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Abstract
This work presents a structured pipeline that leverages Gaussian splatting for pre-

cise 3D model reconstruction, utilizes the OpenPose library and the ROMP model for
motion animation, and applies signal smoothing techniques to enhance positional consis-
tency. The estrapolation techniques provide the movements of the joint motion data that
drive the animation, often resulting in unstable motion trajectories, causing jitter, noise,
and abrupt transitions. The proposed approach addresses these challenges by refining
the position signal, ensuring smoother and more natural movement.

To achieve this, the system applies motion-aware interpolation to minimize fluctua-
tions in positional data. Using the moving average window filtering the pipeline secures
a balance between responsiveness and fluid motion, as mentioned here.

This method significantly improves the motion fluidity of animated Gaussian splatting
models, making them ideal for real-time applications, digital avatars, and interactive ex-
periences. Although the smoothing process requires additional computational resources,
it effectively reduces motion artifacts, resulting in more stable, realistic, and visually
seamless animations.
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Introduzione

The digital representation and reconstruction of 3D scenes in computers serve as the
foundation for numerous critical applications today. In many cases, 3D reconstruction
technology offers a non-invasive alternative to replicating valuable or fragile cultural ar-
tifacts, avoiding the potential damage caused by traditional plaster casting techniques.
It plays a vital role in the preservation of historical relics and cultural heritage. In the
gaming and film industries, dynamic 3D scene reconstruction enhances real-time render-
ing, improving the visual experience in games and movies. Medical imaging facilitates
the creation of patient-specific organ models for surgical planning. For robot navigation,
it enables robots to better understand their surroundings, improving both navigation
accuracy and safety.

In industrial design, 3D reconstruction assists in generating precise digital models
by capturing the geometric details of real objects, helping users analyze dynamic data
changes. By capturing a user’s body shape, preferences, or needs, designers can create
personalized products. In addition, it supports the documentation of equipment and
mechanical parts, providing a digital reference for maintenance. 3D avatars play an
important role in 3D reconstruction, especially in applications that require realistic hu-
man modeling and interaction within digital environments. In recent years, advances in
the fields of virtual reality, 3D animation, and digital interactions have led to the creation
of increasingly realistic and interactive avatars.
In the following, we examine in detail: 3D avatars play an important role in e-mental
Health Interventions. They help in exploring new models of client-therapist interaction.
Here, some applications identified (1) in the formation of online peer support commu-
nities; (2) replicating traditional modes of psychotherapy by using avatars as a vehicle
to communicate within a wholly virtual environment; (3) using avatar technology to
facilitate or augment face-to-face treatment; (4) as part of serious games; and (5) com-
munication with an autonomous virtual therapist. [

article6
44] The Gaussian splitting is a novel

technique, first introduced in 2023. So, there are not many papers and reports about this
new technology, researchers are still exploring in depth this new technique.
When it comes to reconstructing 3D avatars or other complex human models, Gaussian

9



10 Introduction

splatting has a few limitations.
It might be difficult to capture intricate details of human anatomy, such as small features
in the face, hands, or clothing. Although it works well for smoother surfaces or general
scene reconstruction, it may lack the ability to accurately represent highly detailed ge-
ometry.

Gaussian splitting shows some challenges with Rigging and Animation: because of its
non-rigid transformations, although it can represent static scenes or objects, it becomes
tricky to animate complex non-rigid bodies like human avatars. Gaussian splatting does
not natively support the types of deformation (e.g. muscle movement, facial expressions)
that are essential for creating realistic animations. Moreover, since Gaussian Splatting
does not inherently involve vertices or meshes (which are typically used for rigging in
animation), it is not easy to integrate with conventional animation tools designed for
skeleton-based rigging. So, first, the build pipeline converts frames from a video into 3D
Gaussian primitives to reconstruct 3D avatars. Then, it extracts key frames from the
video, which represent different views of the avatar. Each pixel in these frames corre-
sponds to a point in 3D space, which is represented as a Gaussian with properties such as
position, color, and transparency. These Gaussians are projected from multiple camera
angles to form a comprehensive 3D model. Through iterative optimization, the system
aligns the Gaussians with the desired views, refining the model to accurately represent the
avatar’s geometry and appearance. During animating the 3D avatar, there were obvious
difficulties with animation. Gaussian splitting has non-rigid deformations, so it strug-
gles with non-rigid body movements like muscle flexing, facial expressions, and clothing
movement, which are crucial for realistic avatar animation. Without mesh structures, it
is difficult to control and apply these deformations effectively. Since Gaussian Splatting
uses 3D Gaussian primitives, it is challenging to integrate into established animation
pipelines, such as those used for motion capture or facial animation.
Due to all the above reasons, the 3D avatar animations were a little noisy, it oscillated
during movement. So, as an improvement, this work proposes an improvement of the po-
sition signal, resulting in a smoother and more natural motion. This is achieved by using
temporal filtering and motion-sensitive interpolation to reduce fluctuations in positional
data.



Chapter 1

Research Objectives

Creating animated avatars that faithfully reflect users’ appearance and movements is a
technical challenge that requires the integration of various disciplines, including computer
graphics, artificial intelligence, and computer vision.

Among the many techniques, which are explained in detail in Chapter 2, which are
used to create realistic avatars, "Gaussian Splatting" has gained increasing attention due
to its ability to generate photorealistic 3D models with superior visual quality, while
maintaining efficient computational resource management.

This thesis explores 3D animation, especially the 3D reconstructed avatar, and the
advancement on how to improve the animation motion of the 3D avatar, reducing the
time complexity in animation rendering. Using essentially 2 filters, the low-pass band
and the moving average window on the animation spectrum, the aim is to efficiently im-
prove the pose signal filtered to render high-quality animations. The proposed method
improves performance while maintaining visual fidelity.

In this context, the technique "Gaussian Splatting" that is approached offers an inno-
vative approach to represent 3D surfaces through Gaussian points, allowing for accuracy
in texture rendering and fluidity in animated movements. It provides sharper details and
better handling of fine textures compared to other representations. Unlike point clouds,
this technique utilizes point-based rendering with Gaussian distributions to create smooth
blending, avoiding aliasing or jagged edges, and detailed 3D reconstructions.

Applying pose signal filtering to 3D Gaussian splatting animation enhances the stabil-
ity, realism, and overall quality of animations. It makes for a smoother and more natural
motion because, first of all, it reduces noise, helping to eliminate unwanted fluctuations.
The 3D avatar studied in this work, after filtering the signal, had a more natural and
smooth motion with more fluid and visually appealing movements. Another achievement
is that filtering techniques, such as moving average filters, can be efficiently implemented
for real-time applications without requiring extensive computational resources. This will

11
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be explained in more detail in Chapter 4.

So, in general, the difference between the motion before and after the 3D avatar was
quite evident. These avatars, which we worked on mostly as symbols of the 3D animation,
had more smooth and natural motion.

Chapter 3 will explain in more detail this real-time 3D scene representation tech-
nique.

1.1 Thesis Organization

The organization of the work carried out follows the following structure:

CHAPTER 2 - Related work Overview of 3D reconstruction techniques.
CHAPTER 3 - Methodology Overview of the steps followed to build the pipeline
CHAPTER 4 - Experimental setups here will be explained, some of the experiments
conducted to prove that the pipeline works.
CHAPTER 5 - Conclusion and Future Works In the final chapter, the conclusions
of this study and future works to improve the pipeline.



