer, namely Sotorasib and

Adagrasib. However, they are still in development and are currently in phase

1, the stage that focuses on gathering short-term safety and pharmacological

data by administering the drug to a small group of patients [70]. In the sec-

ond slide, the molecular structure of the drugs is displayed, and the reader is

directed to the PDF for more information about the molecules, such as their

description, mechanism of action, and toxicity.
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Known drugs targeting KRAS

Drug Type Action type Phase
SOTORASIB Small 

molecule
Inhibitor 1

ADAGRASIB Small 
molecule

Inhibitor 1

Drugs full list available on the target dossier PDF.Source: Open Targets

Known drugs targeting KRAS

Source: DrugBank and NCBI PubChem Compound

*Molecules information in the PDF.

Figure 5.10: Existing drugs acting on the target. From [27].
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The last slides of the presentation include a SWOT analysis that highlights

the potential strengths, weaknesses, opportunities, and threats of targeting the

gene in the cancer of interest. It is illustrated in Figure 5.11. The analysis is

performed by the LLM through prompt engineering. The model receives a

prompt with very specific instructions on how to create a SWOT analysis, in-

cluding a list of questions that it should answer. Additionally, all the relevant

information generated earlier (target characteristics, mutations, essentiality,

etc.) is added to the prompt. The LLM then follows a specified format to

generate the output analysis. This is the most challenging task, as it requires

high-level reasoning and in-depth knowledge of drug discovery and develop-

ment.
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SWOT analysis

Ø Strengths:

Ø 1. Significant target: KRAS is a frequently 
mutated oncogene in pancreatic cancer, 
making it a significant target for drug 
development.

Ø 2. Solid foundation: The availability of KRAS 
mutation data and the understanding of its 
role in pancreatic cancer progression 
provide a solid foundation for drug 
development efforts.

Ø 3. Central role: KRAS signaling plays a 
central role in pancreatic cancer 
progression, making it an attractive target 
for therapeutic intervention.

Ø Threats:

Ø 1. Complexity: Developing a drug for KRAS 
is a complex and challenging process due 
to the presence of a desmoplastic tumor 
microenvironment and the lack of effective 
biomarkers to guide treatment.

Ø 2. Competition: Several companies are 
already working on KRAS-targeted 
therapies, increasing the competition in 
this area.

Ø 3. Mortality rate: The high mortality rate of 
pancreatic cancer and the limited market 
size due to the low survival rate pose 
significant threats to drug development 
efforts.

SWOT analysis

Ø Weaknesses:

Ø 1. Current standard: The modest beneficial 
outcome of gemcitabine, the current 
standard of care, necessitates the 
exploration of combination therapies and 
alternative treatment options.

Ø 2. Complexity: The complex nature of 
pancreatic cancer and the presence of a 
desmoplastic tumor microenvironment 
increase the risk of drug development 
efforts.

Ø 3. Lack of understanding: The absence of a 
clear understanding of the mechanisms 
underlying KRAS-driven tumor progression 
poses challenges in developing effective 
KRAS-targeted therapies.

Ø Opportunities:

Ø 1. Precision medicine: Utilizing precision 
medicine, such as BRCA mutations, MSI-
H/dMMR, and NTRK fusions, can make 
drug development efforts more efficient by 
focusing on specific patient populations.

Ø 2. Therapeutic areas: The potential 
therapeutic area segments, such as 
combination therapies and 
immunotherapy, offer opportunities for 
expanding the scope of KRAS-targeted drug 
development.

Ø 3. Advancements: Advancements in 
technology, such as CRISPR-Cas9 gene 
editing and RNA interference, offer 
opportunities for developing novel KRAS-
targeted therapies.

Figure 5.11: SWOT analysis for the target in pancreatic cancer. From [27].



Chapter 6

Discussion

6.1 Conclusions

In this thesis, we developed an LLM-based Agent system to support the tar-

get identification and validation step in the drug discovery process, focusing

on pancreatic cancer due to its limited therapeutic options and low survival

rates. The brain component of the Agent is the LLM, which should exhibit

high performance and efficiency, ensuring accurately generated outputs and

rapid response times. Among the tested models, Mistral-7B offered the op-

timal trade-off between performance and efficiency, generating high-quality

answers in a short amount of time. However, LLMs are trained on massive

amounts of general data and may lack in-depth knowledge in specialized do-

mains, such as drug discovery or the biomedical field. This could lead to

hallucinations, i.e., the generation of factually incorrect outputs, highlight-

ing the need for adaptation techniques. Our results confirm the need for spe-

cialized models for drug discovery. To this end, Mistral-7B was fine-tuned

using abstracts from the pancreatic cancer biomedical literature to augment

its domain-specific knowledge, with a particular emphasis on pancreatic can-

cer research. The fine-tuned Mistral-7B was evaluated on a set of questions

and showed improved knowledge related to drug discovery with respect to
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its base version. However, fine-tuning presents different challenges and limi-

tations, including catastrophic forgetting and the need for high computational

resources. In biomedical domains, where new discoveries are frequent and up-

to-date information is crucial, fine-tuning becomes impractical. A more effi-

cient adaptation technique is RAG, which requires the maintenance of a vector

database to store documents and embeddings that can be easily updated with

new knowledge. Two RAG systems were developed and compared. Naive

RAG relies solely on semantic search, whereas our advanced RAG system in-

tegrates hybrid search (semantic and keyword search) along with a reranking

model to ensure that the most relevant documents are ranked highest. Their

comparison shows that the retrieval improvements in the advanced RAG pro-

cess dramatically increase the quality of the responses. Finally, an LLM-based

Agent system was implemented, integrating advanced RAG and the use of ex-

ternal tools to access databases and run Python code. The Agent generates an

automatic target dossier, which contains all the relevant information to assess

the fitness of a gene as a potential target for pancreatic cancer. This system can

be crucial, as manually creating a target dossier for each gene requires weeks

of work. It would accelerate the drug discovery process, which is of particu-

lar importance in highly lethal cancers, such as pancreatic cancer, where new

treatment alternatives are urgently needed.

6.2 Perspectives

While the Agent system presented in this thesis can significantly help in sup-

porting the drug discovery process, there are several opportunities to improve

and extend the system with additional tools and functionalities.

In this thesis, we opted for a relatively small LLM, specifically Mistral-

7B. Despite its efficiency, the model presents some limitations, in particular

in complex reasoning tasks. A larger model, especially one designed for ad-

vanced reasoning, could lead to more accurate results, particularly beneficial
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for tasks such as SWOT analysis which require more critical evaluations. A

promising approach to overcoming this limitation is Chain-of-Thought fine-

tuning. This method enhances the reasoning capabilities of smaller LMs by

fine-tuning them on datasets that contain CoT rationales. This improves their

ability to tackle complex reasoning tasks, particularly by enhancing their zero-

shot generalization performance [54].

The Agent system can generate an automatic target dossier for each gene

but is currently specialized only in pancreatic cancer. A natural extension

would be to generalize it to other types of tumors, such as lung and breast

cancers, which are responsible for many cancer-related deaths. The target

dossier is a valuable tool also for other diseases. Therefore, our system can

be adapted for other disease areas such immunitary, neurodegenerative, and

so on. Especially for rare diseases, having all information at a glance will be

highly beneficial, and an extended version of our work can be critical.

Moreover, the number of tools that the Agent utilizes could be expanded,

allowing it to connect to manymore databases, as well as other models. For in-

stance, the Agent could connect to AlphaFold [50], an AI system developed by

DeepMind to predict the 3D structures of proteins. In particular, the introduc-

tion of AlphaFold 3 [1] has the potential to be highly beneficial for drug dis-

covery. Indeed, it can predict the structures of protein- molecule complexes,

facilitating the identification and design of new molecules that could lead to

successful new therapies [20]. Another valuable integration could involve in-

corporating the model presented in [12], which predicts the pathogenicity of

genetic variants, to understand which mutations might be deleterious and pri-

oritize specific targets.

The emergence of multimodal machine learning [59], a research field fo-

cused on developing models capable of integrating multiple modalities such

as text, image, and audio, has created new opportunities for advancements

in drug discovery. These models have shown the advantages of combining

structured and unstructured knowledge in different tasks, including predicting
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drug–target and drug–drug interactions [61]. Moreover, multimodal machine

learning can lead to more accurate molecular property prediction thanks to the

combination of three different modalities of information: SMILES-encoded

vectors, ECFP fingerprints, and molecular graphs [60]. Furthermore, these

models can help in predicting protein-ligand binding affinity by leveraging a

Transformer encoder to extract sequence features from both the protein and

its binding pocket while integrating graph isomorphism networks to capture

ligand-specific features [87]. The integration of these models could expand

the Agent’s application in drug discovery beyond target validation, extending

its use to lead generation, the process of identifying a compound that could

have an effective action against a specific target.

Finally, the Agent could be developed into an application, serving as an

automated tool for biologists. This would involve creating both a front-end

and back-end to ensure the system is functional for real-world use.

In recent years, AI has shown its potential for application in the medical

field. It has facilitated a deeper understanding of disease mechanisms and

has sped up patient management through data-driven techniques, which have

led to predictive modeling and personalized medicine approaches [35]. New

advancements in AI have the potential to revolutionize healthcare, improving

patients’ quality of health. In this line, our work is a helpful tool to speed up

the research of new therapies and, therefore, extend the therapeutic landscape

for a patient.
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Abstract

The advancement of artificial intelligence algorithms has expanded their application to several fields such as the biomedical domain.
Artificial intelligence systems, including Large Language Models (LLMs), can be particularly advantageous in drug discovery,
which is a very long and expensive process. However, LLMs by themselves lack in-depth knowledge about specific domains and
can generate factually incorrect information. Moreover, they are not able to perform more complex actions that imply the usage of
external tools. Our work is focused on these two issues. Firstly, we show how the implementation of an advanced RAG system can
help the LLM to generate more accurate answers to drug-discovery-related questions. The results show that the answers generated
by the LLM with the RAG system surpass in quality the answers produced by the model without RAG. Secondly, we show how to
create an automatic target dossier using LLMs and incorporating them with external tools that they can use to execute more intricate
tasks to gather data such as accessing databases and executing code. The result is a production-ready target dossier containing the
acquired information summarized into a PDF and a PowerPoint presentation.

Keywords: LLM Agents, Automatic Target Dossier, LLMs in Biology, Drug Discovery

1. Introduction

Drug discovery is an expensive, lengthy, and high-risk pro-
cess. The process can cost up to $ 1-2 billion and takes an av-
erage of 10-15 years [19]. The failure rate of a drug candidate
in clinical trials reaches 90 % (with a higher rate if preclinical
stages are also considered). Among the main causes that can
be identified are: lack of clinical efficacy, toxicity, and poor
pharmacokinetic and pharmacodynamic properties [9, 8, 5]. In
recent years, the development of new artificial intelligence al-
gorithms has been extended to various fields, including biomed-
ical science. The large availability of available data means that
the pharmaceutical sector can be a perfect playground for AI
[10, 17]. The development of these algorithms promises to
revolutionize drug discovery and ameliorate the process from
a target to a drug on the market. Drug discovery is a com-
plex, multi-step process; AI looks promising in most steps [4,
1, 18]. At the same time, a cautionary approach is required
because the capabilities of an AI model depend heavily on the
data with which it is fed. For these promises to be fulfilled,
AI approaches must be rigorous and based on quality data [30].
Large Language Models (LLMs) have become the main direc-
tion of artificial intelligence in recent years and have shown
remarkable generalist skills. LLMs have also shown promising
capabilities for different scientific tasks and also in the biomed-
ical field [54, 25]. There has been considerable effort to adapt
these models to the needs of the medical and at the same time
pharmaceutical fields [11, 50]. One of the main problems with
the use of LLMs in the pharmaceutical field (and more broadly
in the biomedical field) is the generation of hallucinations by
models [32]. LLMs can generate outputs that are inaccurate or

that contain factually incorrect information. At the same time,
they can generate extrinsic hallucinations (claims that cannot
be verified) such as quotes that cannot be verified. Another
problem that affects their use is that these models are generalist
by nature and are not often adapted to the domain of interest
[34]. In addition, the architecture of LLMs (transformer deriva-
tive) does not easily and not expensively allow ingesting new
knowledge (as well as making it difficult to correct previously
acquired erroneous knowledge ) [29, 27]. The first step in the
target discovery process is generally target identification and
selection. Once a target has been identified, the target dossier is
one of the most widely used tools for evaluating the goodness-
of-fit of a target [6, 20]. The target dossier comprehensively
presents all the information that experts need in the decision-
making process. A target dossier is an essential tool that must
present information about the target, its impact on the disease,
pros and cons, therapeutic opportunities, and potential competi-
tors. The dossier preparation process requires extensive time in
researching and analyzing different sources. Automating it will
save considerable time and help in standardization. For appro-
priate decision-making, the target dossier must contain correct,
up-to-date, and verifiable information. For this reason, it is not
possible today to use a classical LLM alone for this task.

In this technical report, we show how it is possible to use an
LLM to create an automatic target dossier. Our system that em-
ploys both Agents and retrieval augmented generation (RAG)
allows us to overcome the limitations highlighted above. The
system, given a target (gene name) and a pathology of interest,
automatically generates a target dossier (a summary PDF doc-
ument) and a PowerPoint presentation. The system retrieves



up-to-date information from various databases and allows veri-
fiability of the information by annotating the sources used. Our
main contributions are:

• we show how a modified pipeline of RAG dramatically in-
creases the quality of response in the biomedical domain.

• we show how using an LLM is possible to create an
automatic target dossier. The system accesses article
databases, external databases, and tools, executing code
and plot autonomously. In addition, it produces a high-
quality summary PDF and a ready-to-use PowerPoint pre-
sentation.

A complete example of the generated target dossier
(both PDF and PowerPoint) is present at https:

//github.com/Oncodesign-Precision-Medicine/

Automatic-Target-Dossier

2. Related Work

2.1. LLM hallucinations

Hallucinations are considered among the most important
challenges for LLM deployment in biomedical or drug dis-
covery [54]. Hallucinations can occur when models produce
texts that include details, facts, or claims that are either fic-
tional or misleading [32]. In addition, LLMs are capable to-
day of producing content that sounds plausible and based on
scientific patterns they learned during training. In some cases,
it has been seen that an LLM is capable of generating pseudo-
citations that can further confuse the reader. Hallucinations are
a real problem, especially for those disciplines where a pattern
must necessarily be factually correct (e.g. healthcare) [54]. It
is not easy to be able to correct this behavior because there are
different types of hallucinations each with probably a different
cause [41]. For this reason, several approaches have been de-
veloped to mitigate hallucinations in the outputs produced by
LLMs [51]. Some techniques are based on the idea of provid-
ing the model with the necessary context to be able to answer
a question. Retrieval-augmented generation (RAG) allows the
LLM to access authoritative, external information, especially
when the answer is not present in the parametric memory of
the model [46, 43]. In contrast to other methods such as fine-
tuning the computational cost is much lower and it is possible
to integrate new information easily [40]. However, naive RAG
often has limitations (pre-retrieval, retrieval, and post-retrieval
issues) [43] so numerous add-ons have evolved [43]. At the
same time, finding an effective strategy to create an advanced
pipeline of RAGs is an expensive and time-consuming process.
One of the sore points of RAG is especially to make sure that all
relevant documents are found. In the biomedical field, the exact
answer can be directly found in specialized databases. For this
in recent times, Agents have been used where complex reason-
ing is required, thus allowing LLMs to control different tools
and query different databases via API [53]. In this work, we
use both RAG and Agents to interact with databases.

2.2. Domain adaptation and continuous learning with LLMs

LLMs acquire most of their knowledge during pretraining.
Once pretraining is over, it is difficult to ingest new knowledge
within the model. This can be done by fine-tuning. However,
this is an expensive and inefficient process that would have to be
repeated every time the model update is to be conducted [37].
In addition, LLM struggles to integrate this new knowledge.
Recent studies show that fine-tuning increases the model’s ten-
dency to hallucinate [44]. Second, the LLM tends to forget the
old knowledge, and there arises at the same time the discrep-
ancy between the remaining old knowledge and the new knowl-
edge with the risk of bias and unintended association [27]. RAG
and Agents present a possible solution to these problems. It is
not necessary to conduct parameter editing of the LLM but the
new knowledge needed is found in real-time and provided in
context to the model. Moreover, in several databases the infor-
mation is rigorously cataloged and annotated, allowing filtering
of irrelevant information.

2.3. LLM for target dossier

To the best of our knowledge, there is currently no system
that creates an automatic target dossier. LLMs have been pro-
posed for various uses in drug discovery pipelines. For exam-
ple for molecule optimization, drug-drug interaction, molecular
property predictions [38, 28, 52]. On the other hand, in several
biomedical tasks, generalist LLMs perform poorly [47]. There
are, however, studies that show that it is effective to extend the
capabilities of models with the use of tools. ToolLLM and Hug-
gingGPT are examples where an LLM is connected with differ-
ent APIs or can call other models to perform different tasks [33,
31]. GeneGPT connects an LLM with external APIs from the
National Center for Biotechnology Information (NCBI) [45].
The system shows superior capabilities in GeneTuring bench-
mark vs. other generalist or trained models on biomedical tasks.
MedAgents is another framework that shows the superior capa-
bilities of an agent-based system for medical tasks [35]. The
capabilities of these systems show the goodness of an approach
no longer based only on one LLM but with the integration of
other tools.

3. Materials and methods

3.1. Data

A target dossier includes a large variety of information, span-
ning from insights about a specific target gene to details about
the disease, and includes sections in which reasoning is cru-
cial. To this end, several data coming from different sources
are needed, in order to have a comprehensive view of the target
and allow the LLM to perform high-level reasoning. The data
sources and tools employed in this work are listed in Table 1.
The specific sources used are specified in both the target dossier
PDF and PowerPoint as well. We used reference citations to al-
low us to track back which sources are used for each section
and slide. For example, when the LLM is using the RAG, the
identifiers (Pubmed ID) of the article in the context are noted
in the document. In the PowerPoint in the notes are stored the
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Figure 1: Comparison of LLM efficiency. The height of the bars indicates the
average number of generated tokens per second. The value is indicated on the
right of the bar.

details of each data used. As an example, when the structure
of a protein is used, we note the accession link allowing us to
retrieve which information the LLM used.