Chapter 2

Related Work

Based on how the 3D shape and structure are represented and stored in digital for-
mat, 3D reconstruction is divided into explicit and implicit expression methods. Explicit
expression refers to a method that precisely defines geometric shapes and structures,
directly describing an object’s external or internal geometry. This approach relies on
discrete data, which inherently results in some loss of information, requiring the devel-
opment of improved processing techniques. In addition, generating images from multiple
viewpoints involves a considerable computational cost.[

s24072314
47]

In contrast, the implicit expression represents the geometry of an object using a func-
tion rather than explicitly defining its shape. Instead of storing geometric details directly,
this method encodes the shape through an implicit function or surface equation, which
is then used to compute the geometry. By evaluating the function, specific values corre-
sponding to points on the object’s surface can be obtained. Here, explained in detail: [

s24072314
47]

• Explicit Expression: The main methods for displaying data include point clouds,
voxels, and meshes. Point clouds consist of discrete data collected from various
sensors or scanning devices. It is used to represent the external surface of an
object or the spatial structure of a scene. A point cloud is an unordered collection
of points in a 3D space. Divide the 3D space into uniform cubic units. Each
cubic unit is called a voxel. Each voxel can contain information that represents
spatial attributes, such as color, density, or depth. Voxels are commonly used in
medical image processing, computational fluid dynamics, and other fields. Voxel
storage is used to represent the structure and attributes within a space, but it has
high space complexity. The mesh is composed of connected vertices, edges, and
faces. The mesh model can be composed of triangles, quadrilaterals, or higher-
order polygons and can describe most topological structures. It can accurately
represent complex geometric shapes and details. The surface described by each

13
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triangle is planar, which makes it suitable for numerous computer graphics and
engineering applications where triangle meshes are commonly used. This ensures
that the projection is always convex and easy to rasterize.

• Implicit Expression: It does not require explicit storage of geometric data;
therefore, it offers advantages in saving storage space and processing complex ge-
ometries. However, computing the value of an implicit function can be time con-
suming, and understanding and manipulating the implicit expression can be chal-
lenging. Implicitly represented 3D models can be determined by continuous decision
boundaries, enabling shape recovery at any resolution. Commonly used implicit rep-
resentations include implicit surfaces, Signed Distance Function (SDF), Occupancy
Field, Radiance Field, etc.

During 3D reconstruction, factors to pay attention to are the varying nature of the
scenes being reconstructed, the desired accuracy, and the technological advancements
available.

Let us take the example of an archaeologist working to preserve the intricate details
of an ancient temple. The temple is a fixed structure, and no movement or changes occur
over time. The goal of the reconstruction is to capture its geometry, textures and fine
details for preservation, study, and possible restoration. The methods work by taking
multiple photographs of the temple from different angles, allowing the algorithms to an-
alyze and reconstruct a highly detailed 3D model of the building. Since the temple is
static and does not change over time, the reconstruction is focused purely on the geom-
etry and textures, without needing to account for any movement or dynamic changes in
the environment.

Mostly, the work is done on unstructured, incomplete data (such as images), which
causes noisy work. Various solutions grouped into 3 main categories have been explored:
Traditional static 3D Reconstruction Methods, these methods are designed to re-
construct objects or environments that do not change over time, by using multiple images
or viewpoints of an object or environment to generate a highly detailed 3D model; Dy-

namic 3D Reconstruction Methods, which is designed to handle scenes and objects
that change over time where the environment or objects are in motion, such as robotics,
animation, motion capture, and augmented reality; 3D Reconstruction Methods

Based on Machine Learning are techniques that use machine learning algorithms,
particularly deep learning models, to reconstruct three-dimensional (3D) models or struc-
tures from two-dimensional (2D) data. They employ large data sets and sophisticated
neural networks to infer 3D information from images, video, or point clouds, enabling
more accurate and efficient 3D model generation.
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In the following, each method will be explained in more detail, emphasizing their main
concepts, advantages, and limitations.

2.1 Traditional Static 3D Reconstruction Methods

Most creatures in nature, including humans, rely on vision to perceive and recon-
struct. 3D objects in the physical world. 3D reconstruction can be classified into sparse
reconstruction and dense reconstruction based on the density of information acquired.
Sparse reconstruction focuses on obtaining the accurate 3D positions of a small num-
ber of key points or feature points in the scene. Using techniques such as feature point
matching and key point extraction, to do this, it uses techniques to represent the geo-
metric shape of the entire scene through these discrete points. The dense reconstruction
aims to obtain the accurate 3D coordinates of each pixel in the scene. By estimating the
depth of each pixel in the image, the system generates a dense depth map, point cloud,
or voxel, allowing high-density reconstruction of the entire scene. Develop a model to
create a comprehensive description of the entire scene. The contact method uses spe-
cific instruments to quickly and directly measure the 3D information of the scene, which
mainly includes trigger measurement and continuous measurement. The contact method
can only be used in situations where the instrument can come into contact with the mea-
surement scene, such as coordinate measuring machines (CMMs), etc. The noncontact
method utilizes image analysis models to acquire data from the measured object without
physically touching it. The noncontact 3D reconstruction process involves capturing an
image sequence using visual sensors (one or more cameras). Subsequently, relevant in-
formation is extracted and, finally, reverse engineering modeling is conducted using this
information to reconstruct the 3D structural model of the object. [

s24072314
47] The non-contact

methods are divided into 2 categories: active and passive.

2.1.1 Active 3D Reconstruction Methods

Active methods of vision-based 3D reconstruction involve mechanical or radiometric
interference with the reconstructed object to acquire depth maps. These methods include
structured light, laser rangefinders, and other active sensing technologies. Among them,
3D reconstruction technologies based on active methods mainly include the laser scanning
method, industrial computed tomography (CT) scanning, structured light method, time-
of-flight (TOF) technology, shadow method, etc. These methods primarily utilize optical
instruments to scan the surface of an object and reconstruct the 3D structure by analyzing
the scanned data.
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Light Detection and Ranging

LiDAR is a laser-based sensing technology that can reconstruct the distances of the
object points from the emitting station. It is composed of an active sensor that emits
laser waves and a passive sensor that reconstructs distances based on the travel time of
the laser beam. Since mechanical laser scanners, were introduced in the 1990s, LiDAR
technology has been widely studied to increase the accuracy, reliability, and portability of
the technique. Depending on the application, LiDAR technology differs greatly in com-
plexity, cost, and capabilities [

article7
3]. Compact time-of-flight (ToF) cameras are used in robot

navigation due to their ability to measure the entire scene simultaneously and multiple
times per second [

article8
27]. Aerial LiDAR is used to map large areas with high-distance laser

accuracy, allowing the creation of digital elevation models for geographical information
systems [

article9
37]. Today, low-energy and fast LiDAR sensors using a single-photon avalanche

diode (SPAD) can be found in consumer smartphones, for common user applications such
as spatial measurements and improved media recording features. To measure distance,
the sensor records the energy of the returning signal from the reflected laser by special-
ized electric components. Most techniques use the Time of Flight(ToF) to retrieve the
distance of surfaces from the emitter. Multiple data are then combined to obtain depth
maps and point clouds. Depending on the LiDAR technology used, different properties of
the scanned material can be extracted. In particular, lasers are highly susceptible to the
reflective properties of the material. Unlike structured light technology, high reflective
surfaces mean a clearer reflected signal, allowing for precise measuring even from long
distances. The depth information of a scene is usually paired with standard RGB images
by mapping the two sensory information into a unified RGB-D image. The cost of acqui-
sition can vary depending on desired accuracy and application, from high-precision high-
distance LiDAR sensors mounted on satellites to cheap low-resolution setups mounted in
pairs with high-resolution cameras on smartphones. LiDAR sensors are widely distributed
in dynamic scene reconstruction applications where a high sampling rate is required for
fast-moving objects and with a wide variety of objects with complex material properties
appearing in the scene. LiDAR sensors are also used to augment the standard pho-
togrammetry setup, providing additional depth information and easier triangulation at a
minimal cost.
Here are some of the advantages and limitations of this technology: LIDAR technology
offers several advantages, particularly in gathering terrain data in areas with dense veg-
etation. LIDAR can accurately capture terrain beneath dense foliage. It is also highly
precise, supported by additional sensors like IMUs (Inertial Measurement Units) that
track speed, orientation, and gravitational forces. Moreover, the point cloud is generated
more quickly than with photogrammetry, requiring less post-processing computational
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power.
However, a significant drawback of LIDAR is its high cost of equipment, installation,

and setup. Recently, more affordable LIDAR sensors, such as the Livox L1 for unmanned
vehicles, have made significant advancements in geospatial data collection.[

s101110356
15]

Structured Light

Structured light reconstruction is a technique that uses active light projection of
known patterns (usually a grid, parallel stripes, or a dot matrix) over the object to re-
construct its surface based on the deformation of the light spots. Knowing the position
of the light source and the position of the sensing camera, a point can be triangulated
in the 3D space with the standard camera analytical computation. The setup is visually
reported in Figure 5.1. Structured light scanners are standard in 3D reconstruction for
industrial settings: Surface reconstruction scanners are integrated with production lines
to inspect manufacturing errors [

article10
43], portable hand-held scanners are used for custom

scans of objects of different sizes, and multicamera setups enhance classical photogram-
metry with the additional precision of structured light triangulation [

Alton2017Experience6F
2]. This technique

is a fast and accurate method due to point triangulation within single images, but it
presents some limitations inherent to the material properties of the object scanned. Re-
flective surfaces, semitransparent surfaces, and bad light conditions distort the projected
light, introducing a not negligible error in the reconstruction. The acquisition phase in a
controlled environment, as well as the application of opaque coatings to the material prior
to scanning [

article11
22], drastically reduces the limitations of this technique, making it flexible

and reliable. Structured light cameras are still expensive, requiring a calibrated camera
and a projector with high manufacturing accuracy, and not affordable for mass users.
The procedure of scanning large objects is time-consuming for a single handheld camera
sensor, which can take hours to correctly scan all parts of the object while maintaining
good overlap between frames for correct positional tracking of the camera.