3.2. Models

We decided to use in this work open-source LLMs. Many
open-source models differ in architecture and number of pa-
rameters [39, 48]. Thus, different LLMs were compared
(Mistral-7B-instruct, Qwen-1.5-7B-Chat, Orca 13B, Gemma-
7B-instruct, Mistral-8x7B-instruct), focusing on the quality of
their answers to a specific set of questions and their efficiency
in token generation. Figure 1 shows the results of this anal-
ysis. All the assessed models produced good answers, with
Mixtral-8x7B-Instruct excelling in this task. However, being
a big model, it was slower compared to the other ones. An opti-
mal trade-off between effectiveness and efficiency was Mistral-
7B-Instruct [21] which was picked and used in our work.

LLMs contain a substantial amount of information but highly
rely on the data that has been used to train them [49]. To expand
their internal knowledge by integrating retrieval-based mem-
ories, it is possible to leverage Retrieval-Augmented Genera-
tion (RAG) [13]. RAG is particularly useful in domain-specific
applications, especially in the biomedical domain as described
above.

Our RAG framework incorporates reranking and Hybrid
Search methodologies, with the embedding model fine-tuned
to enhance search effectiveness. Specifically, we utilized bge-
base-en [36] for this purpose. The model was fine-tuned using
a synthetic dataset about pancreatic cancer generated by Qwen
7B [22]. Regarding the reranking model, mxbai-rerank-large
was selected. Both these models are relatively small, making
them suitable to execute RAG dynamically.

The information that is used for RAG and is provided as
context for Mistral 7B is gathered from two different sources:
PubMed abstracts and PMC articles. The abstracts are short,

therefore they do not need any preprocessing and can be di-
rectly embedded. On the other hand, articles are too long. Thus
they are split into chunks using LangChain SemanticChunker
before the embedding process. The abstracts and articles are
embedded using our fine-tuned bge-base-en model and stored
in a temporary Chroma DB collection. A similarity search be-
tween the query and the embeddings is performed, resulting in
a list of documents that are reranked and presented to the LLM
as the context to generate a text or answer a question. After the
termination of the process, the documents and embeddings in
the temporary collection are deleted. Besides the content of the
abstracts and articles, their PMIDs are extracted too, to refer-
ence the specific documents that have been used by the LLM
to generate a response. We evaluated our RAG strategy using
GPT4 as evaluator [24]. In this work, we compared the answers
to 22 drug discovery questions that were written by experts in
the domain. We compared three different possibilities: LLM
alone (Mistral 7B), naive RAG, and our RAG pipeline.

3.3. System Description
The process begins with the user inputting a query that is re-

lated to the generation of a target dossier. Both the target and
pathology of interest need to be specified. In this work, we fo-
cused on pancreatic cancer, which is a deadly disease that needs
therapeutic options [26]. The query is directed to the Agent
which has different tools at its disposal. These tools allow the
Agent to connect to multiple databases and extract the relevant
information. They enable the Agent to:

• Execute Python code to connect to the APIs, process data,
and generate plots,

• Retrieve images from the databases,

• Generate texts and summaries using the LLM integrated
with the RAG system described previously.

Once all the information has been retrieved, it is aggregated
and compiled into the target dossier, producing both a PDF and
a PowerPoint presentation. The PDF is generated before the
PowerPoint since the latter consists of an encapsulated version
of the PDF. The system is summarized in Figure 2.

3.4. Technical Requirements
This work revolves around three main plat-

forms/applications: HuggingFace [12], LangChain [16]
and Chroma DB [55]. HuggingFace is the platform that we
used for model loading and usage since it provides a wide
variety of pre-trained models that can be easily accessed.
LangChain is the framework that we employed to develop
the Agent starting from the LLM and for the creation of the
tools. An advantage of using LangChain is that it allows an
easy integration with HuggingFace. Finally, as a database to
implement our RAG system, we used Chroma DB. It allows the
storage of the document embeddings and their retrieval during
the RAG process. These tools were used through version
3.11.5 of Python. The system was run on 8 Tesla V100 GPUs,
each with 32GB of memory.
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Source Description Web Address

UniProt A database offers high-quality and freely accessible resource for
protein sequence and functional information. uniprot.org

Human Protein Atlas A database focused on genome-wide analysis of human proteins proteinatlas.org

DrugBank An online database containing information on drugs and drug
targets. go.drugbank.com

Open Targets A database that uses human genetics and genomics data for drug
target identification and prioritization. opentargets.org

RCSB PDB An online database containing information on drugs and drug
targets. rcsb.org

cBioPortal A resource for the exploration of cancer genomics datasets
containing information such as mutation frequencies. cbioportal.org

TCGA Survival A website that provides analysis of mutations, copy number
alterations, etc. Associated with cancer outcome in TCGA. tcga-survival.com

OGEE An online database containing information about gene essentiality. v3.ogee.info

STRING A database about protein-protein interactions including both direct
and indirect associations. string-db.org

SIGNOR A repository of annotated causal relationships among human
proteins, chemicals of biological relevance, stimuli and phenotypes signor.uniroma2.it

ESMO The European Society for Medical Oncology provides oncology
information, including guidelines on cancer. esmo.org

PubChem
A database that contains information about molecules such as
chemical structures, chemical and physical properties and
biological activities.

pubchem.ncbi.nlm.nih.gov

Gene An NCBI database that integrates gene information from different
species. ncbi.nlm.nih.gov/gene

PubMed An NCBI database comprises millions of citations and abstracts
about biomedical literature. pubmed.ncbi.nlm.nih.gov

PMC An NCBI archive of biomedical and life sciences journal literature. ncbi.nlm.nih.gov/pmc
BLAST A tool that finds the similarity between biological sequences blast.ncbi.nlm.nih.gov/Blast.cgi

DeepTMHMM A Deep Learning Model for classification and prediction of
Transmembrane Topology dtu.biolib.com/DeepTMHMM

GSEApy A Python package to perform Gene Set Enrichment Analysis github.com/zqfang/GSEApy

Table 1: List of the sources containing a short description and the web address to access them.

4. Results

4.1. RAG adaptation to drug discovery domain

To evaluate the effectiveness of RAG, the answers of three
different models were compared: the LLM without RAG, the
LLM with the base RAG, and the LLM with our RAG system
illustrated in Section 3.2. The answers were evaluated by GPT-
4 which was specifically prompted to assign a score to each
answer according to 4 metrics (faithfulness, relevance, quality,
completeness, and correctness). The scores are summarized in
the Box Plots of Figure 3. The model with the complete RAG
system outperforms the other two models. 75% of its scores
are equal to or greater than 4 for every metric. Moreover, its
median is 5 and is greater than the median of the other two
models which is equal to 4.

One question and the models answers are illustrated in Ta-
ble 2.

The answer of the model without RAG is entirely incorrect
since it fails to understand that pancreatic ductal adenocarci-
noma (PDAC) is the subject of the question. Instead, it dis-

cusses the Pacific Data and Automation Corporation which has
the same acronym PDAC.

4.2. Automatic Target Dossier
In this study, we focused on pancreatic cancer, one of the can-

cers with the most dismal prognosis. To date, pancreatic cancer
presents few therapeutic opportunities and is in dire need of new
drugs for treatment [14]. To show the system’s capabilities, we
chose KRAS, one of the genes with the greatest impact on the
disease and of interest as a potential target [3, 2, 15, 7]. How-
ever, the system is generalizable and can therefore be used with
any gene and any pathology. Choosing another gene and an-
other pathology, the system will search for the necessary infor-
mation. The output of the system is the target dossier, generated
as two different files: a PDF and a PowerPoint presentation.
The table of contents of the PDF is illustrated in Figure 4. It is
divided into four main sections. The first one (containing most
of the information) comprises details about the target of interest
such as its characteristics, expression, and mutations. The sec-
ond section is related to the cancer for which we are evaluating

4



Question: “Can you describe the PDAC escape mechanisms?”

Without RAG

The PDAC (Pacific Data and Automation Corporation) escape mechanisms are a set of security features
designed to prevent unauthorized access to the data stored on a PDAC device. These mechanisms include:
1. Encryption: All data stored on a PDAC device is encrypted using a proprietary algorithm. This ensures
that even if an attacker gains access to the device, they will not be able to read the data without the
encryption key.
2. Authentication: Before accessing any data on a PDAC device, the user must first authenticate
themselves using a valid username and password. This ensures that only authorized users can access the
data.
3. Access Control: Access to data on a PDAC device is controlled using a set of permissions. Each user is
assigned a set of permissions that determine what data they can access and what actions they can perform
on that data.
4. Audit Trail: All actions performed on a PDAC device are logged in an audit trail. This allows
administrators to track who accessed the data and when, and to detect any unauthorized access attempts.
5. Physical Security: PDAC devices are designed to be physically secure, with features such as
tamper-evident seals and secure locking mechanisms to prevent unauthorized access to the device.
Overall, the PDAC escape mechanisms are designed to provide a high level of security for the data stored
on a PDAC device, and to prevent unauthorized access to that data.