Here are some of the advantages and limitations of this technology:
Structured light technology is praised for its accuracy and speed. However, like any tech-
nology, it has limitations, particularly in terms of the size of objects it can effectively
scan.

Photometric Stereo

It utilizes variations in illumination angles from multiple light sources, and it deduces
the normality and depth of the surface by analyzing the changes in brightness on the
object. It is suitable for objects with complex topological structures, but is sensitive to
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Figure 2.1: Scheme of the structured light reconstruction method. The setup is composed
of a light projector and a sensing camera.

lighting conditions. Woodham originally proposed Photometric Stereo in 1980 [
article12
40], and

the special case where The data is a single image called’shadow shape’, which was com-
pared and analyzed by BKPHornin1989 [

book
8]. Shadow photogrammetry uses light sources

and cameras to deduce the shape and contour of an object by analyzing the shadow cast
on its surface [

article13
48]. It involves capturing a series of images from a consistent viewpoint

of a light source with a known movement pattern. Use the motion of the shadows cast
to reconstruct the structure of the scene [

article14
21], especially effective for simple topological

objects [
article15
16].

These are some of the advantages and limitations: [
article15
16]

Photogrammetry enables the creation of precise and detailed 3D models, capturing tex-
tures and intricate features directly from photographs. It requires only a high-quality
camera and software, making it a budget-friendly solution for various applications. Its
result is a 3D mesh that is easy to manipulate, such as scaling, rotating, and translat-
ing, making it ideal for scanning objects. However, since it focuses on the photographed
object rather than the surrounding environment, it is less suitable for capturing entire
environments. Photogrammetry suffers from being heavily reliant on the quality of the
source images, meaning factors like resolution and lighting conditions significantly impact
the final model. Low-quality or poorly lit photos can lead to inaccurate reconstructions.
Additionally, photogrammetry often struggles with reflective, transparent, or featureless
surfaces, as these may not capture well in photographs. This limitation results in poor
performance when scanning objects with these characteristics. Another drawback is the
visible artifacts that can occur during the image-stitching process. In addition, gaps in
the capture can lead to noticeable flaws, such as holes in the mesh or jagged edges in the
scanned object.
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Multi-Sensor Fusion

Multi-source heterogeneous information fusion (MSHIF) uses information obtained
from different sensors, such as radar, lidar, camera, ultrasound, infrared thermal imager
[
Schramm20102022
29], GPS, IMU, and V2X, to overcome the limitations of individual sensors and create a
more comprehensive perception of the environment or target, thus improving the accuracy
of 3D reconstruction [

article16
46]. A multimodal 3D object reconstruction method based on

variational autoencoders. This method automatically determines the modality during
the training, which includes specific categories of information. Using the transmission
elements of the prior distribution, it determines the pattern of latent variables in the
latent space, enabling robust implementation of latent vector retrieval and 3D shape
reconstruction.

2.1.2 Passive 3D Reconstruction Methods

The passive 3D reconstruction method does not interfere with the object. It solely
uses optical sensors to capture the light reflected or emitted from the object’s surface and
determines its 3D structure based on the image data.

Texture Mapping

For objects with obvious texture features, using texture information on the object
surface to map the two-dimensional image to the 3D model can significantly improve
the realism of the model’s appearance. However, this process requires a higher texture
quality [

inproceedings
1]. Lee et al. [

inproceedings1
13] directly associated the vertices of the implicit geometry with a

voxel grid having texture coordinates and applied spatially varying perspective mapping
to the input image, enabling real-time texture distortion and geometry update. It utilized
background noise smoothing technology within a self-supervised framework to perform
high-fidelity texture generation in high-resolution scenarios.[

s24072314
47] Here are some advantages

and limitations of this technology: Texture mapping enhances 3D models by applying
detailed textures, improving their visual appearance and realism. It allows artists to add
surface details, colors, patterns, and attributes, making models look more lifelike and
natural. It allows artists to efficiently apply premade or custom textures to 3D models,
saving time and effort.[

10.1145/267580.267583
39]

Shape from Focus

The focusing method uses the camera focal length adjustment to calculate depth
information by observing changes in the focal depth of the object. This is determined by
the degree of image blur of the object at various focal lengths. Use a camera to capture
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images of the same scene at various focal lengths. In the image, the farther the object
is from the focal plane, the blurrier its image will become. Depth estimation is another
important aspect to consider. Using the relationship between image blur level and depth,
it is possible to estimate the object. The depth value of each part, and finally the 3D
reconstruction, convert the depth information into 3D coordinates, thereby obtaining the
3D reconstruction model of the object. The texture method is often used for close-range
shooting and is useful when dealing with low-texture or transparent objects.[

s24072314
47]

Here are some advantages and limitations of this technology.
Shape from Focus produces high-resolution surface details by capturing focus changes,
enabling fine shape representation. Unlike photogrammetry, it does not require special
lighting, making it versatile in various environments. In addition, it is cost-effective
since it only needs a standard camera system and focus adjustments, making it a more
affordable option compared to other advanced 3D scanning methods. However, it is best
suited for small objects with well-defined surfaces, as it captures focus depth from multiple
perspectives. It relies on sharp focus changes, so objects lacking clear texture or contrast
may yield poor depth information. Additionally, it struggles with homogeneous surfaces
like shiny, transparent, or featureless ones, as they provide insufficient focus variation for
accurate depth estimation.[

308479
24]

Structure from Motion (SFM)

Structure-from-motion (SfM) [
10.1007/3-540-61123-1_183
33] is a technique used to create a 3D model of an object

using an unorganized set of images captured from various unknown cameras. To achieve
this, several offline computational steps are needed, such as estimating the camera’s
intrinsic and extrinsic parameters and triangulating image points into 3D space. These
steps are summarized in Figure 5.2.

The process begins by extracting key points from each image. Points are distinc-
tive pixel locations that are easy to recognize in different images and contain valuable
information. To enhance their recognition, key points are typically associated with de-
scriptors, which include information about the neighboring pixel structure. Commonly
used keypoint detectors, such as SIFT features [

790410
18], provide descriptors that are invariant

to scale, rotation, and lighting conditions. By matching features, key points between two
images are paired by calculating distances in the feature space. Pairs of images with
sufficient matching key points are identified and organized into a new structure. These
pairs are then used to estimate the intrinsic and extrinsic parameters of the camera using
RANSAC-based algorithms [

1288525
26]. Once this step is completed, the problem is solved as a

triangulation issue, similar to photogrammetry, where the 3D positions of key points are
reconstructed for computational efficiency. Triangulated points are optimized through a
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Figure 2.2: Structure from Motion algorithm scheme.

bundle adjustment process to minimize reconstruction errors. SFM is particularly effec-
tive in reconstructing large-scale areas, such as city monuments, even when images are
captured at different times by different agents. In industrial applications, SfM is often
combined with known-calibrated cameras for more precise surface reconstruction. This
method is cost-effective, relieving on simple RGB images instead of expensive calibrated
cameras, and it does not require synchronized data collection, as different images of the
scene taken over time can be used. Although the theoretical foundations of SFM were
established at the end of the last century, recent advances in hardware optimization and
parallel computing have made its offline computational cost comparable to other meth-
ods. One limitation of SfM is its relatively low reconstruction precision as it depends on
sparse keypoint triangulation, unlike denser point-based techniques. Additional steps are
required to generate a denser 3D model.