Base RAG

The provided context discusses two possible escape mechanisms for Pancreatic ductal adenocarcinoma
(PDAC):
1. Gasdermin E (GSDME) and mucin expression: PDAC cells use GSDME to form a barrier that prevents
chymotrypsin-mediated destruction. GSDME facilitates the expression of mucin 1 and mucin 13, which
form this barrier. Inhibition or knockout of mucin 1 or mucin 13 abrogates orthotopic PDAC growth in
NOD-SCID mice.
2. Autophagy and Major Histocompatibility Complex class I (MHC-I) sequestration: Autophagy was
recently described as a tumor-intrinsic immune escape process during tumor development by sequestering
MHC-I inside PDAC cells. This discovery implies that autophagy may be a potential target for limiting
immune escape in patients and improving immunotherapy efficiency.
It is important to note that the context does not provide enough information to fully understand the PDAC
escape mechanisms or their implications for treatment. Further research and studies are needed to fully
understand and address these mechanisms.

New RAG

Based on the provided documents, it appears that pancreatic ductal adenocarcinoma (PDAC) has several
escape mechanisms that allow it to evade the immune system and survive in the pancreatic
microenvironment. One such mechanism involves the use of gasdermin E (GSDME) to form a barrier that
prevents chymotrypsin-mediated destruction. GSDME facilitates the expression of mucin 1 and mucin 13,
which form this barrier. Inhibition or knockout of mucin 1 or mucin 13 abrogates orthotopic PDAC growth
in NOD-SCID mice. Another mechanism involves the sequestration of Major Histocompatibility Complex
class I (MHC-I) inside PDAC cells through autophagy. This process supports tumor progression and may
be a potential therapeutic target. Additionally, tumor-derived HLA-G may indicate the mechanism of
immune escape and impaired PDAC clinical outcome, especially in early-stage patients. Overall,
understanding these escape mechanisms is crucial for the development of more effective immunotherapies
for PDAC.

Table 2: Table showing the answers of the three models to the question ”Can you describe the PDAC escape mechanisms?”

the impact of the target and is mainly generated by the LLM
using the RAG mechanism. The following section focuses on
the existing drugs targeting the gene, with particular attention
to the drugs used to treat the cancer of interest. This section
is significant from the perspective of competition. Finally, the
last section encompasses the conclusions and is the most chal-
lenging one for the LLM. Indeed, the SWOT analysis requires
high-level reasoning and understanding as well as a highly spe-
cific prompt. After the generation of the PDF, the information
is summarized and compiled into a PowerPoint presentation.

Both PDF and presentation contain references, specifying

which database/tool was used to obtain the information. When
available, specific web addresses or IDs are provided, in order
to facilitate the reader to access the data and the documents that
have been used by the LLM for generation. In the PDF, these
specific links can be found at the end in the ’Sources’ section.
Conversely, in the PowerPoint presentation, they are added in
the speaker notes.

Three example slides are illustrated below. Figure 5 shows a
table with some characteristics of the target: the similarity be-
tween the human protein sequence and the sequences of some
animals as well as the protein function. The Agent retrieves
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User Query

LLM Agent

Tools

Target Dossier

LLM

RAG

Python code Retrieve images

Figure 2: Diagram of the system. The user query is sent to the Agent that uses
the available tools to extract information from the databases and generate texts.
The information is collected into the target dossier PDF and PowerPoint which
are generated and saved.

the sequences from the UniProt API and they are written in
FASTA files, a format which is suitable to represent protein
sequences. These files are sent to BLAST which returns the
alignment match which can be used to compute the similarity.
The protein function is extracted from UniProt and is summa-
rized by the LLM in case it exceeds a certain length. This slide
shows the system’s ability to retrieve information using exter-
nal tools, summarize texts using the LLM, and display the data
in a table to facilitate readability.

Figure 6 provides insights about the subcellular location of
the target in the Human Protein Atlas database. The three pic-
tures illustrating the location are extracted one by one and the
names of the represented cell lines are added in the lower-right
corner of each image. The antibody used for the analysis is re-
ported in the slide and a legend explaining the colours in the im-
age is added. The image allows the reader to have a clear view
of the subcellular location of the target (production-ready). This
slide shows the ability of the system to recover images from
databases and websites.

Figure 7 illustrates the Agent’s ability to execute Python
code. Firstly, the list of the one hundred genes with the
highest interaction scores with the target is gathered from the
STRING database. Afterward, pathway enrichment analysis is
performed using the Python library GSEApy (based on the pre-
vious obtained list from STRING). Both gene lists and gene sets
need to be specified. In our case, as gene sets, we considered
Gene Ontology Biological Process 2023, Molecular Function
2023, and Cellular Component 2023 as well as KEGG 2021
Human. Lastly, the results of the pathway enrichment analysis
are plotted and the graph is added to the target dossier.

5. Conclusion

Our work demonstrates two key findings. Firstly, we showed
how the employment of RAG can help increase the quality of
the answers in drug discovery applications. Indeed, the LLM
without RAG lacks knowledge about the biomedical domain
and can generate off-topic answers that are unrelated to the sub-
ject of the question. Moreover, the exploitation of a more ad-
vanced RAG system determines an additional enhancement in
the quality of the responses, due to an improved retrieval pro-
cess. Regarding the generation of the automatic target dossier,
we showed how it is possible to integrate the LLM with some
tools that allow it to perform more complex actions such as ac-
cessing databases, executing Python code, and compiling all
the retrieved information into a PDF and a PowerPoint presen-
tation. We show a system capable of creating production-ready
documents and presentations and can have a valuable impact on
the work in drug discovery.

Toxicity and lack of clinical efficacy are among the main
causes of molecule failure. A detailed target dossier eviscerates
the role of a gene in pathology, and potential adversarial effects
helping in predicting these critical causes of failure. Indeed, in
the target dossier, there are sections devoted to both potential
toxicity and the role the gene plays in disease physiology and
pathogenicity, aiding in decision-making. So, our second find-
ing is that an AI model can generate a consistent document and
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Figure 3: Box Plots summarizing LLM answers evaluation performed by GPT-4. The median is represented by the horizontal red line. The plots show the superior
performance of the model with complete RAG.

Figure 4: Table of contents of the PDF target dossier. It is divided into four main
sections: Target information, Disease information, Competitive landscape, and
a final section for the conclusions.

presentation when instructed by experts on where to find the
information. In response to a user’s question, the model auto-
matically generates both the presentation and the PDF. LLMs
are capable of generating text, but this is usually plagued by
hallucinations, incomplete, and incorrect information. Here
we show that an LLM can correct these deficiencies when in-
structed where to find the information (article repository, bio-
logical databases, code to run). The automatic generation of
the target dossier can be seen as the first step of a more com-
plex system. An automatic target dossier is an important step
in standardizing the process. The automatic target dossier can
be a valuable tool in helping different stakeholders in a pharma-
ceutical company, saving time and helping them to keep up to
date quickly. Although the input of domain experts (biologists,
physicians, chemists) in the creation of a target dossier remains
key, this system allows a presentation and report to be generated
automatically. This can be seen as a first step in creating differ-
ent AI assistants that help the experts’ daily work. Different
works show how AI is not meant to replace but to support them
in daily tasks the experts, increasing their productivity and re-
ducing their workload [42, 23]. Another improvement could be
the utilization of a multimodal AI model. We used here an LLM
for the reasoning steps, but our system retrieved and plotted im-
ages. A multimodal model can conduct reasoning by taking into
account additional modalities.
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Figure 5: Slide showing some characteristics of the target formatted as a table. The information is collected using UniProt and BLAST.

Figure 6: Slide showing information about the subcellular location of the target available in the Human Protein Atlas.
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Figure 7: Slide showing the results of the pathway enrichment analysis. The list of genes which interact with the target is retrieved from the STRING database while
the enrichment analysis is performed using the Python package GSEApy.
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ABSTRACT

The classification of genetic variants, particularly Variants of Uncertain Significance (VUS), poses a
significant challenge in clinical genetics and precision medicine. Large Language Models (LLMs)
have emerged as transformative tools in this realm. These models can uncover intricate patterns
and predictive insights that traditional methods might miss, thus enhancing the predictive accuracy
of genetic variant pathogenicity. This study investigates the integration of state-of-the-art LLMs,
including GPN-MSA, ESM1b, and AlphaMissense, which leverage DNA and protein sequence data
alongside structural insights to form a comprehensive analytical framework for variant classification.
Our approach evaluates these integrated models using the well-annotated ProteinGym and ClinVar
datasets, setting new benchmarks in classification performance. The models were rigorously tested on
a set of challenging variants, demonstrating substantial improvements over existing state-of-the-art
tools, especially in handling ambiguous and clinically uncertain variants. The results of this research
underline the efficacy of combining multiple modeling approaches to significantly refine the accuracy
and reliability of genetic variant classification systems. These findings support the deployment of
these advanced computational models in clinical environments, where they can significantly enhance
the diagnostic processes for genetic disorders, ultimately pushing the boundaries of personalized
medicine by offering more detailed and actionable genetic insights.