Here are some advantages and limitations of this technology.[
article19
36]

It is noninvasive, as it reconstructs 3D models from 2D images without physical contact
or specialized equipment. It is cost-effective, using standard cameras instead of expensive
scanners, making it an affordable option. SfM is also highly scalable and capable of han-
dling objects of various sizes, from small items to large landscapes, by processing multiple
images. However, it heavily depends on the quality of the image, including resolution,
overlap, and sharpness. For large-scale reconstructions, the process can become compu-
tationally intensive, requiring substantial processing power and time. Additionally, SfM
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struggles with textureless surfaces, as it relies on matching features in images, making it
difficult to accurately reconstruct smooth or featureless objects.

2.2 Dynamic 3D Reconstruction Methods

Dynamic 3D reconstruction aims to capture and present the 3D structure of objects
and environments, as well as their changes in dynamic scenes. It involves effectively han-
dling dynamic factors such as moving objects, lighting changes, and scene evolution to
create accurate and up-to-date images that reflect the current state of the scene. The
essence of dynamic 3D reconstruction lies in capturing and modeling the 3D structure of
an object or scene as it experiences dynamic changes, such as object movement, variations
in lighting conditions, or environmental changes. Dynamic 3D reconstruction methods
are typically based on techniques such as feature point matching and motion estimation.
Feature point matching is used to track key feature points in the scene, while motion
estimation is used to estimate camera motion between adjacent frames.

Here are some advantages and limitations of this technology.
Dynamic 3D reconstruction captures moving objects and changing environments, provid-
ing realistic models with depth, texture, and motion. It is versatile, applicable to various
environments, including indoor and outdoor spaces, and effectively handles both static
and dynamic elements. However, it demands high computational power and time, espe-
cially for large scenes. Its complex algorithms require advanced hardware and software,
and processing multiple views can lead to data overload, creating storage and processing
challenges.

2.2.1 Multi-View Dynamic 3D Reconstruction

Multi-view dynamic 3D reconstruction involves capturing a scene from multiple angles
using several cameras or video cameras and incorporating temporal data to recreate the
3D structure of a moving scene. To achieve this, all cameras must be synchronized to
capture images simultaneously, ensuring that timestamps are consistent across different
viewpoints. Maintaining coherence between consecutive frames is crucial for accurate
matching and reconstruction.

For each image frame, computer vision techniques identify key feature points or de-
scriptors. By matching these features across images, correspondences between different
camera perspectives are established. This process integrates the camera pose information
with the scene structure, allowing for simultaneous scene modeling and camera localiza-
tion [

shao2023tensor4defficientneural
30]. Motion estimation and motion filtering techniques are then applied to handle
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dynamic elements within the scene. The resulting 3D point cloud or model undergoes
optimization and post-processing to improve accuracy and remove noise [

9271925
34].

A key application of dynamic 3D reconstruction is the estimation of human poses.
By analyzing the captured data, it determines body posture at each time step, including
joint angles and body proportions. Compared to other flexible body movements, human
motion follows predictable patterns. The shape of the human body adheres to a struc-
tured geometric distribution, making parametric models such as SMPL/X [

inproceedings2
17] widely

used in research. These models, along with extended versions for hands, faces, and other
body parts, provide a structured way to describe human geometry in academic studies
[
Romero_2017
28].
Here are some advantages and limitations of this technology:
Multiview dynamic 3D reconstruction creates highly accurate models by capturing de-
tailed 3D information from various perspectives. It captures dynamic, moving scenes,
offering enhanced realism and depth. Versatile, it can be applied to both indoor and out-
door environments, handling static and dynamic elements effectively. However, it requires
significant computational resources and time, especially for large-scale or high-resolution
models. The use of multiple cameras can lead to data overload, making storage and pro-
cessing difficult. Occlusions and low-quality input data, such as poor lighting or motion
blur, can also hinder accurate reconstruction.

2.2.2 Dynamic 3D Reconstruction Based on RGB-D Camera

In dynamic 3D reconstruction based on RGB-D cameras, depth information and color
image data are input. Advanced computer vision algorithms and technologies are utilized
to process data gathered by sensors to fulfill requirements such as real-time performance,
reconstruction accuracy, and perception of dynamic objects. Dynamic 3D reconstruction
algorithms based on binocular cameras generally involve processes such as identifying and
tracking objects, estimating camera poses, calculating depth information, and creating
3D models in real-time.

2.2.3 Simultaneous Localization and Mapping (SLAM)

SLAM is used to map unknown environments while simultaneously tracking the posi-
tion of moving objects. It relies on various sensors, and the choice of sensors influences the
specific SLAM algorithm used [

MAGNABOSCO2013195
19]. By integrating data from visual and inertial sensors,

SLAM enhances the accuracy of motion and orientation estimation in dynamic settings.
Inertial data is especially useful for tracking movements that might not be immediately
visible over short periods. [

li2024ddnslamrealtimedensedynamic
14].
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SLAM plays a crucial role in navigation, operating in real-time (online SLAM) or
processing recorded data afterward (offline SLAM). In dynamic environments, recognizing
previously visited locations is essential. Loop closure detection is a critical component of
this process, helping to reduce mapping errors by continually refining and updating the
environment map [

1545285
38].

Several advances have improved the efficiency of SLAM. Yan et al. [
yan2024gsslamdensevisualslam
45] introduced

GS-SLAM, which incorporates a 3D Gaussian representation to enhance SLAM systems.
This approach uses a real-time differentiable splatting rendering technique, significantly
optimizing mapping and RGB-D re-rendering speeds. GS-SLAM also implements an
adaptive 3D Gaussian strategy for efficient reconstruction of newly observed geometries.
Matsuki et al. [

matsuki2024gaussiansplattingslam
20] developed a real-time SLAM system that utilizes 3D-GS for incre-

mental 3D reconstruction, adding geometric verification and regularization to resolve
ambiguities in dense mapping. This method works well with both mobile monocular
cameras and RGB-D cameras.
Here are some advantages and limitations of this technology.
Unlike static 3D reconstruction, dynamic 3D scene reconstruction must account for con-
tinuously changing elements such as moving objects, shifting lighting conditions, and
evolving structures. This challenge requires advanced techniques for motion estimation,
recognition, and analysis. With the increasing demand for real-time, high-precision,
and complex 3D scene reconstruction in fields like the Metaverse and General Artificial
Intelligence (AGI), there is a noticeable gap between current dynamic reconstruction
capabilities and practical application needs.

2.2.4 Gaussian Splatting

3D Gaussian Splatting is a technique for rendering photorealistic scenes in real-time,
using a set of images as input. It was introduced in 2023 by Kerbl in the paper titled
"3D Gaussian splatting for Real-Time Radiance Field Rendering"[

kerbl20233dgaussiansplattingrealtime
11]. It uses millions

of Gaussians to represent the scene during rasterization. Optimize a collection of 3D
Gaussians placed in 3D space to create photorealistic reconstructions and enable quick
rendering of new viewpoints. Gaussians are selected for their ability to render efficiently
through α-blending, without the need to compute normals. A Gaussian G(x) s fully
defined by a covariance matrix Σ and is centered at the point µ

G(x) = e−
1
2
xTΣ−1x

For each primitive, its projections in camera space can be determined by:[<empty citation>]
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Σ′ = JWΣW TJT

Here,Σ′ represents the covariance matrix in camera coordinates, W denotes the viewing
transformation, and J corresponds to the Jacobian of the affine approximation of the
projective transformation. To ensure proper optimization of the covariance matrix Σ -
which is of physical significance only when it remains positive definite during training -
a new matrix decomposition is introduced to enforce this constraint.