Keywords Variants of Unknown Significance · Genomics · Deep Learning · Large Language Models

1 Introduction

The emergence of Next Generation Sequencing (NGS) (reviewed in [21]) has transformed the realm of genomics,
enabling the sequencing of millions of DNA fragments. However, the interpretation of the NGS results poses significant
challenges as the vast majority of identified variants are of unknown significance (VUS)[9, 8, 7]. An accurate prediction
of such variants can pave the way to a better understanding of disease mechanisms, enabling personalized medicine and
the discovery of new therapeutic targets.

Over the years, many computational tools and datasets have been developed to help predict the effects of variants.
Early tools like PolyPhen and SIFT used sequence homology and protein structure information to predict the impact of
missense mutations [2, 19]. Other models, such as CADD [14], combine multiple annotations into a single score to
indicate variant pathogenicity.

The promising results of Large Language Models (LLMs) in Natural Language Processing (NLP) tasks have led
to their adaptations in the fields of genomics and proteomics. LLMs are complex models that use the Transformer
architecture[24]. One particular component of the Transformer architecture is self-attention, which enables the model
to weigh the importance of different parts of the input data dynamically. This mechanism allows the models to consider
the entire sequence context, making it particularly effective in handling long-range dependencies and interactions within
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the data. A remarkable example of the high potential of LLMs in proteomics is ESMFold, a protein language model
that can predict protein structures using protein sequences[18].

In variant effect prediction (VEP), exploiting the capabilities of self-attention can be beneficial as it allows the model
to account for not only specific mutations but also the entire genetic background and associated protein sequences,
providing a comprehensive view of the molecular context. LLMs such as GPN-MSA, ESM1b, and Alphamissense have
shown promise in predicting variant pathogenicity. GPN-MSA is a DNA language model trained on MSA (Multiple
Sequence Alignment) of 100 species which leverages evolutionary information in predicting pathogenicity scores for all
possible nucleotide substitutions in the genome[3]. ESM1b is a protein language model that predicts the pathogenicity
for all 20 possible amino acids, without relying on homology and taking into account all protein isoforms[4]. As
for Alphamissense, it is first trained to predict protein structures from the protein sequences and later fine-tuned for
pathogenicity prediction[7]. These models are considered as state of the art in VEP.

We hypothesize that integrating these models may offer significant advantages. By combining their predictions, we can
not only capitalize on their strengths and address their weaknesses but also provide a more comprehensive prediction
leveraging both DNA and protein data. We adopted this integrative approach, using machine learning models for
the combination of the scores, in order to develop a more accurate and comprehensive tool for predicting variant
pathogenicity.

2 Materials & Methods

2.1 Data

In this study, we utilized the ProteinGym dataset[20], a comprehensive resource developed to facilitate the evaluation
of mutation effect predictors. This dataset is divided into two primary benchmarks: substitution benchmark and
indel benchmark. For our analysis, we focused exclusively on the substitution benchmark of the ProteinGym dataset
(accessed on 3/22/24), which includes approximately 2.7 million missense variants characterized across 217 Deep
Mutational Scanning (DMS) assays[11] and encompasses data on 2,525 clinical variants. We examined specifically two
distinct segments within this benchmark: the clinical variants substitutions dataset and the raw substitutions dataset.
The raw substitution dataset is extensive and contains 61 columns. Crucial to our study are the columns indicating
the chromosome and the exact genomic location of each variant, as well as reference and alternative alleles, which
detail the nucleotide changes. Also integral to our analysis are the columns detailing the corresponding protein position
and the amino acid changes. These are linked via the transcript ID, which connects the genomic data to specific
protein transcripts, thereby facilitating cross-references between the genetic and protein data. Moreover, the dataset
includes columns that categorize the clinical significance of each variant, classifying them as either pathogenic or
benign. The clinical substitutions dataset contains the transcript ID to ensure consistent referencing across the datasets.
It records both the position within the protein and the reference and alternate amino acids involved in each substitution.
Additionally, it provides the sequences before and after mutations, along with the DMS_bin_score that classifies each
protein substitution as benign or pathogenic.

GPN-MSA’s HuggingFace repository (accessed on 3/12/24) provides predictions for all possible SNPs in the human
genome. Using the chromosomes and positions of the variants from the raw substitutions dataset, we queried the scores
for all three possible nucleotide substitutions using Tabix[17]. The lower the score of GPN, the more pathogenic the
variant.

We employed the ProteinGym substitution dataset to compute the ESM1b scores, which include reference protein
sequences along with detailed mutation information such as positions and the specific amino acids involved. The
ESM1b code was sourced from its GitHub repository. This model takes protein sequences as input and produces scores
for all 20 possible amino acid substitutions at each position within the sequence, which can lead to extensive output
files and considerable processing times. To streamline this process, we modified the ESM1b code to focus on scoring
only the specified mutation positions from the dataset. This targeted approach significantly reduced both the output file
size and the processing time. The lower the score of ESM1b, the more pathogenic the variant. A Log Likelihood Ratio
(LLR) threshold of -7.5 was used to distinguish between pathogenic and benign variants[4].

For our analysis, we also utilized predictions from AlphaMissense, accessible through the file AlphaMissense-aa-
substitutions.tsv.gz (4/8/2024). This dataset contains predictions for all conceivable single amino acid substitutions
within 20,000 UniProt canonical isoforms, totaling approximately 216 million protein variants. Integrating AlphaMis-
sense predictions posed significant challenges due to discrepancies in protein identifier systems. AlphaMissense uses
UniProt accession numbers, whereas the ProteinGym dataset relies on NCBI’s RefSeq protein IDs. To address this, we
utilized the UniProt ID mapping tool to align the datasets, successfully mapping 2,415 out of the 2,525 proteins from
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ProteinGym. This mapping allowed us to accurately link UniProt accession numbers to the corresponding mutations in
ProteinGym and retrieve the necessary AlphaMissense scores for our analysis.

2.2 Data Processing

Figure 1: Dataset presentation: a. Dataset Samples: This table provides a representative sample of the dataset utilized
for this study, showcasing both observed and potential mutation scores derived from three distinct models: GPN scores,
ESM scores, and AlphaMissense scores. Each entry represents the score assigned by the respective model to various
attributes such as nucleotide changes (A, T, G, C) and amino acid substitutions (e.g., Ala, Cys, Tyr), as well as the
observed scores in columns Alt_score, Prot_Alt_score, and Am_pathogenicity. Nucleotides and Amino Acids with
a score of value 0 correspond to the reference allele or protein. The "DMS_bin_score" column indicates the clinical
classification of the mutation as either "pathogenic" or "benign." b. Dataset Visualization: This plot represents the
distribution of the variants’ observed scores of GPN-MSA as Alt Score on the X-axis and ESM1b as Prot Alt Score
on the Y-axis. Red data points represent the variants classified as pathogenic by DMS_bin_score whereas the black
data points are classified as benign. c. Optimal Threshold for GPN: This ROC curve illustrates the performance of
the GPN model in discriminating between pathogenic and benign genetic variants. The x-axis represents the False
Positive Rate (FPR), and the y-axis represents the True Positive Rate (TPR), across various threshold levels. The orange
line depicts the actual ROC curve, which shows how the TPR and FPR change with different thresholds. The area
under the curve (AUC) is 0.70, indicating the model’s overall ability to distinguish between the classes; a value of
1.0 represents a perfect classifier, and a value of 0.5 represents a random guess. The dashed blue line represents the
line of no discrimination, which serves as a baseline comparison. The optimal threshold for classification is found by
maximizing the difference between TPR and FPR.

This analysis differentiated between two types of scores. Firstly, the observed mutation scores, are calculated for
mutations that are actually present in the dataset and represent clinically observed mutations in genomic or protein
sequences. These scores provide direct insights into the impact of a specific, known mutation for one alternative
nucleotide or amino acid (Fig.1.a columns Alt score, Prot Alt score, and AM pathogenicity). These observed mutations
have an experimental annotation in the DMS_bin_score column. Secondly, the potential mutation scores, which
speculate on the theoretical impact of all conceivable mutations at each position within the genome or protein sequence.
For GPN-MSA, this involves generating four potential scores corresponding to the four possible nucleotide changes at
each genomic position. In the case of ESM1b and AlphaMissense, scores are generated for each of the 20 possible
amino acid substitutions at each position in the protein sequence ((Fig.1.a columns A, T, Ala, Am Ala...). In cases
where the reference and alternative alleles or amino acids are identical, a score of zero is assigned, reflecting no change
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or impact due to the mutation. The potential mutations do not have a pathogenicity classification, except for the one
corresponding to the observed mutation.

The first step of the data processing was merging the GPN-MSA and ESM1b scores using the transcript ID and protein
information from both ProteinGym datasets, thus obtaining a dataset of 59,593 rows. This dataset was used for the
preparation of the training and testing sets for the deep learning models. The splitting was performed in a manner that
keeps the most ambiguous and difficult-to-predict data points in the test set by selecting a threshold for both scores.
After visualizing the distribution (Fig.1), we selected the variants with scores between -5 to -10.

AlphaMissense scores were added later, resulting in a small reduction of the dataset to 49,554 rows due to the proteins
lost during the mapping. A new test set was generated by merging the previous test set with the new dataset containing
the 3 scores. Using the threshold resulted in a test set of 16165 rows and a training set of 33,389 rows with balanced
proportions of 16,588 pathogenic and 16,801 benign variants.

The last step was to assign a threshold for the GPN-MSA scores to enable the comparison between all models. To
find the optimal threshold, one approach is to maximize the difference between True Positive Rate (TPR) and False
Positive Rate (FPR). This is typically done by calculating TPR and FPR for each possible threshold using the Receiver
Operating Characteristic (ROC) curve, and then identifying the point where the difference between TPR and FPR is the
greatest. This index corresponds to the optimal threshold from the evaluated thresholds array. For the GPN-MSA scores,
this method was used to identify a threshold that optimally differentiates between pathogenic and benign variants,
ensuring accurate and clinically relevant comparisons across all models. The threshold found for the GPN-MSA scores
was -7 with an optimal FPR of 0.41 and optimal TPR of 0.759. For the other models, AlphaMissense predictions were
taken directly from its am_class output, which labels variants as either Pathogenic, Benign or Ambiguous. For ESM1b,
variants with a score of -7.5 or below were considered pathogenic as described in the paper[4].

2.3 Model Architectures

Various machine learning models were used for the training, namely XGBoost (XGB)[6], Random Forest (RF)[5],
and Neural Networks. All models were trained using different sets of pathogenicity scores as features and the
DMS_bin_score as the target variable. The ensemble models such as XGB and RF were trained using default
parameters, as the fine-tuning of such models requires using grid search, which demands extensive amounts of time for
limited improvements. As for Neural Networks, several architectures were employed. As the protein and DNA models
provide a different number of scores, we decided to explore both Multi-input Neural Networks that take each score
separately and Single-input Neural Networks that take all of the scores altogether. The architectures and parameters
were explored and the optimal values were selected through a process of trial and error. The architectures and parameters
were systematically optimized through an iterative process of trial and error to determine the optimal configuration.

2.3.1 Single input Neural Networks

The model architecture included a single input layer to handle the scores. This input was passed through a Dense layer
with 64 units and a LeakyReLU activation function. A Dropout layer with a rate of 0.5 followed to prevent overfitting.
The dropout layer was connected to another Dense layer with 128 units and a LeakyReLU activation function. The final
output layer was a single unit Dense layer with a sigmoid activation function for binary classification.

The model was compiled using the Stochastic Gradient Descent (SGD) optimizer with a learning rate of 0.001 and
binary cross-entropy loss function. Training was performed for up to 350 epochs with a batch size of 32. Early Stopping
with a patience of 10 epochs and ReduceLROnPlateau with a factor of 0.2 and threshold of 0.0001 were employed to
prevent overfitting and adjust the learning rate, respectively[1].

2.3.2 Multi-input Neural Networks

The model included three input layers to handle the different scores. Each branch began with a Dense layer of 64 units,
followed by Batch Normalization and ReLU activation. The outputs from these three branches were concatenated into a
single tensor. This concatenated tensor was then passed through two Dense layers with 256 and 128 units, respectively.
Each dense layer was followed by Batch Normalization, ReLU activation, and Dropout with a rate of 0.5 to prevent
overfitting. The final output layer was a single unit Dense layer with a sigmoid activation function, appropriate for
binary classification tasks. The model was compiled using the Stochastic Gradient Descent (SGD) optimizer with a
learning rate of 0.01 and the binary cross-entropy loss function. Training was conducted for up to 350 epochs with a
batch size of 32. To prevent overfitting and adjust the learning rate during training, Early Stopping with a patience of 50
epochs and ReduceLROnPlateau with a factor of 0.2 and threshold of 0.0001 were utilized.
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2.4 Case study methodology

Case studies were conducted on select variants to confirm the model’s prediction and showcase its efficiency as described
in 3.4. We followed a specific methodology in order to extract the necessary data about these variants. First, we look
into the protein information in Uniprot using the UniProt ID in our dataset. We first note the general data about the
protein such as the function and the structure. Next, we download the PDB file for the AlphaFold structure of the
protein from AlphaFold’s website. The PDB file is then used to visualize the protein structure with Pymol. Pymol
enables to change the specific residue in a specific position to another residue and observe the changes in the protein
structure using the Mutagenesis panel. We use this to obtain the structure for the protein with the mutation we need.
This way it is possible to visualize both the wild-type protein’s structure as well as the mutated protein. Later we
explore the interactions of the WT and mutated residues with the neighbouring structures in a radius of 3.5 Angstroms.
This enables us to hypothesize on the possible outcomes of the mutation. Next, we investigate the Disease & Variants
section which contains the known diseases the protein is involved in and the variants that are possibly implicated. For
the well-annotated and well-studied variants, links for scientific papers are provided which are also investigated. In
case the mutation we investigate is not included in the Disease & Variants section, the variant viewer panel in UniProt.
This panel contains information on several mutations in the protein such as the effect of the mutation from different
databases but also potential diseases in which the mutation can be involved. The main databases used are usually
ClinVar, gnomAD, and dbSNP. Finally, we explore the Family & Domains section to check whether the mutation is
involved in a functional domain of the protein. This section also provides scientific papers of studies conducted on
specific regions of the proteins.

2.5 Technical Details

The computational analysis was conducted using Python 3.8 in a Jupyter Notebook environment. The platform used
was a Linux operating system (Linux-5.15.0-1044-nvidia-x86_64-with-glibc2.27). The hardware specifications include
a 64-bit processor architecture (x86_64) with 40 physical cores, providing substantial computational power for parallel
processing tasks. The system was equipped with 503 GB of total memory (RAM). The total disk space available was
438 GB. A key feature of the setup is the presence of eight NVIDIA Tesla V100-SXM2-32GB GPUs, each with 32 GB
of dedicated memory. The CUDA version employed was 12.3, supported by NVIDIA driver version 545.23.08.

3 Results

The evaluation of several machine learning models was conducted to assess their effectiveness in predicting the
pathogenicity of genetic variants. In this section, we will describe a correlation analysis between the scores of GPN-
MSA, ESM1b, and AlphaMissense, benchmarking of the various models and a selection of the optimal set of features.
Next, we will compare our best model’s performance to state-of-the-art tools to contextualize its performance. Finally,
we performed case studies to further showcase our model’s utility in real-world applications

We utilized a dataset composed of various genetic scores derived from GPN-MSA, ESM1b, and AlphaMissense. These
scores were the primary inputs for the predictive models. Four different feature sets were considered as inputs for the
predictive models:

• Potential scores from GPN-MSA and ESM1b: This feature set contains all four possible predictions from
GPN-MSA and twenty predictions from ESM1b. It will test the impact of integrating both DNA and protein
data and will also serve as a basis for comparison with other models that will incorporate Alphamissense
scores.

• Potential scores from GPN-MSA, ESM1b, and AlphaMissense: This feature set contains all four possible
predictions from GPN-MSA and twenty predictions from ESM1b and Alphamissense. This feature set will
assess the utility of adding Alphamissense scores to the model.

• Observed Scores from GPN-MSA, ESM1b, and AlphaMissense: This feature set contains only one score for
each model. This score corresponds to the score of the observed mutation in the dataset. Using this feature set
we will test the necessity of using all the potential scores.

• Observed and Potential Scores from GPN-MSA, ESM1b, and AlphaMissense: This feature set includes the
scores for observed mutations for each model alongside all the possible model predictions. Observed scores
represent the actual clinical mutations identified in the dataset, reflecting real-world genetic variations with
known clinical significance. Potential scores, on the other hand, encompass a broad range of hypothetical
mutations that provide a comprehensive view of possible genetic variations. Including both sets of scores in
the feature set introduces a duplication of the observed scores, effectively weighting them more heavily in the
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model. This feature engineering approach is designed to emphasize the real, clinically validated mutations
captured by the observed scores, thereby potentially improving the model’s performance.

The models were trained on a subset of the data and evaluated on a separate test set specifically chosen to include
the most ambiguous and challenging variants. This approach was used to evaluate the model performance as strictly
as possible, ensuring that the models are robust and effective even under the most difficult conditions. The test set
composition included a balanced mix of 7902 pathogenic and 8263 benign variants.

3.1 Correlation Analysis

The correlation analysis quantified the degree of linear association between the observed scores from GPN-MSA,
ESM1b, and AlphaMissense using Pearson correlation coefficients. This analysis provides insights into the prediction
trends among these models, evaluating the necessity for an integrated model approach. GPN-MSA and ESM1b show a
positive correlation (0.6779), suggesting these models tend to align in their predictions. In contrast, GPN-MSA and
AlphaMissense have a negative correlation (-0.7259), and ESM1b and AlphaMissense exhibit an even stronger negative
correlation (-0.8104). The negative correlations between AlphaMissense and the other two models (GPN-MSA and
ESM1b) are expected, given that AlphaMissense assigns higher scores to pathogenic variants while the other two
models assign higher scores to benign variants. The stronger correlation between ESM1b and AlphaMissense is due to
their focus on protein-level pathogenicity predictions, while GPN-MSA predicts at the DNA level, explaining its lower
correlation with both models.Overall, the results justify the need for an integrated model, as the individual models
capture different aspects of the data, providing a more comprehensive and nuanced analysis when combined.