Σ = RSSTRT

S and R represent a scaling matrix and a rotation matrix, respectively, and these two
components are optimized separately. Color is modeled using spherical harmonic coef-
ficients (SH) to accurately capture color variations based on different viewpoints, while
the α parameter regulates Gaussian transparency in a multiplicative manner. Addition-
ally, during training, a process called Adaptive Control of Gaussians is applied to refine
the learned representation by increasing density in specific areas. This method targets
regions with high view-space positional gradients, which typically correspond to missing
geometric details or sparsely represented areas with large Gaussians. To improve the
representation, new primitives are introduced by either splitting larger ones or randomly
populating the region of interest. Furthermore, elements with an α value below a certain
threshold ατare removed to retain only relevant Gaussian contributions.

Optimization is carried out by repeatedly projecting Gaussians onto target views,
calculating the loss, and back-propagating the gradient to accurately determine their
position, rotation, color, transparency, and quantity in the representation. This entire
process is illustrated in Figure 3.3. The Gaussian Splatting technique starts with
an initial candidate derived from a Structure-from-Motion (SfM) process applied to the
input images. During this stage, camera parameters for each view, which are initially
unknown, are estimated. The extracted point cloud provides the centers µ for the initial
Gaussians, while the covariance matrices Σ are randomly assigned. This step requires
a large number of overlapping images to accurately determine camera parameters and
properly align input images.

Gaussian positioning enables fast novel view rendering due to the straightforward
computation of each Gaussian projection matrix. The visualization process can be per-
formed in real time. However, like other implicit representation methods, editing the
representation for applications such as animation remains challenging.

Despite this, Gaussians rely on geometric primitives that have clear spatial position-
ing, rotation, and scale, making them more interpretable compared to other implicit
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Figure 2.3: The Gaussian pipeline scheme [
kerbl20233dgaussiansplattingrealtime
11] begins with a point cloud obtained through

Structure from Motion. This initializes the Gaussian splatting model, which is then
optimized by repeatedly projecting Gaussians based on camera poses and comparing
them to ground truth views to backpropagate the gradient.

representations. Some research has explored animating Gaussian splatting using video
data by learning the motion of Gaussians over time and adjusting lighting conditions.
Other studies have aimed to convert Gaussian representations into explicit formats for
easier reconstruction and industrial applications.

For example, SuGaR [
guÃľdon2023sugarsurfacealignedgaussiansplatting
6] introduced additional loss functions and a refinement step to

better align Gaussians with the ground truth surface, followed by Poisson surface recon-
struction. Meanwhile, 2D Gaussian Splatting (2DGS) [13] proposed using 2D Gaussians
instead of 3D ones, aligning them with object surfaces to improve geometric accuracy.
The marching cube approach was then used to extract a mesh representation of the scene.

Here are some advantages and limitations of this technology.
Gaussian splatting produces exceptionally detailed images by utilizing multiple scans of
an object, allowing for real-time exploration from any perspective. This technology can
be trained quickly and generates smaller files compared to conventional 3D scene for-
mats used in the metaverse, digital twins, spatial computing, and virtual reality (VR).
Although its file sizes are slightly larger than those of neural radiance fields (NeRF),
Gaussian splats deliver superior quality and enable a more immersive, interactive expe-
rience

2.2.5 Image Segmentation

Image segmentation is crucial in 3D reconstruction as it helps divide objects or scenes
within an image into distinct regions, offering more precise and valuable data for the
subsequent 3D modeling process. This technique has several applications, such as object
segmentation [

6618864
7], background removal[

7743326
35], contour extraction [

inproceedings19
10], semantic segmenta-

tion, and dynamic scene segmentation [
7378903
9]. By utilizing effective image segmentation, the
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accuracy and stability of 3D reconstruction can be enhanced, resulting in a 3D model that
contains richer semantic details. Image segmentation algorithms can be chosen according
to the particular scenario and needs. Traditional techniques remain effective in certain
situations, while deep learning methods often provide more precise segmentation when
trained on extensive datasets. The choice of algorithm generally depends on factors such
as the specific application requirements, available computing resources, and the amount
of data at hand.
Here are some advantages and limitations of this technology.
Image segmentation enhances analysis by dividing images into meaningful parts, improv-
ing object detection, 3D reconstruction, and object tracking. It helps isolate features
in complex scenes, allowing applications such as medical imaging, autonomous vehicles,
robotics, surveillance, and motion detection to be incorporated. This technology, espe-
cially deep learning-based, is computationally intensive and requires large datasets for
training. It can also be sensitive to variations in data, such as changes in lighting, scale,
or occlusions, leading to potential inaccuracies in segmentation.

2.3 3D Reconstruction Methods Based on Machine Learn-

ing

2.3.1 Deep Learning Methods

Deep learning techniques surpass many traditional machine learning approaches in
several fields, particularly in computer vision. As technology continues to evolve, neural
network-based methods for dynamic 3D scene reconstruction have gained significant at-
tention from researchers. Neural networks are capable of uncovering feature information
that may be difficult for humans to interpret and can extract complex, high-dimensional
features.

Point Cloud

3D point cloud processing algorithms include: voxel-based algorithms, view-

based algorithms, and point-based algorithms. The point-based algorithm directly
uses point coordinates as input and can learn directly from the original data in an end-to-
end manner, simplifying feature engineering and rule design in the traditional process. It
has strong generalization ability and robustness and is suitable for scenarios of all types
and sizes.

Point-BLS, which extracts feature sets for points using a feature extraction network
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based on deep learning, followed by a comprehensive classification learning system.

Recent research has focused on methods that generate point cloud objects during
training, addressing the challenging and time-consuming task of data annotation [

10086697
42].

These point cloud generation methods include self-reconstruction, point cloud GAN [
wu2017learningprobabilisticlatentspace
41],

upsampling, and completion, depending on the specific pretask involved.
Here are some advantages and limitations of this technology:[

nguyen20133d
25] Point clouds offer de-

tailed and precise 3D representations of objects and environments, capturing fine surface
details. They are versatile for various applications like 3D modeling, object recogni-
tion, and robotics, and provide a direct representation of real-world environments from
measurements like LiDAR. Point clouds require significant storage and computational
power, especially for large or real-time data. They may have sparse or incomplete data,
lack semantic information for higher-level tasks, and contain noise or errors from sensor
limitations or environmental factors that affect quality. However, it requires significant
storage and computational power, especially for large or real-time data. They may have
sparse or incomplete data, lack semantic information for higher-level tasks, and contain
noise or errors from sensor limitations or environmental factors that affect quality.

Neural Radiance Fields

NeRFs (Neural Radiance Fields) are trained using images of an object or scene cap-
tured from various viewpoints. The training algorithm calculates the relative positions of
the images and adjusts the neural network’s weights to match the data with the images.
Here is how the process works in detail: Training begins with a set of images of an object
or scene taken from different angles, ideally using the same camera. In the first step, a
computational photography algorithm determines the camera’s position and orientation
for each photo in the collection. This information, along with the images, is then used
to train the neural network. The weights of the neural network are updated based on
the differences between the pixels in the images and the expected results. This process is
repeated around 200,000 times until the network achieves a satisfactory NeRF. Initially,
this process took days, but with recent optimizations by Nvidia, the entire procedure can
now occur in parallel in just a few seconds.

Here, each step of the Figure 3.4 above: a) X, Y, and Z denote the 3D coordinates
of a point along the ray. There is not just a ray created, but also defining points along it.
For each point in the 3D space, the objective is to determine its color and density. θ and

φ represent the azimuthal and polar angles, which define the viewing direction. Every
point matters, and an object may appear differently from various perspectives, which is
how reflections and lighting effects are achieved. b) In this scenario, the Neural Network
is a simple multi-layer perceptron (MLP), which aims to predict the color and density
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Figure 2.4: Schema from [
mildenhall2020nerfrepresentingscenesneural
23] for NeRF pipeline

of each point along every ray. The process involves a technique called "Ray Marching,"
which defines points along a ray, and then queries the neural network at each point to
predict the radiance (color and density).

Here is the process:

• A ray is created.

• The ray is divided into multiple points.

• For each point, a linear model is queried.

Ultimately, we predict four values: R, G, B, and sigma (density). At this stage, rays are
created for every pixel, and for each point on the ray, color and density are predicted.
c),d) To render a 3D scene accurately, first, there must be eliminated points that are in
the "space." For each point, we will check if it intersects with an object based on the
predicted density. An advantage of NeRF is that it can generate detailed and accurate
3D models of complex scenes, capturing fine surface features and reflections.[

mildenhall2020nerfrepresentingscenesneural
23]It offers a

continuous scene representation that can be queried at any point, supporting applications
like object manipulation and rendering.

Here are some advantages and limitations of this technology.
The representation of NeRF suffers from vulnerability to sampling and aliasing prob-

lems, which can lead to significant artifacts in the synthesized images. One limitation of
NeRF is that it requires a large dataset of high-quality images to train the network. This
data set needs to capture the scene from various viewpoints, which can be challenging and
time-consuming. The quality of the data set also plays a critical role in the performance
of the network. If the data set is noisy or contains artifacts, it can significantly impact
the quality of the synthesized views.
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Chapter 3

Methodology

In this chapter, we discuss all the steps of building the 3D reconstruction avatar
pipeline. An important place has Gaussian splatting, which is a highly effective tech-
nique for creating photorealistic 3D avatars while ensuring efficient rendering. It is a
method first introduced in 2023, so its full potential is still being studied. This technique
begins by capturing images from multiple angles, using SfM techniques to generate a 3D
point cloud. Each point is converted into Gaussian splats that represent position and
color. Then a training process refines details such as scale, covariance, and transparency,
creating millions of particles. During rendering, Gaussian rasterization transforms these
splats into colored pixels, replacing traditional triangle-based meshes with Gaussian blurs
that directly capture texture. It combines sophisticated mask filtering for accurate seg-
mentation, enhancing geometric precision, and optimization effectiveness to produce a
high-quality, accessible 3D avatar. In the following, each step of the pipeline-building
process is explained.

3.1 Data Acquisition and Preprocessing

First, 6 videos in total are used as input data for the study. Then the Gaussian
splatting extracts frames from the input video. These frames contain the 2D images of
the scene from different angles or viewpoints, which are crucial for constructing accurate
3D avatars. 2 of these videos are recovered with the smartphone and 4 of them were
provided by this paper [

shao2024splattingavatarrealisticrealtimehuman
31]. From each video, the extracted frames are used to estimate

avatar keypoint poses using OpenPose [
cao2019openposerealtimemultiperson2d
4] and additionally before the images are fed to

the pipeline, the person images are segmented using Segment Anything (SAM) [
kirillov2023segment
12].

31
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3.1.1 OpenPOSE

OpenPose is applied to the extracted frames to detect key body joints (head, shoulders,
elbows, hands, hips, knees, feet, and facial landmarks) from 2D images or frames.

OpenPose is an open source, real-time, multi-person pose estimation library devel-
oped by Carnegie Mellon’s Perceptual Computing Lab.[

cao2019openposerealtimemultiperson2d
4] Detects and tracks human

body, hand, face, and foot key points from images or videos using deep learning. Us-
ing convolutional neural networks (CNNs), OpenPose identifies body parts and connects
them to form a structured pose. It supports 2D and 3D pose estimation and is capable
of tracking multiple individuals in a single frame. The method is built upon Part Affinity
Fields (PAFs), which encode both location and orientation information of body parts to
facilitate pose estimation in an end-to-end manner.

Given an input image I : Ω → R3 defined over a spatial domain Ω ⊂ R2, OpenPose
first computes body part confidence maps Sj : Ω → [0, 1] for each keypoint j. These con-
fidence maps are obtained by applying a convolutional neural network FS parameterized
by θS:

S = FS(I; θS), (3.1)

where S = {Sj}Jj=1 represents the set of confidence maps for J body keypoints. Each
map Sj estimates the probability of keypoint j occurring at each pixel location.

In addition to keypoint detection, OpenPose models pairwise associations between
body parts using Part Affinity Fields (PAFs), represented as vector fields F c : Ω → R2.
Each F c encodes the orientation and position of a limb c, facilitating the grouping of key
points into coherent poses. The PAFs are computed as follows:

F = FF (I; θF ), (3.2)

where F = {F c}Cc=1 is the set of vector fields for C limb connections, and FF is another
CNN branch parameterized by θF .

Each PAF F c at location x ∈ Ω is defined as a unit vector along the direction of the
limb connecting two keypoints (j1, j2):

F c(x) =

vj1j2 , x lies on the limb segment

0, otherwise,
(3.3)

where vj1j2 = (xj2 − xj1)/∥xj2 − xj1∥ is the unit vector from keypoint j1 to keypoint
j2.
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The training objective consists of two loss functions: a confidence map loss LS and
a PAF loss LF , both formulated as mean squared errors (MSE) against ground truth
annotations Ŝ and F̂ :

LS =
J∑

j=1

∑
x∈Ω

∥∥∥Sj(x)− Ŝj(x)
∥∥∥2

, (3.4)

LF =
C∑
c=1

∑
x∈Ω

∥∥∥F c(x)− F̂ c(x)
∥∥∥2

. (3.5)

The total loss is thus given by:

L = LS + LF , (3.6)

This is minimized via backpropagation using gradient-based optimization techniques.

During inference, key points are extracted as local maxima in the confidence maps.
The optimal assignment of key points to the skeletal structures is achieved by solving a
bipartite graph matching problem. Let K = {ki}Ni=1 be the set of key points detected
for a given part and let E = {(ki, kj)} be potential limb connections weighted by PAF
confidence scores. The goal is to maximize the total association score A:

A =
∑

(ki,kj)∈E

∑
x∈L(ki,kj)

F c(x) · vkikj , (3.7)

where L(ki, kj) denotes the set of points sampled along the segment connecting ki and
kj. This optimization problem is solved using greedy matching or graph-based optimiza-
tion techniques.

3.1.2 Segment Anything (SAM)

Almost in parallel with OpenPose activity, SAM runs in parallel to create a segmen-
tation mask to separate the foreground object - the person - from the background.

The Segment Anything Model (SAM) is a deep learning-based segmentation frame-
work designed to generalize across diverse image segmentation tasks without requiring
task-specific fine-tuning. Unlike conventional segmentation models that are trained on
specific datasets and struggle with unseen objects or domains, SAM introduces a prompt-
based segmentation approach, allowing it to segment any object given an appropriate
user-specified cue.

That is how it works:

The key innovation of SAM lies in its ability to operate in a zero-shot manner, mean-
ing it can accurately segment objects in new images without additional training. This
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is achieved by combining a powerful vision transformer-based feature extraction network
with an interactive prompt mechanism that guides the segmentation process. Using dif-
ferent types of input prompts, the target object is defined in an image. These prompts
can include point annotations, bounding boxes, or rough segmentation masks. The model
then refines the segmentation based on these cues, producing an accurate object mask.
This prompt-based mechanism makes SAM adaptable to a wide range of applications,
from medical imaging to autonomous navigation, where precise object delineation is re-
quired. Given an input image, SAM first encodes its visual features using a pre-trained
transformer model. The encoded image representation is then processed alongside the
provided prompts. The model interprets the prompts in the context of the image fea-
tures, identifying the most relevant regions, and generating a segmentation mask that
best matches the given input. This process allows for interactive and adaptive seg-
mentation, meaning users can refine or modify the segmentation by providing additional
prompts. Following the methodology proposed in SplattingAvatar, we estimated different
segmentation masks using SAM and used only the one with the biggest connected-area
component. This is reasonable since the input video should be in controlled setting where
only the desired person to be reconstructed is visible without any major obstruction and
any flat-like background.

3.2 Reconstruction 3D Avatar

In this stage of the pipeline, ROMP aligns the key points of the skeleton avatar
with the SMPL mesh, tracks movement, and allows 3D avatar reconstruction. ROMP
provides a base mesh that serves as the foundation for initializing Gaussians. Each frame
is mapped to a standardized pose using a transformation into a canonical pose space,
allowing consistent training across frames.