Figure 2: Correlation Analysis This table illustrates the correlation matrix between the observed scores from the
GPN-MSA, ESM1b, and AlphaMissense models. The correlation coefficients quantify the degree to which these models
agree or disagree on the pathogenic potential of the mutations, providing insight into their comparative analytical
behaviors.

3.2 Model performances

Here we evaluate the performances of the models across the different feature sets. The model performances are detailed
in Fig.3. Overall, the choice of the models didn’t have a significant impact on the results. However, the evaluation
revealed varying performance across the different feature configurations. All models showed similar performance
with the GPN+ESM feature set, with accuracies around 0.75 and ROC-AUC just below 0.83. The multi-input neural
network and random forest slightly outperformed the XGBoost and single-input neural network in terms of ROC-AUC.
The incorporation of AlphaMissense scores improved performance across all models, particularly the Random Forest
model with a ROC-AUC of 0.872. The single-input neural network excelled with the Observed Scores configuration,
achieving the highest accuracy 0.808 and ROC-AUC of 0.877. The feature set that included both Observed Scores and
Potential Scores provided the best overall results, particularly for the multi-input neural network and random forest,
both achieving high accuracies and ROC-AUC scores above 0.89.
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Figure 3: Comparative performance of Machine Learning models in genetic variant classification: This table
presents the benchmarking results of different machine learning models using various combinations of features derived
from GPN-MSA, ESM1b, and AlphaMissense. The models evaluated include multi-input neural networks, single-input
neural networks, XGBoost, and Random Forest, each tested across four distinct feature sets: GPN+ESM potential scores,
GPN+ESM+AlphaMissense potential scores, observed scores from GPN+ESM+AlphaMissense, and a combination of
observed and potential scores from GPN+ESM+AlphaMissense.

3.3 Performance comparison state of the art models

Next, we will compare the Multi-input Neural Network model trained on Observed + Potential scores to state-of-the-art
tools. This analysis aims to assess the real-world applicability of our approach, particularly in its ability to accurately
predict Variants of Uncertain Significance (VUS). By benchmarking our model against existing leading tools, we aim to
demonstrate its effectiveness and potential advantages in clinical and research settings. This comparison will help us
understand how well our integrated model performs in practical scenarios, ensuring its utility in improving genetic
variant classification.

3.3.1 Performance comparison state of the art models: ProteinGym

In this study, the Multi-input NN model trained on Observed+Potential scores was evaluated alongside AlphaMissense,
GPN-MSA, and ESM1b, using the test dataset of 16,165 genetic variants. This dataset was specifically chosen to
include the most ambiguous and challenging variants to evaluate model performance as strictly as possible, ensuring
robustness and effectiveness under difficult conditions. The models’ performance was assessed by comparing their
predictions against the experimental annotations provided in the ProteinGym’s DMS_bin_score. For the assessment,
AlphaMissense predictions were taken directly from its am_class output, which labels variants as either Pathogenic,
Benign or Ambiguous. For ESM1b, variants with a score of -7.5 or below were considered pathogenic. The threshold
for GPN-MSA was set at -7, as detailed in the Materials and Methods. The initial comparison of the models was
performed on all 16,165 variants of the test set (Fig.4a). This comparison aims to provide a baseline comparison of the
models on the challenging variants of the test set. The analysis demonstrated that the integrated model outperformed the
others, achieving an accuracy of 82.54%. AlphaMissense and ESM1b showed comparable performances with accuracy
of 74.58% and 73.84% respectively, while GPN-MSA lagged at 67.03%. For the second analysis, variants classified as
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Figure 4: Model Performance Across Different Conditions and Datasets: (a): This panel displays the accuracy of
individual models on the DMS_bin_score. The bars represent the accuracy of the AlphaMissense model, the integrated
Model (combining GPN-MSA, ESM1b, and AlphaMissense), ESM1b, and GPN. Here, the integrated Model shows a
strong performance with an accuracy of 82.54%, followed by AlphaMissense at 74.58%. ESM1b and GPN exhibit lower
accuracies at 73.84% and 67.03% respectively. (b): This panel illustrates the model accuracy after removing variants
classified as ambiguous by AlphaMissense. This graph provides insights into how the clarity of variant classification
affects model performance. The integrated Model achieves the highest accuracy at 84.51%, followed by AlphaMissense
at 83.51%, and ESM1b at 75.41%. GPN shows significantly lower accuracy at 69.26%, suggesting it is more affected by
the removal of ambiguous variants compared to the other models. (c): This panel focuses specifically on the accuracy of
models in predicting AlphaMissense classified ambiguous variants, highlighting the challenges in handling ambiguous
genomic data. The integrated Model maintains the highest accuracy at 66.07%, demonstrating its robustness even in
uncertain conditions. ESM1b and GPN show reduced accuracies at 60.69% and 48.38% respectively.

ambiguous by AlphaMissense were excluded from the analysis, reducing the test set to 14,435 variants (Fig.4b). This
comparison aimed to provide a fairer assessment by considering only two predictions, removing the variants that are
difficult for Alphamissense to predict. All models displayed improved accuracy.The integrated model still outperformed
AlphaMissense, achieving accuracies of 84.52% and 83.52% respectively. The last analysis focused on the 1,730
variants categorized as ambiguous by AlphaMissense (Fig.4c). Here we will measure how the models perform on a
smaller subset of hard-to-predict variants according to AlphaMissense. In this challenging subset, the integrated model
again showed robust performance, achieving the highest accuracy of 66.07%. ESM1b and GPN, presented accuracies
of 60.69% and 48.38% respectively. It’s important to note that we solely relied on accuracy for model evaluation in this
study. AlphaMissense outputs three classifications (Pathogenic, Benign, Ambiguous), rendering the calculation of other
common metrics like ROC-AUC more complex.

3.3.2 Performance comparison state of the art models: ClinVar

In addition to the DMS annotation, the ClinVar[15] classifications were added to the test dataset for further comparison.
This merge implied the loss of a single row bringing the dataset to 16,164 variants. The ClinVar data provides an array
of different classifications. Variants with labels ‘Uncertain significance’ or ‘Conflicting classifications of pathogenicity’
were classified as Ambiguous. The other variants were either labeled Benign or Pathogenic. Comparing the models’
performances on the ClinVar dataset provides an additional layer of analysis on a clinically relevant dataset, offering
valuable insights into the models’ effectiveness in handling Variants of Uncertain Significance (VUS).

First, we performed the comparison of each model against the ClinVar classifications Fig.5a. This comparison was
motivated by the need to evaluate the overall accuracy of each model. In this analysis, AlphaMissense should have an
advantage as it can directly classify ambiguous variants, whereas other models, which only provide benign or pathogenic
predictions, would generate false predictions for these ambiguous variants. Despite this, the integrated model still
outperformed AlphaMissense in this task. The integrated model achieved an accuracy of 79.16%, AlphaMissense
72.07%, ESM1b 70.93%, and GPN 64.33%.

Next, we tested the models’ performances on clearly classified variants by removing the 715 ambiguous variants of the
ClinVar dataset Fig.5b. This analysis was conducted to provide a more straightforward comparison, focusing solely on
benign and pathogenic classifications without the complexity introduced by ambiguous variants. This analysis shows an
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Figure 5: Model Performance on ClinVar Dataset: (a): This panel displays the accuracy of AlphaMissense, the
integrated Model, ESM1b, and GPN when tested against the ClinVar dataset. The ClinVar dataset provides three
different classes: Pathogenic, Benign, and Ambiguous. The integrated Model shows the highest accuracy at 79.16%,
followed by AlphaMissense at 72.07%, ESM1b at 70.93%, and GPN showing the lowest accuracy at 64.33%. (b):
This panel illustrates the accuracy of the same models on the ClinVar dataset after the removal of the 715 ambiguous
variants. The performance of all models is generally improved. The integrated Model leads in accuracy at 82.82%,
demonstrating its effectiveness in classifying clearly defined genetic variants. This is followed by AlphaMissense at
74.87%, ESM1b at 74.21%, and GPN at 67.31%. (c): This panel focuses on variants classified as ambiguous in the
ClinVar dataset while using DMS as ground truth. The graph illustrates that the integrated Model maintains superior
performance even in this subset, achieving an accuracy of 76.22%. AlphaMissense follows at 68.11%, ESM1b at
65.59%, and GPN shows the least accuracy at 60.70%. (d): This panel examines the accuracy of the models on a
combined subset of variants classified as ambiguous by both ClinVar and AlphaMissense, with DMS used as ground
truth for performance evaluation. The integrated Model continues to show superior performance in this challenging
scenario with an accuracy of 60.24%. This is followed by ESM1b at 55.42%, and GPN at 46.99%, further validating
the robustness of the integrated Model.

overall better accuracy across all the models compared to Fig.5.a with the integrated model outperforming the other
models with an accuracy of 82.82%, followed by AlphaMissense at 74.87%, ESM1b at 74.21%, and GPN at 67.31%.

Subsequently, the performance of the models on the 715 ambiguous variants of ClinVar was assessed using the
DMS_bin_score as the ground truth (Fig.5.c). This task aimed to evaluate how effectively each model discriminates
between variants with uncertain significance. The results indicated weaker performances compared to the overall
dataset (Fig.5a). Nonetheless, the integrated model again outperformed the other models with an accuracy of 76.22%,
showcasing its efficacy in classifying ambiguous variants. AlphaMissense, ESM1b, and GPN showed accuracies of
68.11%, 65.59%, and 60.70%, respectively.

Finally, the performance of the integrated model, ESM1b, and GPN-MSA was assessed on a small dataset of 83 variants
classified as ambiguous by both AM and ClinVar (Fig.5d). This comparison was motivated by the need to evaluate the
models on the most challenging subset, where both AlphaMissense and ClinVar classifications had flagged the variants
as ambiguous. The DMS_bin_score was used as the ground truth for this evaluation. The integrated model continued
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to display robust results with 60.24% correct predictions, followed by ESM1b with 55.42% and GPN with 43.37%.
Assessing the models on this difficult subset underscores the integrated model’s capability to manage the complexities
associated with ambiguous genetic data, further validating its robustness and reliability in real-world applications where
uncertain classifications are prevalent.

3.4 Case studies

Here we investigate examples of variants classified as VUS by ClinVar and for which our model aligns with
DMS_bin_score as opposed to the other three models. These case studies help showcase the utility of our model in
real-life scenarios but also prove our model effectively learned underlying data from the state of the art and makes
accurate predictions autonomously. We also looked into the cases where all the models’ predictions align with the
DMS_bin_score except for our model and found no such cases.

3.4.1 Case study of LZTR1

Figure 6: Visualization of the E563Q mutation in the Leucine Zipper-like Transcriptional Regulator 1 (LZTR1)
protein: (a): Visualization of the Wild Type residue (Glu563) and its interactions. (b): Visualization of the mutated
residue (Gln563) and its interactions. The Glu563Gln mutation causes a new interaction with an alpha helix (circled in
red).

For the first case study, we focused on the E563Q mutation in the Leucine Zipper-like Transcriptional Regulator 1
(LZTR1). The Leucine Zipper-like Transcriptional Regulator 1 operates within the Golgi apparatus. It acts as a negative
regulator of RAS-MAPK signaling by controlling Ras levels and decreasing Ras association with membranes. LZTR1
is also hypothesized to interact with the CUL3 ubiquitin ligase complex, which facilitates the degradation of redundant
proteins. Functionally, LZTR1 is believed to act as a tumor suppressor.

Our model classified the E563Q mutation as pathogenic, which aligns with the experimental annotation from the
DMS_bin_score. Interestingly, other predictive models, such as AlphaMissense, ESM1b, and GPN-MSA, classified
the mutation as benign. Previously, ClinVar had classified this mutation as "likely pathogenic," but a recent update
reclassified it as a variant with Conflicting Interpretations of Pathogenicity. In contrast, dbSNP still categorizes this
mutation as "likely pathogenic."

To analyze the structural implications of this mutation, we retrieved the protein structure from AlphaFold’s website and
visualized both the wild-type and mutated sequences using PyMOL[25].

As shown in Fig.6, the mutation may lead to the formation of H-bond between N atom of Gln563 and the neighboring
alpha helix. In contrast, the wild-type Glu563 cannot form H-bond due to the negatively charged carboxylate of Glu563.
This additional interaction between the two alpha helices in the Glu563Gln mutant may reduce the flexibility of the
protein’s tertiary structure, potentially altering its function.

Further support for the pathogenicity of the E563Q mutation comes from a study by Johnston et al. [13] on LZTR1
variants and their role in Noonan syndrome. The study examines a family with the E563Q mutation, where both
parents, heterozygous for the mutation, showed no significant phenotypes. However, their two homozygous children
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displayed severe manifestations of Noonan syndrome. The first child was diagnosed with biventricular hypertrophic
cardiomyopathy (HCM) at birth and had distinct facial features, mild short stature, and pectus excavatum. He developed
acute lymphoblastic leukemia at age 3 and is now in remission. His younger brother had an atrioventricular septal defect
(AVSD), severe biventricular HCM, and a sacral meningomyelocele, and died on day 4 from an inoperable cardiac
defect.

These findings, coupled with our structural analysis, suggest that the E563Q mutation in LZTR1 is likely pathogenic, as
our model predicted, contrary to the existing state-of-the-art models.

3.4.2 Case study of KAT6A

For the second case study, we investigated the E221K mutation in the KAT6A protein. KAT6A is a histone acetyltrans-
ferase responsible for acetylating lysine residues in H3 and H4 histones. As part of the MOZ/MORF complex, KAT6A
exhibits histone H3 acetyltransferase activity. It also serves as a transcriptional coactivator for RUNX1 and RUNX2,
and acetylates p53/TP53, controlling its transcriptional activity via association with PML.

Our model classified the E221K mutation as benign, which aligns with the DMS_bin_score. Clinvar currently classifies
the variant as VUS while the state-of-the-art computational models predict it as pathogenic except for Alphamissense
which labels it as ambiguous.

The protein does not have a consensus structure, and the Alphafold predictions for the protein show low overall
confidence. However, the region surrounding the E221K mutation lies within a high-confidence zone and is located in a
coil structure. PyMOL visualization of both WT and mutated residues shows no interaction with neighboring residues
(Fig.7), suggesting minimal impact on the protein’s overall structure.

The E221 residue lies within two functional domains. The first one is a Zinc Finger (ZF) (residues in 206-265). The
PRU00146 ZF has no defined function. Zinc fingers typically involve cysteine or histidine residues, while this mutation
involves glutamic acid to lysine, which suggests a low likelihood of impacting ZF function. The second domain is
an Interaction region with PML (promyelocytic leukemia) containing residues 144-664 [23]. However, structural
visualization reveals that the E221K mutation is buried within the protein core and not exposed, making it less likely to
participate in significant interactions with adjacent residues [16].

ClinVar initially classified this variant as likely benign but later reclassified it as VUS. According to the authors’
submission on ClinVarMiner, this variant has not been reported in individuals affected with KAT6A-related conditions,
and the advanced modeling of protein structure and biophysical properties such as structural, functional, and spatial
information, amino acid conservation, physicochemical variation, residue mobility, and thermodynamic stability indicate
that this missense variant is not expected to disrupt KAT6A protein function. This statement reinforces the hypothesis
that such mutation may have a lower impact on the protein function as loops are disordered and may contribute less to
the protein function, especially since the mutation’s position in 221 does not belong to a functional region.

Figure 7: Visualization of the E221K mutation in the KAT6A protein. (a): The wild-type residue (E221) is depicted
in yellow, showing no interactions with neighboring structures. (b): The mutated residue (K221) is shown in red,
located in a coil region with no interaction with adjacent structures.
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4 Conclusion

This study highlights the potential of combining advanced machine learning models in classifying genetic variants. Our
integrated approach consistently outperformed the latest methods in determining the pathogenicity of these variants. The
comprehensive evaluation clearly demonstrated the proficiency of the Multi-input Neural Network model in handling
both straightforward cases and Variants of Uncertain Significance (VUS).

Our analysis underscored the importance of feature selection. Combining DNA and protein data using potential scores
from GPN-MSA and ESM1b established a solid performance baseline. Adding AlphaMissense’s scores significantly
boosted the predictive power of all models. This validates the advantage of integrating structural insights from protein
data with sequence-based predictions. Using both observed and potential scores together led to the best overall results.
The hypothesis that emphasizing observed scores would enhance the model’s focus on clinically validated mutations
proved to be successful. By adding weight to these observed scores, the model better captured real-world genetic
variations, leading to improved accuracy and robustness in classification.

Our integrated model consistently showed strong performance across various testing scenarios, demonstrating its
capability to effectively interpret complex datasets. ESM1b and AlphaMissense consistently outperformed GPN-MSA.
This can be due to the fact ESM1b and AlphaMissense are protein-based models whereas GPN-MSA is trained on
DNA data, likely because protein data provides critical structural and functional context necessary for accurate variant
classification. The improvements seen when excluding variants classified as ambiguous by AlphaMissense, and the
corresponding drop in accuracy for those variants, further emphasize the challenges that uncertain classifications pose
to predictive tasks.

In the comparison with ClinVar’s annotations, the extended evaluation highlighted the efficiency of our integrated
model in distinguishing variant pathogenicity across both the ProteinGym and ClinVar datasets, which are meticulously
curated for experimental validity. The model’s robust performance, particularly in handling VUS, makes it potentially
useful for clinical and research applications where accurate interpretation of ambiguous genetic data is crucial.

Case studies further showcased the practical value of our model’s predictions. Investigating protein structures and
reviewing related literature supported the accuracy of our model and the DMS_bin_score annotations, underlining
the model’s real-world applicability. This also indicates that our model was effectively trained, capturing underlying
information from state-of-the-art models rather than merely replicating their predictions.

our model is a step forward for characterizing variants of unknown significance and paves the way for identifying new
therapeutic targets (or better characterization) or improving models that use NGS data [10, 22]. Looking ahead, it is
essential to extend our validations by testing the integrated model on larger and more diverse datasets. Incorporating
additional relevant components, such as transcriptomics scores from SpliceAI[12], could further enhance the model’s
performance. By integrating these scores, we can add another dimension to our model, combining genomic, proteomic,
structural, and transcriptomic data, leading to even more accurate and reliable predictions.
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