Additionally, the base mesh plays a crucial role in binding Gaussians to the rigging
system. This is accomplished through the triangle-walking method from the SplattingA-
vatar paper, which enables the Gaussians to follow the deformation of the mesh. As a
result, the Gaussians dynamically adjust to different poses, ensuring accurate movement
and realistic rendering of the 3D avatar across various animations. For each technology,
there is a brief explanation of the technique and the use and observation of particles in
the execution of the pipeline.
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3.2.1 ROMP

ROMP is a deep learning model designed for 3D [
kerbl20233dgaussiansplattingrealtime
11]human pose and shape esti-

mation from a single image or video. Predicts SMPL parameters that define a human
body model using a skeletal structure, pose, and shape. This model enhances Gaussian
splatting by providing accurate 3D body pose and shape estimations. While Gaussian
Splatting uses Gaussian primitives for efficient 3D scene representation, it lacks explicit
skeletal control, making it challenging for animation. ROMP fills this gap by predicting
SMPL-based parameters, including pose, shape, and translation, from images or video.
These estimations help initialize Gaussians based on the detected human pose and shape,
ensuring a more realistic avatar representation. ROMP also refines motion tracking for
smoother animations and integrates skeletal data, improving the control and accuracy of
animated avatars created through Gaussian Splatting.

In this step of the pipeline, in the execution of the ROMP, the match of the keypoint
joins of the skeleton avatar with the mesh obtained from the SMPL parameters is ob-
served. They are very important because they help us determine the avatar poses. After
frame-by-frame ROMP tracking and then comparing the poses with each video, it is ob-
served that all the original avatar poses were captured. It is a very positive result because
not only does the system have image segmentation and pose for each of the avatars of
the videos, but also a sample with the pose and trajectories that can be applied to other
avatars, of course, of other videos, and see how their motion reacts. Let us explain in
detail the benefits of this approach in the pipeline.

• In the output from the ROMP model, we have the trajectories and poses of our
avatar, and we can apply filters to smooth the pose signal. In this step of the
pipeline, we are going to apply signal filtering to remove noise from the signal
and make the animation more fluent and realistic. This will be explained more in
section 3.2.2

• Moreover, we have our 3D avatar with the segmented images and poses. What
we can do is match the trajectories and poses of one specific avatar with another
3D avatar, to reconstruct the final video. We did some experiments applying one
avatar to the other avatar posing, and it moved when doing the avatar poses.

Here is the final pipeline figure:
This design is highly flexible, allowing individual stages to be replaced in a modular

way without affecting the entire process. Such adaptability is especially beneficial for
different applications; for instance, offloading certain computational stages to external
machines can enable the pipeline to function on devices with limited processing power.
In the above section, a detailed explanation of each stage is provided.
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Figure 3.1: 3D Avatar Reconstruction pipeline

3.3 Signal Filtering

We took an input video of average length, trying to reconstruct the 3D avatar video.
Plotting and analyzing the pose signal it was observed that the signal had a lot of noise,
the high-frequency signal part, meaning that the avatar did not move in a good normal
way. To remove the noise signal and smooth the motion, we applied the filtering pose
signal. As we shall see, this made the final 3D reconstructed avatar more smooth in
motion. Let’s see in detail the steps we made. In the process, we had to achieve the
pose signal from the Gaussians. The Average signal approach was applied, which will be
explained in the following. The average value of the signal refers to the mean or average
value of a signal over a certain period or a set of samples. In signal processing, it is
commonly used to characterize the central tendency or overall behavior of a signal.

To calculate the signal average, you typically sum the values of the signal over the
desired time interval or number of samples and then divide by the total number of samples
or the length of the interval. Mathematically, for a discrete signal x(t) with N samples:
Signal Average =

Signal Average =
1

N

N∑
i=1

x(ti)

Where:

• x(ti) represents the signal value at sample ti,

• N is the total number of samples.

In continuous signals, the signal average can be represented as:

Signal Average =
1

T

∫ T

0

x(t) dt

.
After explaining how to obtain the signal, specific work has been done on the Gaussians.
At the start, the system can capture the position of each joint in 3D space, represented
as (x, y, z) coordinates of the key points, and a θ representing the rotation of each of the
joints in every motion. So in the paper [

shao2024splattingavatarrealisticrealtimehuman
31] it is intended that for each keypoint a new

vector is achieved as (x, y, z, θ). This work has been done for all 73 channels. To find
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the new coordinates of the key points for every position, the vector has been normalized
and extracted: coordinates (x, y, z) and θ to represent the rotation angle of the joint.
This process has been performed every time a motion is made to determine the new pose
position for every joint involved. This is the previous step of the average signal.

So in this way, we gained the pose signal for each of the 6 videos studied in the
pipeline. So let us better explore the signal filtering, giving at the beginning some general
information of how they work, and then let us see how they are applied in our pose signal.
As signal filtering in the pipeline, for the pose signal, it is chosen: the moving average
window and the low-pass band. Let’s see in detail the two techniques:

• Moving Average Window: moving average window is a commonly used [
coulombe2025adaptivemovingaveragemacroeconomic
5]technique

for smoothing pose data. It helps reduce noise and create smoother and more sta-
ble animations by averaging the values of a signal over a moving window of data
points. This technique is especially useful for filtering erratic pose data, such as
those obtained from motion capture systems. That is how it works: A moving aver-
age filter operates by taking the average of a set of data points within a "window"
that moves over time. For a given time t, the window includes data points from t
- n to t + n, where n is the window size. The filter then computes the average of
all the data points within this window and replaces the value at time t with the
computed average. The moving average at time t is given by:

MAt =
1

N

t∑
i=t−N+1

xi

Where:

– MAt is the moving average at time t,

– xi are the data points in the window,

– N is the window size (the number of points in the moving average),

– t is the current time or data point.

Explanation: The moving average at time t is the average of the last N data
points (from t − N + 1 to t). The window slides as you move through the data,
averaging over the next N points.

– Choose a Window Size: The size of the window (often denoted as n) deter-
mines how many neighboring data points are used to calculate the average. A
smaller window results in less smoothing but better responsiveness to changes,
while a larger window smooths more, but reduces sensitivity to rapid changes.
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– Sliding the Window: The window slides through the data sequence, pro-
cessing one frame (pose signal) at a time. At each position, the filter calculates
the average of the data points within the window.

– Compute the Average: For each frame, the filter computes the average
value of the pose signals within the window and replaces the original value
with this average.

– Output the Smoothed Signal: The resulting output is a smoother version
of the pose signal, with reduced noise and irregular fluctuations.

– So in the pipeline, the Moving Average Window with these filter parameters:
Sampling rate is 30; Window size for the moving average is 10.

In this case, we could sample each 30HZ, we saw it was more productive using
this sampling rate of the pose signal, because trying other sampling rates and then
reconstructing the 3d avatar video, it has been noticed that the rendering was not so
good in the motion, the avatar sometimes did unnatural movement and it did look
granted. The other filter parameter, the moving window, was set to be 10 frames
because it was ideal to ensure normal and smooth motion. To improve filtering and
try to eliminate the noise in the pose signal, a low-band filter has been applied,
which is explained below.

• Low-Pass Filter: A low-pass filter allows lower-frequency signals [
unknown
32] (representing

actual smooth movements) to pass through while attenuating or removing higher-
frequency signals (representing noise or rapid unintended fluctuations).
The transfer function H(s) for a simple first-order low-pass filter is given by:

H(s) =
1

1 + s
ωc

Where:

– s is the complex frequency variable (s = σ + jω),

– ωc is the cutoff frequency (in radians per second).

In the time domain, the equation for a first-order low-pass filter is:

y(t) =
1

τ

∫ t

0

x(τ)e
t−τ
τ dτ

Where:

– x(t) is the input signal,
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– y(t) is the output signal,

– τ is the time constant of the filter, related to the cutoff frequency by τ = 1
ωc

.

– Cut-off frequency: The cutoff frequency is the threshold at which the filter
starts attenuating higher-frequency signals. It is crucial to choose an appro-
priate value for this frequency to ensure that important movement details are
preserved while reducing unwanted noise.

– Working principles: At frequencies below the cutoff frequency, the output
signal is strong and the filter allows most of the signal to pass through. At
frequencies above the cutoff frequency, the signal starts to attenuate, with a
steeper roll-off compared to passive filters.

– In the pipeline the cutoff frequency for the low-pass filter (Hz) is 5;
When applying this filter, all the high-frequency parts of the signal are not
accepted, causing a smoother filtered signal and no noise (which we know
noise is in the high frequencies). After trying and applying different cutoff
rates, we saw that the best rate was 5. So immediately every part of the
signal higher than 5 Hz is not extracted. The signal is cleaner and smoother,
and after reconstructing the avatar video, we saw that his motion was much
more natural and smoother than before, and the image during the motion was
clearer and better than before.
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Chapter 4

Experimental Setups

The builder pipeline is been observed and evaluated in terms of the quantity and
quality of the results achieved. Various videos of different lengths, from short about 30
seconds to long about 2 - 2.5 minutes. This proposed technique has been observed in in-
teraction with those input videos to reconstruct the final 3d avatar video. In this chapter,
first, the experiment setups have been explained, and then an analysis of the performance
matrices and their possible application. The experiments we did with six input videos,
where 4 of them were taken from the project represented in the paper[

shao2024splattingavatarrealisticrealtimehuman
31]and the other 2

videos were done with a smartphone in VarLab, to be included in the experiments. The
first 4 videos there demonstrate some easy and simple movements forward, and then the
person has moved the arms in a circle movement and even opened and closed their arms.
In the other 2 videos recorded in the Varlab, there are some principal movements like
moving forward, putting the arms up and then down and then rotating on itself, then
going backward. All of these videos were at a normal frame rate, 30 FPS. All filming
was done in natural light. The machine properties for the purpose and on which the
whole pipeline are in 6 Giga of CPU. The pose sign extracted from these videos has noise
because some movements were not very fluid, or in the recorded video some movements
were done very fast or very slow. We preferred to record videos in natural light and with
moving speed and gestural movement, to do some realistic videos to demonstrate that
every ordinary video can be useful for this purpose. We will see then that very long videos
do have a long waiting time. For each of the 6 input videos with a length of 30 seconds,
in the prepossessing 319 frames were achieved per each video. For each of the videos,
OpenPose found the key points of the joint of the person, and all the outputs were pro-
cessed with SAM and SPML parameters to match the key points inside the segmentation
masking. For the system, it took 1 minute and 13 seconds to process the key points for
each of the inputs. Afterward, it took about 50 seconds to mask the 3D avatars. The
evaluation process and thus reconstruction of the avatars took about 3 hours or even
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more depending on the avatar. The server that hosted this pipeline has 2 GPUs with 32
Giga per each.

4.1 Results

The proposed pipeline produces some final 3D reconstructed avatars that have smoother
and more realistic motion. It is important to note that the results presented in this report
are an improvement for smoothing motion and clear rendering avatar, other words, the
original 3DGS paper. It is considered to be an advancement of the original pipeline.

Here is the final pipeline figure:

Figure 4.1: Some of the frames
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Both trainings reached the last steps in less than 3 hours, but with a reconstructing
pipeline time cost of 3 hours for each of the 3D avatars. Each of the 6 videos was long
around 30 seconds and we did get 319 frames per each. In the following to understand
better the evaluation of our 3D avatar, we represent an image of the original pose input
video, then we have the key points of the joints for the avatar, and at the end the mask
achieved from this avatar and applied to another avatar.

This work has been done for every original pose of the input video and other avatars.

Figure 4.2: Here is the evaluation of the pipeline from the original pose video in the right,
then key points for every joint, and the pose applied to the another avatar

We can see that the original pose is identical to the final reconstructed pose. The re-
constructed avatar presents some reconstruction that is not corrected around the figure.
This is due to the noise in the pose signal which we did remove applying the filtering. In
the final avatar, we observed that there was a reconstruction that was not corrected for
on the surface around the armpit or ankle. This is because Splatting Avatar can not do
a realistic reconstruction to this area where the initial frames are not so clear, or they do
not exist at all.

Another important optimization for the pipeline is the filtering of pose signal to elim-
inate noise and secure smoother motion for the avatar. In the following, an image of the
signal with noise is presented, and then the image of the signal is filtered.
Notice that the signal at the beginning had a lot of noise, which is represented by the
many variations. After applying the low-pass filter with cutoff 3, all of the frequencies
greater than 3 are cut off they are not part of the new signal. Moreover, to reduce noise
we apply the moving average window. In this case, we apply another filter to the signal,
which is the moving average window of window size 10. In this case, the filter for every
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point does the average of the 10 data points near and so on for each data in the signal.
It is observed that the noise signal has improved a lot and that is why the avatar motion
is more natural.
It would be better if more filters were applied at the same time, depending on the pose
signal, to see more improvements in removing the noise.

Figure 4.3: Deleting noise from original pose signal

The work done to eliminate noise in pose signals is essential for accurate and realistic
3D avatar reconstruction. Noisy data can cause jerky, unstable, or incorrect movements,
making the avatar look unnatural. Smoothing the signal ensures fluid and lifelike ani-
mations by eliminating abrupt jumps in joint positions. It was important for the final
animation avatar to have natural, realistic movement, to be as realistic as possible.



Conclusion and Future Works

• This proposal is based on the results of the 3d avatar pipeline and filtering poses,
to reconstruct a good 3D avatar. Because of this pipeline, people can achieve a
3D reconstructed motion-optimized avatar with just any length of the video in in-
put. This proposed pipeline is very flexible and modular, which allows for future
improvement at every stage of it. This method might not be affordable for any-
one, because of the high computational power of the machine for preprocessing.
This technology is thought to be in all domains. Due to the segmentation step,
the pipeline created masks that are ready for any user to use in another 3D avatar
video. Filtering the pose signal allowed for a clearer reconstruction, removing the
noise signal, and achieving more natural reconstructed avatars. The filtering of
the pose signal helped to produce cleaner pose signals and ensure smoother tran-
sitions between movements. This is especially important in real-time applications,
where any disruption can negatively impact the experience. These improvements
are essential for creating visually appealing and stable animations in entertainment,
education, and simulation, contributing to more immersive experiences. The usage
of Gaussian splitting technology is very important in the transition from explicit
mesh representation to implicit ones in science and some producing chains.

• Future research In the course of this work, some areas of improvement are de-
tected. Some research work might be necessary to achieve this in single steps of
the pipeline, further improving the stability, visual quality, and efficiency of 3D
animation. Furthermore, it might be a good approach to improving existing filter-
ing techniques, incorporating advanced machine learning methods, and optimizing
performance. During the study of the result in chapter 4, we saw that in some
final reconstructed videos, the noise in the signal was visible. So, to remove this
noise, other approaches might be possible, like machine learning techniques.

In the following, some future approaches of signal filtering are explained: Moving Pose
Signal Filtering for Enhanced 3D Gaussian Splatting Animation
Future developments are expected to open up a range of promising possibilities, from
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refining filtering techniques to integrating advanced machine learning approaches. Im-
proving the smoothness, consistency, and realism of 3D animations will require ongoing
work in areas such as another sort of filtering and advanced signal reconstruction. As
these innovations progress, they will help in many fields of education, entertainment, and
industry with fluid, visually impressive, almost real animations. A good alternative
might be using machine learning for pose signal filtering. In this case, a machine learning
model, such as a neural network, can be trained on labeled datasets of clean and noisy
pose data. The model learns how to map noisy or incomplete pose data to a smoother sig-
nal. Then this trained model can predict and filter pose signals in real-time by identifying
the underlying structure and correcting noise or inconsistencies in the input data. For
example, this approach could be used to reconstruct missing pose data in motion capture
sequences or to smooth erratic movements in 3D animations. Another approach might
involve Recurrent Neural Networks (RNNs) for analyzing time-series data for like pose
signals. These models can capture temporal dependencies and context, allowing them to
filter and predict pose signals based on previous frames. Furthermore, the system can
smooth the signal over time and predict future pose positions based on past data. This
can help in cases where there is uncertainty or noise in the pose data, such as during fast
movements or incomplete motion capture sequences. A key improvement point might be
training models on noisy input data, the autoencoder learns how to filter out unwanted
noise and retain the true pose signal. This approach is beneficial when labeled data is
scarce or when the noise patterns are complex and difficult to model using traditional
filtering techniques.
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